Rigorous Software Development CSCI-GA 3033-009

Instructor: Thomas Wies

Spring 2013

Lecture 4

Today's Topics

- The Alloy Analyzer (Ch. 5 of Jackson Book)
 - From Alloy models to Analysis Constraints
 - Propositional Logic (Ch. 1 of Huth/Ryan Book)
 - From Analysis Constraints to Propositional Logic
 - Quantifier Elimination
 - Alleviating State Space Explosion

Alloy Analyzer (AA)

• Small scope hypothesis: violations of assertions are witnessed by small counterexamples

AA exhaustively searches for instances of small scope

- AA can falsify a model but not verify it
 - It can prove that an assertion does not hold for all instances of a model by finding a counterexample.
 - It cannot prove that an assertion holds in all instances of a model,
 - it can only prove that an assertion holds for all instances up to a certain size (bounded verification).

Alloy Analyzer (AA)

• Small scope hypothesis: violations of assertions are witnessed by small counterexamples

AA exhaustively searches for instances of small scope

- Can we automatically verify Alloy models?
 - The answer is no because the verification problem for Alloy models is undecidable
 - i.e., there is no general algorithm to solve this problem.

From Alloy Models to SAT and Back

- AA is actually a compiler
 - First, the alloy model is translated to a single Alloy constraint, which is called the analysis constraint.
 - Given the scope of the command to execute, the analysis constraint is translated into a propositional constraint.
 - AA then uses an off-the-shelf SAT solver to find a satisfying assignment for the propositional constraint.
 - If a satisfying assignment exists, it is translated back into an instance of the original Alloy model.
- AA reduces the problem of finding instances of Alloy models to a well-understood problem: SAT

Analysis Constraints

- First, the Alloy model is translated into a single Alloy constraint: the analysis constraint.
- The analysis constraint is a conjunction of
 - fact constraints
 - facts that are explicitly declared in the model
 - facts that are implicit in the signature declarations
 - and a predicate constraint:
 - for a run command: the constraint of the predicate that is run
 - for a check command: the negation of the assertion that is checked

Analysis Constraints: Example

module addressBook

```
abstract sig Target {}
sig Addr, Name extends Target {}
sig Book {addr: Name->Target}
```

```
fact Acyclic {all b: Book | no ^(b.addr) & iden}
```

```
pred add [b, b': Book, n: Name, t: Target] {
    b'.addr = b.addr + n->t
}
```

```
run add for 3 but 2 Book
```

Implicit Fact Constraint

The implicit fact constraint is the conjunction of the constraints implicit in the signature declarations:

Example: from the signature declarations
 abstract sig Target {}
 sig Addr, Name extends Target {}
 sig Book {addr: Name->Target}

AA generates the implicit fact constraint: Name in Target Addr in Target no Name & Addr Target in Name + Addr no Book & Target

Explicit Fact Constraint

The explicit fact constraint is the conjunction of all bodies of the declared facts

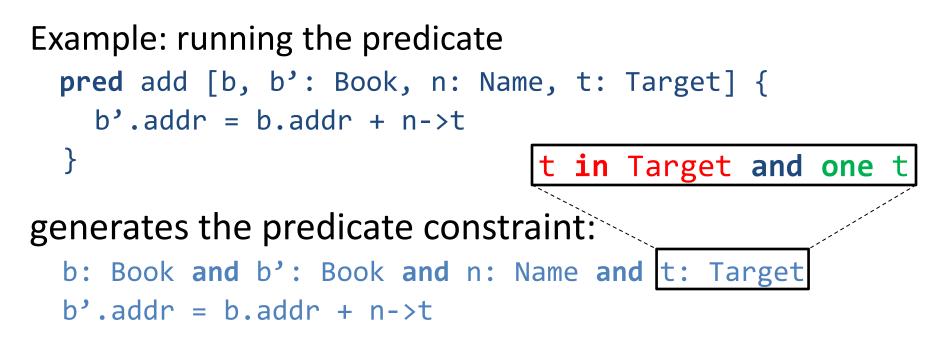
Example: the fact
fact Acyclic {all b: Book | no ^(b.addr) & iden}

generates the explicit fact constraint:
 all b: Book | no ^(b.addr) & iden

Predicate Constraint

The predicate constraint is

- the conjunction of the body of the predicate that is run and the multiplicity and type constraints of its parameters
- or the negation of the body of the assertion that is checked.



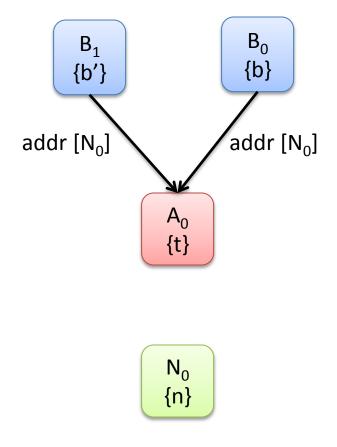
Analysis Constraint for addressBook

Name **in** Target Implicit fact constraint **Explicit fact constraint** Addr in Target Predicate constraint no Name & Addr Target in Name + Addr no Book & Target all b: Book | no ^(b.addr) & iden b: Book and b': Book n: Name and t: Target b'.addr = b.addr + n->t

Satisfying Assignment for Analysis Constraint

Satisfying assignment is mapping from constraint vars to relations of atoms that evaluate the constraint to *true*.

```
Target = {(A_0), (N_0)}
Addr = \{(A_0)\}
Name = \{(N_0)\}
Book = {(B_0), (B_1)}
addr = {(B_0, N_0, A_0), (B_1, N_0, A_0)}
b = \{(B_0)\}
b' = \{(B_1)\}
n = \{(N_0)\}
t = {(A_0)}
```



From Analysis Constraints to Propositional Logic

- Given the scope of the command to execute, the analysis constraint is translated into a constraint in propositional logic.
- The translation guarantees a one-to-one correspondence between satisfying assignments of the propositional constraint and the analysis constraint.
- AA then uses an off-the-shelf SAT solver to find a satisfying assignment for the propositional constraint.
- If a satisfying assignment is found, it is translated back into an assignment of the analysis constraint which in turn represents the instance of the original Alloy model.

What is Logic?

- Like a programming language, a logic is defined by its syntax and semantics.
- Syntax:
 - An alphabet is a set of symbols.
 - A finite sequence of symbols is called an expression.
 - A set of rules defines the well-formed expressions.
- Semantics:
 - Gives meaning to well-formed expressions.
 - Formal notions of induction and recursion can be used to give rigorous semantics.

Syntax of Propositional Logic

- Each expression is made of
 - propositional variables: a, b, . . . , p, q, . . .
 - logical constants: T, \bot

- logical connectives: $\land, \lor, \Rightarrow, \ldots$

- Every propositional variable stands for a basic fact
 - Examples:

I'm hungry, Apples are red, Joe and Jill are married

Syntax of Propositional Logic

- Well-formed expressions are called formulas
- Each propositional variable (a, b, . . ., p, q, . . .) is a formula
- Each logical constant (\top, \bot) is a formula
- If ϕ and ψ are formulas, all of the following are also formulas

$$\begin{array}{ll}
\neg\phi & \phi \land \psi & \phi \Rightarrow \psi \\
(\phi) & \phi \lor \psi & \phi \Leftrightarrow \psi
\end{array}$$

• Nothing else is a formula

Semantics of Propositional Logic

- The meaning (value) of ⊤ is always *True*. The meaning of ⊥ is always *False*.
- The meaning of the other formulas depends on the meaning of the propositional variables.
 - Base cases: Truth Tables

Р	Q	¬ P	$\mathbf{P} \wedge \mathbf{Q}$	$P \lor Q$	$P \Rightarrow Q$	$P \Leftrightarrow Q$
False	False	True	False	False	True	True
False	True	True	False	True	True	False
True	False	False	False	True	False	False
True	True	False	True	True	True	True

Non-base cases: Given by reduction to the base cases
 Example: the meaning of (p ∨ q) ∧ r is the same as the meaning of a ∧ r where a has the same meaning as p ∨ q.

Semantics of Propositional Logic

• An assignment of Boolean values to the propositional variables of a formula is an interpretation of the formula.

Р	Q	$P \lor Q$	$(P \lor Q) \land \neg Q$	$(P\lorQ)\land\negQ\RightarrowP$
False	False	False	False	True
False	True	True	False	True
True	False	True	True	True
True	True	True	False	True

- Interpretations: { $P \mapsto False, Q \mapsto False$ }, { $P \mapsto False, Q \mapsto True$ }, . . .
- The semantics of Propositional logic is compositional: the meaning of a formula is defined recursively in terms of the meaning of the formula's components.

Semantics of Propositional Logic

• Typically, the meaning of a formula depends on its interpretation.

Some formulas always have the same meaning.

Р	Q	$P \lor Q$	$(P \lor Q) \land \neg Q$	$(P\lorQ)\land\negQ\RightarrowP$
False	False	False	False	True
False	True	True	False	True
True	False	True	True	True
True	True	True	False	True

- A formula is
 - (un)satisfiable if it is true in some (no) interpretation,
 - valid if it is true in every possible interpretation.
- A formula that is valid or unsatisfiable is called a tautology.

The SAT Problem

- The satisfiability problem for propositional logic (SAT) asks whether a given formula ϕ is satisfiable.
- SAT is decidable.
- Hence, so is validity of propositional formulas.
- However, SAT is NP-complete
- Hence, checking validity is co-NP-complete.

The SAT Problem

- Many problems in formal verification can be reduced to checking the satisfiability of a formula in some logic.
- In practice, NP-completeness means the time needed to solve a SAT problem grows exponentially with the number of propositional variables in the formula.
- Despite NP-completeness, many realistic instances (in the order of 100,000 variables) can be checked very efficiently by state-of-the-art SAT solvers.

Translating the Analysis Constraint

Name in Target Addr in Target no Name & Addr Target in Name + Addr no Book & Target all b: Book | no ^(b.addr) & iden b: Book and b': Book n: Name and t: Target b'.addr = b.addr + n->t

Characteristic Function of a Relation

Name = $\{(N_0), (N_1), (N_2)\}$ Addr = $\{(A_0), (A_1), (A_2)\}$ address = $\{(N_0, A_0), (N_1, A_1), (N_2, A_1)\}$

Characteristic function of the relation address: χ_{address} : Name \times Addr \rightarrow {0,1}

 $\chi_{address}(N_i, A_j) = 1$ iff $(N_i, A_j) \in address$

Characteristic Function of a Relation

Name = $\{(N_0), (N_1), (N_2)\}$ Addr = $\{(A_0), (A_1), (A_2)\}$ address = $\{(N_0, A_0), (N_1, A_1), (N_2, A_1)\}$

Characteristic function of the relation address:

$\chi_{ m address}$	N ₀	N ₁	N ₂
A ₀	1	0	0
A ₁	0	1	1
A ₂	0	0	0

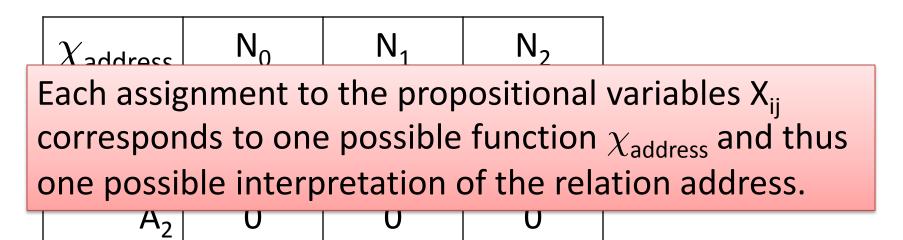
Propositional Encoding of Relations

$\chi_{address}$	N ₀	N ₁	N ₂
A ₀	1	0	0
A ₁	0	1	1
A ₂	0	0	0

Introduce a propositional variable X_{ii} for every A_i and N_i:

$\chi_{ ext{address}}$	N ₀	N ₁	N ₂
A ₀	X ₀₀	X ₀₁	X ₀₂
A ₁	X ₁₀	X ₁₁	X ₁₂
A ₂	X ₂₀	X ₂₁	X ₂₂

Propositional Encoding of Relations



Introduce a propositional variable X_{ii} for every A_i and N_i:

$\chi_{address}$	N ₀	N ₁	N ₂
A ₀	X ₀₀	X ₀₁	X ₀₂
A ₁	X ₁₀	X ₁₁	X ₁₂
A ₂	X ₂₀	X ₂₁	X ₂₂

Translating Relational Operations

- All relational operations in an Alloy constraint are encoded as propositional formulas.
- The propositional variables in the formulas describe the characteristic functions of the relational variables in the Alloy constraint.

χ_{addr}	N ₀	N ₁	N ₂
A ₀	X ₀₀	X ₀₁	X ₀₂
A ₁	X ₁₀	X ₁₁	X ₁₂
A ₂	X ₂₀	X ₂₁	X ₂₂

Analysis constraint (scope 3): Addr in Target

Propositional variables for characteristic functions: Addr: A_0 , A_1 , A_2 Target: T_0 , T_1 , T_2

Propositional encoding of analysis constraint:

 $\mathsf{A}_0 \mathrel{\Rightarrow} \mathsf{T}_0 \land \mathsf{A}_1 \mathrel{\Rightarrow} \mathsf{T}_1 \land \mathsf{A}_2 \mathrel{\Rightarrow} \mathsf{T}_2$

Analysis constraint (scope 3): address' = address + n->t

Flatten analysis constraint by introducing fresh variables for non-trivial subexpressions.

Flattened analysis constraint:
 address' = address + e
 e = n->t

Flattened analysis constraint (scope 3):

address' = address + e e = n->t

Propositional variables for characteristic functions: address': A'_{00} , A'_{01} , A'_{02} , A'_{10} , A'_{11} , A'_{12} , A'_{20} , A'_{21} , A'_{22} address: A_{00} , A_{01} , A_{02} , A_{10} , A_{11} , A_{12} , A_{20} , A_{21} , A_{22} e: E_{00} , E_{01} , E_{02} , E_{10} , E_{11} , E_{12} , E_{20} , E_{21} , E_{22} n: N_0 , N_1 , N_2 t: T_0 , T_1 , T_2

Flattened analysis constraint (scope 3):

e = n - t

Propositional variables for characteristic functions: e: E_{00} , E_{01} , E_{02} , E_{10} , E_{11} , E_{12} , E_{20} , E_{21} , E_{22} n: N_0 , N_1 , N_2 t: T_0 , T_1 , T_2

Propositional encoding of analysis constraint:

$$\bigwedge_{0 \, \leq \, i,j \, \leq \, 2} \mathsf{E}_{ij} \Leftrightarrow \mathsf{N}_i \, \wedge \, \mathsf{T}_j$$

Flattened analysis constraint (scope 3): addr' = addr + e

Propositional variables for characteristic functions: address': A'_{00} , A'_{01} , A'_{02} , A'_{10} , A'_{11} , A'_{12} , A'_{20} , A'_{21} , A'_{22} address: A_{00} , A_{01} , A_{02} , A_{10} , A_{11} , A_{12} , A_{20} , A_{21} , A_{22} e: E_{00} , E_{01} , E_{02} , E_{10} , E_{11} , E_{12} , E_{20} , E_{21} , E_{22}

Propositional encoding of analysis constraint:

$$\bigwedge_{0 \le i,j \le 2} \mathsf{A'}_{ij} \Leftrightarrow \mathsf{A}_{ij} \lor \mathsf{E}_{ij}$$

Quantifier Elimination

- Universal and existential quantification over finite sets can be eliminated using finite conjunctions, respectively, disjunctions.
- Example: Replace universal quantifier

 all x: S | F
 where S = {s₀, ..., s_n} with conjunction F[s₀/x] and ... and F[s_n/x]

Quantifier Elimination

- Quantifier elimination can be encoded directly in the propositional constraint.
- Example: The universal quantifier

 all x: Alias | x.addr in Addr
 can be encoded by the propositional formula

 $\bigwedge_{0 < i,j < n} A_{i} \land R_{ij} \Rightarrow D_{j}$

assuming the scope is n and the propositional variables are A_i for Alias, D_i for Addr, and R_{ij} for addr.

Skolemization

- Existential quantifiers can be treated more effectively using Skolemization
 - Replace top-level existential quantifiers of the form
 some x: S | F

with

(xs: S) and F[xs/x]

where xs is a fresh variable

Advantage: witness for x is made explicit in generated instances

Skolemization

- Skolemization also works for existential quantifiers that appear below universal quantifiers:
 - replace

```
all x: S | some y: T | F
```

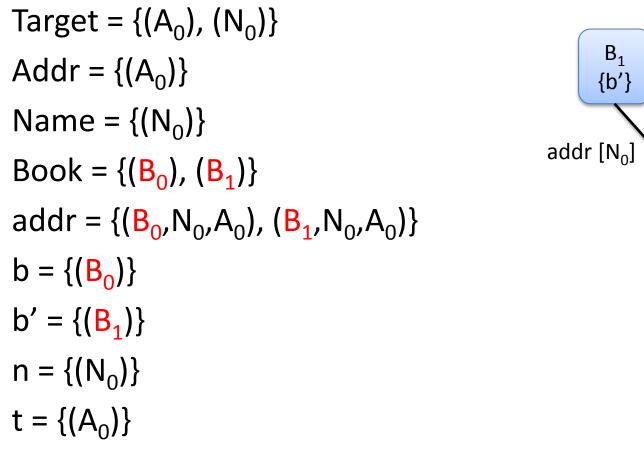
with

(sy: S->one T) and all x: S | F[x.sy/y] where sy is a fresh analysis variable

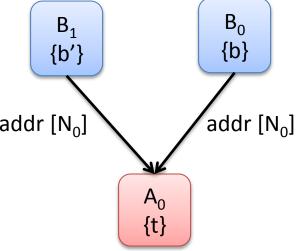
Symmetries in Satisfying Assignments

Permuting the names of the propositional variables for each characteristic function in a satisfying assignment yields again a satisfying assigment.

Symmetries in Satisfying Assignments



Exchanging the roles of B_0 and B_1 gives a symmetric satisfying assignment.



N₀ {n}

State Space Explosion Problem

- Symmetries can lead to an exponential blow-up in the number of possible instances.
- This state space explosion problem makes it hard for the SAT solver to solve the propositional constraints.
- Ideally, the SAT solver only has to consider one assignment per equivalence class of symmetric assignments.

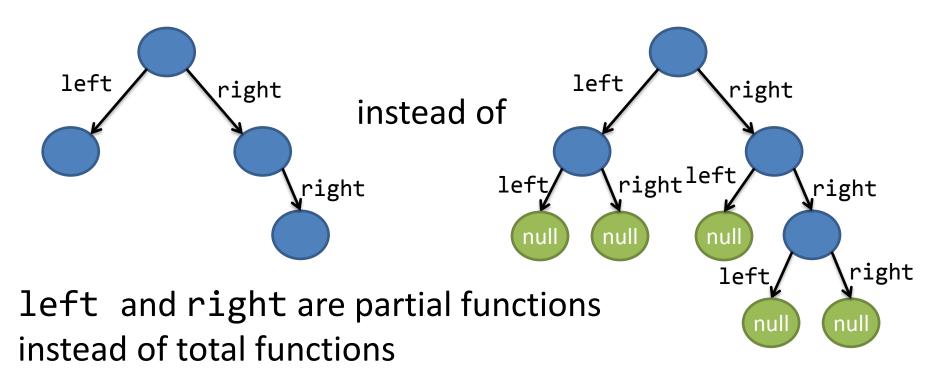
Symmetry Reduction

- To reduce the number of symmetries, Alloy adds symmetry breaking constraints to the propositional constraint.
- Example:
 - util/ordering [Data]
 - all orderings on Data atoms Data0, Data1, Data2, ... are symmetric.
 - util/ordering enforces one particular ordering on Data, namely the lexicographic ordering on atom names:

Data0 < Data1 < Data2 < ...

Alleviating State Space Explosion

- Often careful modeling can help to reduce symmetries
- Example: use partial instances when possible



Next Week: Design by Contract

- Alloy provides a means for expressing properties of designs
 - Early design refinement saves time
 - Ultimately, we want this effort to impact the quality of implementations
- How can we transition design information to the code?
 - State information (multiplicities, invariants, ...)
 - Operations info (pre, post, frame conditions, ...)