
Computer Systems Organization

Thomas Wies

wies@cs.nyu.edu

https://cs.nyu.edu/wies

CSCI-UA.0201

Introduction

What we will learn in this course

• What happens under the hood when you boot
your computer and start running applications?

• How do software and hardware interact?

• This course is programmer-centric
– Understanding of underlying system makes you a

more effective programmer and helps you find hidden
bugs!

– Bring out the hidden hacker in everyone

– Be way more efficient debugger

– Tune your programs for performance

But also we want

• To use what you have learned in MANY
different contexts

• To start your research project if you want

• To know the big picture of the whole
computing stack.

Course Information and Resources

• Course web page (general info, syllabus, etc.)

http://cs.nyu.edu/wies/teaching/cso-fa19/

• Piazza (announcements, course related discussions)

https://piazza.com/class/jznb6uqqbcd4e6

You should already be enrolled. Please complete the questionnaire!

• Github (sample code, assignment submission)

https://github.com/nyu-cso-005-fa19

• NYU classes (grade distribution only)

http://cs.nyu.edu/wies/teaching/cso-fa19/
http://cs.nyu.edu/wies/teaching/cso-fa19/
http://cs.nyu.edu/wies/teaching/cso-fa19/
http://cs.nyu.edu/wies/teaching/cso-fa19/
http://cs.nyu.edu/wies/teaching/cso-fa19/
https://piazza.com/class/jznb6uqqbcd4e6
https://piazza.com/class/jznb6uqqbcd4e6
https://piazza.com/class/jznb6uqqbcd4e6
https://github.com/nyu-cso-005-fa19
https://github.com/nyu-cso-005-fa19
https://github.com/nyu-cso-005-fa19
https://github.com/nyu-cso-005-fa19
https://github.com/nyu-cso-005-fa19
https://github.com/nyu-cso-005-fa19
https://github.com/nyu-cso-005-fa19
https://github.com/nyu-cso-005-fa19
https://github.com/nyu-cso-005-fa19

Textbook

Important Dates

• Class meetings
– Monday and Wednesdays, 3:30-4:45pm

• Recitations (Goktug Saatcioglu)
– Thursdays, 12:30-1:45pm

• Office hours
– Thomas Wies: Tuesdays, 4-5pm in 60FA 403
– Goktug Saatcioglu: Fridays, 3-4pm in WWH 905
– or by appointment

• Midterm exam
– Wednesday, Oct 23, 3:30-4:45pm

• Final exam
– Wednesday, Dec 18, 4:00-5:50pm

Carnegie Mellon

Course Components
• Lectures
– Higher level concepts

– slides + reading material from the textbook

• Assignments and Programming labs (30%)
– roughly bi-weekly

– provide in-depth understanding of some aspect of
systems

– also serve as exam preparation

• Midterm Exam (30%)

• Final Exam (40%)

Submission Policy

• You must work alone on all assignments

• Pay attention to due dates/times
(announced on Piazza).

• Submission is via Github (more on that later).

• Late submissions will be graded with a 10% penalty per
(started) day of late submission.

• No solutions will be accepted one week after the
submission deadline.

Carnegie Mellon

Integrity and Collaboration
• What is cheating?

– Sharing code: by copying, retyping, looking at, or supplying
a file

– Describing code: verbal description of code from one
person to another.

– Coaching: helping your friend to write a lab, line by line
– Searching the Web for solutions
– Copying code from a previous course or online solution

• You are only allowed to use code we supply

• What is NOT cheating?
– Explaining how to use systems or tools
– Helping others with high-level design issues

• Ignorance is not an excuse

We have sophisticated tools for detecting code plagiarism

Carnegie Mellon

Main Topics

• Basic C Programming

• Representation of programs and data

• Memory hierarchy and systems hardware

• Basic Assembly Programming

• Dynamic memory allocation

• Virtual Memory

• Concurrency & Processes

Abstraction in Computer Science

The effective exploitation of his powers of abstraction
must be regarded as one of the most vital activities of a
competent programmer. Edsger Dijkstra

• Computer system can be viewed as layers of
abstractions

• Most CS courses emphasize abstraction

– e.g. data types, high-level programming languages

Abstraction in Computer Science

[Computer scientists] are individuals who can rapidly
change levels of abstraction, simultaneously seeing
things 'in the large' and 'in the small'. Donald Knuth

?

Course Goals

• Computer system can be viewed as layers of abstractions

• Sometimes you must break through these abstractions

• This class helps you:
– peek under-the-hood

– understand these layers to see the big and the small picture

– become more effective programmers
• Debug problems

• Tune performance

– prepare for later courses in CS
• Compilers, Operating Systems, Computer Architecture, Distributed

Systems, parallel computing, …

Reality #1:
Ints are not Integers
Floats are not Reals

• x2 ≥ 0?

• (x + y) + z = x + (y + z)?

Source: xkcd.com/571

Overflow!!

1020+(- 1020 +3.14) != 3.14

Arithmetic Overflow

Ariane 5 maiden flight

Cause: software error in inertial reference system
64 bit floating point number relating to the horizontal velocity of the rocket
with respect to the platform was converted to a 16 bit signed integer.

Carnegie Mellon

Reality #2:
You've Got to Know Assembly

• Usually no need to program in assembly

• Knowledge of assembly helps one understand
machine-level execution

– Debugging

– Performance tuning

– Writing system software (e.g. compilers , OS)

– Creating / fighting malware

• x86 assembly is the language of choice!

Carnegie Mellon

Reality #3: Memory Matters

• Memory is not unbounded

– It must be allocated and managed

• Memory referencing bugs especially wicked

• Memory performance is not uniform

– Cache and virtual memory effects can greatly
influence performance

Carnegie Mellon

Memory Referencing Errors

• C/C++ let programmers make memory errors

– Out of bounds array references

– Invalid pointer values

– Double free, use after free

• Errors can lead to nasty bugs

– Corrupt program objects

– Security vulnerabilities

– Effect of bug observed long after the corruption

Carnegie Mellon

Memory Referencing Bug Example

double fun(int i)

{

 int a[2];

 double d[1] = {3.14};

 a[i] = 1073741824; /* Possibly out of bounds */

 return d[0];

}

fun(0) = 3.14

fun(1) = 3.14

fun(2) = ?

fun(3) = ?

fun(4) = ?

Heartbleed Bug - I love OpenSSL

/* Read type and payload length first */

hbtype = *p++;

n2s(p, payload);

pl = p;

/* Enter response type, length and copy payload */

*bp++ = TLS1_HB_RESPONSE;

s2n(payload, bp);

memcpy(bp, pl, payload);

value of payload controlled by attacker
memcpy may copy memory beyond payload buffer

Carnegie Mellon

Reality #4: Asymptotic performance is not
always sufficient

• Factors like memory access, communication, etc.

matter

• Even operation count might not predict
performance

• Must understand system to optimize performance

– How are programs compiled and executed?

– How to measure performance and identify bottlenecks?

– How to improve performance without destroying code
modularity and generality?

Carnegie Mellon

Memory System Performance Example

• Performance depends on access patterns

void copyji(int src[2048][2048],

 int dst[2048][2048])

{

 int i,j;

 for (j = 0; j < 2048; j++)

 for (i = 0; i < 2048; i++)

 dst[i][j] = src[i][j];

}

void copyij(int src[2048][2048],

 int dst[2048][2048])

{

 int i,j;

 for (i = 0; i < 2048; i++)

 for (j = 0; j < 2048; j++)

 dst[i][j] = src[i][j];

}

~21 times slower

Carnegie Mellon

Example Matrix Multiplication

• Standard desktop computer and compiler

• Both implementations have exactly the same operations count (2n3)

Matrix-Matrix Multiplication (MMM) on 2 x Core 2 Duo 3 GHz (double precision)
Gflop/s

160x

Triple loop

Best code (K. Goto)

Carnegie Mellon

MMM Plot: Analysis
Matrix-Matrix Multiplication (MMM) on 2 x Core 2 Duo 3 GHz
Gflop/s

Memory hierarchy and other optimizations: 20x

Vector instructions: 4x

Multiple threads: 4x

 Reason for 20x: Blocking or tiling, loop unrolling, array scalarization

 Effect: fewer register spills, L1/L2 cache misses, and TLB misses

Carnegie Mellon

Reality #5: Computers are
more than the CPU

• They need to do I/O (get data in and out)

• They communicate with each other over
networks
• Concurrent operations by autonomous processes

• Coping with unreliable media

• Cross platform compatibility

• Complex performance issues

A Little Bit of History

 Eckert and Mauchly

• 1st working electronic
computer (1946)

• 18,000 Vacuum tubes

• 1,800 instructions/sec

• 3,000 ft3

A Little Bit of History

• 1954 IBM developed 704

• All programming done in
assembly

• Software costs exceed
hardware costs!

A Little Bit of History

• Fortran I (project 1954-57)

• The main idea is to
translate high-level
language to assembly

• Many thought this was
impossible!

• In 1958 more than 50% of
software in assembly!

• Development time halved! John Backus
(December 3, 1924 – March 17, 2007)

A Little Bit of History

• C (1973)

• General purpose
language that efficiently
translates to assembly.

• Still de facto the
language of choice for
systems programming

• Current standard: C18 Dennis Ritchie
(September 9, 1941 – October 12, 2011)

High Level Language

Assembly Language

Machine Language

Microarchitecture

Logic Level

Problem Algorithm Development Programmer

Compiler (translator)

Assembler (translator)

Control Unit (Interpreter)

Microsequencer (Interpreter)

Device Level Semiconductors Quantum

DLL
DLL

Loader

Source Code to Execution

Assembly
Assembler Object File

Object File
Object File

Assembly
Assembly

Executable

Linker
Library Library Library

Assembly
Assembly

C source
Compiler

DLL

