
Rigorous Software Development
CSCI-GA 3033-009

 Instructor: Thomas Wies

Spring 2013

Lecture 4

Today’s Topics

• The Alloy Analyzer (Ch. 5 of Jackson Book)

– From Alloy models to Analysis Constraints

– Propositional Logic (Ch. 1 of Huth/Ryan Book)

– From Analysis Constraints to Propositional Logic

– Quantifier Elimination

– Alleviating State Space Explosion

Alloy Analyzer (AA)

• Small scope hypothesis: violations of assertions
are witnessed by small counterexamples

– AA exhaustively searches for instances of small scope

• AA can falsify a model but not verify it

– It can prove that an assertion does not hold for all
instances of a model by finding a counterexample.

– It cannot prove that an assertion holds in all instances
of a model,

– it can only prove that an assertion holds for all instances
up to a certain size (bounded verification).

Alloy Analyzer (AA)

• Small scope hypothesis: violations of assertions
are witnessed by small counterexamples

– AA exhaustively searches for instances of small scope

• Can we automatically verify Alloy models?

– The answer is no because the verification problem for
Alloy models is undecidable

– i.e., there is no general algorithm to solve this problem.

From Alloy Models to SAT and Back

• AA is actually a compiler
– First, the alloy model is translated to a single Alloy

constraint, which is called the analysis constraint.
– Given the scope of the command to execute, the

analysis constraint is translated into a propositional
constraint.

– AA then uses an off-the-shelf SAT solver to find a
satisfying assignment for the propositional constraint.

– If a satisfying assignment exists, it is translated back
into an instance of the original Alloy model.

• AA reduces the problem of finding instances of
Alloy models to a well-understood problem: SAT

Analysis Constraints

• First, the Alloy model is translated into a single
Alloy constraint: the analysis constraint.

• The analysis constraint is a conjunction of

– fact constraints

• facts that are explicitly declared in the model

• facts that are implicit in the signature declarations

– and a predicate constraint:

• for a run command: the constraint of the predicate that
is run

• for a check command: the negation of the assertion
that is checked

Analysis Constraints: Example

module addressBook

abstract sig Target {}

sig Addr, Name extends Target {}

sig Book {addr: Name->Target}

fact Acyclic {all b: Book | no ^(b.addr) & iden}

pred add [b, b’: Book, n: Name, t: Target] {

 b’.addr = b.addr + n->t

}

run add for 3 but 2 Book

Implicit Fact Constraint

The implicit fact constraint is the conjunction of the
constraints implicit in the signature declarations:

Example: from the signature declarations
 abstract sig Target {}
 sig Addr, Name extends Target {}
 sig Book {addr: Name->Target}

AA generates the implicit fact constraint:
 Name in Target
 Addr in Target
 no Name & Addr
 Target in Name + Addr
 no Book & Target

Explicit Fact Constraint

The explicit fact constraint is the conjunction of all
bodies of the declared facts

Example: the fact
 fact Acyclic {all b: Book | no ^(b.addr) & iden}

generates the explicit fact constraint:
 all b: Book | no ^(b.addr) & iden

Predicate Constraint

The predicate constraint is
– the conjunction of the body of the predicate that is run and the

multiplicity and type constraints of its parameters

– or the negation of the body of the assertion that is checked.

Example: running the predicate
 pred add [b, b’: Book, n: Name, t: Target] {

 b’.addr = b.addr + n->t

 }

generates the predicate constraint:
 b: Book and b’: Book and n: Name and t: Target

 b’.addr = b.addr + n->t

t in Target and one t

Analysis Constraint for addressBook

Name in Target

Addr in Target

no Name & Addr

Target in Name + Addr

no Book & Target

all b: Book | no ^(b.addr) & iden

b: Book and b’: Book

n: Name and t: Target

b’.addr = b.addr + n->t

Implicit fact constraint
Explicit fact constraint
Predicate constraint

Satisfying Assignment for Analysis Constraint

Target = {(A0), (N0)}

Addr = {(A0)}

Name = {(N0)}

Book = {(B0), (B1)}

addr = {(B0,N0,A0), (B1,N0,A0)}

b = {(B0)}

b’ = {(B1)}

n = {(N0)}

t = {(A0)}

B0

{b}

A0

{t}

N0

{n}

B1

{b’}

addr [N0] addr [N0]

Satisfying assignment is mapping from constraint vars to
relations of atoms that evaluate the constraint to true.

From Analysis Constraints to
Propositional Logic

• Given the scope of the command to execute, the
analysis constraint is translated into a constraint in
propositional logic.

• The translation guarantees a one-to-one
correspondence between satisfying assignments of the
propositional constraint and the analysis constraint.

• AA then uses an off-the-shelf SAT solver to find a
satisfying assignment for the propositional constraint.

• If a satisfying assignment is found, it is translated back
into an assignment of the analysis constraint which in
turn represents the instance of the original Alloy model.

What is Logic?

• Like a programming language, a logic is defined by
its syntax and semantics.

• Syntax:
– An alphabet is a set of symbols.

– A finite sequence of symbols is called an expression.

– A set of rules defines the well-formed expressions.

• Semantics:
– Gives meaning to well-formed expressions.

– Formal notions of induction and recursion can be used
to give rigorous semantics.

Syntax of Propositional Logic

• Each expression is made of

– propositional variables: a, b, . . . , p, q, . . .

– logical constants:⊤, ⊥

– logical connectives: Æ, Ç,), . . .

• Every propositional variable stands for a basic
fact

– Examples:
I’m hungry, Apples are red, Joe and Jill are married

Syntax of Propositional Logic

• Well-formed expressions are called formulas

• Each propositional variable (a, b, . . ., p, q, . . .)
is a formula

• Each logical constant (⊤, ⊥) is a formula

• If Á and Ã are formulas, all of the following are
also formulas
 ¬Á Á Æ Ã Á) Ã

 (Á) Á Ç Ã Á , Ã

• Nothing else is a formula

Semantics of Propositional Logic

• The meaning (value) of ⊤ is always True. The meaning
of ⊥ is always False.

• The meaning of the other formulas depends on the
meaning of the propositional variables.
– Base cases: Truth Tables

– Non-base cases: Given by reduction to the base cases
Example: the meaning of (p Ç q) Æ r is the same as the
meaning of a Æ r where a has the same meaning as p Ç q.

P Q : P P Æ Q P Ç Q P) Q P , Q

False False True False False True True

False True True False True True False

True False False False True False False

True True False True True True True

Semantics of Propositional Logic

• An assignment of Boolean values to the propositional
variables of a formula is an interpretation of the
formula.

• Interpretations:
{P False, Q False}, {P False, Q True}, . . .

• The semantics of Propositional logic is compositional:
the meaning of a formula is defined recursively in terms
of the meaning of the formula’s components.

P Q P Ç Q (P Ç Q) Æ :Q (P Ç Q) Æ :Q) P

False False False False True

False True True False True

True False True True True

True True True False True

Semantics of Propositional Logic

• Typically, the meaning of a formula depends on its
interpretation.
Some formulas always have the same meaning.

• A formula is
– (un)satisfiable if it is true in some (no) interpretation,
– valid if it is true in every possible interpretation.

• A formula that is valid or unsatisfiable is called a
tautology.

P Q P Ç Q (P Ç Q) Æ :Q (P Ç Q) Æ :Q) P

False False False False True

False True True False True

True False True True True

True True True False True

The SAT Problem

• The satisfiability problem for propositional logic
(SAT) asks whether a given formula Á is
satisfiable.

• SAT is decidable.

• Hence, so is validity of propositional formulas.

• However, SAT is NP-complete

• Hence, checking validity is co-NP-complete.

The SAT Problem

• Many problems in formal verification can be
reduced to checking the satisfiability of a formula
in some logic.

• In practice, NP-completeness means the time
needed to solve a SAT problem grows
exponentially with the number of propositional
variables in the formula.

• Despite NP-completeness, many realistic instances
(in the order of 100,000 variables) can be checked
very efficiently by state-of-the-art SAT solvers.

Translating the Analysis Constraint

Name in Target

Addr in Target

no Name & Addr

Target in Name + Addr

no Book & Target

all b: Book | no ^(b.addr) & iden

b: Book and b’: Book

n: Name and t: Target

b’.addr = b.addr + n->t

Characteristic Function of a Relation

Name = {(N0),(N1),(N2)}

Addr = {(A0),(A1),(A2)}

address = {(N0,A0), (N1,A1), (N2,A1)}

Characteristic function of the relation address:

 Âaddress: Name £ Addr ! {0,1}

 Âaddress(Ni,Aj) = 1 iff (Ni,Aj) 2 address

Characteristic Function of a Relation

Name = {(N0),(N1),(N2)}

Addr = {(A0),(A1),(A2)}

address = {(N0,A0), (N1,A1), (N2,A1)}

Characteristic function of the relation address:

 Âaddress N0 N1 N2

A0 1 0 0

A1 0 1 1

A2 0 0 0

Propositional Encoding of Relations

Introduce a propositional variable Xij for every Ai and Nj:

Âaddress N0 N1 N2

A0 1 0 0

A1 0 1 1

A2 0 0 0

Âaddress N0 N1 N2

A0 X00 X01 X02

A1 X10 X11 X12

A2 X20 X21 X22

Propositional Encoding of Relations

Introduce a propositional variable Xij for every Ai and Nj:

Âaddress N0 N1 N2

A0 1 0 0

A1 0 1 1

A2 0 0 0

Âaddress N0 N1 N2

A0 X00 X01 X02

A1 X10 X11 X12

A2 X20 X21 X22

Each assignment to the propositional variables Xij

corresponds to one possible function Âaddress and thus
one possible interpretation of the relation address.

Translating Relational Operations

• All relational operations in an Alloy constraint are
encoded as propositional formulas.

• The propositional variables in the formulas describe
the characteristic functions of the relational variables
in the Alloy constraint.

Âaddr N0 N1 N2

A0 X00 X01 X02

A1 X10 X11 X12

A2 X20 X21 X22

Propositional Translation: Example

Analysis constraint (scope 3):

 Addr in Target

Propositional variables for characteristic functions:

 Addr: A0, A1, A2

 Target: T0, T1, T2

Propositional encoding of analysis constraint:

 A0) T0 Æ A1) T1 Æ A2) T2

Propositional Translation: Example

Analysis constraint (scope 3):

 address’ = address + n->t

Flatten analysis constraint by introducing fresh
variables for non-trivial subexpressions.

Flattened analysis constraint:

 address’ = address + e

 e = n->t

Propositional Translation: Example

Flattened analysis constraint (scope 3):

 address’ = address + e

 e = n->t

Propositional variables for characteristic functions:

 address’: A’00, A’01, A’02, A’10, A’11, A’12, A’20, A’21, A’22

 address: A00, A01, A02, A10, A11, A12, A20, A21, A22

 e: E00, E01, E02, E10, E11, E12, E20, E21, E22

 n: N0, N1, N2

 t: T0, T1, T2

Propositional Translation: Example

Flattened analysis constraint (scope 3):
 e = n->t

Propositional variables for characteristic functions:
 e: E00, E01, E02, E10, E11, E12, E20, E21, E22

 n: N0, N1, N2
 t: T0, T1, T2

Propositional encoding of analysis constraint:

 Æ Eij , Ni Æ Tj

0 · i,j · 2

Propositional Translation: Example

Flattened analysis constraint (scope 3):
 addr’ = addr + e

Propositional variables for characteristic functions:
 address’: A’00, A’01, A’02, A’10, A’11, A’12, A’20, A’21, A’22
 address: A00, A01, A02, A10, A11, A12, A20, A21, A22

 e: E00, E01, E02, E10, E11, E12, E20, E21, E22

Propositional encoding of analysis constraint:

 Æ A’ij , Aij Ç Eij

0 · i,j · 2

Quantifier Elimination

• Universal and existential quantification over finite
sets can be eliminated using finite conjunctions,
respectively, disjunctions.

• Example: Replace universal quantifier
 all x: S | F
where S = {s0, ..., sn} with conjunction
 F[s0/x] and ... and F[sn/x]

Quantifier Elimination

• Quantifier elimination can be encoded directly
in the propositional constraint.

• Example: The universal quantifier
 all x: Alias | x.addr in Addr

can be encoded by the propositional formula

 Æ Ai Æ Rij) Dj

assuming the scope is n and the propositional
variables are Ai for Alias, Di for Addr, and Rij
for addr.

0 · i,j < n

Skolemization

• Existential quantifiers can be treated more
effectively using Skolemization

– Replace top-level existential quantifiers of the form
 some x: S | F
with
 (xs: S) and F[xs/x]
where xs is a fresh variable

• Advantage: witness for x is made explicit in
generated instances

Skolemization

• Skolemization also works for existential quantifiers
that appear below universal quantifiers:

– replace
 all x: S | some y: T | F
with
 (sy: S->one T) and all x: S | F[x.sy/y]
where sy is a fresh analysis variable

Symmetries in Satisfying Assignments

Permuting the names of the propositional
variables for each characteristic function in a
satisfying assignment yields again a satisfying
assigment.

Symmetries in Satisfying Assignments

Target = {(A0), (N0)}

Addr = {(A0)}

Name = {(N0)}

Book = {(B0), (B1)}

addr = {(B0,N0,A0), (B1,N0,A0)}

b = {(B0)}

b’ = {(B1)}

n = {(N0)}

t = {(A0)}

B0

{b}

A0

{t}

N0

{n}

B1

{b’}

addr [N0] addr [N0]

Exchanging the roles of B0 and B1 gives a symmetric
satisfying assignment.

• Symmetries can lead to an exponential blow-up
in the number of possible instances.

• This state space explosion problem makes it
hard for the SAT solver to solve the
propositional constraints.

• Ideally, the SAT solver only has to consider one
assignment per equivalence class of symmetric
assignments.

State Space Explosion Problem

Symmetry Reduction

• To reduce the number of symmetries, Alloy
adds symmetry breaking constraints to the
propositional constraint.

• Example:
util/ordering [Data]

– all orderings on Data atoms Data0, Data1, Data2, …
are symmetric.

– util/ordering enforces one particular ordering
on Data, namely the lexicographic ordering on
atom names:

Data0 < Data1 < Data2 < …

Alleviating State Space Explosion

• Often careful modeling can help to reduce
symmetries

• Example: use partial instances when possible

instead of
left right

right

null null null

right left left

null null

right left

left right

right

left and right are partial functions
instead of total functions

Next Week: Design by Contract

• Alloy provides a means for expressing
properties of designs
– Early design refinement saves time

– Ultimately, we want this effort to impact the
quality of implementations

• How can we transition design information to
the code?
– State information (multiplicities, invariants, …)

– Operations info (pre, post, frame conditions, …)

