CSCI-GA.3033-014 - Programming Paradigms for Concurrency Thomas Wies

Homework 9

Please submit your solutions via NYUClasses. Solutions to programming exercises should
be submitted as plain text files. No exotic formats, please!

The deadline for Homework 9 is May 5, before class.

Binary Search Trees with Actors (25 Points)

Binary trees are tree-based data structures where every node has at most two children
(left and right). In this exercise, every node stores an integer element. From this we can
build a binary search tree by requiring for every node that

e values of elements in the left subtree are strictly smaller than the node’s element

e values of elements in the right subtree are strictly bigger than the node’s element

The strict ordering ensures that there are no duplicated elements in the tree, hence we
obtain a binary tree set.

Your task in this assignment is to implement an actor-based binary tree set where each
node is represented by one actor. The advantage of such an actor-based solution is that it
can execute fully asynchronously and in parallel.

The API. You can find the message-based API for the actor-based binary tree to be
implemented in the supplied BinaryTreeSet object in the file BinaryTreeSet.scala.

The operations, represented by actor messages, that the implementation should support
are the following:

Insert
Remove
Contains

All three of the operations expect an ActorRef representing the requester of the op-
eration, a numerical identifier of the operation and the element itself. The Insert and
Remove operations should result in an OperationFinished message sent to the pro-
vided requester Act orRef reference including the id of the operation. Remove and Insert
should return an OperationFinished message even if the element was not in the tree
or already present, respectively. Contains should result in a ContainsResult message
containing the result of the lookup (a Boolean which is true if and only if the element is in
the tree when the query arrives) and the identifier of the Contains query.

Handling of Removal. You should observe that both the Insert and Contains oper-
ations share an important property, namely, they only traverse a linear path from the root
of the tree to the appropriate inner node or leaf. Since the tree nodes are actors which
process messages one-by-one, no additional synchronization is needed between these oper-
ations. Removal in a binary tree unfortunately results in tree restructuring, which means

CSCI-GA.3033-014 - Programming Paradigms for Concurrency Thomas Wies

that nodes would need to communicate and coordinate between each other (while additional
operations arrive from the external world!).

Therefore, instead of implementing the usual binary tree removal, in your solution you
should use a flag that is stored in every tree node to indicate whether the element in the
node has been logically removed from the data structure. This will result in a very simple
implementation that is concurrent and correct with minimal effort. Unfortunately, this
design has the side effect that the tree set accumulates “garbage” (elements that have been
removed) over time.

Garbage Collection. As we have seen, removal of entries can be implemented simply by
using a removal flag with the added cost of growing garbage over time. To overcome this
limitation you will need to implement a garbage collection feature. Whenever your binary
tree set receives a GC message, it should clean up all the removed elements, while additional
operations might arrive from the external world.

The garbage collection task can be implemented in two steps. The first subtask is to
implement an internal CopyTo operation on the binary tree that copies all its non-removed
contents from the binary tree to a provided new one. This implementation can assume that
no operations arrive while the copying happens (i.e. the tree is protected from modifications
while copying takes places).

The second part of the implementation is to implement garbage collection in the manager
(BinaryTreeSet) by using the copy operation. The newly constructed tree should replace
the old one and all actors from the old one should be stopped. Since copying assumes no other
concurrent operations, the manager should handle the case when operations arrive while still
performing the copy in the background. It is your responsibility to implement the manager
in such a way that the fact that garbage collection happens is invisible from the outside (of
course additional delay is allowed). For the sake of simplicity, your implementation should
ignore GC requests that arrive while garbage collection is taking place.

Ordering Guarantees. Replies to operations may be sent in any order but the contents
of ContainsResult replies must obey the order of the operations. To illustrate what this
means observe the following example:

Client sends:

Insert (testActor, id=100, elem=1)
Contains (testActor, id=50, elem=2)
Remove (testActor, 1d=10, elem=1)
Insert (testActor, 1d=20, elem=2)
Contains (testActor, 1d=80, elem=1)
Contains (testActor, id=70, elem=2)

Client receives:

ContainsResult (id=70, true)
OperationFinished (id=20)
OperationFinished (id=100)
ContainsResult (1id=80, false)
OperationFinished (id=10)

CSCI-GA.3033-014 - Programming Paradigms for Concurrency Thomas Wies

ContainsResult (id=50, false)

While the results seem “garbled”, they actually strictly correspond to the order of the
original operations. On closer examination you can observe that the order of the original
operations was [100, 50, 10, 20, 80, 70]. Now if you order the responses according to this
sequence the result would be:

Insert (testActor, 1id=100, elem=1l) -> OperationFinished (id=100)
Contains (testActor, 1id=50, elem=2) —-> ContainsResult (id=50, false)
Remove (testActor, id=10, elem=1) -> OperationFinished(id=10)
Insert (testActor, id=20, elem=2) —-> OperationFinished (id=20)
Contains (testActor, id=80, elem=1) —-> ContainsResult (id=80, false)
Contains (testActor, id=70, elem=2) —> ContainsResult (id=70, true)

As you can see, the responses that the client received are the same as above, hence they
must have been executed sequentially, and only the responses have arrived out of order.
Thus, the responses obey the semantics of sequential operations — it is simply their arrival
order is not defined. You might find it easier for testing to use sequential identifiers for the
operations, since that makes it easier to follow the sequence of responses.

You might also note that out-of-order responses can only happen if the client does not
wait for each individual answer before continuing with sending operations.

While this loose-ordering guarantee on responses might look strange at first, it will
significantly simplify the implementation of the binary tree and you are encouraged to make
full use of it.

Your Task. You can find code stubs in the file BinaryTreeSet .scala which provides
you with the API as described above, the BinaryTreeSet and BinaryTreeNode classes.
The BinaryTreeSet represents the whole binary tree. This is also the only actor that is
explicitly created by the user and the only actor the user sends messages to.

You can implement as many or as few message handlers as you like and you can add
additional variables or helper functions. We provide suggestions in your code stub, marked
with the comment optional, but you are free to use it fully or partially; the optional elements
are not part of the tested API.

To see a binary tree in operation check the provided tests in BinaryTreeSuite.scala.
Note in particular that it is the user who triggers garbage collection by sending a GC message
(for the sake of simplicity of this exercise).

Do not forget to make sure that no Operation messages interfere during garbage col-
lection and that the user does not receive any messages that may result from the copying
process.

The following may be useful for your implementation:

e Another way to stop an actor, besides the stop method you have seen, is to send it a
PoisonPill message. context.parent returns the ActorRef of the actor which
created the current actor (i.e. its parent).

e If you see a log message like the following

CSCI-GA.3033-014 - Programming Paradigms for Concurrency Thomas Wies

[INFO] [04/23/2013 14:04:13.237] [PostponeSpec-akka.actor.default-dispatcher-2]
[akka://PostponeSpec/deadlLetters] Message [actortree.BinaryTreeSet$OperationFinished]
from Actor[akka://PostponeSpec/user/S$e/my-actor#-1012560631]

to Actor[akka://PostponeSpec/deadlLetters] was not delivered.

[1] dead letters encountered.

it means that one of your messages (here the OperationFinished) message was not
delivered from actor my-actor to actor deadLetters-the latter is where actors forward
their messages after they terminate. You should check that you do not stop actors

prematurely.

