
G22.2110-003 Programming Languages - Fall 2012
Week 13 - Part 2

Thomas Wies

New York University



Review

Last lecture

◮ Scala



Outline

Today:

◮ Exceptions

Sources for today’s lecture:

PLP, ch. 8.5



Exceptions

General mechanism for handling abnormal conditions

Category Examples How raised
predefined constraint violations,

I/O errors,
communication errors,
other illegalities

by the runtime system

user-defined pop from empty stack explicitly by user code

◮ exception handlers specify remedial actions or proper shutdown

◮ exceptions can be stored and re-raised later



Error handling

One way to improve robustness of programs is to write code to explicitly
handle errors.

How can we do this?



Error handling

One way to improve robustness of programs is to write code to explicitly
handle errors.

How can we do this?

Traditionally, this was done by checking the result of each operation that
can go wrong (e.g., popping from a stack, writing to a file, allocating
memory).



Error handling

One way to improve robustness of programs is to write code to explicitly
handle errors.

How can we do this?

Traditionally, this was done by checking the result of each operation that
can go wrong (e.g., popping from a stack, writing to a file, allocating
memory).

Unfortunately, this has a couple of serious disadvantages:

1. it is easy to forget to check

2. writing all the checks clutters up the code and obfuscates the
common case (the one where no errors occur)

Exceptions let us write clearer code and make it easier to catch errors.



Predefined exceptions in Ada

◮ Defined in Standard:

◮ Constraint_Error : value out of range
◮ Program_Error : illegality not detectable at compile-time:

unelaborated package, exception during finalization, etc.
◮ Storage_Error : allocation cannot be satisfied (heap or stack)
◮ Tasking_Error : communication failure

◮ Defined in Ada.IO_Exceptions:

◮ Data_Error, End_Error, Name_Error, Use_Error, Mode_Error,
Status_Error, Device_Error



Handling exceptions

Any begin-end block can have an exception handler:

procedure Test is

X: Integer := 25;

Y: Integer := 0;

begin

X := X / Y;

exception

when Constraint_Error =>

Put_Line("didÃyouÃdivideÃbyÃ0?");

when others =>

Put_Line("outÃofÃtheÃblue!");

end;



A common idiom

function Get_Data return Integer is

X: Integer;

begin

loop

begin

Get(X);

return X; -- if got here, input is valid,

-- so leave loop

exception

when others =>

Put_Line("inputÃmustÃbeÃinteger");

-- will restart loop to wait for next input

end;

end loop;

end;



User-defined Exceptions

package Stacks is

Stack_Empty: exception;

...

end Stacks;

package body Stacks is

procedure Pop (X: out Integer;

From: in out Stack) is

begin

if Empty(From)

then raise Stack_Empty;

else ...

end Pop;

...

end Stacks;



The scope of exceptions

◮ an exception has the same visibility as other declared entities: to
handle an exception it must be visible in the handler
(e.g., caller must be able to see Stack_Empty).

◮ an others clause can handle unnamable exceptions partially

when others =>

Put_Line("disasterÃsomewhere");

raise; -- propagate exception ,

-- program will terminate



Exception run-time model

What happens when an exception is raised?

1. When an exception is raised, the current sequence of statements is
abandoned (e.g., current Get and return in example)

2. Starting at the current frame, each frame in the current dynamic

scope is examined (want dynamic as opposed to static scopes
because those are values that caused the problem).

3. As each frame is examined, if a handler is found, it is executed, and
program execution resumes in that frame. Otherwise, the frame is
discarded.

4. If no handler is found, the program terminates.

Note: A discarded frame (including the frame that raised the exception)
is never resumed.



Exception information

◮ an Ada exception is a label, not a type: we cannot declare
exception variables and assign to them

◮ but an exception occurrence is a value that can be stored and
examined

◮ an exception occurrence may include additional information: source
location of occurrence, contents of stack, etc.

◮ predefined package Ada.Exceptions contains needed machinery



Ada.Exceptions (part of std libraries)

package Ada.Exceptions is

type Exception_Id is private;

type Exception_Occurrence is limited private;

function Exception_Identity (X: Exception_Occurrence)

return Exception_Id;

function Exception_Name (X: Exception_Occurrence)

return String;

procedure Save_Occurrence

(Target: out Exception_Occurrence;

Source: Exception_Occurrence);

procedure Raise_Exception (E: Exception_Id;

Message: in String := "")

...

end Ada.Exceptions;



Using exception information

begin

...

exception

when Expected: Constraint_Error =>

-- Expected has details

Save_Occurrence (Event_Log , Expected );

when Trouble: others =>

Put_Line("unexpectedÃ" &

Exception_Name(Trouble) &

"Ãraised");

Put_Line("shuttingÃdown");

raise;

end;



Exceptions in C++

◮ similar runtime model,...

◮ but exceptions are bona-fide types,

◮ and exception occurrences are first-class values

◮ handlers appear in try/catch blocks

try {

some_complex_calculation ();

} catch (const RangeError& e) {

// RangeError might be raised

// in some_complex_calculation

cerr << "oops\n";

} catch (const ZeroDivide& e) {

// same for ZeroDivide

cerr << "whyÃisÃdenominatorÃzero?\n";

}



Defining and throwing exceptions

The program throws an object. There is nothing in the declaration of the
type to indicate it will be used as an exception.

struct ZeroDivide {

int lineno;

ZeroDivide (...) { ... } // constructor

...

};

...

if (x == 0)

throw ZeroDivide (...); // call constructor

// and go



Exceptions and inheritance

A handler names a class, and can handle an object of a derived class as
well:

class Matherr { }; // a bare object , no info

class Overflow : public Matherr {...};

class Underflow : public Matherr {...};

class ZeroDivide : public Matherr {...};

try {

weatherPredictionModel (...);

} catch (const Overflow& e) {

// e.g., change parameters in caller

} catch (const Matherr& e) {

// Underflow , ZeroDivide handled here

} catch (...) {

// handle anything else (ellipsis)

}



Exceptions in Java

◮ Model and terminology similar to C++:

◮ exceptions are objects that are thrown and caught
◮ try blocks have handlers, which are examined in succession
◮ a handler for an exception can handle any object of a derived class

◮ Differences:

◮ all exceptions are extensions of predefined class Throwable
◮ checked exceptions are part of method declaration
◮ the finally clause specifies clean-up actions (in C++, cleanup

actions are idiomatically done in destructors)



Exception class hierarchy

Throwable

Error Exception

◮ any class extending Exception is a checked exception

◮ system errors are extensions of Error; these are unchecked

exceptions

Checked exceptions must be either handled or declared in the method
that throws them; this is checked by the compiler.



Exceptions in Java

If a method might throw an exception, callers should know about it.

public void replace (String name ,

Object newVal) throws NoSuch

{

Attribute attr = find(name);

if (attr == null) throw new NoSuch(name);

newVal.update(attr);

}



Mandatory cleanup actions

Some cleanups must be performed whether the method terminates
normally or throws an exception.

public void parse (String file) throws IOException

{

BufferedReader input =

new BufferedReader(new FileReader(file ));

try {

while (true) {

String s = input.readLine ();

if (s == null) break;

parseLine(s); // may fail somewhere

}

} finally {

if (input != null) input.close ();

} // regardless of how we exit

}



Exceptions in Scala

Model, terminology, and syntax similar to Java except that

◮ exceptions are unchecked by default
◮ catch blocks can use pattern matching

try {

val f = new FileReader("input.txt")

// Use and close file

} catch {

case ex: FileNotFoundException =>

// Handle missing file

case ex: IOException => // Handle other I/O error

}

◮ throw is an expression that has result type Nothing:

val half =

if (n % 2 == 0) n / 2

else throw new RuntimeException("nÃmustÃbeÃeven")

Type checks because Nothing is a subtype of Int.



Exceptions in ML

◮ runtime model similar to Ada/C++/Java

◮ exception is a single type (like a datatype but dynamically
extensible)

◮ declaring new sorts of exceptions:

exception StackUnderflow

exception ParseError of { line: int , col: int }

◮ raising an exception:

raise StackUnderflow

raise (ParseError { line = 5, col = 12 })



Exceptions in ML

◮ handling an exception:

expr_1 handle pattern => expr_2

If an exception is raised during evaluation of expr_1, and pattern

matches that exception, expr_2 is evaluated instead



A closer look

exception Div

fun f i j =

if j <> 0

then i div j

else raise Div

(f 6 2 handle Div => 42) (* evaluates to 3 *)

(f 4 0 handle Div => 42) (* evaluates to 42 *)

Typing issues:

◮ the type of the body and the handler must be the same

◮ the type of a raise expression can be any type

(whatever type is appropriate is chosen)



Call-with-current-continuation

Available in Scheme and Sml/NJ; usually abbreviated to call/cc.

A continuation represents the computation of “rest of the program”.

call/cc takes a function as an argument. It calls that function with the
current continuation (which is packaged up as a function) as an
argument.

If this continuation is called with some value as an argument, the effect
is as if call/cc had itself returned with that argument as its result.

The current continuation is the “rest of the program”, starting from the
point when call/cc returns.

(call/cc (lambda (c) (c 5))) ;; returns 5

(call/cc (lambda (c) 5)) ;; so does this

(call/cc (lambda (c) (+ 1 (c 5)))) ;; ditto



The power of continuations

We can implement many control structures with call/cc:

◮ return:

(lambda (x)
(call/cc (lambda (ret)

... ;; body of function
(ret 76) ;; call continuation with result
...

))
)

◮ goto:

(begin
...
(call/cc (lambda (k) (set! here k)) ;; set label
...
(here ()) ;; ‘‘goto’’ here
...

)



Exceptions via call/cc

Exceptions can also be implemented by call/cc:

◮ Need global stack: handlers

◮ For each try/catch:

(call/cc (lambda (k)

(begin

(push handlers (lambda ()

(begin

(pop handlers)

(catch-block)

(k ()))))

(try-block)

(pop handlers ))))

◮ For each raise:

((top handlers )) ; call the top function on

; the handlers stack


