
CSCI-GA.3033-014 - Programming Paradigms for Concurrency Thomas Wies

Sample Solution for Homework 2

Problem 1 AMP, p.41, Exercise 11: Flaky Lock (12 Points)

� The protocol satis�es mutual exclusion. For a proof by contradiction, suppose it did

not. By inspecting the protocol code, we conclude that the following happens-before

relationships must hold:

writeA(turn = A)→ writeA(turn = B)→ CSA

and

writeB(turn = B)→ writeA(turn = A)→ CSB

Assume without loss of generality that thread A was the last thread to write to turn
before entering the critical section. Then

writeB(turn = B)→ writeA(turn = A)

which contradicts the fact that A completed its outer waiting loop.

� As we show below, the algorithm is not deadlock-free. Hence, it is also not starvation-

free.

� The following sequence of events leads to a deadlock:

writeA(turn = A)→ readA(busy = false)→ writeB(turn = B)

1



CSCI-GA.3033-014 - Programming Paradigms for Concurrency Thomas Wies

Problem 2 AMP, p.41, Exercise 14: `-Exclusion (13 Points)

We can turn the �lter algorithm into an algorithm that solves the `-exclusion problem by

reducing the number of levels by `− 1 (assuming n > `).

class LFilter implements Lock {
int[] level;
int[] victim;

public LFilter(int n, int l) {
level = new int[max(n-l+1,0)];
victim = new int[max(n-l+1,0)];
for (int i = 0; i < n-l+1; i++) {

level[i] = 0;
}

}

public void lock() {
int me = ThreadID.get();
for (int i = 1; i < n-l+1; i++) { // attempt level i
level[me] = i;
victim[i] = me;
// spin while conflicts exist
int above = l+1;
while (above > l && victim[i] == me) {

above = 0;
for (int k = 0; k < n; k++) {

if (level[k] >= i) above++;
}

}
}

}

public void unlock() {
int me = ThreadID.get();
level[me] = 0;

}
}

2


	AMP, p.41, Exercise 11: Flaky Lock (12 Points)
	AMP, p.41, Exercise 14: -Exclusion (13 Points)

