
Object-Oriented Programming
CSCI-UA 0470-001

 Instructor: Thomas Wies

Fall 2013

Lecture 1 - Introduction

Acknowledgments

This course is based on Robert Grimm’s course
on Object-Oriented Programming.

Object-Oriented Programming (OOP)

• “Computer programming that emphasizes the structure
of data and their encapsulation with the procedures that
operate upon it.” (Britannica Concise)

• “An object is a software bundle of related variables and
methods. Software objects are often used to model real-
world objects you find in everyday life.” (Sun’s Java
Tutorial)

• “The idea behind object-oriented programming is [...]
opposed to a traditional view in which a program may be
seen as a collection of [...] procedures.” (Wikipedia)

Object-Oriented Programming (OOP)

• “Object-oriented programming is claimed to
promote greater flexibility and maintainability
in programming, and is widely popular in
large-scale software engineering.” (Wikipedia)

The Goal of this Course

• Learn how to build and evolve large-scale
programs using object-oriented programming
– Design:

How do we think in objects?
• CRC cards, UML, and design patterns

– Language Primitives:
How do we express object orientation?
• classes, interfaces, inheritance, method dispatch, generics,

operator overloading, and reflection

– Language Implementation:
How do we realize OO primitives?
• virtual method dispatch and automatic memory management

How Do We Achieve This Goal?

• In-class lectures and discussions
– Lectures to introduce topics and techniques

– Q&A sessions to deepen understanding

• Course project: A translator from Java to C++
– Written in Java, using xtc toolkit for source-to-

source transformers

– Two versions, with second version improving on
first version

– Teams of 4-5 students

From Java to C++

• Input: Java with inheritance and virtual
methods

– But without interfaces, nested classes, enums,
generics, ...

• Output: C++ without inheritance, virtual
methods, templates

– I.e., a better C with namespaces, classes, operator
overloading

Two Versions

• Version 1
– Challenge: Implement inheritance and virtual

methods in translator
– Due mid-term, with in-class presentation and written

report

• Version 2
– Challenge: Implement method overloading in

translator
• Also, integrate automatic memory management

– Due end-of-term, again with presentation and written
report

Don’t Panic

• I draw on translator for most lectures

– We develop basic translation scheme in class,
together

• We have plenty of Q&A sessions and out-of-
class meetings with groups

– You drive the discussion

• xtc provides a lot of functionality

– Though you need to learn how to use it

Some Highlights of xtc

• Facilities for representing and processing ASTs
– (Abstract Syntax Tree = internal representation of a

program)

• Parsers, type checkers, and pretty printers for
Java and C
– Convert from source, determine types, convert to

source again

• Generic tool support
– Command line flags, file search paths, error

reporting,...

But Why?

Translator from Java to C++?

• Is a real, large-scale program (and not just a toy)

– Domain with biggest promised impact of OOP

• Exposes you to implementation of OOP primitives

– While also integrating Java and C++

• Requires you to learn and build on existing tools

– Common scenario in practice

Two Versions of Translator?

• Educational best practice

– “Students can try, fail, receive feedback, and try
again without impact on grade.” (Ken Bains)

• Software engineering best practice

– “Plan to throw one away; you will, anyhow.”
(Frederick Brooks Jr.)

Teams of Students?

• Places emphasis on collaborative learning

• Prepares you for reality in industry and academia

• Helps me keep the feedback process manageable

More Details on Course

Textbooks

• For Java, “Object-Oriented Design & Patterns”
– 2nd edition by Cay Horstmann

• For C++, “C++ for Java Programmers”
– 1st edition by Mark Weiss

• If you have a different book on C++, you may use that

• In the long term, you will need a good reference for C++
– “The C++ Programming Language.”, by Bjarne Stroustrup

Tools

• Personally, I use Emacs and Unix tools
– Powerful, flexible, and easy to automate

• Linux: you are ready to go

• Mac OS: install Apple’s XCode
– http://developer.apple.com/xcode/

• Windows: not recommended
– Dual boot into Linux

– Install virtual machine monitor (e.g., “VirtualBox”)
and run Linux

Tools (cont.)

• If you insist on an IDE, I recommend Eclipse
• Java Development Tools (JDT)

– Visual debugger, more extensive errors/warnings than
JDK

– Known to build xtc

• C Development Tools (CDT)
– You still need developer tools on Mac OS

• XCode on the Mac works pretty well too
• I have no experience using them, so you are

pretty much on your own

Expectations

• Class is an integral part of this course

– You really should attend

• The course home page is an important part of
this course

– Shows exact requirements for project

– Lists reading assignments, class notes

– Provides links to useful material

Grading

• 50% for group projects
– Typically, same grade assigned to all members of

group

– Every group will grade all other groups; peer
grades are advisory

• 25% for individual assignments
– I will hand out a few assignments, due within a

week

• 25% for final exam

A Cautionary Tale

A Cautionary Tale (cont.)

• Karl Theodor zu Guttenberg
– Used to be secretary of defense in Germany,

extremely popular

– Forced to resign because most of his PhD thesis
was plagiarized
• 94.4% of all pages, 63.8% of all text lines

– Some choice quotes
• “The allegation that my thesis is plagiarized is absurd”

• “I did not consciously or deliberately cheat”

• “I personally wrote this dissertation”

Rules

• You must do all assignments on your own
– Without any collaboration!

• You must do the projects as a group
– But not with other groups

– Without consulting previous years’ students, code,
etc.

• You should help other students and groups on
specific technical issues
– But you must acknowledge such interactions

How to Get Started

• Introduce yourself in a few minutes

• Subscribe to the class mailing list
– By tonight

• Form groups and elect a speaker
– By Friday, September 6

• Get xtc running on your laptop
– You can verify that everything works as expected

by running:
> make check-rats check-c check-java

