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Abstract We present a new flow framework for separation logic reasoning about
programs that manipulate general graphs. The framework overcomes problems in
earlier developments: it is based on standard fixed point theory, guarantees least
flows, rules out vanishing flows, and has an easy to understand notion of footprint
as needed for soundness of the frame rule. In addition, we present algorithms for
automating the frame rule, which we evaluate on graph updates extracted from
linearizability proofs for concurrent data structures. The evaluation demonstrates
that our algorithms help to automate key aspects of these proofs that have previ-
ously relied on user guidance or heuristics.
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1 Introduction

The flow framework [23, 24] is an abstraction mechanism based on separation logic [5,
32, 40] that enables reasoning about global inductive invariants of general graphs in
a local manner. The framework has proved useful to verify intricate algorithms that
are difficult to handle by other techniques, such as the Priority Inheritance Protocol,
object-oriented design patterns, and complex concurrent data structures [22,24,27,34].
However, these efforts have also exposed some rough corners in the underlying meta
theory that either limit expressivity or automation. In this paper, we propose a new meta
theory for the flow framework that aims to strike a balance between these conflicting
requirements. In addition, we present algorithms that aid proof automation.
Background. The central notion of the flow framework is that of a flow. Given a
commutative monoid (M,+, 0) (e.g. natural numbers with addition), and a graph with
nodes X and an edge function E : X ×X → M → M, a flow is a function fl : X → M
that satisfies the flow equation:

∀x ∈ X . fl(x ) = inx +
∑

y∈X E(y,x)(fl(y)) .

That is, fl is a fixed point of the function that assigns every node x an initial value
inx ∈ M, its inflow, and then propagates these values through the graph according
to the edge function. This is akin to a forward data flow analysis where the monoid
operation + is used as the join. By choosing an appropriate flow monoid, inflow, and
edge function, one can express inductive properties of graphs (reachability, sortedness,
etc.) in terms of conditions that refer only to each node’s flow value fl(x).

A graph endowed with an inflow and associated flow is a flow graph. An example
flow graph h is shown on the right-hand side of Fig. 1a. Here, the flow value fl(w) for
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Figure 1. (a) Two flow graphs h1 with nodes h1.X ={x, y, z } (left) and h2 with nodes
h2.X = { r, u, v } (center) for the flow monoid of natural numbers with addition. The
edge label λid stands for the identity function. Omitted edges are labeled by the con-
stant 0 function. Dashed edges represent the inflows. Nodes are labeled by their flow,
respectively, outflow. The right side shows the composition h = h1 ∗ h2. (b) Two flow
graphs h1 with h1.X = {u, x } (top) and h2 with h2.X = { v, w } (bottom) whose
composition is undefined due to vanishing flows.

a node w counts the number of paths from r to w. A flow graph can be partial and have
edges to nodes outside of X like the node u for h1 in Fig. 1a. If we include these nodes
in the computation of the flow, then their flow values constitute the outflow of the flow
graph. For instance, the outflow of h1 for u is 1.

Flow graphs are equipped with a notion of disjoint composition, h = h1 ∗ h2. An
example is given in Fig. 1a. The composition is only defined if the union of the flows
of h1 and h2 is again a flow of h . This may not always be the case. For instance, the
inflows and outflows of h1 and h2 may be mutually incompatible such as h1 sending
outflow 2 to u whereas the inflow to u in h2 is only 1.

Flow graph composition yields a separation algebra. That is, if we use flow graphs
as an abstraction of program states (e.g., the heap), then we can use separation logic to
reason locally about properties of programs that are expressed in terms of the induced
flow graphs. For example, suppose the program updates the flow graph h in Fig. 1a
to a new flow graph h ′ by inserting a new edge labeled λid between the nodes r and
u. This increases the flow of u and v from 1 to 2. We can break this update down as
follows. First, we decompose h into h1 and h2. Next, we obtain h ′

2 from h2 by inserting
the edge and updating the flow of u and v to 2. Finally, we compose h ′

2 again with
h1 to obtain h ′. Note that the composition h1 ∗ h ′

2 is still defined. This means that any
property expressed over the flow in the h1-portion of h still holds in h ′. This is the
well-known frame rule of separation logic, instantiated for flow graphs.

The crux in applying the frame rule is to show that the composition h1 ∗ h ′
2 is in-

deed defined. One can do this locally by showing that the update h2 ; h ′
2 is frame-

preserving, i.e., for any h1 such that h1 ∗ h2 is defined, h1 ∗ h ′
2 is also defined.

Typically, the flow subgraphs involved in a frame-preserving update h2 ; h ′
2 in-

clude more nodes than those immediately affected by the update. For instance, consider
the subgraphs of h and h ′ in our example that consist only of the nodes {r, u} directly
affected by inserting the edge. These subgraphs do not constitute a frame-preserving
update because inserting the edge between r and u also changes the outflow to v from
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1 to 2. Hence, the updated subgraph for {r, u} would no longer compose with the rest
of h where v’s flow is still 1 instead of 2. We refer to a set of nodes such as {r, u, v}
that identifies a frame-preserving update as the update’s footprint.

Meta theories of flow graphs. In addition to ensuring that flow graph composition
yields a separation algebra, there are two desiderata that one has to take into considera-
tion when designing a meta theory of flow graphs:

– Obtaining unique flows. When encoding inductive properties using flows, one is
often interested in a particular flow, most commonly the least fixed point of the
flow equation for a given inflow. One therefore needs a way to focus the reasoning
on the particular flow of interest.

– Identifying frame-preserving updates. In order to enable the application of the
frame rule, one needs a way to effectively compute candidate footprints and check
whether they identify frame-preserving updates.

The first subgoal is crucial for expressivity and the second one for proof automation.
Achieving one subgoals makes it more difficult to achieve the other. Specifically, con-
sider the meta theory proposed in [24]. It requires that the flow monoid (M,+, 0) is also
cancellative (m+n1=o and m+n2=o implies n1=n2). Requiring cancellativity has
the advantage that it is easy to check if an update h ; h ′ is frame-preserving: it suffices
to show that h and h ′ have the same inflow and outflow. Cancellativity also ensures that
for each flow fl , there exists a unique inflow that produces fl . Hence, it is sufficient to
track only fl since the inflow is a derived quantity. However, the converse does not hold.

In fact, obtaining unique flows for cancellative M becomes more difficult. A natural
requirement that one would like to impose on M is that the pre-order induced by +
forms a complete partial order (cpo) or even a complete lattice. This way, one can focus
on the least flow, which is guaranteed to exist if one applies standard fixed point theo-
rems, imposing only mild assumptions on the edge functions. However, cancellativity
is inherently incompatible with standard domain-theoretic prerequisites. For instance,
the only ordered cancellative commutative monoid that is a directed cpo is the trivial
one: M0 = {0}. Similarly, M0 is the only such monoid that has a greatest element.

For cases where unique flows are desired, [24] imposes additional requirements on
the edge functions (nil-potent) or the graph structure (effectively acyclic). The former is
quite restrictive in terms of expressivity. The latter again complicates the computation
of frame-preserving updates: one now has to ensure that no cycles are introduced when
the updated graph h ′

2 is composed with its frame h1. In fact, for the effectively acyclic
case, [24] only provides a sufficient condition that a given footprint yields a frame-
preserving update but it gives no algorithm for computing such a footprint.

Contributions. In this paper, we propose a new meta theory of flows based on flow
monoids that form ω-cpos (but need not be cancellative). The cpo requirement yields
the desired least fixed point semantics. The differences in the requirements on the flow
monoid necessitate a new notion of flow graph composition. In particular, for a least
fixed point semantics of flows, h = h1 ∗ h2 is only defined if the flows of h1 and h2 do
not vanish. An example of such a situation is shown in Fig. 1b, where the flows in h1
and h2 would vanish to 0 in h1 ∗ h2 because the created cycle has no external inflow.
Moreover, an update h ; h ′ is frame-preserving if h and h ′ route inflows to outflows
in the same way. We formalize this condition using a notion of contextual equivalence
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of the graphs’ transfer functions, which are the least fixed points of the flow equation,
parameterized by the inflows and restricted to the nodes outside the graphs. We then
identify conditions on the edge functions that are commonly satisfied in practice and
that allow us to effectively check contextual equivalence of transfer functions. This re-
sult is remarkable because the flow monoid can have infinite ascending chains and the
flow graphs can be cyclic. Building on this equivalence check, we propose an iterative
algorithm for computing footprints of updates. This algorithm enables the automation
of the frame rule for reasoning about programs manipulating flow graphs. We evalu-
ate the presented algorithms on a benchmark suite of flow graph updates that are ex-
tracted from linearizability proofs for concurrent search structures constructed by the
tool plankton [26,27]. The evaluation demonstrates that our algorithms help to automate
key aspects of these proofs that have previously relied on user guidance or heuristics.

2 Flow Graph Separation Algebra

We start with the presentation of our new separation algebra of flow graphs.
Given a commutative monoid (M,+, 0), we define the binary relation ≤ on M by

n ≤ m if there is o ∈ M with m = n+o. Flow values are drawn from a flow monoid, a
commutative monoid for which the relation ≤ is an ω-cpo. That is, ≤ is a partial order
and every ascending chain K = m0 ≤ m1 ≤ . . . in M has a least upper bound, denoted⊔
K. In the following, we fix a flow monoid (M,+, 0).

Let ContFun(M → M) be the continuous functions in M → M. Recall that a
function f : M → M is continuous [43] if it commutes with limits of ascending chains,
f(
⊔
K) =

⊔
f(K) for every chain K in M. We lift + and ≤ to functions M → M in

the expected way. An empty iterated sum
∑

i∈∅ mi is defined to be 0.

Lemma 1. (ContFun(M → M), ◦, id) is a monoid. Moreover, if (M,≤) is an ω-cpo,
so is (ContFun(M → M),≤).

A flow graph is a tuple h = (X ,E , in) consisting of a finite set of nodes X ⊆ N, a
set of edges E : X × N → ContFun(M → M) labeled by continuous functions, and
an inflow in : (N \X )×X → M. We use FG for the set of all flow graphs and denote
the empty flow graph by h∅ ≜ (∅,∅,∅).

We define two derived functions for flow graphs. First, the flow is the least function
flow : X → M satisfying the flow equation: flow(x ) = inx + rhsx (flow), for all
x ∈ X . Here, inx ≜

∑
y∈(N\X ) in (y , x ) is a monoid value and rhsx ≜

∑
y∈X E(y,x)

is a function of type ContFun((X → M) → M). Finally, we also define the outflow
out : X × (N \X ) → M by out (x , y) ≜ E(x ,y)(flow(x )).

Example 1. For linearizability proofs of concurrent search structures one can use a flow
that labels every data structure node x with its inset, the set of keys k′ such that a thread
searching for k′ may traverse the node x [22,23]. Translated to our setting, the relevant
flow monoid is the powerset of keys, P(Z ∪ {−∞,∞}), with set union as addition.
Figure 2 shows two keyset flow graphs that abstract potential states of a concurrent set
implementation based on sorted linked lists. When a key k is removed from the set,
the node x that stores k is first marked to indicate that x has been logically deleted. In
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Figure 2. Two flow graphs h1 (left) and h2 (right) with h1.X = h2.X = { l, t, r } for
the keyset flow monoid P(Z ∪ {−∞,∞}). The edge label λk for a key k denotes the
function λm. (m \ [−∞, k]).

a second step, x is then physically unlinked from the list. The idea of the abstraction
is that an edge leaving a node x that stores a key k is labeled by the function λk if x
is unmarked and otherwise by λ−∞. This is because a search for k′ ∈ Z will traverse
the edge leaving x iff k < k′ or x is marked. In the figure, l and r are assumed to be
unmarked, storing keys 6 and 8, respectively. Node t is assumed to be marked. Flow
graph h2 is obtained from h1 by physically unlinking the marked node t. Using the
keyset flow one can then express the crucial data structure invariants that are needed
for a linearizability proof based on local reasoning (e.g., the invariant that the logical
contents of a node is always a subset of its inset).

We note that the inflow of the global flow graph that abstracts the program state can
be used in the specification. In the example, one lets inr = Z for the root r of the data
structure and inx = ∅ for all other nodes to indicate that all searches start at r. ⊓⊔

Composition without vanishing flows. To define the composition of flow graphs,
h1 ∗ h2, we proceed in two steps. We first define an auxiliary composition that may suf-
fer from vanishing flows, local flows that disappear in the composition. That is, this
composition is defined for the flow graphs shown in Fig. 1b. In the composed graph the
flow of each node is 0 where it was 1 before the composition—the flow vanishes. This
means that the auxiliary composition does not allow to lift lower bounds on the flow val-
ues from the individual components to the composed graph. Hence, the actual compo-
sition restricts the auxiliary composition to rule out such vanishing flows. Definedness
of the auxiliary composition requires disjointness of the nodes in h1 and h2. Moreover,
the outflow of one flow graph has to match the inflow expectations of the other:

h1 ## h2 if X1 ∩X2 = ∅ ∧ ∀x ∈ X1, y ∈ X2. out1(x , y) = in2(x , y) ∧
out2(y , x ) = in1(y , x ) .

The auxiliary composition h1⊎h2 removes the inflow provided by the other component:

h1 ⊎ h2 ≜ (X1 ⊎X2,E1 ⊎ E2, (in1 ⊎ in2)|(N\(X1⊎X2))×(X1⊎X2)) .

To rule out vanishing flows, we incorporate a suitable equality on the flows:

h1 # h2 if h1 ## h2 ∧ h1.flow ⊎ h2.flow = (h1 ⊎ h2).flow .

Only if the latter equality holds, do we have the composition h1 ∗ h2 ≜ h1 ⊎ h2. It is
worth noting that h1.flow ⊎ h2.flow ≥ (h1 ⊎ h2).flow always holds. What definedness
really asks for is the reverse inequality.

Recall from [5] that a separation algebra is a partial commutative monoid (Σ, ∗, emp)
with a set of units emp ⊆ Σ.

Lemma 2. (FG , ∗, { h∅ }) is a separation algebra.
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3 Frame-Preserving Updates

Since flow graphs form a separation algebra, we can use separation logic assertions
to describe sets of flow graphs as in [24] and then use them to prove separation logic
Hoare triples. A key proof rule used in such proofs is the frame rule. Given separation
logic assertions P1 and P2, and a command c, the frame rule states: if the Hoare triple
{P1} c {P2} is valid, then so is {P1 ∗F} c {P2 ∗F} for any frame F . The remainder of
the paper focuses on developing algorithms for automating this proof rule.

The flow graphs described by an assertion may have unbounded size (e.g., due to
the use of iterated separating conjunctions). We only consider bounded flow graphs in
the following; the unbounded case is known to be a challenge for which orthogonal
techniques are being developed (cf. Sect. 6). However, even if the flow graphs have
bounded size, there may still be infinitely many of them because the inflows and edge
functions are encoded symbolically in a logical theory of the flow monoid. For peda-
gogy, we present our algorithms in terms of concrete flow graphs rather than symbolic
ones. However, our development readily extends to symbolic representations assuming
the underlying flow monoid theory is decidable. In fact, our implementation discussed
in Sect. 5 works with symbolic flow graphs.

The soundness of the frame rule relies on the assumption that the state update in-
duced by the command c satisfies a certain locality condition. In our setting, this condi-
tion amounts to checking that the update of P1 under c is frame-preserving with respect
to flow graph composition. For the flow graphs h1 described by P1 and all flow graphs
h2 in the post image of h1 under c, this means that h1 # h implies h2 # h for all h .
Intuitively, h2 # h still holds if h1 and h2 transfer inflows to outflows in the same way.

Formally, for a flow graph h we define its transfer function tf (h) mapping inflows
to outflows, tf (h) : ((N \X )×X → M) → X × (N \X ) → M, by

tf (h)(in ′) ≜ h[in 7→ in ′].out .

For a given inflow in , we also write tf (h1) =in tf (h2) to mean that for all inflows
in ′ ≤ in , tf (h1)(in ′) = tf (h2)(in

′).

Definition 1. Flow graphs h1, h2 are contextually equivalent, denoted h1 =ctx h2, if
we have h1.X = h2.X , h1.in = h2.in , and tf (h1) =h1.in tf (h2).

Theorem 1 (Frame Preservation). For all flow graphs h1 =ctx h2 and h , h1 # h if
and only if h2 # h and, in case of definedness, h1 ∗ h =ctx h2 ∗ h .

To automate the frame rule for a command c and a precondition P , we need to
identify a decomposition P = P1 ∗F so as to infer {P1} c {P2} and then apply the
frame rule to derive {P} c {Q} for the postcondition Q = P2 ∗F . This is closely related
to the frame inference problem [4]. When a command modifies a flow graph h1 to h2,
our goal is to identify a (hopefully small) set of nodes Y in h1 that are affected by this
update, the flow footprint. That is, Y captures the difference between the flow graphs
before and after the update and the complement of Y defines the frame. To make this
formal, we need the restriction of flow graphs to subsets of nodes, which then gives us
a notion of flow graph decomposition. Towards this, consider h and Y ⊆ N. We define

h|Y ≜ (h.X ∩Y , h.E |(h.X∩Y )×N, in)
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such that the inflow in satisfies in(z , y) ≜ h.in(z , y) for all z ∈ N\h.X , y ∈ h.X ∩Y
and in(x , y) ≜ h.E(x ,y)(h.flow(x )) for all x ∈ h.X \Y , y ∈ h.X ∩Y .

Definition 2. Consider h1 and h2 with X ≜ h1.X = h2.X and h1.in = h2.in . A
flow footprint for the difference between h1 and h2 is a subset of nodes Y ⊆ X so that
h1|Y =ctx h2|Y and h1|X\Y = h2|X\Y . The set of all such footprints is FFP(h1, h2).

Flow graphs over different sets of nodes or inflows never have a flow footprint. The
former requirement merely simplifies the presentation. To that end, we assume that all
nodes that will be allocated during program execution are already present in the initial
flow graph. This assumption can be lifted. The latter requirement is motivated by the
fact that the global inflow is part of the specification as noted earlier in Example 1.

Before we proceed with the problem of how to compute flow footprints, we high-
light some of their properties.

Lemma 3 (Footprint Monotonicity). If Z ∈ FFP(h1, h2) and Z ⊆ Y ⊆ h1.X , then
Y ∈ FFP(h1, h2).

A consequence of monotonicity is the existence of a canonical flow footprint: if
there is a flow footprint at all, then the set of all nodes will work as a footprint. Of
course this canonical footprint is undesirably large. It corresponds to the case where
one reasons about flow graph updates globally, forgoing the application of the frame
rule. Unfortunately, an inclusion-minimal flow footprint does not exist.

Proposition 1 (Canonical Footprints). We have: FFP(h1, h2) ̸= ∅ if and only if
h1.X ∈ FFP(h1, h2). There is no inclusion-minimal flow footprint; in particular, the
set FFP(h1, h2) is not closed under intersection.

The proof of monotonicity requires a better understanding of the restriction opera-
tor, as provided by the following lemma.

Lemma 4 (Restriction). Consider h and Y ,Z ⊆ N. Then (i) h|Y .flow = h.flow |Y ,
(ii) h|Y # h|X\Y and h|Y ∗ h|X\Y = h , and (iii) (h|Y )|Z = h|Y∩Z .

Since flow footprints are defined via restriction, the lemma also shows that flow
footprints are well-behaved. For example, the restriction to the footprint Y does not
change the flow of a node y ∈ Y nor that of a node x ∈ h.X \ Y . More formally, this
means h|Y .flow(y) = h.flow(y) and h|X\Y .flow(x ) = h.flow(x ), by Lemma 4(i).

For our development, it will be convenient to have a more operational formulation
of the transfer function. Towards this, we understand the flow graph as a function that
takes an inflow as a parameter and yields a transformer of flow approximants:

h : ((N \X )×X → M) → (X → M) → X → M
defined by h[in](σ)(x ) = inx + rhsx (σ) .

Recall inx ≜
∑

y∈N\X in(y , x ) and rhsx (σ) =
∑

y∈X E(y,x)(σ(y)). The least fixed
point of h[in] is

⊔
i∈N h[in]i(⊥) with h0 = idX→M and hi+1 = hi ◦ h , by Kleene’s

theorem. Define out : (X →M)→X × (N\X )→M by out(σ)(y , z ) ≜ E(y,z)(σ(y)).
This yields the following characterization of transfer functions and flows.

Lemma 5 (Transfer). For all flow graphs h we have (i) tf (h) = out ◦ (lfp.h[−]) and
(ii) lfp.h[h.in]) = h.flow .
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4 Computing Footprints

We present an algorithm for computing a footprint for the difference between two given
flow graphs. We proceed in two steps. We first give a high-level description of the
algorithm that ignores computability problems. In a second step, we show how to solve
the computability problems. Throughout the development, we will assume to have flow
graphs h1 and h2 over the same nodes X ≜ h1.X = h2.X and with the same inflow
h1.in = h2.in . If this assumption fails, a flow footprint does not exist by definition.

4.1 Algorithm

We compute the flow footprint as a fixed point. We start with the footprint candidate
Z consisting of the nodes whose outgoing edges differ in h1 and h2. Then, we itera-
tively add the nodes whose outflow leaving the current footprint candidate Z differs in
h1|Z and h2|Z . That the outflow differs means that the transfer functions tf (h1|Z ) and
tf (h2|Z ) differ and thus the candidate Z is not a footprint. In turn, if all outflows match,
the transfer functions coincide and Z is a footprint as desired.

Technically, we compute the fixed point over the powerset lattice of nodes endowed
with a distinguished top element: (P(X )⊤, ⊑) with P(X )⊤≜ P(X ) ⊎ {⊤}. Element
⊤ indicates a failure of the footprint computation. This may arise if the footprint is not
covered by X , i.e., extends beyond the flow graphs h1, h2.

Our fixed point computation starts from Z = odif h1,h2
⊆ X as defined by

odif h1,h2
≜ { x ∈ X | ∃z ∈ N.h1.E (x , z ) ̸= h2.E (x , z ) } .

The fixed point then proceeds to extend Z as long as the transfer functions associated
with h1|Z and h2|Z do not match. To define the extension, we let the transfer failure of
Z ⊆ X be the successor nodes of Z that may receive different outflow from h1 and h2:

tfailh1,h2
(Z ) ≜

{
x ∈ N \ Z

∣∣∣∣∣ ∃ in ≤ h1|Z .in ∃ z ∈ Z .

[tf (h1|Z )(in)](z , x ) ̸= [tf (h2|Z )(in)](z , x )

}
.

This set is the reason why the current footprint candidate Z is not a footprint, that is,
Z /∈ FFP(h1, h2). Extending Z with the transfer failure yields a new candidate. We
check that the new candidate is covered by X (i.e., does not include nodes outside of
h1, h2). If the check fails, the new candidate is {⊤} to indicate that no footprint could
be computed. The following definition makes the extension procedure precise.

Definition 3. The function exth1,h2
: P(X )⊤ → P(X )⊤ is defined by

exth1,h2(Z ) ≜ tfailh1,h2
(Z ) ̸⊆ X ? ⊤ : Z ⊔ odif h1,h2

⊔ tfailh1,h2
(Z ) .

Iteratively extending the candidate Z with the transfer failure eventually produces a
footprint for the difference of h1 and h2, or fails with ⊤. The approach is sound.

Theorem 2 (Soundness). Let F ≜ lfp.exth1,h2 . If F ̸=⊤, then F ∈FFP(h1, h2).
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Figure 3. Computing a footprint for the difference of h and h ′ iterates through the sets
Z0 ≜ { r }, Z1 ≜ { r, u }, and Z2 ≜ { r, u, v }. The latter is the least fixed point of
exth,h′ and a footprint as desired, Z2 ∈ FFP(h, h ′).

Example 2. For an illustration consider Fig. 3. There, we apply the fixed point compu-
tation to find a footprint for the difference of h and h ′. As alluded to in Sect. 1, h ′ is the
result of inserting into h a new edge between nodes r and u labeled with λid .

The fixed point computation starts from Z0 ≜ { r } = odif H,H′ as it is the only
node whose outgoing edges have changed. Next, we compute tfailh,h′(Z0). This yields
{u } because u receives 0 from Z0 in h but 1 in h ′ due to the new edge. The outflow
from Z0 to the remaining nodes coincides in h and h ′. Hence, the extension of Z0

with the transfer failure yields Z1 ≜ exth,h′(Z0) = {u, r }. Similarly, we compute
tfailh,h′(Z1) and obtain Z2 ≜ exth,h′(Z1) = { r, u, v }. Since v has no outgoing edges,
Z2 is the least fixed point of exth,h′ . Because Z2 is a subset of the nodes of h and h ′, it
is a footprint, Z2 ∈ FFP(h, h ′). ⊓⊔

To obtain Theorem 2, we have to prove that the fixed point F ≜ lfp.exth1,h2 is
indeed a footprint if F ̸= ⊤. That is, we have to establish the following two properties
according to Definition 2: (i) h1|F =ctx h2|F and (ii) h1|X\F = h2|X\F .

To see the latter one, note that the graph structures (the nodes and edges) of h1|X\F
and h2|X\F coincide because odif h1,h2

⊆ F . The inflows coincide as well because
they are, intuitively, comprised of the flow graph’s overall inflow h1.in = h2.in and the
outflow of the footprint, which is equal in both flow graphs due to h1|F =ctx h2|F .

The interesting part of the soundness proof is to establish property (i), the contex-
tual equivalence h1|F =ctx h2|F . Since F is a fixed point of exth1,h2 , we know that
tfailh1,h2

(Z ) = ∅ and thus the transfer functions of h1|F and h2|F coincide. Hence,
it suffices to establish h1|F .in = h2|F .in to obtain the desired contextual equivalence,
Definition 1. This key step in the proof is obtained with the help of the following lemma.

Lemma 6. Let odif h1,h2
⊆F ⊆X with tfailh1,h2

(F )=∅. Then h1|F .in=h2|F .in .

To establish the lemma one has to show that the inflow into F from the non-footprint
part Y ≜ X \F coincides in h1 and h2. The challenge is a cyclic dependency in the flow:
the inflow from Y depends on the outflow of F , which depends on the inflow from Y.
To tackle this, we rephrase the flow equation for hi as a pairing of the two separate flow
equations for hi|F and hi|Y , for i ∈ { 1, 2 }. Intuitively, the pairings compute the flow
locally in hi|F and hi|Y for a fixed inflow (initially hi.in). Then, the inflow to hi|F
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Figure 4. Counterexample to completeness using the monoid (N∪{∞},max, 0). While
the set {x, y, z, u} is a footprint for the difference between flow graphs h1 and h2, our
fixed point will produce the candidates {x} and Z ≜ {x, y, z} and then fail with {⊤}.

is updated to the inflow from outside hi and the inflow from hi|Y , and similarly for
the inflow to hi|Y . This is repeated until a fixed point is reach. Technically, we rely on
Bekić’s Lemma [1] to compute the pairings. Then, we observe tf (h1|F ) = tf (h2|F )
because tfailh1,h2

(F ) = ∅ as well as tf (h1|Y ) = tf (h2|Y ) because odif h1,h2
⊆ F .

Roughly, this means that the flow pairings for h1 and h2 must coincide as the individual
parts propagate the same values. Put differently, the updated inflow for h1|F and h2|F
as well as h1|Y and h2|Y coincide in each iteration. Overall, we get h1|F .in = h2|F .in .

Our computation of a flow footprint is forward, it starts from the nodes where the
flow graphs differ and follows the edges. It may therefore fail if predecessor nodes of
an iterate Z need to be considered to determine a flow footprint. For an example refer to
Fig. 4. Using the monoid (N∪{∞},max, 0), it is easy to see that the set {x, y, z, u } is a
footprint for the difference between h1 and h2. Our fixed point, however, will start with
{x } and extend this to Z ≜ {x, y, z }. Let v be the node outside the flow graphs that y
is pointing to. Then, the next transfer failure is tfailh1,h2

(Z ) = { v } because for in < k
the outflow of y to v differs in h1|Z and h2|Z . Our approach fails to compute a footprint.

Fact 3 (Incompleteness) There are flow graphs h1 and h2 for which our algorithm is
not able to determine a flow footprint although one exists.

4.2 Comparing Transfer Functions

When implementing the above fixed point computation, the challenge is to prove the
equivalence between given transfer functions in order to obtain the transfer failure:
[tf (h1|Z )(−)](−, x ) = [tf (h2|Z )(−)](−, x )? Already the comparison of two functions
is known to be difficult to do algorithmically. What adds to the problem is that trans-
fer functions are defined as least fixed points, meaning we do not have a closed-form
representation of the functions to compare.

Our approach is to impose additional requirements on the set of edge functions. The
requirements are met in all our experiments, and so do not mean a limitation for the ap-
plicability of our approach. We show that if the edge functions are not only continuous
but also distributive, then the transfer functions can be understood in terms of paths
through the underlying flow graphs. If the edge functions are additionally decreasing
and the underlying monoid’s addition is idempotent, then acyclic paths are sufficient.
Both results do not hold for merely continuous edge functions.
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Distributivity. Our first additional assumption is that the edge functions f : M → M
are not only continuous, but also distributive in that f(m + n) = f(m) + f(n) for all
m,n ∈ M and f(0) = 0. We use DistFun(M) to refer to the set of all continuous and
distributive functions over M. The properties formulated in Lemma 1 carry over.

For continuous and distributive transfer functions, we can understand h[in]i in terms
of the paths through h[in] of length i. For example, i = 3 yields

[h[in]3](⊥)(z ) = inz +
∑
y∈X

E(y,z)( iny +
∑
x∈X

E(x ,y)(inx +
∑
u∈X

E(u,x)(⊥(u)) )

= inz +
∑
y∈X

E(y,z)(iny) +
∑
y∈X

∑
x∈X

E(y,z)(E(x ,y)(inx )) .

The first equality is by definition, the second is where distributivity comes in. In partic-
ular, ⊥(u) = 0 and so E(y,z)( E(x ,y)( E(u,x)( ⊥(u) ) ) = 0. The last term shows that
we forward the inflow given at a node x to an intermediary node y and from there to
the node z of interest. For higher powers of h[in], we take longer paths. For h[in]∗, we
thus obtain the sum over all nodes x and all paths from x to z through the flow graph.
We need some definitions to make this precise.

A path p through flow graph h is a finite, non-empty sequence of nodes all of which
belong to the flow graph except the last which lies outside:

p = x0 · . . . · xn · z ∈ X+ · (N \X )

where · denotes path concatenation. We use first(p) = x0 resp. last(p) = xn to extract
the first resp. last node from within the flow graph h . By Paths(h, x , y , z ) we denote
the set of all paths through flow graph h that start in node first(p) = x and leave h
from node last(p) = y to move to z ∈ N \ X . Given a set of nodes X ′ ⊆ X , we use
Paths(h,X ′, y , z ) for the union over all x ∈ X ′ of the sets Paths(h, x , y , z ). The path
induces the function Ep : M → M that composes the edge functions along the path:

Ex = id Ex .p = Ep ◦ E(x ,first(p)) .

Together with Lemma 5, the above analysis yields the first closed-form representation
of a flow graph’s transfer function, which so far has involved a fixed point computation.

Theorem 4 (Closed-Form Representation). If h is labeled over DistFun(M), then:

[tf (h)(in)](y , z ) =
∑

x ∈X

∑
p∈Paths(h,x ,y,z) Ep(inx ) .

Theorem 4 pushes the fixed point computation of transfer functions into the sets
Paths(h, x , y , z ) which are themselves defined inductively and potentially infinite. In
the following, we alleviate this problem without requiring acyclicity of the flow graph.
Idempotence. Our second assumption is that addition in the monoid is idempotent,
meaning m +m = m for all m ∈ M. Idempotence ensures the addition degenerates to
a join for comparable elements: m+n=m⊔n=n for all m ≤ n ∈ M. Unless stated
otherwise, we hereafter assume an idempotent addition.

With Theorem 4, it remains to compare sums over paths. With idempotence, we
show that we can further reduce the problem and reason over single paths rather than
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sums. We show that every path in h1 can be replaced by a set of paths in h2, and vice
versa. Even more, we only have to consider the paths from nodes where the edges
changed. The precise formulation of the path replacement condition is the following.

Definition 4. The path replacement condition for flow graphs h1 by h2 over the same
set of nodes X and labeled by DistDecFun(M) requires that for every x ∈ odif h1,h2

,
for every y ∈ X , and for every z ∈ N \X we have

∀ p ∈ Paths(h1, x , y , z ) ∃P ⊆ Paths(h2, x , y , z ). Ep ≤ EP ≜
∑

q∈P Eq .

Example 3. For the flow graphs h1 and h2 from Fig. 4, we have path replacement of
h1 by h2, and vice versa. To see this, consider the path p ≜ x · z · u · y · v in h1 and
q ≜ x · y · v in h2, where v is the node outside of h1, h2 that y points to. Since all edges
are labeled with λid , we have Ep = λid = Eq . It is worth noting that, in this example,
we can ignore the cycles in h1 and h2. In a moment, we will introduce restrictions on
edge functions in order to do avoid cycles in general.

Similarly, we have path replacement for the flow graphs from Fig. 2. To be precise,
Ep = λ8 = Eq for the paths p ≜ l · t · r · v in h1 and q ≜ l · r · v in h2. ⊓⊔

The main result is that path replacement is sound and complete for proving equiva-
lence of transfer functions.

Theorem 5 (Path Replacement Principle). We have tf (h1) = tf (h2) if and only if
path replacement of h1 by h2 and of h2 by h1 hold.

The theorem is remarkable in several respects. First, one would expect we have
to replace the paths from all nodes in h1. Instead, we can focus on the nodes where
the outgoing edges changed. Second, one would expect the replacing paths P start
from arbitrary nodes in h2. Such a set of paths would yield a transfer function of type
(Y →M)→M. Instead, we can work with a function of type M→M. Even more, we
can focus on paths starting in the same node as the path we intend to replace. Finally, the
paths we use for replacement come without any constraints, leaving room for heuristics.

The proof starts from a full path replacement condition of h1 by h2, both over X and
labeled by DistFun(M). Full path replacement coincides with Definition 4 but draws x
from full X rather than x ∈ odif h1,h2

. Full path replacement characterizes equivalence
of the transfer functions in a monoid with idempotent addition in the case of continuous
and distributive edge functions.

Lemma 7. Full path replacement of h1 by h2 and h2 by h1 hold iff tf (h1) = tf (h2).

The result is a consequence of Theorem 4, which equates tf (h1) with the sum of the
Ep for all paths p ∈ Paths(h1, x , y , z ) for all x ∈ X . Full path replacement allows us to
sum over EP instead, for some P ⊆ Paths(h2, x , y , z ). Over-approximating P with all
paths Paths(h2, x , y , z ), we obtain an upper bound for tf (h1). It is easy to see that the
resulting sum can be rewritten into the form of Theorem 4, yielding tf (h1) ≤ tf (h2).
Analogously, we get tf (h1) ≥ tf (h2) and thus tf (h1) = tf (h2) as required. The reverse
direction of the lemma is similar.

To conclude the proof of the path replacement principle in Theorem 5, we show that
full path replacement and (ordinary) path replacement of h1 by h2 coincide. To see this,
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consider a path p ∈ Paths(h1, x , y , z ) for any x ∈ X . The goal is to show Ep ≤ EP for
some P ∈ Paths(h2, x , y , z ). To that end, decompose the path into p = p1 ·p2 such that
x ′ ≜ first(p2) is the first node in p from odif h1,h2

. Ordinary path replacement yields
Q ∈ Paths(h2, x

′, y , z ) with Ep2 ≤ EQ . Now, choose P ≜ { p1·q | q ∈ Q }. Because
p1 exists in h1 and h2 with the exact same edge labels, we obtain the desired Ep ≤ EP .

Lemma 8. Full path replacement of h1 by h2 holds if and only if path replacement of
h1 by h2 holds.

Decreasingness. We assume that the edge functions f : M → M are not only continu-
ous and distributive, but also decreasing: f(m) ≤ m for all m ∈ M. The assumption of
decreasing edge functions is justified by the fact that a program that traverses the flow
graph builds up information about the status of the structure, and smaller flow values
mean more information (as in classical data flow analysis). We use DistDecFun(M) to
refer to the set of all continuous, distributive, and decreasing transfer functions over M;
Lemma 1 carries over to this set. Addition in the monoid is still assumed idempotent.

If all edge functions are decreasing, every cycle in the flow graph is decreasing as
well. The key observation is that, given an idempotent addition, cycles with decreasing
edge functions can be avoided when forming sums over sets of paths.

Lemma 9. Let h be labeled over DistDecFun(M) and p1 · p · p2 ∈ Paths(h, x , y , z )
with last(p) = first(p). Then p1 · p2 ∈ Paths(h, x , y , z ) and Ep1·p·p2

≤ Ep1·p2
.

Call a path simple if it does not repeat a node and let SimplePaths(h, x , y , z ) denote
the set of all simple paths through h from x to y and leaving the flow graph towards z .
Note that a finite graph only admits finitely many simple paths.

Theorem 6 (Simple Paths). Assuming continuous, distributive, and decreasing edge
functions, and assuming idempotent addition, Theorem 4 and Theorem 5 hold with every
occurrency of Paths(h, x , y , z ) replaced by SimplePaths(h, x , y , z ).

In practice, path-counting flows, keyset flows, reachability flows, shortest-path flows,
and priority inheritance flows are relevant [22–24, 27] and compatible with our theory.

5 Evaluation

We substantiate the practicality of our new approach by evaluating it on a real-world
collection of flow graphs extracted from the literature. We explain how we obtained our
benchmarks and how we implemented and evaluated our approach.
Benchmark Suite. As alluded to in Sect. 1, the flow framework has been used to
verify complex concurrent data structures. More specifically, it has been used for auto-
mated proof construction by the plankton tool [26, 27]. plankton performs an exhaus-
tive proof search over a separation logic with support for flows—and further advanced
features for establishing linearizability that do not matter for the present evaluation.
In order to handle heap updates, plankton generates a footprint h for the flow graph
h1 = h ∗ hframe of the current proof state (represented as an assertion in separation
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logic). It then frames the non-footprint part hframe of the flow graph h1 to compute the
post state h ′ of the heap update locally for the footprint h . The result is the new flow
graph h2 = h ′ ∗ hframe . We consider the pair (h1, h2) a benchmark for our evaluation.

We adapt plankton to export the flow graph pairs for which a footprint is con-
structed. This way, we obtain 1272 benchmarks from the heap updates occurring during
proof construction for a collection of 10 concurrent set data structures. All flow graphs
in this benchmark suite contain at most 4 nodes.

Our benchmark suite is limited by the capabilities and restrictions of plankton. In
particular, we inherit the confinement to concurrent search structures. This is due to
the fact that plankton integrates support only for the keyset flow (cf. Example 1). Our
evaluation will compute footprints with respect to this flow.

Implementation. We implement the fixed point computation to find footprints for two
given flow graphs h1, h2 from Sect. 4 in a tool called krill [28]. It integrates three
methods for computing the transfer failure tfailh1,h2

(Z ) of a footprint candidate Z :
1. NAIVE: A naive method that computes the flow within the footprint Z . Following

[24], we require acyclicity of flow graphs for this method to avoid solving a fixed
point equation when computing the flow.

2. NEW: Our new approach leveraging the path replacement condition (cf. Theorem 5)
for simple paths (cf. Theorem 6). This method requires distributive and decreasing
edge functions as well as idempotent addition in the underlying monoid.

3. DIST: A variation of our new approach leveraging the closed-form representation
(cf. Theorem 4). We require distributive edge functions and acyclicity of the flow
graphs to avoid an unbounded sum over all paths in the closed-form representation.

Our benchmark suite satisfies the requirements for all three methods. The NAIVE and
DIST methods include a (sufficient) check to ensure acyclicity in the updated flow graph
to guarantee soundness of the resulting footprint.

All three methods encode the necessary equivalence checks among transfer func-
tions as SMT formulas which are then discharged using the off-the-shelf SMT solver
Z3 [31]. Our encodings use the theory of integers with quantifiers. The NAIVE method
additionally uses free functions to encode sets of integers.

Experiments. We ran krill on our benchmark suite and compared the runtime of the
three different methods for computing the transfer failure. Our results are summarized
in Fig. 5(left). For every search structure that we extracted benchmarks from, the figure
lists: (i) the number #FG of flow graph pairs extracted, (ii) each method’s total runtime
for computing the footprints of all flow graph pairs, and (iii) the speedup of NEW over
NAIVE in percent. The experiments were conducted on an Apple M1 Pro.

Figure 5(left) shows that the runtime for all methods is roughly linear in the number
of computed footprints. Moreover, the absolute time for computing footprints is small,
making the approaches practical. The figure also shows that our NEW and DIST methods
have a performance advantage over the NAIVE method. The NEW method is between
22% and 39% faster than the NAIVE method. We believe that the difference is relatively
small only because the acyclicity assumption avoids a potentially non-terminating fixed
point computation. Avoiding this fixed point in the presence of cycles is a major ad-
vantage that our NEW method has over the NAIVE and DIST methods. The performance
difference for DIST and NEW are negligible because the acyclicity check is negligible.
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Structure #FG NAIVE DIST NEW Speedup

Fine set [13] 12 75ms 48ms 46ms 39%
Lazy set [12] 14 73ms 52ms 51ms 30%
ORVYY set [33] 20 106ms 76ms 74ms 30%
VY DCAS set [46] 19 109ms 74ms 73ms 33%
VY CAS set [46] 28 139ms 104ms 102ms 27%
Michael set [29] 225 1216ms 887ms 874ms 28%
Michael set (wait-free) 186 996ms 731ms 721ms 27%
Harris set [11] 352 2242ms 1490ms 1443ms 36%
Harris set (wait-free) 296 1859ms 1242ms 1205ms 35%
FEMRS tree [10] 120 519ms 409ms 407ms 22%

Total 1272 7335ms 5114ms 4996ms 32%

ms

⊤ 1 2 3
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Figure 5. Experimental results averaged over 1000 repeated runs, conducted on an Ap-
ple M1 Pro. (left) Total runtime for computing footprints for flow graphs occurring dur-
ing automated proof construction for highly concurrent set data structures. The speedup
gives the relative performance improvement of NEW over NAIVE. (right) Average run-
time for computing a single footprint, partitioned by footprint size (⊤ indicates failure).

We also factorized the runtimes of our benchmarks along the size of the resulting
footprint. Figure 5(right) gives the average runtime and standard deviation for comput-
ing a single footprint, broken down by footprint size. If no footprint could be found, its
size is listed as ⊤. These failed footprint constructions are consistent with plankton’s
method and would not lead to verification failure.

6 Related Work

Two alternative meta theories for the flow framework have been proposed in prior
work [23, 24]. Like in our setup, the original flow framework [23] demands that the
flow domain is an ω-cpo to obtain a least fixed point semantics. However, it proposes a
different flow graph composition that leads to a notion of contextual equivalence relying
on inflow equivalence classes. This complicates proof automation. In addition, the flow
domain is assumed to be a semiring and edge functions are restricted to multiplication
with a constant. This limits expressivity.

As discussed in Sect. 1, the revised flow framework proposed in [24] requires that
the flow monoid is cancellative but not an ω-cpo. This means that uniqueness of flows is
not guaranteed per se. Instead, uniqueness is obtained by imposing additional conditions
on the edge functions. However, these conditions are more restrictive than those im-
posed in our framework. The capacity of a flow graph introduced in [24] closely relates
to our notion of transfer function. A closed-form representation based on sums over
paths is used to check equivalence of capacities. However, this reasoning is restricted
to acyclic graphs. Also, [24] provides no algorithm for computing flow footprints.

In a sense, our work strikes a balance between the two prior meta theories by guar-
anteeing unique flows without sacrificing expressivity and, at the same time, enabling
better proof automation. That said, we believe that the framework proposed in [24] re-
mains of independent interest, in particular if the application does not require unique
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flows (i.e., does not impose lower bounds on flows that may trivially hold in the pres-
ence of vanishing flows). Cancellativity allows one to aggregate inflows and outflows
to unary functions, which can lead to smaller flow footprints (i.e., more local proofs).

The benchmark suite for our evaluation is obtained from plankton [26,27], a tool for
verifying concurrent search structures using keyset flows. When the program mutates
the symbolic heap, plankton creates a flow graph for the mutated nodes plus all nodes
with a distance of k or less from those nodes. This flow graph is considered to be the
footprint and contextual equivalence is checked. The check is basically the same as
for NAIVE. However, the paper does not present the meta theory for the underlying
notion of flow graphs, nor does it provide any justification for the correctness of the
implemented algorithms used to reason about flow graphs.

Flow graphs form a separation algebra. Hence, the developed theory can be used
in combination with any existing separation logic that is parametric in the underly-
ing separation algebra such as [5, 7, 18, 27, 41, 44]. Identifying footprints of updates
relates to the frame inference problem in separation logic, which has been studied ex-
tensively [4, 6, 15, 25, 35, 36, 42]. However, existing work focuses on frame inference
for assertions that are expressed in terms of inductive predicates. These techniques are
not well-suited for reasoning about programs manipulating general graphs, including
overlayed structures, which are often used in practice and easily expressed using flows.
A common approach to reason about general heap graphs in separation logic is to use
iterated separating conjunction [14, 39, 44, 47] to abstract the heap by a pure graph that
does not depend on the program state. Though, the verification of specifications that
rely on inductive properties of the pure graph then resorts back to classical first-order
reasoning and is difficult to automate. An exception is [45] which uses SMT solvers to
frame binary reachability relations in graphs that are described by iterated separating
conjunctions. However, the technique is restricted to such reachability properties only.

Unbounded footprints have been encountered early on when computing the post im-
age for recursive predicates [8]. This has spawned interest in separation logic fragments
for which the reasoning can be efficiently automated [2,3,9,17,20,35,38]. A limitation
that underlies all these works is an assumption of tree-regularity of the heap, in one way
or another, which flows have been designed to overcome. In cases where the program
(or ghost code) traverses the unbounded footprint (before or after the update), recent
works [24, 27] have found a way to reduce the reasoning to bounded footprint chunks.

The definition of a flow closely resembles the classical formulation of a forward
data flow analysis. The fact that the least fixed point of the flow equation for distributive
edge functions can be characterized as a join over all paths in the flow graph mirrors dual
results for greatest fixed points in data flow analysis [19,21]. In a similar vein, the notion
of contextual equivalence of flow graphs relates to contextual program equivalence and
fully abstract models in denotational semantics [16,30,37]. In fact, Bekić’s Lemma [1],
which we use in the proofs of Theorem 1 and lemma 6, was originally motivated by the
study of such models. Flow graphs can serve as abstractions of programs (rather than
just program states). We therefore believe that our results could also be of interest for
developing incremental and compositional data flow analysis frameworks.
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