
Object-Oriented Programming
CSCI-UA 0470-001
Instructor: Thomas Wies

Spring 2017

Class 1 - Introduction



Object-oriented programming is an 
exceptionally bad idea which could 
only have originated in California.

Edsger Dijkstra



Object-Oriented Programming (OOP)

Object-oriented programming is claimed to 
promote greater flexibility and maintainability in 
programming, and is widely popular in large-scale 
software engineering. Wikipedia

http://xkcd.com/292/



The Goal of this Course

• Learn how to build and evolve large-scale 
programs using object-oriented programming
– Design: 

How do we think in objects?
• UML, and design patterns

– Language Primitives: 
How do we express object orientation?
• classes, interfaces, inheritance, method dispatch, generics, 

operator overloading, and reflection

– Language Implementation: 
How do we realize OO primitives?
• virtual method dispatch and automatic memory management



How Do We Achieve This Goal?

• In-class lectures and discussions
– Lectures to introduce topics and techniques
– in-class exercises to deepen understanding

• Individual homework assignments that give a 
structured introduction to tools and concepts.

• Course project: A translator from Java to C++
– Written in Java, using the XTC toolkit for source-to-

source transformers
– Two versions, with second version improving on first 

version
– Teams of 4-6 students



From Java to C++

• Input: Java with inheritance and virtual 
methods

– But without interfaces, nested classes, enums, 
generics, ...

• Output: C++ without inheritance and virtual 
methods

– I.e., a better C with namespaces, classes, operator 
overloading



Two Versions

• Version 1
– Challenge: Implement inheritance and virtual 

methods in translator

– Due mid-term, with in-class presentation and written 
report

• Version 2
– Challenge: Implement method overloading and 

automatic memory management

– Due end-of-term, again with presentation and written 
report



Don't Panic

• I will try and structure your approach to the 
project such that you are not overwhelmed

• We will have regular meetings

• XTC provides a lot of functionality

– Though you need to learn how to use it



But Why?



Translator from Java to C++?

• Is a real, large-scale program (and not just a toy)

– Domain with biggest promised impact of OOP

• Exposes you to implementation of OOP primitives

– While also integrating Java and C++

• Requires you to learn and build on existing tools

– Common scenario in practice



Two Versions of Translator?

• Educational best practice

– “Students can try, fail, receive feedback, and try 
again without impact on grade.” (Ken Bains)

• Software engineering best practice

– “Plan to throw one away; you will, anyhow.” 
(Frederick Brooks Jr.)



Teams of Students?

• Places emphasis on collaborative learning

• Prepares you for reality in industry and academia

• Helps me keep the feedback process manageable

• Allows for ‘Pair Programming’



Pair Programming

• Programming is sometimes thought of as a 
solitary act. It doesn’t have to be!

• Programming in pairs

– yields more readable code

– fewer bugs

– is more productive (!!)

– shares knowledge

– is more fun



Test-driven Development

• This course is, in part, emulating real software 
engineering.

• Write test for small parts of your application, 
end-to-end tests on every additional feature is 
inefficient and a difficult way to debug.

• Test-driven approach using JUnit and sbt



Operational Details



Important Dates

• Class: M & W 2:00 - 3:15pm in CIWW 102

• Office hour: W 3:15 - 4:30pm in WWH 407

– location will change to 60FA 403 from 02/01/17

• Final Exam: Monday, May 8 (No midterm)



Textbooks (not strictly required)

• Rather than making you buy more books I will rely on 
free online resources where I can

• For Java, “Object-Oriented Design & Patterns”
– 2nd edition by Cay Horstmann

• For C++, “C++ for Java Programmers”
– 1st edition by Mark Weiss

• In the long term, you may want a good reference for C++
– “The C++ Programming Language.”, by Bjarne Stroustrup



Online Resources

• Piazza - Online discussion and announcements

• NYU Classes - Grade posting

• Github – Homework assignments, project, and 
in-class source code

• Website

– Shows requirements for project

– Lists reading assignments, class notes

– Provides links to useful material



Grading

• 50% for group projects

– Typically, same grade assigned to all members of 
group

– Every group will grade all other groups; peer 
grades are advisory

• 25% for individual assignments

• 25% for final exam



Homework Policies

• Grading criteria for project and homework assignments will 
be published.

• Homework must be submitted before the announced date 
and time deadline for full credit.

• For every 24 hours late you lose 10%

• Late homework will not be accepted after the late deadline. 
(usually a week)

• If you turn in a homework that does not compile, it will not 
be accepted. You can resubmit according to the above rules.



Expectations

• Course is a lot of work, but will be fun and 
rewarding

• Attendance is important. Not everything 
discussed will be captured online.

• You drive your project's development! No 
handholding.



Rules & Resources

• You must do all assignments on your own, without any 
collaboration!

• You must do the projects as a group, but not with other 
groups and without consulting previous years' students, 
code, etc.

• You should help other students and groups on specific 
technical issues, but you must acknowledge such 
interactions in code comments.

• If you need help, first stop is Piazza. If you have the 
question, then almost certainly someone else does. 
– If a student does not give a satisfactory answer, I will chime in. 
– If that does not solve your issue, visit me in office hours.

• Teams can make appointments with me any time. 
– We may schedule regular time.



Three Languages

• Source Language - Java
– No nested classes, anonymous classes, interfaces, enums, 

annotations, generics, the enhanced for loop varargs, 
automatic boxing and unboxing, synchronization, strictfp, 
transient and volatile fields and no new Java 8 features

– Assume good input

• Target Language - C++
– No virtual methods, inheritance, templates (mostly) and 

no new C++11 features

– Support for basic classes, exceptions, and name spaces

• Translator language - Java 1.8
– The kitchen sink



Toolchain

• Linux or OS X. 
– Windows is not advised. I will give instructions and support for 

Ubuntu and OS X.
– I will provide instructions on installing a VM for Ubuntu on 

Windows.

• IntelliJ & CLion. 
– In a project this complex, you really need good tools.
– These IDEs are very good. While its not strictly mandatory, I 

recommend to use these as much of the project will utilize their 
capabilities.

• Sbt, XTC, Git, JUnit, Astyle… 
– Real software engineering tools! 
– Your first homework will be a detailed guide on installing most of 

these tools.
– You will need them!!



Challenges

• how to translate Java class hierarchies into C++ 
without inheritance

• how to implement Java's virtual method dispatch 
in C++ without virtual method dispatch

• how to select the right overloaded method (using 
a symbol table)

• how to automatically manage memory without an 
existing garbage collector (using smart pointers)



Team make-up

• 4-6 students

• one speaker 

– main contact point with me

– ceremonial role

• key to success is to divide and conquer.



Team Selection

• At the end of class, we will take a few minutes to 
go around and introduce ourselves to each and 
chat a bit. 

• You may want to look for students with 
complementary expertise. Java? C++? Git? etc..

• Use Piazza to "advertise" yourself to potential 
teammates.

• Important: fill out the survey I will send out.

• I will select the teams.


