
CSCI-GA.3033-014 - Programming Paradigms for Concurrency Thomas Wies

Sample Solution for Homework 7

Problem 1 AMP, p. 242: Exercise 121 (6 Points)

Please see the �le BoundedQueue.java for the solution to part 1 of this exercise. A compre-

hensive discussion of the complications involving lock-free array-based queue implementa-

tions can be found at:

http://www.codeproject.com/Articles/153898/Yet-another-implementation-
of-a-lock-free-circular

Problem 2 AMP, p. 242: Exercise 123 (7 Points)

We assume that a person cannot eat and feed at the same time. Otherwise, the solution to

the exercise is trivial (everyone feeds its left neighbor). We assume the persons are numbered

in the order in which they sit around the table. The algorithm proceeds in rounds. In the

�rst round, person 0 feeds person 1 and person 2 feeds person 3. In each subsequent round,

if person i has been fed in the previous round, it feeds person (i + 1) mod 5 in this round.

Otherwise, if i is fed in this round, it eats, or else it waits.

This algorithm is deterministic and has no contention. It is also maximally concurrent,

since in each round 4 people are eating or feeding. However, the algorithm is not fully

decentralized as it requires all people to be synchronized by a common clock.

Problem 3 AMP, p. 255: Exercise 128 (6 Points)

Please see the �le LockFreeStack.java for the solution to this exercise.

Problem 4 AMP, p. 257: Exercise 132 (6 Points)

The following history shows that this stack implementation is not linearizable. Consider two

threads T1 and T2. T1 �rst executes push(1) and then pop() in isolation, leaving the

stack empty with value 1 stored in location stack[0]. Now, T2 executes push(2) up to

the beginning of line 14. At this point, both top and stack[0] are 1. Now, T1 executes

pop(), yielding 1, even though that value has already been popped before.

See the �le Stack.java for an implementation that �xes this problem using the room data

structure.

1

http://www.codeproject.com/Articles/153898/Yet-another-implementation-of-a-lock-free-circular
http://www.codeproject.com/Articles/153898/Yet-another-implementation-of-a-lock-free-circular

	AMP, p. 242: Exercise 121 (6 Points)
	AMP, p. 242: Exercise 123 (7 Points)
	AMP, p. 255: Exercise 128 (6 Points)
	AMP, p. 257: Exercise 132 (6 Points)

