
Computer Systems Organization

Thomas Wies

wies@cs.nyu.edu

https://cs.nyu.edu/wies

CSCI-UA.0201

Machine Level – Assembly (x86-64) basics

Arithmetic & Logic Operations

Carnegie Mellon

Arithmetic Expression Example
long arith
(long x, long y, long z)
{
 long t1 = x+y;
 long t2 = z+t1;
 long t3 = x+4;
 long t4 = y * 48;
 long t5 = t3 + t4;
 long rval = t2 * t5;
 return rval;
}

arith:
 leaq (%rdi,%rsi), %rax
 addq %rdx, %rax
 leaq (%rsi,%rsi,2), %rdx
 salq $4, %rdx
 leaq 4(%rdi,%rdx), %rcx
 imulq %rcx, %rax
 ret

Carnegie Mellon

Understanding Arithmetic Expression Example

long arith
(long x, long y, long z)
{
 long t1 = x+y;
 long t2 = z+t1;
 long t3 = x+4;
 long t4 = y * 48;
 long t5 = t3 + t4;
 long rval = t2 * t5;
 return rval;
}

Register Use(s)

%rdi Argument x

%rsi Argument y

%rdx Argument z

%rax t1, t2, rval

%rdx t4

%rcx t5

arith:
 leaq (%rdi,%rsi), %rax
 addq %rdx, %rax
 leaq (%rsi,%rsi,2), %rdx
 salq $4, %rdx
 leaq 4(%rdi,%rdx), %rcx
 imulq %rcx, %rax
 ret

Carnegie Mellon

Understanding Arithmetic Expression Example

long arith
(long x, long y, long z)
{
 long t1 = x+y;
 long t2 = z+t1;
 long t3 = x+4;
 long t4 = y * 48;
 long t5 = t3 + t4;
 long rval = t2 * t5;
 return rval;
}

arith:
 leaq (x,y), rval
 addq z, rval
 leaq (y,y,2), t4
 salq $4, t4
 leaq 4(x,z), t5
 imulq t5, rval
 ret

Multiplication
• Unsigned

– form 1: imulq s, d
• d = s * d
• multiply two 64-bit operands and put the result in 64-bit operand

– form 2: mulq s
• one operand is %rax
• The other operand given in the instruction
• product is stored in %rdx (high-order part) and %rax (low order part)
 full 128-bit result

• Signed
– form 1: imulq s, d

• d = s * d
• multiply two 64-bit operands and put the result in 64-bit operand

– form 2: imulq s
• one operand is %rax
• The other operand given in the instruction
• product is stored in %rdx (high-order part) and %rax (low order part)
 full 128-bit result

Division
• Unsigned

– divq s

• Dividend given in %rdx (high order) and %rax (low order)

• Divisor is s

• Quotient stored in %rax

• Remainder stored in %rdx

• Signed

– idivq s

• Dividend given in %rdx (high order) and %rax (low order)

• Divisor is s

• Quotient stored in %rax

• Remainder stored in %rdx

Useful Instruction for Division

cqto

• convert quad word to octal word

• no operands

• takes the sign bit from %rax and replicates it
in all bits of %rdx

• effect: sign extend 64-bit signed %rax to 128-
bit signed %rdx:%rax.

Control

Carnegie Mellon

Processor State (x86-64, Partial)

• Information
about currently
executing
program
– Temporary data

(%rax, …)
– Location of

runtime stack
(%rsp, %rbp)

– Location of current
code control point
(%rip)

– Status of recent
tests
(CF, ZF, SF, OF)

%rip

Registers

Instruction pointer

CF ZF SF OF Condition codes

%rsp

%r8

%r9

%r10

%r11

%r12

%r13

%r14

%r15

%rax

%rbx

%rcx

%rdx

%rsi

%rdi

%rbp

Carnegie Mellon

Setting Condition Codes Implicitly

• Can be implicitly set by arithmetic operations

Example: addq Src,Dest (t = a+b)

CF (Carry flag) set if carry out from most significant (31-st) bit
(unsigned overflow)
ZF (Zero flag) set if t == 0
SF (Sign flag) set if t < 0 (as signed)
OF (Overflow flag) set if signed overflow
(a>0 && b>0 && t<0) ||
(a<0 && b<0 && t>=0)

• Condition codes not set by lea instruction!

Effect of Logical Operations

• The carry and overflow flags are set to zero.

• For shift instructions:

– The carry flag is set to the value of the last bit
shifted out.

– Overflow flag is set to zero.

INC and DEC instructions

• Affect the overflow and zero flags

• Leave carry flag unchanged

Carnegie Mellon

Setting Condition Codes Explicitly

• Can also be explicitly set

cmpl b,a set condition codes based on computing

a-b without storing the result in any destination

CF set if carry out from most significant bit (used for

 unsigned comparisons)

ZF set if a == b

SF set if (a-b) < 0 (as signed)

OF set if (a-b) results in signed overflow

Carnegie Mellon

Setting Condition Codes Explicitly

• Can also be explicitly set

testq b,a set condition codes based on value of
(a & b) without storing the result in any
destination

ZF set if (a & b) == 0

SF set if (a & b) < 0

Carnegie Mellon

Setting Condition Codes

Important

 The processor does not know if you are using
signed or unsigned integers.

OF and CF are set for every arithmetic operation.

What do we do with condition codes?

1. Setting a single byte to 0 or 1 based on some
combination of the condition codes.

2. Conditionally jump to other parts of the
program.

3. Conditionally transfer data.

Carnegie Mellon

Reading Condition Codes

• setX dest
Sets the lower byte of dest based on combinations of condition codes and
does not alter remaining 7 bytes. Destination can also be memory location.

SetX Condition Description

sete ZF Equal / Zero

setne ~ZF Not Equal / Not Zero

sets SF Negative

setns ~SF Nonnegative

setg ~(SF^OF)&~ZF Greater (Signed)

setge ~(SF^OF) Greater or Equal (Signed)

setl (SF^OF) Less (Signed)

setle (SF^OF)|ZF Less or Equal (Signed)

seta ~CF&~ZF Above (unsigned)

setb CF Below (unsigned)

These
instructions
are usually used
after a
comparison.

%rbp

%rsp

Recall: x86-64 Integer Registers

– Can reference low-order byte

%al

%bl

%cl

%dl

%sil

%dil

%spl

%bpl

%r8b

%r9b

%r10b

%r11b

%r12b

%r13b

%r14b

%r15b

%r8

%r9

%r10

%r11

%r12

%r13

%r14

%r15

%rax

%rbx

%rcx

%rdx

%rsi

%rdi

 cmpq %rsi, %rdi # Compare x:y
 setg %al # Set when >
 movzbq %al, %rax # Zero rest of %rax
 ret

Carnegie Mellon

Example

int gt(long x, long y)
{
 return x > y;
}

Register Use(s)

%rdi Argument x

%rsi Argument y

%rax Return value

