
Computer Systems Organization

Thomas Wies

wies@cs.nyu.edu

https://cs.nyu.edu/wies

CSCI-UA.0201

C Programming – Pointers, Structs, Arrays

Pointers:
Very powerful but also

dangerous concept!

Can a function modify its arguments?

What if we wanted to implement a function pow_assign() that
modified its argument, so that these are equivalent:

float p = 2.0;
/* p is 2.0 here */
pow_assign(p, 5);
/* p is 32.0 here */

float p = 2.0;
/* p is 2.0 here */
p = pow(p, 5);
/* p is 32.0 here */

void pow_assign(float x, uint exp)
{
 float result=1.0;
 int i;
 for (i=0; (i < exp); i++) {
 result = result * x;
 }
 x = result;
}

Would this work?

NO!

void pow_assign(float x, unsigned int exp)
{
 float result=1.0;
 int i;
 for (i=0; (i < exp); i++) {
 result = result * x;
 }
 x = result;
}

main()
{
 float p=2.0;
 pow_assign(p, 5);
}

Remember the stack!

float x 2.0

uint32_t exp 5

float result 1.0

float p 2.0 Grows

float x 2.0

uint32_t exp 5

float result 32.0

float x 32.0

uint32_t exp 5

float result 32.0

In C, all arguments are passed
by value

But, what if the argument is
the address of a variable?

Passing Addresses
Symbol Addr Value

0

1

2

3

char x 4 ‘H’ (72)

char y 5 ‘e’ (101)

6

7

8

9

10

11

12

address of x: 4
memory content at address 4: 72

“Pointers”
This is exactly how “pointers” work.

void f(char * p)
{
 *p = *p - 32;
}

char y = 101; /* y is 101 */
f(&y); /* i.e. f(5) */
/* y is now 101-32 = 69 */

• address of x: &x
• if y is an address, the

content of the memory at
that address: *y

A “pointer type”: pointer to char

Pointers are used in C for many other purposes:
• Passing large objects without copying them
• Accessing dynamically allocated memory
• Passing functions to other functions
• Implement functions with multiple return values

Pointer Validity
A valid pointer is one that points to memory that your program controls.
Using invalid pointers will cause non-deterministic behavior, and will often
cause your OS to kill your process (SEGV or Segmentation Fault).

There are two general causes for these errors:
• Program errors that set the pointer value to an invalid address
• Use of a pointer that was at one time valid, but later became invalid

char * get_pointer() {
 char x=0;
 return &x;
}

void foo() {
 char * ptr = get_pointer();
 ptr = 12; / valid? */
}

Will ptr be valid or invalid?

Answer: Invalid!
A pointer to a variable allocated on the stack becomes invalid when that
variable goes out of scope and the stack frame is “popped”. The pointer will
point to an area of the memory that may later get reused and rewritten.

100 char * ptr ? Grows

char * get_pointer()
{
 char x=0;
 return &x;
}
void foo()
{
 char * ptr = get_pointer();
 ptr = 12; / valid? */
 other_function();
}

101 char x 0

100 char * ptr 101

101 char x 0

But now, ptr points to a
location that’s no longer in use,
and will be reused the next time
a function is called!

Return 101 101 char x 12 101 int average 456603

Now that we know about pointers, let’s go
back to types.

More on Types
We’ve seen a few types at this point: char, int, float, char *

Types are important because:
• They allow your program to impose logical structure on memory
• They help the compiler tell when you’re making a mistake

In the next slides we will discuss:
• How to create logical layouts of different types (structs)
• How to use arrays
• How to parse C type names (there is a logic to it!)
• How to create new types using typedef

Structures

• a collection of related data items

• possibly of different types

• defined using the keyword struct

• The members of a struct type variable are
accessed with the dot (.) operator:

 <struct-variable>.<member_name>

struct basics

• Definition of a structure:
 struct <struct-name> {

 <type> <identifier_list>;

 <type> <identifier_list>;

 ...

 } ;

 Each identifier

defines a member

of the structure.

struct basics

• Example:
 struct Address {

 int zip;

 char street[50];

 char city[20];

 } ;

main()
{
 struct Address addrs;
 …
 addrs.zip = 10012;
}

Example

Example of
initializing a

structure
struct Address addrs = {10012, “Mercer”, “New York”};

Arrays
Arrays in C are composed of a particular type, laid out in memory in a
repeating pattern. Array elements are accessed by stepping forward in
memory from the base of the array by a multiple of the element size.

/* define an array of 5 chars */
char x[5] = {‘t’,’e’,’s’,’t’,’\0’};

/* accessing element 0 */
x[0] = ‘T’;

/* pointer arithmetic to get elt 3 */
char elt3 = *(x+3); /* x[3] */

/* x[0] evaluates to the first element;
 * x evaluates to the address of the
 * first element, or &(x[0]) */

/* 0-indexed for loop idiom */
#define COUNT 10
char y[COUNT];
int i;
for (i=0; i<COUNT; i++) {
 /* process y[i] */
 printf(“%c\n”, y[i]);
}

Brackets specify the count of elements. Initial
values optionally set in braces.

Arrays in C are 0-indexed (here, 0..4)

x[3] == *(x+3) == ‘t’ (NOT ‘s’!)

Symbol Addr Value

char x [0] 100 ‘t’

char x [1] 101 ‘e’

char x [2] 102 ‘s’

char x [3] 103 ‘t’

char x [4] 104 ‘\0’

For loop that iterates from
0 to COUNT-1.
Memorize it!

Pointers and Arrays in C

• An array name by itself is an address, or
pointer in C.

• When an array is declared, the compiler
allocates sufficient space beginning with some
base address to accommodate every element
in the array.

• The base address of the array is the address of
the first element in the array (index position 0).

– Example: int num[10];

 &num[0] is the same as num

Pointers and Arrays in C

• Suppose we define the following array and pointer:

 int a[100]; int* ptr;

 Assume that the system allocates memory at
addresses 400, 404, 408, ..., 796 to the array.
int values are allocated 32 bits = 4 bytes.

– The two statements: ptr = a; and ptr = &a[0]; are
equivalent and would assign the value of 400 to ptr.

• Pointer arithmetic provides an alternative to array
indexing in C.

– The two statements: ptr = a + 1; and ptr = &a[1]; are
equivalent and would assign the value of 404 to ptr.

Pointers and Arrays in C

• Assuming the elements of the array of integers
have been assigned values, the following code
would sum the elements of the array:

int sum = 0;
for (ptr = a; ptr < &a[100]; ++ptr)
 sum += *ptr;

• Here is another way to sum the array:
 int sum = 0;

 for (i = 0; i < 100; ++i)
 sum += *(a + i);

a[b] is just
syntactic sugar for *(a + b)

Strings
• Series of characters treated as a single unit
• Can include letters, digits, and certain special characters

(*, /, $)
• String literal (string constant) - written in double quotes

– "Hello"

• Strings are arrays of characters (type char[])
• String literals are implicitly terminated by a '\0'.
• Each character is represented in numerical code called ASCII

code.
• Example:

– char greeting[] = “Hello”;
– size of greeting is 6 (length of “Hello” + 1 for '\0').
– address of the above string can be expressed in two ways:

• &greeting[0]
• greeting

ASCII code

Strings

• String declarations
– Declare as a character array or a variable of type char *

char color[] = "blue";

char *colorPtr = "blue";

– Remember that strings represented as character arrays end with '\0'

• color has 5 elements

• Inputting strings
– Use scanf

 scanf("%s", word);

• Copies input into word[], which does not need & (because a string is a
pointer)

– Remember to leave space for '\0'

Character Handling Library
• In <ctype.h>

Prototype Description

int isdigit(int c) Returns true if c is a digit and false otherwise.

int isalpha(int c) Returns true if c is a letter and false otherwise.

int isalnum(int c) Returns true if c is a digit or a letter and false otherwise.

int isxdigit(int c) Returns true if c is a hexadecimal digit character and false otherwise.

int islower(int c) Returns true if c is a lowercase letter and false otherwise.

int isupper(int c) Returns true if c is an uppercase letter; false otherwise.

int tolower(int c) If c is an uppercase letter, tolower returns c as a lowercase letter. Otherwise, tolower

returns the argument unchanged.

int toupper(int c) If c is a lowercase letter, toupper returns c as an uppercase letter. Otherwise, toupper

returns the argument unchanged.

int isspace(int c) Returns true if c is a white-space character—newline ('\n'), space (' '), form feed

('\f'), carriage return ('\r'), horizontal tab ('\t'), or vertical tab ('\v')—and

false otherwise

int iscntrl(int c) Returns true if c is a control character and false otherwise.

int ispunct(int c) Returns true if c is a printing character other than a space, a digit, or a letter and false

otherwise.

int isprint(int c) Returns true value if c is a printing character including space (' ') and false

otherwise.

int isgraph(int c) Returns true if c is a printing character other than space (' ') and false otherwise.

Each function receives a character (an int) or EOF as an argument

String Conversion Functions

• Conversion functions
– In <stdlib.h> (general utilities library)

– Convert strings of digits to integer and floating-point
values

Prototype Description

double atof(const char *nPtr) Converts the string nPtr to double.

int atoi(const char *nPtr) Converts the string nPtr to int.

long atol(const char *nPtr) Converts the string nPtr to long int.

double strtod(const char *nPtr, char

**endPtr)
Converts the string nPtr to double.

long strtol(const char *nPtr, char

**endPtr, int base)
Converts the string nPtr to long.

unsigned long strtoul(const char *nPtr,
char **endPtr, int base)

Converts the string nPtr to unsigned

long.

String Manipulation Functions

• In <string.h>

• String handling library has functions to

– Manipulate string data

– Search strings

– Determine string length

Func tion p rototype Func tion desc rip tion

char *strcpy(char *s1,

const char *s2)
Copies string s2 into array s1. The value of s1 is

returned.

char *strncpy(char *s1,

const char *s2, size_t n)
Copies at most n characters of string s2 into array

s1. The value of s1 is returned.

char *strcat(char *s1,

const char *s2)
Appends string s2 to array s1. The first character of

s2 overwrites the terminating null character of s1.

The value of s1 is returned.

char *strncat(char *s1,

const char *s2, size_t n)
Appends at most n characters of string s2 to array

s1. The first character of s2 overwrites the

terminating null character of s1. The value of s1 is

returned.

String Manipulation Functions

int strcmp (const char * str1,

 const char * str2)

return value indicates

<0
the first character that does
not match has a lower value in
ptr1 than in ptr2

0
the contents of both strings
are equal

>0
the first character that does
not match has a greater value
in ptr1 than in ptr2

