Object-oriented programming is an exceptionally bad idea which could only have originated in California.

Edsger Dijkstra
Object-Oriented Programming (OOP)

Object-oriented programming is claimed to promote greater flexibility and maintainability in programming, and is widely popular in large-scale software engineering.

Wikipedia

http://xkcd.com/292/
The Goal of this Course

Learn how to build and evolve large-scale programs using object-oriented programming

• **OOP Design**: How do we think in objects?
 – design patterns, object-functional design, objects and concurrency, ...

• **OOP Primitives**: How do we express object orientation?
 – objects, classes, method dispatch, inheritance, subtyping, generics, ...

• **OOP Implementation**: How do we realize OO primitives?
 – virtual method dispatch with vtables, static overloading resolution, type erasure, ...
How Do We Achieve This Goal?

• In-class lectures and discussions
 – lectures to introduce topics and techniques

• Individual homework assignments
 – gives a structured introduction to concepts
 – one week for completion

• Mini projects:
 – Teams of 2 students
 – two or more weeks for completion
Used Language: Scala (v. 2.12)

• Scala fuses the **object-oriented** and **functional** programming paradigms
• This is a general trend in languages that are used in industry (see Java 8, C# 6.0, Swift, ...)
• Scala goes furthest in this trend
• It has perhaps the most avant-garde and advanced features of all OOP languages
• Many of these features are extremely useful for writing maintainable and efficient large-scale software
• We will occasionally look at other OOP languages when we discuss design choices in the implementation of OOP features.
Why Scala?
Programming Language Popularity

TIOBE Programming Community Index
Source: www.tiobe.com
Operational Details
Important Dates

• Class: Wed 7:10 - 9pm in WWH 201

• Office hour: Wed 4:00 - 5:00pm in 60FA 403

• Final Exam: Wed, **May 2**
 – last regular class period (i.e., **not May 9**)!
 – no midterm exam
Textbook

• Programming in Scala, Bill Venners, Lex Spoon, and Martin Odersky, 3rd ed., 2017
 – You can find older editions on the web, which will also suffice for most of our purposes

• Rather than making you buy more books I will rely on free online resources where I can
Online Resources

• **Piazza** - Online discussion and announcements
• **NYU Classes** - Grade posting
• **Github** – Homework assignments, project, and class notes and source code
• **Website**
 – Lists reading assignments, class notes
 – Provides links to useful material
Grading

- 50% for homework assignments and projects
- 50% for final exam
Submission Policies

• Grading criteria for projects and homework assignments will be published.

• Solutions must be submitted before the announced date and time deadline for full credit.

• For every 24 hours late you lose 10%

• Late solutions will not be accepted after the late deadline. (usually one week).

• If you turn in a solution that does not compile, it will not be accepted. You can resubmit according to the above rules.
Rules & Resources

• You must do all homework assignments on your own, without any collaboration!
• Pair programming on the mini projects is strongly encouraged.
• Keep all solutions to projects/homeworks within the private repositories of the Github organization for the course. Do not make them publicly available!
• If you need help, your first stop is Piazza. If you have a question, then almost certainly someone else has it, too.
• Otherwise, see me during the office hours (or make an appointment if the time slot does not work).
Toolchain

• Linux or OS X.
 – I will give instructions and support for Ubuntu and OS X.
 – I will provide instructions on installing a VM for Ubuntu on Windows.

• IntelliJ + Scala Plugin
 – While using an IDE is not mandatory, I recommend to use these as it greatly improves your programming experience.
 – Full version is available for free under a student license.
 – Alternatives: Scala IDE (Eclipse), Emacs, Vim, ...

• Sbt, ScalaTest, Git, ...
 – Real software engineering tools!
 – Your first homework will be a detailed guide on installing most of these tools.
 – You will need them!!

• Homework 1 will deal with setting up the toolchain.
What you should do immediately

• You should have received an invite to the Piazza course website.

• If you did not receive an invite, please contact me immediately.

• Complete the questionnaire that I posted on Piazza. Otherwise, you won't have access to the course materials on Github.