
Programming Paradigms for Concurrency
Lecture 5 – Monitors and Blocking

Synchronization

Based on
The Art of Multiprocessor Programming

by Maurice Herlihy & Nir Shavit

Thomas Wies
New York University

TexPoint fonts used in EMF.

Read the TexPoint manual before
you delete this box.: AAAA

2

What Should you do if you can’t

get a lock?

• Keep trying

– “spin” or “busy-wait”

– Good if delays are short

• Give up the processor

– Good if delays are long

– Always good on uniprocessor

(1)

3

What Should you do if you can’t

get a lock?

• Keep trying

– “spin” or “busy-wait”

– Good if delays are short

• Give up the processor

– Good if delays are long

– Always good on uniprocessor

today’s focus

4

Producer/consumer based on a

FIFO Queue

public produce(Object x) {

 mutex.lock();

 try {

 queue.enq(x);

 } finally {

 mutex.unlock();

 }

}

5

The Need for

Modular Synchronization

Suppose queue is bounded:

• enq may block until queue has room

• decision whether to block depends on

internal state of the queue

Multiple producers/consumers:

• every thread needs to keep track of the

lock, the queue state, etc.

6

The Need for

Modular Synchronization

Suppose queue is bounded:

• enq may block until queue has room

• decision whether to block depends on

internal state of the queue

Multiple producers/consumers:

• every thread needs to keep track of the

lock, the queue state, etc.

7

Modular Synchronization

Let queue handle its own synchronization

• queue has its own lock

– acquired by each method call

– released when the call returns

• if thread enqueues on a full queue

– queue itself detects the problem

– suspend the caller and resume when the

queue has room

8

Conditions

• a condition object is associated with a lock

• condition objects allow a thread to

– temporarily release the lock and suspend

itself until awoken by another thread

– awake other threads that are currently

suspended

9

Monitors

The combination of

• an object and its methods

• a mutual exclusion lock

• and the lock’s condition objects

is called a monitor

Monitors enable modular synchronization.

10

Java’s Lock Interface

public interface Lock {

 void lock();

 void lockInterruptibly()

 throws InterruptedException;

 void tryLock();

 void tryLock(long time, TimeUnit unit);

 Condition newCondition();

 void unlock();

}

11

Java’s Condition Interface

public interface Condition {

 void await() throws InterruptedException;

 boolean await(long time, TimeUnit unit)

 throws InterruptedException;

 ...

 void signal();

void signalAll();

}

12

Java’s Condition Interface

public interface Condition {

 void await() throws InterruptedException;

 boolean await(long time, TimeUnit unit)

 throws InterruptedException;

 ...

 void signal();

void signalAll();

}

wake up one

waiting thread

13

Java’s Condition Interface

public interface Condition {

 void await() throws InterruptedException;

 boolean await(long time, TimeUnit unit)

 throws InterruptedException;

 ...

 void signal();

void signalAll();

}

wake up all

waiting threads

A Typical Monitor Execution

14

lock critical
section

lock()

waiting
room

A Typical Monitor Execution

15

lock critical
section

await(cond)

waiting
room

A Typical Monitor Execution

16

lock critical
section

waiting
room

lock()

A Typical Monitor Execution

17

lock critical
section

waiting
room

A Typical Monitor Execution

18

lock critical
section

waiting
room

lock()

A Typical Monitor Execution

19

lock critical
section

waiting
room

unlock()
signalAll()

lock()

A Typical Monitor Execution

20

lock critical
section

waiting
room

unlock()
signalAll()

lock()

A Typical Monitor Execution

21

lock critical
section

waiting
room

22

Using Condition Objects

Condition condition = mutex.newCondition();

...

mutex.lock();

try {

 while (!property)

 condition.await();

} catch (InterrupedException e) {

 ...

}

...

23

Using Condition Objects

Condition condition = mutex.newCondition();

...

mutex.lock();

try {

 while (!property)

 condition.await();

} catch (InterrupedException e) {

 ...

}

...

create new condition object

24

Using Condition Objects

Condition condition = mutex.newCondition();

...

mutex.lock();

try {

 while (!property)

 condition.await();

} catch (InterrupedException e) {

 ...

}

...

acquire the lock

25

Using Condition Objects

Condition condition = mutex.newCondition();

...

mutex.lock();

try {

 while (!property)

 condition.await();

} catch (InterrupedException e) {

 ...

}

...

not happy

26

Using Condition Objects

Condition condition = mutex.newCondition();

...

mutex.lock();

try {

 while (!property)

 condition.await();

} catch (InterrupedException e) {

 ...

}

...

release the lock

and suspend

until notified

27

Using Condition Objects

Condition condition = mutex.newCondition();

...

mutex.lock();

try {

 while (!property)

 condition.await();

} catch (InterrupedException e) {

 ...

}

...

application specific response

28

Using Condition Objects

Condition condition = mutex.newCondition();

...

mutex.lock();

try {

 while (!property)

 condition.await();

} catch (InterrupedException e) {

 ...

}

... happy: property must hold

29

Example: Blocking Queue

public class BlockingQueue<T> {

 final Lock lock = new ReentrantLock();

 final Condition notFull = lock.newCondition();

 final Condition notEmpty = lock.newCondition();

 final T[] items;

 int tail, head, count;

 public BlockingQueue(int capacity) {

 items = new T[capacity];

 }

 ...

}

30

Example: Blocking Queue

public class BlockingQueue<T> {

 final Lock lock = new ReentrantLock();

 final Condition notFull = lock.newCondition();

 final Condition notEmpty = lock.newCondition();

 final T[] items;

 int tail, head, count;

 public BlockingQueue(int capacity) {

 items = new T[capacity];

 }

 ...

}

mutual exclusion lock
for queue object

31

Example: Blocking Queue

public class BlockingQueue<T> {

 final Lock lock = new ReentrantLock();

 final Condition notFull = lock.newCondition();

 final Condition notEmpty = lock.newCondition();

 final T[] items;

 int tail, head, count;

 public BlockingQueue(int capacity) {

 items = new T[capacity];

 }

 ...

}

condition to wait on
if queue is full

32

Example: Blocking Queue

public class BlockingQueue<T> {

 final Lock lock = new ReentrantLock();

 final Condition notFull = lock.newCondition();

 final Condition notEmpty = lock.newCondition();

 final T[] items;

 int tail, head, count;

 public BlockingQueue(int capacity) {

 items = new T[capacity];

 }

 ...

}

condition to wait on
if queue is empty

33

Example: Blocking Queue

public class BlockingQueue<T> {

 final Lock lock = new ReentrantLock();

 final Condition notFull = lock.newCondition();

 final Condition notEmpty = lock.newCondition();

 final T[] items;

 int tail, head, count;

 public BlockingQueue(int capacity) {

 items = new T[capacity];

 }

 ...

}

internal queue state
protected by lock

34

Blocking Queue: enqueue

public void enq(T x) {

 lock.lock();

 try {

 while (count == items.length())

 notFull.await();

 items[tail] = x;

 if (++tail == items.length) tail = 0;

 ++count;

 notEmpty.signal();

 } finally { lock.unlock(); }

}

35

Blocking Queue: enqueue

public void enq(T x) {

 lock.lock();

 try {

 while (count == items.length())

 notFull.await();

 items[tail] = x;

 if (++tail == items.length) tail = 0;

 ++count;

 notEmpty.signal();

 } finally { lock.unlock(); }

}

wait until queue

has space

36

Blocking Queue: enqueue

public void enq(T x) {

 lock.lock();

 try {

 while (count == items.length())

 notFull.await();

 items[tail] = x;

 if (++tail == items.length) tail = 0;

 ++count;

 notEmpty.signal();

 } finally { lock.unlock(); }

}

queue has space!

insert element

37

Blocking Queue: enqueue

public void enq(T x) {

 lock.lock();

 try {

 while (count == items.length())

 notFull.await();

 items[tail] = x;

 if (++tail == items.length) tail = 0;

 ++count;

 notEmpty.signal();

 } finally { lock.unlock(); }

}

wake up one waiting

consumer

38

Blocking Queue: dequeue

public T deq() {

 lock.lock();

 try {

 while (count == 0)

 notEmpty.await();

 T x = items[head];

 if (++head == items.length) head = 0;

 --count;

 notFull.signal();

 return x;

 } finally { lock.unlock(); }

}

39

Blocking Queue: dequeue

public T deq() {

 lock.lock();

 try {

 while (count == 0)

 notEmpty.await();

 T x = items[head];

 if (++head == items.length) head = 0;

 --count;

 notFull.signal();

 return x;

 } finally { lock.unlock(); }

}

wait until queue

is nonempty

40

Blocking Queue: dequeue

public T deq() {

 lock.lock();

 try {

 while (count == 0)

 notEmpty.await();

 T x = items[head];

 if (++head == items.length) head = 0;

 --count;

 notFull.signal();

 return x;

 } finally { lock.unlock(); }

}

queue nonempty!

retrieve next

element

41

Blocking Queue: dequeue

public T deq() {

 lock.lock();

 try {

 while (count == 0)

 notEmpty.await();

 T x = items[head];

 if (++head == items.length) head = 0;

 --count;

 notFull.signal();

 return x;

 } finally { lock.unlock(); }

}

wake up one waiting

producer

42

Improved enqueue?

public void enq(T x) {

 lock.lock();

 try {

 while (count == items.length())

 notFull.await();

 items[tail] = x;

 if (++tail == items.length) tail = 0;

 ++count;

 if (count == 1) notEmpty.signal();

 } finally { lock.unlock(); }

}

43

The Lost-Wakeup Problem

• Condition variables are inherently

vulnerable to lost wakeups

– one thread waits forever without realizing

that its waiting condition has become true

• Programming practices

– if in doubt, signal all waiting processes

– specify a timeout when waiting

Reentrant Locks

• same thread can acquire the lock multiple
times without blocking

• commonly used in OOP to handle reentrant
calls to locked objects

44

45

Using Reentrant Locks

public class AtomicArray<T> {

 final Lock lock = new ReentrantLock();

 ...

 public T getAndSet(int i, T v) {

 try { lock.lock();

 T old = get(i);

 set(i, v);

 return old;

 } finally { lock.unlock(); } }

 public T get() {

 try {lock.lock(); return item[i]; }

 finally { lock.unlock(); }

 public void set(int i, T v) { ... } }

46

Using Reentrant Locks

public class AtomicArray<T> {

 final Lock lock = new ReentrantLock();

 ...

 public T getAndSet(int i, T v) {

 try { lock.lock();

 T old = get(i);

 set(i, v);

 return old;

 } finally { lock.unlock(); } }

 public T get() {

 try {lock.lock(); return item[i]; }

 finally { lock.unlock(); }

 public void set(int i, T v) { ... } }

reacquire lock

47

Our Own Reentrant Lock

public class SimpleReentrantLock implements Lock{

 final Lock lock = new SimpleLock();

 final Condition cond = lock.newCondition();

 int owner, holdCount;

 public SimpleReentrantLock() {

 owner = holdCount = 0;

 }

 ...

}

48

Our Own Reentrant Lock

public class SimpleReentrantLock implements Lock{

 final Lock lock = new SimpleLock();

 final Condition cond = lock.newCondition();

 int owner, holdCount;

 public SimpleReentrantLock() {

 owner = holdCount = 0;

 }

 ...

}

nonreentrant lock

49

Our Own Reentrant Lock

public class SimpleReentrantLock implements Lock{

 final Lock lock = new SimpleLock();

 final Condition cond = lock.newCondition();

 int owner, holdCount;

 public SimpleReentrantLock() {

 owner = holdCount = 0;

 }

 ...

}

condition to wait on if lock
is held by other thread

50

Our Own Reentrant Lock

public class SimpleReentrantLock implements Lock{

 final Lock lock = new SimpleLock();

 final Condition cond = lock.newCondition();

 int owner, holdCount;

 public SimpleReentrantLock() {

 owner = holdCount = 0;

 }

 ...

}

thread ID of lock holder

51

Our Own Reentrant Lock

public class SimpleReentrantLock implements Lock{

 final Lock lock = new SimpleLock();

 final Condition cond = lock.newCondition();

 int owner, holdCount;

 public SimpleReentrantLock() {

 owner = holdCount = 0;

 }

 ...

}

counts how often lock

has been acquired by
current owner

52

Our Own Reentrant Lock

public void lock() {

 int me = ThreadID.get();

 lock.lock();

 try {

 if (owner == me) {

 ++holdCount;

 return;

 }

 while (holdCount != 0) condition.await();

 owner = me;

 holdCount = 1;

 } finally { lock.unlock() } }

53

Our Own Reentrant Lock

public void lock() {

 int me = ThreadID.get();

 lock.lock();

 try {

 if (owner == me) {

 ++holdCount;

 return;

 }

 while (holdCount != 0) condition.await();

 owner = me;

 holdCount = 1;

 } finally { lock.unlock() } }

already holding the lock?
then just increase counter

54

Our Own Reentrant Lock

public void lock() {

 int me = ThreadID.get();

 lock.lock();

 try {

 if (owner == me) {

 ++holdCount;

 return;

 }

 while (holdCount != 0) condition.await();

 owner = me;

 holdCount = 1;

 } finally { lock.unlock() } }

otherwise, wait until lock is
free and then take ownership

55

Our Own Reentrant Lock

public void unlock() {

 lock.lock();

 try {

 if (holdCount == 0 ||

 owner != ThreadID.get()) {

 throw new IllegalMonitorStateException();

 }

 if (--holdCount == 0) cond.signal();

 } finally { lock.unlock() }

}

56

Our Own Reentrant Lock

public void unlock() {

 lock.lock();

 try {

 if (holdCount == 0 ||

 owner != ThreadID.get()) {

 throw new IllegalMonitorStateException();

 }

 if (--holdCount == 0) cond.signal();

 } finally { lock.unlock() }

}

fail, if lock is released too often

57

Our Own Reentrant Lock

public void unlock() {

 lock.lock();

 try {

 if (holdCount == 0 ||

 owner != ThreadID.get()) {

 throw new IllegalMonitorStateException();

 }

 if (--holdCount == 0) cond.signal();

 } finally { lock.unlock() }

}

otherwise, decrement counter

and wake up one blocked thread
if lock is released

58

Java’s built-in Monitors

• synchronized blocks and methods

acquire and release an implicit reentrant

lock

• access to an implicit condition object is

provided via special methods

– wait()

– notify()

– notifyAll()

59

Simplified Blocking Queue: enqueue

public synchronized void enq(T x) {

 while (count == items.length())

 wait();

 items[tail] = x;

 if (++tail == items.length) tail = 0;

 ++count;

 notifyAll();

}

60

Simplified Blocking Queue: dequeue

public synchronized T deq() {

 while (count == 0)

 wait();

 T x = items[head];

 if (++head == items.length) head = 0;

 --count;

 notifyAll();

 return x;

}

61

Simplified Blocking Queue: dequeue

public synchronized T deq() {

 while (count == 0)

 wait();

 T x = items[head];

 if (++head == items.length) head = 0;

 --count;

 notify();

 return x;

}

is notify enough?

Lost Wakeup in Simplified Queue
with notify()

62

lock queue state: []
capacity=1

enq(0)

waiting
room

enq(1) enq(2)

Lost Wakeup in Simplified Queue
with notify()

63

lock queue state: []
capacity=1

waiting
room

enq(1) enq(2)

Lost Wakeup in Simplified Queue
with notify()

64

lock queue state: [0]
capacity=1

waiting
room

enq(2)

notify()

enq(1)

Lost Wakeup in Simplified Queue
with notify()

65

lock queue state: [0]
capacity=1

waiting
room

enq(2)

Lost Wakeup in Simplified Queue
with notify()

66

lock queue state: [0]
capacity=1

waiting
room

enq(2)

enq(1)

Lost Wakeup in Simplified Queue
with notify()

67

lock queue state: [0]
capacity=1

waiting
room

enq(1)

Lost Wakeup in Simplified Queue
with notify()

68

lock queue state: [0]
capacity=1

waiting
room

enq(2)
enq(1)

Lost Wakeup in Simplified Queue
with notify()

69

lock queue state: [0]
capacity=1

waiting
room

enq(2)
enq(1)

deq() deq() deq()

Lost Wakeup in Simplified Queue
with notify()

70

lock queue state: [0]
capacity=1

waiting
room

enq(2)
enq(1)

deq() deq()

Lost Wakeup in Simplified Queue
with notify()

71

lock queue state: []
capacity=1

waiting
room

enq(2)
enq(1)

deq() deq()

notify()

Lost Wakeup in Simplified Queue
with notify()

72

lock queue state: []
capacity=1

waiting
room

enq(1) deq() deq()

enq(2)

Lost Wakeup in Simplified Queue
with notify()

73

lock queue state: []
capacity=1

waiting
room

enq(1) deq()

enq(2)

Lost Wakeup in Simplified Queue
with notify()

74

lock queue state: []
capacity=1

waiting
room

enq(1) deq()

enq(2)
deq()

Lost Wakeup in Simplified Queue
with notify()

75

lock queue state: []
capacity=1

waiting
room

enq(1)

enq(2)
deq()

Lost Wakeup in Simplified Queue
with notify()

76

lock queue state: []
capacity=1

waiting
room

enq(1)

enq(2)
deq()

deq()

Lost Wakeup in Simplified Queue
with notify()

77

lock queue state: []
capacity=1

waiting
room

enq(2)
deq()

deq()

Lost Wakeup in Simplified Queue
with notify()

78

lock queue state: [1]
capacity=1

waiting
room

enq(2)
deq()

deq()

notify()

Lost Wakeup in Simplified Queue
with notify()

79

lock queue state: [1]
capacity=1

waiting
room

deq()

deq()

notify()

enq(2)

Lost Wakeup in Simplified Queue
with notify()

80

lock queue state: [1]
capacity=1

waiting
room

deq()

deq()

enq(2)

Lost Wakeup in Simplified Queue
with notify()

81

lock queue state: [1]
capacity=1

waiting
room

deq()

deq()

Lost Wakeup in Simplified Queue
with notify()

82

lock queue state: [1]
capacity=1

waiting
room

enq(2)
deq()

deq()

remaining threads are stuck!

Readers-Writers Lock

• shared objects often have the property that
their methods can be partitioned into

– readers: return information about the object

– writers: actually modify the object

• no need for readers to synchronize with
each other

83

Readers-Writers Lock

84

public interface ReadWriteLock {

 Lock readLock();

 Lock writeLock();

}

Readers-Writers Lock

85

public SimpleReadWriteLock implements

ReadWriteLock {

 int readers = 0;

 boolean writer = false;

 Lock lock = new ReentrantLock();

 Condition condition = lock.newCondition();

 Lock readLock = new ReadLock();

 Lock writeLock = new WriteLock();

 Lock readLock() { return readLock; }

 Lock writeLock() { return writeLock; }

 ...

}

Readers-Writers Lock

86

public SimpleReadWriteLock implements

ReadWriteLock {

 int readers = 0;

 boolean writer = false;

 Lock lock = new ReentrantLock();

 Condition condition = lock.newCondition();

 Lock readLock = new ReadLock();

 Lock writeLock = new WriteLock();

 Lock readLock() { return readLock; }

 Lock writeLock() { return writeLock; }

 ...

}

number of current

readers

Readers-Writers Lock

87

public SimpleReadWriteLock implements

ReadWriteLock {

 int readers = 0;

 boolean writer = false;

 Lock lock = new ReentrantLock();

 Condition condition = lock.newCondition();

 Lock readLock = new ReadLock();

 Lock writeLock = new WriteLock();

 Lock readLock() { return readLock; }

 Lock writeLock() { return writeLock; }

 ...

}

is there a writer?

Readers-Writers Lock

88

public SimpleReadWriteLock implements

ReadWriteLock {

 int readers = 0;

 boolean writer = false;

 Lock lock = new ReentrantLock();

 Condition condition = lock.newCondition();

 Lock readLock = new ReadLock();

 Lock writeLock = new WriteLock();

 Lock readLock() { return readLock; }

 Lock writeLock() { return writeLock; }

 ...

}

protects internal state

of this lock

Readers-Writers Lock

89

public SimpleReadWriteLock implements

ReadWriteLock {

 int readers = 0;

 boolean writer = false;

 Lock lock = new ReentrantLock();

 Condition condition = lock.newCondition();

 Lock readLock = new ReadLock();

 Lock writeLock = new WriteLock();

 Lock readLock() { return readLock; }

 Lock writeLock() { return writeLock; }

 ...

}

condition to wait on if

lock is taken

Readers-Writers Lock

90

public SimpleReadWriteLock implements

ReadWriteLock {

 int readers = 0;

 boolean writer = false;

 Lock lock = new ReentrantLock();

 Condition condition = lock.newCondition();

 Lock readLock = new ReadLock();

 Lock writeLock = new WriteLock();

 Lock readLock() { return readLock; }

 Lock writeLock() { return writeLock; }

 ...

}

the actual read and

write locks

(implemented by inner classes)

Inner ReadLock class

91

class ReadLock {

 public void lock() {

 lock.lock();

 try {

 while (writer) {

 condition.await();

 }

 readers++;

 } finally { lock.unlock(); }

 }

 ... }

Inner ReadLock class

92

class ReadLock {

 public void lock() {

 lock.lock();

 try {

 while (writer) {

 condition.await();

 }

 readers++;

 } finally { lock.unlock(); }

 }

 ... }

wait until no writer

holds the lock

Inner ReadLock class

93

class ReadLock {

 public void lock() {

 lock.lock();

 try {

 while (writer) {

 condition.await();

 }

 readers++;

 } finally { lock.unlock(); }

 }

 ... }

increase the

number of readers

Inner ReadLock class

94

class ReadLock {

 ...

 public void unlock() {

 lock.lock();

 try {

 readers--;

 if (readers == 0)

 condition.signalAll();

 } finally { lock.unlock(); }

 }

}

Inner ReadLock class

95

class ReadLock {

 ...

 public void unlock() {

 lock.lock();

 try {

 readers--;

 if (readers == 0)

 condition.signalAll();

 } finally { lock.unlock(); }

 }

}

decrease the

number of readers

Inner ReadLock class

96

class ReadLock {

 ...

 public void unlock() {

 lock.lock();

 try {

 readers--;

 if (readers == 0)

 condition.signalAll();

 } finally { lock.unlock(); }

 }

}

no more readers,

then wake up

waiting writers

Inner WriteLock class

97

class WriteLock {

 public void lock() {

 lock.lock();

 try {

 while (readers > 0 || writer) {

 condition.await();

 }

 writer = true;

 } finally { lock.unlock(); }

 }

 ... }

Inner WriteLock class

98

class WriteLock {

 public void lock() {

 lock.lock();

 try {

 while (readers > 0 || writer) {

 condition.await();

 }

 writer = true;

 } finally { lock.unlock(); }

 }

 ... }

wait until lock is free

Inner WriteLock class

99

class WriteLock {

 public void lock() {

 lock.lock();

 try {

 while (readers > 0 || writer) {

 condition.await();

 }

 writer = true;

 } finally { lock.unlock(); }

 }

 ... }

take the lock

Inner WriteLock class

100

class WriteLock {

 ...

 public void unlock() {

 lock.lock();

 try {

 writer = false;

 condition.signalAll();

 } finally { lock.unlock(); }

 }

}

Inner WriteLock class

101

class WriteLock {

 ...

 public void unlock() {

 lock.lock();

 try {

 writer = false;

 condition.signalAll();

 } finally { lock.unlock(); }

 }

}

release the lock

Inner WriteLock class

102

class WriteLock {

 ...

 public void unlock() {

 lock.lock();

 try {

 writer = false;

 condition.signalAll();

 } finally { lock.unlock(); }

 }

}

wake up waiting

readers and writers

Fair Readers-Writers Lock

• Problem with SimpleReadWriteLock

– usually readers are much more frequent

than writers

– writers may be locked out for a long time

• Idea: give priority to writers

103

FIFO Readers-Writers Lock

104

public FifoReadWriteLock implements ReadWriteLock {

 int readAcquires = 0;

 int readReleases = 0;

 boolean writer = false;

 Lock lock = new ReentrantLock(true);

 Condition condition = lock.newCondition();

 Lock readLock = new ReadLock();

 Lock writeLock = new WriteLock();

 Lock readLock() { return readLock; }

 Lock writeLock() { return writeLock; }

 ...

}

FIFO Readers-Writers Lock

105

public FifoReadWriteLock implements ReadWriteLock {

 int readAcquires = 0;

 int readReleases = 0;

 boolean writer = false;

 Lock lock = new ReentrantLock(true);

 Condition condition = lock.newCondition();

 Lock readLock = new ReadLock();

 Lock writeLock = new WriteLock();

 Lock readLock() { return readLock; }

 Lock writeLock() { return writeLock; }

 ...

}

count releases and acquires

of readers separately

FIFO Readers-Writers Lock

106

public FifoReadWriteLock implements ReadWriteLock {

 int readAcquires = 0;

 int readReleases = 0;

 boolean writer = false;

 Lock lock = new ReentrantLock(true);

 Condition condition = lock.newCondition();

 Lock readLock = new ReadLock();

 Lock writeLock = new WriteLock();

 Lock readLock() { return readLock; }

 Lock writeLock() { return writeLock; }

 ...

}

create FIFO lock

Inner ReadLock class

107

class ReadLock {

 public void lock() {

 lock.lock();

 try {

 while (writer) {

 condition.await();

 }

 readAcquires++;

 } finally { lock.unlock(); }

 }

 ... }

Inner ReadLock class

108

class ReadLock {

 ...

 public void unlock() {

 lock.lock();

 try {

 readReleases++;

 if (readReleases == ReadAcquires)

 condition.signalAll();

 } finally { lock.unlock(); }

 }

}

Inner WriteLock class

109

class WriteLock {

 public void lock() {

 lock.lock();

 try {

 while (writer) condition.await();

 writer = true;

 while (readAcquires != readReleases)

 condition.await();

 } finally { lock.unlock(); }

 }

 ... }

Inner WriteLock class

110

class WriteLock {

 public void lock() {

 lock.lock();

 try {

 while (writer) condition.await();

 writer = true;

 while (readAcquires != readReleases)

 condition.await();

 } finally { lock.unlock(); }

 }

 ... }

first wait for writers to

release the lock

Inner WriteLock class

111

class WriteLock {

 public void lock() {

 lock.lock();

 try {

 while (writer) condition.await();

 writer = true;

 while (readAcquires != readReleases)

 condition.await();

 } finally { lock.unlock(); }

 }

 ... }

block writers and

readers from

acquiring the lock

Inner WriteLock class

112

class WriteLock {

 public void lock() {

 lock.lock();

 try {

 while (writer) condition.await();

 writer = true;

 while (readAcquires != readReleases)

 condition.await();

 } finally { lock.unlock(); }

 }

 ... }

wait for all readers

who already acquired

the lock to release it

Inner WriteLock class

113

class WriteLock {

 ...

 public void unlock() {

 writer = false;

 condition.signalAll();

 }

}

