
Projects

• Topic:
• choose from my suggestions or
• define your own project

• On your own or in groups of two

• Pick a project by March 28

• Presentations: May 5 and May 12

• Final reports: May 16

Projects

Two options:

• seminar-based (no group work)
– study a set of coherent papers

– summarize in a report (6 pages)

– presentation at the end of the semester

• implementation-based (groups of up to 2 people)
– solve a specific problem related to

concurrent programming

– summarize in a report (4 pages)

– presentation at the end of the semester

Projects

Two options:

• seminar-based (no group work)
– study a set of coherent papers

– summarize in a report (6 pages)

– presentation at the end of the semester

• implementation-based (groups of up to 2 people)
– solve a specific problem related to

concurrent programming

– summarize in a report (4 pages)

– presentation at the end of the semester

Project Suggestion 1:
Performance Analysis of Concurrent Programs

1. Pick a problem with at least three-four different solutions
a. Lock implementations
b. Data structures: queues, stacks, sets…

2. Examine the performance of the solutions in different
settings:
a. small number of threads vs large number of threads
b. 2 cores, small amount of memory (laptop) vs.

many cores, large memory/cache (server)
c. different usage models
d. input that generates little vs. input that generates lots of

contention

3. Find a hybrid solution that works well in a particular setting

Project Suggestion 2:
Performance/Conciseness Evaluation of

Concurrent Programming Paradigms

1. Pick a problem or algorithm with a non-trivial
concurrent solution

2. Implement the algorithm using different concurrency
paradigms
a. traditional shared-memory concurrency
b. software transactional memories
c. actors

3. Compare performance and implementation
complexity of the different solutions

• Study the higher-order concurrent programming
model provided by Concurrent ML

• Implement this model in a Scala library

– build on top of the Akka library or

– directly on the JVM

Project Suggestions 3 (challenging):
Implement Scala Library for

Higher-Order Concurrent Programming

Project Suggestions 4 (challenging):
Verification of a concurrent data structure

1. Pick an implementation of a concurrent data structure: a
stack, a queue, a set, ..

2. Pick a verification tool: for example: Chalice
3. Prove that the implementation is linearizable

3 5 7 9

P1: remove(7)

P2: remove(5)

