
Computer Systems Organization

Thomas Wies

wies@cs.nyu.edu

https://cs.nyu.edu/wies

CSCI-UA.0201

Machine Level – Linking and Loading

DLL DLL

Loader

Source Code to Execution

Assembly Assembler Object File Object File Object File
Assembly

Assembly

Executable

Linker
Library Library Library

Assembly
Assembly

C source
Compiler

DLL

Linking Is ..

The process of collecting and combining various
pieces of code and data into a single file that can
be loaded into memory and executed.

Understanding Linkers Will Help You …

• build large programs

• avoid dangerous programming errors

• understand how language scoping rules are
implemented

• understand other important systems concepts
(virtual memory, paging, …)

• use shared libraries

Example C Program

int buf[2] = {1, 2};

int main()
{
 swap();
 return 0;
}

main.c swap.c

extern int buf[];

int *bufp0 = &buf[0];
static int *bufp1;

void swap()
{
 int temp;

 bufp1 = &buf[1];
 temp = *bufp0;
 *bufp0 = *bufp1;
 *bufp1 = temp;
}

The word static for global
variable means it can only
be accessed within its own module.

Module = a single file in the linker's lingo. So above, we have two modules.

Static Linking
• Programs are translated and linked using a compiler driver:

– $ gcc -O2 -g -o p main.c swap.c

– $./p

Linker (ld)

Translators
(cpp, cc, as)

main.c

main.o

Translators
(cpp, cc, as)

swap.c

swap.o

p

Source files

Separately compiled
re-locatable object files

Fully linked executable object file
(contains code and data for all functions
defined in main.c and swap.c)

Why Linkers?
• Modularity

– Write program as a set of smaller source files, rather
than one giant file

– Allow for libraries of common functions
(more on this later)
• e.g., math library, standard C library

• Efficiency
– Separate compilation saves time

• Change one source file, compile that file only, and then relink.

– Libraries save memory space
• Common functions can be aggregated into a single file...
• Yet executable files contain only code for the functions they

actually use.

What Do Linkers Do?

• Step 1. Symbol resolution

– Programs define and reference symbols (variables and
functions):
• void swap() {…} /* define symbol swap */
• swap(); /* reference symbol swap */
• int *xp = &x; /* define symbol xp, and reference x */

– Symbol definitions are stored (by compiler) in symbol

table.
• Symbol table is an array of structs
• Each entry includes name, size, and location of symbol.

– Linker associates each symbol reference with exactly one

symbol definition.

What Do Linkers Do? (cont)
• Step 2. Relocation

– Merges separate code and data sections into single
sections (one for code and one for data)

– Relocates symbols from their relative locations in the
.o files to their final absolute memory locations in the
executable.

– Updates all references to these symbols to reflect their
new positions.

Three Kinds of Object Files (Modules)

• Relocatable object file (.o file)
– Contains code and data in a form that can be combined with

other relocatable object files to form executable object file.
• Each .o file is produced from exactly one source (.c) file

• Executable object file (a.out file)

– Contains code and data in a form that can be copied directly into
memory and then executed.

• Shared object file (.so file)

– Special type of relocatable object file that can be loaded into
memory and linked dynamically, at either load time or run-time.

– Called Dynamic Link Libraries (DLLs) by Windows

Executable and Linkable Format (ELF)

• Standard binary format for object files
– Originally proposed by AT&T System V Unix, later

adopted by BSD Unix variants and Linux

• One unified format for
– Relocatable object files (.o),

– Executable object files (a.out)

– Shared object files (.so)

• Generic name: ELF binaries

ELF Object File Format
• Elf header

– Word size, byte ordering, file type (.o, exec, .so),
machine type, etc.

• Segment header table
– Page size, virtual addresses memory segments

(sections), segment sizes.

• .text section
– Code

• .rodata section

– Read only data: jump tables, ...

• .data section
– Initialized global variables

• .bss section (Block Started by Symbol)
– Uninitialized global variables

– Variables that are 0-initialized

– Only the length but no data

– Later, the program loader will allocate memory for
it and 0-initialize all of it.

ELF header

Segment header table
(required for executables)

.text section

.rodata section

.bss section

.symtab section

.rel.txt section

.rel.data section

.debug section

Section header table

0

.data section

ELF Object File Format (cont.)
• .symtab section

– Symbol table

– Procedure and global variable names

• .rel.text section
– Relocation info for .text section

– Addresses of instructions that will need to be
modified in the executable

• .rel.data section
– Relocation info for .data section

– Addresses of pointer data that will need to be
modified in the merged executable

• .debug section
– Info for symbolic debugging (gcc -g)

• Section header table

– Offsets and sizes of each section

0
ELF header

Segment header table
(required for executables)

.text section

.rodata section

.bss section

.symtab section

.rel.txt section

.rel.data section

.debug section

Section header table

.data section

Linker Symbols
• Global symbols

– Symbols defined by module m that can be referenced by other
modules.

– E.g.: non-static C functions and non-static global variables.

• External symbols
– Global symbols that are referenced by module m but defined by

some other module.

• Local symbols
– Symbols that are defined and referenced exclusively by module m.
– E.g.: C functions and variables defined with the static attribute.
– Be careful: Local linker symbols are not local program variables

(linker does not deal with the local variables of a function).

Resolving Symbols

int buf[2] = {1, 2};

int main()
{
 swap();
 return 0;
}

main.c

extern int buf[];

int *bufp0 = &buf[0];
static int *bufp1;

void swap()
{
 int temp;

 bufp1 = &buf[1];
 temp = *bufp0;
 *bufp0 = *bufp1;
 *bufp1 = temp;
}

swap.c

Global

External

External Local

Global

Linker knows
nothing about temp

Global

Relocating Code and Data

main()

main.o

int *bufp0=&buf[0]

swap()

swap.o int buf[2]={1,2}

Headers

main()

swap()

0 System code

int *bufp0=&buf[0]

int buf[2]={1,2}

System data

More system code

System data

Relocatable Object Files Executable Object File

.text

.text

.data

.text

.data

.text

.data .symtab
.debug

.data

int *bufp1 .bss

System code

static int *bufp1 .bss

Even though local to swap.o, requires allocation in .bss

Strong and Weak Symbols

• Program symbols are either strong or weak
– Strong: procedures and initialized globals

– Weak: uninitialized globals

int foo=5;

p1() {
}

int m;

p2() {
}

p1.c p2.c

strong

weak

strong

strong

Linker's Symbol Rules
• Rule 1: Multiple strong symbols are not allowed

– Each item can be defined only once
– Otherwise: Linker error

• Rule 2: Given a strong symbol and multiple weak

symbol, choose the strong symbol
– References to the weak symbol resolve to the strong

symbol

• Rule 3: If there are multiple weak symbols, pick an

arbitrary one
– Can override this with gcc –fno-common

Linker Puzzles

int x;
p1() {}

int x;
p2() {}

int x;
int y;
p1() {}

double x;
p2() {}

int x=7;
int y=5;
p1() {}

double x;
p2() {}

int x=7;
p1() {}

int x;
p2() {}

int x;
p1() {}

p1() {} Link time error: two strong symbols (p1)

References to x will refer to the same
uninitialized int. Is this what you really want?

Writes to x in p2 might overwrite y!
Evil!

Writes to x in p2 will overwrite y!
Nasty!

References to x will refer to the same initialized
variable.

Packaging Commonly Used Functions
• How to package functions commonly used by

programmers?
– Math, I/O, memory management, string manipulation,

etc.

• Awkward, given the linker framework so far:
– Option 1: Put all functions into a single source file

• Inefficient: programmers link big object file into their
programs

– Option 2: Put each function in a separate source file
• Burdensome: programmers explicitly link appropriate

binaries into their programs

Solution: Static Libraries

• Static libraries (.a archive files)
– Concatenate related relocatable object files into a

single file with an index (called an archive).

– Linker tries to resolve unresolved external
references by looking for the symbols in one or
more archives.

– If an archive member file resolves reference, link it
into the executable.

Creating Static Libraries

Translator

atoi.c

atoi.o

Translator

printf.c

printf.o

libc.a

Archiver (ar)

...
Translator

random.c

random.o

unix> ar rs libc.a \
 atoi.o printf.o … random.o

C standard library

Commonly Used Libraries
libc.a (the C standard library)

– 8 MB archive of 1392 object files.

– I/O, memory allocation, signal handling, string handling, data and time, random
numbers, integer math

libm.a (the C math library)
– 1 MB archive of 401 object files.

– floating point math (sin, cos, tan, log, exp, sqrt, …)

% ar -t /usr/lib/libc.a | sort
…
fork.o
…
fprintf.o
fpu_control.o
fputc.o
freopen.o
fscanf.o
fseek.o
fstab.o
…

% ar -t /usr/lib/libm.a | sort
…
e_acos.o
e_acosf.o
e_acosh.o
e_acoshf.o
e_acoshl.o
e_acosl.o
e_asin.o
e_asinf.o
e_asinl.o
…

Linking with Static Libraries

Translators
(cpp, cc1, as)

main2.c

main2.o

libc.a

Linker (ld)

p2

printf.o and any other
modules called by printf.o

libvector.a

addvec.o

Static libraries

Relocatable
object files

Fully linked
executable object file

vector.h Archiver
(ar)

addvec.o multvec.o

Using Static Libraries

• Linker's algorithm for resolving external references:
– Scan .o files and .a files in the command line order.
– During the scan, keep a list of the current unresolved

references.
– As each new .o or .a file is encountered, try to resolve

each unresolved reference in the list against the symbols
defined in that file.

– If any entries remain in the unresolved list at end of scan,
then report an error.

• Problem:

– Command line order matters!
– Moral: put libraries at the end of the command line.

unix> gcc -L. libtest.o -lmine
unix> gcc -L. -lmine libtest.o
libtest.o: In function `main':
libtest.o(.text+0x4): undefined reference to `fun'

fun is defined in
mine and called

by libtest

Loading Executable Object Files

ELF header

Program header table
(required for executables)

.text section

.data section

.bss section

.symtab

.debug

Section header table
(required for relocatables)

0
Executable Object File Kernel virtual memory

Memory-mapped region for
shared libraries

Run-time heap
(created by malloc)

User stack
(created at runtime)

Unused
0

%rsp
(stack
pointer)

Memory
invisible to
user code

brk

0x400000

Read/write data segment
(.data, .bss)

Read-only code segment
(.init, .text, .rodata)

Loaded
from
the
executable
file

.rodata section

.line

.init section

.strtab

Shared Libraries

• Static libraries have the following disadvantages:
– Duplication in the stored executables (e.g. every program

needs libc)

– Duplication in the running executables

– Minor bug fixes of system libraries require each
application to relink

• Modern solution: Shared Libraries
– Object files that are loaded and linked into an application

dynamically, at either load-time or run-time

– Also called: dynamic link libraries, DLLs, .so files

Shared Libraries (cont.)
• Dynamic linking can occur when executable is first

loaded and run (load-time linking).
– Common case for Linux.
– Standard C library (libc.so) usually dynamically

linked.

• Dynamic linking can also occur after program has
begun
(run-time linking).
– In Linux, this is done by calls to the dlopen()

interface.

• Shared library routines can be shared by multiple
processes.
– More on this when we learn about virtual memory

Dynamic Linking at Load-time

Translators
(cpp, cc1, as)

main2.c

main2.o

libc.so
libvector.so

Linker (ld)

p2

Dynamic linker (ld-linux.so)

Relocation and symbol
table info

libc.so
libvector.so

Code and data

Partially linked
executable object file

Relocatable
object file

Fully linked
executable
in memory

vector.h

Loader (execve)

Dynamic Linking at Run-time
#include <stdio.h>
#include <dlfcn.h>

int x[2] = {1, 2};
int y[2] = {3, 4};
int z[2];

int main() {
 void *handle;
 void (*addvec)(int *, int *, int *, int);
 char *error;

 /* dynamically load the shared lib that contains addvec() */
 handle = dlopen("./libvector.so", RTLD_LAZY);
 if (!handle) {
 fprintf(stderr, "%s\n", dlerror());
 exit(1);
 }
 ...
}

Dynamic Linking at Run-time
 ...

 /* get a pointer to the addvec() function we just loaded */
 addvec = dlsym(handle, "addvec");
 if ((error = dlerror()) != NULL) {
 fprintf(stderr, "%s\n", error);
 exit(1);
 }

 /* Now we can call addvec() just like any other function */
 addvec(x, y, z, 2);
 printf("z = [%d %d]\n", z[0], z[1]);

 /* unload the shared library */
 if (dlclose(handle) < 0) {
 fprintf(stderr, "%s\n", dlerror());
 exit(1);
 }
 return 0;
}

Conclusions

• source code (one or more modules) 
preprocesser  compiler  assembler 
linker  loader

• Now you can see the relationship among C
code, assembly code, object code, and final
executable

