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Today’s Topics 

• The Alloy Analyzer (Ch. 5 of Jackson Book) 

– From Alloy models to Analysis Constraints 

– Propositional Logic (Ch. 1 of Huth/Ryan Book) 

– From Analysis Constraints to Propositional Logic 

– Quantifier Elimination 

– Alleviating State Space Explosion  

 



Alloy Analyzer (AA) 

• Small scope hypothesis:  violations of assertions 
are witnessed by small counterexamples 

– AA exhaustively searches for instances of small scope 

• AA can falsify a model but not verify it 

– It can prove that an assertion does not hold for all 
instances of a model by finding a counterexample. 

– It cannot prove that an assertion holds in all instances 
of a model,  

– it can only prove that an assertion holds for all instances 
up to a certain size (bounded verification). 



Alloy Analyzer (AA) 

• Small scope hypothesis:  violations of assertions 
are witnessed by small counterexamples 

– AA exhaustively searches for instances of small scope 

• Can we automatically verify Alloy models? 

– The answer is no because the verification problem for 
Alloy models is undecidable  

– i.e., there is no general algorithm to solve this problem. 



From Alloy Models to SAT and Back 

• AA is actually a compiler 
– First, the alloy model is translated to a single Alloy 

constraint, which is called the analysis constraint. 
– Given the scope of the command to execute, the 

analysis constraint is translated into a propositional 
constraint. 

– AA then uses an off-the-shelf SAT solver to find a 
satisfying assignment for the propositional constraint. 

– If a satisfying assignment exists, it is translated back 
into an instance of the original Alloy model. 

• AA reduces the problem of finding instances of 
Alloy models to a well-understood problem: SAT 



Analysis Constraints 

• First, the Alloy model is translated into a single 
Alloy constraint: the analysis constraint. 

• The analysis constraint is a conjunction of 

– fact constraints  

• facts that are explicitly declared in the model 

• facts that are implicit in the signature declarations 

– and a predicate constraint: 

• for a run command: the constraint of the predicate that 
is run 

• for a check command: the negation of the assertion  
that is checked 



Analysis Constraints: Example 

module addressBook 
 

abstract sig Target {} 

sig Addr, Name extends Target {} 

sig Book {addr: Name->Target} 
 

fact Acyclic {all b: Book | no ^(b.addr) & iden} 
 

pred add [b, b’: Book, n: Name, t: Target] { 

  b’.addr = b.addr + n->t 

} 
 

run add for 3 but 2 Book 



Implicit Fact Constraint 

The implicit fact constraint is the conjunction of the 
constraints implicit in the signature declarations: 
 

Example: from the signature declarations 
  abstract sig Target {} 
  sig Addr, Name extends Target {} 
  sig Book {addr: Name->Target} 
 

AA generates the implicit fact constraint: 
  Name in Target 
  Addr in Target 
  no Name & Addr 
  Target in Name + Addr 
  no Book & Target 
 



Explicit Fact Constraint 

The explicit fact constraint is the conjunction of all 
bodies of the declared facts 

 

Example: the fact 
  fact Acyclic {all b: Book | no ^(b.addr) & iden} 

 

generates the explicit fact constraint: 
  all b: Book | no ^(b.addr) & iden 



Predicate Constraint 

The predicate constraint is  
– the conjunction of the body of the predicate that is run and the 

multiplicity and type constraints of its parameters  

– or the negation of the body of the assertion that is checked. 
 

Example: running the predicate 
  pred add [b, b’: Book, n: Name, t: Target] { 

    b’.addr = b.addr + n->t 

  } 
 

generates the predicate constraint: 
  b: Book and b’: Book and n: Name and t: Target 

  b’.addr = b.addr + n->t 

 

t in Target and one t 



Analysis Constraint for addressBook 

Name in Target 

Addr in Target 

no Name & Addr 

Target in Name + Addr 

no Book & Target 

all b: Book | no ^(b.addr) & iden 

b: Book and b’: Book 

n: Name and t: Target 

b’.addr = b.addr + n->t 

 

 

 

Implicit fact constraint 
Explicit fact constraint 
Predicate constraint 



Satisfying Assignment for Analysis Constraint 

Target = {(A0), (N0)} 

Addr = {(A0)} 

Name = {(N0)} 

Book = {(B0), (B1)} 

addr = {(B0,N0,A0), (B1,N0,A0)} 

b = {(B0)} 

b’ = {(B1)} 

n = {(N0)} 

t = {(A0)} 

 

B0 

{b} 

A0 

{t} 

N0 

{n} 

B1 

{b’} 

addr [N0] addr [N0] 

Satisfying assignment is mapping from constraint vars to 
relations of atoms that evaluate the constraint to true. 



From Analysis Constraints to 
Propositional Logic 

• Given the scope of the command to execute, the 
analysis constraint is translated into a constraint in 
propositional logic. 

• The translation guarantees a one-to-one 
correspondence between satisfying assignments of the 
propositional constraint and the analysis constraint. 

• AA then uses an off-the-shelf SAT solver to find a 
satisfying assignment for the propositional constraint. 

• If a satisfying assignment is found, it is translated back 
into an assignment of the analysis constraint which in 
turn represents the instance of the original Alloy model. 

 



What is Logic? 

• Like a programming language, a logic is defined by 
its syntax and semantics. 

• Syntax: 
– An alphabet is a set of symbols. 

– A finite sequence of symbols is called an expression. 

– A set of rules defines the well-formed expressions. 

• Semantics: 
– Gives meaning to well-formed expressions. 

– Formal notions of induction and recursion can be used 
to give rigorous semantics. 



Syntax of Propositional Logic 

• Each expression is made of  

– propositional variables: a, b, . . . , p, q, . . . 

– logical constants:⊤, ⊥ 

– logical connectives: Æ, Ç, ),  . . . 

• Every propositional variable stands for a basic 
fact 

– Examples:  
I’m hungry, Apples are red, Joe and Jill are married 



Syntax of Propositional Logic 

• Well-formed expressions are called formulas 

• Each propositional variable (a, b, . . ., p, q, . . .) 
is a formula 

• Each logical constant (⊤, ⊥) is a formula 

• If Á and Ã are formulas, all of the following are 
also formulas 
  ¬Á  Á Æ Ã  Á ) Ã 

  (Á)  Á Ç Ã  Á , Ã 

• Nothing else is a formula 



Semantics of Propositional Logic 

• The meaning (value) of ⊤ is always True. The meaning 
of ⊥ is always False. 

• The meaning of the other formulas depends on the 
meaning of the propositional variables. 
– Base cases: Truth Tables 

 
 
 
 
 
 

– Non-base cases: Given by reduction to the base cases 
Example: the meaning of (p Ç q) Æ r is the same as the 
meaning of a Æ r where a has the same meaning as p Ç q. 

P Q : P P Æ Q P Ç Q P ) Q P , Q 

False False True False False True True 

False True True False True True False 

True False False False True False False 

True True False True True True True 



Semantics of Propositional Logic 

• An assignment of Boolean values to the propositional 
variables of a formula is an interpretation of the 
formula. 
 
 
 
 
 

• Interpretations: 
{P  False, Q  False}, {P  False, Q  True}, . . . 

• The semantics of Propositional logic is compositional: 
the meaning of a formula is defined recursively in terms 
of the meaning of the formula’s components. 

P Q P Ç Q (P Ç Q) Æ :Q (P Ç Q) Æ :Q ) P  

False False False False True 

False True True False True 

True False True True True 

True True True False True 



Semantics of Propositional Logic 

• Typically, the meaning of a formula  depends on its 
interpretation.  
Some formulas always have the same meaning. 
 
 
 
 
 

• A formula is 
– (un)satisfiable if it is true in some (no) interpretation, 
– valid if it is true in every possible interpretation. 

• A formula that is valid or unsatisfiable is called a 
tautology. 

P Q P Ç Q (P Ç Q) Æ :Q (P Ç Q) Æ :Q ) P  

False False False False True 

False True True False True 

True False True True True 

True True True False True 



The SAT Problem 

• The satisfiability problem for propositional logic 
(SAT) asks whether a given formula Á is 
satisfiable. 

• SAT is decidable. 

• Hence, so is validity of propositional formulas. 

• However, SAT is NP-complete 

• Hence, checking validity is co-NP-complete. 



The SAT Problem 

• Many problems in formal verification can be 
reduced to checking the satisfiability of a formula 
in some logic. 

• In practice, NP-completeness means the time 
needed to solve a SAT problem grows 
exponentially with the number of propositional 
variables in the formula. 

• Despite NP-completeness, many realistic instances 
(in the order of 100,000 variables) can be checked 
very efficiently by state-of-the-art SAT solvers. 



Translating the Analysis Constraint 

Name in Target 

Addr in Target 

no Name & Addr 

Target in Name + Addr 

no Book & Target 

all b: Book | no ^(b.addr) & iden 

b: Book and b’: Book 

n: Name and t: Target 

b’.addr = b.addr + n->t 

 

 

 



Characteristic Function of a Relation 

Name = {(N0),(N1),(N2)} 

Addr = {(A0),(A1),(A2)} 

address = {(N0,A0), (N1,A1), (N2,A1)} 

 

Characteristic function of the relation address: 

 Âaddress: Name £ Addr ! {0,1}  

 

 Âaddress(Ni,Aj) = 1  iff  (Ni,Aj) 2 address 

 



Characteristic Function of a Relation 

Name = {(N0),(N1),(N2)} 

Addr = {(A0),(A1),(A2)} 

address = {(N0,A0), (N1,A1), (N2,A1)} 

 

Characteristic function of the relation address: 

 Âaddress N0 N1 N2 

A0 1 0 0 

A1 0 1 1 

A2 0 0 0 



Propositional Encoding of Relations 

 

 

 

 

Introduce a propositional variable Xij for every Ai and Nj: 

Âaddress N0 N1 N2 

A0 1 0 0 

A1 0 1 1 

A2 0 0 0 

Âaddress N0 N1 N2 

A0 X00 X01 X02 

A1 X10 X11 X12 

A2 X20 X21 X22 



Propositional Encoding of Relations 

 

 

 

 

Introduce a propositional variable Xij for every Ai and Nj: 

Âaddress N0 N1 N2 

A0 1 0 0 

A1 0 1 1 

A2 0 0 0 

Âaddress N0 N1 N2 

A0 X00 X01 X02 

A1 X10 X11 X12 

A2 X20 X21 X22 

Each assignment to the propositional variables Xij 

corresponds to one possible function Âaddress and thus 
one possible interpretation of the relation address. 



Translating Relational Operations 

• All relational operations in an Alloy constraint are 
encoded as propositional formulas. 

• The propositional variables in the formulas describe 
the characteristic functions of the relational variables 
in the Alloy constraint. 

Âaddr N0 N1 N2 

A0 X00 X01 X02 

A1 X10 X11 X12 

A2 X20 X21 X22 



Propositional Translation: Example 

Analysis constraint (scope 3): 

  Addr in Target 

 

Propositional variables for characteristic functions: 

 Addr: A0, A1, A2 

  Target: T0, T1, T2 

 

Propositional encoding of analysis constraint: 

  A0 ) T0 Æ A1 ) T1 Æ A2 ) T2  

 

 



Propositional Translation: Example 

Analysis constraint (scope 3): 

  address’ = address + n->t 

 

Flatten analysis constraint by introducing fresh 
variables for non-trivial subexpressions. 

 

Flattened analysis constraint: 

  address’ = address + e 

 e = n->t 

 



Propositional Translation: Example 

Flattened analysis constraint (scope 3): 

  address’ = address + e 

 e = n->t 

 

Propositional variables for characteristic functions: 

  address’: A’00, A’01, A’02, A’10, A’11, A’12, A’20, A’21, A’22 

  address: A00, A01, A02, A10, A11, A12, A20, A21, A22 

  e: E00, E01, E02, E10, E11, E12, E20, E21, E22 

 n: N0, N1, N2 

  t: T0, T1, T2 

 



Propositional Translation: Example 

Flattened analysis constraint (scope 3): 
 e = n->t 
 
Propositional variables for characteristic functions: 
 e: E00, E01, E02, E10, E11, E12, E20, E21, E22 

 n: N0, N1, N2 
  t: T0, T1, T2 

 

Propositional encoding of analysis constraint: 

  Æ  Eij , Ni Æ Tj  
 
 

 

0 · i,j · 2 



Propositional Translation: Example 

Flattened analysis constraint (scope 3): 
 addr’ = addr + e 
 
Propositional variables for characteristic functions: 
 address’: A’00, A’01, A’02, A’10, A’11, A’12, A’20, A’21, A’22 
  address: A00, A01, A02, A10, A11, A12, A20, A21, A22 

  e: E00, E01, E02, E10, E11, E12, E20, E21, E22 

 

Propositional encoding of analysis constraint: 

  Æ  A’ij , Aij Ç Eij  
 
 

 

0 · i,j · 2 



Quantifier Elimination 

• Universal and existential quantification over finite 
sets can be eliminated using finite conjunctions, 
respectively, disjunctions. 

 

• Example: Replace universal quantifier 
  all x: S | F 
where S = {s0, ..., sn} with conjunction 
  F[s0/x] and ... and F[sn/x] 
 
 



Quantifier Elimination 

• Quantifier elimination can be encoded directly 
in the propositional constraint. 

• Example: The universal quantifier 
  all x: Alias | x.addr in Addr 

can be encoded by the propositional formula 

    Æ Ai Æ Rij ) Dj 
 

assuming the scope is n and the propositional 
variables are Ai for Alias, Di for Addr, and Rij 
for addr. 

0 · i,j < n 



Skolemization 

• Existential quantifiers can be treated more 
effectively using Skolemization   

– Replace top-level existential quantifiers of the form 
  some x: S | F 
with 
  (xs: S) and F[xs/x] 
where xs is a fresh variable 

• Advantage: witness for x is made explicit in 
generated instances 



Skolemization 

• Skolemization also works for existential quantifiers 
that appear below universal quantifiers: 

– replace 
  all x: S | some y: T | F 
with 
 (sy: S->one T) and all x: S | F[x.sy/y] 
where sy is a fresh analysis variable 



Symmetries in Satisfying Assignments 

Permuting the names of the propositional 
variables for each characteristic function in a 
satisfying assignment yields again a satisfying 
assigment. 



Symmetries in Satisfying Assignments 

Target = {(A0), (N0)} 

Addr = {(A0)} 

Name = {(N0)} 

Book = {(B0), (B1)} 

addr = {(B0,N0,A0), (B1,N0,A0)} 

b = {(B0)} 

b’ = {(B1)} 

n = {(N0)} 

t = {(A0)} 

 

B0 

{b} 

A0 

{t} 

N0 

{n} 

B1 

{b’} 

addr [N0] addr [N0] 

Exchanging the roles of B0 and B1 gives a symmetric 
satisfying assignment. 



• Symmetries can lead to an exponential blow-up 
in the number of possible instances. 

• This state space explosion problem makes it 
hard for the SAT solver to solve the 
propositional constraints. 

• Ideally, the SAT solver only has to consider one 
assignment per equivalence class of symmetric 
assignments. 

State Space Explosion Problem 



Symmetry Reduction 

• To reduce the number of symmetries, Alloy 
adds symmetry breaking constraints to the 
propositional constraint. 

• Example:  
util/ordering [Data] 

– all orderings on Data atoms Data0, Data1, Data2, … 
are symmetric.  

– util/ordering enforces one particular ordering 
on Data, namely the lexicographic ordering on 
atom names: 

Data0 < Data1 < Data2 < … 



Alleviating State Space Explosion 

• Often careful modeling can help to reduce 
symmetries 

• Example: use partial instances when possible 

instead of 
left right 

right 

null null null 

right left left 

null null 

right left 

left right 

right 

left and right are partial functions 
instead of total functions 



Next Week: Design by Contract 

• Alloy provides a means for expressing 
properties of designs  
– Early design refinement saves time  

– Ultimately, we want this effort to impact the 
quality of implementations  

• How can we transition design information to 
the code?  
– State information (multiplicities, invariants, …)  

– Operations info (pre, post, frame conditions, …)  


