
Computer Systems Organization

Thomas Wies

wies@cs.nyu.edu

https://cs.nyu.edu/wies

CSCI-UA.0201

C Programming – I/O

I/O

• reading from:
– standard input (usually the keyboard)
– file

• writing to:
– standard output (usually the screen)
– file

• A library of functions is supplied to perform these
operations.

• The I/O library functions are listed the header file
<stdio.h>.

Writing to stdout

printf();
• This function provides for formatted output to the

screen. The syntax is:
printf("format", var1, var2, ...);

• The "format" includes a listing of the data types of
the variables to be output and, optionally, some
text and control character(s).

• Example:
 float f = 1.2;
 int i = 42;
 printf("The values are f:%f and i:%d\n", f, i);

Formatted Output with printf

Format Conversion Specifiers (This list is not
exhaustive):

d -- displays a decimal (base 10) integer

l -- used with other specifiers to indicate a long

f -- displays a floating point value

x -- displays a number in hexadecimal format

c -- displays a single character

s -- displays a string of characters

Reading from stdin

scanf();
• This function provides for formatted input from

the keyboard. The syntax is:
 scanf("format", &var1, &var2, ...);

• The "format" is a listing of the data types of the
variables to be input and the & in front of each
variable name tells the system WHERE to store
the value that is input. It provides the address
for the variable.

• Example:
 float a; int b;
 scanf("%f%d", &a, &b);

Reading from stdin

• CAUTION: when reading strings, scanf can
potentially write outside of the bounds of the
allocated buffer.

• Example:
 char buf[10];
 scanf("%s", buf);
This code may write outside of the bounds of
buf if the user's input is larger than 9
characters.

Alternative to scanf: fgets

• It is usually better (and safer) to use the function
fgets intead of scanf. Syntax:
fgets(buf, max, file)
– buf is a char* to the buffer where the input string

will be stored.

– max is the size of the buffer

– file is a pointer to the file from which fgets reads
(e.g. stdin)

– fgets returns NULL if an error occurred or the end of
the file has been reached. Otherwise it returns buf

Alternative to scanf: fgets

• Example:
char buf[10];
fgets(buf, 10, stdin);

• Reads up to the first '\n' on stdin or up to
the 9th character if no '\n' is encountered up
to that point.

• Read string is written into buf together with
terminal '\0'.

Files

• In C, each file is simply a sequential stream of
bytes.

• C imposes no structure on a file.

• Steps to deal with files

– open a file

– check that the open was successful

– read/write to a file

– close a file

First step

• Declaration:

 FILE *fptr1, *fptr2 ;

Opening Files

• The statement:

fptr1 = fopen("filename", "r");

 would open the file filename for input (reading).

• Second argument indicates the mode
– r: read
– w: write
– a: append
– … there are some more

Testing for Successful Open

• If the file was not able to be opened, then the
value returned by fopen is NULL.

• For example, let's assume that the file myfile
does not exist. Then:

 FILE *fptr1;

 fptr1 = fopen("myfile", "r") ;

 if (fptr1 == NULL) {

 printf("File 'myfile' did not open.\n");

 }

Reading From Files

• In the following segment of C language code:

 int a, b;

 FILE *fptr1;

 fptr1 = fopen("myfile", "r");

 fscanf(fptr1, "%d%d", &a, &b);

 the fscanf function would read values from the

file "pointed" to by fptr1 and assign those
values to a and b.

End of File
• The end-of-file indicator informs the program when there are

no more data (no more bytes) to be processed.
• There are a number of ways to test for the end-of-file

condition. One is to use the feof function which returns a
truth value:

 fscanf(fptr1, "%d", &var);
 if (feof(fptr1)) {
 printf("End-of-file encountered.\n”);
 }

• Another (better) way of testing EOF:
 while(fscanf(fp,"%d ", ¤t) == 1) {
 ...
 }
• Or using fgets: while (fgets(buf, max, fp)) { … }

Remember that fgets returns NULL (= 0) when EOF is reached.

Writing to Files

 int a = 5, b = 30;

 FILE *fptr2 ;

 fptr2 = fopen("filename", "w");

 fprintf(fptr2, "%d %d\n", a, b);

 The fprintf functions would write the values

stored in a and b to the file "pointed" to by fptr2.

Closing Files

 fclose(fptr1);

Once the files are open, they stay open until you
close them or end the program (which will close
all files.)

