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Exploiting Design Information 

• Alloy provides a means for expressing properties of 
designs  

– Early design refinement saves time  

– Ultimately, we want this effort to impact the quality of 
implementations  

• How can we transfer design information to the code?  

– State information (multiplicities, invariants, …)  

– Operations information (pre, post, frame conditions, …)  



Design by Contract 

• A method that emphasizes the precise 
description of interface semantics 
– not just syntax, e.g., signatures (names, types, 

visibility modifiers) 

– but run-time behavior, e.g., effects of a method call 

• Supported by tools that 
– allow semantic properties of the design to be 

propagated to the code 

– support various forms of validation of those 
properties, e.g., run-time and static checking 



History 

• Term “Design by Contract” was first coined by 
Bertrand Meyer in the context of the Eiffel 
language 

• Basic ideas and techniques go back to 
pioneering work of 
– Alan Turing (1949) 

– Robert Floyd (1967) 

– Tony Hoare (1969) 

– Edsger Dijkstra (1975) 



Basic Idea 

• Software is viewed as a system of 
communicating components (objects) 

– all interaction is governed by contracts  

– contracts are precise specifications of mutual  
obligation between components 



Contracts 

• Two parties are involved in a contract 

– The supplier performs a task 

– The client requests that the task be performed 

• Each party  

– has obligations 

– receives some benefits 

• Contracts specify those obligations and benefits 

• Contracts are bi-directional  

– both parties are obligated by them  

 



Contract Example: Air Travel 

Client (Traveler) 

• Obligation 

– check in 30 minutes 
before boarding 

– <3 small carry-ons 

– pay for ticket 

• Benefit 

– reach destination 

Supplier (Airline) 

• Obligation 
– take traveler to 

destination 

• Benefit 
– don’t need to wait for 

late travelers 

– don’t need to store 
arbitrary amounts of 
luggage 

– money 
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Contracts 

• Specify what should be done not how it should 
be done 
– they are implementation independent 

• This same idea can be applied to software using 
the building blocks we have already learned in 
Alloy 
– pre conditions 

– post conditions 

– frame conditions  

– invariants 



Taking a Flight (Java Syntax) 

class Flight { 

  /*@ requires time < this.takeoff – 30 && 

    @          l.number < 3 && 

    @           p in this.ticketed; 

    @  ensures \result = this.destination; 

    @*/ 

  Destination takeFlight(Person p, Luggage l)  

  {…} 

} 



Specification or Implementation Language 

• Why not both? 

• Refinement methodology 

– rather than develop signatures alone 

– develop contract specification 

– analyze client-supplier consistency 

– fill in implementation details 

– check that code satisfies contract 

• Natural progression from design to code 



Executable Specifications 

• Specification language is a subset of the 
implementation language 

– contracts are written in the programming 
language itself 

– and translated into executable code by the 
compiler 

– enables easy run-time checking of contracts 



Java Example: Stack Data Structure 

class Mystack { 
  private Object[] elems; 
  private int top, size; 
  public MyStack (int s) { ... } 
  public void push (Object obj) { ... } 
  public Object pop() { ... } 
  public boolean isEmpty() { ... } 
  public boolean isFull() { ... } 
} 



Java Example: Stack Data Structure 

/*@ invariant top >= -1 &&  
              top < size && 

              size = elems.length(); 

  @*/ 

class Mystack { 

  private Object[] elems; 

  private int top, size; 

  ... 

} 



class Mystack { 
  private Object[] elems; 
  private int top, size; 
  ... 
  /*@ requires !isFull(); 
    @ ensures top == \old(top) + 1 && 
    @         elem[top] == obj; 
    @*/ 
  public void push (Object obj) { ... } 
  ... 
  public boolean isFull() { ... } 
} 

Java Example: Stack Data Structure 



class Mystack { 
  private Object[] elems; 
  private int top, size; 
  ... 
  /*@ requires !isEmpty(); 
    @ ensures top == \old(top) - 1 && 
    @         \result == elem[\old(top)]; 
    @*/ 
  public Object pop() { ... } 
  ... 
  public boolean isEmpty() { ... } 
} 

Java Example: Stack Data Structure 



class Mystack { 
  private Object[] elems; 
  private int top, size; 
  ... 
  /*@ ensures \result <==> top = -1; 
    @*/ 
  public boolean isEmpty() { ... } 
} 

Java Example: Stack Data Structure 



Source Specifications 

• Pre/post conditions 
– (Side-effect free) Boolean expressions in the host 

language 

• What about all of the expressive power we 
have in, e.g., Alloy? 
– Balance expressive power against checkability 

– Balance abstractness against language mapping 

• No one right choice 
– Different tools take different approaches 



Important Issues 

• Contract enforcement code is executed 
– It should be side-effect free 

– If not, then contracts change behavior! 

• Frame conditions 
– Explicitly mention what can change 

– Default: anything can change 

• Failed contract conditions 
– Most approaches will abort the execution 

– How can we continue? 



Contract Inheritance 

• Inheritance in most OO languages 
– Sub-type can be used in place of super-type 

– Sub-type provides at least the capability of super-type 

• Sub-types weaken the pre-condition 
– Require no more than the super-type 

– Implicit or of inherited pre-conditions 

• Sub-types strengthen the post-condition 
– Guarantee at least as much as the super-type 

– Implicit and of inherited post-conditions 

• Invariants are treated the same as post-conditions 



Languages with DbC Support 

• Eiffel 

• SPARK (Ada) 

• Spec# (C#) 

• Java 
– Java Modeling Language (JML) 

– iContract, JContract, Jass, Jahob, … 

• .NET languages: Code Contracts 

• C/C++: VCC, Frama-C, … 

• Research languages: Daphne, Chalice, Hob, … 

• … 

 

 



Java Modeling Language (JML) 

JML is a behavioral interface specification 
language (BISL) for Java. 

• Proposed by G. Leavens, A. Baker, C. Ruby: 
JML: A Notation for Detailed Design, 1999 

• Combines ideas from two approaches: 

– Eiffel with its built-in language for Design by 
Contract  

– Larch/C++ a BISL for C++ 



The Roots of JML 

• Ideas from Eiffel: 

– Executable pre and post-condition for runtime assertion 
checking 

– Uses Java syntax (with a few extensions). 

– Operator \old to refer to the pre-state in the post-
condition. 

• Ideas from Larch: 

– Describe the state transformation behavior of a method 

– Model Abstract Data Types (ADT) 



Java Modeling Language (JML) 

• Homepage: http://www.jmlspecs.org/ 

• Release can be downloaded from 
http://sourceforge.net/projects/jmlspecs/files 

• Includes many useful tools for testing and 
analysis of contracts 

– JML compiler 

– JML runtime assertion checker, … 

• Many additional third party tools available 

http://www.jmlspecs.org/
http://www.jmlspecs.org/
http://sourceforge.net/projects/jmlspecs/files
http://sourceforge.net/projects/jmlspecs/files


JML: Tool Support 
• Run-time checking and dynamic analysis:  

– JML tools 
– AJML 
– Daikon 

• Automated test case generation:  
– JML tools 
– Korat,  
– Sireum/Kiasan 
– KeY/TestGen 

• Static checking and static analysis:  
– ESC/Java 2 
– JForge 

• Formal verification:  
– JACK 
– KeY 

• Documentation generation: jmldoc (JML tools) 



JML Example: Factorial 

Is this method correct? 
 
public static int factorial(int n) { 
  int result = n; 
  while (--n > 0) 
    result *= n; 
  return result; 
} 

 
We need a specification! 



JML Syntax: Method Specifications 

In JML a method contract precedes the method in 
special comments /*@ ... @*/. 

 

• requires formula:  

– The specification only applies if formula holds when 
method called. 

– Otherwise behavior of method is undefined. 

• ensures formula:  

– If the method exits normally, formula has to hold. 



A JML formula is a Java Boolean expression. The following 
list shows some operators of JML that do not exists in Java: 

• \old(expression):  
– the value of expression before the method was called (used 

in ensures clauses) 

• \result:  
– the return value (used in ensures clauses). 

• F ==> G:  
– states that F implies G. This is an abbreviation for !F || G. 

• \forall Type t; condition; formula:  
– states that formula holds for all t of type Type that satisfy 
condition. 

JML Syntax: Formulas 



/*@ requires n >= 0; 
  @ ensures \result == n! ; 
  @*/ 
public static int factorial(int n) { 
  int result = n; 
  while (--n > 0) 
    result *= n; 
  return result; 
} 
 

Is this method correct? 
 
No: case n=0 gives wrong result. 
 

JML Example: Factorial 

But factorial ! is not 
an inbuilt operator. 



Solutions (1): Weakening the specification 
 
/*@ requires n >= 0; 
  @ ensures \result >= 1; 
  @*/ 
public static int factorial(int n) { 
  int result = n; 
  while (--n > 0) 
    result *= n; 
  return result; 
} 
 

+ Simple Specification 
+ Catches the error 
− Cannot find all potential errors 
− Gives no hint, what the function computes 

JML Example: Factorial 



Solutions (2): Using pure Java methods 
/*@ requires n >= 0; 
  @ ensures (n == 0 ==> \result == 1) && 
  @         (n > 0 ==> \result == n*fact(n-1)); */ 
public static @pure int fact(int n) { 
  return n <= 0 ? 1 : n*fact(n-1); 
} 
 

Pure methods must not have side-effects and must always 
terminate. They can be used in specifications: 
 

/*@ requires n >= 0; 
  @ ensures \result == fact(n); @*/ 
public static int factorial(int n) { 
  int result = 1; 
  while (n > 0)  result *= n--; 
  return result; 
} 

JML Example: Factorial 



Partial vs. Full Specifications 

Giving a full specification is not always practical. 

• Code is repeated in the specification. 

• Errors in the code may also be in the 
specification. 



Semantics of Java Programs 

The Java Language Specification (JLS) 3rd edition 
gives semantics to Java programs 

• The document has 684 pages. 

• 118 pages to define semantics of expression. 

• 42 pages to define semantics of method 
invocation. 

• Semantics is only defined by prosa text. 



Example: What does this program print? 

class A { 
  public static int x = B.x + 1; 
} 
 
class B { 
  public static int x = A.x + 1; 
} 
 
class C { 
  public static void main(String[] p) { 
    System.err.println("A: " + A.x + ", B: " + B.x); 
  } 
} 



JLS, chapter 12.4.1 “When Initialization Occurs”: 
A class T will be initialized immediately before the 
first occurrence of any one of the following: 
• T is a class and an instance of T is created. 
• T is a class and a static method declared by T is 

invoked. 
• A static field declared by T is assigned. 
• A static field declared by T is used and the field is 

not a constant variable. 
• T is a top-level class, and an assert statement 

lexically nested within T is executed. 

Example: What does this program print? 



JLS, chapter 12.4.2 “Detailed Initialization Procedure”: 

The procedure for initializing a class or interface is then as follows: 

1.  Synchronize on the Class object that represents the class or interface 
to be initialized. This involves waiting until the current thread can 
obtain the lock for that object. 

2. . . . 

3.  If initialization is in progress for the class or interface by the current 
thread, then this must be a recursive request for initialization. 
Release the lock on the Class object and complete normally. 

4.–8. . . . 

9. Next, execute either the class variable initializers and static initializers 
of the class, or the field initializers of the interface, in textual order, 
as though they were a single block, except that final class variables 
and fields of interfaces whose values are compile-time constants are 
initialized first. 

10.– . . . 

Example: What does this program print? 
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If we run class C : 
1) main-method of class C first accesses A.x. 
2) Class A is initialized. The lock for A is taken. 
3) Static initializer of A runs and accesses B.x. 
4) Class B is initialized. The lock for B is taken. 
5) Static initializer of B runs and accesses A.x. 
6) Class A is still locked by current thread (recursive 

initialization). Therefore, initialization returns immediately. 
7) The value of A.x is still 0 (section 12.3.2 and 4.12.5), so B.x 

is set to 1. 
8) Initialization of B finishes. 
9) The value of A.x is now set to 2. 
10) The program prints “A: 2, B: 1”. 

Example: What does this program print? 



Further Reading Material 

• Gary T. Leavens, Yoonsik Cheon. Design by 
Contract with JML 

• G. Leavens et al.. JML Reference Manual 
(DRAFT), July 2011 

• J. Gosling et al.: The Java Language 
Specification (third edition) 

• T. Lindholm, F. Yellin: The Java Virtual Machine 
Specification (second edition) 


