(G22.2110-003 Programming Languages - Fall 2012

Lecture 12

Thomas Wies

New York University

Review

Last lecture

» Modules

Outline

> Classes

» Encapsulation and Inheritance

» Initialization and Finalization

» Dynamic Method Binding

» Abstract Classes

» Simulating First-Class Functions
Sources:

» PLP, ch. 9

» PLP, ch. 3.6.3

What is OOP? (part I)

The object idea:

» bundling of data (data members) and operations (methods) on that
data

» restricting access to the data

An object contains:

» data members: arranged as a set of named fields
» methods: routines which take the object they are associated with as
an argument (known as member functions in C++)

A class is a construct which defines the data and methods associated
with all of its instances (objects).

What is OOP? (part Il)

The inheritance and dynamic binding ideas:

» inheritance: classes can be extended:
» by adding new fields
» by adding new methods
» by overriding existing methods (changing behavior)
If class B extends class A, we say that B is a subclass (or a derived
or child class) of A, and A is a superclass (or a base or a parent
class) of B.
» dynamic binding: wherever an instance of a class is required, we
can also use an instance of any of its subclasses; when we call one of
its methods, the overridden versions are used.

Information Hiding in Classes

Like modules, classes can restrict access to their data and methods.

Unlike modules, classes must take inheritance into account in their access
control.
Three levels of access:
» public: accessible to everyone
» protected: accessible within the class and in any derived classes
» private: accessible only within the class
Members are private by default.

In JAVA, “protected” means accessible within the class, all derived
subclasses, as well as classes declared in the same package.

A friend declaration allows a foreign class or subroutine access to private
members.

Example in C++

class Point {
double x, y; // private data members public:
void move (double dx, double dy) {
x += dx; y += dy;
}

virtual void draw () { ... }

};

class ColoredPoint : public Point {
Color color;

public:
Color getColor () { return color; }

void draw () { ... } // mow in color!

s

Same thing in JAVA

class Point {

}

private double x, y; // private data members
public void move (double dx, double dy) {

x += dx; y += dy;
}

public void draw () { ... }

class ColoredPoint extends Point {

3

private Color color;
public Color getColor () { return color; 1}

public void draw () { ... } // now in color!

Initialization and Finalization

A constructor is a special class method that is automatically called to
initialize an object at the beginning of its lifetime.

A destructor is a special class method that is automatically called to
finalize an object at the end of its lifetime.

Issues:

» choosing a constructor
» references and values
» execution order

» garbage collection

Choosing a Constructor

Most OOP languages allow a class to specify more than one constructor.

» Overloading: In C++, JAVA, and C#, constructors behave like
overloaded methods. They must be distinguished by their numbers
and types of arguments.

» Named constructors: In SMALLTALK and EIFFEL, constructors can
have different names. Code that creates an object must name a
constructor explicitly.

» Companion object: In SCALA, a class specifies no explicit
constructors. Instead, classes take parameters and constructor-like
functions are declared in a companion object.

References and Values

In JAVA, variables can be references to objects, but cannot contain
objects as values.

As a result, every object must be created explicitly, triggering a call to
the constructor.

In C++, variables can have objects as values, so it is a little more
complicated to identify how and when constructors are called:
» If a variable is declared with no initial value, then the default
constructor is called.

» If a variable is declared to be a copy of another object of the same
type, the copy constructor is called.

» Otherwise, a constructor is called that matches the parameters
passed to the variable declaration.

» Similar rules apply to objects created on the heap.

Constructor Example in C++

class Point {
double x, y; // private data members

public:

// Default comstructor
Point () : x(0), y(0) {}

// Copy constructor
Point (const Point& p) : x(p.x), y(p.y) {3}

// Other constructor
Point (double xp, double yp) : x(xp), y(yp) {}

};...

Point pl; // calls default constructor

Point p2(1,2); // calls last constructor

Point p3 = p2; // calls copy constructor

Point p4(p2); // same as above (syntactic wariant)

Constructor Example in C++

class Point {
double x, y; // private data members

public:

// Default comstructor
Point () : x(0), y(0) {}

// Copy constructor
Point (const Point& p) : x(p.x), y(p.y) {3}

// Other constructor
Point (double xp, double yp) : x(xp), y(yp) {}

};...

Point *pl, *p2, *p3; // mo calls to constructor
new Point(); // calls default constructor
new Point (xpl); // calls copy constructor
new Point(1,2); // calls last comstructor

o
N
nnn

Constructors in JAVA

class Point {
private double x, y; // private data members

public Point () { this.x = 0; this.y = 0; }

public Point (double x, double y) {

this.x = x; this.y = y;
}
}
Point pl = new Point ();
Point p2 = new Point (2.0, 3.0);

Point p3 p2; // mo constructor called

Execution Order

How do the constructors of base classes and derived classes interact?

Execution Order

How do the constructors of base classes and derived classes interact?

Typically, we want to call the base constructor before the derived fields
are initialized.

Execution Order

How do the constructors of base classes and derived classes interact?

Typically, we want to call the base constructor before the derived fields
are initialized.

Both C++ and JAvA provide mechanisms for doing this.

Constructors in a base class

In C4++4:

class ColoredPoint : public Point {
Color color;
public:
ColoredPoint (Color c¢) : Point(), color(c) {}
ColoredPoint (double x, double y, Color c)
Point (x, y), color(c) {}
};

In JAVA:

class ColoredPoint extends Point {
private Color color;
public ColoredPoint (double x, double y, Color c)
{ super (x, y);
color = c;
b

public ColoredPoint (Color c) A{
super (0.0, 0.0);
color = c;
}
}

Destructors and Garbage Collection

When an object in C++4 is destroyed, a destructor is called.

A destructor is typically used to release memory allocated in the
constructor.

For derived classes, destructors are called in the reverse order that the
constructors were called.

In languages such as JAVA that have garbage collection, there is little or
no need for destructors.

However, JAVA does provide an optional finalize method that will be
called just before an object is garbage collected.

Example of Destructors in C++

class String {

char x*xdata;
public:
String(const char *value);
“String () { delete [] data; }
s

String::String(const char *value)

{

data = new char[strlen(value) + 1];
strcpy (data, value);

Dynamic Method Binding

A key feature of object-oriented languages is allowing an object of a
derived class to be used where an object of a base class is expected.

This is called subtype polymorphism.
Now, consider the following code:

ColoredPoint *cpl =

new ColoredPoint (2.0, 3.0, Blue);
Point *pl = cpl; // OK
pl->draw ();

Which draw method gets called?

Dynamic Method Binding

A key feature of object-oriented languages is allowing an object of a
derived class to be used where an object of a base class is expected.

This is called subtype polymorphism.
Now, consider the following code:

ColoredPoint *cpl =

new ColoredPoint (2.0, 3.0, Blue);
Point *pl = cpl; // OK
pl->draw ();

Which draw method gets called?

> If the Point class method is called, it is an example of static
method binding.

» If the ColoredPoint class method is called, it is an example of
dynamic method binding.

Dynamic Method Binding

What are the advantages and disadvantages of static vs dynamic method
binding?

Dynamic Method Binding

What are the advantages and disadvantages of static vs dynamic method
binding?

» static is more efficient:

> to support dynamic method binding, an object must keep an
additional pointer to a virtual method table (or vtable).

» dynamic method binding requires additional space, as well as an
additional pointer dereference when calling a method.

» dynamic allows a subclass to override the behavior of its parent, a
key feature that makes inheritance much more flexible and useful.

Dynamic Method Binding

What are the advantages and disadvantages of static vs dynamic method
binding?

» static is more efficient:
> to support dynamic method binding, an object must keep an
additional pointer to a virtual method table (or vtable).
» dynamic method binding requires additional space, as well as an
additional pointer dereference when calling a method.
» dynamic allows a subclass to override the behavior of its parent, a
key feature that makes inheritance much more flexible and useful.

In C++4 and C#, methods are bound statically by default.

The keyword virtual distinguishes a method that should be bound
dynamically.

Dynamic Method Binding

What are the advantages and disadvantages of static vs dynamic method
binding?
» static is more efficient:
> to support dynamic method binding, an object must keep an
additional pointer to a virtual method table (or vtable).
» dynamic method binding requires additional space, as well as an
additional pointer dereference when calling a method.

» dynamic allows a subclass to override the behavior of its parent, a
key feature that makes inheritance much more flexible and useful.
In C++4 and C#, methods are bound statically by default.
The keyword virtual distinguishes a method that should be bound
dynamically.

In JAVA, all methods are bound dynamically. The keyword final
distinguishes a method that should be bound statically.

Dynamic Method Binding

class Point {

double x, y; // private data members

public:

// Constructors

Point () : x(0), y(0) {}

Point (const Point& p) : x(p.x), y(p.y) {}
Point (double xp, double yp) : x(xp), y(yp) {}
// Destructor

virtual ~“Point () {}

virtual void move (double dx, double dy) {
x += dx; y += dy;
}

virtual double distance (const Point& p) {
double xdist = x - p.x, ydist =y - p.y;
return sqrt (xdist * xdist + ydist * ydist);
}

virtual void draw () { ... %}

Dynamic Method Binding

class ColoredPoint : public Point {

Color color;

public:

// Constructors
ColoredPoint (Color c¢) : Point(), color(c) { }
ColoredPoint (double x, double y,

Color c¢) : Point (x, y), color(c)
{3

// Destructor
“ColoredPoint () {}

virtual Color getColor () { return color; }

virtual void draw () { ... } // now in color!

Implementation: the vtable

A typical memory layout with dynamic method binding in C++; using
Point as an example:

Pointinstance Point vtable

- dtor —Pointversion
move —=Point version

distance—=Point version

<| X

draw +—=Point version

Implementation: the vtable

For ColoredPoint, we have:

ColoredPoint instance ColoredPoint vtable

color

d'tor

— ColoredPoint version

move

— Point version

distance

— Point version

draw

— ColoredPoint version

getColor

— ColoredPoint version

Non-virtual member functions are never put in the vtable.

Abstract Classes

Another useful construct in object-oriented programming is the abstract
class.

An abstract class contains at least one method which is abstract (called
pure virtual in C4+), meaning it has a declaration but no definition
within the class.

It is not possible to declare an object of an abstract class as one of its
methods has no definition.

Abstract classes are used as base classes in class hierarchies.

They are useful for defining APl's when the implementation is unknown
or needs to be hidden completely.

A class, all of whose methods are abstract, is called an interface in JAVA

and C#.

Abstract Classes: Example

In C++:
class Drawable {
public:
virtual void draw() = 0;
}s
class Point : public Drawable {
virtual void draw() { ... } // implementation
+s
In JAVA:

public abstract class Drawable {
public abstract void draw();

}

public class Point extends Drawable {

void draw() { ... } // implementation
}

Class Hierarchies with Multiple Inheritance

In C++:
class Drawable {
public:
virtual void draw() = 0;
};
class Resizable {
public:
virtual void resize(double factor) = 0;
};
class Point : public Drawable {
};
class Square : public Drawable, public Resizable {

};...

Class Hierarchies with Multiple Inheritance

In JAvA, multiple inheritance only works for abstract classes that do not
have fields (called interfaces):

public interface Drawable {
public void draw();
b

public interface Resizable {

public void resize (double factor);

b

public Point implements Drawable {

}

public Square implements Drawable, Resizable {

}

Comparison of JAvVA and C++

Java C++
methods virtual member functions
public/protected /private similar

members

static members
abstract methods

interface

implementation of an
interface

same

pure virtual member
functions

pure virtual class with no

data members

inheritance from an ab-

stract class

Simulating a first-class function with an object

A simple first-class function:

fun mkAdder nonlocal = (fn arg => arg + nonlocal)

The corresponding C++ class:

class Adder A{
int nonlocal;
public:
Adder (int i) : mnonlocal(i) { }
int operator () (int arg) {
return arg + nonlocal;
}
+;

mkAdder 10 is roughly equivalent to Adder (10).

First-class functions strike back

A simple unsuspecting object (in JAvA, for variety):

class Account {
private float balance;
private float rate;

Account (float b, float r) { balance = b
rate = r; 1}

I

public void deposit (float x) {

balance = balance + x;
}
public void compound () {

balance = balance * (1.0 + rate);
}

public float getBalance () { return balance; }

First-class functions strike back, part 2

Simulating objects using records and functions:

datatype account =

AccountObj { deposit : real -> unit,
compound : unit -> unit,
getBalance : unit -> real }

fun Account b r =

let val balance = ref b

val rate = ref r
in
AccountObj {
deposit = fn x => balance := !balance + x,
compound = fn () =>
balance := !balance * (1.0 + !rate),

getBalance = fn () => !balance }
end

new Account(80.0,0.05) is roughly equivalent to Account 80.0 .05.

OOP Pitfalls: the circle and the ellipse

A couple of facts:

» In mathematics, an ellipse (from the Greek for absence) is a curve
where the sum of the distances from any point on the curve to two
fixed points is constant. The two fixed points are called foci (plural
of focus).
from http://en.wikipedia.org/wiki/Ellipse

» A circle is a special kind of ellipse, where the two foci are the same
point.

If we need to model circles and ellipses using OOP, what happens if we
have class Circle inherit from class E1lipse?

Circles and ellipses

class Ellipse {

public move (double dx, double dy) { ... }

public resize (double x, double y) { ... 7}
}

class Circle extends Ellipse {

public resize (double x, double y) { 777 }
}

We can’t implement a resize for Circle that lets us make it asymmetric!

Pitfalls: Array subtyping

In JAva, if class B is a subclass of class A, then JAVA considers array of
B to be a subtype of array of A:

class A { ... %}
class B extends A { ... }

B[] b
Al]l a

new BI[5];
b; // allowed (a and b are nmow aliases)

all]l] = new AQ); // Bzzzt! (ArrayStoreEzception)

The problem is that arrays are mutable; they allow us to replace an
element with a different element.

