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This paper describes a new abstract interpretation-based approach to verify temporal safety properties of
recursive, higher-order programs. While prior works have provided theoretical impact and some automation,
they have had limited scalability.We beginwith a new automata-based “abstract effect domain” for summarizing
context-sensitive dependent effects, capable of abstracting relations between the program environment and the
automaton control state. Our analysis includes a new transformer for abstracting event prefixes to automatically
computed context-sensitive effect summaries, and is instantiated in a type-and-effect system grounded in
abstract interpretation. Since the analysis is parametric on the automaton, we next instantiate it to a broader
class of history/register (or “accumulator”) automata, beyond finite state automata to express some context-free
properties, input-dependency, event summation, resource usage, cost, equal event magnitude, etc.

We implemented a prototype evDrift that computes dependent effect summaries (and validates assertions)
for OCaml-like recursive higher-order programs. As a basis of comparison, we describe reductions to assertion
checking for higher-order but effect-free programs, and demonstrate that our approach outperforms prior
tools Drift, RCaml/Spacer, MoCHi, and ReTHFL. Overall, across a set of 23 benchmarks, Drift verified
12 benchmarks, RCaml/Spacer verified 6, MoCHi verified 11, ReTHFL verified 18, and evDrift verified 21;
evDrift also achieved a 6.3×, 5.3×, 16.8×, and 6.4× speedup over Drift, RCaml/Spacer, MoCHi, and ReTHFL,
respectively, on those benchmarks that both tools could solve.
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1 Introduction
The long tradition of temporal property verification has, in recent years, been also directed at
programs written in languages with recursion and higher-order features. In this direction, a first
step was to go beyond simple types to dependent and/or refinement type systems [13, 47, 50, 60, 64],
capable of validating merely (non-temporal) safety assertions. Subsequently, works focused on
verifying termination of higher-order programs, e.g., [38].

As a next step, researchers focused on temporal properties of higher-order programs. In this
setting, programs have a notion of observable events or effects, typically emitted as a side effect of a
Authors’ Contact Information: Mihai Nicola, Stevens Institute of Technology, Hoboken, USA, lnicola@stevens.edu; Chaitanya
Agarwal, New York University, New York, NY, USA, ca2719@nyu.edu; Eric Koskinen, Stevens Institute of Technology,
Hoboken, USA, eric.koskinen@stevens.edu; Thomas Wies, New York University, New York, NY, USA, wies@cs.nyu.edu.

This work is licensed under a Creative Commons Attribution 4.0 International License.
© 2025 Copyright held by the owner/author(s).
ACM 2475-1421/2025/10-ART362
https://doi.org/10.1145/3763140

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 362. Publication date: October 2025.

https://orcid.org/0000-0003-0204-1626
https://orcid.org/0009-0005-0921-697X
https://orcid.org/0000-0001-7363-634X
https://orcid.org/0000-0001-7363-634X
https://doi.org/10.1145/3763140
https://orcid.org/0000-0003-0204-1626
https://orcid.org/0009-0005-0921-697X
https://orcid.org/0009-0005-0921-697X
https://orcid.org/0000-0001-7363-634X
https://orcid.org/0000-0001-7363-634X
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3763140


362:2 Nicola, Agarwal, Koskinen, and Wies

program expression such as “ev 𝑒 ,” where 𝑒 is first reduced to a program value and then emitted.
The semantics of the program is correspondingly augmented to reduce to a pair (𝑣, 𝜋), where 𝑣 is
the value and 𝜋 is a sequence of events or an “event trace.” For such programs a natural question is
whether the set of all event traces is included within a given temporal property expressed in Linear
Temporal Logic [48], or as an automaton. Liveness properties apply to programs that may diverge,
inducing infinite event traces. A first approach at automated temporal verification was through
the celebrated reduction to fair termination [62]. Murase et al. [43] introduced a reduction from
higher-order programs and LTL properties to termination of a calling relation.
In a parallel research trend, others have been exploring compositional type-and-effect theories

for temporal verification. Skalka and Smith [54] and Skalka et al. [55] described a type-and-effect
system to extract a finite abstraction of a program and then perform model-checking on that
abstraction. Later, Koskinen and Terauchi [36] and Hofmann and Chen [21] showed that the effects
component in a type-and-effect system Γ ⊢ 𝑒 : 𝜏&𝜑 could consist of a temporal property 𝜑 , where 𝜑
holds of the events generated by the reduction of expression 𝑒 . This was combined with a dependent
refinement system by Koskinen and Terauchi [36] and used with an abstraction of Büchi automata
by Hofmann and Chen [21]. Nanjo et al. [44] then later gave a deductive proof system for verifying
such temporal effects, even permitting the temporal effect expressions to depend on program inputs.
In a more distantly related line of research, others consider languages with programmer-provided
“algebraic effects” and their handlers [39, 52] (see Sec. 9).

1.1 Better Automation Through Abstract Interpretation
The first step of this paper is a new route to automate temporal effect inference and verification of
recursive higher-order programs through abstract interpretation.

As a preliminary step, we describe a direct approach that reduces verification of such effect-full
programs to verifying assertions of effect-less higher-order programs. We later experimentally show
that, although this theoretically enables higher-order safety verifiers (e.g. Drift, RCaml/Spacer,
MoCHi, and ReTHFL) to be applied to the effect setting, those tools do not exploit much of
the property structure and ultimately struggle on the inherent overhead that comes from these
transformations.
To achieve a more scalable solution, our core contribution is a novel effect abstract domain. In

the concrete semantics, an execution is simply the program execution environment paired with
the event trace prefix that was thus far generated, i.e., an element of (V∗ × Env) whereV is the
domain of program values and Env the domain of value environments. We first observe that both
the environment and the possible trace prefix, somewhat counterintuitively, can be organized
around the automaton control state. That is, an abstraction like Q → ℘(Env) captures the possible
execution environments that could be reachable at a control state 𝑞 ∈ Q of the automaton. This
control state-centric summary of environments enables the abstract domain to capture disjunctive
invariants, guided by the target property of the verification. This abstraction often avoids the
need for switching to a more expensive abstract domain that is closed under precise joins. Having
organized around control state, the final abstraction step is to associate with each 𝑞 a summary
of the program environment, e.g. constraints like x > y. The abstract domain for summarizing
program environments can naturally be instantiated using any of a variety of standard numerical
domains such as polyhedra [2, 7, 53], octagons [42], etc.

1.2 Better Expressiveness Through Accumulator Automata
The effect abstract domain above turns out to be somewhat parametric over the kind of automaton,
opening up another opportunity.
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Specifically, there are many temporal safety properties that go beyond basic event sequencing
properties especially, for example, if each event emits an integer. Examples include a property that
the sum of the emitted integers is below some bound (e.g. resource analysis), or that the last emitted
integer is the largest one. Properties could depend on inputs (see, e.g. Nanjo et al. [44]), or involve
context-free-like properties such as protocols of stateful APIs [11] or the sum of production being
equal to the sum of consumption.
We support this wider class of temporal safety properties by augmenting our effect abstract

domain automata to symbolic accumulator automata (SAA). Our automaton model is inspired by
the various notions of (symbolic) register or memory automata considered [3, 9, 25] and consists of
a register “accumulator” (e.g., an integer or tuple of integers) that can remember earlier events,
calculate summaries, etc. SAA is expressive enough to capture the example properties above.
To instantiate SAA in our framework, we refine the effect abstraction to Q → ℘(V × Env),

now capturing the possible pairs of accumulator value and execution environment that could be
reachable at control state 𝑞 ∈ Q. Our abstraction thus associates with each 𝑞: (i) a summary of the
program environment, e.g. constraints like x > y, (ii) a summary of the automaton accumulator,
e.g. constraints like acc > 0, and even (iii) relations between the two, e.g. acc > x − y. Thus, in
this example, we capture at location ℓ in the program, that control state 𝑞 is reachable but only in a
configuration where the accumulator is positive, the program variable x is greater than y and the
accumulator bounds the difference between x and y.

1.3 Challenges & Contributions
To pursue the effect abstract domain, we address the following challenges in this paper:
Accumulative type and effect system (Sec. 4). Our effect abstract domain, expressing properties
of program expressions, is associated with the program through a type-and-effect system, with
judgments of the form Γ ; 𝜙 ⊢ e : 𝜏&𝜙 ′, where 𝜙 summarizes the prefix up to the evaluation of e,
𝜙 ′ summarizes the extended prefix with the evaluation of e, and term-specific premises dictate how
extensions are formed. The system is parametric in the abstract domains used to express dependent
effects and dependent type refinements. Our system resembles existing systems for sequential
effects such as [15, 16] but is grounded in abstract interpretation to facilitate automated inference
of types and effects.
Effect abstract domain (Sec. 5).We formalize the abstract domain discussed above as an instantiation
of our effect system. A key ingredient is the effect extension operator ⊙ that takes an abstraction
of a reachable automaton configuration 𝜙 , a type of a new event 𝛽 (we use refinement types for
𝛽 to capture precise information about the possible values of the event to extend a trace prefix),
and produces an abstraction of the automaton configurations reachable by the extended trace. The
user-provided automata include symbolic error state conditions and so if the effect computed by
the analysis associates error states with bottom, then the property encoded by the automaton holds
of the program. Finally, we have proved the soundness of the effect abstract domain.
Automated inference of effects (Sec. 6).We next address the question of automation. Recent work
showed that, for programs without effects, that abstract interpretation can be used to compute
refinement types through a higher-order dataflow analysis [47]. We present an extension to effectful
programs through a translation-oriented embedding of programswith effects to effect-free programs
and a specialized abstract transformer that exploits the structure of the translated programs and
effect abstract domain. The resulting abstract interpretation propagates effects in addition to values
through the program. To obtain the overall soundness of the inference algorithm, we show that the
types inferred for the translated programs can be used to reconstruct a derivation in our type and
effects system.
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Verification, Implementation & Benchmarks (Sec. 7).We implement the type system, effect abstract
domain and abstract interpretation in a new tool evDrift for OCaml-like recursive higher-order
programs. Our implementation is an extension of the Drift tool, which provides assertion checking
of effect-free programs. There are no existing tools that can verify SAA properties of higher-order
event-generating programs. Thus, in an effort to find the closest basis for comparison, we also
implemented a translation that reduce SAA verification of effect programs to assertion checking
of effect-free programs (to which Drift, RCaml/Spacer, MoCHi, ReTHFL, etc. can be applied).
To improve the precision of our abstract interpretation, we further adapted the classical notion of
trace partitioning [41] to this higher-order effect setting.
To date there are limited higher-order benchmark programs with properties that require an

automaton with a register to express. We thus built the first suite of such benchmarks by creating
23 new examples and adapting examples from the literature including summation/max-min ex-
amples [3, 9, 25], monotonicity examples, programs with temporal event sequences [36, 43, 44],
resource analysis [19, 20, 22], and an auction smart contract [57].
Evaluation (Sec. 8). We evaluated (i) the effectiveness of evDrift at directly verifying SAA-
expressible temporal safety properties over the use of Drift, RCaml/Spacer, MoCHi, and ReTHFL
when applied via the translation/reduction to assertion checking, and (ii) the degree to which trace
partitioning improves precision for evDrift. Overall, our approach is able to verify 21 out of the
23 benchmarks, which is 9, 15, 10, and 3 more than Drift, RCaml/Spacer, MoCHi, and ReTHFL,
respectively, (with our tuple translation) could verify. Furthermore, evDrift achieved a speedup
of 6.3×, 5.3×, 16.8×, and 6.4× over Drift, RCaml/Spacer, MoCHi, and ReTHFL, respectively, on
those benchmarks that both tools could solve. The supplement to this paper includes the evDrift
source, all benchmark sources, and the Appendix.

2 Overview
This paper introduces a method for verifying properties of dependent effects of higher-order
programs, through an abstraction that can express relationships between the (symbolic) next
step of an automaton and the dependent typing context of the program at the location where
a next event is emitted. We show that, when combining our approach with data-flow abstract
interpretation [47], and an abstract domain of symbolic accumulator automata, we can verify a
variety of memory-based, dependent temporal safety properties of higher-order programs.

2.1 Motivating Examples
Example 2.1. Consider the following example:

1 let rec busy n t =

2 if (n <= 0) then ev (-t)

3 else busy (n - 1) t

4 let main (x:int) (n:int) =

5 ev x; busy n x

𝑞0 𝑞1 𝑞2

acc:=𝑣

else

{acc ≠ −𝑣 }

true

Above in main, an integer event x is emitted, and then a recursive function busy repeatedly
iterates until n is below 0, at which point the event -t (which is equal to -x) is emitted. For this
program, the possible event traces are simply {𝑥 ;−𝑥 | 𝑥 ∈ Z}, i.e., any two-element sequence of an
integer and its negation. This property can be expressed by a symbolic accumulator automaton (a
cousin to symbolic automata and to memory automata, as discussed in Sec. 5), as shown above.
The automaton is provided by the user along with the program. It has an initial control state 𝑞0,
from which point, whenever an event ev(𝑣) is observed for any integer 𝑣 , the automaton’s internal
register acc is updated to store value 𝑣 and a transition is taken to 𝑞1. From 𝑞1, observing another
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event whose value is not the negation of the saved acc will cause a transition to the final accepting
state 𝑞2 or otherwise loop at 𝑞1. The language of the automaton consists of traces that violate
the property of interest. That is, the property expressed by the automaton is the complement of
the automaton’s language. It consists of the traces: {𝑥 (−𝑥)∗ | 𝑥 ∈ Z}, which permits none or
arbitrarily many −𝑥 events after 𝑥 . We note that a stronger specification that exactly characterizes
the set {𝑥 ;−𝑥 | 𝑥 ∈ Z} can also be expressed (and verified with our approach). We use the weaker
specification here to highlight that, in general, the automaton approximates the program’s traces.

Direct approach: reduction to assertion checking. At least in theory, this program/property
can be verified using existing tools through a cross-product transformation between the program
and property that reduces the problem to an assertion-checking safety problem. As is common,
the automaton can be encoded in the programming language (or the program can be converted
to an automaton [18]) with integer variables q and acc for the automaton’s control state and
accumulator, respectively. The automaton’s transition function is also encoded in the language
through simple if-then-else expressions. This is shown in the function ev_step, which consumes
the current automaton configuration, and a next event value v and returns the next configuration:
1 let ev_step q acc v : (Q * int) =

2 (* take one automaton step *)

3 if (q==0) then (1, v)

4 else if (q==1 && v==-acc) then (2,acc)

5 else if (q==1) then (1,acc)

6 else (q,acc)

A product can then be formed, for example, by passing and returning the (q,acc) configuration
into and out of every expression, and replacing ev expressions (which are not meaningful to typical
safety verifiers) with a call to ev_step. For Ex. 2.1, this yields the following product program:

1 let rec busy_prod q acc n t =

2 if (n <= 0) then ev_step q acc (-t)

3 else busy_prod q acc (n - 1) t

1 let main_prod (x:int) (n:int) =

2 let (q,acc) = (0,0) in

3 let (q',acc') = ev_step q acc x in

4 let (q'',acc'') = busy_prod q acc n x

5 in assert(q''==2)

In main_prod above, the initial configuration is provided for the automaton, then the first event
expression is replaced by a call to ev_step, then the resulting next configuration is passed to
busy_prod and the returned final configuration is input to an assert. busy_prod is similar.

We implemented the above translation (details in §B.2) and used it in combination with a variety
of existing verification tools for event-less higher-order programs: (1) the Drift tool which uses
a dependent type system and abstract interpretation to verify safety properties of higher-order
recursive programs [47], (2) RCaml/Spacer (part of CoAR[61]), another fairly mature tool that
can also verify assertions of higher order programs [30, 37, 52], (3) MoCHi [51], another software
model checker based on higher-order recusion schemes [32, 33], and (4) ReTHFL, a type-based
validity checker for a fragment of a higher-order fixed-point logic, that leverages CHC solvers to
infer predicates within a refinement type system.

The problem. Although this example tuple product reduction can be verified by these existing
tools, unsurprisingly, the approach does not scale well with any of the considered tools. Let us
examine another example called auction, shown in the top left of Fig. 1, that is only slightly more
involved yet already demonstrates the problem for existing tools when the tuple product reduction
is used: Drift reports a potential assertion violation after 55.1 s, RCaml/Spacer times out after
900 s, and MoCHi reports a potential assertion violation after 91 s. Only ReTHFL can verify the
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Input Program: Input Property: Initially, bids= 0 and rfds= 0.
1 let refund k kamt h _ =

2 if k <= 1 then ()

3 else ((ev 3) r○; h ())

4 let close j g =

5 if j = 1 then ()

6 else ((ev 2) c○; g ())

7 let rec bid i iamt f =

8 let nmax = iamt + 1 in

9 if * then

10 ((ev 1) b○;

11 bid (i+1) nmax (refund i iamt f))

12 else close i f

13 let main () = (bid 1 1 (𝜆 _.())) f○

𝑞0 𝑞1

𝑞𝑒𝑟𝑟

{v=1} bids:=bids+1

{v=2}

else

{v=3,

bids > rfds + 1}

rfds:=rfds+1

els
e

Computed Effect Abstractions :
Location b○ : Location c○ :
𝑞 b○
0 ↦→ (bids = i) ∧ (i >= 1) 𝑞 c○

0 ↦→ ⊥
𝑞 b○
1 ↦→ ⊥ 𝑞 c○

1 ↦→ bids = (j − 1) ∧ (j >= 2) ∧ (rfds = 0)
𝑞
l b○
𝑒𝑟𝑟 ↦→ ⊥ 𝑞

l c○
𝑒𝑟𝑟 ↦→ ⊥

Location r○ : Location f○ :
𝑞 r○
0 ↦→ ⊥ 𝑞 f○

0 ↦→ (bids = 0) ∧ (rfds = 0)
𝑞 r○
1 ↦→ bids = (rfds + k − 1) ∧ (k >= 2) 𝑞 f○

1 ↦→ bids = rfds + 1
𝑞
l r○
𝑒𝑟𝑟 ↦→ ⊥ 𝑞

l f○
𝑒𝑟𝑟 ↦→ ⊥

For every other location i○ : 𝑞 i○
𝑒𝑟𝑟 ↦→ ⊥

Fig. 1. Top left shows the auction example. Top right illustrates the SSA property. At the bottom is the
computed effects inferred by our tool.

example, but still needs 18.6 s. We will describe a technique and tool that can instead verify this
example in only 2.7 s. In fact, as we will see in our evaluation (§8), for several more elaborate
benchmarks like those inspired by amortized complexity analysis, this techniques is the only one
for which verification succeeds.

The auction example in Fig. 1 involves a first stage in the bid function in which some nondeter-
ministic number of bidders place increasing bids. Each bid event is represented as an ev 1 event
(Ln 10). Then, a close event ev 2 occurs (Ln 6), after which point, the k-1 losers are refunded as a
refund event ev 3 (Ln 3). This recursive program is also higher-order: bid constructs a function
(refund i iamt f) that tracks the amount iamt to be refunded to bidder i that was overtaken by
the new bid, and f is a similar function that tracks all previous refunds. When the bidding closes,
the last constructed refund function is called to apply all refunds.

The event traces of the program are: {(1𝑛 ; 2; 3𝑛−1) | 𝑛 ∈ N}, i.e. any sequence of some 𝑛 number
of “1”-events, followed by a “2”-event, followed by𝑛−1 occurrences of “3”-events. A simple temporal
safety property, expressed as an automaton, that ensures the correct order of events could involve
three states: an initial state 𝑞0 that loops at bid “1”-events, a transition under close “2”-events to
an accepting state 𝑞1, self-loop to 𝑞1 under refund “3”-events, and otherwise transitions to error
state 𝑞𝑒𝑟𝑟 . These states and transitions are depicted in the top right of Fig. 1. With an accumulator
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automaton, this property can be improved to more accurately capture the valid trace histories by
counting the bids: we use a tuple accumulator (bids,rfds) that has a counter for the number of
bids and a counter for the number of refunds rfds. The self-loop at 𝑞0 increments bids, and the
self-loop at 𝑞1 ensures that more refunds have not been given than bids, and increments rfds.

The struggle. A translation-based reduction to existing safety verification tools for higher-order
programs does not fare well and the reason is twofold. First, there is a blowup in the size of the
analyzed program due to the translation, which causes a significant increase in analysis time. In
addition, tools like Drift use abstract domains that are not closed under arbitrary disjunctions.
A translation of the automaton’s state space and transition relation into the program will cause
loss of precision due to computation of imprecise joins at data-flow join points. This will cause the
analysis to infer an effect abstraction that is too imprecise for verifying the desired property.

2.2 Effect Abstract Domain
The key idea of this paper is to exploit the structure of the automaton to better capture disjunctive
reasoning in the abstract domain. Roughly speaking, the abstract domain will associate each concrete
automaton control state 𝑞, with abstractions of (i) the event sequences that could lead to 𝑞 and (ii)
the possible program environment at 𝑞. This abstraction is expressed as a relation between the
accumulator value and the program environment. We will now describe this abstraction and see
the resulting computed abstraction depicted in the bottom of Fig. 1.
We obtain this abstraction in three main steps, provided a given input symbolic accumulator

automaton 𝐴 = (Q,V, 𝛿, acc, . . .) with the alphabet being some set of valuesV (in this section let
V = Z) and transitions updating the control state and accumulator. We now discuss these steps.

Concrete semantics. To begin, the concrete semantics of the program is simply pairs of event
traces Z∗ with program environments, i.e., ℘(Z∗ × 𝐸𝑛𝑣). Transitions in the concrete semantics
naturally update the environment in accordance with the reduction rules, and the event sequence
is only updated when an expression ev 𝑣 is reduced: ℘(Z∗ × 𝐸𝑛𝑣) ev 𝑣−−−→ ℘(Z∗ × 𝐸𝑛𝑣). For the above
example, a concrete sequence of states and transitions could be the following:

(𝜖, [𝑚𝑎𝑖𝑛, (empty env)]) { (𝜖, [𝑏𝑖𝑑, i : 1, iamt : 1, f : (𝜆 _ . . .)])
ev 1−−−→ ({1}, [𝑏𝑖𝑑, i : 1, iamt : 1, f : (𝜆 _ . . .)])

(ev 1)41
{ ({142}, [𝑐𝑙𝑜𝑠𝑒, j : 43, g : (𝜆 _.(𝜆 _ . . .))])

ev 2−−−→ ({142, 2}, [refund, k : 42, kamt : 42, h : (𝜆 _.(𝜆 _ . . .))]
ev 3−−−→ ({142, 2, 3}, [refund, k : 42, kamt : 42, h : (𝜆 _.(𝜆 _ . . .))])
(ev 3)40
{ ({142, 2, 341}, [refund, k : 2, kamt : 2, h : (𝜆 _ . . .))])

(Technically a transition takes the powerset of possible sequence/environment pairs to another
powerset; here we show only one sequence for simplicity.) Above the first component is an event
sequence, starting with the empty sequence 𝜖 and, for this nondeterministic behavior, the trace
will accumulate the event sequence 142; 2; 341.

Intermediate abstraction via concrete automaton control states. With integer variables and integer
effect sequences, it is clear that abstraction is needed to represent the possible event sequences
of a program even as simple as this running example. In this example, there are infinitely many
sequences of the form 1𝑘 ; 2; 3𝑘−1. The first key idea we explore in this paper is to organize the
abstraction around the automaton and, crucially, keep the automaton control state concrete while
abstracting everything else: the environment, the possible event sequence prefixes, and the value of
the automaton’s accumulator. The benefit is that this will lead to a somewhat disjunctive abstract
effect domain, where event trace prefixes can be categorized according to the control state (and

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 362. Publication date: October 2025.



362:8 Nicola, Agarwal, Koskinen, and Wies

accumulator values and program environments) that those prefixes reach. To this end, the first
layer of abstraction uses the automaton control states Q (rather than merely event sequences),
and associates each automaton control state with the possible set of pairs of accumulator value
Z and program environment that reach that state along some event sequence: Q ↦→ ℘(Z × 𝐸𝑛𝑣).
At this layer, transitions from an expression ev 𝑣 are captured through the automaton’s transition
function 𝛿 (𝑣), which leads to a (possibly) new automaton state and updates the accumulator value:

Q ↦→ ℘(Z × 𝐸𝑛𝑣)
𝛿 (𝑣)
−−−→ Q ↦→ ℘(Z × 𝐸𝑛𝑣). For the auction example, when an execution iterates bid

42 times, there is an event trace prefix 142, then the following lists some of the effects at body of
bid per each 𝑞:

𝑞0 ↦→ {({1}, (i : 1, iamt : 1, f : _)), ({1, 1}, (i : 2, iamt : 2, f : _)), . . .}, 𝑞1 ↦→ ∅, 𝑞𝑒𝑟𝑟 ↦→ ∅.

Above 𝑞1 is not reachable yet because at the point when the program reaches location c○, at least
one close (“2”) event must have been emitted. Similarly 𝑞𝑒𝑟𝑟 is not yet reachable. 𝑞0 is, however,
reachable with event sequences of the form 1𝑘 and in the corresponding environment i will be
equal to 𝑘 .

Abstract relations with the accumulator. Thus far we associate event sequence and environment
pairs per control state, but there are still infinite sets of pairs. We thus next abstract relations
between the accumulator values at location 𝑞 and the environments, employing a parametric
abstract domain of base refinement types. That is, the type system provides abstractions of program
values, which we can then also relate to abstractions of the accumulator. We will discuss the formal
details of this abstraction in Sec. 5 but illustrate the abstraction in the bottom of Fig. 1. For every
location i○ and automaton state 𝑞 𝑗 , we compute a summary of the possible trace prefixes and
corresponding abstraction of the program variables, accumulator, and relations between them. In
this example, at the ev 1 location denoted b○, our summary for 𝑞 b○

0 reflects that the number of bid
(1) events in the prefix counted by accumulator bid is equal to the environment variable i, and that
i is positive. No other automaton states are reachable. Meanwhile, at the ev 3 location denoted
r○, our summary for 𝑞 r○

1 reflects that the number of refund (3) events seen in the prefix so far is
k− 1 away from the number of bid (1) events, and that k ≥ 2. The automaton specifies if ever this is
violated it will transition to 𝑞err . The program is safe because at every location i○, we compute
𝑞 i○
err ↦→ ⊥. Our accumulator automata can also include assertions that can be applied at the end of a
trace. In this example, we would like to prove that the number of refunds was one less than the
number of bids. We also compute abstractions at the final program location denoted f○, including
the fact that bids=rfds+1 (or bids=rfds=0), which validates the end-of-program assertion.

2.3 Type System, Inference, Evaluation
Our approach to verifying effects is fully automated. Toward achieving this, the rest of this paper
addresses the challenges identified in Sec. 1, but here with more detail in the context of this example:
Accumulative type and effect system (Sec. 4). In order to form relations between reachable au-

tomaton configurations’ accumulator and program variables, we present a novel dependent type
and effect system that is accumulative in nature. The type system allows us to, for example, express
judgments on the (ev 3) r○ expression to ensure that the count of bid (2) events is at least one more
than the count of refund (3) events.

First, let 𝜙𝑎𝑢𝑐𝑡
𝑎𝑐𝑐 (k) be shorthand for bids = rfds + k - 1 ∧ k >= 2 , i.e., that the accumulator count

of bids is equal to the accumulator count of refunds plus program variable k minus one, and that
the value of k is at least 2. Further, due to the nested construction of delayed refund calls with
decreasing arguments, when we reach (ev 3), we have that 𝑘 { (𝑘 − 1). We thus obtain the
judgment below. We focus on the boxed area, in which we compute the abstract effect concatenation
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operation denoted ⊙. This concatenation is between 𝑞1’s existing effect in the context along with
path condition k>1, and the 𝑔uard/𝑢pdate for a next single refund event (3).

Γ; [𝑞0 ↦→ ⊥, 𝑞1 ↦→ 𝜙𝑎𝑢𝑐𝑡
𝑎𝑐𝑐 (k+1), 𝑞𝑒𝑟𝑟 ↦→ ⊥, . . .]

⊢ ev 3 : ()&

𝑞0 ↦→ ⊥,
𝑞1 ↦→ [𝜙𝑎𝑢𝑐𝑡

𝑎𝑐𝑐 (k+1) ∧ (k > 1)] ⊙ [𝑔 : bids > rfds + 1]; [𝑢 : rfds := rfds + 1] ,
𝑞𝑒𝑟𝑟 ↦→ ⊥


The context information 𝜙𝑎𝑢𝑐𝑡

𝑎𝑐𝑐 (k+1) is strengthened by the constraints on the program variable k

imposed by the branching condition and this is sufficient to ensure the validity of the transition
guard bids > rfds + 1. The update of the accumulator rfds to rfds+1 reestablishes 𝜙𝑎𝑢𝑐𝑡

𝑎𝑐𝑐 (k) at 𝑞1.
Moreover, the result of the concatenation guarantees that 𝑞𝑒𝑟𝑟 remains unreachable.

Effect abstract domain (Sec. 5). We formalize the effect abstract domain discussed above.
Automated inference of effects (Sec. 6). We introduce a dataflow abstract interpretation inference

of types that calculates summaries of effects, organized around concrete automaton control states,
as seen in the example in Fig. 1. To achieve this, we exploit the parametricity of type systems
(like [47]) over the kinds of constructs in the language, introducing sequences as a new base type.
We then embed sequences into the 𝑞-indexed effect components.

Verification, Implementation & Benchmarks (Sec. 7). To verify examples like auction (and others
among the 23 benchmarks), we have implemented our (i) abstract effect domain, (ii) accumulative
type and effect system and (iii) automated inference in a new tool called evDrift. evDrift takes, as
input, the program in an OCaml-like language (Fig. 1) as well as a symbolic accumulation automaton,
written in a simple specification language (control states and the accumulator are integers and
the automaton transition function is given by evDrift expressions). In Sec. 7 we discuss how our
inference is used for verification, and implement the product reductions to compare against tools
for effect-free programs.

Evaluation (Sec. 8). evDrift verifies auction in 2.7s, whereas previous assertion-verifiers (com-
bined with our translations) either took significantly longer to verify it (18.6s for ReTHFL), timeout
(RCaml/Spacer) or fail to verify (Drift and MoCHi). More generally, evDrift verifies more exam-
ples and otherwise outperforms Drift, RCaml/Spacer, MoCHi, and ReTHFL by 6.3×, 5.3×, 16.8×,
6.4× resp. on benchmarks that each solve.

3 Preliminaries
Webriefly summarize background definitions and notation. The formal development of our approach
uses an idealized language based on a lambda calculus with terms e ∈ E ::= 𝑐 | 𝑥 | if e then e else e
| 𝜆𝑥. e | (e e) | ev e and values 𝑣 ∈ V ::= 𝑐 | 𝜆𝑥 . e. Expressions e in the language consist of constant
values 𝑐 ∈ Cons (e.g. integers and Booleans), variables 𝑥 ∈ Var , function applications, lambda
abstractions, conditionals, and event expressions ev e1. We assume the existence of a dedicated unit
value •◦ ∈ Cons and the Boolean constants true, false ∈ Cons. Values 𝑣 ∈ V consist of constants
and lambda abstractions. We will often treat expressions as equal modulo alpha-renaming and
write e[e′/𝑥] for the term obtained by substituting all free occurrences of 𝑥 in e with term e′ while
avoiding variable capturing. We further write fv(e) for the set of free variables occurring in e.

A value environment 𝜌 is a total map from variables to values: 𝜌 ∈ Env def
= Var →V .

The operational semantics of the language is defined with respect to a transition relation over
configurations ⟨e, 𝜋⟩ ∈ E ×V∗ where e is a closed expression representing the continuation and 𝜋
is a sequence of values representing the events that have been emitted so far. All configurations are
considered initial and configurations ⟨𝑣, 𝜋⟩ are terminal. To simplify the reduction rules, we use
evaluation contexts 𝐸 that specify evaluation order: 𝐸 ::= [] | 𝐸 𝑒 | 𝑣 𝐸 | if 𝐸 then e1 else e2 | ev 𝐸.
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e-app
⟨(𝜆𝑥.e) 𝑣, 𝜋⟩ → ⟨e[𝑣/𝑥], 𝜋⟩

e-ev
⟨ev 𝑣, 𝜋⟩ → ⟨•◦, 𝜋 · 𝑣⟩

e-context
⟨e, 𝜋⟩ → ⟨e′, 𝜋 ′⟩

⟨𝐸 [e], 𝜋⟩ → ⟨𝐸 [e′], 𝜋 ′⟩

e-ite-true
⟨if true then e1 else e2, 𝜋⟩ → ⟨e1, 𝜋⟩

e-ite-false
⟨if false then e1 else e2, 𝜋⟩ → ⟨e2, 𝜋⟩

Fig. 2. Reduction rules of operational semantics.

The transition relation ⟨e, 𝜋⟩ → ⟨e′, 𝜋 ′⟩ is then defined in Fig. 2. In particular, the rule e-ev
captures the semantics of event expressions: the evaluation of ev 𝑣 returns the unit value and its
effect is to append the value 𝑣 to the event sequence 𝜋 . We write ⟨e, 𝜋⟩ { ⟨e′, 𝜋 ′⟩ to mean that
⟨e, 𝜋⟩ →∗ ⟨e′, 𝜋 ′⟩ and there exists no ⟨e′′, 𝜋 ′′⟩ such that ⟨e′, 𝜋 ′⟩ → ⟨e′′, 𝜋 ′′⟩.

(Non-accumulative) type and effect systems. Conventional type and effect systems [40] typically
take the form Γ ⊢ 𝑒 : 𝜏&𝜙 and capture the local effects that occur during the evaluation of
expression 𝑒 to value 𝑣 . Such systems have also been extended to the setting of higher-order
programs [44, 54, 55]. While these systems are generally suitable to deductive reasoning, the
judgements assume no information describing the program’s behavior up to the evaluation of the
respective expression. They thus fail to provide contextual reasoning for effects and so they suffer
from a lack of precision and increase the difficulty of automation.

4 Accumulative Type and Effect System
In this section, we present an abstract formalization of our dependent type and effect system
for checking accumulative effect safety properties. The notion is parameterized by the notion of
basic refinement types, which abstract sets of constant values, and the notion of dependent effects,
which abstract sets of event sequences. Both abstractions take into account the environmental
dependencies of values and events according to the context where they occur in the program. To
facilitate the static inference of dependent types and effects, we formalize these parameters in
terms of abstract domains in the style of abstract interpretation.

Base refinement types. We assume a lattice of base refinement types ⟨B, ⊑𝑏,⊥𝑏,⊤𝑏,⊔𝑏,⊓𝑏⟩. Intu-
itively, a basic refinement type 𝛽 ∈ B represents a set of pairs ⟨𝑐, 𝜌⟩ where 𝑐 ∈ Cons and 𝜌 ∈ Env is
a value environment capturing 𝑐’s environmental dependencies. To formalize this intuition, we
assume a concretization function 𝛾𝑏 ∈ B → ℘(V × Env). We require that 𝛾𝑏 is monotone and
top-strict (i.e., 𝛾𝑏 (⊤𝑏) =V × Env). We assume the existence of a basic refinement type bool such
that 𝛾𝑏 (bool) = {true, false} × Env.
We let dom(𝛽) denote the set of variables 𝑥 ∈ Var that are constrained by 𝛽 . Formally:

dom(𝛽) = { 𝑥 ∈ Var | ∃𝑣, 𝜌, 𝜌 ′ .⟨𝑣, 𝜌⟩ ∈ 𝛾𝑏 (𝛽) ∌ ⟨𝑣, 𝜌 ′⟩ ∧ 𝜌 (𝑥) ≠ 𝜌 ′ (𝑥) ∧ 𝜌 [𝑥 ↦→ 𝜌 ′ (𝑥)] = 𝜌 ′ (𝑥) } .

Examples of possible choices for B include base types of the shape 𝛽 = {𝜈 : 𝑡 | 𝜑} where 𝑡 is a
simple type like int and 𝜑 a value in a standard relational abstract domain such as octagons and
polyhedra that relates 𝜈 with the variables in the environment. For instance, when considering
the polyhedra domain, basic refinement types can represent values subject to a system of linear
constraints, such as the following, where 𝑥,𝑦, 𝑧 are the variables evaluated in the environments:

𝛽 = {𝜈 : int | 𝑥 + 𝑦 + 𝑧 ≤ 𝜈 ∧ 𝑥 − 𝑦 ≤ 0 ∧ 𝑦 + 𝑧 ≤ 2𝑥} .

Note that the set notation in the example is just syntactic sugar. The value 𝛽 is not actually a set,
but an element of B that denotes a set (of pairs) under 𝛾𝑏 .
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Dependent effects. Let ⟨Φ, ⊑𝜙 ,⊔𝜙 ,⊓𝜙 ,⊥𝜙 ,⊤𝜙 ⟩ denote a lattice of dependent effects. Similar to
basic refinement types, a dependent effect 𝜙 ∈ Φ represents a set of pairs ⟨𝜋, 𝜌⟩ where 𝜋 is a trace
and 𝜌 captures its environmental dependencies. Again, we formalize this by assuming a monotone
and top-strict function 𝛾𝜙 ∈ Φ→ ℘(V∗ × Env). Similar to basic types, we denote by dom(𝜙) the
set of variables that are constrained by 𝜙 . We assume some additional operations on our abstract
domains for dependent types and effects that we will introduce below.

Types. With basic refinement types and dependent effects in place, we define our types as follows:

𝜏 ∈ T ::= 𝛽 | 𝑥 : (𝜏2&𝜙2) → 𝜏1&𝜙1 | ∃𝑥 : 𝜏1 . 𝜏2 .

Intuitively, a function type 𝑥 : (𝜏2&𝜙2) → 𝜏1&𝜙1 describes functions that take an input value 𝑥
of type 𝜏2 and a prefix trace described by 𝜙2 such that evaluating the body e produces a result
value of type 𝜏1 and extends the prefix trace to a trace described by 𝜙1. Type refinements in 𝜏1 may
depend on 𝑥 . Existential types ∃𝑥 : 𝜏1. 𝜏2 represent values of type 𝜏2 that depend on the existence
of a witness value 𝑥 of type 𝜏1.

We lift the function dom from basic types and effects to types in the expected way:

dom(𝑥 : (𝜏2&𝜙2) → 𝜏1&𝜙1) = dom(𝜏2) ∪ ((dom(𝜙2) ∪ dom(𝜏1) ∪ dom(𝜙1)) \ {𝑥})
dom(∃𝑥 : 𝜏1 . 𝜏2) = dom(𝜏1) ∪ (dom(𝜏2) \ {𝑥})

We also lift 𝛾𝑏 to a concretization function 𝛾 t ∈ T → ℘(V × Env) on types:

𝛾 t (𝛽) = 𝛾𝑏 (𝛽)
𝛾 t (𝑥 : (𝜏1&𝜙1) → 𝜏2&𝜙2) =V × Env
𝛾 t (∃𝑥 : 𝜏1. 𝜏2) = { ⟨𝑣, 𝜌⟩ | ⟨𝑣 ′, 𝜌⟩ ∈ 𝛾 t (𝜏1) ∧ ⟨𝑣, 𝜌 [𝑥 ↦→ 𝑣 ′]⟩ ∈ 𝛾 t (𝜏2) } .

Note that the function 𝛾 t uses a coarse approximation of function values. The reason is that we will
use 𝛾 t to give meaning to typing environments, which we will in turn use to define what it means
to strengthen a type with respect to dependencies expressed by a given typing environment. When
strengthening with respect to a typing environment, we will only track dependencies to values of
base types, but not function types.

We define typing environments Γ as binding lists between variables and types: Γ ::= ∅ | Γ, 𝑥 : 𝜏 .
We extend dom to typing environments as: dom(∅) = ∅ and dom(Γ, 𝑥 : 𝜏) = dom(Γ) ∪ {𝑥}. We
then impose a well-formedness condition wf (Γ) on typing environments. Intuitively, the condition
states that bindings in Γ do not constrain variables that are outside of the scope of the preceding
bindings in Γ:

wf-emp
wf (∅)

wf-bind
wf (Γ) dom(𝜏) ⊆ dom(Γ) 𝑥 ∉ dom(Γ)

wf (Γ, 𝑥 : 𝜏)

If wf (Γ) and 𝑥 ∈ dom(Γ), then we write Γ(𝑥) for the unique type bound to 𝑥 in Γ.
As previously mentioned, we lift 𝛾 t to a concretization function for typing environments:

𝛾 t (∅) = Env 𝛾 t (Γ, 𝑥 : 𝜏) = 𝛾 t (Γ) ∩ { 𝜌 | ∃𝑣 . ⟨𝑣, 𝜌⟩ ∈ 𝛾 t (Γ(𝑥)) } .

Typing judgements. Our type system builds on existing refinement type systems with semantic
subtyping [6, 31]. Subtyping judgements take the form Γ ⊢ 𝜏1 <: 𝜏2 and are defined by the rules in
Fig. 3. We implicitly restrict these judgments to well-formed typing environments.

The rule s-base handles subtyping on basic types by reducing it to the ordering ⊑𝑏 . Importantly,
the basic type 𝛽1 on the left side is strengthened with the environmental dependencies expressed by
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s-base
𝛽1 [Γ] ⊑𝑏 𝛽2

Γ ⊢ 𝛽1 <: 𝛽2

s-wit
Γ ⊢ 𝜏 ′ <: 𝜏 Γ, 𝑦 : 𝜏 ′ ⊢ 𝜏1 <: 𝜏2 [𝑦/𝑥]

Γ, 𝑦 : 𝜏 ′ ⊢ 𝜏1 <: ∃𝑥 : 𝜏 . 𝜏2

s-exists
Γ, 𝑥 : 𝜏 ⊢ 𝜏1 <: 𝜏2
Γ ⊢ ∃𝑥 : 𝜏 . 𝜏1 <: 𝜏2

s-fun
Γ ⊢ 𝜏 ′2 <: 𝜏2 𝜙 ′2 [Γ, 𝑥 : 𝜏 ′2] ⊑𝜙 𝜙2 Γ, 𝑥 : 𝜏 ′2 ⊢ 𝜏1 <: 𝜏 ′1 𝜙1 [Γ, 𝑥 : 𝜏 ′2] ⊑𝜙 𝜙 ′1

Γ ⊢ (𝑥 : (𝜏2&𝜙2) → 𝜏1&𝜙1) <: (𝑥 : (𝜏 ′2&𝜙 ′2) → 𝜏 ′1&𝜙
′
1)

Fig. 3. Semantic subtype relation.

Γ. To this end, we assume the existence of an operator 𝛽 [Γ] that satisfies the following specification:
𝛾𝑏 (𝛽 [Γ]) ⊇ 𝛾𝑏 (𝛽) ∩ (V × 𝛾 t (Γ)) .

We require this operator to be monotone in both arguments where Γ ≤ Γ′ iff for all 𝑥 ∈ dom(Γ′),
Γ(𝑥) = Γ′ (𝑥). We also assume a strengthening operator 𝜙 [Γ] on effects with corresponding
assumptions.
The rule s-fun handles subtyping of function types. As expected, the input type and effect are

ordered contravariantly and the output type and effect covariantly. Note that we allow the input
effect to depend on the parameter 𝑥 .

The rule s-exists introduces existential types on the left side of the subtyping relation whereas
s-wit introduces them on the right side. The latter rule relies on an operator 𝜏 [𝑦/𝑥] that expresses
substitution of the dependent variable 𝑥 in type 𝜏 by the variable 𝑦. This operator is defined by
lifting corresponding substitution operators 𝛽 [𝑦/𝑥] on basic types and 𝜙 [𝑦/𝑥] on effects in the
expected way. The soundness of these operators is captured by the following assumption:

𝛾𝑏 (𝛽 [𝑦/𝑥]) ⊇ { ⟨𝑣, 𝜌 [𝑥 ↦→ 𝜌 (𝑦)]⟩ | ⟨𝑣, 𝜌⟩ ∈ 𝛾𝑏 (𝛽) }
𝛾𝜙 (𝜙 [𝑦/𝑥]) ⊇ { ⟨𝜋, 𝜌 [𝑥 ↦→ 𝜌 (𝑦)]⟩ | ⟨𝜋, 𝜌⟩ ∈ 𝛾𝜙 (𝜙) } .

Typing judgments take the form Γ;𝜙 ⊢ e : 𝜏&𝜙 ′ and are defined by the rules in Fig. 41. Intuitively,
such a judgement states that under typing environment Γ, expression e extends the event sequences
described by effect 𝜙 to the event sequences described by effect 𝜙 ′ and upon termination, produces
a value described by type 𝜏 . Again, the typing environments occurring in typing judgements are
implicitly restricted to be well-formed. Moreover, we implicitly require dom(𝜙) ⊆ dom(Γ).

The rule t-const is used to type primitive values. For this, we assume an operator that maps a
primitive value 𝑐 to a basic type {𝜈 = 𝑐} ∈ B such that 𝛾𝑏 ({𝜈 = 𝑐}) ⊇ {𝑐} × Env.
The rule t-ev is used to type event expressions ev e. For this, we assume an effect extension

operator 𝜙 ⊙ 𝜏 that abstracts the extension of the traces represented by effect 𝜙 with the values
represented by the type 𝜏 , synchronized on the value environment:

𝛾𝜙 (𝜙 ⊙ 𝜏) ⊇ {⟨𝜋 · 𝑣, 𝜌⟩ | ⟨𝑣, 𝜌⟩ ∈ 𝛾 t (𝜏) ∧ ⟨𝜋, 𝜌⟩ ∈ 𝛾𝜙 (𝜙)} . (1)

We require that ⊙ is monotone in both of its arguments.
The following is an example judgment for the bid event ev 1 expression in the auction example

from Sec. 2:

Γ, 𝑖 : {𝜈 | 𝜈 >= 1}; [..𝑞1 ↦→ bids = 𝑖 − 1 >= 0] ⊢ ev 1 : unit&[..𝑞1 ↦→ bids = 𝑖 >= 1]
The effect to the left of the turnstile describes event prefixes associated to all the executions
leading to the evaluation of expression ev 1. It states that 𝑞1 is the only reachable state and the
1All auxiliary operators occurring in the typing rules such as ⊙ are defined below.
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t-const
Γ;𝜙 ⊢ 𝑐 : {𝜈 = 𝑐}&𝜙

t-var
Γ;𝜙 ⊢ 𝑥 : Γ(𝑥)&𝜙

t-ev
Γ ; 𝜙 ⊢ e : 𝜏&𝜙 ′

Γ;𝜙 ⊢ ev e : {𝜈 = •◦}&(𝜙 ′ ⊙ 𝜏)

t-abs
Γ, 𝑥 : 𝜏2 ; 𝜙2 ⊢ 𝑒 : 𝜏1&𝜙1

Γ ; 𝜙 ⊢ 𝜆𝑥 .e : (𝑥 : 𝜏2&𝜙2 → 𝜏1&𝜙1)&𝜙

t-app
Γ;𝜙 ⊢ e1 : 𝜏1&𝜙1 Γ;𝜙1 ⊢ e2 : 𝜏2&𝜙2 𝜏1 = 𝑥 : (𝜏2&𝜙2) → 𝜏&𝜙 ′

Γ;𝜙 ⊢ e1 e2 : ∃𝑥 : 𝜏2. (𝜏&𝜙 ′)

t-weaken
𝜙 [Γ] ⊑𝜙 𝜓 Γ;𝜓 ⊢ 𝑒 : 𝜏 ′&𝜓 ′ Γ ⊢ 𝜏 ′ <: 𝜏 𝜓 ′ [Γ] ⊑𝜙 𝜙 ′

Γ;𝜙 ⊢ 𝑒 : 𝜏&𝜙 ′

t-cut
Γ;𝜙 ⊢ 𝑣 : 𝜏&𝜙 𝑥 ∉ fv(e) Γ, 𝑥 : 𝜏 ;𝜙 ⊢ e : 𝜏 ′&𝜙 ′

Γ;𝜙 ⊢ e : ∃𝑥 : 𝜏 . (𝜏 ′&𝜙 ′)

t-ite
Γ;𝜙 ⊢ 𝑥 : bool&𝜙0 Γ [𝑥 = true];𝜙0 ⊢ e1 : 𝜏&𝜙 ′ Γ [𝑥 = false];𝜙0 ⊢ e2 : 𝜏&𝜙 ′

Γ;𝜙 ⊢ if 𝑥 then e1 else e2 : 𝜏&𝜙 ′

Fig. 4. Typing relation.

accumulator bid is equal to i-1. The typing judgment states that, for all executions, the extended
effect that account for a new bidding represented by the observable bid (1) event, preserves the
invariant between the accumulator and the program variable 𝑖 , and that 𝑖 >= 1 according to its
type constraints.
The rule t-ite assumes without loss of generality that only variables are allowed to be used

as test conditions. It is defined in terms of an environment strengthening operator Γ [𝑥 = 𝑐] for
𝑥 ∈ dom(Γ) defined as Γ [𝑥 = 𝑐] (𝑥) = Γ(𝑥) ⊓𝑏{𝜈 = 𝑐} and Γ [𝑥 = 𝑐] (𝑦) = Γ(𝑦) for𝑦 ∈ dom(Γ) \ {𝑥}.

The notation ∃𝑥 : 𝜏 . (𝜏 ′&𝜙) used in the conclusion of rules t-app and t-cut is a shorthand for
(∃𝑥 : 𝜏 . 𝜏 ′)&(∃𝑥 : 𝜏 . 𝜙), where ∃𝑥 : 𝜏 . 𝜙 computes the projection of the dependent variable 𝑥 in
effect 𝜙 , subject to the constraints captured by type 𝜏 . That is, this operator must satisfy:

𝛾𝜙 (∃𝑥 : 𝜏 . 𝜙) ⊇ { ⟨𝜋, 𝜌 [𝑥 ↦→ 𝑣]⟩ | ⟨𝜋, 𝜌⟩ ∈ 𝛾𝜙 (𝜙 [𝑥 : 𝜏]) } .

As with our other abstract domain operators, we require this to be monotone in both 𝜏 and 𝜙 .
The rule t-cut allows one to introduce an existential type ∃𝑥 : 𝜏 . 𝜏 ′, provided one can show the

existence of a witness value 𝑣 of type 𝜏 ′ for 𝑥 . In other dependent refinement type systems, this
rule is replaced by a variant of rule s-wit as part of the rules defining the subtyping relation. We
use the alternative formulation to avoid mutual recursion between the subtyping and typing rules.
The remaining rules are as expected. In particular, the rule t-weaken allows one to weaken

a typing judgement using the subtyping relation (and ordering on effects), relative to the given
typing environment.

Soundness. We prove the following soundness theorem. Intuitively, the theorem states that (1)
well-typed programs do not get stuck and (2) the output effect established by the typing judgement
approximates the set of event traces that the program’s evaluation may generate.

Theorem 4.1 (Soundness). If 𝜙 ⊢ e : 𝜏&𝜙 ′ and ⟨𝜋, 𝜌⟩ ∈ 𝛾𝜙 (𝜙), then ⟨e, 𝜋⟩ { ⟨e′, 𝜋 ′⟩ implies
e′ ∈ V and ⟨𝜋 ′, 𝜌⟩ ∈ 𝛾𝜙 (𝜙 ′).
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The soundness proof details are available in Apx. A, but we summarize here. The proof of
Theorem 4.1 proceeds in two steps. We first show that any derivation of a typing judgement
𝜙 ⊢ e : 𝜏&𝜙 ′ can be replayed in a concretized version of the type system where basic types are
drawn from the concrete domain ℘(V × Env) and effects from the concrete domain ℘(V∗ × Env)
(i.e., both 𝛾𝑏 and 𝛾𝜙 are the identity on their respective domain). Importantly, in this concretized
type system all operations such as strengthening 𝜏 [Γ] and effect extension 𝜙 ⊙ 𝜏 are defined to be
precise. That is, we have e.g. 𝜙 ⊙ 𝜏 def

= {⟨𝜋 · 𝑣, 𝜌⟩ | ⟨𝑣, 𝜌⟩ ∈ 𝜏 ∧ ⟨𝜋, 𝜌⟩ ∈ 𝜙} . In a second step, we
then show standard progress and preservation properties for the concretized type system.

While one could prove progress and preservation directly for the abstract type system, this would
require stronger assumptions on the abstract domain operations. By first lowering the abstract
typing derivations to the concrete level, the rather weak assumptions above suffice.

5 Automata-Based Dependent Effects Domain
In this section, we introduce an automata-based dependent effects domain Φ𝐴 that can be used to
instantiate the domain of dependent effects Φ assumed by our type and effect system presented
in §4. The domain is parametric in an automaton 𝐴 that specifies the property to be verified for a
given program. That is, the dependent effects domain is designed to support solving the following
verification problem: given a program, show that the prefixes of the traces generated by the program
are disjoint from the language recognized by𝐴. To this end, the abstract domain tracks the reachable
states of the automaton: each time the program emits an event, 𝐴 advances its state according to
its transition relation. The set of automata states is in general infinite, so we abstract 𝐴’s transition
relation by abstract interpretation. The abstraction takes into account the program environment at
the point where the event is emitted, thus, yielding a domain of dependent effects.

5.1 Symbolic Accumulator Automata
Our automaton model is loosely inspired by the various notions of (symbolic) register or memory
automata considered in the literature [3, 9, 25]. A symbolic accumulator automaton (SAA) is defined
over a potentially infinite alphabet and a potentially infinite data domain. In the following, we will
fix both of these sets to coincide with the set of primitive valuesV of our object language. Formally,
an SAA is a tuple 𝐴 = ⟨𝑄,Δ, ⟨𝑞0, 𝑎0⟩, 𝐹 ⟩. We specify the components of the tuple on-the-fly as we
define the semantics of the automaton.

A state ⟨𝑞, 𝑎⟩ of 𝐴 consists of a control location 𝑞 drawn from the finite set 𝑄 and a value 𝑎 ∈ V
that indicates the current value of the accumulator register. The pair ⟨𝑞0, 𝑎0⟩ with 𝑞0 ∈ 𝑄 and
𝑎0 ∈ V specifies the initial state of 𝐴. The set 𝐹 ⊆ 𝑄 is the set of final control locations.

The symbolic transition relation Δ denotes a set of transitions ⟨𝑞, 𝑎⟩ 𝑣−→ ⟨𝑞′, 𝑎′⟩ that take a state
⟨𝑞, 𝑎⟩ to a successor state ⟨𝑞′, 𝑎′⟩ under input symbol 𝑣 ∈ V . The transitions are specified as a finite

set of symbolic transitions ⟨𝑞,𝑔,𝑢, 𝑞′⟩ ∈ Δ, written 𝑞
{𝑔}𝑢
−−−→ 𝑞′, where 𝑔 ∈ G is a guard and 𝑢 ∈ U

an (accumulator) update. Both guards and updates can depend on the input symbol 𝑣 consumed
by the transition and the accumulator value 𝑎 in the pre state, allowing the automaton to capture
non-regular properties and complex program variable dependencies. We make our formalization
parametric in the choice of the languages that define the sets G andU2. To this end, we assume
denotation functions J𝑔K(𝑣, 𝑎) ∈ B and J𝑢K(𝑣, 𝑎) ∈ V that evaluate a guard 𝑔 to its truth value,
respectively, an update 𝑢 to the new accumulator value. We then have ⟨𝑞, 𝑎⟩ 𝑣−→ ⟨𝑞′, 𝑎′⟩ if there
exists 𝑞

{𝑔}𝑢
−−−→ 𝑞′ ∈ Δ such that J𝑔K(𝑣, 𝑎) = true and J𝑢K(𝑣, 𝑎) = 𝑎′. We require that Δ is such that

this transition relation is total. For 𝜋 ∈ V∗, we denote by ⟨𝑞, 𝑎⟩ 𝜋−→∗⟨𝑞′, 𝑎′⟩ the reflexive transitive
2In our implementation, we use integer arithmetic expressions for U and conjunctions of (in)equality predicates for G.
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closure of this relation and define the semantics of a state as the set of traces that reach that state:

J⟨𝑞, 𝑎⟩K = { 𝜋 | ⟨𝑞0, 𝑎0⟩
𝜋−→∗⟨𝑞, 𝑎⟩ } .

With this, the language of 𝐴 is defined as

L(𝐴) =
⋃
{ J⟨𝑞, 𝑎⟩K | 𝑞 ∈ 𝐹 } .

Intuitively, L(𝐴) is the set of all bad prefixes of event traces that the program is supposed to avoid.

5.2 Automata-Based Dependent Effects Domain
We now describe the domain Φ𝐴. For the remainder of this section, we fix an SAA 𝐴 and omit
subscript 𝐴 for Φ𝐴 and all its operations.

Concrete automata domain of dependent effects. Recall from §4 that a dependent effect domain
Φ represents a sublattice of ℘(V∗ × Env). Since the states of 𝐴 represents sets of event traces, a
natural first step to define such a sublattice is to pair off automaton states with value environments:
Φ𝐶 = ℘(𝑄 ×V × Env).

The corresponding concretization function 𝛾𝜙
𝐶
: Φ𝐶 → ℘(V∗ × 𝜌) is given by:

𝛾
𝜙

𝐶
(𝜙𝐶 ) =

⋃
⟨𝑞,𝑎,𝜌 ⟩∈𝜙𝐶

{ ⟨𝜋, 𝜌⟩ | 𝜋 ∈ J⟨𝑞, 𝑎⟩K } .

Since 𝛾𝜙
𝐶
is defined element-wise on Φ𝐶 , it is easy to see that it is monotone and preserves arbitrary

meets. It is therefore the upper adjoint of a Galois connection between ℘(V∗ × Env) and Φ𝐶 . Let
𝛼
𝜙

𝐶
be the corresponding lower adjoint, which is uniquely determined by 𝛾𝜙

𝐶
.

The operations on the dependent effect domain Φ𝐶 are then obtained calculationally as the best
abstractions of their concrete counterparts. In particular, we define:

𝜙𝐶 ⊙𝐶 𝛽 = 𝛼
𝜙

𝐶
({ ⟨𝜋 · 𝑣, 𝜌⟩ | ⟨𝑣, 𝜌⟩ ∈ 𝛾𝑏 (𝛽) ∧ ⟨𝜋, 𝜌⟩ ∈ 𝛾𝜙

𝐶
(𝜙𝐶 ) })

= { ⟨𝑞′, 𝑎′, 𝜌⟩ | ∃⟨𝑣, 𝜌⟩ ∈ 𝛾𝑏 (𝛽), ⟨𝑞, 𝑎, 𝜌⟩ ∈ 𝑆. ⟨𝑞, 𝑎⟩ 𝑣−→ ⟨𝑞′, 𝑎′⟩ } .

The characterization of ⊙𝐶 relies on the fact that the transition relation of the automaton is total.
Note that the soundness condition on ⊙𝐶 imposed in §4 is obtained by construction from the
properties of Galois connections:

𝛾
𝜙

𝐶
(𝜙𝐶 ⊙𝐶 𝛽) ⊇ { ⟨𝜋 · 𝑣, 𝜌⟩ | ⟨𝑣, 𝜌⟩ ∈ 𝛾𝑏 (𝛽) ∧ ⟨𝜋, 𝜌⟩ ∈ 𝛾𝜙

𝐶
(𝜙𝐶 ) } .

The remaining operations 𝜙 [Γ], 𝜙𝐶 [𝑦/𝑥], and ∃𝑥 : 𝜏 . 𝜙𝐶 are obtained accordingly.

Abstract automata domain of dependent effects. Since the elements 𝑆 ∈ Φ𝐶 can be infinite sets, the
operations onΦ𝐶 such as ⊙𝐶 are typically not computable.We therefore layer further abstractions on
top of Φ𝐶 to obtain an abstract automata domain of dependent effects with computable operations.

We proceed in two steps. Firstly, we change the representation of our abstract domain elements
by partitioning the elements of each 𝜙𝐶 ∈ Φ𝐶 based on the control location of the automaton
state. That is, we switch to the effect domain Φ𝑅 =𝑄 → ℘(V × Env), ordered by pointwise subset
inclusion. The corresponding concretization function 𝛾𝜙

𝑅
∈ Φ𝑅 → Φ𝐶 is given by

𝛾
𝜙

𝑅
(𝜙𝑅) = { ⟨𝑞, 𝑎, 𝜌⟩ | ⟨𝑎, 𝜌⟩ ∈ 𝜙𝑅 (𝑞) } .

Clearly, we do not lose precision when changing the representation of the elements 𝜙𝐶 ∈ Φ𝐶 to
elements of Φ𝑅 . In fact, 𝛾𝜙

𝑅
is a lattice isomorphism. Its inverse 𝛼𝜙

𝑅
= 𝛾

𝜙

𝑅

−1
is the lower adjoint of a

Galois connection between Φ𝐶 and Φ𝑅 .
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As before, we obtain the abstract domain operations on Φ𝑅 by defining them as the best abstrac-
tions of their counterparts on Φ𝐶 . In particular, we define

𝜙𝑅 ⊙𝑅 𝛽 = 𝛼
𝜙

𝑅
(𝛾𝜙

𝑅
(𝜙𝑅) ⊙𝐶 𝛽) = 𝜆𝑞′ . { ⟨𝑎′, 𝜌⟩ | ∃𝑞′, ⟨𝑣, 𝜌⟩ ∈ 𝛾𝑏 (𝛽), ⟨𝑎, 𝜌⟩ ∈ 𝜙𝑅 (𝑞). ⟨𝑞, 𝑎⟩

𝑣−→ ⟨𝑞′, 𝑎′⟩ } .

Now consider again our abstract domain of base refinement types ⟨B, ⊑𝑏,⊥𝑏,⊤𝑏,⊔𝑏,⊓𝑏⟩ that we
have assumed as a parameter of the type and effects system of §4. Recall that each element 𝛽 ∈ B
abstracts a relation between values and value environments: 𝛾𝑏 (𝛽) ⊆ ℘(V × Env). We can thus
reuse this domain to abstract the relations 𝜙𝑅 (𝑞) ⊆ ℘(V ×Env) between the reachable accumulator
values at location 𝑞 of the automaton and the environments. This leads to the following definition
of our final automata-based effect domain: Φ =𝑄 → B. The accompanying concretization function
𝛾
𝜙

B ∈ Φ → Φ𝑅 is naturally obtained by pointwise lifting of 𝛾𝑏 : 𝛾𝜙B (𝜙) = 𝛾𝑏 ◦ 𝜙 . The overall
concretization function 𝛾𝜙 : Φ → ℘(V∗ × Env) is defined by composition of the intermediate
concretization functions: 𝛾𝜙 = 𝛾

𝜙

𝐶
◦ 𝛾𝜙

𝑅
◦ 𝛾𝜙B .

We then define the operations on Φ in terms of the operations on B. Again, we focus on the
operator ⊙. The remaining operations are defined similarly.
Our goal is to ensure that the overall soundness condition on ⊙ is satisfied. We achieve this by

defining 𝜙 ⊙ 𝛽 such that
𝛾
𝜙

B (𝜙 ⊙ 𝛽) ⊇ 𝛾
𝜙

B (𝜙) ⊙𝑅 𝛽 . (2)
Assuming (2) the overall soundness of ⊙ then follows by construction:

Lemma 5.1. For all 𝜙 ∈ Φ and 𝛽 ∈ B, 𝛾𝜙 (𝜙 ⊙ 𝛽) ⊇ {⟨𝜋 · 𝑣, 𝜌⟩ | ⟨𝑣, 𝜌⟩ ∈ 𝛾 t (𝛽) ∧ ⟨𝜋, 𝜌⟩ ∈ 𝛾𝜙 (𝜙)}.

Let us thus define an appropriate ⊙ that satisfies (2). To this end, we first expand 𝛾𝜙B (𝜙) ⊙𝑅 𝛽 :

𝛾
𝜙

B (𝜙) ⊙𝑅 𝛽

= 𝜆𝑞′ . { ⟨𝑎′, 𝜌⟩ | ∃𝑞′, ⟨𝑣, 𝜌⟩ ∈ 𝛾𝑏 (𝛽), ⟨𝑎, 𝜌⟩ ∈ 𝛾𝑏 (𝜙 (𝑞)) . ⟨𝑞, 𝑎⟩ 𝑣−→ ⟨𝑞′, 𝑎′⟩ }

= 𝜆𝑞′ .
⋃

𝑞
{𝑔}𝑢−−−→𝑞′∈Δ

{ ⟨𝑎′, 𝜌⟩ | ∃⟨𝑣, 𝜌⟩ ∈ 𝛾𝑏 (𝛽), ⟨𝑎, 𝜌⟩ ∈ 𝛾𝑏 (𝜙 (𝑞)) . J𝑔K(𝑣, 𝑎) = true ∧ J𝑢K(𝑣, 𝑎) = 𝑎′ } .

The last equation suggests that we can compute 𝜙 ⊙ 𝛽 by abstracting for each 𝑞′, each symbolic

transition 𝑞
{𝑔}𝑢
−−−→ 𝑞′ ∈ Δ of the automaton separately, and then take the join of the results. In order

to abstract a symbolic transition, we need appropriate abstractions of the semantics of guards and
updates with respect to base refinement types. For the sake of our formalization, we therefore
assume an abstract interpreter J·K# : (G ∪ U) → B × B → B such that for all 𝑡 ∈ G ∪ U and
𝛽, 𝛽 ′ ∈ B

𝛾𝑏 (J𝑡K# (𝛽, 𝛽 ′)) ⊇ { ⟨𝑣 ′, 𝜌⟩ | ∃𝑣, 𝑎 . ⟨𝑣, 𝜌⟩ ∈ 𝛾𝑏 (𝛽) ∧ ⟨𝑎, 𝜌⟩ ∈ 𝛾𝑏 (𝛽 ′) ∧ 𝑣 ′ = J𝑡K(𝑣, 𝑎) } .

We then derive 𝜙 ⊙ 𝛽 from the above equation as follows:

𝜙 ⊙ 𝛽 = 𝜆𝑞′ .
⊔

𝑞
{𝑔}𝑢−−−→𝑞′∈Δ

{ J𝑢K# (𝛽 ⊓ 𝛽𝑔, 𝜙 (𝑞) ⊓ 𝛽𝑔) | 𝛽𝑔 = (∃𝜈. J𝑔K# (𝛽, 𝜙 (𝑞)) ⊓ {𝜈 = true}) } .

Here, 𝛽𝑔 captures the environments 𝜌 shared by 𝛽 and 𝜙 (𝑞) for which the guard 𝑔 evaluates to
true. It is used to strengthen 𝛽 and 𝜙 (𝑞) when evaluating the update expression 𝑢. We here assume
that B provides an operator ∃𝑣 .𝛽 that projects out the value component of the pairs represented by
some 𝛽 ∈ B. That is, we must have:

𝛾𝑏 (∃𝑣 . 𝛽) = { ⟨𝑣, 𝜌⟩ | ∃𝑣 ′ . ⟨𝑣 ′, 𝜌⟩ ∈ 𝛾𝑏 (𝛽) } .
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The fact that ⊙ indeed satisfies (2) then follows from the assumption on the abstract interpreter for
guards and expressions as well as the soundness of the abstract domain operations of B.

Lemma 5.2. For all 𝜙 ∈ Φ and 𝛽 ∈ B, 𝛾𝜙B (𝜙 ⊙ 𝛽) ⊇ 𝛾𝜙B (𝜙) ⊙𝑅 𝛽 .

Similarly, monotonicity of ⊙ follows immediately from the monotonicity of the operations on B.
The remaining operators on Φ assumed in §4 (i.e., 𝜙 [Γ], 𝜙 [𝑦/𝑥], and ∃𝑥 : 𝜏 . 𝜙) are obtained

directly by a pointwise lifting of the corresponding operators on B.

6 Automated Inference and Verification
We now describe how to verify temporal safety properties of higher order programs, through
automatic inference of accumulative types and effects. To facilitate the calculation of precise effects
we build upon the existing data flow refinement type inference algorithm [47] based on abstract
interpretation. We provide an abridged description of the original algorithm and explain how we
adapt it for our purposes. We then briefly discuss the soundness of the resulting algorithm and
how it can be used to automatically verify temporal safety properties.

6.1 Type and Effect Inference by Abstract Interpretation
The data flow type inference, as described by [47], employs a calculational approach in an abstract
interpretation style to iteratively compute a dependent refinement type for every subexpression of
a program. The corresponding inference algorithm is implemented in the Drift tool. The algorithm
is parametric in the choice of an abstract domain of basic types B (which coincides with our
parametrization of the types and effect system) as well as the supported primitive operations on
values represented by these basic types (e.g., arithmetic operations, etc.).

The Drift algorithm is a whole program analysis. It assumes that every subexpression e of the
program is labeled with a unique program location ℓ , written eℓ . The abstract domain consists of
execution maps 𝑀# ∈ M#. Roughly speaking, an execution map assigns a type to every program
location ℓ . The type inference works by iteratively computing a fixpoint of an abstract transformer
step#[[−]]. The abstract transformer takes an expression eℓ and an execution map𝑀#, and computes
an updated execution map reflecting the data flow in eℓ based on what values may occur at each
program location as specified by𝑀#. The abstract transformer is defined by structural recursion
over eℓ .

At a conceptual level, we simply instantiate the Drift algorithm by treating event sequences as
values that can be manipulated directly by the program, akin to the translation approach. The only
primitive operator defined on event sequences is 𝑒1 · 𝑒2 where 𝑒1 is expected to evaluate to an event
sequence 𝜋1 and 𝑒2 to a value 𝑣2. The result of the operation is the concatenated event sequence
𝜋1 · 𝑣2. We additionally have the constant expression 𝜖 denoting the empty event sequence. We also
have a built-in pair constructor ⟨𝑒1, 𝑒2⟩ and projection operators #1 (𝑒) and #2 (𝑒) on pairs. Event
sequences are then abstracted by treating an abstract effect 𝜙 as yet another kind of base type.

However, instead of just applying the instantiated Drift algorithm on translated programs that
manipulate pairs of values and event sequences, we specialize the abstract transformer to take
advantage of the knowledge that every expression eℓ evaluates to such a pair. As such it can fuse
together what would otherwise be costly joins and projections needed for analysis of the product
construction. Moreover, the specialized abstract transformer interprets the sequence concatenation
operator using the abstract effect domain. This is in contrast to a translation approach where, say,
for the SAA effect domain, we would embed the automatons transfer function into the analyzed
program and abstract it using the ordinary base types in B. This specialization is key to improving
both the efficiency and precision of the resulting analysis.
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(𝑥 : 𝜏1𝑖 → 𝜏1𝑜 ) ⋉ (𝑥 : 𝜏2𝑖 → 𝜏2𝑜 )
def
=

let ⟨𝜏 ′2𝑖 , 𝜏 ′1𝑖⟩ = 𝜏2𝑖 ⋉ 𝜏1𝑖 in
let ⟨𝜏 ′1𝑜 , 𝜏 ′2𝑜⟩ = 𝜏1𝑜 [𝑥 : 𝜏2𝑖 ] ⋉ 𝜏2𝑜 [𝑥 : 𝜏2𝑖 ] in
⟨𝑥 : 𝜏 ′1𝑖 → 𝜏 ′1𝑜 , 𝑥 : 𝜏 ′2𝑖 → 𝜏 ′2𝑜⟩

(𝑥 : 𝜏1 → 𝜏2) ⋉ ⊥𝑏
def
= ⟨𝑥 : 𝜏1 → 𝜏2 , 𝑥 : ⊥𝑏 → ⊥𝑏⟩

𝜏1 ⋉ 𝜏2
def
= ⟨𝜏1, 𝜏1 ⊔ 𝜏2⟩

⟨𝜏1𝑎, 𝜏1𝑏⟩ ⋉ ⟨𝜏2𝑎, 𝜏2𝑏⟩
def
=

⟨⟨𝜏1𝑎, 𝜏1𝑏⟩, ⟨𝜏1𝑎 ⊔ 𝜏2𝑎, 𝜏1𝑏 ⊔ 𝜏2𝑏⟩⟩
𝜏1 ⋉ ⊤𝑏

def
= ⟨⊤𝑏,⊤𝑏⟩

Fig. 5. Data flow propagation

To build more intuition, we describe the specialized abstract transformer in some more detail. Its
precise signature is

step#[[−]] : E → (Env# × Φ) → M# → ((T × Φ) ×M#) .

Intuitively, for each well-formed expression eℓ in a given environment Γ ∈ Env# and effect context
𝜙 ∈ Φ, and for a given execution map 𝑀 ∈ M, the transformer step#[[eℓ ]](Γ, 𝜙) (𝑀) returns the
updated abstract value and effect at ℓ , along with an updated execution map.
At the core of the definition of step#[[−]] lies the monotonic data flow propagation function

𝜏1 ⋉ 𝜏2 on refinement types shown in Fig. 5. Intuitively, it ensures that an argument type 𝜏 at the
call site of a function 𝑓 is propagated back to 𝑓 ’s definition site. After inferring the result type 𝜏 ′
of 𝑓 for 𝜏 from 𝑓 ’s body, 𝜏 ′ is in turn propagated forward to 𝑓 ’s call site. For example, if 𝜏1 is the
current inferred type of some variable 𝑥 bound at location ℓ1, and 𝜏2 is the current type inferred for
some usage of 𝑥 at location ℓ2, then 𝜏1 ⋉ 𝜏2 returns a new pair of types ⟨𝜏 ′1, 𝜏 ′2⟩ for locations ℓ1 and
ℓ2 that reflects the forward data flow from ℓ1 to ℓ2 and backward data flow from ℓ2 to ℓ1.
In most cases, the abstract transformer behaves according to the original definition in the

Drift algorithm and, additionally, simply carries along the effect. The most interesting case

step#[[(ev 𝑒1)ℓ ]](Γ, 𝜙) ≜ do
⟨𝜏ℓ , 𝜙ℓ⟩ ← get (Γ, ℓ)
⟨𝜏1, 𝜙1⟩ ← step#[[𝑒1]](Γ, 𝜙)
assert(𝜏1 ≠ ⊥)
let _, ⟨𝜏 ′ℓ , 𝜙 ′ℓ⟩ = ⟨{𝜈 = •◦}[Γ], 𝜙 ⊙ 𝜏1⟩ ⋉ ⟨𝜏ℓ , 𝜙ℓ⟩
update(ℓ, ⟨𝜏 ′ℓ , 𝜙 ′ℓ⟩)
return ⟨𝜏 ′ℓ , 𝜙 ′ℓ⟩

is for event emission ev 𝑒1, shown on the
right, which we discuss in more detail. The
definition uses a similar monadic style as in
[47] that treats step#[[−]] as a state monad
over execution maps. We use do notation
for the monadic composition, allowing let to
introduce new bindings, and we assume two
operations, get and update, that read from
or write to the execution map encapsulated
by the monad. The transformer starts by extracting the type and effect currently associated with ℓ

from the execution map and takes a recursive step on the expression 𝑒𝑖 that computes the value to
be emitted. The assert() construct aborts with the current execution map if the type inferred from
𝑒𝑖 is still ⊥𝑏 (indicating that 𝑒𝑖 has not yet produced an abstract value in the current iteration of
the abstract interpretation). Otherwise, it continues by computing the abstract result of the event
emission using the effect extension operator ⊙ of the abstract effect domain. It then uses data flow
propagation with the old type and effect at ℓ to compute the new ⟨𝜏 ′ℓ , 𝜙 ′ℓ⟩. This pair is then written
back to the execution map at ℓ and returned.

6.2 Soundness of Type and Effect Inference
A challenge in connecting the type inference result with our type and effects system is that the
inference algorithm has been proven sound with respect to a bespoke dataflow semantics of
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functional program rather than a standard operational semantics like the one underlying our
system. However, [47] shows that the inference result yields a valid typing derivation in a bespoke
data flow refinement type system. To bridge the gap in the soundness argument, we relate the
Drift type system with our type and effect system at the abstract level by showing that, from
the typing derivation for a translated program produced by the soundness proof of [47], one can
reconstruct a typing derivation in the types and effects system for the original effectful program.
Further details can be found in §B.

6.3 Automated Verification
As discussed in Sec. 2, our abstract effect domain seeks to improve over a direct approach of
translating an input program/property of effects into an effect-free product program that carries
its effect trace and employs existing assertion checking techniques [30, 33, 47, 65]. This algorithm
places a substantial burden on the type system (or other verification strategy) to track effect
sequences as program values that flow from each (translated) event expression to the next. In
this strategy, where an ev 𝑒 expression occurred in the original input program, the translated
program has an event prefix variable (and accumulator variable) and constructs an extended event
sequence. Unfortunately, today’s higher-order program verifiers do not have good methods for
summarizing program value sequences, nor do they exploit the automaton structure to organize
possible sequence values. Thus, those tools struggle to validate the later assertions.
The inference discussed above offers an alternative verification algorithm. Once effects are

inferred through the instantiation of our effect abstract domain (over the translated event sequences),
it is straightforward to construct a verification algorithm. One merely has to ensure that at every
program location i○, the computed summary associates ⊥ with every accepting state 𝑞 i○

𝑒𝑟𝑟 . Our
organization of event prefixes around concrete automaton states allows us to better summarize
those prefixes into categories, and can be thought of as a control-state-wise disjunctive partitioning.
Thus, at each ev 𝑒 expression, the (dataflow) type system directly updates each 𝑞’s summary with
the next event. Sec. 8 experimentally evaluates both of these algorithms and compares them.

7 Implementation, Trace Partitioning, and Benchmarks
Implementation. We implemented both the tuple/CPS translation (Sec. 2) and the type and effect
inference (Sec. 6) verification algorithms in a prototype tool called evDrift, as an extension to the
Drift [47] type inference tool, which builds on top of the Apron library [23] to support various
numerical abstract domains of type refinements.

evDrift takes programs written in a subset of OCaml along with an automaton property specifi-
cation file as input. evDrift supports higher-order recursive functions, operations on primitive
types such as integers and booleans, as well as a non-deterministic if-then-else branching operator.
The property specification lists the set of automaton states, a deterministic transition function and
an initial state. The specification also includes two kinds of effect-related assertions: those that must
hold after every transition, and those that must hold after the final transition. Assertions related to
program variables (as in Drift) may be specified in the program itself. Whereas assertions related
to effects may be specified in the property specification file.
We also implemented three improvements to the dataflow abstract interpretation. First, we

integrate Apron’s grid-polyhedra abstract domain [10]—a reduced product of the polyhedra [7]
and the grid [1] abstract domains—to interpret type refinements of the form of 𝑥 ≡ 𝑦 mod 2.
Second, we implemented trace partitioning [49] for increased disjunctive precision. Although these
benefits are somewhat orthogonal to our contributions, our evaluation (Sec. 8) also experimentally
quantifies the disjunctive benefit of trace partitioning in our setting vis-a-vis the benefit of our
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let rec order d c =
if d > 0 then
if d mod 2 = 0
then ev c
else ev (−c );
order (d − 2) c

else 0
let _ (dd cc : int ) =
order dd cc

let rec spend n =
ev (−1);
if n <= 0 then 0
else spend (n−1)

let _ (gas n: int ) =
if gas >= n and
n >= 0

then
(ev gas ; spend n)
else 0

let rec reent d =
ev 1; (∗ Acq ∗)
if d > 0 then
if nondet() then
reent (d−1);
ev −1 (∗ Rel ∗)

else skip
let _ d =
reent d;
ev −1 (∗ Rel ∗)

let rec compute vv bound inc =
ev vv;
if vv = bound then 0 else
compute (inc vv) bound inc

let min_max v =
let f = (fun t −>
if v>=0 then t−1 else t+1) in

if v>=0
then compute v (−1 ∗ v) f
else compute v (−1 ∗ v) f

Only "c" or "-c" events
∑𝑁

𝑖 ≤ gas # Rel ≤ # Acq ∀𝑖 > 0. − 𝑣 < 𝜋 [𝑖] < 𝑣

Fig. 6. Further examples of our benchmarks. (See the supplement for sources and automata specifications.)

abstract effect domain. Third, we optimize the propagation step of the analysis by implementing
the suggestion in [47]. (Note that these three improvements also benefit the prior Drift tool.)

Trace Partitioning. To improve the precision in our analysis, we implemented a type inference

1 let f x y =

2 let z =

3 if y >= 0 then 1

4 else -1

5 in

6 assert z != 0; x/z

algorithm with trace partitioning [49], but instantiating it here in
a higher-order setting. Consider the example to the right adapted
from [49]. It is easy to see that this program does not raise an as-
sertion error as z is either equal to 1 or -1. However, when using
convex abstract domains like polyhedra and octagons, z will have
an abstract representation that includes the integer 0 because the
abstract domain elements of the two branches of the conditional are
joined together. Consequently, an analysis would raise an undesirable assertion error.

Roughly speaking, with trace-partitioning, every if-then-else expression is analyzed twice: once
in a context where the condition is true and once for false. This directly alleviates the problem
described in the above example as z≠0 in the abstract representation of either of the branches.

1 let g x1 y1 =

2 assert y1 != 0; x1/y1

3 let f x2 y2 =

4 g x2 y2 + g (-x2) y2

Beyond if-then-else expressions, trace-partitioning is also useful to
increase precision in the analysis of functions with multiple callsites.
As a demonstration, consider the example on the right. Using convex
abstract domains, the argument y1 to the function g would have an
abstract representation that includes the integer 0. In the same spirit
as for if-then-else expressions, we analyze the function g in separate contexts for each call site.
The original Drift type system [47] extends the typing judgement by including call stacks to

infer distinct refinement types for program nodes under distinct call stacks. The extension for if-
then-else partitioning, which involves program traces composed of locations where the conditional
branching takes different paths, largely works in a similar way. The only difference is that program
traces, along with the respective context of the chosen condition, are emitted by program nodes
which have if-then-else expressions and are implemented as lists, whereas call stacks are naturally
implemented as stacks. Importantly, for this work, these extensions to the Drift type system can
easily carry over to the evDrift type system. We give more details about this extended type system
in Apx. C.

Benchmarks. To our knowledge there are no existing benchmarks for higher-order programs
with the general class of SAA properties described, although there are related examples in some
fragments of SAA. We thus created such a suite from the literature, extending them, and creating
new ones. We plan to contribute these 23 benchmarks to SV-COMP [4]. Figure 6 lists some of them.
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These benchmarks test our tool to verify a variety of SAA properties like (left-to-right in Fig. 6)
tracking disjoint branches of a program, resource analysis, verifying a reentrant lock, and tracking
the minimum/maximum of a program variable. Other examples use the accumulator for summation,
maximum/minimum, monotonicity, etc. similar to those found in automata literature [3, 9, 25].
We also include an auction smart contract [57] and adapt some example programs proposed in
[44]. These benchmarks involve verification of amortized analysis [19, 20, 22] for a pair of queues,
and the verification of liveness and fairness for a non-terminating web-server. Finally, for several
benchmarks, we created corresponding unsafe variants by tweaking the program or property. All
benchmarks are provided in the supplement, and publicly available (URL omitted for reviewing).

8 Evaluation
We sought to answer two research questions:
(1) How does evDrift compare with other state-of-the-art automated verification tools for higher-

order programs?
(2) What is the effect of trace-partitioning on efficiency and accuracy?

Comparing our approach with other methods. We aim to compare against the somewhat mature
prior tools Drift, RCaml/Spacer, MoCHi [51] and ReTHFL [28] which support higher-order
programs and can validate assertions and even some temporal properties. Murase et al. [43] focus
on liveness properties and reduce the problem to termination (also see Secs. 1 and 9 for discussions
of other works and tools). Drift, RCaml/Spacer, MoCHi, and ReTHFL do not directly operate on
programs with effects, so we used our reduction to verifying assertions of higher-order (effect-free)
programs, which also enables those tools to technically now be applied to SAA properties. We
first apply a selective store passing transformation to effectful programs (based on an algorithm
adapted from Nielsen [46]), producing an optimized product program that preserves parts of the
original effectful program. The translation is guided by whether an expression observes an event
generated during its evaluation. Consequently, the configuration is passed selectively to only those
expressions that may observe such events. Drift is discussed in Sec. 6. RCaml/Spacer3 is based on
extensions of Constrained Horn Clauses, is part of CoAR [61], and is built on top of several prior
works [30, 37, 52]. MoCHi [33] is a CEGAR-style software model checker based on higher-order
recursion schemes and relies on either interpolating theorem provers or an ICE-based solver of
Constrained Horn Clauses (CHC) for predicate discovery. ReTHFL is a type-based validity checker
for a fragment 𝜈HFL(Z) of HFL(Z), a higher-order fixed point logic extended with integers, to which
the verification of higher-order functional programs is known to be reducible, and it leverages CHC
solvers to infer predicates within a bespoke refinement type system for 𝜈HFL(Z). We also considered
LiquidHaskell [63], which includes an implementation [24]. However, LiquidHaskell is somewhat
incomparable because (i) it requires user interaction whereas our aim is full automation and (ii) the
eager-versus-lazy evaluation order difference impacts the language semantics and possible event
traces, so it is difficult to perform a meaningful comparison. For each tool, we use the latest version
available at the time of experiments and corresponded with the respective developers to ensure
proper usage. All our experiments were conducted on an x86_64 AMD EPYC 7452 32-Core Machine
with 125Gi memory. We used BenchExec 3.29 [56] to ensure precise measurement for each run.

In our evDrift experiments, we run all our benchmarks using several configurations: various
combinations of context sensitivity, trace partitioning, numerical abstract domains, and added
precision for inference of effect sequences. Context sensitivity—denoted “𝑐𝑠”—is either set to "none"
(0) or else to a call-site depth of 1. So for example, a configuration with context-sensitivity 1 and
3We use RCaml/Spacer at commit 299e979bfce7d9b0532586bfc42b449fd0451531 with the CoAR config
config/solver/rcaml_wopp_spacer.json.
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trace partitioning enabled remembers the last call site and also the last if-else branch location. For
research question #1, we evaluate the end-to-end improvement of all of our work on evDrift over
existing tools, so we use Drift (plus the tuple translation) without trace partitioning—denoted
“𝑡𝑝 :𝐹 ”—and evDrift with trace partitioning “𝑡𝑝 :𝑇 ”. Further below in research question #2 we
evaluate the degree to which evDrift improves the state of the art due to the use of the abstract
effect domain, versus through the use of trace partitioning (as well as the performance overhead
of trace partitioning). Regarding abstract domains, we use the loose version of the polyhedra
domain [47] for all our benchmarks except for those that involve mod operations where we use the
grid-polyhedra domain. For polyhedra, we further consider two different widening configurations:
standard widening and widening with thresholds. For widening with thresholds [5]—denoted “𝑡ℎ”—
we use a simple heuristic that chooses the conditional expressions in the analyzed programs as well
as pairwise inequalities between the variables in scope as constraints. The grid-polyhedra domain
does not properly support threshold widening, so we only use standard widening here. Finally,
we add an option—denoted “𝑖𝑜”—to increase precision for effect sequences through relationships
between accumulator variables before and after a function body is evaluated. 𝑖𝑜 helps capture the
consequence every function has over accumulator variables more precisely, albeit at the cost of some
performance due to increased number of variables in the abstract environment. In the discussion
below, we report only the result for the configuration that verified the respective benchmark in
the least amount of time (as identified in Config columns in the tables). For instances where all
versions fail to verify a benchmark, we report results for the fastest configuration for brevity. We
also include results for other configurations in Apx. F found in the supplement.

Table 1 summarizes the results of our comparison. evDrift significantly outperforms the other
three tools in terms of number of benchmarks verified and efficiency. Drift via tuple reduction
was only able to verify 12 of the 23 benchmarks, while evDrift could verify 21. Moreover, evDrift
could also verify the market benchmark with configuration ⟨𝑐𝑠:2, 𝑡𝑝:𝐹, 𝑖𝑜:𝑇, 𝑙𝑠⟩ in under 30 seconds.
Across all benchmarks that Drift could solve, it had a geomean of 1.9 s. Across all benchmarks that
evDrift could solve, it had a geomean of 0.9 s. For those benchmarks that both Drift and evDrift
could verify, evDrift was 6.3× faster. RCaml/Spacer successfully verified 6 out of 23 benchmarks,
with a geomean of 1.6 s across these, and was unable to verify the others due to either imprecision,
timeout, or memory blowup. ReTHFL verified 18 benchmarks for which it reported a geomean of
5.1 s. Using the web interface for ReTHFL [29], we found that an additional benchmark (nondet_max)
is verified in under 5 s, suggesting that configuration issues in the running environments caused
the difference. Moreover, the verification of market and lics18-amortized using the web interface
was not conclusive, with the printed output remaining in a seemingly frozen state. Finally, MoCHi
verified 11 benchmarks for which it reported a geomean of 6.7 s. As anticipated, the cross-product
transformation of the original program and property significantly increases the program size, thus
requiring high context-sensitivity, which no existing tool provides with high precision. In addition,
we also ran evDrift on the unsafe variants of our benchmarks. We used the same configurations
as for their respective safe versions in Table 1. The individual results are omitted for lack of space,
but evDrift analyzed all unsafe benchmarks in 273 seconds, returning unknown on each of them.
(The tool can only prove the absence of errors, not their presence.)

We deduced at least three major factors behind evDrift’s superior performance. (1) evDrift
evaluates the ev expressions inline which reduces program size significantly. This leads to signifi-
cantly faster runtimes and smaller memory footprint for evDrift for all benchmarks. This also
reduces a function call and the need to remember another call site for evDrift in some cases like
overview1 and sum-appendixwhere the ev expression might have different arguments at different
locations. Moreover, some benchmarks require the inference of non-convex input-output relations
for functions, which the used numerical abstract domains cannot express. This is why evDrift can

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 362. Publication date: October 2025.



Abstract Interpretation of Temporal Safety Effects of Higher Order Programs 362:23

Table 1. Comparison of evDrift against assertion verifiers for effect-free programs: Drift, RCaml/Spacer,
MoCHi and ReTHFL via our tuple reduction. For each verifier, we show the result ("✔" for successful
verification; "?" for unknown; "j" for some failure other than unknown; "T" for timeout - over 900 seconds;
"M" for out of memory - over 2GB), CPU time in seconds, maximum memory used in megabytes and the
chosen configuration for Drift and evDrift. For Drift and evDrift, the configuration tuples show what
context-sensitivity (𝑐𝑠) was used, if trace-partitioning was used (𝑡𝑝), if added precision for effects was used
(𝑖𝑜), and which abstract domain was used (𝑙𝑠 for loose-polyhedra, and 𝑝𝑔 for grid-polyhedra). evDrift
verified additional 9, 15, 10 and 3 that Drift, RCaml/Spacer, MoCHi and ReTHFL, respectively, could
not, and it is 6.3× faster than Drift on Drift-verifiable examples, 5.3× faster than RCaml/Spacer on
RCaml/Spacer-verifiable examples, 16.8× faster than MoCHi on MoCHi-verifiable examples, and 6.4×
faster than ReTHFL on ReTHFL-verifiable examples.

Prior Tools (via Tuple Reduction)
Drift RCaml MoCHi ReTHFL evDrift

Bench ResCPU Config. Res CPU Res CPU Res CPU ResCPU Config.
1. all-ev-pos ✔ 0.6 ⟨𝑐𝑠:0, 𝑙𝑠⟩ ✔ 0.8 ✔ 0.8 ✔ 2.5 ✔ 0.2 ⟨𝑐𝑠:0, 𝑡𝑝:𝐹, 𝑖𝑜:𝐹, 𝑙𝑠⟩
2. alt-inev ? 60.8 ⟨𝑐𝑠:0, 𝑝𝑔⟩ T 901.1 ? 69.2 ✔ 4.7 ✔ 2.4 ⟨𝑐𝑠:0, 𝑡𝑝:𝐹, 𝑖𝑜:𝑇, 𝑙𝑠⟩
3. auction ? 55.1 ⟨𝑐𝑠:1, 𝑙𝑠⟩ T 901.1 ? 90.7 ✔ 18.6 ✔ 2.7 ⟨𝑐𝑠:0, 𝑡𝑝:𝐹, 𝑖𝑜:𝐹, 𝑙𝑠⟩
4. binomial_heap ? 544.1 ⟨𝑐𝑠:1, 𝑝𝑔⟩ T 901.1 M 581.2 ✔ 4.3 ✔ 2.2 ⟨𝑐𝑠:0, 𝑡𝑝:𝐹, 𝑖𝑜:𝑇, 𝑙𝑠⟩
5. concurrent_sum ✔ 1.7 ⟨𝑐𝑠:0, 𝑙𝑠⟩ M 12.4 ? 190.7 ✔ 4.2 ✔ 0.2 ⟨𝑐𝑠:0, 𝑡𝑝:𝐹, 𝑖𝑜:𝐹, 𝑙𝑠⟩
6. depend ✔ 0.1 ⟨𝑐𝑠:0, 𝑙𝑠⟩ ✔ 0.1 ✔ 0.7 ✔ 1.9 ✔ 0.0 ⟨𝑐𝑠:1, 𝑡𝑝:𝑇, 𝑖𝑜:𝐹, 𝑙𝑠⟩
7. disj-gte ? 35.8 ⟨𝑐𝑠:0, 𝑝𝑔⟩ M 505.6 ✔ 198.6 ✔ 4.9 ✔ 2.2 ⟨𝑐𝑠:0, 𝑡𝑝:𝐹, 𝑖𝑜:𝐹, 𝑙𝑠⟩
8. disj-nondet ? 10.1 ⟨𝑐𝑠:0, 𝑙𝑠⟩ M 528.5 ✔ 45.0 ✔ 3.8 ✔ 2.3 ⟨𝑐𝑠:0, 𝑡𝑝:𝐹, 𝑖𝑜:𝐹, 𝑙𝑠⟩
9. higher-order ✔ 1.5 ⟨𝑐𝑠:0, 𝑙𝑠⟩ ✔ 13.2 ✔ 16.4 ✔ 3.4 ✔ 0.6 ⟨𝑐𝑠:0, 𝑡𝑝:𝐹, 𝑖𝑜:𝑇, 𝑙𝑠⟩
10. intro-ord3 ✔ 24.0 ⟨𝑐𝑠:1, 𝑙𝑠⟩ M 164.6 ? 64.1 ? 8.1 ✔ 3.8 ⟨𝑐𝑠:0, 𝑡𝑝:𝐹, 𝑖𝑜:𝑇, 𝑙𝑠⟩
11. lics18-amortized ? 273.6 ⟨𝑐𝑠:0, 𝑝𝑔⟩ M 307.6 M 228.8 T 901.1 ✔ 6.4 ⟨𝑐𝑠:0, 𝑡𝑝:𝐹, 𝑖𝑜:𝐹, 𝑙𝑠⟩
12. lics18-hoshrink ? 9.9 ⟨𝑐𝑠:0, 𝑝𝑔⟩ ? 0.1 ? 1.3 ? 3.7 ? 7.0 ⟨𝑐𝑠:1, 𝑡𝑝:𝐹, 𝑖𝑜:𝐹, 𝑝𝑔⟩
13. lics18-web ? 55.0 ⟨𝑐𝑠:0, 𝑙𝑠⟩ j 3.7 T 901.2 ✔ 11.2 ✔ 7.1 ⟨𝑐𝑠:0, 𝑡𝑝:𝐹, 𝑖𝑜:𝐹, 𝑙𝑠⟩
14. market ? 276.9 ⟨𝑐𝑠:1, 𝑙𝑠⟩ M 481.9 T 901.1 M 5.5 ? 56.2 ⟨𝑐𝑠:0, 𝑡𝑝:𝐹, 𝑖𝑜:𝑇, 𝑝𝑔⟩
15. max-min ? 143.3 ⟨𝑐𝑠:1, 𝑝𝑔⟩ M 28.3 T 900.9 ✔ 78.5 ✔ 43.1 ⟨𝑐𝑠:1, 𝑡𝑝:𝑇, 𝑖𝑜:𝑇, 𝑙𝑠⟩
16. monotonic ✔ 2.3 ⟨𝑐𝑠:0, 𝑙𝑠⟩ T 901.1 ✔ 2.8 ✔ 4.1 ✔ 0.5 ⟨𝑐𝑠:0, 𝑡𝑝:𝐹, 𝑖𝑜:𝑇, 𝑙𝑠⟩
17. nondet_max ✔ 2.3 ⟨𝑐𝑠:0, 𝑙𝑠⟩ ✔ 1.8 T 901.1 T 901.0 ✔ 0.6 ⟨𝑐𝑠:0, 𝑡𝑝:𝐹, 𝑖𝑜:𝐹, 𝑙𝑠⟩
18. num_evens ✔ 9.2 ⟨𝑐𝑠:0, 𝑙𝑠⟩ T 900.7 ✔ 17.2 ✔ 4.3 ✔ 4.7 ⟨𝑐𝑠:1, 𝑡𝑝:𝐹, 𝑖𝑜:𝑇, 𝑙𝑠⟩
19. order-irrel-nondet ? 26.2 ⟨𝑐𝑠:1, 𝑝𝑔⟩ ✔ 2.9 ✔ 61.9 ✔ 8.6 ✔ 2.7 ⟨𝑐𝑠:1, 𝑡𝑝:𝑇, 𝑖𝑜:𝑇, 𝑙𝑠⟩
20. overview1 ✔ 1.8 ⟨𝑐𝑠:1, 𝑙𝑠⟩ ✔ 1.7 ✔ 3.5 ✔ 2.5 ✔ 0.3 ⟨𝑐𝑠:0, 𝑡𝑝:𝐹, 𝑖𝑜:𝑇, 𝑙𝑠⟩
21. reentr ✔ 3.4 ⟨𝑐𝑠:0, 𝑙𝑠⟩ T 900.1 ? 590.2 ✔ 6.7 ✔ 0.2 ⟨𝑐𝑠:0, 𝑡𝑝:𝐹, 𝑖𝑜:𝑇, 𝑙𝑠⟩
22. resource-analysis ✔ 2.9 ⟨𝑐𝑠:0, 𝑙𝑠⟩ M 65.6 ✔ 1.3 ✔ 2.6 ✔ 0.2 ⟨𝑐𝑠:0, 𝑡𝑝:𝐹, 𝑖𝑜:𝐹, 𝑙𝑠⟩
23. sum-appendix ✔ 1.3 ⟨𝑐𝑠:0, 𝑙𝑠⟩ j 0.1 ✔ 1.2 ✔ 1.8 ✔ 0.0 ⟨𝑐𝑠:0, 𝑡𝑝:𝐹, 𝑖𝑜:𝑇, 𝑙𝑠⟩
geomean for ✔’s: 1.9 1.6 6.7 5.1 0.9

In addition to the above, we also provide 23 unsafe benchmarks.
evDrift analyzed all of them (using the Config in the last column above) in 273s.

verify several benchmarks like lics18-web, higher-order, etc. that Drift cannot. (2) evDrift
establishes concrete relationships between program variables and accumulator variables leading to
increased precision especially in resource-analysis-like benchmarks. (3) evDrift’s abstract domain
adds some inbuilt disjunctivity reasoning that learns different relationships for different final states.
This adds efficiency and precision to evDrift’s analysis as it is able to verify some benchmarks,
like disj-gte that has if-then-else statements, without using trace partitioning. Furthermore, this
disjunctivity enables evDrift to effectively track how individual states transition in every function,
which is especially useful for higher-order programs like intro-ord3 and market.

Due to their similarities, evDrift also inherits a few limitations from Drift. evDrift fails to
verify lics18-hoshrink, which involves non-linear invariants presently not expressible by any of
the abstract domains in the Apron library. Drift evaluates all nodes repeatedly until convergence
of the whole program. We think it is possible to avoid such repetitions by selecting the order in
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which nodes are evaluated based on the data-flow dependency graph. We expect this to bring
significant improvements in practice.
We also evaluated the impact of trace partitioning on the precision and performance of both

Drift and evDrift. For lack of space, the details can be found in Apx. E. In summary, evDrift
is able to verify two more benchmarks with trace partitioning, yet it slows down by 0.8×. Finally,
since evDrift is parametric on abstract domains, it can apply specialized domains when program
features necessitate it. For example, the first program in Fig. 6 involves the mod operator. evDrift is
able to verify this example and four others examples (see benchmarks last-ev-even, order-irrel,
sum-of-ev-even and temperature included with the release of evDrift).

9 Conclusion
We have introduced the first abstract interpretation for inferring types and effects of higher-order
programs. The effect abstract domain disjunctively organizes summaries (abstractions) of partitions
of possible event trace prefixes around the concrete automaton states they reach. Our effects
are captured in a refinement type-and-effect system and we described how to automate their
inference through abstract interpretation. We then showed that our implementation evDrift
enables numerous new benchmarks to be verified (or enables faster verification by 6.3× on Drift-
verifiable programs), as compared with prior effect-less tools (Drift, RCaml/Spacer, MoCHi, and
ReTHFL) which require translations to encode effects.

Related work. We discussed some related works in Sec. 1 and as relevant throughout the paper.
We now remark in some more detail and mention further related works. The work of Pavlinovic
et al. [47] is the most related, but their type system does not include effects or automata, nor do
they support any of our new benchmarks. However, we have been inspired by their work and build
on aspects of their type system, abstract interpretation and implementation.

Several prior works have explored systems for reasoning about sequential effects such as thread
synchronization [12], heap mutation [58], producer effects [59], and temporal properties [21, 36, 44]
as well as unified frameworks for such systems [15, 16, 26]. Notably, our accumulative type and effect
system bears similarity with instances of Gordon’s polymorphic type and effect system [15, 16].
Similar to our work, his framework is parametric in an algebraic structure of effects, a so-called
effect quantale, that abstracts from how effects are accumulated along and across program traces.
However, the focus of [15, 16] is on developing the meta-theory of such type systems rather than
the problem of practical type and effect inference. So there are some key technical differences that
stem from our focus on the latter problem. Notably, sequential composition of effects in an effect
quantale must distribute over joins in both arguments. In contrast, the effect extension operator
in our work must only be a monotone upper-approximation of trace extension (Eq. (1)), a weaker
requirement that gives more flexibility when designing abstract domains for effect inference. We
exploit this flexibility in our implementation to trade precision for efficiency. Gordon and Yun [17]
explore constraint-based type inference and error localization algorithms for effect quantales, but
they do not consider any instances of the general type system that feature dependent effects and
type refinements comparable to ours.

Zhou et al. [66] propose Hoare Automata Types (HAT), which augment a refinement type system
with an automata-based representation of pre- and post conditions for tracking sequential effects.
Unlike our work, which focuses on effect inference, their work provides an algorithm for checking
user-provided type and effect annotations. The user expresses temporal effects in linear temporal
logic (LTL) on finite traces (respectively, symbolic regular languages) [14]. These formulas are
then compiled to a variant of symbolic automata [9], enabling SMT-based type checking. The
compilation to automata requires that the underlying symbolic automata class is closed under
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effective complementation. This limits expressivity. Notably, it rules out accumulator registers
like those supported by SAA. In contrast, to enable automatic effect inference, our approach
approximates the rich SAA semantics by abstract interpretation using a broad class of abstract
domains (such as polyhedra, which are not closed under complementation). That said, HAT provide
support for rich properties of algebraic data types, which our current implementation does not
yet handle. Though, we see the extension of the analysis with support for algebraic data types as
mostly orthogonal to the handling of effects.
Nguyen et al. [45] present a method for verifying contracts of stateful untyped higher-order

programs. The analysis uses symbolic execution and relies on a form of predicate abstraction to
obtain refinement predicates for over-approximating the program semantics. Unlike our whole
program analysis, this approach is compositional, enabling the verification of program components.
However, the analysis requires user-provided contracts to enable this compositional analysis.
Hofmann and Chen [21] discuss abstractions of Büchi automata, building their abstractions

by using equivalence classes and subsequences of traces to separately summarize the finite and
the infinite traces. They then discuss a Büchi type & effect system, but it is not accumulative
in nature, nor do they provide an implementation. Murase et al. [43] described a method of
verifying temporal properties of higher-order programs through the Vardi [62] reduction to fair
termination. We considered using some of their benchmarks, however none were suitable because
the overlap between their work and ours is limited for two reasons: (i) they focus on verifying
both liveness and safety while we only verify safety properties and (ii) we support expressive SAA-
based safety properties, which they do not support. RCaml is a verifier for OCaml-like programs
with refinement types, is based on extensions of Constrained Horn Clauses and is part of CoAR.
RCaml was developed as part of several works [30, 37, 52]. Kobayashi’s [32, 33] higher-order model
checking, notably the approaches based on counterexample-guided abstraction refinement, CEGAR,
is orthogonal to our proposed analysis. We make different trade-offs both in terms of algorithmic
techniques as well as theoretical guarantees. In particular, unlike CEGAR-based approaches, our
analysis is guaranteed to always terminate (although, CEGAR-based approaches can also show
that the program is unsafe). Recently, Yamada et al. [65] explored the relationship between Dijkstra
Monads [58] and the higher-order fixpoint logic HFL(Z) [34] for automated verification of higher-
order programs [35]. Their proposed verification approach has been implemented in the tool
ReTHFL [27], which we have included in our experimental comparison.
We have focused on events/effects that simply emit a value (ev 𝑣) that is unobservable to the

program, and merely appears in the resulting event trace. By contrast, numerous recent works are
focused on higher-order programming languages with algebraic effects and their handlers. Such
features allow programmers to define effects in the language, and create exception-like control
structures for how to handle the effects. Dal Lago and Ghyselen [8] detail semantics and model
checking problems for higher-order programs that have effects such as references, effect handlers,
etc. Although this work is quite general, it focuses on semantics and decidability, does not specifically
target symbolic accumulator properties, and does not include an implementation. Kawamata et al.
[30] discuss a refinement type system for algebraic effects and handlers that supports changes to
the so-called “answer type.”

Future work. A natural next direction is to automate verification of properties extend beyond
safety to liveness specified by, say, Büchi automata or other infinite word automata, perhaps with
an accumulator. Such an extension would require infinite trace semantics for the programming
language and type & effect system (e.g. [36]), as well as a combination of both least and greatest
fixpoint reasoning for abstract interpretations.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 362. Publication date: October 2025.



362:26 Nicola, Agarwal, Koskinen, and Wies

Data-Availability Statement
We include the extended version of the paper that includes a few appendices in the supplement
zip file along with the submission. It includes a completely functioning codebase for evDrift and
our benchmark set. Since evDrift is built on top of Drift, one can also run Drift using the codebase
we provide. We include a readme file for running the tool and running the scripts to generate the
results for Drift and evDrift in the tables in this paper. A user can also give their own programs
along with an automaton property specification file for analysis.
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A Soundness of Accumulative Dependent Type and Effect System
In this section we prove Theorem 4.1. We start from an instantiation of our type system that
satisfies the assumption specified in §4. That is, we assume a lattice of base refinement types ⟨B, ⊑𝑏
,⊥𝑏,⊤𝑏,⊔𝑏,⊓𝑏⟩ and a lattice of effects ⟨Φ, ⊑𝜙 ,⊔𝜙 ,⊓𝜙 ,⊥𝜙 ,⊤𝜙 ⟩ with their concretization functions
and abstract domain operations.

As outlined in §4, we fist establish a connection between abstract typing derivations and deriva-
tions in a concretized version of the type system.

We obtain this concretized version by instantiating the abstract domain of base refinement types
with the powerset lattice ℘(V × Env) and the concretization function as identity. We likewise
instantiate the abstract domain of dependent effects with the powerset lattice ℘(V∗ × Env). All
abstract domain operations are defined by the most precise operator that satisfies the respective
soundness condition. For example, we have for all 𝛽 ⊆ V × Env and concrete typing environments
Γ:

𝛽 [Γ] def
= 𝛽 ∩ (V × 𝛾 t (Γ)) .

To distinguish the operators {𝜈 = 𝑐} for constructing base refinement types from constant values
𝑐 for the two versions of the type system, we annotate it with their respective domain, writing
{𝜈 = 𝑐}B for the abstract version and {𝜈 = 𝑐}℘(V×Env) for the concrete one.
For a type 𝜏 in the abstract type system, we define its concretization 𝜏𝛾 recursively as follows:

𝛽𝛾 = 𝛾𝑏 (𝛽)
(𝑥 : (𝜏1&𝜙1) → 𝜏2&𝜙2)𝛾 = 𝑥 : (𝜏𝛾1&𝛾

𝜙 (𝜙1)) → 𝜏
𝛾

2&𝛾
𝜙 (𝜙2)

(∃𝑥 : 𝜏1 . 𝜏2)𝛾 = ∃𝑥 : 𝜏𝛾1 . 𝜏
𝛾

2 .

For an abstract typing environment Γ we denote by Γ𝛾 the concrete typing environment obtained
from Γ by applying the above concretization pointwise to each binding in Γ. For consistency of
notation, we use the short-hand 𝜙𝛾 to denote the concrete effect 𝛾𝜙 (𝜙) associated with an abstract
effect 𝜙 ∈ Φ.
The following three lemmas establish that (sub)typing derivations in the abstract instantiation

of the type system can be replayed in the concrete one.

Lemma A.1. If wf (Γ), then wf (Γ𝛾 ).

Proof. Straightforward by induction on the length of Γ and the structure of the types bound in
Γ. □

Lemma A.2. If Γ ⊢ 𝜏 <: 𝜏 ′, then Γ𝛾 ⊢ 𝜏𝛾 <: 𝜏 ′𝛾 .

Proof. Straightforward by induction on the derivation of Γ ⊢ 𝜏 <: 𝜏 ′ and case analysis on the
last rule applied in the derivation. For the base case of rule s-base we use the soundness condition
on 𝛽 [Γ] to establish 𝛽𝛾 [Γ𝛾 ] ⊆ 𝛾𝑏 (𝛽 [Γ]). □

Lemma A.3. If Γ;𝜙 ⊢ e : 𝜏&𝜙 ′, then Γ𝛾 ;𝜙𝛾 ⊢ e : 𝜏𝛾&𝜙 ′𝛾 .

Proof. The proof goes by induction on the derivation of Γ;𝜙 ⊢ e : 𝜏&𝜙 ′. We do case analysis on
the last typing rule that has been applied in the derivation.

Case t-var We have e = 𝑥 for some 𝑥 such that Γ(𝑥) = 𝜏 . We must also have 𝜙 = 𝜙 ′. From the
definition of Γ𝛾 it follows that Γ𝛾 (𝑥) = 𝜏𝛾 and, hence, Γ𝛾 ;𝜙𝛾 ⊢ 𝑥 : 𝜏𝛾&𝜙𝛾 using rule t-var.

Case t-const We have e = 𝑐 for some 𝑐 such that 𝜏 = {𝜈 = 𝑐}B . Moreover, we must have
𝜙 ′ = 𝜙 . Using rule t-const we infer Γ𝛾 ;𝜙𝛾 ⊢ 𝑥 : {𝜈 = 𝑥}℘(V×Env)&𝜙𝛾 . By assumption on
{𝜈 = 𝑥}B we have 𝜏𝛾 = 𝛾𝑏 ({𝜈 = 𝑥}B) ⊇ {𝑐} × Env = {𝜈 = 𝑥}℘(V×Env) . It follows that

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 362. Publication date: October 2025.



Abstract Interpretation of Temporal Safety Effects of Higher Order Programs 362:31

{𝜈 = 𝑥}℘(V×Env) [Γ𝛾 ] ⊆ 𝜏𝛾 . As 𝜙𝛾 [Γ] ⊆ 𝜙𝛾 holds trivially, we can use rule t-weaken to
derive Γ𝛾 ;𝜙𝛾 ⊢ 𝑥 : 𝜏𝛾&𝜙𝛾 .

Case t-ev We have 𝑒 = ev e1 for some e1 and 𝜏 = {𝜈 = •◦}B . Moreover, there exists 𝜙1 and 𝛽1
such that Γ;𝜙 ⊢ e1 : 𝛽1&𝜙1 and 𝜙 ′ = 𝜙1 ⊙ 𝛽1. By induction hypothesis we have Γ𝛾 ;𝜙𝛾 ⊢ e1 :
𝛽
𝛾

1&𝜙
𝛾

1 . Thus, using rule t-ev we can derive Γ𝛾 ;𝜙𝛾 ⊢ ev e1 : {𝜈 = •◦}℘(V×Env)&(𝜙𝛾 ⊙ 𝛽
𝛾

1 ).
We have by assumption that 𝜏𝛾 = 𝛾𝑏 ({𝜈 = •◦}B) ⊇ {•◦} × Env = {𝜈 = •◦}℘(V×Env) . Moreover,
we trivially have 𝜙𝛾 [Γ𝛾 ] ⊆ 𝜙𝛾 . Finally, by assumption on ⊙ we have 𝜙 ′𝛾 = 𝛾𝑏 (𝜙1 ⊙ 𝛽1) ⊇
𝛾𝜙 (𝜙1) ⊙𝛾𝑏 (𝛽1) = 𝜙

𝛾

1 ⊙ 𝛽
𝛾

1 . It follows that (𝜙
𝛾

1 ⊙ 𝛽
𝛾

1 ) [Γ𝛾 ] ⊆ 𝜙 ′𝛾 . Using rule t-weaken we can
thus derive Γ𝛾 ;𝜙𝛾 ⊢ e : 𝜏𝛾&𝜙 ′𝛾 .

Case t-app We have e = e1 e2 for some e1 and e2. Moreover, there exist 𝜓 , 𝜙1, and 𝜙2 as well
as 𝜏 ′, 𝜏1 and 𝜏2 such that (𝜏&𝜙 ′) = ∃𝑥 : 𝜏2. (𝜏 ′&𝜓 ), Γ;𝜙 ⊢ 𝑒1 : 𝜏1&𝜙1, Γ;𝜙1 ⊢ 𝑒2 : 𝜏2&𝜙2,
and 𝜏1 = 𝑥 : (𝜏2&𝜙2) → 𝜏 ′&𝜓 . By induction hypothesis we have Γ𝛾 ;𝜙𝛾 ⊢ 𝑒1 : 𝜏𝛾1&𝜙

𝛾

1 and
Γ𝛾 ;𝜙𝛾1 ⊢ 𝑒2 : 𝜏

𝛾

2&𝜙
𝛾

2 . Using rule t-app we conclude Γ
𝛾 ;𝜙𝛾 ⊢ e : 𝜏𝛾&(∃𝑥 : 𝜏𝛾2 .𝜓

𝛾 ). We trivially
have Γ𝛾 ⊢ 𝜏𝛾 <: 𝜏𝛾 and 𝜙𝛾 [Γ𝛾 ] ⊆ 𝜙𝛾 . Moreover, by soundness of strengthening we have
(∃𝑥 : 𝜏𝛾2 .𝜓

𝛾 ) ⊆ 𝛾𝜙 (∃𝑥 : 𝜏2.𝜓 ) = 𝜙 ′𝛾 . It follows that (∃𝑥 : 𝜏𝛾2 .𝜓
𝛾 ) [Γ𝛾 ] ⊆ 𝜙 ′𝛾 . Hence, using

rule t-weaken we derive Γ𝛾 ;𝜙𝛾 ⊢ e : 𝜏𝛾&𝜙 ′𝛾 .
Case t-abs We have 𝜙 = 𝜙 ′, e = (𝜆𝑥 . e1) for some 𝑥 and e1, and 𝜏 = 𝑥 : (𝜏2&𝜙2) → 𝜏1&𝜙1 such

that Γ, 𝑥 : 𝜏2;𝜙2 ⊢ e1 : 𝜏1&𝜙1. By induction hypothesis, we obtain Γ𝛾 , 𝑥 : 𝜏𝛾2 ;𝜙
𝛾

2 ⊢ e1 : 𝜏
𝛾

1&𝜙
𝛾

1 .
Using rule t-abs we can immediately conclude Γ𝛾 ;𝜙𝛾 ⊢ e : 𝜏𝛾&𝜙 ′𝛾 .

Case t-cut There must exist 𝑣 , 𝜏 ′, 𝜏 ′′, 𝜓 , and 𝑥 such that Γ;𝜙 ⊢ 𝑣 : 𝜏 ′&𝜙 , 𝑥 ∉ fv(𝑣), Γ, 𝑥 :
𝜏 ′;𝜙 ⊢ e : 𝜏 ′′&𝜓 , 𝜏 = ∃𝑥 : 𝜏 ′ . 𝜏 ′′, and 𝜙 ′ = ∃𝑥 : 𝜏 ′ .𝜓 . By induction hypothesis, we have
Γ𝛾 ;𝜙𝛾 ⊢ 𝑣 : 𝜏 ′𝛾&𝜙𝛾 and Γ𝛾 , 𝑥 : 𝜏 ′𝛾 ;𝜙𝛾 ⊢ e : 𝜏 ′′𝛾&𝜓𝛾 . Using rule t-cut we can thus derive
Γ𝛾 ;𝜙𝛾 ⊢ e : ∃𝑥 : 𝜏 ′𝛾 . (𝜏𝛾&𝜓𝛾 ). We trivially have Γ𝛾 ⊢ 𝜏𝛾 <: 𝜏𝛾 and 𝜙𝛾 [Γ𝛾 ] ⊆ 𝜙𝛾 . Moreover,
by soundness of strengthening we have (∃𝑥 : 𝜏 ′𝛾 .𝜓𝛾 ) ⊆ 𝛾𝜙 (∃𝑥 : 𝜏 ′ .𝜓 ) = 𝜙 ′𝛾 . It follows that
(∃𝑥 : 𝜏 ′𝛾 .𝜓𝛾 ) [Γ𝛾 ] ⊆ 𝜙 ′𝛾 . Hence, using rule t-weaken we derive Γ𝛾 ;𝜙𝛾 ⊢ e : 𝜏𝛾&𝜙 ′𝛾 .

Case t-weaken There must exist 𝜓 , 𝜓 ′, and 𝜏 ′ such that 𝜙 [Γ] ⊑𝜙 𝜓 , Γ;𝜓 ⊢ e : 𝜏 ′&𝜓 ′, Γ ⊢
𝜏 ′ <: 𝜏 , and𝜓 ′ [Γ] ⊑𝜙 𝜙 ′. By induction hypothesis, we have Γ𝛾 ;𝜓𝛾 ⊢ e : 𝜏 ′𝛾&𝜓 ′𝛾 . Because of
monotonicity of 𝛾𝜙 , we have 𝛾𝜙 (𝜙 [Γ]) ⊆ 𝛾𝜙 (𝜓 ) =𝜓𝛾 . Because of the soundness assumption
on effect strengthening, we also have 𝜙𝛾 [Γ𝛾 ] = 𝛾𝜙 (𝜓 ) ∩ 𝛾 t (Γ) ⊆ 𝛾𝜙 (𝜙 [Γ]). Thus, we obtain
𝜙𝛾 [Γ𝛾 ] ⊆ 𝜓𝛾 . Using similar reasoning, we infer𝜓 ′𝛾 [Γ𝛾 ] ⊆ 𝜙 ′𝛾 . Finally, we apply Theorem A.2
to obtain Γ𝛾 ⊢ 𝜏 ′𝛾 <: 𝜏𝛾 . Then we can use rule t-weaken to derive Γ𝛾 ;𝜙𝛾 ⊢ e : 𝜏𝛾&𝜙𝛾 . □

We next show that the concrete instantiation of the type system satisfies progress and preserva-
tion. To ease notation, from here on meta variables like 𝜏 , 𝜙 , and Γ refer to types and effects of the
concrete instantiation of the type system (unless specified otherwise).

We start with two technical lemmas that are needed to prove progress.
Lemma A.4 (Subtyping monotone). If Γ ⊢ 𝜏 <: 𝜏 ′, ⟨𝑣, 𝜌⟩ ∈ 𝜏 , and 𝜌 ∈ 𝛾 t (Γ), then ⟨𝑣, 𝜌⟩ ∈ 𝜏 ′.
Lemma A.5 (Value typing). If Γ;𝜙 ⊢ 𝑣 : 𝜏&𝜙 ′, then for all 𝜙 ′′ with dom(𝜙 ′′) ⊆ dom(Γ), we have

𝜙 ′′, Γ;𝜙 ′′ ⊢ 𝑣 : 𝜏&𝜙 ′′. Moreover, for all 𝜌 ∈ 𝛾 t (Γ), ⟨𝑣, 𝜌⟩ ∈ 𝛾 t (𝜏).
Proof. The proof goes by induction on the derivation of Γ;𝜙 ⊢ 𝑣 : 𝜏&𝜙 ′. We do case analysis on

the last typing rule that has been applied in the derivation.
Case t-var, t-app, and t-ev These rules cannot be the last rules that have been applied in the

derivation since they do not apply to values.
Case t-const We must have 𝜏 = {𝜈 = 𝑣} ∈ B and 𝜙 ′ = 𝜙 . Let 𝜙 ′′ be such that dom(𝜙 ′′) ⊆

dom(Γ). Using rule t-const we can immediately derive Γ;𝜙 ′′ ⊢ 𝑣 : 𝜏&𝜙 ′′. Moreover, let
𝜌 ∈ 𝛾 t (Γ). By assumption on the operator {𝜈 = 𝑣} we have {𝜈 = 𝑣} ⊇ {𝑣} × Env. It follows
that we have ⟨𝑣, 𝜌⟩ ∈ {𝜈 = 𝑣} = 𝜏 = 𝛾 t (𝜏).

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 362. Publication date: October 2025.



362:32 Nicola, Agarwal, Koskinen, and Wies

Case t-abs We must have 𝑣 = 𝜆𝑥 . e for some 𝑥 and e. Moreover, there must be 𝜏1 and 𝜏2, 𝜙1
and 𝜙2 such that Γ, 𝑥 : 𝜏2;𝜙2 ⊢ e : 𝜏1&𝜙1 and 𝜏 = (𝑥 : (𝜏2&𝜙2) → 𝜏1&𝜙1). Let 𝜙 ′′ be such
that dom(𝜙 ′′) ⊆ dom(Γ). Using rule t-abs we can immediately derive Γ;𝜙 ′′ ⊢ 𝑣 : 𝜏&𝜙 ′′.
Moreover, let 𝜌 ∈ 𝛾 t (Γ). We have ⟨𝑣, 𝜌⟩ ∈ V × Env = 𝛾 t (𝜏).

Case t-weaken Theremust exist𝜓 ,𝜓 ′, and 𝜏 ′ such that𝜙 [Γ] ⊑𝜙 𝜓 , Γ;𝜓 ⊢ 𝑣 : 𝜏 ′&𝜓 ′, Γ ⊢ 𝜏 ′ <: 𝜏 ,
and 𝜓 ′ [Γ] ⊑𝜙 𝜙 ′. Let 𝜙 ′′ be such that dom(𝜙 ′′) ⊆ dom(Γ). By induction hypothesis, we
conclude Γ;𝜙 ′′ ⊢ 𝑣 : 𝜏 ′&𝜙 ′′. By monotonicity of strengthening, we have 𝜙 ′′ [Γ] ⊑𝜙 𝜙 ′′. Using
rule t-weaken we can thus conclude Γ;𝜙 ′′ ⊢ 𝑣 : 𝜏&𝜙 ′′. Moreover, let 𝜌 ∈ 𝛾 t (Γ). By induction
hypothesis, we have ⟨𝑣, 𝜌⟩ ∈ 𝛾 t (𝜏 ′). Then by Theorem A.4 we have ⟨𝑣, 𝜌⟩ ∈ 𝛾 t (𝜏).

Case t-cut There must exist 𝑣 ′, 𝜏 ′, 𝜏 ′′, 𝜓 , and 𝑥 such that Γ;𝜙 ⊢ 𝑣 ′ : 𝜏 ′&𝜙 , 𝑥 ∉ fv(𝑣), Γ, 𝑥 :
𝜏 ′;𝜙 ⊢ 𝑣 : 𝜏 ′′&𝜓 , 𝜏 = ∃𝑥 : 𝜏 ′ . 𝜏 ′′, and 𝜙 ′ = ∃𝑥 : 𝜏 ′ .𝜓 . Let 𝜙 ′′ be such that dom(𝜙 ′′) ⊆
dom(Γ). Then also dom(𝜙 ′′) ⊆ dom(Γ, 𝑥 : 𝜏 ′). It follows by induction hypothesis that
Γ, 𝑥 : 𝜏 ′;𝜙 ′′ ⊢ 𝑣 : 𝜏 ′′&𝜙 ′′. Using rule t-cut we can thus derive Γ;𝜙 ′′ ⊢ 𝑣 : 𝜏&𝜙 ′′. Moreover,
let 𝜌 ∈ 𝛾 t (Γ). By induction hypothesis, we have ⟨𝑣 ′, 𝜌⟩ ∈ 𝛾 t (𝜏 ′). Since ∉ dom(Γ), it follows
that 𝜌 [𝑥 ↦→ 𝑣 ′] ∈ 𝛾 t (Γ, 𝑥 : 𝜏 ′). Then again by induction hypothesis, ⟨𝑣, 𝜌 [𝑥 ↦→ 𝑣 ′]⟩ ∈ 𝛾 t (𝜏 ′′).
From the definition of 𝛾 t, we conclude ⟨𝑣, 𝜌⟩ ∈ 𝛾 t(∃𝑥 : 𝜏 ′ . 𝜏 ′′) = 𝛾 t (𝜏). □

We are now ready to show that the concrete instantiation of the type system satisfies progress.

Theorem A.6 (Progress). Let e be a closed term. If Γ;𝜙 ⊢ e : 𝜏&𝜙 ′, then for all ⟨𝜋, 𝜌⟩ ∈ 𝜙 [Γ], e is
a value and ⟨𝜋, 𝜌⟩ ∈ 𝜙 ′ or there exist 𝜋 ′ and e′ such that ⟨e, 𝜋⟩ → ⟨e′, 𝜋 ′⟩.

Proof. The proof goes by induction on the derivation of Γ;𝜙 ⊢ 𝑒 : 𝜏&𝜙 ′. We do case analysis on
the last typing rule that has been applied in the derivation.

Case t-weaken We have Γ;𝜓 ⊢ e : 𝜏 ′&𝜓 ′ for some𝜓 , 𝜏 ′, and𝜓 ′ such that𝜙 [Γ] ⊆ 𝜓 ,𝜓 ′ [Γ] ⊆ 𝜙 ′,
and Γ ⊢ 𝜏 ′ <: 𝜏 . Let ⟨𝜋, 𝜌⟩ ∈ 𝜙 [Γ]. Then also 𝜌 ∈ 𝛾 t (Γ). From 𝜙 [Γ] ⊆ 𝜓 we then conclude
⟨𝜋, 𝜌⟩ ∈ 𝜓 [Γ]. It follows from the induction hypothesis that 𝑒 is a value and ⟨𝜋, 𝜌⟩ ∈ 𝜓 ′ or
there exist 𝜋 ′ and e′ such that ⟨e, 𝜋⟩ → ⟨e′, 𝜋 ′⟩. In the second case we are done. In the first
case, we use𝜓 ′ [Γ] ⊆ 𝜙 ′ and 𝜌 ∈ 𝛾 t (Γ) to conclude that ⟨𝜋, 𝜌⟩ ∈ 𝜙 ′.

Case t-cut We have 𝜏 = ∃𝑥 : 𝜏 ′ . 𝜏 ′′ and 𝜙 = ∃𝑥 : 𝜏 ′ . 𝜙 ′′ such that Γ;𝜙 ⊢ 𝑣 : 𝜏 ′&𝜙 , and
Γ, 𝑥 : 𝜏 ′;𝜙 ⊢ e : 𝜏 ′′&𝜙 ′′. Therefore, we must also have wf (Γ, 𝑥 : 𝜏 ′). Let ⟨𝜋, 𝜌⟩ ∈ 𝜙 [Γ]. Then
also 𝜌 ∈ 𝛾 t (Γ). By Theorem A.5, we have ⟨𝑣, 𝜌⟩ ∈ 𝛾 t (𝜏 ′). It follows from the definition of
𝛾 t and wf (Γ, 𝑥 : 𝜏 ′) that 𝜌 [𝑥 ↦→ 𝑣] ∈ 𝛾 t (Γ, 𝑥 : 𝜏 ′). From the monotonicity of strengthening,
it follows that ⟨𝑣, 𝜌⟩ ∈ 𝜙 [∅] = 𝜙 . Moreover, dom(𝜙) ⊆ dom(Γ) and 𝑥 ∉ dom(Γ) implies
𝑥 ∉ dom(𝜙). Therefore, ⟨𝜋, 𝜌 [𝑥 ↦→ 𝑣]⟩ ∈ 𝜙 . By the definition of strengthening we now
conclude ⟨𝜋, 𝜌 [𝑥 ↦→ 𝑣]⟩ ∈ 𝜙 [Γ, 𝑥 : 𝜏 ′]). From the induction hypothesis, it then follows that
either e is a value and ⟨𝜋, 𝜌 [𝑥 ↦→ 𝑣]⟩ ∈ 𝜙 ′′ or there exists e′ and 𝜋 ′, such that ⟨e, 𝜋⟩ → ⟨e′, 𝜋 ′⟩.
In the second case we are done. In the first case, we note that ⟨𝜋, 𝜌 [𝑥 ↦→ 𝑣]⟩ ∈ 𝜙 ′′ and
⟨𝑣, 𝜌⟩ ∈ 𝛾 t (𝜏 ′) implies ⟨𝜋, 𝜌⟩ ∈ (∃𝑥 : 𝜏 ′ . 𝜙 ′′) = 𝜙 ′.

Case t-const and t-abs In both cases e is a value and𝜙 = 𝜙 ′. So the claim follows immediately.
Case t-var By assumption, e is closed. So this rule cannot be the last rule used in the typing

derivation.
Case t-ev We have 𝑒 = ev e1 for some e1. Moreover, there exists 𝜙1 and 𝛽1 such that Γ;𝜙 ⊢ e1 :

𝛽1&𝜙1 and 𝜙 ′ = 𝜙1 ⊙ 𝛽1.
Suppose e1 is not a value. Let ⟨𝜋, 𝜌⟩ ∈ 𝜙 [Γ] and 𝜌 ∈ 𝛾 t (Γ). By induction hypothesis, there
must exist 𝜋 ′ and e′1 such that ⟨e1, 𝜋⟩ → ⟨e′1, 𝜋 ′⟩. Thus, we also have ⟨e, 𝜋⟩ → ⟨e′, 𝜋 ′⟩ for
e′ = ev e′1 by rule e-context.
Suppose on the other hand that e1 is a value. Let ⟨𝜋, 𝜌⟩ ∈ 𝜙 [Γ]. We have ⟨e, 𝜋⟩ → ⟨e′, 𝜋 ′⟩ for
e′ = •◦ and 𝜋 ′ = 𝜋 · e1 by rule e-ev.
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Case t-app We have e = e1 e2 for some e1 and e2. Moreover, there exist𝜓 , 𝜙1 and 𝜙2 as well as
𝜏 ′, 𝜏1 and 𝜏2 such that Γ;𝜙 ⊢ 𝑒1 : 𝜏1&𝜙1, Γ;𝜙1 ⊢ 𝑒2 : 𝜏2&𝜙2, and 𝜏1 = 𝑥 : (𝜏2&𝜙2) → 𝜏 ′&𝜓 .
If e1 is not a value, then by induction hypothesis, for all ⟨𝜋, 𝜌⟩ ∈ 𝜙 [Γ] there exist 𝜋 ′ and e′1
such that ⟨e1, 𝜋⟩ → ⟨e′1, 𝜋 ′⟩. It follows that ⟨e, 𝜋⟩ → ⟨e′, 𝜋 ′⟩ for e′ = e′1 e2 by rule e-context.
The case where e1 is a value but e2 is not is similar to the previous case.
Thus, let us assume that both e1 and e2 are values. Since 𝜏1 = 𝑥 : (𝜏2&𝜙2) → 𝜏 ′&𝜓 and 𝑒1
is a value, we must have 𝑒1 = 𝜆𝑥. e for some 𝑥 and e. It follows for all ⟨𝜋, 𝜌⟩ ∈ 𝜙 [Γ] that
⟨e, 𝜋⟩ → ⟨e′, 𝜋 ′⟩ for e′ = e[e2/𝑥] and 𝜋 ′ = 𝜋 by rule e-app. □

We next turn to proving preservation. Again, we start with some technical lemmas.

Lemma A.7. If Γ, 𝑥 : 𝜏𝑥 , 𝑦 : 𝜏𝑦 ;𝜙 ⊢ 𝑒 : 𝜏&𝜙 ′ and wf (Γ, 𝑦 : 𝜏𝑦), then Γ, 𝑦 : 𝜏𝑦, 𝑥 : 𝜏𝑥 ;𝜙 ⊢ 𝑒 : 𝜏&𝜙 ′.
Proof. The proof goes by induction on the derivation of Γ, 𝑥 : 𝜏𝑥 , 𝑦 : 𝜏𝑦 ;𝜙 ⊢ 𝑒 : 𝜏&𝜙 ′ using

the fact that wf (Γ, 𝑥 : 𝜏𝑥 , 𝑦 : 𝜏𝑦) and wf (Γ, 𝑦 : 𝜏𝑦) implies (1) wf (Γ, 𝑦 : 𝜏𝑦, 𝑥 : 𝜏𝑥 ), (2) 𝛾 t (Γ, 𝑥 :
𝜏𝑥 , 𝑦 : 𝜏𝑦) = 𝛾 t (Γ, 𝑦 : 𝜏𝑦, 𝑥 : 𝜏𝑥 ), and (3) for all 𝑧 ∈ dom(Γ, 𝑥 : 𝜏𝑥 , 𝑦 : 𝜏𝑦) = dom(Γ, 𝑦 : 𝜏𝑦, 𝑥 : 𝜏𝑥 ),
(Γ, 𝑦 : 𝜏𝑦, 𝑥 : 𝜏𝑥 ) (𝑧) = (Γ, 𝑥 : 𝜏𝑥 , 𝑦 : 𝜏𝑦) (𝑧). □

Lemma A.8. If Γ ⊢ 𝜏 <: 𝜏 ′ and wf (Γ, 𝑥 : 𝜏𝑥 ), then Γ, 𝑥 : 𝜏𝑥 ⊢ 𝜏 <: 𝜏 ′.

Proof. The proof goes by induction on the derivation of Γ ⊢ 𝜏 <: 𝜏 ′, using the fact that for all
𝛽 ⊆ V × Env, we have

𝛽 [Γ, 𝑥 : 𝜏𝑥 ]
= 𝛽 ∩ 𝛾 t (Γ, 𝑥 : 𝜏𝑥 )
= 𝛽 ∩ 𝛾 t (Γ) ∩ { 𝜌 | ∃𝑣 . ⟨𝑣, 𝜌⟩ ∈ 𝛾 t (𝜏𝑥 ) }
⊆ 𝛽 ∩ 𝛾 t (Γ)
= 𝛽 [Γ]

and, similarly, that for all 𝜙 ⊆ V∗ × Env, we have 𝜙 [Γ, 𝑥 : 𝜏𝑥 ] ⊆ 𝜙 [Γ]. □

Lemma A.9. If Γ;𝜙 ⊢ 𝑒 : 𝜏&𝜙 ′ and wf (Γ, 𝑥 : 𝜏𝑥 ), then Γ, 𝑥 : 𝜏𝑥 ;𝜙 ⊢ 𝑒 : 𝜏&𝜙 ′.
Proof. We prove the claim by induction on the derivation of Γ;𝜙 ⊢ e : 𝜏&𝜙 ′. We proceed by

case analysis on the last rule that is applied in the derivation. We only show some of the more
interesting cases.

Case t-var We have 𝜙 = 𝜙 ′ and e = 𝑦 for some 𝑦 ∈ Var such that Γ(𝑦) = 𝜏 . Since wf (Γ, 𝑥 : 𝜏𝑥 ),
we must have 𝑥 ≠ 𝑦. Hence, (Γ, 𝑥 : 𝜏𝑥 ) (𝑦) = 𝜏 . Using rule t-var, we then derive Γ, 𝑥 : 𝜏𝑥 ;𝜙 ⊢
e : 𝜏&𝜙 ′.

Case t-abs We have 𝜙 = 𝜙 ′, e = (𝜆𝑦. e1) for some 𝑦 and e1, and 𝜏 = 𝑦 : (𝜏2&𝜙2) → 𝜏1&𝜙1 such
that Γ, 𝑦 : 𝜏2;𝜙2 ⊢ e1 : 𝜏1&𝜙1. Without loss of generality we have 𝑥 ≠ 𝑦. Since wf (Γ, 𝑥 : 𝜏𝑥 )
and wf (Γ, 𝑦 : 𝜏2), we also have wf (Γ, 𝑦 : 𝜏2, 𝑥 : 𝜏𝑥 ). By induction hypothesis, we obtain
Γ, 𝑦 : 𝜏2, 𝑥 : 𝜏𝑥 ;𝜙2 ⊢ e1 : 𝜏1&𝜙1. Using Theorem A.7 we infer Γ, 𝑥 : 𝜏𝑥𝑦 : 𝜏2;𝜙2 ⊢ e1 : 𝜏1&𝜙1.
Thus, we derive Γ, 𝑥 : 𝜏𝑥 ;𝜙 ⊢ 𝑒 : 𝜏&𝜙 ′ using rule t-abs.

Case t-weaken We have Γ;𝜓 ⊢ e : 𝜏 ′&𝜓 ′ for some𝜓 , 𝜏 ′, and𝜓 ′ such that𝜙 [Γ] ⊆ 𝜓 ,𝜓 ′ [Γ] ⊆ 𝜙 ′,
and Γ ⊢ 𝜏 ′ <: 𝜏 . By induction hypothesis, we have Γ, 𝑥 : 𝜏𝑥 ;𝜓 ⊢ e : 𝜏 ′&𝜓 ′. Moreover, using
Theorem A.8, we infer Γ, 𝑥 : 𝜏𝑥 ⊢ 𝜏 ′ <: 𝜏 . Next, we use 𝜙 [Γ] ⊆ 𝜓 and 𝜙 [Γ, 𝑥 : 𝜏𝑥 ] ⊆ 𝜙 [Γ]
to infer 𝜙 [Γ, 𝑥 : 𝜏𝑥 ] ⊆ 𝜓 . Using similar reasoning, we infer𝜓 ′ [Γ, 𝑥 : 𝜏𝑥 ] ⊆ 𝜙 ′. Thus, we can
apply rule t-weaken to derive the desired Γ, 𝑥 : 𝜏𝑥 ;𝜙 ⊢ e : 𝜏&𝜙 ′. □

Lemma A.10 (Substitution). If Γ;𝜙𝑣 ⊢ 𝑣 : 𝜏𝑣&𝜙 ′𝑣 and Γ, 𝑥 : 𝜏𝑣, Γ′;𝜙 ⊢ e : 𝜏&𝜙 ′, then Γ, 𝑥 :
𝜏𝑣, Γ

′;𝜙 ⊢ e[𝑣/𝑥] : 𝜏&𝜙 ′.
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Proof. We prove the claim by induction on the derivation of Γ, 𝑥 : 𝜏𝑣, Γ′;𝜙 ⊢ e : 𝜏&𝜙 ′. We
proceed by case analysis on the last rule that is applied in the derivation. We only show some of
the cases. The omitted cases are similar to the case for t-abs but follow simpler reasoning.

Case t-const We have 𝜙 = 𝜙 ′ and e = 𝑐 for some constant value 𝑐 . It follows e[𝑣/𝑥] = 𝑐 .
Hence, Γ, 𝑥 : 𝜏𝑣, Γ′;𝜙 ⊢ e[𝑣/𝑥] : 𝜏&𝜙 ′.

Case t-var We have 𝜙 = 𝜙 ′ and e = 𝑦 for some 𝑦 ∈ Var such that (Γ, 𝑥 ↦→ 𝜏𝑣, Γ
′) (𝑦) = 𝜏 . If

𝑥 ≠ 𝑦, then e[𝑣/𝑥] = 𝑦. Hence, we immediately obtain Γ, 𝑥 : 𝜏𝑣, Γ′;𝜙 ⊢ e[𝑣/𝑥] : 𝜏&𝜙 ′.
On the other hand, if 𝑥 = 𝑦, then 𝜏 = 𝜏𝑣 and 𝑒 [𝑣/𝑥] = 𝑣 . Using Γ;𝜙𝑣 ⊢ 𝑣 : 𝜏𝑣&𝜙 ′𝑣 and
Theorem A.5, we first infer Γ;𝜙 ⊢ 𝑣 : 𝜏𝑣&𝜙 . By repeatedly applying Theorem A.9, we can
then derive the desired Γ, 𝑥 : 𝜏𝑣, Γ′;𝜙 ⊢ 𝑣 : 𝜏𝑣&𝜙 .

Case t-abs We have 𝜙 = 𝜙 ′, e = (𝜆𝑦. e1) for some 𝑦 and e1, and 𝜏 = 𝑦 : (𝜏2&𝜙2) → 𝜏1&𝜙1 such
that Γ, 𝑥 : 𝜏𝑣, Γ′, 𝑦 : 𝜏2;𝜙2 ⊢ e1 : 𝜏1&𝜙1. By induction hypothesis, we obtain Γ, 𝑥 : 𝜏𝑣, Γ′, 𝑦 :
𝜏2;𝜙2 ⊢ e1 [𝑣/𝑥] : 𝜏1&𝜙1. Thus, using rule t-abs and 𝑥 ≠ 𝑦, we derive Γ, 𝑥 : 𝜏𝑣, Γ′;𝜙2 ⊢
(𝜆𝑦. e1) [𝑣/𝑥] : 𝜏&𝜙 . □

We now prove that the concrete instantiation of the type system satisfies progress.

Theorem A.11 (Preservation). If ⟨𝑒, 𝜋⟩ → ⟨𝑒′, 𝜋 ′⟩ and 𝜙 ⊢ 𝑒 : 𝜏&𝜙 ′ where ⟨𝜋, 𝜌⟩ ∈ 𝜙 for some
𝜌 . Then there exists 𝜙 ′′ such that 𝜙 ′′ ⊢ 𝑒′ : 𝜏&𝜙 ′ and ⟨𝜋 ′, 𝜌⟩ ∈ 𝜙 ′′.

Proof. We prove the claim by induction on the derivation of 𝜙 ⊢ e : 𝜏&𝜙 ′. We only discuss the
cases for rules t-ev and t-app as they are the most involved.

Case t-ev We have e = ev e1 for some e1 and 𝜏 = {𝜈 = •◦}. Moreover, there exists 𝛽 and 𝜙1 such
that 𝜙 ⊢ 𝑒1 : 𝛽&𝜙1 and 𝜙 ′ = 𝜙1 ⊙ 𝛽1.
The case where e1 is not a value follows from the induction hypothesis.
If e1 is a value, then 𝑒′ = •◦ and 𝜋 ′ = 𝜋 · e1. Moreover, by Theorem A.5 we can assume that
𝜙1 = 𝜙 and ⟨𝑒1, 𝜌⟩ ∈ 𝛽 . From ⟨e1, 𝜌⟩ ∈ 𝛾 t (𝜏1), ⟨𝜋, 𝜌⟩ ∈ 𝜙1, and the requirement on ⊙, we
conclude that ⟨𝜋 ′, 𝜌⟩ ∈ 𝜙 ′. The claim then follows for 𝜙 ′′ = 𝜙 ′.

Case t-app. We have e = e1 e2 for some e1 and e2. Moreover, there exist 𝜙1, 𝜙2, and𝜓 as well
as 𝜏1, 𝜏2, and 𝜏 ′ such that 𝜙 ⊢ e1 : 𝜏1&𝜙1, 𝜙1 ⊢ e2 : 𝜏2&𝜙2, 𝜏1 = 𝑥 : (𝜏2&𝜙2) → 𝜏 ′&𝜓 , and
𝜏&𝜙 ′ = ∃𝑥 : 𝜏2. (𝜏 ′&𝜓 ).
If e1 is not a value, then we must have e′ = e′1 e2 for some e′1 such that ⟨e1, 𝜋1⟩ → ⟨e′1, 𝜋 ′1⟩ for
some 𝜋 ′1. It follows by the induction hypothesis that there exists 𝜙 ′′ such that 𝜙 ′′ ⊢ e′1 : 𝜏1&𝜙1
and ⟨𝜋 ′1, 𝜌⟩ ∈ 𝜙 ′′. Thus, using rule t-app we conclude 𝜙 ′′ ⊢ e′ : 𝜏&𝜙 ′.
The case where e1 is a value but e2 is not is similar to the previous case.
Thus, let us assume that both e1 and e2 are values. Since 𝜏1 = 𝑥 : (𝜏2&𝜙2) → 𝜏 ′&𝜓 and e1 is
a value, we must have e1 = 𝜆𝑥 . 𝑒 for some 𝑥 and 𝑒 . It follows that e′ = e[e2/𝑥] and 𝜋 ′ = 𝜋 .
Moreover, from Theorem A.5 it follows that we may assume 𝜙 = 𝜙1 = 𝜙2. By rule t-abs, we
must have 𝑥 : 𝜏2;𝜙2 ⊢ e : 𝜏 ′&𝜓 . By Theorem A.10 we have 𝑥 : 𝜏2;𝜙2 ⊢ e[𝑒2/𝑥] : 𝜏 ′&𝜓 . Thus,
using rule t-cut, we infer 𝜙2 ⊢ e′ : 𝜏&𝜙 ′. Since 𝜋 ′ = 𝜋 , ⟨𝜋, 𝜌⟩ ∈ 𝜙 and 𝜙 = 𝜙1 = 𝜙2, the claim
then follows by choosing 𝜙 ′′ = 𝜙 . □

Finally, we are ready to prove Theorem 4.1.

Proof of Theorem 4.1. Assume that 𝜙 ⊢ e : 𝜏&𝜙 ′ holds in the abstract type system and let
⟨𝜋, 𝜌⟩ ∈ 𝛾𝑏 (𝜙) and ⟨e′, 𝜋 ′⟩ such that ⟨e, 𝜋⟩ { ⟨e′, 𝜋 ′⟩.
Let ⟨e, 𝜋⟩ = ⟨e0, 𝜋0⟩ → ⟨e1, 𝜋1⟩ → · · · → ⟨e𝑛, 𝜋𝑛⟩ = ⟨e′, 𝜋 ′⟩ be a sequence of reduction steps

used to obtain ⟨e′, 𝜋 ′⟩ from ⟨e, 𝜋⟩ for 𝑛 ≥ 0.
We show by induction on 𝑖 , 0 ≤ 𝑖 ≤ 𝑛 that there exist 𝜙𝑖 such that 𝜙𝑖 ⊢ e : 𝜏𝛾&𝜙 ′𝛾 and ⟨𝜋𝑖 , 𝜌⟩ ∈ 𝜙𝑖 .
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s-bot[d]
𝑡 ≠ ⊤𝑑

⊥𝑑 <: 𝑡

s-base[d]
𝛽1 ⊑𝑏 𝛽2

𝛽1 <: 𝛽2

s-fun[d]
𝑡 ′𝑥 <: 𝑡𝑥 𝑡 [𝑥 : 𝑡 ′𝑥 ] <: 𝑡 ′ [𝑥 : 𝑡 ′𝑥 ]

𝑥 : 𝑡𝑥 → 𝑡 <: 𝑥 : 𝑡 ′𝑥 → 𝑡 ′

s-pair[d]
𝑡1 <: 𝑡 ′1 𝑡2 <: 𝑡 ′2
(𝑡1 × 𝑡2) <: (𝑡 ′1 × 𝑡 ′2)

t-const[d]
[𝜈 = 𝑐]𝑑 [Γ𝑑 ] <: 𝑡

Γ𝑑 ⊢ 𝑐 : 𝑡
t-var[d]

Γ𝑑 (𝑥) [𝜈 = 𝑥] [Γ𝑑 ] <: 𝑡 [𝑣 = 𝑥] [Γ𝑑 ]
Γ𝑑 ⊢ 𝑥 : 𝑡

t-abs[d]
Γ𝑑 , 𝑥 : 𝑡𝑥 ⊢ 𝑒𝑖 : 𝑡𝑖 (𝑥 : 𝑡𝑥 → 𝑡𝑖 ) <: 𝒕

Γ𝑑 ⊢ 𝜆𝑥 .𝑒𝑖 : 𝒕

t-app[d]
Γ𝑑 ⊢ 𝑒𝑖 : 𝑡𝑖 Γ𝑑 ⊢ 𝑒 𝑗 : 𝑡 𝑗 𝑡𝑖 <: (𝑥 : 𝑡 𝑗 → 𝑡)

Γ𝑑 ⊢ 𝑒𝑖 𝑒 𝑗 : 𝑡

t-pair[d]
Γ𝑑 ⊢ 𝑒1 : 𝑡1 Γ𝑑 ⊢ 𝑒2 : 𝑡2

Γ𝑑 ⊢ ⟨𝑒1, 𝑒2⟩ : 𝑡1 × 𝑡2

t-proj[d]
Γ𝑑 ⊢ 𝑒 : 𝑡1 × 𝑡2

Γ𝑑 ⊢ #𝑖 (𝑒) : 𝑡𝑖 , 𝑖 = 1, 2

t-extension-op[d]
Γ𝑑 ⊢ 𝑒1 : 𝜙 𝑒2 : 𝛽 𝜙 ′ = 𝜙 ⊙ 𝛽

Γ𝑑 ⊢ 𝑒1 · 𝑒2 : 𝜙 ′

Fig. 7. Data flow refinement type system

If 𝑖 = 0, we can use Theorem A.3 to conclude that 𝜙𝛾 ⊢ e0 : 𝜏𝛾&𝜙 ′𝛾 . The claim then follows for
𝜙0 = 𝜙𝛾 .

If 0 < 𝑖 ≤ 𝑛, then by induction hypothesis we have 𝜙𝑖−1 ⊢ e𝑖−1 : 𝜏𝛾&𝜙 ′𝛾 for some 𝜙𝑖−1 such that
⟨𝜋𝑖−1, 𝜌⟩ ∈ 𝜙𝑖−1. Using Theorem A.11, we conclude that there exists 𝜙𝑖 such that 𝜙𝑖 ⊢ e𝑖 : 𝜏𝛾&𝜙 ′𝛾
and ⟨𝜋𝑖 , 𝜌⟩ ∈ 𝜙𝑖 .
We thus have 𝜙𝑛 ⊢ e′ : 𝜏𝛾&𝜙 ′𝛾 and ⟨𝜋 ′, 𝜌⟩ ∈ 𝜙𝑛 . By assumption there is no ⟨e′′, 𝜌 ′′⟩ such that
⟨e′, 𝜋 ′⟩ → ⟨e′′, 𝜋 ′′⟩. Using Theorem A.6 we thus conclude that e′ must be a value and ⟨𝜋 ′, 𝜌⟩ ∈ 𝜙 ′𝛾 .

□

Next we will describe how to translate programs with effects into monadified programs without
effects. This then allows us to instantiate the inference algorithm to infer effect summaries.

B Soundness of Type and Effect Inference
We now provide an extended discussion on the type and effect inference algorithm introduced in
Sec. 6 At a high level, there are four steps: (i) translate the program so that prefix event traces 𝜋
are symbolically represented at the syntactic level, (ii) extend refinement types and type inference
to support event sequences using our novel effect abstract domain, (iii) the types of those event
sequences then correspond to effects in our type and effect system in §4 and then (iv) ensure that at
every program location i○, the computed summary associates ⊥ with every accepting state of the
SAA that encodes the property of interest. We now describe these steps; for lack of space details
are available in §6.

B.1 Dataflow refinement type system with event sequences as program values
In our instantiation of the Drift type system, we treat event sequences as values that can be
manipulated directly by the program. The only primitive operator defined on event sequences is
𝑒1 · 𝑒2 where 𝑒1 is expected to evaluate to an event sequence 𝜋1 and 𝑒2 to a value 𝑣2. The result
of the operation is the concatenated event sequence 𝜋1 · 𝑣2. We additionally have the constant
expression 𝜖 denoting the empty event sequence. We also have a built-in pair constructor ⟨𝑒1, 𝑒2⟩
and projection operators #1 (𝑒) and #2 (𝑒) on pairs. In order to support inference of effects through
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dataflow refinement inference, we introduce a set of primitive values in the language: sequences of
events. Each event is a primitive value already tracked by the currently support basic refinement
types of the language. We additionally support primitives to construct sequences of events: an
empty sequence and an append operator. Finally, we extend the type system to support effects that
represent event sequences. The instantiated Drift types are then:

𝑡 ::= ⊥𝑑 | ⊤𝑑 | 𝛽 | 𝜙 | 𝑥 : 𝑡1 → 𝑡2 | 𝑡1 × 𝑡2 .

The types ⊤𝑑 and ⊥𝑑 are the extrema of the type lattice. ⊤𝑑 can be thought of as representing a
type error and ⊥𝑑 represents the empty set of values, indicating that evaluation of an expression
never returns, respectively, that the expression is unreachable in the program. 𝛽 is an element of B,
𝜙 is an element of Φ, 𝑥 : 𝑡1 → 𝑡2 is a dependent function type and 𝑡1 × 𝑡2 a pair type.

It comes equipped with type operations 𝑡 [𝑥 = 𝑦], 𝑡 [Γ𝑑 ] that strengthen a type 𝑡 with constraints
corresponding to the equality between two variables, and the typing environment respectively.
These operators are defined similarly for base types to the strengthening operator 𝛽 [Γ] in our type
and effect system, the latter operator recursively pushes the strengthening of compound types to
each constituent type. The type constructor [𝜈 = 𝑐]𝑑 returns a type abstracting constant value
𝑐 . It con by enforcing an equality with the type variable 𝜈 . Lastly, we assume a built-in primitive
concatenation operator · that extends an event prefix with a new event value.
The inferred types of encoded event sequences correspond to effects of the events in the original

program. A challenge in connecting the type inference result with our type and effects system is
that the inference algorithm has been proven sound with respect to a bespoke dataflow semantics
of functional program rather than a standard operational semantics like the one underlying our
system. To bridge this gap, we relate the two type systems at the abstract level by showing that,
from the typing derivation for a translated program produced by the soundness proof of [47], one
can reconstruct a typing derivation in the types and effects system for the original effectful program.
The key soundness Theorem B.1 and its proof are in §B.3. The overall soundness then follows from
Theorem 4.1.

B.2 Translation from effectful programs to programs with sequences
Figure 8a defines the translation function from effectful programs into a functional language where
ev expressions are absent. This function preserves the operational semantics while ensuring that
the events emitted during the program’s execution are carried through the computation.

The translation functions T J𝑒K(𝜛) take two arguments: the effectful expression 𝑒 in the source
language and an expression 𝜛 in the target language that evaluates to the effect prefix produced by
the context of 𝑒 . The transformation follows the call-by-value, left-to-right evaluation order of source
language’s operational semantics. For constant c and variable x expressions, we pair them with the
event prefix observed up to the current evaluation context. Lambda abstractions 𝜆𝑥. 𝑒 go through a
syntactic transformation and are then paired with the event prefix in the evaluation environment.
The translated function expressions expects an additional parameter 𝑦 representing the event prefix
observed at the call site. Then, as expected, the translation of the function body considers 𝑦 as the
new event prefix. Thus, a translated function always returns a pair, where the second component
represents the event sequence produced after evaluation of a function call. The translation of
application terms T J𝑒1 𝑒2K(𝜛) ensures the strict-evaluation semantics for our source language. We
here abbreviate the sequence of let bindings, i.e., let 𝑥 = 𝑒 in let 𝑥1 = #1 𝑥 in let 𝑥1 = #2 𝑥 in 𝑒′,
with let ⟨𝑥1, 𝑥2⟩ = #1,2 𝑒 in 𝑒′. The last expression we consider is the event expression. Translation
T Jev 𝑒K(𝜛) follows the order of evaluation by first converting 𝑒 in the context of the current event
prefix and then capturing the event sequence 𝑦 associated with its result value 𝑥 . The result is the
pair consisting of the unit value and the extended event sequence 𝑦 · 𝑥 .
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T J𝑐K(𝜛) def
= ⟨𝑐, 𝜛⟩ T J𝑥K(𝜛) def

= ⟨𝑥,𝜛⟩ T J𝜆𝑥. 𝑒K(𝜛) def
= ⟨𝜆𝑥.𝜆𝑦.(T J𝑒K(𝑦)), 𝜛⟩

T J𝑒1 𝑒2K(𝜛)
def
=

let ⟨𝑥1, 𝑦1⟩ = #1,2 (T J𝑒1K(𝜛)) in
let ⟨𝑥2, 𝑦2⟩ = #1,2 (T J𝑒2K(𝑦1)) in
𝑥1 𝑥2 𝑦2

T Jev 𝑒K(𝜛) def
=

let (𝑥,𝑦) = #1,2 (T J𝑒K(𝜛)) in
⟨•◦, 𝑦 · 𝑥⟩

(a) Forward term tranformation

®T
𝑡
(⊥𝑑 ) def

= ⊥𝑏 ®T
𝑡
(⊤𝑑 ) def

= ⊤𝑏 ®T
𝑡
(𝛽) def

= 𝛽

®T
𝑡
((𝑥 : 𝑡𝑥 ) → (𝜛𝑥 : 𝜙𝑥 ) → 𝑡)) def

= 𝑥 : ®T
𝑡
(𝑡𝑥 )&𝜙𝑥 → ®T

𝑡𝑒
(𝑡) ®T

𝑡𝑒
(⟨𝑡, 𝜙⟩) def

= ®T
𝑡
(𝑡)&𝜙

(b) Backward type and type/effect translation

Fig. 8. Tuple-encoding-based translation

B.3 Soundness
We prove the theorem that inference of type and effect via program translation is sound. Intuitively,
the theorem states that if we can obtain a Drift typing derivation for a translated term, then we can
construct a derivation for the typing judgment in the type and effects systems. The construction uses
backward translation functions ®T

𝑡
and ®T

𝑡𝑒
, defined in Fig. 8b, that embed types in the translated

program back to types and type/effect pairs, respectively.

Theorem B.1. If Γ𝑑 , 𝑦 : 𝜙 ⊢𝑑 T J𝑒K(𝑦) : 𝑡 , then ®T
𝑡
(Γ𝑑 );𝜙 ⊢ 𝑒 : ®T

𝑡𝑒
(𝑡).

The proof of Theorem B.1 builds on the structure of the translated program and relates backward
translatable typing environments and types. We start by showing that base refinement types have
the same type semantics, and that strengthening a base type with respect to the typing environment
in the target type system gives us a semantically equal type after strengthening with backward
translated typing environment in the type and effects system. Then we show that if we have a Drift
subtyping derivation for backward translatable types and typing environments, 𝑡 [Γ𝑑 ] <:𝑑 𝑡 ′ [Γ𝑑 ],
then we can obtain a subtyping derivation ®T

𝑡
(Γ𝑑 ) ⊢ ®T

𝑡
(𝑡) <: ®T

𝑡
(𝑡 ′) in the type and effects system.

The proof proceeds by structural induction on the source expression 𝑒 . The details follow below.
We assume that strengthening operator is extended with the following clauses:

𝑡 [𝑥 ← 𝜙]𝑑 = 𝑡 𝑡 [𝑥 ← (𝑡1 × 𝑡2)]𝑑 = 𝑡 (𝑡1 × 𝑡2) [𝑥 ← 𝑡 ′]𝑑 = (𝑡1 [𝑥 ← 𝑡 ′]𝑑 × 𝑡2 [𝑥 ← 𝑡 ′]𝑑 )

Proposition B.2. If 𝛽𝑑 ∈ R𝑡
𝑋
with scope 𝑋 , 𝛽 ∈ B and 𝑋 = 𝑑𝑜𝑚(𝛽) then 𝛽𝑑 = 𝛽 iff 𝛾𝑑 (𝛽𝑑 ) ∪

(V × 𝐸𝑛𝑣) = 𝛾 (𝛽)

Proof. The proof is immediate from the definition of types. □

A similar result can be shown for base types 𝜙𝑑 representing event sequences. Hereafter, 𝛽 (and
𝜙) denotes base type (and effect) both in the effect-free language and in our language that agrees
on the scope and represent the same values (event sequences).
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Recall the two simultaneously inductive backwards translation functions that embed types in
the translated program back to types and type and effects respectively.

®T
𝑡
(⊥𝑑 ) def

= ⊥𝑏 ®T
𝑡
(⊤𝑑 ) def

= ⊤𝑏 ®T
𝑡
(𝛽) def

= 𝛽

®T
𝑡
((𝑥 : 𝑡𝑥 ) → (𝜛𝑥 : 𝜙𝑥 ) → 𝑡)) def

= 𝑥 : ®T
𝑡
(𝑡𝑥 )&𝜙𝑥 → ®T

𝑡𝑒
(𝑡)

®T
𝑡𝑒
(⟨𝑡, 𝜙⟩) def

= ®T
𝑡
(𝜏)&𝜙

For all the other cases both ®T
𝑡
and ®T

𝑡𝑒
are undefined. We lift this backwards type translation

function to typing environments

®T
𝑡
(∅) = ∅ ®T

𝑡
(Γ𝑑 , 𝑥 : 𝑡) = ®T

𝑡
(Γ𝑑 ), 𝑥 : ®T

𝑡
(𝑡)

Note that even the backward translation functions are partially defined, they are sufficient
to state the following lemmas and theorem that must hold only for the typing derivations of
translated programs. It’s immediate to see that, given a closed program, the typing judgments of
the corresponding translated terms relate typing contexts on which the backward translation is
defined. That does not impose a restriction on the typing derivation of the subexpressions of the
translated terms. In the remaining part of this section, when referring to a typing judgment or
subtyping relation, we consider only typing environments that are in the domain of ®T

𝑡
. Henceforth,

we refer to them as backward translatable type or typing environment.
The following lemma states that strengthening a base type with respect to a backward translatable

typing environment is the same as strengthening it with the translated typing environment in the
type and effect system

Lemma B.3. For a basic refinement type 𝛽 , Γ𝑑 on 𝛽 [Γ𝑑 ]𝑑 = 𝛽 [ ®T
𝑡
(Γ𝑑 )]

Proof. The proof goes by induction on the length of the environment Γ𝑑 .

Case Base We have Γ𝑑 = ∅. The proof is immediate from the base definition of ®T
𝑡
function on

the empty typing environment.
Case Induction We assume the induction hypothesis 𝛽 [Γ𝑑 ]𝑑 = 𝛽 [ ®T

𝑡
(Γ𝑑 )] and we set to

prove that 𝛽 [Γ𝑑 , 𝑥 : 𝑡]𝑑 = 𝛽 [ ®T
𝑡
(Γ𝑑 , 𝑥 : 𝑡)]. We proceed by case analysis on the structure of a

backwards translatable type 𝑡 .
Case 𝑡 = ⊥𝑑 . By the definition we know that 𝛽 [Γ𝑑 , 𝑥 : ⊥𝑑 ]𝑑 = 𝛽 [Γ𝑑 ]𝑑 ⊓𝑏 𝛽 [𝑥 ← ⊥𝑑 ]. From
the definition of type strengthening operator on types, and the definition of meet we get
𝛽 [Γ𝑑 , 𝑥 : ⊥𝑑 ]𝑑 = ⊥𝑏 . Consider now the right side of the equation that after expanding
the backwards type translation on typing environment is 𝛽 [ ®T

𝑡
(Γ𝑑 ), 𝑥 : ®T

𝑡
(⊥𝑑 )]. Using the

translation definition for type⊥𝑑 , and then using the definition of the base type strengthening
with an environment we get 𝛽 [ ®T

𝑡
(Γ𝑑 ), 𝑥 : ⊥𝑏] = ⊥𝑏 , thus concluding the proof of this case.

Case 𝑡 = ⊤𝑑 . Following a similar approach, we expand the strengthening operator on the
left side and get 𝛽 [Γ𝑑 , 𝑥 : ⊤𝑑 ]𝑑 = 𝛽 [Γ𝑑 ]𝑑 . By the definitions of the strengthening operator
and the backwards translation of type ⊤𝑑 , and by the fact that the concretization function is
top-strict we obtain that 𝛽 [ ®T

𝑡
(Γ𝑑 ), 𝑥 : ⊤𝑏] = 𝛽 [ ®T

𝑡
(Γ𝑑 )]. We finalize the proof of this case

by applying the induction hypothesis.
Case 𝑡 = 𝛽 ′. Expanding both sides of the equations and then applying the respective definitions
we get the following proof obligation: 𝛽 [Γ𝑑 ]𝑑 ⊓𝑏 𝛽 [𝑥 ← 𝛽 ′] = 𝛽 [ ®T

𝑡
(Γ𝑑 ), 𝑥 : 𝛽 ′]. Using the

definitions and the induction hypothesis it’s easy to see that they agree in terms of their
semantics given by their respective concretization functions because both types represent
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the most precise abstraction of the same set of concrete values and the infimum is unique.
We use proposition B.2 we conclude the proof
Case 𝑡 = (𝑥 : 𝑡𝑥 ) → (𝜛 : 𝜙) → 𝑡 . The proof is immediate because the strengthening of a base
type with a dependency variable bound to a function is similar to an identity operation. The
argument for this case is the same as Case T-Top.

□

A similar result can be proved for strengthening a base type 𝜙 representing effect sequences.

Lemma B.4. For an effect 𝜙 , 𝜙 [Γ𝑑 ]𝑑 = 𝜙 [ ®T
𝑡
(Γ𝑑 )]

Proof. Because 𝜙 are base refinement types drawn from the domain Φ, the proof is similar to
the proof for lemma B.3. □

We ease the notation by dropping the superscript for the strengthening operator when it is clear
from the context in which type system it is applied.
In the next lemma we show how that if we have a subtyping derivations in the target type

system for backward translatable types and typing environments then we can obtain a derivation
for subtyping in the type and effect system. As expected, the same result holds for effects with
respect to their order relation.

Lemma B.5. For all backward translatable Γ𝑑 , 𝑡, 𝑡 ′, if 𝑡 [Γ𝑑 ] <:𝑑 𝑡 ′ [Γ𝑑 ] then ®T
𝑡
(Γ𝑑 ) ⊢ ®T

𝑡
(𝑡) <:

®T
𝑡
(𝑡 ′)

Proof. The proof is by simultaneous induction over the depth of 𝑡 and 𝑡 ′. We case split on
subtyping rules that apply to backward translatable types.

Case s-bot[d] We have 𝑡 = ⊥𝑑 and 𝑡 ′ is any type, where the following must hold 𝑡 ′ ≠ ⊤𝑑 .
From the definition of translation of ⊥𝑑 and the definition of strengthening operator, we
get that that 𝑡 [Γ𝑑 ] = ⊥𝑑 . Then, by the definition of translation we get ®T

𝑡
(𝑡) = ⊥𝑏 . Next, we

consider the type structure of 𝑡 ′. If 𝑡 ′ = ⊥𝑑 or 𝑡 ′ = 𝛽 ′, then the proof is immediate as the
ordering holds in the domain of basic refinement types and we can apply s-base. If it’s a
function type case, we must have 𝑡 ′ = (𝑥 : 𝑡1) → (𝜛 : 𝜙1) → 𝑡2, with its type translated
backward to ®T

𝑡
(𝑡 ′) = 𝑥 : ®T

𝑡
(𝑡1)&𝜙 → ®T

𝑡𝑒
(𝑡2). The rule is immediate following the premise

that the function in the type and effect system is different from ⊤.
Case s-base[d] Follows immediately from lemma B.3, reductive property of strengthening and

rule s-base
Case s-fun[d] We can have 𝑡 = (𝑥 : 𝑡1) → (𝜛 : 𝜙1) → 𝑡2 and 𝑡 ′ = (𝑥 : 𝑡 ′1) → (𝜛 : 𝜙 ′1) → 𝑡 ′2.

From subtyping rule premises we get the proof that input type and effect are contravariant,
and output type is covariant. We must have 𝑡 ′1 <:𝑑 𝑡1, 𝜙 ′1 [Γ𝑑 , 𝑥 : 𝑡 ′1] <:𝑑 𝜙1 [Γ𝑑 , 𝑥 : 𝑡 ′1] and
𝑡2 [Γ𝑑 , 𝑥 : 𝑡 ′1] <:𝑑 𝑡 ′2 [Γ𝑑 , 𝑥 : 𝑡1]. We know that 𝑡2 and 𝑡 ′2 are pair types and we can use the
definition of strengthening that is applied component wise. Finally, we use the induction
hypothesis and rule s-fun to conclude the proof.

□

LemmaB.6. For all backward translatable Γ𝑑 , and effects𝜙, 𝜙 ′, if𝜙 [Γ𝑑 ] <:𝑑 𝜙 ′ [Γ𝑑 ] then𝜙 [ ®T
𝑡
(Γ𝑑 )] ⊑𝜙

𝜙 ′ [ ®T
𝑡
(Γ𝑑 )]

Proof. The proof is similar to the proof for B.5 □

We are now ready to prove the theorem B.1
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Proof. The proof goes by structural induction. We show that we can inductively construct a
derivation tree for a type and effect judgment of term 𝑒 from the derivation trees of its subterms.
We do this by considering each of the possible forms 𝑒 can have.We use Γ = ®T

𝑡
(Γ𝑑 ) in the following.

Case Const We have term 𝑒 = 𝑐 for some constant 𝑐 such that, given a term 𝜛 with type 𝜙 , the
translated term is T [[𝑐]] (𝜛) def

= ⟨𝑐, 𝜛⟩ and Γ𝑑 , 𝜛 : 𝜙 ⊢𝑑 ⟨𝑐, 𝜛⟩ : 𝑡 . By the fact that the translated
term is a pair we must have a proof for t-pair[d], and 𝑡 = 𝑡1 × 𝜙 ′ Using the typing rule
t-proj[d] we retrieve the proofs for individual types Γ𝑑 , 𝜛 : 𝜙 ⊢𝑑 𝑐 : 𝑡1 and Γ𝑑 , 𝜛 : 𝜙 ⊢𝑑 𝜛 : 𝜙 ′
of each pair component.
By rule t-const[d] we know that the most precise type of 𝑐 is [𝜈 = 𝑐]𝑑 [Γ𝑑 , 𝜛 : 𝜙] and that 𝑡1
must be a base refinement type. Let 𝜏 = ®T

𝑡
(𝑡1). By the definition of the backwards translation

for types, 𝜏 ∈ B. From the definition of type semantics for constants we know that both
[𝜈 = 𝑐]𝑑 and {𝜈 = 𝑐}B are the most precise approximations of {𝑐} × 𝐸𝑛𝑣 , therefore they
must be equal. Additionally, we know that [𝜈 = 𝑐]𝑑 [Γ𝑑 , 𝜛 : 𝜙] = [𝜈 = 𝑐]𝑑 [Γ𝑑 ] because by
definition the strengthening with a type information for effects leaves unchanged the type
that is strengthened, and [𝜈 = 𝑐]𝑑 [Γ𝑑 ] <:𝑑 𝑡1 from t-const[d]. Then by lemma B.5 and rule
s-base we obtain that Γ ⊢ {𝜈 = 𝑐}B <: 𝜏 .
Next, we move to derive the effect ordering. From the rule t-var[d] we know that the
following must hold 𝜙 [𝜈 = 𝜛]𝑑 [Γ𝑑 , 𝜛 : 𝜙]𝑑 <: 𝜙 ′ [𝜈 = 𝜛]𝑑 [Γ𝑑 , 𝜛 : 𝜙]𝑑 , that after eliminating
the strengthening operation with 𝜙 is 𝜙 [𝜈 = 𝜛]𝑑 [Γ𝑑 ]𝑑 <: 𝜙 ′ [𝜈 = 𝜛]𝑑 [Γ𝑑 ]𝑑 . By lemma B.6
together with the commutativity and reductive properties of the strengthening operator, we
get 𝜙 [Γ] ⊑𝜙 𝜙 [𝜈 = 𝜛] [Γ] ⊑𝜙 𝜙 ′ [𝜈 = 𝜛] [Γ] ⊑𝜙 𝜙 ′, giving us 𝜙 [Γ𝑑 ] ⊑𝜙 𝜙 ′.
By the reductive property of the strengthening operation we also have 𝜙 [Γ] ⊑𝜙 𝜙

We conclude the proof for Γ;𝜙 ⊢ 𝑐 : 𝜏&𝜙 ′ by using t-weaken together with t-const for
constant 𝑐 instantiated with typing environment Γ and effect 𝜙 , and using the proofs derived
for 𝜙 [Γ] ⊑𝜙 𝜙 , Γ ⊢ {𝜈 = 𝑐}B <: 𝜏 and 𝜙 [Γ] ⊑𝜙 𝜙 ′.

Case Var We have term 𝑒 = 𝑥 for some 𝑥 such that, given a term 𝜛 with type 𝜙 , the translated
term is T [[𝑥]] (𝜛) def

= ⟨𝑥,𝜛⟩ and Γ𝑑 , 𝜛 : 𝜙 ⊢𝑑 ⟨𝑥,𝜛⟩ : 𝑡 . By the fact that the translated term is
a pair we must have a proof for t-pair[d], and 𝑡 = 𝑡1 × 𝜙 ′ We use again t-proj[d] for getting
Γ𝑑 , 𝜛 : 𝜙 ⊢𝑑 𝑥 : 𝑡1 and Γ𝑑 , 𝜛 : 𝜙 ⊢𝑑 𝜛 : 𝜙 ′.
From the rule t-var[d] we know that the premise must hold Γ𝑑 (𝑥) [𝜈 = 𝑥] [Γ𝑑 , 𝜛 : 𝜙] <:𝑑
𝑡1 [𝜈 = 𝑥] [Γ𝑑 , 𝜛 : 𝜙]. We start by eliminating the strengthening with the 𝜙 type informa-
tion in both sides of the subtyping relation. Let 𝜏 = ®T

𝑡
(𝑡1). Next, by lemma B.5 we get

Γ ⊢ Γ(𝑥) [𝜈 = 𝑥] <: 𝜏 [𝜈 = 𝑥]. We have Γ(𝑥) [𝜈 = 𝑥] = Γ(𝑥) because 𝑥 is a fresh variable and
it doesn’t restrict the values represented by the type variable 𝜈 . By the reductive property of
strengthening we have Γ ⊢ 𝜏 [𝜈 = 𝑥] <: 𝜏 . Therefore, we get Γ ⊢ Γ(𝑥) <: 𝜏 . We get the proof
that 𝜙 [Γ] ⊑𝜙 𝜙 ′ and 𝜙 [Γ] ⊑𝜙 𝜙 the same we did for Case e-var. We use again t-weaken
with t-var for variable 𝑥 instantiated with typing environment Γ and effect 𝜙 , together with
the proofs derived for 𝜙 [Γ] ⊑𝜙 𝜙 , Γ ⊢ Γ(𝑥) <: 𝜏 and 𝜙 [Γ] ⊑𝜙 𝜙 ′ to conclude the proof.

Case Abs We have term 𝑒 = 𝜆𝑥.𝑒𝑖 such that, given a term 𝜛 with type 𝜙 , the translated term is
T [[𝜆𝑥.𝑒𝑖 ]] = ⟨𝜆𝑥 .𝜆𝜛𝑥 .(T [[𝑒𝑖 ]] (𝜛𝑥 )), 𝜛⟩, and Γ𝑑 , 𝜛 : 𝜙 ⊢𝑑 ⟨𝜆𝑥 .𝜆𝜛𝑥 .(T [[𝑒𝑖 ]] (𝜛𝑥 )), 𝜛⟩ : 𝑡 . From
the rules t-pair[d], t-proj[d] and t-abs[d] used in derivation, and by induction hypothesis
we get the derivations in the type and effect system for the following:
• ®T

𝑡𝑒
(𝑡) = 𝜏&𝜙 ′
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• Γ ⊢ 𝜆𝑥 .𝑒𝑖 : 𝜏
• Γ, 𝑥 : 𝜏𝑥 ; 𝜙𝑥 ⊢ 𝑒𝑖 : 𝜏𝑖&𝜙𝑖
• Γ ⊢ (𝑥 : 𝜏𝑥&𝜙𝑥 → 𝜏𝑖&𝜙𝑖 ) <: 𝜏 .
Then following the subtyping judgment it must be that 𝜏 = 𝑥 : 𝜏 ′𝑥&𝜙 ′𝑥 → 𝜏 ′𝑖&𝜙

′
𝑖 . The proof

follows immediately from using B.5 several times to construct the subtyping judgments in
the type and effect system and lastly t-weaken after constructing a derivation for the effect
in the same spirit as for the constant and variable expressions.

Case App We have term 𝑒 = 𝑒1 𝑒2 such that, given a term 𝜛 with type 𝜙 , the translated term is
after desugaring the let constructs:

(𝜆𝑒′1.(
𝜆𝜛′1.(
𝜆𝑒′2.(
𝜆𝜛′2.(𝑒′1 𝑒′2) 𝜛′2)
(#2 (T [[𝑒2]] (𝜛′1)))
(#1 (T [[𝑒2]] (𝜛′1))))
(#2 (T [[𝑒1])] (𝜛))))
(#1 (T [[𝑒1]] (𝜛)))

We know that Γ𝑑 , 𝜛 : 𝜙 ⊢𝑑 T [[𝑒1 𝑒2]] (𝜛) : 𝑡 , and we must have used the rule t-app[d],
therefore we know that Γ𝑑 , 𝜛 : 𝜙 ⊢𝑑 T [[𝑒1]] (𝜛) : 𝑡1 and Γ𝑑 , 𝑒′1 : 𝑡

′
1, 𝜛
′
1 : 𝜙1 ⊢𝑑 T [[𝑒2]] (𝜛′1) : 𝑡2

and 𝑡1 <:𝑑 𝑥 : 𝑡2 → 𝑡 . By induction hypothesis we know that Γ𝑑 , 𝜛 : 𝜙 ⊢𝑑 T [[𝑒1]] (𝜛) :
𝑡1 ⇒ Γ;𝜙 ⊢ 𝑒1 : ®T

𝑡𝑒
(𝑡1). Let ®T

𝑡𝑒
(𝑡1) = 𝜏1 × 𝜙1. It is immediate to see that, if in the type

and effect system the following holds Γ ⊢ 𝜏1 <: 𝜏2, then we can always prove that for any
𝑥 : 𝜏𝑥 , Γ, 𝑥 : 𝜏𝑥 by the monotonicity of strengthening operator. Using lemma B.5 we can
construct from the subtyping derivation of 𝜆𝑒′1 . . . . we get from the premise of t-app[d] a
subtyping derivation. In our type and effect system the subtyping will hold in an empty typing
environment. Because the strengthening operator is reductive, we can always introduce new
type bindings in the context while maintaining the subtyping relation. We do that repeatedly
until we can construct a proof for the subtyping with the same typing environment as used
in for the expression #1 (T J𝑒1K(𝜛)). Then we obtain the existential type by the reflexivity of
subtyping followed by the derivation we can construct in the type and effect system using
the introduction of a new type binding, and by the application of rule s-exists. While long
and cumbersome, the proof follows from applying the same strategy multiple times and then
the rule t-app to construct the typing derivation for the application.

Case EV The proof is immediate by using rules t-extension-op[d] and the type operator ⊙
provided by the abstract effect domain.

□

C Trace-partitioning typing rules
Original Drift type system. We present the original Drift subtyping and typing rules in Fig. 9.

We only present some of the interesting rule changes pertaining to callsite partitioning compared
to Fig. 7. The Drift type system, as described by [47], takes in as a parameter a finite set of abstract
stacks Ŝ, which represent abstractions of concrete call stacks. These abstract stacks are equipped
with an abstract concatenation operation ·̂ : 𝐿𝑜𝑐 × Ŝ → Ŝ that prepends a callsite location 𝑖 onto
an abstract stack 𝑆 , denoted 𝑖 ·̂ 𝑆 . They further define function types, 𝑥 : 𝒕 , to be a mapping function
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s-fun[dcs]

𝒕1 (𝑆) = ⟨𝑡𝑖1, 𝑡𝑜1⟩ 𝒕2 (𝑆) = ⟨𝑡𝑖2, 𝑡𝑜2⟩
𝑡𝑖2 <: 𝑡𝑖1 𝑡𝑜1 [𝑥 ← 𝑡𝑖2] <: 𝑡𝑜2 [𝑥 ← 𝑡𝑖2]

𝑥 : 𝒕1 <: 𝑥 : 𝒕2 ∀𝑆 ∈ Ŝ

t-app[dcs]
Γ𝑑 , 𝑆 ⊢ 𝑒𝑖 : 𝑡𝑖 Γ𝑑 , 𝑆 ⊢ 𝑒 𝑗 : 𝑡 𝑗 𝑡𝑖 <: 𝑥 : [𝑖 ·̂ 𝑆 ⊳ 𝑡 𝑗 → 𝑡]

Γ𝑑 , 𝑆 ⊢ 𝑒𝑖 𝑒 𝑗 : 𝑡

t-abs[dcs]
Γ𝑑𝑖 = Γ𝑑 .𝑥 : 𝑡𝑥 Γ𝑑𝑖 , 𝑆

′ ⊢ 𝑒𝑖 : 𝑡𝑖 𝑥 : [𝑆 ′ ⊳ 𝑡𝑥 → 𝑡𝑖 ] <: 𝑡 |𝑆 ′
Γ𝑑 , 𝑆 ⊢ 𝜆𝑥 .𝑒𝑖 : 𝑡 ∀𝑆 ′ ∈ 𝑡

Fig. 9. Data flow refinement type system with callsite partitioning

from abstract stacks 𝑆 ∈ Ŝ to dependent types. Thus, 𝑥 : 𝒕 essentially captures separate dependent
function types 𝑥 : 𝑡𝑖 → 𝑡𝑜 for every abstract stack 𝑆 .
Here, for a function type 𝑡 = 𝑥 : 𝒕 , and 𝑆 ∈ Ŝ, 𝒕 (𝑆) = ⟨𝑡𝑖 , 𝑡𝑜⟩ for some 𝑡𝑖 and 𝑡𝑜 . Also, we denote

by 𝑡 |𝑆 the function type 𝑥 : [𝑆 ⊳ 𝑡𝑖 → 𝑡𝑜 ] obtained from 𝑡 by restricting it to the call stack 𝑆 . Some
of the other typing operations are already defined earlier.
In general, the typing judgement now takes the form Γ𝑑 , 𝑆 ⊢ 𝑒 : 𝑡 , i.e. every expression is also

typed in the context of the abstract call stack. The rule t-app[dcs] for typing function applications
𝑒𝑖 𝑒 𝑗 requires that the type 𝑡𝑖 of 𝑒𝑖 must be a subtype of the function type 𝑥 : [𝑖 ·̂ 𝑆 ⊳ 𝑡 𝑗 → 𝑡] where
𝑡 𝑗 is the type of the argument expression 𝑒 𝑗 and 𝑡 is the result type of the function application.
Note that the rule extends the abstract stack 𝑆 with the call site location 𝑖 identifying 𝑒𝑖 . The
subtype relation then forces 𝑡𝑖 to have an appropriate entry for the abstract call stack 𝑖 ·̂ 𝑆 . The rule
t-abs[dcs] for typing lambda abstraction is as usual, except that it universally quantifies over all
abstract stacks 𝑆 ′ at which 𝑡 has been called. The side condition ∀𝑆 ′ ∈ 𝑡 implicitly constraints 𝑡 to
be a function type.

Introducing if-then-else partitioning. To extend the original drift type system with trace par-
titioning, we introduce a notion of abstract traces Ĉ, which represents abstractions of concrete
program traces, i.e. any subsequence (need not be contiguous) of program locations visited in a
valid execution of a program. Abstract traces, like abstract stacks are also equipped with an abstract
concatenation operation ·̂ : 𝐿𝑜𝑐 × Ĉ → Ĉ that prepends a location 𝑖 onto an abstract trace 𝐶 ,
denoted 𝑖 ·̂𝐶 .
We now say that every expression is typed in an abstract context, a combination of an abstract

stack and an abstract trace. We redefine the typing judgement to take the form Γ𝑑 , (𝑆,𝐶) ⊢ 𝑒 : 𝑟 ,
where 𝑟 ∈ R. R is the set of trace-mappings from abstract traces to refinement types. Any expression
may have nested if-then-else clauses, and according to whether those clauses evaluate to true or
false, the expression may have different types. A trace-mapping 𝑟 ∈ R, maps the different traces
created by those clauses to different refinement types. Thus, the typing judgement informs the
possible types that an expression can have given the trace the program took up to the expression.
Further, we change the definition of output types for function types to be a trace-mapping 𝑟 . Note
that we don’t change input types to be trace-mappings, as any trace-mapping could be lifted to the
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s-tr
𝑟1 (𝐶) = 𝑡1 𝑟2 (𝐶) = 𝑡2 𝑡1 <: 𝑡2

𝑟1 <: 𝑟2 ∀𝐶 ∈ Ĉ
t-cons[dcs+tr]

[𝑣 = 𝑐]𝑑 [Γ𝑑 ] <: 𝑡
Γ𝑑 , (𝑆,𝐶) ⊢ 𝑐 : [𝐶 ⊳ 𝑡]

t-var[dcs+tr]
Γ𝑑 (𝑥) [𝑣 = 𝑥]𝑑 [Γ𝑑 ] <: 𝑡 [𝑣 = 𝑥]𝑑 [Γ𝑑 ]

Γ𝑑 , (𝑆,𝐶) ⊢ 𝑥 : [𝐶 ⊳ 𝑡]

t-abs[dcs+tr]

Γ𝑑𝑖 = Γ𝑑 .𝑥 : 𝑟𝑥 = [𝐶′ ⊳ 𝑡𝑥 ]
Γ𝑑𝑖 , (𝑆 ′,𝐶′) ⊢ 𝑒𝑖 : 𝑟𝑖 𝑥 : [(𝑆 ′,𝐶′) ⊳ 𝑡𝑥 → 𝑟𝑖 ] <: 𝑡 | (𝑆 ′,𝐶′ )

Γ𝑑 , (𝑆,𝐶) ⊢ 𝜆𝑥.𝑒𝑖 : [𝐶 ⊳ 𝑡] ∀(𝑆 ′,𝐶′) ∈ 𝑡

t-app[dcs+tr]

Γ𝑑 , (𝑆,𝐶) ⊢ 𝑒𝑖 : 𝑟𝑖 𝑟𝑖 (𝐶𝑖 ) = 𝑡𝑖 Γ𝑑𝑖 = env(𝑡𝑖 ) Γ𝑑𝑖 , (𝑆,𝐶𝑖 ) ⊢ 𝑒 𝑗 : 𝑟 𝑗
∀𝐶 𝑗 ∈ 𝑟 𝑗 .𝑟 𝑗 (𝐶 𝑗 ) = 𝑡 𝑗 .𝑡𝑖 <: 𝑥 : [(𝑖 ·̂ 𝑆,𝐶 𝑗 ) ⊳ 𝑡 𝑗 → 𝑟𝑘 ] .𝑟𝑘 <: 𝑟

Γ𝑑 , (𝑆,𝐶) ⊢ 𝑒𝑖 𝑒 𝑗 : 𝑟 ∀𝐶𝑖 ∈ 𝑟𝑖

t-ite-true[dcs+tr]

Γ𝑑 , (𝑆,𝐶) ⊢ 𝑏 <: [_ ⊳ 𝑏𝑜𝑜𝑙] Γ𝑑𝑡 = Γ𝑑 [𝑏 = true]
Γ𝑑𝑡 , (𝑆,𝐶) ⊢ 𝑒𝑖 : 𝑟𝑖 ∀𝐶𝑖 ∈ 𝑟𝑖 .𝑟𝑖 (𝐶𝑖 ) = 𝑡𝑖 .[𝑖 ·̂𝐶𝑖 ⊳ 𝑡𝑖 ] <: 𝑟

Γ𝑑 , (𝑆,𝐶) ⊢ if 𝑏 then 𝑒𝑖 else 𝑒 𝑗 : 𝑟

t-ite-false[dcs+tr]

Γ𝑑 , (𝑆,𝐶) ⊢ 𝑏 <: [_ ⊳ 𝑏𝑜𝑜𝑙] Γ𝑑 𝑓 = Γ𝑑 [𝑏 = false]
Γ𝑑 𝑓 , (𝑆,𝐶) ⊢ 𝑒 𝑗 : 𝑟 𝑗 ∀𝐶 𝑗 ∈ 𝑟 𝑗 .𝑟 𝑗 (𝐶 𝑗 ) = 𝑡 𝑗 .[ 𝑗 ·̂𝐶 𝑗 ⊳ 𝑡 𝑗 ] <: 𝑟

Γ𝑑 , (𝑆,𝐶) ⊢ if 𝑏 then 𝑒𝑖 else 𝑒 𝑗 : 𝑟

Fig. 10. Data flow refinement type system with callsite and trace partitioning

function to have different abstract contexts. Moreover, we also augment table types to include the
environmental constraints the table type is valid in.

𝑡 ∈ V ::= ⊥𝑑 | ⊤𝑑 | 𝛽 | 𝑥 : 𝒕 𝛽 ∈ B 𝑟 ∈ R ::= Ĉ → V

𝑥 : 𝒕 ∈ L ::= (Σ𝑥 ∈ 𝑉𝑎𝑟 .Ŝ × Ĉ → V × R) × 𝐸𝑛𝑣
We define a function env(𝑣) ∈ V → (𝑉𝑎𝑟 → V), that extracts the environment Env from a

refinement type 𝑣 , as follows

env(𝑥) =

𝑦 : 𝑉𝑎𝑟 .⊥𝑑 𝑥 = ⊥𝑑

𝑦 : 𝑉𝑎𝑟 .⊤𝑑 𝑥 = ⊤𝑑

𝜌 𝑥 = ⟨𝑥, 𝜌⟩ ∈ B ∪ L
In figure 10 we give the typing rules for the extended type system, along with a subtyping relation

for trace-mappings. The subtyping rule s-tr enforces subtyping over all entries in trace-mappings.
Compared to the rules in figure 7, the t-cons[dcs+tr] and t-var[dcs+tr] rules are largely the
same, with the exception of the change in the typing judgement. The trace-mapping only includes
a single entry for the trace the respective expression is typed in, as these expressions don’t create
any new traces. The rule t-abs[dcs+tr] is also mostly similar to the t-abs[dcs] rule. The new rule
also shows the changes in the table types.
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The t-app[dcs+tr] rule shows how abstract traces are threaded through for composite expres-
sions. The argument expression 𝑒 𝑗 is typed under all the traces created by the function expression 𝑒𝑖 ,
and the respective environment constraints captured using the refinement type 𝑡𝑖 . As for t-app[dcs],
this rule similarly forces 𝑡𝑖 to have an entry for abstract contexts consisting of the new callsite 𝑖 ,
and the abstract traces created by 𝑒𝑖 and then 𝑒 𝑗 . Finally, all valid output mappings 𝑟𝑘 are subtypes
of trace-mapping 𝑟 . This also captures the different traces created by the function body 𝑒𝑖 maps to.
Finally, the t-ite-true[dcs+tr] and t-ite-false[dcs+tr] rules show how new locations are

concatenated to the abstract traces for if-then-else clauses. Note that the conditional branches are
typed under the same abstract context. But the rule constraints the environments in which the
respective conditional branches are evaluated. The respective conditional branches might also be
concatenating to the abstract trace𝐶 . The final condition ensures that 𝑟 has entries for all the traces
created by the conditional branch after concatenating them with the new location. See that the
two rules concatenate different locations to distinguish the two traces created by the clause. Note
that to simplify the presentation, we show a simplified version of these rules where the conditional
clause doesn’t crate any new traces. One can take inspiration about how to handle traces created
by the conditional branch from the t-app[dcs+tr] to arrive at a more complete rule.

D CPS Translation of Example 2.1

1 let main prefx prefn =

2 let ev = fun k0 q acc evx ->

3 if (q = 0) then k0 1 evx ()

4 else if ((q = 1) && ((acc + evx) = 0)) then k0 2 acc ()

5 else if (q = 2) then k0 2 acc ()

6 else k0 q acc () in

7 let q1 = 0 in

8 let acc1 = 0 in

9 let f0 = fun k4 q3 acc3 busy ->

10 let f1 = fun k6 q5 acc5 _main ->

11 let k8 q7 acc7 res3 =

12 let k7 q6 acc6 res2 =

13 k6 q6 acc6 res2 in

14 res3 k7 q7 acc7 prefn in

15 _main k8 q5 acc5 prefx in

16 let f2 = fun k9 q8 acc8 x ->

17 let f3 = fun k10 q9 acc9 n ->

18 let x3 = () in

19 let k11 q10 acc10 x2 =

20 let k13 q12 acc12 res5 =

21 let k12 q11 acc11 res4 =

22 let x1 = x3 ; res4 in k10 q11 acc11 x1 in

23 res5 k12 q12 acc12 x in

24 busy k13 q10 acc10 n in

25 ev k11 q9 acc9 x in

26 k9 q8 acc8 f3 in

27 let k5 q4 acc4 res1 =

28 k4 q4 acc4 res1 in

29 f1 k5 q3 acc3 f2 in
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30 let rec busy k14 q13 acc13 n =

31 let f4 = fun k15 q14 acc14 t ->

32 let x5 = 0 in

33 let x4 = n <= x5 in

34 let k16 q15 acc15 res6 =

35 k15 q15 acc15 res6 in

36 let k17 q16 acc16 res7 =

37 let x11 = - t in let x10 = () in

38 let k21 q20 acc20 x9 =

39 let x12 = 0 in

40 let x8 = x10 ; x12 in k16 q20 acc20 x8 in

41 ev k21 q16 acc16 x11 in

42 let k18 q17 acc17 res8 =

43 let x7 = 1 in

44 let x6 = n - x7 in let k20 q19 acc19 res10 =

45 let k19 q18 acc18 res9 =

46 k16 q18 acc18 res9 in

47 res10 k19 q19 acc19 t in

48 busy k20 q17 acc17 x6 in

49 if x4 then k17 q14 acc14 x4 else k18 q14 acc14 x4 in

50 k14 q13 acc13 f4 in

51 let k3 q2 acc2 res0 =

52 let k22 q acc x13 =

53 let x15 = 2 in

54 let x14 = q = x15 in assert(x14);x13 in

55 k22 q2 acc2 res0 in

56 f0 k3 q1 acc1 busy

E Impact of Trace Partitioning
Analyzing the impact of trace-partitioning. Since evDrift uses our abstract effect domain and

trace partitioning, a natural question is: which feature provides the more substantial amount of
improvement. We now compare evDrift (and 1-context-sensitive Drift with the tuple translation)
with and without trace partitioning to answer this question, and to quantify the speed overhead.
We summarize the results for these configurations in Table 2. For evDrift, the tool is able to verify
two more benchmarks with trace partitioning. Also note that trace partitioning helps Drift verify
two additional benchmarks. All these programs have if-then-else clauses that result in disjoint
values for subsequent nodes. However, Drift even with trace partitioning still does quite worse
than evDrift, as still verifies only 13 out of 26 benchmarks, compared to evDrift’s 23 out of 26.

Moreover, for evDrift there are several programswhere the running timeswith trace partitioning
are similar to the running times without trace partitioning. This is because these benchmarks do not
have nodes that follow an if-then-else clause, and hence there are no instances of multiplicatively
analyzed nodes. However, this doesn’t happen for Drift due to the nature of the program translation.
Overall, trace partitioning slows Drift by 0.6×, and slows evDrift by 0.8×.

F Extended Evaluation
Configurations. T=he following table lists all configurations we used for Drift and ev-Drift:
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Drift with trace part. evDrift without trace part. evDrift with trace part.
Bench Res CPU Config. Res CPU Config. Res CPU Config.

1. all-ev-pos ✔ 1.6 ⟨𝑡𝑝 :𝑇, 𝑙𝑠 ⟩ ✔ 0.4 ⟨𝑡𝑝 :𝐹, 𝑙𝑠 ⟩ ✔ 0.4 ⟨𝑡𝑝 :𝑇, 𝑙𝑠 ⟩
2. alt-inev ? 103.6 ⟨𝑡𝑝 :𝑇, 𝑙𝑠 ⟩ ✔ 5.4 ⟨𝑡𝑝 :𝐹, 𝑙𝑠 ⟩ ✔ 5.4 ⟨𝑡𝑝 :𝑇, 𝑙𝑠 ⟩
3. auction ? 108.0 ⟨𝑡𝑝 :𝑇, 𝑙𝑠 ⟩ ✔ 4.1 ⟨𝑡𝑝 :𝐹, 𝑙𝑠 ⟩ ✔ 3.9 ⟨𝑡𝑝 :𝑇, 𝑙𝑠 ⟩
4. binomial_heap ? 238.1 ⟨𝑡𝑝 :𝑇, 𝑙𝑠 ⟩ ✔ 2.2 ⟨𝑡𝑝 :𝐹, 𝑙𝑠 ⟩ ✔ 2.2 ⟨𝑡𝑝 :𝑇, 𝑙𝑠 ⟩
5. concurrent_sum ✔ 11.8 ⟨𝑡𝑝 :𝑇, 𝑙𝑠 ⟩ ✔ 0.2 ⟨𝑡𝑝 :𝐹, 𝑙𝑠 ⟩ ✔ 0.8 ⟨𝑡𝑝 :𝑇, 𝑙𝑠 ⟩
6. depend ✔ 0.0 ⟨𝑡𝑝 :𝑇, 𝑙𝑠 ⟩ ✔ 0.0 ⟨𝑡𝑝 :𝐹, 𝑙𝑠 ⟩ ✔ 0.0 ⟨𝑡𝑝 :𝑇, 𝑙𝑠 ⟩
7. disj ✔ 137.1 ⟨𝑡𝑝 :𝑇, 𝑝𝑔⟩ ✔ 5.6 ⟨𝑡𝑝 :𝐹, 𝑝𝑔⟩ ✔ 10.3 ⟨𝑡𝑝 :𝑇, 𝑝𝑔⟩
8. disj-gte ✔ 25.7 ⟨𝑡𝑝 :𝑇, 𝑙𝑠 ⟩ ✔ 2.8 ⟨𝑡𝑝 :𝐹, 𝑙𝑠 ⟩ ✔ 2.7 ⟨𝑡𝑝 :𝑇, 𝑙𝑠 ⟩
9. disj-nondet ✔ 35.0 ⟨𝑡𝑝 :𝑇, 𝑙𝑠 ⟩ ✔ 2.9 ⟨𝑡𝑝 :𝐹, 𝑙𝑠 ⟩ ✔ 4.4 ⟨𝑡𝑝 :𝑇, 𝑙𝑠 ⟩
10. higher-order ✔ 9.9 ⟨𝑡𝑝 :𝑇, 𝑙𝑠 ⟩ ✔ 0.4 ⟨𝑡𝑝 :𝐹, 𝑙𝑠 ⟩ ✔ 0.4 ⟨𝑡𝑝 :𝑇, 𝑙𝑠 ⟩
11. intro-ord3 ✔ 32.3 ⟨𝑡𝑝 :𝑇, 𝑙𝑠 ⟩ ✔ 6.0 ⟨𝑡𝑝 :𝐹, 𝑙𝑠 ⟩ ✔ 5.0 ⟨𝑡𝑝 :𝑇, 𝑙𝑠 ⟩
12. last-ev-even ✔ 39.9 ⟨𝑡𝑝 :𝑇, 𝑝𝑔⟩ ? 1.0 ⟨𝑡𝑝 :𝐹, 𝑙𝑠 ⟩ ✔ 5.5 ⟨𝑡𝑝 :𝑇, 𝑝𝑔⟩
13. lics18-amortized ? 587.4 ⟨𝑡𝑝 :𝑇, 𝑙𝑠 ⟩ ✔ 15.8 ⟨𝑡𝑝 :𝐹, 𝑙𝑠 ⟩ ✔ 15.8 ⟨𝑡𝑝 :𝑇, 𝑙𝑠 ⟩
14. lics18-hoshrink ? 20.2 ⟨𝑡𝑝 :𝑇, 𝑝𝑔⟩ ? 1.0 ⟨𝑡𝑝 :𝐹, 𝑙𝑠 ⟩ ? 7.0 ⟨𝑡𝑝 :𝑇, 𝑝𝑔⟩
15. lics18-web T 901.0 ⟨𝑡𝑝 :𝑇, 𝑙𝑠 ⟩ ✔ 23.8 ⟨𝑡𝑝 :𝐹, 𝑙𝑠 ⟩ ✔ 23.6 ⟨𝑡𝑝 :𝑇, 𝑙𝑠 ⟩
16. market T 900.8 ⟨𝑡𝑝 :𝑇, 𝑝𝑔⟩ ? 35.4 ⟨𝑡𝑝 :𝐹, 𝑝𝑔⟩ ? 36.8 ⟨𝑡𝑝 :𝑇, 𝑝𝑔⟩
17. max-min T 900.6 ⟨𝑡𝑝 :𝑇, 𝑝𝑔⟩ ? 28.2 ⟨𝑡𝑝 :𝐹, 𝑝𝑔⟩ ✔ 30.1 ⟨𝑡𝑝 :𝑇, 𝑙𝑠 ⟩
18. monotonic ✔ 6.3 ⟨𝑡𝑝 :𝑇, 𝑙𝑠 ⟩ ✔ 0.5 ⟨𝑡𝑝 :𝐹, 𝑙𝑠 ⟩ ✔ 0.5 ⟨𝑡𝑝 :𝑇, 𝑙𝑠 ⟩
19. nondet_max ✔ 3.8 ⟨𝑡𝑝 :𝑇, 𝑙𝑠 ⟩ ✔ 1.0 ⟨𝑡𝑝 :𝐹, 𝑙𝑠 ⟩ ✔ 1.0 ⟨𝑡𝑝 :𝑇, 𝑙𝑠 ⟩
20. order-irrel ? 36.4 ⟨𝑡𝑝 :𝑇, 𝑝𝑔⟩ ? 3.4 ⟨𝑡𝑝 :𝐹, 𝑝𝑔⟩ ✔ 3.5 ⟨𝑡𝑝 :𝑇, 𝑝𝑔⟩
21. order-irrel-nondet ? 75.5 ⟨𝑡𝑝 :𝑇, 𝑝𝑔⟩ ? 10.3 ⟨𝑡𝑝 :𝐹, 𝑝𝑔⟩ ✔ 1.8 ⟨𝑡𝑝 :𝑇, 𝑙𝑠 ⟩
22. overview1 ✔ 2.3 ⟨𝑡𝑝 :𝑇, 𝑙𝑠 ⟩ ✔ 0.4 ⟨𝑡𝑝 :𝐹, 𝑙𝑠 ⟩ ✔ 0.5 ⟨𝑡𝑝 :𝑇, 𝑙𝑠 ⟩
23. reentr ✔ 8.8 ⟨𝑡𝑝 :𝑇, 𝑙𝑠 ⟩ ✔ 0.2 ⟨𝑡𝑝 :𝐹, 𝑙𝑠 ⟩ ✔ 0.2 ⟨𝑡𝑝 :𝑇, 𝑙𝑠 ⟩
24. resource-analysis ✔ 3.1 ⟨𝑡𝑝 :𝑇, 𝑙𝑠 ⟩ ✔ 0.3 ⟨𝑡𝑝 :𝐹, 𝑙𝑠 ⟩ ✔ 0.3 ⟨𝑡𝑝 :𝑇, 𝑙𝑠 ⟩
25. sum-appendix ✔ 1.6 ⟨𝑡𝑝 :𝑇, 𝑙𝑠 ⟩ ✔ 0.0 ⟨𝑡𝑝 :𝐹, 𝑙𝑠 ⟩ ✔ 0.0 ⟨𝑡𝑝 :𝑇, 𝑙𝑠 ⟩
26. sum-of-ev-even ✔ 6.2 ⟨𝑡𝑝 :𝑇, 𝑝𝑔⟩ ✔ 0.7 ⟨𝑡𝑝 :𝐹, 𝑝𝑔⟩ ✔ 0.7 ⟨𝑡𝑝 :𝑇, 𝑝𝑔⟩
27. temperature ✔ 322.5 ⟨𝑡𝑝 :𝑇, 𝑝𝑔⟩ ✔ 12.0 ⟨𝑡𝑝 :𝐹, 𝑝𝑔⟩ ✔ 17.5 ⟨𝑡𝑝 :𝑇, 𝑝𝑔⟩
geomean for ✔’s: 17.3 1.6 1.9

Table 2. Evaluating the impact of trace partitioning on evDrift’s performance. The first set of columns
in Tbl. 1 displayed Drift’s performance (via the tuple translation) without trace partitioning, which had a
geomean of 11.0. In this table, column sets represent (i) Drift with trace partitioning with geomean 17.3,
(ii) evDrift without trace partitioning with geomean 1.6, and (iii) evDrift with trace partitioning with
geomean 1.9. The colored highlighting shows how, even without trace partitioning, the abstract effect domain
of evDrift enables 7 benchmarks to be verified over drift, where as the additional improvement due to trace
partitioning is a more modest 3 benchmarks. Additionally, trace partitioning has a slowdown of 0.6 for Drift
and a slowdown of 0.8 for evDrift.

Trace Trace Thresh-
Tool Len. Part. old I/O Domain
ev-Drift 0 false true true Polka (Loose)
ev-Drift 0 false false true PolkaGrid
ev-Drift 0 false true false Polka (Loose)
ev-Drift 0 false false false PolkaGrid
ev-Drift 1 true true true Polka (Loose)
ev-Drift 1 true false true PolkaGrid
ev-Drift 1 true true false Polka (Loose)
ev-Drift 1 true false false PolkaGrid
ev-Drift 1 false true true Polka (Loose)
ev-Drift 1 false false true PolkaGrid
ev-Drift 1 false true false Polka (Loose)
ev-Drift 1 false false false PolkaGrid
Drift (tuple reduc.) 0 false true false Polka (Loose)
Drift (tuple reduc.) 0 false false false PolkaGrid
Drift (tuple reduc.) 1 true true false Polka (Loose)
Drift (tuple reduc.) 1 true false false PolkaGrid
Drift (tuple reduc.) 1 false true false Polka (Loose)
Drift (tuple reduc.) 1 false false false PolkaGrid
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Full experiments. The following table lists all results from running RCaml/Spacer, Drift and
evDrift on all configurations.

Bench Res CPU Config
1. all-ev-pos

Drift ⟨𝑡𝑙 : 1, 𝑡𝑝 :𝐹, 𝑡ℎ :𝐹, 𝑖𝑜 :𝐹, 𝑝𝑔⟩ ✔ 6.26
Drift ⟨𝑡𝑙 : 1, 𝑡𝑝 :𝐹, 𝑡ℎ :𝑇, 𝑖𝑜 :𝐹, 𝑙𝑠 ⟩ ✔ 1.53
Drift ⟨𝑡𝑙 : 0, 𝑡𝑝 :𝐹, 𝑡ℎ :𝑇, 𝑖𝑜 :𝐹, 𝑙𝑠 ⟩ ✔ 0.61
Drift ⟨𝑡𝑙 : 1, 𝑡𝑝 :𝑇, 𝑡ℎ :𝐹, 𝑖𝑜 :𝐹, 𝑝𝑔⟩ ✔ 6.89
Drift ⟨𝑡𝑙 : 1, 𝑡𝑝 :𝑇, 𝑡ℎ :𝑇, 𝑖𝑜 :𝐹, 𝑙𝑠 ⟩ ✔ 1.60
Drift ⟨𝑡𝑙 : 0, 𝑡𝑝 :𝐹, 𝑡ℎ :𝐹, 𝑖𝑜 :𝐹, 𝑝𝑔⟩ ? 2.20
evDrift ⟨𝑡𝑙 : 1, 𝑡𝑝 :𝑇, 𝑡ℎ :𝑇, 𝑖𝑜 :𝑇, 𝑙𝑠 ⟩ ✔ 0.38
evDrift ⟨𝑡𝑙 : 0, 𝑡𝑝 :𝐹, 𝑡ℎ :𝐹, 𝑖𝑜 :𝐹, 𝑝𝑔⟩ ? 0.29
evDrift ⟨𝑡𝑙 : 1, 𝑡𝑝 :𝐹, 𝑡ℎ :𝑇, 𝑖𝑜 :𝑇, 𝑙𝑠 ⟩ ✔ 0.36
evDrift ⟨𝑡𝑙 : 1, 𝑡𝑝 :𝑇, 𝑡ℎ :𝐹, 𝑖𝑜 :𝑇, 𝑝𝑔⟩ ✔ 1.02
evDrift ⟨𝑡𝑙 : 1, 𝑡𝑝 :𝐹, 𝑡ℎ :𝐹, 𝑖𝑜 :𝑇, 𝑝𝑔⟩ ✔ 0.86
evDrift ⟨𝑡𝑙 : 0, 𝑡𝑝 :𝐹, 𝑡ℎ :𝐹, 𝑖𝑜 :𝑇, 𝑝𝑔⟩ ? 0.32
evDrift ⟨𝑡𝑙 : 1, 𝑡𝑝 :𝐹, 𝑡ℎ :𝐹, 𝑖𝑜 :𝐹, 𝑝𝑔⟩ ✔ 0.87
evDrift ⟨𝑡𝑙 : 1, 𝑡𝑝 :𝑇, 𝑡ℎ :𝑇, 𝑖𝑜 :𝐹, 𝑙𝑠 ⟩ ✔ 0.39
evDrift ⟨𝑡𝑙 : 0, 𝑡𝑝 :𝐹, 𝑡ℎ :𝑇, 𝑖𝑜 :𝑇, 𝑙𝑠 ⟩ ✔ 0.18
evDrift ⟨𝑡𝑙 : 0, 𝑡𝑝 :𝐹, 𝑡ℎ :𝑇, 𝑖𝑜 :𝐹, 𝑙𝑠 ⟩ ✔ 0.18
evDrift ⟨𝑡𝑙 : 1, 𝑡𝑝 :𝑇, 𝑡ℎ :𝐹, 𝑖𝑜 :𝐹, 𝑝𝑔⟩ ✔ 1.07
evDrift ⟨𝑡𝑙 : 1, 𝑡𝑝 :𝐹, 𝑡ℎ :𝑇, 𝑖𝑜 :𝐹, 𝑙𝑠 ⟩ ✔ 0.40

2. alt-inev
Drift ⟨𝑡𝑙 : 0, 𝑡𝑝 :𝐹, 𝑡ℎ :𝐹, 𝑖𝑜 :𝐹, 𝑝𝑔⟩ ? 62.07
Drift ⟨𝑡𝑙 : 1, 𝑡𝑝 :𝑇, 𝑡ℎ :𝑇, 𝑖𝑜 :𝐹, 𝑙𝑠 ⟩ ? 103.55
Drift ⟨𝑡𝑙 : 0, 𝑡𝑝 :𝐹, 𝑡ℎ :𝑇, 𝑖𝑜 :𝐹, 𝑙𝑠 ⟩ ? 18.34
Drift ⟨𝑡𝑙 : 1, 𝑡𝑝 :𝐹, 𝑡ℎ :𝑇, 𝑖𝑜 :𝐹, 𝑙𝑠 ⟩ ? 49.01
Drift ⟨𝑡𝑙 : 1, 𝑡𝑝 :𝑇, 𝑡ℎ :𝐹, 𝑖𝑜 :𝐹, 𝑝𝑔⟩ ? 329.58
Drift ⟨𝑡𝑙 : 1, 𝑡𝑝 :𝐹, 𝑡ℎ :𝐹, 𝑖𝑜 :𝐹, 𝑝𝑔⟩ ? 200.11
evDrift ⟨𝑡𝑙 : 1, 𝑡𝑝 :𝑇, 𝑡ℎ :𝐹, 𝑖𝑜 :𝐹, 𝑝𝑔⟩ ✔ 34.53
evDrift ⟨𝑡𝑙 : 0, 𝑡𝑝 :𝐹, 𝑡ℎ :𝑇, 𝑖𝑜 :𝐹, 𝑙𝑠 ⟩ ✔ 1.81
evDrift ⟨𝑡𝑙 : 1, 𝑡𝑝 :𝐹, 𝑡ℎ :𝑇, 𝑖𝑜 :𝐹, 𝑙𝑠 ⟩ ✔ 5.49
evDrift ⟨𝑡𝑙 : 0, 𝑡𝑝 :𝐹, 𝑡ℎ :𝑇, 𝑖𝑜 :𝑇, 𝑙𝑠 ⟩ ✔ 1.78
evDrift ⟨𝑡𝑙 : 1, 𝑡𝑝 :𝐹, 𝑡ℎ :𝐹, 𝑖𝑜 :𝐹, 𝑝𝑔⟩ ✔ 33.70
evDrift ⟨𝑡𝑙 : 1, 𝑡𝑝 :𝑇, 𝑡ℎ :𝑇, 𝑖𝑜 :𝐹, 𝑙𝑠 ⟩ ✔ 5.50
evDrift ⟨𝑡𝑙 : 1, 𝑡𝑝 :𝐹, 𝑡ℎ :𝐹, 𝑖𝑜 :𝑇, 𝑝𝑔⟩ ✔ 33.82
evDrift ⟨𝑡𝑙 : 0, 𝑡𝑝 :𝐹, 𝑡ℎ :𝐹, 𝑖𝑜 :𝑇, 𝑝𝑔⟩ ✔ 8.23
evDrift ⟨𝑡𝑙 : 1, 𝑡𝑝 :𝐹, 𝑡ℎ :𝑇, 𝑖𝑜 :𝑇, 𝑙𝑠 ⟩ ✔ 5.42
evDrift ⟨𝑡𝑙 : 1, 𝑡𝑝 :𝑇, 𝑡ℎ :𝐹, 𝑖𝑜 :𝑇, 𝑝𝑔⟩ ✔ 34.46
evDrift ⟨𝑡𝑙 : 0, 𝑡𝑝 :𝐹, 𝑡ℎ :𝐹, 𝑖𝑜 :𝐹, 𝑝𝑔⟩ ✔ 8.31
evDrift ⟨𝑡𝑙 : 1, 𝑡𝑝 :𝑇, 𝑡ℎ :𝑇, 𝑖𝑜 :𝑇, 𝑙𝑠 ⟩ ✔ 5.40

3. auction
Drift ⟨𝑡𝑙 : 0, 𝑡𝑝 :𝐹, 𝑡ℎ :𝐹, 𝑖𝑜 :𝐹, 𝑝𝑔⟩ ? 88.00
Drift ⟨𝑡𝑙 : 1, 𝑡𝑝 :𝑇, 𝑡ℎ :𝑇, 𝑖𝑜 :𝐹, 𝑙𝑠 ⟩ ? 108.05
Drift ⟨𝑡𝑙 : 1, 𝑡𝑝 :𝐹, 𝑡ℎ :𝐹, 𝑖𝑜 :𝐹, 𝑝𝑔⟩ ? 155.73
Drift ⟨𝑡𝑙 : 1, 𝑡𝑝 :𝑇, 𝑡ℎ :𝐹, 𝑖𝑜 :𝐹, 𝑝𝑔⟩ ? 307.68
Drift ⟨𝑡𝑙 : 1, 𝑡𝑝 :𝐹, 𝑡ℎ :𝑇, 𝑖𝑜 :𝐹, 𝑙𝑠 ⟩ ? 53.77
Drift ⟨𝑡𝑙 : 0, 𝑡𝑝 :𝐹, 𝑡ℎ :𝑇, 𝑖𝑜 :𝐹, 𝑙𝑠 ⟩ ? 43.51
evDrift ⟨𝑡𝑙 : 0, 𝑡𝑝 :𝐹, 𝑡ℎ :𝑇, 𝑖𝑜 :𝑇, 𝑙𝑠 ⟩ ✔ 2.48
evDrift ⟨𝑡𝑙 : 1, 𝑡𝑝 :𝐹, 𝑡ℎ :𝑇, 𝑖𝑜 :𝐹, 𝑙𝑠 ⟩ ✔ 4.18
evDrift ⟨𝑡𝑙 : 0, 𝑡𝑝 :𝐹, 𝑡ℎ :𝑇, 𝑖𝑜 :𝐹, 𝑙𝑠 ⟩ ✔ 2.46
evDrift ⟨𝑡𝑙 : 1, 𝑡𝑝 :𝑇, 𝑡ℎ :𝐹, 𝑖𝑜 :𝐹, 𝑝𝑔⟩ ✔ 7.64
evDrift ⟨𝑡𝑙 : 1, 𝑡𝑝 :𝐹, 𝑡ℎ :𝐹, 𝑖𝑜 :𝐹, 𝑝𝑔⟩ ✔ 7.58
evDrift ⟨𝑡𝑙 : 1, 𝑡𝑝 :𝑇, 𝑡ℎ :𝑇, 𝑖𝑜 :𝐹, 𝑙𝑠 ⟩ ✔ 3.90
evDrift ⟨𝑡𝑙 : 1, 𝑡𝑝 :𝑇, 𝑡ℎ :𝐹, 𝑖𝑜 :𝑇, 𝑝𝑔⟩ ✔ 7.00
evDrift ⟨𝑡𝑙 : 1, 𝑡𝑝 :𝐹, 𝑡ℎ :𝑇, 𝑖𝑜 :𝑇, 𝑙𝑠 ⟩ ✔ 4.12
evDrift ⟨𝑡𝑙 : 0, 𝑡𝑝 :𝐹, 𝑡ℎ :𝐹, 𝑖𝑜 :𝑇, 𝑝𝑔⟩ ✔ 3.41
evDrift ⟨𝑡𝑙 : 1, 𝑡𝑝 :𝐹, 𝑡ℎ :𝐹, 𝑖𝑜 :𝑇, 𝑝𝑔⟩ ✔ 7.56
evDrift ⟨𝑡𝑙 : 1, 𝑡𝑝 :𝑇, 𝑡ℎ :𝑇, 𝑖𝑜 :𝑇, 𝑙𝑠 ⟩ ✔ 3.91
evDrift ⟨𝑡𝑙 : 0, 𝑡𝑝 :𝐹, 𝑡ℎ :𝐹, 𝑖𝑜 :𝐹, 𝑝𝑔⟩ ✔ 3.27

4. binomial_heap
Drift ⟨𝑡𝑙 : 1, 𝑡𝑝 :𝐹, 𝑡ℎ :𝐹, 𝑖𝑜 :𝐹, 𝑝𝑔⟩ ? 572.02
Drift ⟨𝑡𝑙 : 0, 𝑡𝑝 :𝐹, 𝑡ℎ :𝑇, 𝑖𝑜 :𝐹, 𝑙𝑠 ⟩ ? 107.17
Drift ⟨𝑡𝑙 : 1, 𝑡𝑝 :𝐹, 𝑡ℎ :𝑇, 𝑖𝑜 :𝐹, 𝑙𝑠 ⟩ ? 198.54
Drift ⟨𝑡𝑙 : 1, 𝑡𝑝 :𝑇, 𝑡ℎ :𝐹, 𝑖𝑜 :𝐹, 𝑝𝑔⟩ ? 669.60
Drift ⟨𝑡𝑙 : 1, 𝑡𝑝 :𝑇, 𝑡ℎ :𝑇, 𝑖𝑜 :𝐹, 𝑙𝑠 ⟩ ? 238.11
Drift ⟨𝑡𝑙 : 0, 𝑡𝑝 :𝐹, 𝑡ℎ :𝐹, 𝑖𝑜 :𝐹, 𝑝𝑔⟩ ? 446.67
evDrift ⟨𝑡𝑙 : 0, 𝑡𝑝 :𝐹, 𝑡ℎ :𝐹, 𝑖𝑜 :𝐹, 𝑝𝑔⟩ ✔ 2.46
evDrift ⟨𝑡𝑙 : 1, 𝑡𝑝 :𝑇, 𝑡ℎ :𝑇, 𝑖𝑜 :𝑇, 𝑙𝑠 ⟩ ✔ 2.20
evDrift ⟨𝑡𝑙 : 1, 𝑡𝑝 :𝐹, 𝑡ℎ :𝑇, 𝑖𝑜 :𝑇, 𝑙𝑠 ⟩ ✔ 2.22
evDrift ⟨𝑡𝑙 : 1, 𝑡𝑝 :𝑇, 𝑡ℎ :𝐹, 𝑖𝑜 :𝑇, 𝑝𝑔⟩ ✔ 3.38
evDrift ⟨𝑡𝑙 : 1, 𝑡𝑝 :𝐹, 𝑡ℎ :𝐹, 𝑖𝑜 :𝑇, 𝑝𝑔⟩ ✔ 3.32
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evDrift ⟨𝑡𝑙 : 0, 𝑡𝑝 :𝐹, 𝑡ℎ :𝐹, 𝑖𝑜 :𝑇, 𝑝𝑔⟩ ✔ 2.44
evDrift ⟨𝑡𝑙 : 1, 𝑡𝑝 :𝑇, 𝑡ℎ :𝑇, 𝑖𝑜 :𝐹, 𝑙𝑠 ⟩ ✔ 2.22
evDrift ⟨𝑡𝑙 : 1, 𝑡𝑝 :𝐹, 𝑡ℎ :𝐹, 𝑖𝑜 :𝐹, 𝑝𝑔⟩ ✔ 3.39
evDrift ⟨𝑡𝑙 : 0, 𝑡𝑝 :𝐹, 𝑡ℎ :𝑇, 𝑖𝑜 :𝑇, 𝑙𝑠 ⟩ ✔ 1.60
evDrift ⟨𝑡𝑙 : 1, 𝑡𝑝 :𝑇, 𝑡ℎ :𝐹, 𝑖𝑜 :𝐹, 𝑝𝑔⟩ ✔ 3.34
evDrift ⟨𝑡𝑙 : 0, 𝑡𝑝 :𝐹, 𝑡ℎ :𝑇, 𝑖𝑜 :𝐹, 𝑙𝑠 ⟩ ✔ 1.61
evDrift ⟨𝑡𝑙 : 1, 𝑡𝑝 :𝐹, 𝑡ℎ :𝑇, 𝑖𝑜 :𝐹, 𝑙𝑠 ⟩ ✔ 2.22

5. concurrent_sum
Drift ⟨𝑡𝑙 : 1, 𝑡𝑝 :𝑇, 𝑡ℎ :𝑇, 𝑖𝑜 :𝐹, 𝑙𝑠 ⟩ ✔ 11.83
Drift ⟨𝑡𝑙 : 0, 𝑡𝑝 :𝐹, 𝑡ℎ :𝐹, 𝑖𝑜 :𝐹, 𝑝𝑔⟩ ✔ 3.45
Drift ⟨𝑡𝑙 : 1, 𝑡𝑝 :𝐹, 𝑡ℎ :𝐹, 𝑖𝑜 :𝐹, 𝑝𝑔⟩ ✔ 8.45
Drift ⟨𝑡𝑙 : 1, 𝑡𝑝 :𝐹, 𝑡ℎ :𝑇, 𝑖𝑜 :𝐹, 𝑙𝑠 ⟩ ✔ 3.39
Drift ⟨𝑡𝑙 : 0, 𝑡𝑝 :𝐹, 𝑡ℎ :𝑇, 𝑖𝑜 :𝐹, 𝑙𝑠 ⟩ ✔ 1.51
Drift ⟨𝑡𝑙 : 1, 𝑡𝑝 :𝑇, 𝑡ℎ :𝐹, 𝑖𝑜 :𝐹, 𝑝𝑔⟩ ✔ 25.44
evDrift ⟨𝑡𝑙 : 1, 𝑡𝑝 :𝑇, 𝑡ℎ :𝑇, 𝑖𝑜 :𝐹, 𝑙𝑠 ⟩ ✔ 0.77
evDrift ⟨𝑡𝑙 : 1, 𝑡𝑝 :𝐹, 𝑡ℎ :𝐹, 𝑖𝑜 :𝐹, 𝑝𝑔⟩ ✔ 0.46
evDrift ⟨𝑡𝑙 : 0, 𝑡𝑝 :𝐹, 𝑡ℎ :𝑇, 𝑖𝑜 :𝑇, 𝑙𝑠 ⟩ ✔ 0.17
evDrift ⟨𝑡𝑙 : 0, 𝑡𝑝 :𝐹, 𝑡ℎ :𝑇, 𝑖𝑜 :𝐹, 𝑙𝑠 ⟩ ✔ 0.17
evDrift ⟨𝑡𝑙 : 1, 𝑡𝑝 :𝑇, 𝑡ℎ :𝐹, 𝑖𝑜 :𝐹, 𝑝𝑔⟩ ✔ 1.73
evDrift ⟨𝑡𝑙 : 1, 𝑡𝑝 :𝐹, 𝑡ℎ :𝑇, 𝑖𝑜 :𝐹, 𝑙𝑠 ⟩ ✔ 0.27
evDrift ⟨𝑡𝑙 : 1, 𝑡𝑝 :𝑇, 𝑡ℎ :𝑇, 𝑖𝑜 :𝑇, 𝑙𝑠 ⟩ ✔ 0.77
evDrift ⟨𝑡𝑙 : 0, 𝑡𝑝 :𝐹, 𝑡ℎ :𝐹, 𝑖𝑜 :𝐹, 𝑝𝑔⟩ ✔ 0.21
evDrift ⟨𝑡𝑙 : 1, 𝑡𝑝 :𝐹, 𝑡ℎ :𝑇, 𝑖𝑜 :𝑇, 𝑙𝑠 ⟩ ✔ 0.25
evDrift ⟨𝑡𝑙 : 1, 𝑡𝑝 :𝑇, 𝑡ℎ :𝐹, 𝑖𝑜 :𝑇, 𝑝𝑔⟩ ✔ 1.61
evDrift ⟨𝑡𝑙 : 1, 𝑡𝑝 :𝐹, 𝑡ℎ :𝐹, 𝑖𝑜 :𝑇, 𝑝𝑔⟩ ✔ 0.46
evDrift ⟨𝑡𝑙 : 0, 𝑡𝑝 :𝐹, 𝑡ℎ :𝐹, 𝑖𝑜 :𝑇, 𝑝𝑔⟩ ✔ 0.22

6. depend
Drift ⟨𝑡𝑙 : 0, 𝑡𝑝 :𝐹, 𝑡ℎ :𝑇, 𝑖𝑜 :𝐹, 𝑙𝑠 ⟩ ✔ 0.04
Drift ⟨𝑡𝑙 : 1, 𝑡𝑝 :𝐹, 𝑡ℎ :𝑇, 𝑖𝑜 :𝐹, 𝑙𝑠 ⟩ ✔ 0.04
Drift ⟨𝑡𝑙 : 1, 𝑡𝑝 :𝑇, 𝑡ℎ :𝐹, 𝑖𝑜 :𝐹, 𝑝𝑔⟩ ✔ 0.10
Drift ⟨𝑡𝑙 : 1, 𝑡𝑝 :𝐹, 𝑡ℎ :𝐹, 𝑖𝑜 :𝐹, 𝑝𝑔⟩ ✔ 0.10
Drift ⟨𝑡𝑙 : 0, 𝑡𝑝 :𝐹, 𝑡ℎ :𝐹, 𝑖𝑜 :𝐹, 𝑝𝑔⟩ ✔ 0.10
Drift ⟨𝑡𝑙 : 1, 𝑡𝑝 :𝑇, 𝑡ℎ :𝑇, 𝑖𝑜 :𝐹, 𝑙𝑠 ⟩ ✔ 0.04
evDrift ⟨𝑡𝑙 : 1, 𝑡𝑝 :𝐹, 𝑡ℎ :𝐹, 𝑖𝑜 :𝑇, 𝑝𝑔⟩ ✔ 0.03
evDrift ⟨𝑡𝑙 : 0, 𝑡𝑝 :𝐹, 𝑡ℎ :𝐹, 𝑖𝑜 :𝑇, 𝑝𝑔⟩ ✔ 0.03
evDrift ⟨𝑡𝑙 : 1, 𝑡𝑝 :𝐹, 𝑡ℎ :𝑇, 𝑖𝑜 :𝑇, 𝑙𝑠 ⟩ ✔ 0.02
evDrift ⟨𝑡𝑙 : 1, 𝑡𝑝 :𝑇, 𝑡ℎ :𝐹, 𝑖𝑜 :𝑇, 𝑝𝑔⟩ ✔ 0.03
evDrift ⟨𝑡𝑙 : 0, 𝑡𝑝 :𝐹, 𝑡ℎ :𝐹, 𝑖𝑜 :𝐹, 𝑝𝑔⟩ ✔ 0.03
evDrift ⟨𝑡𝑙 : 1, 𝑡𝑝 :𝑇, 𝑡ℎ :𝑇, 𝑖𝑜 :𝑇, 𝑙𝑠 ⟩ ✔ 0.02
evDrift ⟨𝑡𝑙 : 1, 𝑡𝑝 :𝑇, 𝑡ℎ :𝐹, 𝑖𝑜 :𝐹, 𝑝𝑔⟩ ✔ 0.03
evDrift ⟨𝑡𝑙 : 0, 𝑡𝑝 :𝐹, 𝑡ℎ :𝑇, 𝑖𝑜 :𝐹, 𝑙𝑠 ⟩ ✔ 0.02
evDrift ⟨𝑡𝑙 : 1, 𝑡𝑝 :𝐹, 𝑡ℎ :𝑇, 𝑖𝑜 :𝐹, 𝑙𝑠 ⟩ ✔ 0.02
evDrift ⟨𝑡𝑙 : 0, 𝑡𝑝 :𝐹, 𝑡ℎ :𝑇, 𝑖𝑜 :𝑇, 𝑙𝑠 ⟩ ✔ 0.02
evDrift ⟨𝑡𝑙 : 1, 𝑡𝑝 :𝐹, 𝑡ℎ :𝐹, 𝑖𝑜 :𝐹, 𝑝𝑔⟩ ✔ 0.03
evDrift ⟨𝑡𝑙 : 1, 𝑡𝑝 :𝑇, 𝑡ℎ :𝑇, 𝑖𝑜 :𝐹, 𝑙𝑠 ⟩ ✔ 0.02

7. disj
Drift ⟨𝑡𝑙 : 1, 𝑡𝑝 :𝑇, 𝑡ℎ :𝑇, 𝑖𝑜 :𝐹, 𝑙𝑠 ⟩ ? 102.69
Drift ⟨𝑡𝑙 : 0, 𝑡𝑝 :𝐹, 𝑡ℎ :𝐹, 𝑖𝑜 :𝐹, 𝑝𝑔⟩ ? 36.36
Drift ⟨𝑡𝑙 : 1, 𝑡𝑝 :𝐹, 𝑡ℎ :𝐹, 𝑖𝑜 :𝐹, 𝑝𝑔⟩ ? 60.87
Drift ⟨𝑡𝑙 : 0, 𝑡𝑝 :𝐹, 𝑡ℎ :𝑇, 𝑖𝑜 :𝐹, 𝑙𝑠 ⟩ ? 7.46
Drift ⟨𝑡𝑙 : 1, 𝑡𝑝 :𝐹, 𝑡ℎ :𝑇, 𝑖𝑜 :𝐹, 𝑙𝑠 ⟩ ? 11.04
Drift ⟨𝑡𝑙 : 1, 𝑡𝑝 :𝑇, 𝑡ℎ :𝐹, 𝑖𝑜 :𝐹, 𝑝𝑔⟩ ✔ 137.05
evDrift ⟨𝑡𝑙 : 1, 𝑡𝑝 :𝑇, 𝑡ℎ :𝑇, 𝑖𝑜 :𝐹, 𝑙𝑠 ⟩ ? 3.76
evDrift ⟨𝑡𝑙 : 1, 𝑡𝑝 :𝐹, 𝑡ℎ :𝐹, 𝑖𝑜 :𝐹, 𝑝𝑔⟩ ✔ 5.63
evDrift ⟨𝑡𝑙 : 0, 𝑡𝑝 :𝐹, 𝑡ℎ :𝑇, 𝑖𝑜 :𝑇, 𝑙𝑠 ⟩ ? 1.74
evDrift ⟨𝑡𝑙 : 1, 𝑡𝑝 :𝑇, 𝑡ℎ :𝐹, 𝑖𝑜 :𝐹, 𝑝𝑔⟩ ✔ 10.27
evDrift ⟨𝑡𝑙 : 0, 𝑡𝑝 :𝐹, 𝑡ℎ :𝑇, 𝑖𝑜 :𝐹, 𝑙𝑠 ⟩ ? 1.78
evDrift ⟨𝑡𝑙 : 1, 𝑡𝑝 :𝐹, 𝑡ℎ :𝑇, 𝑖𝑜 :𝐹, 𝑙𝑠 ⟩ ? 2.31
evDrift ⟨𝑡𝑙 : 0, 𝑡𝑝 :𝐹, 𝑡ℎ :𝐹, 𝑖𝑜 :𝐹, 𝑝𝑔⟩ ✔ 5.33
evDrift ⟨𝑡𝑙 : 1, 𝑡𝑝 :𝑇, 𝑡ℎ :𝑇, 𝑖𝑜 :𝑇, 𝑙𝑠 ⟩ ? 3.91
evDrift ⟨𝑡𝑙 : 1, 𝑡𝑝 :𝐹, 𝑡ℎ :𝑇, 𝑖𝑜 :𝑇, 𝑙𝑠 ⟩ ? 2.32
evDrift ⟨𝑡𝑙 : 1, 𝑡𝑝 :𝑇, 𝑡ℎ :𝐹, 𝑖𝑜 :𝑇, 𝑝𝑔⟩ ✔ 10.34
evDrift ⟨𝑡𝑙 : 1, 𝑡𝑝 :𝐹, 𝑡ℎ :𝐹, 𝑖𝑜 :𝑇, 𝑝𝑔⟩ ✔ 6.57
evDrift ⟨𝑡𝑙 : 0, 𝑡𝑝 :𝐹, 𝑡ℎ :𝐹, 𝑖𝑜 :𝑇, 𝑝𝑔⟩ ✔ 6.18

8. disj-gte
Drift ⟨𝑡𝑙 : 1, 𝑡𝑝 :𝐹, 𝑡ℎ :𝑇, 𝑖𝑜 :𝐹, 𝑙𝑠 ⟩ ? 13.60
Drift ⟨𝑡𝑙 : 0, 𝑡𝑝 :𝐹, 𝑡ℎ :𝑇, 𝑖𝑜 :𝐹, 𝑙𝑠 ⟩ ? 8.07
Drift ⟨𝑡𝑙 : 1, 𝑡𝑝 :𝑇, 𝑡ℎ :𝐹, 𝑖𝑜 :𝐹, 𝑝𝑔⟩ ✔ 129.83
Drift ⟨𝑡𝑙 : 1, 𝑡𝑝 :𝐹, 𝑡ℎ :𝐹, 𝑖𝑜 :𝐹, 𝑝𝑔⟩ ? 94.92
Drift ⟨𝑡𝑙 : 0, 𝑡𝑝 :𝐹, 𝑡ℎ :𝐹, 𝑖𝑜 :𝐹, 𝑝𝑔⟩ ? 34.29
Drift ⟨𝑡𝑙 : 1, 𝑡𝑝 :𝑇, 𝑡ℎ :𝑇, 𝑖𝑜 :𝐹, 𝑙𝑠 ⟩ ✔ 25.67
evDrift ⟨𝑡𝑙 : 1, 𝑡𝑝 :𝐹, 𝑡ℎ :𝐹, 𝑖𝑜 :𝑇, 𝑝𝑔⟩ ✔ 8.37
evDrift ⟨𝑡𝑙 : 0, 𝑡𝑝 :𝐹, 𝑡ℎ :𝐹, 𝑖𝑜 :𝑇, 𝑝𝑔⟩ ✔ 9.06
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evDrift ⟨𝑡𝑙 : 1, 𝑡𝑝 :𝐹, 𝑡ℎ :𝑇, 𝑖𝑜 :𝑇, 𝑙𝑠 ⟩ ✔ 2.76
evDrift ⟨𝑡𝑙 : 1, 𝑡𝑝 :𝑇, 𝑡ℎ :𝐹, 𝑖𝑜 :𝑇, 𝑝𝑔⟩ ✔ 7.76
evDrift ⟨𝑡𝑙 : 1, 𝑡𝑝 :𝑇, 𝑡ℎ :𝑇, 𝑖𝑜 :𝑇, 𝑙𝑠 ⟩ ✔ 2.68
evDrift ⟨𝑡𝑙 : 0, 𝑡𝑝 :𝐹, 𝑡ℎ :𝐹, 𝑖𝑜 :𝐹, 𝑝𝑔⟩ ✔ 8.93
evDrift ⟨𝑡𝑙 : 0, 𝑡𝑝 :𝐹, 𝑡ℎ :𝑇, 𝑖𝑜 :𝐹, 𝑙𝑠 ⟩ ✔ 1.97
evDrift ⟨𝑡𝑙 : 1, 𝑡𝑝 :𝑇, 𝑡ℎ :𝐹, 𝑖𝑜 :𝐹, 𝑝𝑔⟩ ✔ 8.54
evDrift ⟨𝑡𝑙 : 1, 𝑡𝑝 :𝐹, 𝑡ℎ :𝑇, 𝑖𝑜 :𝐹, 𝑙𝑠 ⟩ ✔ 2.76
evDrift ⟨𝑡𝑙 : 0, 𝑡𝑝 :𝐹, 𝑡ℎ :𝑇, 𝑖𝑜 :𝑇, 𝑙𝑠 ⟩ ✔ 2.02
evDrift ⟨𝑡𝑙 : 1, 𝑡𝑝 :𝐹, 𝑡ℎ :𝐹, 𝑖𝑜 :𝐹, 𝑝𝑔⟩ ✔ 8.36
evDrift ⟨𝑡𝑙 : 1, 𝑡𝑝 :𝑇, 𝑡ℎ :𝑇, 𝑖𝑜 :𝐹, 𝑙𝑠 ⟩ ✔ 2.69

9. disj-nondet
Drift ⟨𝑡𝑙 : 1, 𝑡𝑝 :𝐹, 𝑡ℎ :𝐹, 𝑖𝑜 :𝐹, 𝑝𝑔⟩ ? 101.79
Drift ⟨𝑡𝑙 : 1, 𝑡𝑝 :𝑇, 𝑡ℎ :𝐹, 𝑖𝑜 :𝐹, 𝑝𝑔⟩ ✔ 252.05
Drift ⟨𝑡𝑙 : 0, 𝑡𝑝 :𝐹, 𝑡ℎ :𝑇, 𝑖𝑜 :𝐹, 𝑙𝑠 ⟩ ? 10.24
Drift ⟨𝑡𝑙 : 1, 𝑡𝑝 :𝐹, 𝑡ℎ :𝑇, 𝑖𝑜 :𝐹, 𝑙𝑠 ⟩ ? 12.33
Drift ⟨𝑡𝑙 : 1, 𝑡𝑝 :𝑇, 𝑡ℎ :𝑇, 𝑖𝑜 :𝐹, 𝑙𝑠 ⟩ ✔ 35.00
Drift ⟨𝑡𝑙 : 0, 𝑡𝑝 :𝐹, 𝑡ℎ :𝐹, 𝑖𝑜 :𝐹, 𝑝𝑔⟩ ? 66.89
evDrift ⟨𝑡𝑙 : 0, 𝑡𝑝 :𝐹, 𝑡ℎ :𝐹, 𝑖𝑜 :𝐹, 𝑝𝑔⟩ ✔ 15.59
evDrift ⟨𝑡𝑙 : 1, 𝑡𝑝 :𝑇, 𝑡ℎ :𝑇, 𝑖𝑜 :𝑇, 𝑙𝑠 ⟩ ✔ 4.39
evDrift ⟨𝑡𝑙 : 1, 𝑡𝑝 :𝑇, 𝑡ℎ :𝐹, 𝑖𝑜 :𝑇, 𝑝𝑔⟩ ✔ 20.61
evDrift ⟨𝑡𝑙 : 1, 𝑡𝑝 :𝐹, 𝑡ℎ :𝑇, 𝑖𝑜 :𝑇, 𝑙𝑠 ⟩ ✔ 2.90
evDrift ⟨𝑡𝑙 : 0, 𝑡𝑝 :𝐹, 𝑡ℎ :𝐹, 𝑖𝑜 :𝑇, 𝑝𝑔⟩ ✔ 15.69
evDrift ⟨𝑡𝑙 : 1, 𝑡𝑝 :𝐹, 𝑡ℎ :𝐹, 𝑖𝑜 :𝑇, 𝑝𝑔⟩ ✔ 14.44
evDrift ⟨𝑡𝑙 : 1, 𝑡𝑝 :𝑇, 𝑡ℎ :𝑇, 𝑖𝑜 :𝐹, 𝑙𝑠 ⟩ ✔ 4.43
evDrift ⟨𝑡𝑙 : 1, 𝑡𝑝 :𝐹, 𝑡ℎ :𝐹, 𝑖𝑜 :𝐹, 𝑝𝑔⟩ ✔ 14.38
evDrift ⟨𝑡𝑙 : 0, 𝑡𝑝 :𝐹, 𝑡ℎ :𝑇, 𝑖𝑜 :𝑇, 𝑙𝑠 ⟩ ✔ 2.35
evDrift ⟨𝑡𝑙 : 1, 𝑡𝑝 :𝐹, 𝑡ℎ :𝑇, 𝑖𝑜 :𝐹, 𝑙𝑠 ⟩ ✔ 2.90
evDrift ⟨𝑡𝑙 : 1, 𝑡𝑝 :𝑇, 𝑡ℎ :𝐹, 𝑖𝑜 :𝐹, 𝑝𝑔⟩ ✔ 20.45
evDrift ⟨𝑡𝑙 : 0, 𝑡𝑝 :𝐹, 𝑡ℎ :𝑇, 𝑖𝑜 :𝐹, 𝑙𝑠 ⟩ ✔ 2.35

10. higher-order
Drift ⟨𝑡𝑙 : 1, 𝑡𝑝 :𝑇, 𝑡ℎ :𝐹, 𝑖𝑜 :𝐹, 𝑝𝑔⟩ ✔ 23.05
Drift ⟨𝑡𝑙 : 0, 𝑡𝑝 :𝐹, 𝑡ℎ :𝑇, 𝑖𝑜 :𝐹, 𝑙𝑠 ⟩ ✔ 1.88
Drift ⟨𝑡𝑙 : 1, 𝑡𝑝 :𝐹, 𝑡ℎ :𝑇, 𝑖𝑜 :𝐹, 𝑙𝑠 ⟩ ✔ 5.12
Drift ⟨𝑡𝑙 : 1, 𝑡𝑝 :𝐹, 𝑡ℎ :𝐹, 𝑖𝑜 :𝐹, 𝑝𝑔⟩ ? 18.46
Drift ⟨𝑡𝑙 : 1, 𝑡𝑝 :𝑇, 𝑡ℎ :𝑇, 𝑖𝑜 :𝐹, 𝑙𝑠 ⟩ ✔ 9.88
Drift ⟨𝑡𝑙 : 0, 𝑡𝑝 :𝐹, 𝑡ℎ :𝐹, 𝑖𝑜 :𝐹, 𝑝𝑔⟩ ? 9.06
evDrift ⟨𝑡𝑙 : 0, 𝑡𝑝 :𝐹, 𝑡ℎ :𝐹, 𝑖𝑜 :𝐹, 𝑝𝑔⟩ ✔ 1.09
evDrift ⟨𝑡𝑙 : 1, 𝑡𝑝 :𝑇, 𝑡ℎ :𝑇, 𝑖𝑜 :𝑇, 𝑙𝑠 ⟩ ✔ 0.52
evDrift ⟨𝑡𝑙 : 0, 𝑡𝑝 :𝐹, 𝑡ℎ :𝐹, 𝑖𝑜 :𝑇, 𝑝𝑔⟩ ✔ 1.06
evDrift ⟨𝑡𝑙 : 1, 𝑡𝑝 :𝐹, 𝑡ℎ :𝐹, 𝑖𝑜 :𝑇, 𝑝𝑔⟩ ✔ 2.36
evDrift ⟨𝑡𝑙 : 1, 𝑡𝑝 :𝑇, 𝑡ℎ :𝐹, 𝑖𝑜 :𝑇, 𝑝𝑔⟩ ✔ 2.35
evDrift ⟨𝑡𝑙 : 1, 𝑡𝑝 :𝐹, 𝑡ℎ :𝑇, 𝑖𝑜 :𝑇, 𝑙𝑠 ⟩ ✔ 0.49
evDrift ⟨𝑡𝑙 : 1, 𝑡𝑝 :𝑇, 𝑡ℎ :𝑇, 𝑖𝑜 :𝐹, 𝑙𝑠 ⟩ ✔ 0.42
evDrift ⟨𝑡𝑙 : 1, 𝑡𝑝 :𝐹, 𝑡ℎ :𝐹, 𝑖𝑜 :𝐹, 𝑝𝑔⟩ ✔ 2.37
evDrift ⟨𝑡𝑙 : 1, 𝑡𝑝 :𝐹, 𝑡ℎ :𝑇, 𝑖𝑜 :𝐹, 𝑙𝑠 ⟩ ✔ 0.41
evDrift ⟨𝑡𝑙 : 1, 𝑡𝑝 :𝑇, 𝑡ℎ :𝐹, 𝑖𝑜 :𝐹, 𝑝𝑔⟩ ✔ 2.39
evDrift ⟨𝑡𝑙 : 0, 𝑡𝑝 :𝐹, 𝑡ℎ :𝑇, 𝑖𝑜 :𝐹, 𝑙𝑠 ⟩ ✔ 0.38
evDrift ⟨𝑡𝑙 : 0, 𝑡𝑝 :𝐹, 𝑡ℎ :𝑇, 𝑖𝑜 :𝑇, 𝑙𝑠 ⟩ ✔ 0.35

11. intro-ord3
Drift ⟨𝑡𝑙 : 0, 𝑡𝑝 :𝐹, 𝑡ℎ :𝐹, 𝑖𝑜 :𝐹, 𝑝𝑔⟩ ? 70.86
Drift ⟨𝑡𝑙 : 1, 𝑡𝑝 :𝑇, 𝑡ℎ :𝑇, 𝑖𝑜 :𝐹, 𝑙𝑠 ⟩ ✔ 32.26
Drift ⟨𝑡𝑙 : 1, 𝑡𝑝 :𝐹, 𝑡ℎ :𝐹, 𝑖𝑜 :𝐹, 𝑝𝑔⟩ ✔ 152.38
Drift ⟨𝑡𝑙 : 1, 𝑡𝑝 :𝑇, 𝑡ℎ :𝐹, 𝑖𝑜 :𝐹, 𝑝𝑔⟩ ✔ 181.92
Drift ⟨𝑡𝑙 : 0, 𝑡𝑝 :𝐹, 𝑡ℎ :𝑇, 𝑖𝑜 :𝐹, 𝑙𝑠 ⟩ ? 8.37
Drift ⟨𝑡𝑙 : 1, 𝑡𝑝 :𝐹, 𝑡ℎ :𝑇, 𝑖𝑜 :𝐹, 𝑙𝑠 ⟩ ✔ 24.14
evDrift ⟨𝑡𝑙 : 0, 𝑡𝑝 :𝐹, 𝑡ℎ :𝑇, 𝑖𝑜 :𝑇, 𝑙𝑠 ⟩ ✔ 2.59
evDrift ⟨𝑡𝑙 : 1, 𝑡𝑝 :𝐹, 𝑡ℎ :𝑇, 𝑖𝑜 :𝐹, 𝑙𝑠 ⟩ ✔ 6.02
evDrift ⟨𝑡𝑙 : 1, 𝑡𝑝 :𝑇, 𝑡ℎ :𝐹, 𝑖𝑜 :𝐹, 𝑝𝑔⟩ ✔ 40.09
evDrift ⟨𝑡𝑙 : 0, 𝑡𝑝 :𝐹, 𝑡ℎ :𝑇, 𝑖𝑜 :𝐹, 𝑙𝑠 ⟩ ✔ 2.60
evDrift ⟨𝑡𝑙 : 1, 𝑡𝑝 :𝐹, 𝑡ℎ :𝐹, 𝑖𝑜 :𝐹, 𝑝𝑔⟩ ✔ 39.83
evDrift ⟨𝑡𝑙 : 1, 𝑡𝑝 :𝑇, 𝑡ℎ :𝑇, 𝑖𝑜 :𝐹, 𝑙𝑠 ⟩ ✔ 4.97
evDrift ⟨𝑡𝑙 : 1, 𝑡𝑝 :𝑇, 𝑡ℎ :𝐹, 𝑖𝑜 :𝑇, 𝑝𝑔⟩ ✔ 40.40
evDrift ⟨𝑡𝑙 : 1, 𝑡𝑝 :𝐹, 𝑡ℎ :𝑇, 𝑖𝑜 :𝑇, 𝑙𝑠 ⟩ ✔ 6.03
evDrift ⟨𝑡𝑙 : 0, 𝑡𝑝 :𝐹, 𝑡ℎ :𝐹, 𝑖𝑜 :𝑇, 𝑝𝑔⟩ ✔ 13.46
evDrift ⟨𝑡𝑙 : 1, 𝑡𝑝 :𝐹, 𝑡ℎ :𝐹, 𝑖𝑜 :𝑇, 𝑝𝑔⟩ ✔ 40.38
evDrift ⟨𝑡𝑙 : 0, 𝑡𝑝 :𝐹, 𝑡ℎ :𝐹, 𝑖𝑜 :𝐹, 𝑝𝑔⟩ ✔ 13.34
evDrift ⟨𝑡𝑙 : 1, 𝑡𝑝 :𝑇, 𝑡ℎ :𝑇, 𝑖𝑜 :𝑇, 𝑙𝑠 ⟩ ✔ 6.17

12. last-ev-even
Drift ⟨𝑡𝑙 : 1, 𝑡𝑝 :𝐹, 𝑡ℎ :𝐹, 𝑖𝑜 :𝐹, 𝑝𝑔⟩ ? 17.43
Drift ⟨𝑡𝑙 : 0, 𝑡𝑝 :𝐹, 𝑡ℎ :𝑇, 𝑖𝑜 :𝐹, 𝑙𝑠 ⟩ ? 1.48
Drift ⟨𝑡𝑙 : 1, 𝑡𝑝 :𝐹, 𝑡ℎ :𝑇, 𝑖𝑜 :𝐹, 𝑙𝑠 ⟩ ? 6.21
Drift ⟨𝑡𝑙 : 1, 𝑡𝑝 :𝑇, 𝑡ℎ :𝐹, 𝑖𝑜 :𝐹, 𝑝𝑔⟩ ✔ 39.86
Drift ⟨𝑡𝑙 : 1, 𝑡𝑝 :𝑇, 𝑡ℎ :𝑇, 𝑖𝑜 :𝐹, 𝑙𝑠 ⟩ ? 12.52
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Drift ⟨𝑡𝑙 : 0, 𝑡𝑝 :𝐹, 𝑡ℎ :𝐹, 𝑖𝑜 :𝐹, 𝑝𝑔⟩ ? 7.16
evDrift ⟨𝑡𝑙 : 0, 𝑡𝑝 :𝐹, 𝑡ℎ :𝐹, 𝑖𝑜 :𝐹, 𝑝𝑔⟩ ? 1.05
evDrift ⟨𝑡𝑙 : 1, 𝑡𝑝 :𝑇, 𝑡ℎ :𝑇, 𝑖𝑜 :𝑇, 𝑙𝑠 ⟩ ? 2.19
evDrift ⟨𝑡𝑙 : 1, 𝑡𝑝 :𝐹, 𝑡ℎ :𝑇, 𝑖𝑜 :𝑇, 𝑙𝑠 ⟩ ? 0.97
evDrift ⟨𝑡𝑙 : 1, 𝑡𝑝 :𝑇, 𝑡ℎ :𝐹, 𝑖𝑜 :𝑇, 𝑝𝑔⟩ ✔ 5.52
evDrift ⟨𝑡𝑙 : 1, 𝑡𝑝 :𝐹, 𝑡ℎ :𝐹, 𝑖𝑜 :𝑇, 𝑝𝑔⟩ ? 2.55
evDrift ⟨𝑡𝑙 : 0, 𝑡𝑝 :𝐹, 𝑡ℎ :𝐹, 𝑖𝑜 :𝑇, 𝑝𝑔⟩ ? 1.00
evDrift ⟨𝑡𝑙 : 1, 𝑡𝑝 :𝑇, 𝑡ℎ :𝑇, 𝑖𝑜 :𝐹, 𝑙𝑠 ⟩ ? 2.07
evDrift ⟨𝑡𝑙 : 1, 𝑡𝑝 :𝐹, 𝑡ℎ :𝐹, 𝑖𝑜 :𝐹, 𝑝𝑔⟩ ? 2.59
evDrift ⟨𝑡𝑙 : 0, 𝑡𝑝 :𝐹, 𝑡ℎ :𝑇, 𝑖𝑜 :𝑇, 𝑙𝑠 ⟩ ? 0.40
evDrift ⟨𝑡𝑙 : 1, 𝑡𝑝 :𝑇, 𝑡ℎ :𝐹, 𝑖𝑜 :𝐹, 𝑝𝑔⟩ ✔ 5.64
evDrift ⟨𝑡𝑙 : 0, 𝑡𝑝 :𝐹, 𝑡ℎ :𝑇, 𝑖𝑜 :𝐹, 𝑙𝑠 ⟩ ? 0.44
evDrift ⟨𝑡𝑙 : 1, 𝑡𝑝 :𝐹, 𝑡ℎ :𝑇, 𝑖𝑜 :𝐹, 𝑙𝑠 ⟩ ? 1.01

13. lics18-amortized
Drift ⟨𝑡𝑙 : 1, 𝑡𝑝 :𝐹, 𝑡ℎ :𝐹, 𝑖𝑜 :𝐹, 𝑝𝑔⟩ T 901.01
Drift ⟨𝑡𝑙 : 0, 𝑡𝑝 :𝐹, 𝑡ℎ :𝑇, 𝑖𝑜 :𝐹, 𝑙𝑠 ⟩ T 900.43
Drift ⟨𝑡𝑙 : 1, 𝑡𝑝 :𝐹, 𝑡ℎ :𝑇, 𝑖𝑜 :𝐹, 𝑙𝑠 ⟩ ? 288.04
Drift ⟨𝑡𝑙 : 1, 𝑡𝑝 :𝑇, 𝑡ℎ :𝐹, 𝑖𝑜 :𝐹, 𝑝𝑔⟩ T 901.02
Drift ⟨𝑡𝑙 : 0, 𝑡𝑝 :𝐹, 𝑡ℎ :𝐹, 𝑖𝑜 :𝐹, 𝑝𝑔⟩ ? 276.11
Drift ⟨𝑡𝑙 : 1, 𝑡𝑝 :𝑇, 𝑡ℎ :𝑇, 𝑖𝑜 :𝐹, 𝑙𝑠 ⟩ ? 587.41
evDrift ⟨𝑡𝑙 : 1, 𝑡𝑝 :𝐹, 𝑡ℎ :𝑇, 𝑖𝑜 :𝑇, 𝑙𝑠 ⟩ ✔ 15.81
evDrift ⟨𝑡𝑙 : 1, 𝑡𝑝 :𝑇, 𝑡ℎ :𝐹, 𝑖𝑜 :𝑇, 𝑝𝑔⟩ ? 69.32
evDrift ⟨𝑡𝑙 : 1, 𝑡𝑝 :𝐹, 𝑡ℎ :𝐹, 𝑖𝑜 :𝑇, 𝑝𝑔⟩ ? 69.41
evDrift ⟨𝑡𝑙 : 0, 𝑡𝑝 :𝐹, 𝑡ℎ :𝐹, 𝑖𝑜 :𝑇, 𝑝𝑔⟩ ? 20.37
evDrift ⟨𝑡𝑙 : 0, 𝑡𝑝 :𝐹, 𝑡ℎ :𝐹, 𝑖𝑜 :𝐹, 𝑝𝑔⟩ ? 20.23
evDrift ⟨𝑡𝑙 : 1, 𝑡𝑝 :𝑇, 𝑡ℎ :𝑇, 𝑖𝑜 :𝑇, 𝑙𝑠 ⟩ ✔ 16.15
evDrift ⟨𝑡𝑙 : 0, 𝑡𝑝 :𝐹, 𝑡ℎ :𝑇, 𝑖𝑜 :𝑇, 𝑙𝑠 ⟩ ✔ 6.47
evDrift ⟨𝑡𝑙 : 1, 𝑡𝑝 :𝑇, 𝑡ℎ :𝐹, 𝑖𝑜 :𝐹, 𝑝𝑔⟩ ? 68.85
evDrift ⟨𝑡𝑙 : 0, 𝑡𝑝 :𝐹, 𝑡ℎ :𝑇, 𝑖𝑜 :𝐹, 𝑙𝑠 ⟩ ✔ 6.32
evDrift ⟨𝑡𝑙 : 1, 𝑡𝑝 :𝐹, 𝑡ℎ :𝑇, 𝑖𝑜 :𝐹, 𝑙𝑠 ⟩ ✔ 15.87
evDrift ⟨𝑡𝑙 : 1, 𝑡𝑝 :𝐹, 𝑡ℎ :𝐹, 𝑖𝑜 :𝐹, 𝑝𝑔⟩ ? 68.66
evDrift ⟨𝑡𝑙 : 1, 𝑡𝑝 :𝑇, 𝑡ℎ :𝑇, 𝑖𝑜 :𝐹, 𝑙𝑠 ⟩ ✔ 15.77

14. lics18-hoshrink
Drift ⟨𝑡𝑙 : 1, 𝑡𝑝 :𝑇, 𝑡ℎ :𝑇, 𝑖𝑜 :𝐹, 𝑙𝑠 ⟩ ? 3.36
Drift ⟨𝑡𝑙 : 0, 𝑡𝑝 :𝐹, 𝑡ℎ :𝐹, 𝑖𝑜 :𝐹, 𝑝𝑔⟩ ? 9.73
Drift ⟨𝑡𝑙 : 1, 𝑡𝑝 :𝐹, 𝑡ℎ :𝐹, 𝑖𝑜 :𝐹, 𝑝𝑔⟩ ? 19.35
Drift ⟨𝑡𝑙 : 1, 𝑡𝑝 :𝐹, 𝑡ℎ :𝑇, 𝑖𝑜 :𝐹, 𝑙𝑠 ⟩ ? 3.42
Drift ⟨𝑡𝑙 : 0, 𝑡𝑝 :𝐹, 𝑡ℎ :𝑇, 𝑖𝑜 :𝐹, 𝑙𝑠 ⟩ ? 1.22
Drift ⟨𝑡𝑙 : 1, 𝑡𝑝 :𝑇, 𝑡ℎ :𝐹, 𝑖𝑜 :𝐹, 𝑝𝑔⟩ ? 20.18
evDrift ⟨𝑡𝑙 : 1, 𝑡𝑝 :𝑇, 𝑡ℎ :𝑇, 𝑖𝑜 :𝐹, 𝑙𝑠 ⟩ ? 0.92
evDrift ⟨𝑡𝑙 : 1, 𝑡𝑝 :𝐹, 𝑡ℎ :𝐹, 𝑖𝑜 :𝐹, 𝑝𝑔⟩ ? 6.90
evDrift ⟨𝑡𝑙 : 0, 𝑡𝑝 :𝐹, 𝑡ℎ :𝑇, 𝑖𝑜 :𝑇, 𝑙𝑠 ⟩ ? 0.38
evDrift ⟨𝑡𝑙 : 0, 𝑡𝑝 :𝐹, 𝑡ℎ :𝑇, 𝑖𝑜 :𝐹, 𝑙𝑠 ⟩ ? 0.42
evDrift ⟨𝑡𝑙 : 1, 𝑡𝑝 :𝑇, 𝑡ℎ :𝐹, 𝑖𝑜 :𝐹, 𝑝𝑔⟩ ? 7.11
evDrift ⟨𝑡𝑙 : 1, 𝑡𝑝 :𝐹, 𝑡ℎ :𝑇, 𝑖𝑜 :𝐹, 𝑙𝑠 ⟩ ? 1.04
evDrift ⟨𝑡𝑙 : 1, 𝑡𝑝 :𝑇, 𝑡ℎ :𝑇, 𝑖𝑜 :𝑇, 𝑙𝑠 ⟩ ? 1.16
evDrift ⟨𝑡𝑙 : 0, 𝑡𝑝 :𝐹, 𝑡ℎ :𝐹, 𝑖𝑜 :𝐹, 𝑝𝑔⟩ ? 2.99
evDrift ⟨𝑡𝑙 : 1, 𝑡𝑝 :𝐹, 𝑡ℎ :𝑇, 𝑖𝑜 :𝑇, 𝑙𝑠 ⟩ ? 1.08
evDrift ⟨𝑡𝑙 : 1, 𝑡𝑝 :𝑇, 𝑡ℎ :𝐹, 𝑖𝑜 :𝑇, 𝑝𝑔⟩ ? 7.01
evDrift ⟨𝑡𝑙 : 1, 𝑡𝑝 :𝐹, 𝑡ℎ :𝐹, 𝑖𝑜 :𝑇, 𝑝𝑔⟩ ? 6.41
evDrift ⟨𝑡𝑙 : 0, 𝑡𝑝 :𝐹, 𝑡ℎ :𝐹, 𝑖𝑜 :𝑇, 𝑝𝑔⟩ ? 2.93

15. lics18-web
Drift ⟨𝑡𝑙 : 1, 𝑡𝑝 :𝐹, 𝑡ℎ :𝐹, 𝑖𝑜 :𝐹, 𝑝𝑔⟩ ? 241.51
Drift ⟨𝑡𝑙 : 0, 𝑡𝑝 :𝐹, 𝑡ℎ :𝑇, 𝑖𝑜 :𝐹, 𝑙𝑠 ⟩ ? 53.00
Drift ⟨𝑡𝑙 : 1, 𝑡𝑝 :𝐹, 𝑡ℎ :𝑇, 𝑖𝑜 :𝐹, 𝑙𝑠 ⟩ ? 189.32
Drift ⟨𝑡𝑙 : 1, 𝑡𝑝 :𝑇, 𝑡ℎ :𝐹, 𝑖𝑜 :𝐹, 𝑝𝑔⟩ T 900.27
Drift ⟨𝑡𝑙 : 1, 𝑡𝑝 :𝑇, 𝑡ℎ :𝑇, 𝑖𝑜 :𝐹, 𝑙𝑠 ⟩ T 901.02
Drift ⟨𝑡𝑙 : 0, 𝑡𝑝 :𝐹, 𝑡ℎ :𝐹, 𝑖𝑜 :𝐹, 𝑝𝑔⟩ ? 91.42
evDrift ⟨𝑡𝑙 : 0, 𝑡𝑝 :𝐹, 𝑡ℎ :𝐹, 𝑖𝑜 :𝐹, 𝑝𝑔⟩ ? 10.26
evDrift ⟨𝑡𝑙 : 1, 𝑡𝑝 :𝑇, 𝑡ℎ :𝑇, 𝑖𝑜 :𝑇, 𝑙𝑠 ⟩ ✔ 23.83
evDrift ⟨𝑡𝑙 : 1, 𝑡𝑝 :𝐹, 𝑡ℎ :𝑇, 𝑖𝑜 :𝑇, 𝑙𝑠 ⟩ ✔ 23.89
evDrift ⟨𝑡𝑙 : 1, 𝑡𝑝 :𝑇, 𝑡ℎ :𝐹, 𝑖𝑜 :𝑇, 𝑝𝑔⟩ ? 59.56
evDrift ⟨𝑡𝑙 : 1, 𝑡𝑝 :𝐹, 𝑡ℎ :𝐹, 𝑖𝑜 :𝑇, 𝑝𝑔⟩ ? 59.68
evDrift ⟨𝑡𝑙 : 0, 𝑡𝑝 :𝐹, 𝑡ℎ :𝐹, 𝑖𝑜 :𝑇, 𝑝𝑔⟩ ? 10.57
evDrift ⟨𝑡𝑙 : 1, 𝑡𝑝 :𝑇, 𝑡ℎ :𝑇, 𝑖𝑜 :𝐹, 𝑙𝑠 ⟩ ✔ 23.56
evDrift ⟨𝑡𝑙 : 1, 𝑡𝑝 :𝐹, 𝑡ℎ :𝐹, 𝑖𝑜 :𝐹, 𝑝𝑔⟩ ? 58.95
evDrift ⟨𝑡𝑙 : 0, 𝑡𝑝 :𝐹, 𝑡ℎ :𝑇, 𝑖𝑜 :𝑇, 𝑙𝑠 ⟩ ✔ 7.45
evDrift ⟨𝑡𝑙 : 1, 𝑡𝑝 :𝑇, 𝑡ℎ :𝐹, 𝑖𝑜 :𝐹, 𝑝𝑔⟩ ? 59.19
evDrift ⟨𝑡𝑙 : 0, 𝑡𝑝 :𝐹, 𝑡ℎ :𝑇, 𝑖𝑜 :𝐹, 𝑙𝑠 ⟩ ✔ 7.21
evDrift ⟨𝑡𝑙 : 1, 𝑡𝑝 :𝐹, 𝑡ℎ :𝑇, 𝑖𝑜 :𝐹, 𝑙𝑠 ⟩ ✔ 23.78

16. market
Drift ⟨𝑡𝑙 : 0, 𝑡𝑝 :𝐹, 𝑡ℎ :𝐹, 𝑖𝑜 :𝐹, 𝑝𝑔⟩ ? 127.80
Drift ⟨𝑡𝑙 : 1, 𝑡𝑝 :𝑇, 𝑡ℎ :𝑇, 𝑖𝑜 :𝐹, 𝑙𝑠 ⟩ ? 641.30
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Drift ⟨𝑡𝑙 : 1, 𝑡𝑝 :𝐹, 𝑡ℎ :𝑇, 𝑖𝑜 :𝐹, 𝑙𝑠 ⟩ ? 277.58
Drift ⟨𝑡𝑙 : 0, 𝑡𝑝 :𝐹, 𝑡ℎ :𝑇, 𝑖𝑜 :𝐹, 𝑙𝑠 ⟩ ? 33.12
Drift ⟨𝑡𝑙 : 1, 𝑡𝑝 :𝑇, 𝑡ℎ :𝐹, 𝑖𝑜 :𝐹, 𝑝𝑔⟩ T 900.85
Drift ⟨𝑡𝑙 : 1, 𝑡𝑝 :𝐹, 𝑡ℎ :𝐹, 𝑖𝑜 :𝐹, 𝑝𝑔⟩ T 901.01
evDrift ⟨𝑡𝑙 : 0, 𝑡𝑝 :𝐹, 𝑡ℎ :𝑇, 𝑖𝑜 :𝐹, 𝑙𝑠 ⟩ ? 5.47
evDrift ⟨𝑡𝑙 : 1, 𝑡𝑝 :𝑇, 𝑡ℎ :𝐹, 𝑖𝑜 :𝐹, 𝑝𝑔⟩ ? 36.76
evDrift ⟨𝑡𝑙 : 1, 𝑡𝑝 :𝐹, 𝑡ℎ :𝑇, 𝑖𝑜 :𝐹, 𝑙𝑠 ⟩ ? 14.43
evDrift ⟨𝑡𝑙 : 0, 𝑡𝑝 :𝐹, 𝑡ℎ :𝑇, 𝑖𝑜 :𝑇, 𝑙𝑠 ⟩ ? 5.43
evDrift ⟨𝑡𝑙 : 1, 𝑡𝑝 :𝑇, 𝑡ℎ :𝑇, 𝑖𝑜 :𝐹, 𝑙𝑠 ⟩ ? 14.88
evDrift ⟨𝑡𝑙 : 1, 𝑡𝑝 :𝐹, 𝑡ℎ :𝐹, 𝑖𝑜 :𝐹, 𝑝𝑔⟩ ? 35.36
evDrift ⟨𝑡𝑙 : 1, 𝑡𝑝 :𝐹, 𝑡ℎ :𝐹, 𝑖𝑜 :𝑇, 𝑝𝑔⟩ ? 34.96
evDrift ⟨𝑡𝑙 : 0, 𝑡𝑝 :𝐹, 𝑡ℎ :𝐹, 𝑖𝑜 :𝑇, 𝑝𝑔⟩ ? 14.78
evDrift ⟨𝑡𝑙 : 1, 𝑡𝑝 :𝐹, 𝑡ℎ :𝑇, 𝑖𝑜 :𝑇, 𝑙𝑠 ⟩ ? 14.45
evDrift ⟨𝑡𝑙 : 1, 𝑡𝑝 :𝑇, 𝑡ℎ :𝐹, 𝑖𝑜 :𝑇, 𝑝𝑔⟩ ? 37.05
evDrift ⟨𝑡𝑙 : 1, 𝑡𝑝 :𝑇, 𝑡ℎ :𝑇, 𝑖𝑜 :𝑇, 𝑙𝑠 ⟩ ? 15.03
evDrift ⟨𝑡𝑙 : 0, 𝑡𝑝 :𝐹, 𝑡ℎ :𝐹, 𝑖𝑜 :𝐹, 𝑝𝑔⟩ ? 14.93

17. max-min
Drift ⟨𝑡𝑙 : 1, 𝑡𝑝 :𝑇, 𝑡ℎ :𝑇, 𝑖𝑜 :𝐹, 𝑙𝑠 ⟩ ? 233.49
Drift ⟨𝑡𝑙 : 0, 𝑡𝑝 :𝐹, 𝑡ℎ :𝐹, 𝑖𝑜 :𝐹, 𝑝𝑔⟩ ? 34.04
Drift ⟨𝑡𝑙 : 1, 𝑡𝑝 :𝐹, 𝑡ℎ :𝐹, 𝑖𝑜 :𝐹, 𝑝𝑔⟩ ? 145.14
Drift ⟨𝑡𝑙 : 1, 𝑡𝑝 :𝑇, 𝑡ℎ :𝐹, 𝑖𝑜 :𝐹, 𝑝𝑔⟩ T 900.58
Drift ⟨𝑡𝑙 : 1, 𝑡𝑝 :𝐹, 𝑡ℎ :𝑇, 𝑖𝑜 :𝐹, 𝑙𝑠 ⟩ ? 24.44
Drift ⟨𝑡𝑙 : 0, 𝑡𝑝 :𝐹, 𝑡ℎ :𝑇, 𝑖𝑜 :𝐹, 𝑙𝑠 ⟩ ? 9.19
evDrift ⟨𝑡𝑙 : 1, 𝑡𝑝 :𝑇, 𝑡ℎ :𝑇, 𝑖𝑜 :𝐹, 𝑙𝑠 ⟩ ✔ 30.38
evDrift ⟨𝑡𝑙 : 1, 𝑡𝑝 :𝐹, 𝑡ℎ :𝐹, 𝑖𝑜 :𝐹, 𝑝𝑔⟩ ? 28.20
evDrift ⟨𝑡𝑙 : 0, 𝑡𝑝 :𝐹, 𝑡ℎ :𝑇, 𝑖𝑜 :𝑇, 𝑙𝑠 ⟩ ? 3.77
evDrift ⟨𝑡𝑙 : 1, 𝑡𝑝 :𝐹, 𝑡ℎ :𝑇, 𝑖𝑜 :𝐹, 𝑙𝑠 ⟩ ? 6.31
evDrift ⟨𝑡𝑙 : 0, 𝑡𝑝 :𝐹, 𝑡ℎ :𝑇, 𝑖𝑜 :𝐹, 𝑙𝑠 ⟩ ? 3.73
evDrift ⟨𝑡𝑙 : 1, 𝑡𝑝 :𝑇, 𝑡ℎ :𝐹, 𝑖𝑜 :𝐹, 𝑝𝑔⟩ ✔ 48.57
evDrift ⟨𝑡𝑙 : 1, 𝑡𝑝 :𝑇, 𝑡ℎ :𝑇, 𝑖𝑜 :𝑇, 𝑙𝑠 ⟩ ✔ 30.10
evDrift ⟨𝑡𝑙 : 0, 𝑡𝑝 :𝐹, 𝑡ℎ :𝐹, 𝑖𝑜 :𝐹, 𝑝𝑔⟩ ? 24.39
evDrift ⟨𝑡𝑙 : 1, 𝑡𝑝 :𝑇, 𝑡ℎ :𝐹, 𝑖𝑜 :𝑇, 𝑝𝑔⟩ ✔ 48.28
evDrift ⟨𝑡𝑙 : 1, 𝑡𝑝 :𝐹, 𝑡ℎ :𝑇, 𝑖𝑜 :𝑇, 𝑙𝑠 ⟩ ? 6.29
evDrift ⟨𝑡𝑙 : 0, 𝑡𝑝 :𝐹, 𝑡ℎ :𝐹, 𝑖𝑜 :𝑇, 𝑝𝑔⟩ ? 24.35
evDrift ⟨𝑡𝑙 : 1, 𝑡𝑝 :𝐹, 𝑡ℎ :𝐹, 𝑖𝑜 :𝑇, 𝑝𝑔⟩ ? 28.45

18. monotonic
Drift ⟨𝑡𝑙 : 0, 𝑡𝑝 :𝐹, 𝑡ℎ :𝐹, 𝑖𝑜 :𝐹, 𝑝𝑔⟩ ✔ 5.33
Drift ⟨𝑡𝑙 : 1, 𝑡𝑝 :𝑇, 𝑡ℎ :𝑇, 𝑖𝑜 :𝐹, 𝑙𝑠 ⟩ ✔ 6.28
Drift ⟨𝑡𝑙 : 0, 𝑡𝑝 :𝐹, 𝑡ℎ :𝑇, 𝑖𝑜 :𝐹, 𝑙𝑠 ⟩ ✔ 2.38
Drift ⟨𝑡𝑙 : 1, 𝑡𝑝 :𝐹, 𝑡ℎ :𝑇, 𝑖𝑜 :𝐹, 𝑙𝑠 ⟩ ✔ 3.60
Drift ⟨𝑡𝑙 : 1, 𝑡𝑝 :𝑇, 𝑡ℎ :𝐹, 𝑖𝑜 :𝐹, 𝑝𝑔⟩ ✔ 31.05
Drift ⟨𝑡𝑙 : 1, 𝑡𝑝 :𝐹, 𝑡ℎ :𝐹, 𝑖𝑜 :𝐹, 𝑝𝑔⟩ ? 19.91
evDrift ⟨𝑡𝑙 : 1, 𝑡𝑝 :𝑇, 𝑡ℎ :𝐹, 𝑖𝑜 :𝐹, 𝑝𝑔⟩ ? 2.44
evDrift ⟨𝑡𝑙 : 0, 𝑡𝑝 :𝐹, 𝑡ℎ :𝑇, 𝑖𝑜 :𝐹, 𝑙𝑠 ⟩ ✔ 0.36
evDrift ⟨𝑡𝑙 : 1, 𝑡𝑝 :𝐹, 𝑡ℎ :𝑇, 𝑖𝑜 :𝐹, 𝑙𝑠 ⟩ ✔ 0.59
evDrift ⟨𝑡𝑙 : 0, 𝑡𝑝 :𝐹, 𝑡ℎ :𝑇, 𝑖𝑜 :𝑇, 𝑙𝑠 ⟩ ✔ 0.35
evDrift ⟨𝑡𝑙 : 1, 𝑡𝑝 :𝐹, 𝑡ℎ :𝐹, 𝑖𝑜 :𝐹, 𝑝𝑔⟩ ? 2.26
evDrift ⟨𝑡𝑙 : 1, 𝑡𝑝 :𝑇, 𝑡ℎ :𝑇, 𝑖𝑜 :𝐹, 𝑙𝑠 ⟩ ✔ 0.49
evDrift ⟨𝑡𝑙 : 1, 𝑡𝑝 :𝐹, 𝑡ℎ :𝐹, 𝑖𝑜 :𝑇, 𝑝𝑔⟩ ? 2.16
evDrift ⟨𝑡𝑙 : 0, 𝑡𝑝 :𝐹, 𝑡ℎ :𝐹, 𝑖𝑜 :𝑇, 𝑝𝑔⟩ ✔ 0.96
evDrift ⟨𝑡𝑙 : 1, 𝑡𝑝 :𝐹, 𝑡ℎ :𝑇, 𝑖𝑜 :𝑇, 𝑙𝑠 ⟩ ✔ 0.54
evDrift ⟨𝑡𝑙 : 1, 𝑡𝑝 :𝑇, 𝑡ℎ :𝐹, 𝑖𝑜 :𝑇, 𝑝𝑔⟩ ? 2.32
evDrift ⟨𝑡𝑙 : 0, 𝑡𝑝 :𝐹, 𝑡ℎ :𝐹, 𝑖𝑜 :𝐹, 𝑝𝑔⟩ ✔ 0.92
evDrift ⟨𝑡𝑙 : 1, 𝑡𝑝 :𝑇, 𝑡ℎ :𝑇, 𝑖𝑜 :𝑇, 𝑙𝑠 ⟩ ✔ 0.49

19. nondet_max
Drift ⟨𝑡𝑙 : 1, 𝑡𝑝 :𝐹, 𝑡ℎ :𝐹, 𝑖𝑜 :𝐹, 𝑝𝑔⟩ ✔ 17.40
Drift ⟨𝑡𝑙 : 1, 𝑡𝑝 :𝐹, 𝑡ℎ :𝑇, 𝑖𝑜 :𝐹, 𝑙𝑠 ⟩ ✔ 5.14
Drift ⟨𝑡𝑙 : 0, 𝑡𝑝 :𝐹, 𝑡ℎ :𝑇, 𝑖𝑜 :𝐹, 𝑙𝑠 ⟩ ✔ 2.24
Drift ⟨𝑡𝑙 : 1, 𝑡𝑝 :𝑇, 𝑡ℎ :𝐹, 𝑖𝑜 :𝐹, 𝑝𝑔⟩ ✔ 17.25
Drift ⟨𝑡𝑙 : 0, 𝑡𝑝 :𝐹, 𝑡ℎ :𝐹, 𝑖𝑜 :𝐹, 𝑝𝑔⟩ ? 6.39
Drift ⟨𝑡𝑙 : 1, 𝑡𝑝 :𝑇, 𝑡ℎ :𝑇, 𝑖𝑜 :𝐹, 𝑙𝑠 ⟩ ✔ 3.80
evDrift ⟨𝑡𝑙 : 1, 𝑡𝑝 :𝐹, 𝑡ℎ :𝑇, 𝑖𝑜 :𝑇, 𝑙𝑠 ⟩ ✔ 1.04
evDrift ⟨𝑡𝑙 : 1, 𝑡𝑝 :𝑇, 𝑡ℎ :𝐹, 𝑖𝑜 :𝑇, 𝑝𝑔⟩ ? 5.55
evDrift ⟨𝑡𝑙 : 1, 𝑡𝑝 :𝐹, 𝑡ℎ :𝐹, 𝑖𝑜 :𝑇, 𝑝𝑔⟩ ? 5.52
evDrift ⟨𝑡𝑙 : 0, 𝑡𝑝 :𝐹, 𝑡ℎ :𝐹, 𝑖𝑜 :𝑇, 𝑝𝑔⟩ ? 1.90
evDrift ⟨𝑡𝑙 : 1, 𝑡𝑝 :𝑇, 𝑡ℎ :𝑇, 𝑖𝑜 :𝑇, 𝑙𝑠 ⟩ ✔ 0.99
evDrift ⟨𝑡𝑙 : 0, 𝑡𝑝 :𝐹, 𝑡ℎ :𝐹, 𝑖𝑜 :𝐹, 𝑝𝑔⟩ ? 1.68
evDrift ⟨𝑡𝑙 : 0, 𝑡𝑝 :𝐹, 𝑡ℎ :𝑇, 𝑖𝑜 :𝑇, 𝑙𝑠 ⟩ ✔ 0.61
evDrift ⟨𝑡𝑙 : 0, 𝑡𝑝 :𝐹, 𝑡ℎ :𝑇, 𝑖𝑜 :𝐹, 𝑙𝑠 ⟩ ✔ 0.59
evDrift ⟨𝑡𝑙 : 1, 𝑡𝑝 :𝑇, 𝑡ℎ :𝐹, 𝑖𝑜 :𝐹, 𝑝𝑔⟩ ? 5.59
evDrift ⟨𝑡𝑙 : 1, 𝑡𝑝 :𝐹, 𝑡ℎ :𝑇, 𝑖𝑜 :𝐹, 𝑙𝑠 ⟩ ✔ 1.07
evDrift ⟨𝑡𝑙 : 1, 𝑡𝑝 :𝑇, 𝑡ℎ :𝑇, 𝑖𝑜 :𝐹, 𝑙𝑠 ⟩ ✔ 1.03
evDrift ⟨𝑡𝑙 : 1, 𝑡𝑝 :𝐹, 𝑡ℎ :𝐹, 𝑖𝑜 :𝐹, 𝑝𝑔⟩ ? 4.71
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20. num_evens
Drift ⟨𝑡𝑙 : 1, 𝑡𝑝 :𝑇, 𝑡ℎ :𝑇, 𝑖𝑜 :𝐹, 𝑙𝑠 ⟩ ✔ 21.41
Drift ⟨𝑡𝑙 : 0, 𝑡𝑝 :𝐹, 𝑡ℎ :𝐹, 𝑖𝑜 :𝐹, 𝑝𝑔⟩ ? 16.61
Drift ⟨𝑡𝑙 : 1, 𝑡𝑝 :𝐹, 𝑡ℎ :𝐹, 𝑖𝑜 :𝐹, 𝑝𝑔⟩ ✔ 30.58
Drift ⟨𝑡𝑙 : 0, 𝑡𝑝 :𝐹, 𝑡ℎ :𝑇, 𝑖𝑜 :𝐹, 𝑙𝑠 ⟩ ✔ 8.88
Drift ⟨𝑡𝑙 : 1, 𝑡𝑝 :𝐹, 𝑡ℎ :𝑇, 𝑖𝑜 :𝐹, 𝑙𝑠 ⟩ ✔ 13.58
Drift ⟨𝑡𝑙 : 1, 𝑡𝑝 :𝑇, 𝑡ℎ :𝐹, 𝑖𝑜 :𝐹, 𝑝𝑔⟩ ✔ 61.34
evDrift ⟨𝑡𝑙 : 1, 𝑡𝑝 :𝑇, 𝑡ℎ :𝑇, 𝑖𝑜 :𝐹, 𝑙𝑠 ⟩ ✔ 4.50
evDrift ⟨𝑡𝑙 : 1, 𝑡𝑝 :𝐹, 𝑡ℎ :𝐹, 𝑖𝑜 :𝐹, 𝑝𝑔⟩ ✔ 4.06
evDrift ⟨𝑡𝑙 : 0, 𝑡𝑝 :𝐹, 𝑡ℎ :𝑇, 𝑖𝑜 :𝑇, 𝑙𝑠 ⟩ ? 0.90
evDrift ⟨𝑡𝑙 : 1, 𝑡𝑝 :𝑇, 𝑡ℎ :𝐹, 𝑖𝑜 :𝐹, 𝑝𝑔⟩ ✔ 7.46
evDrift ⟨𝑡𝑙 : 0, 𝑡𝑝 :𝐹, 𝑡ℎ :𝑇, 𝑖𝑜 :𝐹, 𝑙𝑠 ⟩ ? 0.93
evDrift ⟨𝑡𝑙 : 1, 𝑡𝑝 :𝐹, 𝑡ℎ :𝑇, 𝑖𝑜 :𝐹, 𝑙𝑠 ⟩ ✔ 2.46
evDrift ⟨𝑡𝑙 : 0, 𝑡𝑝 :𝐹, 𝑡ℎ :𝐹, 𝑖𝑜 :𝐹, 𝑝𝑔⟩ ? 1.80
evDrift ⟨𝑡𝑙 : 1, 𝑡𝑝 :𝑇, 𝑡ℎ :𝑇, 𝑖𝑜 :𝑇, 𝑙𝑠 ⟩ ✔ 4.53
evDrift ⟨𝑡𝑙 : 1, 𝑡𝑝 :𝐹, 𝑡ℎ :𝑇, 𝑖𝑜 :𝑇, 𝑙𝑠 ⟩ ✔ 2.34
evDrift ⟨𝑡𝑙 : 1, 𝑡𝑝 :𝑇, 𝑡ℎ :𝐹, 𝑖𝑜 :𝑇, 𝑝𝑔⟩ ✔ 7.24
evDrift ⟨𝑡𝑙 : 1, 𝑡𝑝 :𝐹, 𝑡ℎ :𝐹, 𝑖𝑜 :𝑇, 𝑝𝑔⟩ ✔ 4.20
evDrift ⟨𝑡𝑙 : 0, 𝑡𝑝 :𝐹, 𝑡ℎ :𝐹, 𝑖𝑜 :𝑇, 𝑝𝑔⟩ ? 1.91

21. order-irrel
Drift ⟨𝑡𝑙 : 0, 𝑡𝑝 :𝐹, 𝑡ℎ :𝐹, 𝑖𝑜 :𝐹, 𝑝𝑔⟩ ? 9.99
Drift ⟨𝑡𝑙 : 1, 𝑡𝑝 :𝑇, 𝑡ℎ :𝑇, 𝑖𝑜 :𝐹, 𝑙𝑠 ⟩ ? 15.91
Drift ⟨𝑡𝑙 : 0, 𝑡𝑝 :𝐹, 𝑡ℎ :𝑇, 𝑖𝑜 :𝐹, 𝑙𝑠 ⟩ ? 1.85
Drift ⟨𝑡𝑙 : 1, 𝑡𝑝 :𝐹, 𝑡ℎ :𝑇, 𝑖𝑜 :𝐹, 𝑙𝑠 ⟩ ? 2.97
Drift ⟨𝑡𝑙 : 1, 𝑡𝑝 :𝑇, 𝑡ℎ :𝐹, 𝑖𝑜 :𝐹, 𝑝𝑔⟩ ? 36.43
Drift ⟨𝑡𝑙 : 1, 𝑡𝑝 :𝐹, 𝑡ℎ :𝐹, 𝑖𝑜 :𝐹, 𝑝𝑔⟩ ? 13.22
evDrift ⟨𝑡𝑙 : 1, 𝑡𝑝 :𝑇, 𝑡ℎ :𝐹, 𝑖𝑜 :𝐹, 𝑝𝑔⟩ ✔ 3.80
evDrift ⟨𝑡𝑙 : 0, 𝑡𝑝 :𝐹, 𝑡ℎ :𝑇, 𝑖𝑜 :𝐹, 𝑙𝑠 ⟩ ? 0.52
evDrift ⟨𝑡𝑙 : 1, 𝑡𝑝 :𝐹, 𝑡ℎ :𝑇, 𝑖𝑜 :𝐹, 𝑙𝑠 ⟩ ? 0.89
evDrift ⟨𝑡𝑙 : 0, 𝑡𝑝 :𝐹, 𝑡ℎ :𝑇, 𝑖𝑜 :𝑇, 𝑙𝑠 ⟩ ? 0.50
evDrift ⟨𝑡𝑙 : 1, 𝑡𝑝 :𝑇, 𝑡ℎ :𝑇, 𝑖𝑜 :𝐹, 𝑙𝑠 ⟩ ? 1.74
evDrift ⟨𝑡𝑙 : 1, 𝑡𝑝 :𝐹, 𝑡ℎ :𝐹, 𝑖𝑜 :𝐹, 𝑝𝑔⟩ ? 3.38
evDrift ⟨𝑡𝑙 : 1, 𝑡𝑝 :𝐹, 𝑡ℎ :𝐹, 𝑖𝑜 :𝑇, 𝑝𝑔⟩ ? 3.61
evDrift ⟨𝑡𝑙 : 0, 𝑡𝑝 :𝐹, 𝑡ℎ :𝐹, 𝑖𝑜 :𝑇, 𝑝𝑔⟩ ? 1.67
evDrift ⟨𝑡𝑙 : 1, 𝑡𝑝 :𝐹, 𝑡ℎ :𝑇, 𝑖𝑜 :𝑇, 𝑙𝑠 ⟩ ? 0.82
evDrift ⟨𝑡𝑙 : 1, 𝑡𝑝 :𝑇, 𝑡ℎ :𝐹, 𝑖𝑜 :𝑇, 𝑝𝑔⟩ ✔ 3.54
evDrift ⟨𝑡𝑙 : 0, 𝑡𝑝 :𝐹, 𝑡ℎ :𝐹, 𝑖𝑜 :𝐹, 𝑝𝑔⟩ ? 1.63
evDrift ⟨𝑡𝑙 : 1, 𝑡𝑝 :𝑇, 𝑡ℎ :𝑇, 𝑖𝑜 :𝑇, 𝑙𝑠 ⟩ ? 1.77

22. order-irrel-nondet
Drift ⟨𝑡𝑙 : 0, 𝑡𝑝 :𝐹, 𝑡ℎ :𝐹, 𝑖𝑜 :𝐹, 𝑝𝑔⟩ ? 13.01
Drift ⟨𝑡𝑙 : 1, 𝑡𝑝 :𝑇, 𝑡ℎ :𝑇, 𝑖𝑜 :𝐹, 𝑙𝑠 ⟩ ? 14.84
Drift ⟨𝑡𝑙 : 1, 𝑡𝑝 :𝐹, 𝑡ℎ :𝐹, 𝑖𝑜 :𝐹, 𝑝𝑔⟩ ? 27.81
Drift ⟨𝑡𝑙 : 0, 𝑡𝑝 :𝐹, 𝑡ℎ :𝑇, 𝑖𝑜 :𝐹, 𝑙𝑠 ⟩ ? 2.63
Drift ⟨𝑡𝑙 : 1, 𝑡𝑝 :𝐹, 𝑡ℎ :𝑇, 𝑖𝑜 :𝐹, 𝑙𝑠 ⟩ ? 6.72
Drift ⟨𝑡𝑙 : 1, 𝑡𝑝 :𝑇, 𝑡ℎ :𝐹, 𝑖𝑜 :𝐹, 𝑝𝑔⟩ ? 75.50
evDrift ⟨𝑡𝑙 : 0, 𝑡𝑝 :𝐹, 𝑡ℎ :𝑇, 𝑖𝑜 :𝑇, 𝑙𝑠 ⟩ ? 1.13
evDrift ⟨𝑡𝑙 : 1, 𝑡𝑝 :𝑇, 𝑡ℎ :𝐹, 𝑖𝑜 :𝐹, 𝑝𝑔⟩ ✔ 8.38
evDrift ⟨𝑡𝑙 : 0, 𝑡𝑝 :𝐹, 𝑡ℎ :𝑇, 𝑖𝑜 :𝐹, 𝑙𝑠 ⟩ ? 1.14
evDrift ⟨𝑡𝑙 : 1, 𝑡𝑝 :𝐹, 𝑡ℎ :𝑇, 𝑖𝑜 :𝐹, 𝑙𝑠 ⟩ ? 2.01
evDrift ⟨𝑡𝑙 : 1, 𝑡𝑝 :𝑇, 𝑡ℎ :𝑇, 𝑖𝑜 :𝐹, 𝑙𝑠 ⟩ ✔ 2.19
evDrift ⟨𝑡𝑙 : 1, 𝑡𝑝 :𝐹, 𝑡ℎ :𝐹, 𝑖𝑜 :𝐹, 𝑝𝑔⟩ ? 10.27
evDrift ⟨𝑡𝑙 : 1, 𝑡𝑝 :𝐹, 𝑡ℎ :𝑇, 𝑖𝑜 :𝑇, 𝑙𝑠 ⟩ ? 1.99
evDrift ⟨𝑡𝑙 : 1, 𝑡𝑝 :𝑇, 𝑡ℎ :𝐹, 𝑖𝑜 :𝑇, 𝑝𝑔⟩ ✔ 8.32
evDrift ⟨𝑡𝑙 : 1, 𝑡𝑝 :𝐹, 𝑡ℎ :𝐹, 𝑖𝑜 :𝑇, 𝑝𝑔⟩ ? 10.39
evDrift ⟨𝑡𝑙 : 0, 𝑡𝑝 :𝐹, 𝑡ℎ :𝐹, 𝑖𝑜 :𝑇, 𝑝𝑔⟩ ? 6.26
evDrift ⟨𝑡𝑙 : 0, 𝑡𝑝 :𝐹, 𝑡ℎ :𝐹, 𝑖𝑜 :𝐹, 𝑝𝑔⟩ ? 6.19
evDrift ⟨𝑡𝑙 : 1, 𝑡𝑝 :𝑇, 𝑡ℎ :𝑇, 𝑖𝑜 :𝑇, 𝑙𝑠 ⟩ ✔ 1.84

23. overview1
Drift ⟨𝑡𝑙 : 1, 𝑡𝑝 :𝐹, 𝑡ℎ :𝐹, 𝑖𝑜 :𝐹, 𝑝𝑔⟩ ✔ 5.02
Drift ⟨𝑡𝑙 : 1, 𝑡𝑝 :𝑇, 𝑡ℎ :𝐹, 𝑖𝑜 :𝐹, 𝑝𝑔⟩ ✔ 5.39
Drift ⟨𝑡𝑙 : 1, 𝑡𝑝 :𝐹, 𝑡ℎ :𝑇, 𝑖𝑜 :𝐹, 𝑙𝑠 ⟩ ✔ 1.95
Drift ⟨𝑡𝑙 : 0, 𝑡𝑝 :𝐹, 𝑡ℎ :𝑇, 𝑖𝑜 :𝐹, 𝑙𝑠 ⟩ ? 0.76
Drift ⟨𝑡𝑙 : 1, 𝑡𝑝 :𝑇, 𝑡ℎ :𝑇, 𝑖𝑜 :𝐹, 𝑙𝑠 ⟩ ✔ 2.35
Drift ⟨𝑡𝑙 : 0, 𝑡𝑝 :𝐹, 𝑡ℎ :𝐹, 𝑖𝑜 :𝐹, 𝑝𝑔⟩ ? 4.15
evDrift ⟨𝑡𝑙 : 1, 𝑡𝑝 :𝑇, 𝑡ℎ :𝑇, 𝑖𝑜 :𝑇, 𝑙𝑠 ⟩ ✔ 0.49
evDrift ⟨𝑡𝑙 : 0, 𝑡𝑝 :𝐹, 𝑡ℎ :𝐹, 𝑖𝑜 :𝐹, 𝑝𝑔⟩ ✔ 0.70
evDrift ⟨𝑡𝑙 : 1, 𝑡𝑝 :𝑇, 𝑡ℎ :𝐹, 𝑖𝑜 :𝑇, 𝑝𝑔⟩ ✔ 1.24
evDrift ⟨𝑡𝑙 : 1, 𝑡𝑝 :𝐹, 𝑡ℎ :𝑇, 𝑖𝑜 :𝑇, 𝑙𝑠 ⟩ ✔ 0.41
evDrift ⟨𝑡𝑙 : 0, 𝑡𝑝 :𝐹, 𝑡ℎ :𝐹, 𝑖𝑜 :𝑇, 𝑝𝑔⟩ ✔ 0.66
evDrift ⟨𝑡𝑙 : 1, 𝑡𝑝 :𝐹, 𝑡ℎ :𝐹, 𝑖𝑜 :𝑇, 𝑝𝑔⟩ ✔ 1.28
evDrift ⟨𝑡𝑙 : 1, 𝑡𝑝 :𝐹, 𝑡ℎ :𝐹, 𝑖𝑜 :𝐹, 𝑝𝑔⟩ ✔ 1.23
evDrift ⟨𝑡𝑙 : 1, 𝑡𝑝 :𝑇, 𝑡ℎ :𝑇, 𝑖𝑜 :𝐹, 𝑙𝑠 ⟩ ✔ 0.52
evDrift ⟨𝑡𝑙 : 0, 𝑡𝑝 :𝐹, 𝑡ℎ :𝑇, 𝑖𝑜 :𝑇, 𝑙𝑠 ⟩ ✔ 0.29
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evDrift ⟨𝑡𝑙 : 1, 𝑡𝑝 :𝐹, 𝑡ℎ :𝑇, 𝑖𝑜 :𝐹, 𝑙𝑠 ⟩ ✔ 0.52
evDrift ⟨𝑡𝑙 : 0, 𝑡𝑝 :𝐹, 𝑡ℎ :𝑇, 𝑖𝑜 :𝐹, 𝑙𝑠 ⟩ ✔ 0.30
evDrift ⟨𝑡𝑙 : 1, 𝑡𝑝 :𝑇, 𝑡ℎ :𝐹, 𝑖𝑜 :𝐹, 𝑝𝑔⟩ ✔ 1.24

24. reentr
Drift ⟨𝑡𝑙 : 1, 𝑡𝑝 :𝐹, 𝑡ℎ :𝐹, 𝑖𝑜 :𝐹, 𝑝𝑔⟩ ✔ 14.98
Drift ⟨𝑡𝑙 : 1, 𝑡𝑝 :𝑇, 𝑡ℎ :𝐹, 𝑖𝑜 :𝐹, 𝑝𝑔⟩ ✔ 19.02
Drift ⟨𝑡𝑙 : 0, 𝑡𝑝 :𝐹, 𝑡ℎ :𝑇, 𝑖𝑜 :𝐹, 𝑙𝑠 ⟩ ✔ 3.66
Drift ⟨𝑡𝑙 : 1, 𝑡𝑝 :𝐹, 𝑡ℎ :𝑇, 𝑖𝑜 :𝐹, 𝑙𝑠 ⟩ ✔ 6.84
Drift ⟨𝑡𝑙 : 1, 𝑡𝑝 :𝑇, 𝑡ℎ :𝑇, 𝑖𝑜 :𝐹, 𝑙𝑠 ⟩ ✔ 8.84
Drift ⟨𝑡𝑙 : 0, 𝑡𝑝 :𝐹, 𝑡ℎ :𝐹, 𝑖𝑜 :𝐹, 𝑝𝑔⟩ ✔ 6.57
evDrift ⟨𝑡𝑙 : 0, 𝑡𝑝 :𝐹, 𝑡ℎ :𝐹, 𝑖𝑜 :𝐹, 𝑝𝑔⟩ ✔ 0.18
evDrift ⟨𝑡𝑙 : 1, 𝑡𝑝 :𝑇, 𝑡ℎ :𝑇, 𝑖𝑜 :𝑇, 𝑙𝑠 ⟩ ✔ 0.18
evDrift ⟨𝑡𝑙 : 1, 𝑡𝑝 :𝑇, 𝑡ℎ :𝐹, 𝑖𝑜 :𝑇, 𝑝𝑔⟩ ✔ 0.25
evDrift ⟨𝑡𝑙 : 1, 𝑡𝑝 :𝐹, 𝑡ℎ :𝑇, 𝑖𝑜 :𝑇, 𝑙𝑠 ⟩ ✔ 0.17
evDrift ⟨𝑡𝑙 : 0, 𝑡𝑝 :𝐹, 𝑡ℎ :𝐹, 𝑖𝑜 :𝑇, 𝑝𝑔⟩ ✔ 0.17
evDrift ⟨𝑡𝑙 : 1, 𝑡𝑝 :𝐹, 𝑡ℎ :𝐹, 𝑖𝑜 :𝑇, 𝑝𝑔⟩ ✔ 0.26
evDrift ⟨𝑡𝑙 : 1, 𝑡𝑝 :𝑇, 𝑡ℎ :𝑇, 𝑖𝑜 :𝐹, 𝑙𝑠 ⟩ ✔ 0.17
evDrift ⟨𝑡𝑙 : 1, 𝑡𝑝 :𝐹, 𝑡ℎ :𝐹, 𝑖𝑜 :𝐹, 𝑝𝑔⟩ ✔ 0.25
evDrift ⟨𝑡𝑙 : 0, 𝑡𝑝 :𝐹, 𝑡ℎ :𝑇, 𝑖𝑜 :𝑇, 𝑙𝑠 ⟩ ✔ 0.14
evDrift ⟨𝑡𝑙 : 1, 𝑡𝑝 :𝐹, 𝑡ℎ :𝑇, 𝑖𝑜 :𝐹, 𝑙𝑠 ⟩ ✔ 0.18
evDrift ⟨𝑡𝑙 : 1, 𝑡𝑝 :𝑇, 𝑡ℎ :𝐹, 𝑖𝑜 :𝐹, 𝑝𝑔⟩ ✔ 0.27
evDrift ⟨𝑡𝑙 : 0, 𝑡𝑝 :𝐹, 𝑡ℎ :𝑇, 𝑖𝑜 :𝐹, 𝑙𝑠 ⟩ ✔ 0.15

25. resource-analysis
Drift ⟨𝑡𝑙 : 0, 𝑡𝑝 :𝐹, 𝑡ℎ :𝐹, 𝑖𝑜 :𝐹, 𝑝𝑔⟩ ? 4.67
Drift ⟨𝑡𝑙 : 1, 𝑡𝑝 :𝑇, 𝑡ℎ :𝑇, 𝑖𝑜 :𝐹, 𝑙𝑠 ⟩ ✔ 3.10
Drift ⟨𝑡𝑙 : 1, 𝑡𝑝 :𝐹, 𝑡ℎ :𝐹, 𝑖𝑜 :𝐹, 𝑝𝑔⟩ ✔ 9.36
Drift ⟨𝑡𝑙 : 1, 𝑡𝑝 :𝑇, 𝑡ℎ :𝐹, 𝑖𝑜 :𝐹, 𝑝𝑔⟩ ✔ 9.56
Drift ⟨𝑡𝑙 : 1, 𝑡𝑝 :𝐹, 𝑡ℎ :𝑇, 𝑖𝑜 :𝐹, 𝑙𝑠 ⟩ ✔ 3.07
Drift ⟨𝑡𝑙 : 0, 𝑡𝑝 :𝐹, 𝑡ℎ :𝑇, 𝑖𝑜 :𝐹, 𝑙𝑠 ⟩ ✔ 2.44
evDrift ⟨𝑡𝑙 : 0, 𝑡𝑝 :𝐹, 𝑡ℎ :𝑇, 𝑖𝑜 :𝑇, 𝑙𝑠 ⟩ ✔ 0.18
evDrift ⟨𝑡𝑙 : 1, 𝑡𝑝 :𝐹, 𝑡ℎ :𝑇, 𝑖𝑜 :𝐹, 𝑙𝑠 ⟩ ✔ 0.26
evDrift ⟨𝑡𝑙 : 0, 𝑡𝑝 :𝐹, 𝑡ℎ :𝑇, 𝑖𝑜 :𝐹, 𝑙𝑠 ⟩ ✔ 0.17
evDrift ⟨𝑡𝑙 : 1, 𝑡𝑝 :𝑇, 𝑡ℎ :𝐹, 𝑖𝑜 :𝐹, 𝑝𝑔⟩ ✔ 0.48
evDrift ⟨𝑡𝑙 : 1, 𝑡𝑝 :𝐹, 𝑡ℎ :𝐹, 𝑖𝑜 :𝐹, 𝑝𝑔⟩ ✔ 0.44
evDrift ⟨𝑡𝑙 : 1, 𝑡𝑝 :𝑇, 𝑡ℎ :𝑇, 𝑖𝑜 :𝐹, 𝑙𝑠 ⟩ ✔ 0.26
evDrift ⟨𝑡𝑙 : 1, 𝑡𝑝 :𝑇, 𝑡ℎ :𝐹, 𝑖𝑜 :𝑇, 𝑝𝑔⟩ ✔ 0.44
evDrift ⟨𝑡𝑙 : 1, 𝑡𝑝 :𝐹, 𝑡ℎ :𝑇, 𝑖𝑜 :𝑇, 𝑙𝑠 ⟩ ✔ 0.26
evDrift ⟨𝑡𝑙 : 0, 𝑡𝑝 :𝐹, 𝑡ℎ :𝐹, 𝑖𝑜 :𝑇, 𝑝𝑔⟩ ✔ 0.26
evDrift ⟨𝑡𝑙 : 1, 𝑡𝑝 :𝐹, 𝑡ℎ :𝐹, 𝑖𝑜 :𝑇, 𝑝𝑔⟩ ✔ 0.46
evDrift ⟨𝑡𝑙 : 1, 𝑡𝑝 :𝑇, 𝑡ℎ :𝑇, 𝑖𝑜 :𝑇, 𝑙𝑠 ⟩ ✔ 0.27
evDrift ⟨𝑡𝑙 : 0, 𝑡𝑝 :𝐹, 𝑡ℎ :𝐹, 𝑖𝑜 :𝐹, 𝑝𝑔⟩ ✔ 0.26

26. sum-appendix
Drift ⟨𝑡𝑙 : 1, 𝑡𝑝 :𝐹, 𝑡ℎ :𝐹, 𝑖𝑜 :𝐹, 𝑝𝑔⟩ ✔ 5.98
Drift ⟨𝑡𝑙 : 0, 𝑡𝑝 :𝐹, 𝑡ℎ :𝑇, 𝑖𝑜 :𝐹, 𝑙𝑠 ⟩ ✔ 1.18
Drift ⟨𝑡𝑙 : 1, 𝑡𝑝 :𝐹, 𝑡ℎ :𝑇, 𝑖𝑜 :𝐹, 𝑙𝑠 ⟩ ✔ 1.63
Drift ⟨𝑡𝑙 : 1, 𝑡𝑝 :𝑇, 𝑡ℎ :𝐹, 𝑖𝑜 :𝐹, 𝑝𝑔⟩ ✔ 5.86
Drift ⟨𝑡𝑙 : 0, 𝑡𝑝 :𝐹, 𝑡ℎ :𝐹, 𝑖𝑜 :𝐹, 𝑝𝑔⟩ ✔ 4.38
Drift ⟨𝑡𝑙 : 1, 𝑡𝑝 :𝑇, 𝑡ℎ :𝑇, 𝑖𝑜 :𝐹, 𝑙𝑠 ⟩ ✔ 1.63
evDrift ⟨𝑡𝑙 : 1, 𝑡𝑝 :𝐹, 𝑡ℎ :𝑇, 𝑖𝑜 :𝑇, 𝑙𝑠 ⟩ ✔ 0.03
evDrift ⟨𝑡𝑙 : 1, 𝑡𝑝 :𝑇, 𝑡ℎ :𝐹, 𝑖𝑜 :𝑇, 𝑝𝑔⟩ ✔ 0.06
evDrift ⟨𝑡𝑙 : 1, 𝑡𝑝 :𝐹, 𝑡ℎ :𝐹, 𝑖𝑜 :𝑇, 𝑝𝑔⟩ ✔ 0.06
evDrift ⟨𝑡𝑙 : 0, 𝑡𝑝 :𝐹, 𝑡ℎ :𝐹, 𝑖𝑜 :𝑇, 𝑝𝑔⟩ ✔ 0.06
evDrift ⟨𝑡𝑙 : 0, 𝑡𝑝 :𝐹, 𝑡ℎ :𝐹, 𝑖𝑜 :𝐹, 𝑝𝑔⟩ ✔ 0.06
evDrift ⟨𝑡𝑙 : 1, 𝑡𝑝 :𝑇, 𝑡ℎ :𝑇, 𝑖𝑜 :𝑇, 𝑙𝑠 ⟩ ✔ 0.03
evDrift ⟨𝑡𝑙 : 0, 𝑡𝑝 :𝐹, 𝑡ℎ :𝑇, 𝑖𝑜 :𝑇, 𝑙𝑠 ⟩ ✔ 0.02
evDrift ⟨𝑡𝑙 : 1, 𝑡𝑝 :𝑇, 𝑡ℎ :𝐹, 𝑖𝑜 :𝐹, 𝑝𝑔⟩ ✔ 0.06
evDrift ⟨𝑡𝑙 : 0, 𝑡𝑝 :𝐹, 𝑡ℎ :𝑇, 𝑖𝑜 :𝐹, 𝑙𝑠 ⟩ ✔ 0.02
evDrift ⟨𝑡𝑙 : 1, 𝑡𝑝 :𝐹, 𝑡ℎ :𝑇, 𝑖𝑜 :𝐹, 𝑙𝑠 ⟩ ✔ 0.03
evDrift ⟨𝑡𝑙 : 1, 𝑡𝑝 :𝐹, 𝑡ℎ :𝐹, 𝑖𝑜 :𝐹, 𝑝𝑔⟩ ✔ 0.06
evDrift ⟨𝑡𝑙 : 1, 𝑡𝑝 :𝑇, 𝑡ℎ :𝑇, 𝑖𝑜 :𝐹, 𝑙𝑠 ⟩ ✔ 0.03

27. sum-of-ev-even
Drift ⟨𝑡𝑙 : 0, 𝑡𝑝 :𝐹, 𝑡ℎ :𝐹, 𝑖𝑜 :𝐹, 𝑝𝑔⟩ ✔ 2.11
Drift ⟨𝑡𝑙 : 1, 𝑡𝑝 :𝑇, 𝑡ℎ :𝑇, 𝑖𝑜 :𝐹, 𝑙𝑠 ⟩ ? 1.77
Drift ⟨𝑡𝑙 : 0, 𝑡𝑝 :𝐹, 𝑡ℎ :𝑇, 𝑖𝑜 :𝐹, 𝑙𝑠 ⟩ ? 0.56
Drift ⟨𝑡𝑙 : 1, 𝑡𝑝 :𝐹, 𝑡ℎ :𝑇, 𝑖𝑜 :𝐹, 𝑙𝑠 ⟩ ? 1.71
Drift ⟨𝑡𝑙 : 1, 𝑡𝑝 :𝑇, 𝑡ℎ :𝐹, 𝑖𝑜 :𝐹, 𝑝𝑔⟩ ✔ 6.19
Drift ⟨𝑡𝑙 : 1, 𝑡𝑝 :𝐹, 𝑡ℎ :𝐹, 𝑖𝑜 :𝐹, 𝑝𝑔⟩ ✔ 5.89
evDrift ⟨𝑡𝑙 : 1, 𝑡𝑝 :𝑇, 𝑡ℎ :𝐹, 𝑖𝑜 :𝐹, 𝑝𝑔⟩ ✔ 0.69
evDrift ⟨𝑡𝑙 : 0, 𝑡𝑝 :𝐹, 𝑡ℎ :𝑇, 𝑖𝑜 :𝐹, 𝑙𝑠 ⟩ ? 0.13
evDrift ⟨𝑡𝑙 : 1, 𝑡𝑝 :𝐹, 𝑡ℎ :𝑇, 𝑖𝑜 :𝐹, 𝑙𝑠 ⟩ ? 0.29
evDrift ⟨𝑡𝑙 : 0, 𝑡𝑝 :𝐹, 𝑡ℎ :𝑇, 𝑖𝑜 :𝑇, 𝑙𝑠 ⟩ ? 0.13
evDrift ⟨𝑡𝑙 : 1, 𝑡𝑝 :𝐹, 𝑡ℎ :𝐹, 𝑖𝑜 :𝐹, 𝑝𝑔⟩ ✔ 0.66
evDrift ⟨𝑡𝑙 : 1, 𝑡𝑝 :𝑇, 𝑡ℎ :𝑇, 𝑖𝑜 :𝐹, 𝑙𝑠 ⟩ ? 0.30
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evDrift ⟨𝑡𝑙 : 1, 𝑡𝑝 :𝐹, 𝑡ℎ :𝐹, 𝑖𝑜 :𝑇, 𝑝𝑔⟩ ✔ 0.68
evDrift ⟨𝑡𝑙 : 0, 𝑡𝑝 :𝐹, 𝑡ℎ :𝐹, 𝑖𝑜 :𝑇, 𝑝𝑔⟩ ✔ 0.32
evDrift ⟨𝑡𝑙 : 1, 𝑡𝑝 :𝐹, 𝑡ℎ :𝑇, 𝑖𝑜 :𝑇, 𝑙𝑠 ⟩ ? 0.27
evDrift ⟨𝑡𝑙 : 1, 𝑡𝑝 :𝑇, 𝑡ℎ :𝐹, 𝑖𝑜 :𝑇, 𝑝𝑔⟩ ✔ 0.67
evDrift ⟨𝑡𝑙 : 0, 𝑡𝑝 :𝐹, 𝑡ℎ :𝐹, 𝑖𝑜 :𝐹, 𝑝𝑔⟩ ✔ 0.32
evDrift ⟨𝑡𝑙 : 1, 𝑡𝑝 :𝑇, 𝑡ℎ :𝑇, 𝑖𝑜 :𝑇, 𝑙𝑠 ⟩ ? 0.30

28. temperature
Drift ⟨𝑡𝑙 : 1, 𝑡𝑝 :𝐹, 𝑡ℎ :𝐹, 𝑖𝑜 :𝐹, 𝑝𝑔⟩ ✔ 63.71
Drift ⟨𝑡𝑙 : 1, 𝑡𝑝 :𝑇, 𝑡ℎ :𝐹, 𝑖𝑜 :𝐹, 𝑝𝑔⟩ ✔ 322.50
Drift ⟨𝑡𝑙 : 0, 𝑡𝑝 :𝐹, 𝑡ℎ :𝑇, 𝑖𝑜 :𝐹, 𝑙𝑠 ⟩ ? 13.34
Drift ⟨𝑡𝑙 : 1, 𝑡𝑝 :𝐹, 𝑡ℎ :𝑇, 𝑖𝑜 :𝐹, 𝑙𝑠 ⟩ ? 15.75
Drift ⟨𝑡𝑙 : 0, 𝑡𝑝 :𝐹, 𝑡ℎ :𝐹, 𝑖𝑜 :𝐹, 𝑝𝑔⟩ ? 40.36
Drift ⟨𝑡𝑙 : 1, 𝑡𝑝 :𝑇, 𝑡ℎ :𝑇, 𝑖𝑜 :𝐹, 𝑙𝑠 ⟩ ? 133.53
evDrift ⟨𝑡𝑙 : 1, 𝑡𝑝 :𝑇, 𝑡ℎ :𝐹, 𝑖𝑜 :𝑇, 𝑝𝑔⟩ ✔ 17.56
evDrift ⟨𝑡𝑙 : 1, 𝑡𝑝 :𝐹, 𝑡ℎ :𝑇, 𝑖𝑜 :𝑇, 𝑙𝑠 ⟩ ? 3.14
evDrift ⟨𝑡𝑙 : 0, 𝑡𝑝 :𝐹, 𝑡ℎ :𝐹, 𝑖𝑜 :𝑇, 𝑝𝑔⟩ ✔ 6.08
evDrift ⟨𝑡𝑙 : 1, 𝑡𝑝 :𝐹, 𝑡ℎ :𝐹, 𝑖𝑜 :𝑇, 𝑝𝑔⟩ ✔ 12.12
evDrift ⟨𝑡𝑙 : 0, 𝑡𝑝 :𝐹, 𝑡ℎ :𝐹, 𝑖𝑜 :𝐹, 𝑝𝑔⟩ ✔ 6.06
evDrift ⟨𝑡𝑙 : 1, 𝑡𝑝 :𝑇, 𝑡ℎ :𝑇, 𝑖𝑜 :𝑇, 𝑙𝑠 ⟩ ? 5.17
evDrift ⟨𝑡𝑙 : 0, 𝑡𝑝 :𝐹, 𝑡ℎ :𝑇, 𝑖𝑜 :𝑇, 𝑙𝑠 ⟩ ? 2.34
evDrift ⟨𝑡𝑙 : 1, 𝑡𝑝 :𝐹, 𝑡ℎ :𝑇, 𝑖𝑜 :𝐹, 𝑙𝑠 ⟩ ? 3.12
evDrift ⟨𝑡𝑙 : 1, 𝑡𝑝 :𝑇, 𝑡ℎ :𝐹, 𝑖𝑜 :𝐹, 𝑝𝑔⟩ ✔ 17.54
evDrift ⟨𝑡𝑙 : 0, 𝑡𝑝 :𝐹, 𝑡ℎ :𝑇, 𝑖𝑜 :𝐹, 𝑙𝑠 ⟩ ? 2.36
evDrift ⟨𝑡𝑙 : 1, 𝑡𝑝 :𝐹, 𝑡ℎ :𝐹, 𝑖𝑜 :𝐹, 𝑝𝑔⟩ ✔ 12.02
evDrift ⟨𝑡𝑙 : 1, 𝑡𝑝 :𝑇, 𝑡ℎ :𝑇, 𝑖𝑜 :𝐹, 𝑙𝑠 ⟩ ? 5.17
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