
Certified Implementability of Global Multiparty1

Protocols2

Elaine Li # �3

New York University, New York, USA4

Thomas Wies �5

New York University, New York, USA6

Abstract7

Implementability is the decision problem at the heart of top-down approaches to protocol verifica-8

tion. In this paper, we present a mechanization of a recently proposed precise implementability9

characterization by Li et al. for a large class of protocols that subsumes many existing formalisms10

in the literature. Our protocols and implementations model asynchronous commmunication, and11

can exhibit infinite behavior. We improve upon their pen-and-paper results by unifying distinct12

formalisms, simplifying existing proof arguments, elaborating on the construction of canonical13

implementations, and even uncovering a subtle bug in the semantics for infinite words. As a corollary14

of our mechanization, we show that the original characterization of implementability applies even15

to protocols with infinitely many participants. We also contribute a reusable library for reasoning16

about generic communicating state machines. Our mechanization consists of about 15k lines of17

Rocq code. We believe that our mechanization can provide the foundation for deductively proving18

the implementability of protocols beyond the reach of prior work, extracting certified implemen-19

tations for finite protocols, and investigating implementability under alternative asynchronous20

communication models.21

2012 ACM Subject Classification Theory of computation → Logic and verification; Theory of22

computation → Distributed computing models; Theory of computation → Automata over infinite23

objects24

Keywords and phrases Asynchronous protocols, communicating state machines, labeled transition25

systems, infinite semantics, realizability, multiparty session types, choreographies, deadlock freedom26

1 Introduction27

Distributed, message-passing protocols are notoriously difficult to implement correctly due28

to exhibiting potentially infinitely many behaviors, only a handful of which may contain29

bugs. One salient verification methodology centers on the construct of a global protocol,30

which specifies the behaviors of all participants from the perspective of an omniscient31

observer. Global protocols enjoy certain desirable correctness properties by design, such as32

the absence of unspecified message receptions, and deadlock freedom. Top-down verification33

methodologies use global protocols as a starting point to synthesize correct-by-construction,34

distributed implementations in an automatic or semi-automatic fashion, that inherit all35

desirable properties of the global specification. The approach is attractive due to its simplicity36

and use of automation. It is thus adopted by numerous existing frameworks including37

multiparty session types [26, 4, 3, 49, 50, 32], choreography automata and choreographic38

programming [18, 25, 44], and high-level message sequence charts [38, 16, 15, 14, 42, 1, 35,39

2, 40, 39, 17].40

The decision problem at the heart of all such top-down approaches is implementability,41

which asks whether a given global specification admits a distributed implementation. A42

distributed implementation is considered admissible if it is deadlock-free and exhibits exactly43

the same communication behaviors as described by the specification. Implementability can44

be understood as a meta-correctness property of global specifications.45

mailto:efl9013@nyu.edu
https://orcid.org/0000-0003-0173-4498
https://orcid.org/0000-0003-4051-5968

2 Certified Implementability of Global Multiparty Protocols

q0 q1 q2 q3

q4

q5

q6

q7

q8

{
ry = 0 ∧ rc = 0
∧ rz1 = 0 ∧ rz2 = 0

}
B1→S :y

{
ISBN(y)
∧ ry′ = y

}
B1→B2 :y{y = ry}

S→B1 :c

{
c > 0
∧ rc′ = c

}
B1→B2 :b1

{
b1 > rz1
∧ rz′

1 = b1

}

B2→S :x{x = quit}

S→B1 :x{x = quit}

B2→B1 :b2

{
b2 > rz2 ∧ b2 < rc
∧ rz′

2 = b2

}
B1→S :x

{
x = succ

∧ rz1 + rz2 ≥ rc

}
S→B2 :x{x = succ}

B1→B2 :x

{
x = cont

∧ rz1 + rz2 < rc

}

Figure 1 Non-implementable two-bidder protocol. If one omits the constraint b2 < rc in the
transition from q4 to q7, the protocol is implementable.

To see that implementability is a subtle problem, consider the faulty two-bidder protocol46

adapted from [33] and shown in Figure 1. The protocol specifies a negotiation between two47

bidders B1 and B2 to split the price c for the purchase of a book y from seller S. A transition48

p→q :x{ϕ} in the protocol specifies that p sends value x to q under transition constraint49

ϕ. A transition constraint expresses conditions on the sent value x in relation to register50

variables (prefixed with r) as well as updates to these register variables (expressed in terms51

of primed register variables). In the loop formed by the control states q3, q4, and q7, the52

two bidders exchange bids b1 and b2 until either B2 aborts the protocol, or the sum of the53

bids exceeds the books price (stored in rc). Registers rz1 and rz2 are used to track the latest54

bids of each bidder.55

Note that the only way in which protocol participants can learn information about the56

global protocol state is via the sent message values. Consequently, the protocol is not57

implementable. The reason is that the transition from q4 to q7 requires B2 to choose a bid b258

that is strictly smaller than rc. However, B2 cannot know the value of rc because the book’s59

price is never disclosed to B2. If the constraint b2 < rc is dropped from the transition, then60

the protocol becomes implementable.61

The problem of implementability is of both theoretical interest and practical importance.62

In the high-level message sequence chart literature, implementability is referred to as real-63

izability, and its decidability and complexity have been thoroughly studied for finite state64

protocols [38, 16, 15, 14, 42]. Frameworks such as multiparty session types [26, 4, 3, 49, 50, 32]65

and choreographic programming [9, 20, 25, 44] combine implementability checking and syn-66

thesis in a single step known as endpoint projection. Unsound implementability checks67

in these frameworks may result in implementations that exhibit communication errors or68

deadlocks, whereas incomplete implementability checks undermine their utility.69

Despite the fact that the vast majority of existing implementability checks are conservative70

and do not aim for completeless, multiple unsound implementability checks have been71

proposed [6, 8, 11, 10, 49], in addition to false claims about the decidability of implementability72

for various protocol classes [18] that were later refuted.73

Mechanization has proven to be an effective way to fortify the correctness of pen-and-paper74

results. In the domain of process calculi, a mechanization of [29] called HOCore [37] revealed75

and subsequently fixed several major flaws in the existing proofs. Proof assistants especially76

excel at preventing inexhaustive case analysis, which was shown by [13] to be the cause of77

erroneous prior works claiming the decidability of the realizability and synchronizability78

problems for systems of asynchronously communicating state machines.79

However, all existing works in the intersection of mechanization and protocol imple-80

E. Li and T. Wies 3

mentability consider restricted implementation models that support only synchronous com-81

munication [48, 25] or asynchronous communication with directed choice [7]. Moreover,82

specifications are restricted to protocols with finitely many participants and completeness is83

stated relative to projection operators that are themselves incomplete for implementability.84

Contributions. In this paper, we present a mechanization of a recently proposed precise85

implementability characterization for a large class of protocols that subsumes many existing86

formalisms in the literature [33, 34]. Throughout this paper, we refer to the extended87

version [34] of [33] containing complete proofs. Our protocols and implementations model88

asynchronous commmunication, and can exhibit infinite behavior. Our semantic model of89

protocols unifies two distinct formalisms from [34] under one general definition, which is90

capable of expressing syntactic formalisms such as multiparty session types and choreographic91

programs. We improve upon the results in [34] by simplifying existing proof arguments,92

elaborating on the construction of canonical implementations, and even uncovering a subtle93

bug in the semantics for infinite words. As a corollary of our mechanization, we show that94

the characterization in [34] applies even to protocols with infinitely many participants. We95

also contribute a reusable library for reasoning about generic communicating state machines,96

which can serve as a basis for formalizing other theoretical results in concurrency theory.97

2 Preliminaries98

We introduce basic concepts and notation, and tour the main result from [34], introducing99

relevant definitions along the way.100

Words. Let Σ be an alphabet. Σ∗ denotes the set of finite words over Σ, Σω the set of101

infinite words, and Σ∞ their union Σ∗ ∪ Σω. A word u ∈ Σ∗ is a prefix of word v ∈ Σ∞,102

denoted u ≤ v, if there exists w ∈ Σ∞ with u · w = v; we denote all prefixes of u with pref(u).103

Given a word w = w0 . . . wn, we use w[i] to denote the i-th symbol wi ∈ Σ, and w[0..i] to104

denote the subword between and including w0 and wi, i.e. w0 . . . wi.105

Message Alphabets. Let P be a (possibly infinite) set of participants and V be a (possibly106

infinite) data domain. We define the set of synchronous events Γsync := {p→q :m | p, q ∈107

P and m ∈ V} where p→q :m denotes a message exchange of m from sender p to receiver q.108

For a participant p ∈ P , we define the alphabet Γp = {p→q :m | q ∈ P, m ∈ V}∪{q→p :m |109

q ∈ P, m ∈ V}, and a homomorphism ⇓Γp
, where x⇓Γp

= x if x ∈ Γp and ε otherwise. For a110

participant p ∈ P , we define the alphabet Σp,! = {p▷q!m | q ∈ P, m ∈ V} of send events and111

the alphabet Σp,? = {p ◁ q?m | q ∈ P, m ∈ V} of receive events. The event p ▷ q!m denotes112

participant p sending a message m to q, and p◁q?m denotes participant p receiving a message113

m from q. We write Σp = Σp,! ∪Σp,?, Σ! =
⋃

p∈P Σp,!, and Σ? =
⋃

p∈P Σp,?. Finally, the set of114

asynchronous events is Σasync = Σ! ∪ Σ?. We define a homomorphism to map words from the115

synchronous alphabet to their asynchronous counterpart, split(p→q :m) := p▷q!m. q◁p?m.116

We say that p is active in x ∈ Σasync if x ∈ Σp. For each participant p ∈ P, we define a117

homomorphism ⇓Σp
, where x⇓Σp

= x if x ∈ Σp and ε otherwise. We write V(w) to project118

the send and receive events in w onto their messages.119

The basic building block for specifying global protocols in [34] is a labeled transition120

system over the synchronous alphabet Γsync.121

Labeled Transition Systems. A labeled transition system (LTS) is a tuple S = (S, Γ, T, s0, F)122

where S is a set of states, Γ is a set of labels, T is a set of transitions from S × Γ × S,123

F ⊆ S is a set of final states, and s0 ∈ S is the initial state. We use p
α−→ q to denote the124

transition (p, α, q) ∈ T . Runs and traces of an LTS are defined in the expected way. A run is125

4 Certified Implementability of Global Multiparty Protocols

maximal if it is either finite and ends in a final state, or is infinite. The language of an LTS126

S, denoted L(S), is defined as the set of maximal traces. An LTS is deadlock-free if every127

run is extensible to a maximal run. Given an LTS S = (S, Γ, T, s0, F) and a state s ∈ S, we128

use Ss to denote the LTS obtained by replacing s0 with s as the initial state: (S, Γ, T, s, F).129

In [34], LTS over Γsync are constrained with three additional conditions, to yield a130

fragment called global communicating labeled transition systems, hereafter GCLTS. The three131

GCLTS assumptions are sink finality, sender-driven choice, and deadlock freedom. Sink132

finality is a purely syntactic condition enforcing that final states have no outgoing transitions.133

Sender-driven choice states that from any state, all outgoing transitions are labeled with134

events that share a unique sender, and moreover no two transitions are labeled with the135

same event. Deadlock freedom requires that every run is extensible to a maximal one.136

In the remainder of the paper, let S = (S, Γsync, T, s0, F) be a protocol satisfying GCLTS137

assumptions. The standard LTS semantics of S yields a set of finite and infinite synchronous138

traces. Yet, global protocols describe asynchronous behaviors. The asynchronous protocol139

semantics of S are defined on top of its LTS semantics, and rely on a notion of channel140

compliance. Channel compliance describes sequences of asynchronous send and receive events141

that respect peer-to-peer FIFO ordering, meaning that messages are sent before they are142

received, and between every pair of participants, the order of messages received strictly143

follows the order of messages sent, with no drops or reordering.144

Channel Compliance. Let w ∈ Σ∞async. We say that w is channel-compliant if for all145

prefixes w′ ≤ w, for all p ̸= q ∈ P, V(w′⇓q◁p?_) ≤ V(w′⇓p▷q!_).146

Asynchronous Protocol Semantics. Let S be an LTS over Γsync. The asynchronous147

semantics of S, denoted C∼(S), is defined by first mapping synchronous words of S onto their148

asynchronous counterpart using split, and then closing the resulting language under an149

indistinguishability relation that captures all possible reorderings in an asynchronous, FIFO150

network. The semantics for infinite words in S used in this work differs from that in [34].151

We revisit this point in detail in §3.2, and provide the formal definition of S’s asynchronous152

protocol semantics below.153

C∼(S) = {w′∈Σ∗async | ∃w ∈ Σ∗async. w∈split(L(S)) ∧ w′ is channel-compliant154

∧ ∀p∈P. w′⇓Σp
=w⇓Σp

}155

∪ {w′∈Σω
async | ∀v′ ≤ w′. ∃w ∈ Σ∞async. ∃u, u′ ∈ Σ∗async. w∈split(L(S)) ∧156

u ≤ w ∧ v′ · u′ is channel-compliant ∧ ∀p ∈ P. (v′ · u′)⇓Σp
= u⇓Σp

} .157

For disambiguation, we refer to L(S) ⊆ Γω
sync as the LTS semantics of S, and refer to158

C∼(S) ⊆ Σω
async as the protocol semantics of S.159

The implementation model in [34] is communicating labeled transition systems, hereafter160

CLTS. CLTSs are a generalization of communicating state machines [5] to potentially infinite-161

state labeled transition systems for each participant.162

Communicating LTS. T = {{Tp}}p∈P is a communicating labeled transition system (CLTS)163

over P and V if Tp is a deterministic LTS over Σp for every p ∈ P , denoted by (Qp, Σp, δp, q0,p, Fp).164

Let
∏

p∈P Qp denote the set of global states and Chan = {(p, q) | p, q ∈ P, p ̸= q} denote165

the set of channels. A configuration of A is a pair (s⃗, ξ), where s⃗ is a global state and166

ξ : Chan → V∗ is a mapping from each channel to a sequence of messages. We use s⃗p to167

denote the state of p in s⃗. The CLTS transition relation, denoted →, is defined as follows.168

(s⃗, ξ) p▷q!m−−−−→ (s⃗ ′, ξ′) if (s⃗p, p ▷ q!m, s⃗ ′p) ∈ δp, s⃗r = s⃗ ′r for every participant r ̸= p, ξ′(p, q) =169

ξ(p, q) · m and ξ′(c) = ξ(c) for every other channel c ∈ Chan.170

E. Li and T. Wies 5

(s⃗, ξ) q◁p?m−−−−→ (s⃗ ′, ξ′) if (s⃗q, q ◁ p?m, s⃗ ′q) ∈ δq, s⃗r = s⃗ ′r for every participant r ≠ q,171

ξ(p, q) = m · ξ′(p, q) and ξ′(c) = ξ(c) for every other channel c ∈ Chan.172

In the initial configuration (s⃗0, ξ0), each participant’s state in s⃗0 is the initial state q0,p of Ap,173

and ξ0 maps each channel to ε. A configuration (s⃗, ξ) is final iff s⃗p is final for every p and ξ174

maps each channel to ε. Runs and traces are defined in the expected way. A run is maximal175

if either it is finite and ends in a final configuration, or it is infinite. The language L(T)176

of the CLTS T is defined as the set of maximal traces. A configuration (s⃗, ξ) is a deadlock177

if it is not final and has no outgoing transitions. A CLTS is deadlock-free if no reachable178

configuration is a deadlock.179

Having defined the model of global protocols and their implementations, we can now180

define the implementability problem.181

▶ Definition 1 (Protocol Implementability). A protocol S is implementable if there ex-182

ists a CLTS {{Tp}}p∈P such that the following two properties hold: (i) protocol fidelity:183

L({{Tp}}p∈P) = C∼(S), and (ii) deadlock freedom: {{Tp}}p∈P is deadlock-free. We say that184

{{Tp}}p∈P implements S.185

The key result in [34] is a sound and complete characterization of implementability for186

GCLTS with a finite set of participants, formulated as three Coherence Conditions (CC).187

In a nutshell, these are 2-hyperproperties stating that from two locally indistinguishable188

global protocol states, a participant can either perform a send action that is enabled in189

both states (Send Coherence), or perform a receive action that uniquely distinguishes the190

two states (Receive Coherence), but cannot choose between performing a send or receive191

action (No Mixed Choice). Locally indistinguishable states are captured by the definition of192

simultaneous reachability for a participant p, denoted s0
u=⇒
p
∗ s1, s2, which says there exist193

w1, w2 ∈ Γ∗sync such that s0
w1−−→∗ s1 ∈ T, s0

w2−−→∗ s2 ∈ T and w1⇓Γp
= w2⇓Γp

= u. We use194

s0
u=⇒
p
∗ s to denote participant-based reachability of a single state, i.e. when there exists195

w ∈ Γ∗sync such that s0
w−→∗ s ∈ T and w⇓Γp

= u.196

▶ Definition 2 (Coherence Conditions). A protocol S = (S, Γsync, T, s0, F) satisfies Coherence197

Conditions (CC) when it satisfies:198

Send Coherence: ∀ s1
p→q:m−−−−→ s2 ∈ T, s′1 ∈ S :199

(∃u ∈ Γ∗p . s0
u=⇒
p
∗ s1, s′1) =⇒ (∃s′2 ∈ S. s′1

p→q:m=====⇒
p

∗ s′2) .200

Receive Coherence: ∀ s1
p→q:m−−−−→ s2, s′1

r→q:m−−−−→ s′2 ∈ T :201

(r ̸= p ∧ ∃u ∈ Γ∗q . s0
u=⇒
q
∗ s1, s′1) =⇒202

¬ ∃w ∈ pref(L(Ss′
2
)). w⇓Σq

=ε ∧ V(w⇓p▷q!_)=V(w⇓q◁p?_) · m .203

No Mixed Choice: ∀ s1
p→q:m−−−−→ s2, s′1

r→p:m−−−−→ s′2 ∈ T :204

(∃u ∈ Γ∗p . s0
u=⇒
p
∗ s1, s′1) =⇒ ⊥205

▶ Theorem 3 (Preciseness of Coherence Conditions). Let S be a protocol. Then, S is206

implementable if and only if it satisfies CC.207

▶ Note. In [34] and this work, soundness and completeness are terms defined relative208

to the semantic notion of implementability, and thus describe the metacorrectness of the209

verification methodology. Soundness of a characterization means that if a protocol satisfies210

the characterization, then it is implementable; completeness means that every implementable211

protocol satisfies the characterization. The terms are used varyingly elsewhere in the212

6 Certified Implementability of Global Multiparty Protocols

literature: in [48], soundness and completeness is defined relative to an existing coinductive213

relation between global and local session types, which it itself incomplete with respect to214

implementability, meaning that it does not relate every implementable global type with215

a candidate local type implementation. In turn, the completeness of [48] does not imply216

completeness with respect to implementability. In many existing works [7, 25], soundness217

and completeness describes the correspondence between global and local behaviors captured218

by protocol fidelity: soundness means that every global behavior is exhibited by the local219

implementations, and completeness means that every local implementation behavior is220

included in the global specification. On the other hand, the flawed type safety proofs of221

existing multiparty session type frameworks discussed in [43] constitute unsoundness per222

our definition: projectable global types lead to local types that can deadlock or exhibit223

communication errors.224

To show soundness of CC , the authors [34] first define canonical implementations, which225

serve as the witness to implementability. Canonicity is defined with respect to S’s protocol226

semantics, and includes C∼(S) by construction. To show that the canonical implementation’s227

language is included in C∼(S), and moreover that the canonical implementation is deadlock-228

free, the authors identify a key inductive invariant, which they call intersection set non-229

emptiness. Intuitively, intersection set non-emptiness says that for every prefix in the canonical230

CLTS, there exists a finite or infinite maximal run in the protocol that all participants agree231

on as a possible run from their local perspective, observing only partial information.232

To show completeness of CC , the authors proceed via modus tollens, and construct from233

the negation of each Coherence Condition a trace for which no protocol run is possible. They234

show that any implementation of the protocol must admit this trace. Thus, either the trace235

leads to a deadlock, or it leads to a maximal word in the language that does not have a236

counterpart in C∼(S). Either way, this poses a contradiction to implementability.237

3 Mechanization238

We focus our exposition in this section on aspects of the Rocq mechanization that improve239

upon the pen-and-paper proofs from [34]. In §3.1, we present our purely semantic definition240

of protocols, which collapses the distinction between GCLTS and symbolic protocols in [34],241

and can easily encode existing protocol models. In §3.2, we discuss a subtle flaw identified in242

the infinite word semantics used in [34], its implications on the pen-and-paper proofs, and243

propose a revised infinite word semantics. As a byproduct, we obtain the generalization from244

finite to infinite participant sets for free. In §3.3, we present our novel existence proof of245

canonical implementations. In §3.4, we present a simplification to a key soundness lemma246

that features nested induction.247

3.1 Protocols as Labeled Transition Systems248

In [34], the authors introduce an additional model for finitely representing potentially infinite249

GCLTS, called symbolic protocols. Symbolic protocol states store a set of registers, and250

transitions are labeled with dependent predicates that can refer to communication variables251

and register variables, and can thus describe register updates (see e.g. Figure 1). The252

semantics and implementability of a symbolic protocol is defined in terms of the concrete253

GCLTS it represents.254

For illustration purposes, the GCLTS and symbolic protocol representations of a simple255

addition protocol between three participants p, q and r are depicted in Figure 2 and Figure 3.256

E. Li and T. Wies 7

p→
r :0

q→r :1 r→p :1

. . .
.

p→
r : i q→r :j r→p : i + j

Figure 2 Addition GCLTS.

p→r :x{r′
x = x}

q→r :y{r′
y = y}

r→p :z{z = rx + ry}

Figure 3 Addition symbolic protocol.

In the protocol, participants p and q send two natural number values x and y to participant257

r, who replies to participant p with the sum z = x + y, after which the protocol terminates.258

[34] thus extends the Coherence Conditions to a set of Symbolic Coherence Conditions259

for algorithmically checking implementability of symbolic protocols, as well as investigating260

complexity of various decidable symbolic protocol fragments.261

Thanks to Rocq’s type universe, we unify the two disparate definitions under a single formal262

definition in our mechanization, which represents protocols simply as an LTS parametric in263

a state and alphabet type, containing a transition relation, an initial state, and a final state264

relation.265

266
Record LTS {A: Type} :=267

mkLTS { transition : State -> A -> State -> Prop;268

s0: State;269

final: State -> Prop; }.270271

We define LTS semantics using an inductive relation to represent reachability, lists272

to represent finite traces, and streams to represent infinite traces. Despite the apparent273

inconvenience imposed by the type-level distinction between finite and infinite words, we will274

see in §3.4 that we can greatly delay the acknowledgement of this distinction in key proofs,275

and moreover, that doing so simplifies the existing pen-and-paper proofs.276

3.2 Infinite Protocol Semantics277

In this section, we examine asynchronous protocol semantics for infinite words.278

As mentioned in §2, the protocol semantics of S is defined in steps: we begin with the LTS279

semantics of S, then apply a homomorphism split to obtain a set of asynchronous words280

that remain “synchronously ordered”, i.e. matching send and receive events are adjacent to281

each other. In an asynchronous network with peer-to-peer, FIFO channels, certain events282

can be reordered, and are thus considered independent. For example, the synchronous trace283

p→q :m · r→s :m yields the asynchronous trace u1 = p ▷ q!m · r ▷ s!m · s ◁ r?m · q ◁ p?m, as284

well as u2 = r ▷ s!m · p ▷ q!m · s ◁ r?m · q ◁ p?m, in which the independent sends by p and r285

are reordered.286

We call two words w, w′ ∈ Σω
async indistinguishable when any asynchronous implementation287

recognizing one word necessarily recognizes the other. Note that indistinguishability is specific288

to the assumed communication architecture: two words that are indistinguishable in a peer-289

to-peer FIFO setting may not be in a mailbox setting.290

Allowing the semantics of global protocols to selectively exclude indistinguishable be-291

haviors, e.g. by including u1 but excluding u2, would render protocols spuriously non-292

implementable. Thus, we desire for our protocol semantics to be closed under this notion of293

8 Certified Implementability of Global Multiparty Protocols

p→q :m

p→q :m′ r→s :m′

Figure 4 Example infinite protocol Sinf .

p→q :m

p→q :m′r→s :m′

Figure 5 Example infinite protocol S ′
inf .

indistinguishability. For finite words, the indistinguishability relation is intuitive to formalize.294

Prior works that give language-theoretic semantics to session types, such as [36], define295

indistinguishability in terms of a binary relation on asynchronous events capturing when they296

can be reordered 1, and a notion of channel compliance that captures valid traces with respect297

to peer-to-peer, FIFO semantics. In the message sequence chart literature, linearizations298

are required to satisfy the union of per-participant total orders and the send-before-receive299

partial order on events, coinciding with the definition from [36]. A key observation is that in300

pairs of indistinguishable finite words, the sequence of events for each participant is identical.301

Thus, given an asynchronous implementation that recognizes w ∈ Σω
async, to show that the302

same asynchronous implementation recognizes w′ indistinguishable from w, we do not need303

to know more about each participant’s local implementation beyond the fact that it accepts304

w⇓Σp
, which is given from the fact that the implementation as a whole recognizes w.305

For infinite words, however, indistinguishability can no longer be defined purely alphabet-306

ically. Consider the pair of infinite words v1 = p ▷ q!mω and v2 = r ▷ s!m · p ▷ q!mω. Are307

v1 and v2 indistinguishable? On our previous notion of indistinguishability, the answer is308

unfortunately, no. The fact that v1 is a trace of an arbitrary asynchronous implementation309

gives us no information about the local implementation of participant r, yet to show that v2310

is also a trace of said implementation, we need to additionally know that r’s local implemen-311

tation admits the trace r ▷ s!m. This discrepancy arises from the fact that infinite traces in312

an asynchronous implementation can infinitely reorder independent events, in this case every313

occurrence of p ▷ q!m with r ▷ s!m, achieving the effect of indefinitely postponing r ▷ s!m.314

Equipped with an understanding of the importance of indistinguishability-closed global315

semantics, we revisit the definition of infinite protocol semantics in [34]:316

C∼(S)ω = {w′∈Σω
async | ∃w ∈ Σω

async. w∈split(L(S)) ∧ ∀v′ ≤ w′. ∃u, u′ ∈ Σ∗async.317

v′ · u′ is channel-compliant ∧ u ≤ w ∧ ∀p ∈ P. (v′ · u′)⇓Σp
= u⇓Σp

} .318

We show via counterexample that C∼(S)ω is not indistinguishability-closed. Consider the319

simple protocol depicted in Figure 4, involving four participants p, q, r, s and two message320

values m, m′. As per [34], C∼(Sinf) does not include the infinite word r ▷ s!m′ · p ▷ q!mω. In321

contrast, C∼(S ′inf), whose protocol is obtained by a simple state renaming of Figure 4 and is322

depicted in Figure 5, does include r ▷ s!m′ · p ▷ q!mω.323

Before proposing a revised infinite word semantics that resolves this discrepancy, we324

discuss the implications of this counterexample on the results from [34]. It is easy to verify325

that Sinf is a GCLTS and satisfies CC . However, Sinf is not implementable: there exists no326

CLTS that recognizes the finite word p ▷ q!mn · p ▷ q!m′ · r ▷ s!m′ for all values of n ∈ N yet327

does not recognize the infinite word r ▷ s!m · p ▷ q!mω. This contradicts the soundness of328

the Coherence Conditions as stated in [34]. The error lies in the case for infinite words in329

the proof of [34, Lemma 4.9], which concludes from the fact that every prefix of an infinite330

1 We identify a minor erratum in the original formulation of the indistinguishability relation [36] used in
later works [45, 32, 31]: cases (3) and (4) are not symmetric, and thus the relation is not an equivalence
relation as claimed.

E. Li and T. Wies 9

word w in the canonical implementation has a non-empty intersection run set I(w), that331

w ∈ C∼(S)ω. To show that w ∈ C∼(S)ω, one needs to find a witness infinite run ρ in S,332

such that for every prefix v′ ≤ w, there exists an extension u′ and a prefix of rho ρ′v such333

that for all participants, the events prescribed by ρ′v and v′ · u′ are identical. To show334

the existence of such a run, the authors appeal to König’s Lemma, and argue that in a335

finitely-branching infinite tree containing possible run prefixes for every prefix of w′, there336

exists a ray representing an infinite run. This argument appears inherited from earlier works337

that deal with finite, multiparty session types [36, 32]. We discover that not only is König’s338

Lemma not applicable in the infinite setting of [34] where GCLTS states can have infinitely339

many transitions, the existence of a ray is insufficient to prove membership of w in C∼(S)ω.340

The latter implies that the proof using König’s Lemma in both prior works [36, 32] is flawed:341

indeed, S ′inf is expressible in the multiparty session type fragments defined in these works342

that assume finitely many participants, states and transitions. The gap in the reasoning lies343

in showing that the infinite run obtained from König’s Lemma is indeed a suitable existential344

witness required by the infinite protocol semantics. In the infinite tree constructed for Sinf345

and word r ▷ s!m′ · p ▷ q!mω, the prefix r ▷ s!m′ contributes a vertex labeled with the run346

prefix p → q : m · p → q : m′ · r → s : m′. Subsequent prefixes of the form r ▷ s!m′ · p ▷ q!mn
347

contribute vertices labeled with run prefixes p→q :mn · p→q :m′ · r→s :m′. A ray exists in348

this finite-degree, infinite tree representing the run p→q :mω. This is clearly an infinite run349

in Sinf , but unfortunately does not satisfy the conditions required to show membership of w′350

in C∼(Sinf): for prefix r ▷ s!m′ of w, there exists no prefix of p → q : mω that matches r’s351

events.352

Fortunately, the flawed infinite word semantics from [34] can easily be amended to353

accurately reflect the desired, indistinguishability-closed semantics. Our revised infinite word354

semantics is as follows:355

C∼alt(S)ω = {w′∈Σω
async | ∀v′ ≤ w′. ∃ρ ∈ Γ∗sync, u′ ∈ Σ∗async. ρ∈pref(L(S))∧356

v′ · u′ is channel-compliant ∧ ∀p ∈ P. (v′ · u′)⇓Σp
= split(ρ)⇓Σp

} .357

C∼alt(S)ω swaps the first two quantifiers in the original definition, and weakens the358

requirement that w come from an infinite run to the requirement that w come from a finite359

run prefix (that could be part of a finite or infinite maximal run in S). We hypothesize that360

this revised condition faithfully represents what prior works intended to capture with their361

infinite protocol semantics. It also more closely matches simulation-based notions of trace362

equivalence, for example in [50]. This is further evidenced by the fact that the requisite363

changes to the overall proof were minimal: the flawed König’s Lemma argument could simply364

be omitted in favor of appealing directly to the intersection set non-emptiness inductive365

invariant, and the completeness proof remained largely unchanged. The latter is due to the366

fact that for any infinite word w, w ∈ C∼(S)ω =⇒ w ∈ C∼alt(S)ω.367

3.3 Constructing Canonical Implementations368

Showing that a global protocol is implementable amounts to finding a witness CLTS that369

implements it. The soundness proof of CC in [34] chooses a particular CLTS as witness,370

referred to as the canonical implementation. The canonicity of an implementation is defined371

as follows:2372

2 Note that in [34], the notation L(S) is overloaded to denote C∼(S).

10 Certified Implementability of Global Multiparty Protocols

▶ Definition 4 (Canonical implementations [34]). A CLTS {{Tp}}p∈P is a canonical implemen-373

tation for a protocol S = (S, Γsync, T, s0, F) if for every p ∈ P, Tp satisfies:374

(i) ∀w ∈ Σ∗p . w ∈ C∼(Tp) ⇔ w ∈ L(S)⇓Σp
, and (ii) pref(L(Tp)) = pref(C∼(S)⇓Σp

).375

In [34], the existence of a canonical implementation for any protocol is assumed. Formally376

proving the existence of canonical implementations in our mechanization requires construct-377

ing an explicit, albeit non-constructive, witness CLTS. The construction is conceptually378

straightforward; nonetheless, we illustrate key steps here as it is novel to our mechanization.379

We begin by observing that because canonicity is defined on a per-participant basis, and380

with respect to an LTS that is deadlock-free, the definition can be weakened to use the LTS381

semantics of S rather than its protocol semantics. The weaker definition avoids reasoning382

about asynchronous reorderings and channel compliance, and is formalized in Rocq as follows.383

In the Rocq definitions below, S is a protocol of type LTS SyncAlphabet State, and p384

is a participant. We choose State -> Prop for the state type of local implementations, so385

S_p is an LTS of type LTS AsyncAlphabet (State -> Prop).386

387
Definition canonical_implementation_local_naive S p S_p :=388

(forall w: FinAsyncWord , is_finite_word S_p w ->389

exists w’: FinSyncWord , is_finite_word S w’ /\ wproj (split w’) p = w)390

/\391

(forall w: FinSyncWord , is_finite_word S w ->392

is_finite_word S_p (wproj (split w) p))393

/\394

(forall w: FinAsyncWord , is_trace S_p w ->395

exists w’: FinSyncWord , is_trace S w’ /\ wproj (split w’) p = w)396

/\397

(forall w: FinSyncWord , is_trace S w ->398

is_trace S_p (wproj (split w) p)).399400

The four conjuncts correspond to four inclusions that altogether define the two equalities401

in Definition 4, and need to be stated separately due to the type mismatch between finite402

and infinite words.403

Our construction for each participant’s local implementation can be expressed simply as404

a composition of two purely automata-theoretic operations: applying the homomorphism ⇓Σp
405

for each participant, followed by determinization. This coincides with the subset construction406

automaton as defined in [32], whose name we borrow in our definitions. Formally, for each407

participant p ∈ P , the result of the second step is an LTS over Σp ∪ {ϵ}. To avoid introducing408

this compounded alphabet and reasoning about identity elements, we define both operations409

declaratively in one shot, to obtain a local LTS over the alphabet AsyncAlphabet, whose410

states are of type State -> Prop, representing subsets of Q.411

The initial state is defined relationally as the set of all states reachable on ϵ from s0 in412

S. States in the subset construction are the set of non-empty subsets of states in S. Final413

states are defined relationally as sets of states containing at least one final state from S.414

415
Definition initial_subset_construction_state S p :=416

fun s => exists (w : list SyncAlphabet), lts. Reachable S (s0 S) w s417

/\ wproj (split w) p = [].418

419

Definition subset_construction_state S p :=420

fun lstate => exists (s : State), lstate s.421

422

Definition final_subset_construction_state S p :=423

fun lstate => subset_construction_state S p lstate /\424

E. Li and T. Wies 11

exists (s : State), lstate s /\ final S s.425426

The transition relation describes triples (ls, a, ls’) where ls is a pre-state in the subset427

construction, a is an asynchronous alphabet symbol in p’s restricted alphabet, and ls’ is428

a post-state. The relation states that ls’ contains all states from S that are either an429

immediate post-state of some state s in ls, or is ϵ-reachable from an immediate post-state.430

431
Definition subset_construction_transition_relation S p :=432

fun lstate1 a lstate2 => is_active p a433

/\ subset_construction_state S p lstate1434

/\ subset_construction_state S p lstate2435

/\ forall (s’: State), lstate2 s’ <->436

(exists (s:State), lstate1 s /\ transition S s (async_to_sync a) s’)437

\/438

(exists (s s_inter :State), lstate1 s /\439

transition S s (async_to_sync a) s_inter /\440

exists (v_epsilon :list SyncAlphabet),441

lts. Reachable S s_inter v_epsilon s’ /\442

wproj (split v_epsilon) p = []).443444

The former two conjuncts are implied by the latter two conjuncts together with the445

definition of final states in the subset construction. The latter two conjuncts state that446

every asynchronous trace in a participant’s canonical local implementation corresponds to a447

synchronous trace in S, and every synchronous trace in S corresponds to an asynchronous448

trace in the participant’s canonical local implementation.449

Unfortunately, these two properties are not themselves inductive: in both cases, the450

induction hypothesis is not strong enough to show that the respective traces can be extended.451

We state and prove two inductive invariants that explicitly quantify over states of S in a452

participant’s canonical local implementation S_p, and weaken them to obtain the third and453

fourth conjuncts. The strengthened inductive properties respectively state that for every454

reachable state ls on some asynchronous word w in S_p, for every global state s in ls, one455

can find a corresponding synchronous word w’ such that w’ and w agree on participant456

p’s events, and S reaches s on w’; conversely, for every reachable global state s on some457

synchronous word w in S, one can find a corresponding local state ls’ and asynchronous458

word w’ such that w’ and w agree on participant p’s events, and S_p reaches ls’ on w’.459

Finally, we define the canonical CLTS by mapping each participant to their subset460

construction. To show that the map thus defined is indeed a CLTS, we additionally need461

to prove that each local implementation is deterministic, and moreover operates on its own462

restricted alphabet. Both proofs are straightforward by definition of the subset construction;463

our proof of determinism uses the axioms of functional and propositional extensionality from464

Rocq’s Logic library to establish the equality of local states of type State -> Prop. We465

conclude with the existence lemma:466

467
Lemma canonical_implementation_exists :468

forall (S : @LTS SyncAlphabet State),469

deadlock_free S ->470

exists (T : CLTS),471

@canonical_implementation (State -> Prop) S T.472473

3.4 Simplification of Soundness474

The core argument for soundness in [34] relies on proving the following inductive invariant:475

12 Certified Implementability of Global Multiparty Protocols

Let S be a protocol satisfying CC , and let {{Tp}}p∈P be a canonical CLTS for S. Let w476

be a trace of {{Tp}}p∈P . Then, I(w) ̸= ∅.477

The set I(w) contains finite or infinite maximal runs in S that are possible with respect to478

the trace w. Formally, ρ ∈ I(w) means that for every participant p ∈ P , w⇓Σp
≤ split(ρ)⇓Σp

,479

i.e. each participant’s local events in w agree with what ρ prescribes. The proof proceeds by480

induction on the length of w, with case analysis in the inductive step on whether the next481

event is a send or receive event.482

The non-emptiness of I(w) amounts to an existential quantification over a disjunction.483

In our mechanization, however, due to the type-level distinction between finite and infinite484

runs, this property takes the form of a disjunction over existentials:485

486
Definition I_set_non_empty (S: LTS) (w: FinAsyncWord) :=487

(exists (run: FinSyncWord), finite_possible_run S run w)488

\/489

(exists (run: InfSyncWord), infinite_possible_run S run w).490491

Although the soundness arguments from [34] are mechanizable using this definition of492

intersection set non-emptiness, doing so would involve repetitive reasoning to deal with493

finite and infinite runs separately that does not shed additional insight on the problem. We494

instead prove that every canonical CLTS trace has a possible run prefix. Our new inductive495

invariant factors out the distinction between finite and infinite runs, and is additionally496

more expressive than its pen-and-paper counterpart: it makes explicit the construction of497

a possible run prefix for wx from one for w. When x is a receive event, our lemma states498

that the exact same run prefix can be reused. When x is a send event, a run prefix can be499

constructed incrementally by processing w in increasing length order, and appealing to CC500

to incrementally extend a prefix of the possible run prefix for wx.501

We focus the exposition below on our simplified proof for the inductive step when x is a502

send event. Lemma 4.16 in [34] is stated as follows:503

▶ Lemma 5 (Send events preserve run prefixes). Let S be a protocol satisfying CC and504

{{Tp}}p∈P be a canonical implementation for S. Let wx be a trace of {{Tp}}p∈P such that505

x ∈ Σp,! for some p ∈ P. Let ρ be a run in I(w), and α ·spre
l−→ spost ·β be the unique splitting506

of ρ for p with respect to w. Then, there exists a run ρ′ in I(wx) such that α · spre ≤ ρ′.507

The unique splitting of a run for a participant with respect to a trace is the largest prefix508

of the run that matches the participant’s actions in the trace, formalized as follows:509

510
Definition is_alpha (run alpha: FinSyncWord) (w: FinAsyncWord) p :=511

prefix alpha run /\ wproj w p = wproj (split alpha) p /\512

(forall (u: FinSyncWord), wproj w p = wproj (split u) p ->513

prefix u run -> prefix u alpha).514515

For example, the unique splitting of run ρ = p→q :m · r→s :m · r→q :m · q→p :m for516

participant p with respect to trace u = p▷q!m ·r▷s!m ·r▷q!m is p→q :m ·r→s :m ·r→q :m,517

because p has only completed the first event prescribed by ρ in u, namely sending m to518

r, but has not completed the second event, namely receiving m from q. Because the two519

synchronous events in between these two events in ρ do not concern p, they are included in520

the largest prefix. If a run disagrees with a trace on some participant’s actions, the unique521

splitting is ϵ, for example ρ’s unique splitting for participant r with respect to trace r ▷ s!m′.522

Our adapted formalization of Lemma 5 is thus stated as follows:523

E. Li and T. Wies 13

524
Lemma send_preserves_run_prefixes_finite :525

forall S T w x rho_fin alpha ,526

GCLTS S -> NMC S -> SCC S -> RCC S ->527

canonical_implementation S T ->528

is_clts_trace T w -> is_clts_trace T (w ++ [x]) -> is_snd x ->529

possible_run_prefix S rho_fin w ->530

is_alpha rho alpha w (sender_async x) ->531

exists (rho ’: FinSyncWord),532

prefix alpha rho ’ /\ possible_run_prefix S rho ’ (w ++ [x]).533534

The proof of Lemma 4.16 in [34] relies on a nested induction argument. We illustrate535

the key steps in order to elucidate the structure of the nested induction and explain our536

simplified proof. From the induction hypothesis, we are granted a canonical CLTS trace537

w and a possible run prefix for w. Let the send extention to w be x = Snd p q m. We can538

then define the largest prefix of rho matching w for participant p, and because the premise539

grants that alpha <> rho, there must exist a next action prescribed by rho for p, which we540

denote l. As a reminder, since rho is a run of the global protocol, which is an LTS over the541

synchronous alphabet, l is a synchronous alphabet symbol. By the induction hypothesis,542

rho is compliant with all participants:543

forall (p: participant), prefix (wproj w p) (wproj (split rho) p)544

The induction step asks to construct an existential witness for a new possible run prefix,545

rho’, that is compliant with wx. In the case that l = Event p q m, we can directly reuse546

rho as our witness, and the three conjuncts required of rho’ are trivially satisfied when rho’547

= rho. When this is not the case, we must construct a different witness. We first appeal548

to Send Coherence Condition to show that we can find a different continuation from alpha549

that agrees with x, in other words, l’ = [Event p q m] and alpha ++ l’ is a run in the550

global protocol.551

With this extension and removal of the original suffix from rho, however, we are left only552

with a guarantee about p’s compliance:553

prefix (wproj (w ++ [x]) p) (wproj (split (alpha ++ [Event p q m])) p)554

In the case that all of the actions in w were already contained in alpha, we can use alpha555

++ [l’] directly as our witness for rho’. However, in the case that some of w’s actions were556

contained in the now removed suffix, it is no longer true that all participants are compliant557

with alpha ++ [l’]. Therefore, the next step of the proof involves restoring a suffix that is558

“long enough” to contain all of the actions that were originally in w.559

The argument for suffix restoration in [34] is algorithmic in nature, and is captured560

by the pseudocode in Algorithm 1. The algorithm initializes the candidate run ρc as α · l’561

appended to an arbitrary run suffix β to form a maximal run. The outer while loop then562

“fixes” disagreements between w and the current candidate run ρc one symbol at a time,563

updating ρc after each fix. Termination is guaranteed by the fact that w has finite length564

Figure 6 Induction hypothesis. Figure 7 Inner induction hypothesis.

14 Certified Implementability of Global Multiparty Protocols

and that each event in w is fixed at most once. The outer while loop invariant relates ρ′c565

with ρc, and guarantees that the largest common prefix shared by ρ′c and ρc between each566

loop iteration is strictly increasing. Because the initial candidate run is picked such that it567

includes α · l’ as a prefix, and the common prefix between runs can only get longer, it holds568

by transitivity that when the while loop terminates, the final candidate run must have α · l’569

as a prefix, and furthermore is compliant with all events in w.570

Algorithm 1 Algorithmic representation of Lemma 4.16 [34]
▷ Let ρc be α · l′ · β, where β is an arbitrary maximal suffix
ρc ← α · l′ · β
while ¬(∀p ∈ P. w⇓Σp ≤ split(ρc)⇓Σp) do

▷ i is the index of the earliest disagreeing event in ρc

i← length(ρc)
▷ j iterates over all prefixes of w
j ← 0
for j ∈ {0..length(w)} do

k ← max{k′ | ∀p ∈ P. split(ρc[0..k′ − 1])⇓Σp ≤ w[0..j]⇓Σp}
if k < i then

i← k
j ← j + 1

▷ y is the earliest disagreeing event in ρc

y ← split(ρc)[i]
▷ y’ is obtained from SCC to no longer disagree with w
ρc ← ρc[0..i− 1] · y’

Formalizing the above algorithm in addition to its loop invariants would require a custom571

inductive predicate that relates the candidate run with disagreeing events in w. The fact572

that the loop invariant depends on both the current and previous candidate run introduces573

significant additional complexity.574

We find a weaker inductive invariant that eliminates this dependency: it suffices to show575

that α · l’ ≤ ρc remains a prefix of the candidate run. This holds trivially upon entry to the576

while loop, and is preserved by each iteration from the fact that α comes from the original ρ577

that is compliant with w, and thus no events in w can disagree with events in α.578

In our new inductive invariant, α · l’ can now be treated as a constant. We convert the579

algorithmic reasoning in [34] to the following inner induction hypothesis:580

581
H_inner : forall (w’: FinAsyncWord), prefix w’ w ->582

(exists (beta ’: FinSyncWord),583

possible_run_prefix S (alpha ++ [Event p q m] ++ beta ’) w ’)).584585

We prove H_inner directly by induction on prefixes of w using rev_ind from the standard586

List library. Figure 7 visualizes the simplified inductive argument: the red symbols in w587

depict disagreeing events in w as a result of removing the suffix from rho.588

To prove send_preserves_run_prefixes_finite, we needed to consider cases glossed589

over in the pen-and-paper proof from [34], and in some case develop arguments from scratch.590

For example, in the special case when alpha is a possible run prefix for participant p for591

trace w, but prescribes exactly as many events as are in w, we needed to show that either w is592

a maximal CLTS trace, or a different alpha can be found which prescribes more events, by593

appealing to the sink-finality of S.594

4 Related Work595

We refer the reader to [34] for a detailed discussion of related work on multiparty session596

types and similar formalisms. In the following, we instead focus our attention on comparing597

with prior efforts to mechanize such formalisms.598

E. Li and T. Wies 15

Most closely related to our effort are [7] and [48]. Zooid [7] is a mechanized domain-599

specific language for specifying and implementing asynchronous multiparty session types. [48]600

mechanizes the soundness and completeness proofs for the projection operator for synchronous601

multiparty session types proposed in [19]. A key conceptual difference is that our proofs follow602

a semantic argument grounded in formal language theory whereas both [7] and [48] follow603

more standard syntactic arguments. More fundamentally, the class of protocol specifications604

considered in this paper generalizes that of [7, 48] along several dimensions: [48] considers605

synchronous rather than asynchronous communication and in both works, internal choice606

syntactically disallows a sender from choosing among multiple receivers (like in state q4607

of Figure 1). Moreover, both papers restrict specifications to finitely many participants608

and states, and abstract message values in terms of simple types without data refinements.609

Finally, the notion of completeness considered in [48] is defined relative to the coinductive610

definition of endpoint projection introduced in [19]. The latter is itself incomplete for our611

semantically defined notion of implementability. The end-point projection of [7] is likewise612

incomplete (for our notion of completeness; see the note in Section 2).613

Pirouette [25] introduces a language of functional choreographies that are converted to a614

distributed implementation via endpoint projection. The language supports session delegation615

and higher-order functions, neither of which we include in our model of GCLTS. However,616

functional choreographies are much more restricted in their distributed behavior than the617

protocols in our model: communication is synchronous and all participants must remain618

in lock step. The latter is enforced by requiring that the programmer inserts potentially619

redundant synchronization messages into the choreography. A proof that the implementations620

obtained by projection are deadlock-free has been mechanized in Rocq. Similar to [48], the621

completeness theorem is stated relative to completeness of syntactic projection rather than622

semantic implementability.623

There is a large number of other recent mechanization efforts for session type languages [21,624

22, 28, 23, 47, 41, 24, 27, 46, 12]. However, these focus on the formalization of language625

semantics, compiler correctness, or on proving soundness of session type systems that626

check implementations against local types. The latter describe the behavior of individual627

participants or communication channels and may be obtained by prior endpoint projection628

from a global type or specified directly by the programmer. We therefore consider these629

efforts orthogonal to our work.630

5 Conclusion631

We summarize the mechanization effort in numbers below, briefly discuss our Rocq user632

experience, and conclude with a discussion of future directions. Our mechanization is available633

at https://zenodo.org/records/15760397 [30].634

Contents LOC
Standard library 0.7K
Message alphabet 2.2K

LTS, CLTS 2.6K
Global protocol 3.3K

Coherence conditions 0.2K
Soundness 5.1K

Completeness 1.3K

Total 15K

635

https://zenodo.org/records/15760397

16 Certified Implementability of Global Multiparty Protocols

Our formal language-theoretic treatment of message-passing concurrency meant that636

definitions were straightforward to state, and much of the reasoning is equational in nature.637

Our definition of finite words as lists enabled us to lean heavily on the Rocq Standard Library638

in addition to the stdpp.list. We found significantly less library support for reasoning about639

streams however, and thus the standard library supplement required for our mechanization640

primarily consists of lemmas about streams. In addition to the standard induction principles641

for natural numbers and lists, many proofs relied on alternative induction principles such as642

strong induction on natural numbers (lt_wf_ind) and reverse induction on lists (rev_ind).643

On the basis of our observation that [33, 34]’s result does not rely on a finite number644

of participants, it would be interesting to model and prove implementability of protocols645

with expressive features such as channel creation and delegation that are elided in much646

of the literature due to their complexity. It would also be interesting to explore using647

our semantic definition of protocols to model and prove implementability of existing Rocq648

protocol formalisms, such as [25, 7]. We further hope to use our mechanization to synthesize649

certified implementations for finite protocols, and investigate implementability under other650

asynchronous communication architectures. As shown in [32], synthesis for finite protocols651

amounts to a direct subset construction. As discussed in [33], symbolic, infinite-state652

automata fragments which admit generalized subset construction procedures also admit653

synthesis of implementations. We also believe that the reusable LTS and CLTS libraries654

contributed by this work can serve as a starting point to mechanize other theoretical results655

related to CLTSs. Finally, we plan to incorporate other problems that are relevant to656

top-down verification and synthesis frameworks, such as subtyping and refinement.657

References658

1 Rajeev Alur, Kousha Etessami, and Mihalis Yannakakis. Inference of message sequence charts.659

IEEE Trans. Software Eng., 29(7):623–633, 2003. doi:10.1109/TSE.2003.1214326.660

2 Rajeev Alur and Mihalis Yannakakis. Model checking of message sequence charts. In661

Jos C. M. Baeten and Sjouke Mauw, editors, CONCUR ’99: Concurrency Theory, 10th662

International Conference, Eindhoven, The Netherlands, August 24-27, 1999, Proceedings,663

volume 1664 of Lecture Notes in Computer Science, pages 114–129. Springer, 1999. doi:664

10.1007/3-540-48320-9_10.665

3 Laura Bocchi, Romain Demangeon, and Nobuko Yoshida. A multiparty multi-session logic.666

In Catuscia Palamidessi and Mark Dermot Ryan, editors, Trustworthy Global Computing -667

7th International Symposium, TGC 2012, Newcastle upon Tyne, UK, September 7-8, 2012,668

Revised Selected Papers, volume 8191 of Lecture Notes in Computer Science, pages 97–111.669

Springer, 2012. doi:10.1007/978-3-642-41157-1_7.670

4 Laura Bocchi, Kohei Honda, Emilio Tuosto, and Nobuko Yoshida. A theory of design-by-671

contract for distributed multiparty interactions. In Paul Gastin and François Laroussinie,672

editors, CONCUR 2010 - Concurrency Theory, 21th International Conference, CONCUR673

2010, Paris, France, August 31-September 3, 2010. Proceedings, volume 6269 of Lecture Notes674

in Computer Science, pages 162–176. Springer, 2010. doi:10.1007/978-3-642-15375-4_12.675

5 Daniel Brand and Pitro Zafiropulo. On communicating finite-state machines. J. ACM,676

30(2):323–342, 1983. doi:10.1145/322374.322380.677

6 Luís Caires and Jorge A. Pérez. Multiparty session types within a canonical binary theory, and678

beyond. In Elvira Albert and Ivan Lanese, editors, Formal Techniques for Distributed Objects,679

Components, and Systems - 36th IFIP WG 6.1 International Conference, FORTE 2016, Held680

as Part of the 11th International Federated Conference on Distributed Computing Techniques,681

DisCoTec 2016, Heraklion, Crete, Greece, June 6-9, 2016, Proceedings, volume 9688 of Lecture682

Notes in Computer Science, pages 74–95. Springer, 2016. doi:10.1007/978-3-319-39570-8\683

_6.684

https://doi.org/10.1109/TSE.2003.1214326
https://doi.org/10.1007/3-540-48320-9_10
https://doi.org/10.1007/3-540-48320-9_10
https://doi.org/10.1007/3-540-48320-9_10
https://doi.org/10.1007/978-3-642-41157-1_7
https://doi.org/10.1007/978-3-642-15375-4_12
https://doi.org/10.1145/322374.322380
https://doi.org/10.1007/978-3-319-39570-8_6
https://doi.org/10.1007/978-3-319-39570-8_6
https://doi.org/10.1007/978-3-319-39570-8_6

E. Li and T. Wies 17

7 David Castro-Perez, Francisco Ferreira, Lorenzo Gheri, and Nobuko Yoshida. Zooid: a DSL685

for certified multiparty computation: from mechanised metatheory to certified multiparty686

processes. In Stephen N. Freund and Eran Yahav, editors, PLDI ’21: 42nd ACM SIGPLAN687

International Conference on Programming Language Design and Implementation, Virtual Event,688

Canada, June 20-25, 2021, pages 237–251. ACM, 2021. doi:10.1145/3453483.3454041.689

8 Tzu-Chun Chen. Lightening global types. J. Log. Algebraic Methods Program., 84(5):708–729,690

2015. URL: https://doi.org/10.1016/j.jlamp.2015.06.003, doi:10.1016/J.JLAMP.2015.691

06.003.692

9 Luís Cruz-Filipe and Fabrizio Montesi. A core model for choreographic programming. Theor.693

Comput. Sci., 802:38–66, 2020. doi:10.1016/j.tcs.2019.07.005.694

10 Pierre-Malo Deniélou and Nobuko Yoshida. Multiparty session types meet communicating695

automata. In Helmut Seidl, editor, Programming Languages and Systems - 21st European696

Symposium on Programming, ESOP 2012, Held as Part of the European Joint Conferences on697

Theory and Practice of Software, ETAPS 2012, Tallinn, Estonia, March 24 - April 1, 2012.698

Proceedings, volume 7211 of Lecture Notes in Computer Science, pages 194–213. Springer,699

2012. doi:10.1007/978-3-642-28869-2_10.700

11 Pierre-Malo Deniélou, Nobuko Yoshida, Andi Bejleri, and Raymond Hu. Parameterised701

multiparty session types. Log. Methods Comput. Sci., 8(4), 2012. doi:10.2168/LMCS-8(4:702

6)2012.703

12 Burak Ekici and Nobuko Yoshida. Completeness of asynchronous session tree subtyping in Coq.704

In 15th International Conference on Interactive Theorem Proving, ITP 2024, September 9-14,705

2024, Tbilisi, Georgia, volume 309 of LIPIcs, pages 13:1–13:20. Schloss Dagstuhl - Leibniz-706

Zentrum für Informatik, 2024. URL: https://doi.org/10.4230/LIPIcs.ITP.2024.13, doi:707

10.4230/LIPICS.ITP.2024.13.708

13 Alain Finkel and Étienne Lozes. Synchronizability of communicating finite state machines is709

not decidable. In Ioannis Chatzigiannakis, Piotr Indyk, Fabian Kuhn, and Anca Muscholl,710

editors, 44th International Colloquium on Automata, Languages, and Programming, ICALP711

2017, July 10-14, 2017, Warsaw, Poland, volume 80 of LIPIcs, pages 122:1–122:14. Schloss712

Dagstuhl - Leibniz-Zentrum für Informatik, 2017. doi:10.4230/LIPIcs.ICALP.2017.122.713

14 Thomas Gazagnaire, Blaise Genest, Loïc Hélouët, P. S. Thiagarajan, and Shaofa Yang. Causal714

message sequence charts. In Luís Caires and Vasco Thudichum Vasconcelos, editors, CONCUR715

2007 - Concurrency Theory, 18th International Conference, CONCUR 2007, Lisbon, Portugal,716

September 3-8, 2007, Proceedings, volume 4703 of Lecture Notes in Computer Science, pages717

166–180. Springer, 2007. doi:10.1007/978-3-540-74407-8_12.718

15 Blaise Genest and Anca Muscholl. Message sequence charts: A survey. In Fifth International719

Conference on Application of Concurrency to System Design (ACSD 2005), 6-9 June 2005, St.720

Malo, France, pages 2–4. IEEE Computer Society, 2005. doi:10.1109/ACSD.2005.25.721

16 Blaise Genest, Anca Muscholl, and Doron A. Peled. Message sequence charts. In Jörg Desel,722

Wolfgang Reisig, and Grzegorz Rozenberg, editors, Lectures on Concurrency and Petri Nets,723

Advances in Petri Nets [This tutorial volume originates from the 4th Advanced Course on Petri724

Nets, ACPN 2003, held in Eichstätt, Germany in September 2003. In addition to lectures given725

at ACPN 2003, additional chapters have been commissioned], volume 3098 of Lecture Notes in726

Computer Science, pages 537–558. Springer, 2003. doi:10.1007/978-3-540-27755-2_15.727

17 Blaise Genest, Anca Muscholl, Helmut Seidl, and Marc Zeitoun. Infinite-state high-level728

mscs: Model-checking and realizability. J. Comput. Syst. Sci., 72(4):617–647, 2006. doi:729

10.1016/j.jcss.2005.09.007.730

18 Lorenzo Gheri, Ivan Lanese, Neil Sayers, Emilio Tuosto, and Nobuko Yoshida. Design-by-731

contract for flexible multiparty session protocols. In Karim Ali and Jan Vitek, editors,732

36th European Conference on Object-Oriented Programming, ECOOP 2022, June 6-10, 2022,733

Berlin, Germany, volume 222 of LIPIcs, pages 8:1–8:28. Schloss Dagstuhl - Leibniz-Zentrum734

für Informatik, 2022. URL: https://doi.org/10.4230/LIPIcs.ECOOP.2022.8, doi:10.4230/735

LIPICS.ECOOP.2022.8.736

https://doi.org/10.1145/3453483.3454041
https://doi.org/10.1016/j.jlamp.2015.06.003
https://doi.org/10.1016/J.JLAMP.2015.06.003
https://doi.org/10.1016/J.JLAMP.2015.06.003
https://doi.org/10.1016/J.JLAMP.2015.06.003
https://doi.org/10.1016/j.tcs.2019.07.005
https://doi.org/10.1007/978-3-642-28869-2_10
https://doi.org/10.2168/LMCS-8(4:6)2012
https://doi.org/10.2168/LMCS-8(4:6)2012
https://doi.org/10.2168/LMCS-8(4:6)2012
https://doi.org/10.4230/LIPIcs.ITP.2024.13
https://doi.org/10.4230/LIPICS.ITP.2024.13
https://doi.org/10.4230/LIPICS.ITP.2024.13
https://doi.org/10.4230/LIPICS.ITP.2024.13
https://doi.org/10.4230/LIPIcs.ICALP.2017.122
https://doi.org/10.1007/978-3-540-74407-8_12
https://doi.org/10.1109/ACSD.2005.25
https://doi.org/10.1007/978-3-540-27755-2_15
https://doi.org/10.1016/j.jcss.2005.09.007
https://doi.org/10.1016/j.jcss.2005.09.007
https://doi.org/10.1016/j.jcss.2005.09.007
https://doi.org/10.4230/LIPIcs.ECOOP.2022.8
https://doi.org/10.4230/LIPICS.ECOOP.2022.8
https://doi.org/10.4230/LIPICS.ECOOP.2022.8
https://doi.org/10.4230/LIPICS.ECOOP.2022.8

18 Certified Implementability of Global Multiparty Protocols

19 Silvia Ghilezan, Svetlana Jaksic, Jovanka Pantovic, Alceste Scalas, and Nobuko Yoshida.737

Precise subtyping for synchronous multiparty sessions. J. Log. Algebraic Methods Program.,738

104:127–173, 2019. URL: https://doi.org/10.1016/j.jlamp.2018.12.002, doi:10.1016/J.739

JLAMP.2018.12.002.740

20 Saverio Giallorenzo, Fabrizio Montesi, Marco Peressotti, David Richter, Guido Salvaneschi,741

and Pascal Weisenburger. Multiparty languages: The choreographic and multitier cases (pearl).742

In Anders Møller and Manu Sridharan, editors, 35th European Conference on Object-Oriented743

Programming, ECOOP 2021, July 11-17, 2021, Aarhus, Denmark (Virtual Conference), volume744

194 of LIPIcs, pages 22:1–22:27. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021.745

doi:10.4230/LIPIcs.ECOOP.2021.22.746

21 Jonas Kastberg Hinrichsen, Jesper Bengtson, and Robbert Krebbers. Actris: session-type747

based reasoning in separation logic. Proc. ACM Program. Lang., 4(POPL):6:1–6:30, 2020.748

doi:10.1145/3371074.749

22 Jonas Kastberg Hinrichsen, Jesper Bengtson, and Robbert Krebbers. Actris 2.0: Asynchronous750

session-type based reasoning in separation logic. Log. Methods Comput. Sci., 18(2), 2022.751

URL: https://doi.org/10.46298/lmcs-18(2:16)2022, doi:10.46298/LMCS-18(2:16)2022.752

23 Jonas Kastberg Hinrichsen, Jules Jacobs, and Robbert Krebbers. Multris: Functional verifica-753

tion of multiparty message passing in separation logic. 2024. URL: https://jihgfee.github.754

io/papers/multris_manuscript.pdf.755

24 Jonas Kastberg Hinrichsen, Daniël Louwrink, Robbert Krebbers, and Jesper Bengtson.756

Machine-checked semantic session typing. In Catalin Hritcu and Andrei Popescu, ed-757

itors, CPP ’21: 10th ACM SIGPLAN International Conference on Certified Programs758

and Proofs, Virtual Event, Denmark, January 17-19, 2021, pages 178–198. ACM, 2021.759

doi:10.1145/3437992.3439914.760

25 Andrew K. Hirsch and Deepak Garg. Pirouette: higher-order typed functional choreographies.761

Proc. ACM Program. Lang., 6(POPL):1–27, 2022. doi:10.1145/3498684.762

26 Kohei Honda, Nobuko Yoshida, and Marco Carbone. Multiparty asynchronous session types. In763

George C. Necula and Philip Wadler, editors, Proceedings of the 35th ACM SIGPLAN-SIGACT764

Symposium on Principles of Programming Languages, POPL 2008, San Francisco, California,765

USA, January 7-12, 2008, pages 273–284. ACM, 2008. doi:10.1145/1328438.1328472.766

27 Jules Jacobs, Stephanie Balzer, and Robbert Krebbers. Connectivity graphs: a method for767

proving deadlock freedom based on separation logic. Proc. ACM Program. Lang., 6(POPL):1–768

33, 2022. doi:10.1145/3498662.769

28 Jules Jacobs, Jonas Kastberg Hinrichsen, and Robbert Krebbers. Dependent session protocols770

in separation logic from first principles (functional pearl). Proc. ACM Program. Lang.,771

7(ICFP):768–795, 2023. doi:10.1145/3607856.772

29 Ivan Lanese, Jorge A. Pérez, Davide Sangiorgi, and Alan Schmitt. On the expressiveness and773

decidability of higher-order process calculi. In Proceedings of the Twenty-Third Annual IEEE774

Symposium on Logic in Computer Science, LICS 2008, 24-27 June 2008, Pittsburgh, PA, USA,775

pages 145–155. IEEE Computer Society, 2008. doi:10.1109/LICS.2008.8.776

30 Elaine Li. Itp’25 artifact: Certified implementability of global multiparty protocols), 2025.777

URL: https://zenodo.org/records/15760397, doi:10.5281/zenodo.15760396.778

31 Elaine Li, Felix Stutz, and Thomas Wies. Deciding subtyping for asynchronous multiparty779

sessions. In Stephanie Weirich, editor, Programming Languages and Systems - 33rd European780

Symposium on Programming, ESOP 2024, Held as Part of the European Joint Conferences on781

Theory and Practice of Software, ETAPS 2024, Luxembourg City, Luxembourg, April 6-11,782

2024, Proceedings, Part I, volume 14576 of Lecture Notes in Computer Science, pages 176–205.783

Springer, 2024. doi:10.1007/978-3-031-57262-3_8.784

32 Elaine Li, Felix Stutz, Thomas Wies, and Damien Zufferey. Complete multiparty session785

type projection with automata. In Constantin Enea and Akash Lal, editors, Computer Aided786

Verification - 35th International Conference, CAV 2023, Paris, France, July 17-22, 2023,787

https://doi.org/10.1016/j.jlamp.2018.12.002
https://doi.org/10.1016/J.JLAMP.2018.12.002
https://doi.org/10.1016/J.JLAMP.2018.12.002
https://doi.org/10.1016/J.JLAMP.2018.12.002
https://doi.org/10.4230/LIPIcs.ECOOP.2021.22
https://doi.org/10.1145/3371074
https://doi.org/10.46298/lmcs-18(2:16)2022
https://doi.org/10.46298/LMCS-18(2:16)2022
https://jihgfee.github.io/papers/multris_manuscript.pdf
https://jihgfee.github.io/papers/multris_manuscript.pdf
https://jihgfee.github.io/papers/multris_manuscript.pdf
https://doi.org/10.1145/3437992.3439914
https://doi.org/10.1145/3498684
https://doi.org/10.1145/1328438.1328472
https://doi.org/10.1145/3498662
https://doi.org/10.1145/3607856
https://doi.org/10.1109/LICS.2008.8
https://zenodo.org/records/15760397
https://doi.org/10.5281/zenodo.15760396
https://doi.org/10.1007/978-3-031-57262-3_8

E. Li and T. Wies 19

Proceedings, Part III, volume 13966 of Lecture Notes in Computer Science, pages 350–373.788

Springer, 2023. doi:10.1007/978-3-031-37709-9_17.789

33 Elaine Li, Felix Stutz, Thomas Wies, and Damien Zufferey. Characterizing implementability790

of global protocols with infinite states and data. PACMPL, 9(Object-oriented Programming,791

Systems, Languages, and Applications (OOPSLA)), 2025.792

34 Elaine Li, Felix Stutz, Thomas Wies, and Damien Zufferey. Characterizing implementability793

of global protocols with infinite states and data, 2025. URL: https://arxiv.org/abs/2411.794

05722v2, arXiv:2411.05722v2.795

35 Markus Lohrey. Realizability of high-level message sequence charts: closing the gaps. Theor.796

Comput. Sci., 309(1-3):529–554, 2003. doi:10.1016/j.tcs.2003.08.002.797

36 Rupak Majumdar, Madhavan Mukund, Felix Stutz, and Damien Zufferey. Generalising798

projection in asynchronous multiparty session types. In Serge Haddad and Daniele Varacca,799

editors, 32nd International Conference on Concurrency Theory, CONCUR 2021, August800

24-27, 2021, Virtual Conference, volume 203 of LIPIcs, pages 35:1–35:24. Schloss Dagstuhl -801

Leibniz-Zentrum für Informatik, 2021. doi:10.4230/LIPIcs.CONCUR.2021.35.802

37 Petar Maksimovic and Alan Schmitt. Hocore in coq. In Christian Urban and Xingyuan Zhang,803

editors, Interactive Theorem Proving - 6th International Conference, ITP 2015, Nanjing,804

China, August 24-27, 2015, Proceedings, volume 9236 of Lecture Notes in Computer Science,805

pages 278–293. Springer, 2015. doi:10.1007/978-3-319-22102-1_19.806

38 Sjouke Mauw and Michel A. Reniers. High-level message sequence charts. In Ana R. Cavalli and807

Amardeo Sarma, editors, SDL ’97 Time for Testing, SDL, MSC and Trends - 8th International808

SDL Forum, Evry, France, 23-29 September 1997, Proceedings, pages 291–306. Elsevier, 1997.809

39 Rémi Morin. Recognizable sets of message sequence charts. In Helmut Alt and Afonso Ferreira,810

editors, STACS 2002, 19th Annual Symposium on Theoretical Aspects of Computer Science,811

Antibes - Juan les Pins, France, March 14-16, 2002, Proceedings, volume 2285 of Lecture Notes812

in Computer Science, pages 523–534. Springer, 2002. doi:10.1007/3-540-45841-7_43.813

40 Anca Muscholl and Doron A. Peled. Message sequence graphs and decision problems on814

mazurkiewicz traces. In Miroslaw Kutylowski, Leszek Pacholski, and Tomasz Wierzbicki,815

editors, Mathematical Foundations of Computer Science 1999, 24th International Symposium,816

MFCS’99, Szklarska Poreba, Poland, September 6-10, 1999, Proceedings, volume 1672 of Lecture817

Notes in Computer Science, pages 81–91. Springer, 1999. doi:10.1007/3-540-48340-3_8.818

41 Arjen Rouvoet, Casper Bach Poulsen, Robbert Krebbers, and Eelco Visser. Intrinsically-typed819

definitional interpreters for linear, session-typed languages. In Jasmin Blanchette and Catalin820

Hritcu, editors, Proceedings of the 9th ACM SIGPLAN International Conference on Certified821

Programs and Proofs, CPP 2020, New Orleans, LA, USA, January 20-21, 2020, pages 284–298.822

ACM, 2020. doi:10.1145/3372885.3373818.823

42 Abhik Roychoudhury, Ankit Goel, and Bikram Sengupta. Symbolic message sequence charts.824

ACM Trans. Softw. Eng. Methodol., 21(2):12:1–12:44, 2012. doi:10.1145/2089116.2089122.825

43 Alceste Scalas and Nobuko Yoshida. Less is more: multiparty session types revisited. Proc.826

ACM Program. Lang., 3(POPL):30:1–30:29, 2019. doi:10.1145/3290343.827

44 Gan Shen, Shun Kashiwa, and Lindsey Kuper. Haschor: Functional choreographic programming828

for all (functional pearl). CoRR, abs/2303.00924, 2023. URL: https://doi.org/10.48550/829

arXiv.2303.00924, arXiv:2303.00924, doi:10.48550/ARXIV.2303.00924.830

45 Felix Stutz. Asynchronous multiparty session type implementability is decidable - lessons831

learned from message sequence charts. In Karim Ali and Guido Salvaneschi, editors, 37th832

European Conference on Object-Oriented Programming, ECOOP 2023, July 17-21, 2023,833

Seattle, Washington, United States, volume 263 of LIPIcs, pages 32:1–32:31. Schloss Dagstuhl -834

Leibniz-Zentrum für Informatik, 2023. URL: https://doi.org/10.4230/LIPIcs.ECOOP.2023.835

32, doi:10.4230/LIPICS.ECOOP.2023.32.836

46 Joseph Tassarotti, Ralf Jung, and Robert Harper. A higher-order logic for concurrent837

termination-preserving refinement. In Hongseok Yang, editor, Programming Languages and838

Systems - 26th European Symposium on Programming, ESOP 2017, Held as Part of the839

https://doi.org/10.1007/978-3-031-37709-9_17
https://arxiv.org/abs/2411.05722v2
https://arxiv.org/abs/2411.05722v2
https://arxiv.org/abs/2411.05722v2
https://arxiv.org/abs/2411.05722v2
https://doi.org/10.1016/j.tcs.2003.08.002
https://doi.org/10.4230/LIPIcs.CONCUR.2021.35
https://doi.org/10.1007/978-3-319-22102-1_19
https://doi.org/10.1007/3-540-45841-7_43
https://doi.org/10.1007/3-540-48340-3_8
https://doi.org/10.1145/3372885.3373818
https://doi.org/10.1145/2089116.2089122
https://doi.org/10.1145/3290343
https://doi.org/10.48550/arXiv.2303.00924
https://doi.org/10.48550/arXiv.2303.00924
https://doi.org/10.48550/arXiv.2303.00924
https://arxiv.org/abs/2303.00924
https://doi.org/10.48550/ARXIV.2303.00924
https://doi.org/10.4230/LIPIcs.ECOOP.2023.32
https://doi.org/10.4230/LIPIcs.ECOOP.2023.32
https://doi.org/10.4230/LIPIcs.ECOOP.2023.32
https://doi.org/10.4230/LIPICS.ECOOP.2023.32

20 Certified Implementability of Global Multiparty Protocols

European Joint Conferences on Theory and Practice of Software, ETAPS 2017, Uppsala,840

Sweden, April 22-29, 2017, Proceedings, volume 10201 of Lecture Notes in Computer Science,841

pages 909–936. Springer, 2017. doi:10.1007/978-3-662-54434-1_34.842

47 Peter Thiemann. Intrinsically-typed mechanized semantics for session types. In Ekaterina843

Komendantskaya, editor, Proceedings of the 21st International Symposium on Principles and844

Practice of Programming Languages, PPDP 2019, Porto, Portugal, October 7-9, 2019, pages845

19:1–19:15. ACM, 2019. doi:10.1145/3354166.3354184.846

48 Dawit Legesse Tirore, Jesper Bengtson, and Marco Carbone. A sound and complete pro-847

jection for global types. In Adam Naumowicz andL René Thiemann, editor, 14th Interna-848

tional Conference on Interactive Theorem Proving, ITP 2023, July 31 to August 4, 2023,849

Białystok, Poland, volume 268 of LIPIcs, pages 28:1–28:19. Schloss Dagstuhl - Leibniz-850

Zentrum für Informatik, 2023. URL: https://doi.org/10.4230/LIPIcs.ITP.2023.28, doi:851

10.4230/LIPICS.ITP.2023.28.852

49 Bernardo Toninho and Nobuko Yoshida. Certifying data in multiparty session types. J. Log.853

Algebraic Methods Program., 90:61–83, 2017. doi:10.1016/j.jlamp.2016.11.005.854

50 Fangyi Zhou, Francisco Ferreira, Raymond Hu, Rumyana Neykova, and Nobuko Yoshida.855

Statically verified refinements for multiparty protocols. Proc. ACM Program. Lang.,856

4(OOPSLA):148:1–148:30, 2020. doi:10.1145/3428216.857

Acknowledgements.858

This work is supported by the National Science Foundation under the grant agreement859

2304758.860

https://doi.org/10.1007/978-3-662-54434-1_34
https://doi.org/10.1145/3354166.3354184
https://doi.org/10.4230/LIPIcs.ITP.2023.28
https://doi.org/10.4230/LIPICS.ITP.2023.28
https://doi.org/10.4230/LIPICS.ITP.2023.28
https://doi.org/10.4230/LIPICS.ITP.2023.28
https://doi.org/10.1016/j.jlamp.2016.11.005
https://doi.org/10.1145/3428216

	1 Introduction
	2 Preliminaries
	3 Mechanization
	3.1 Protocols as Labeled Transition Systems
	3.2 Infinite Protocol Semantics
	3.3 Constructing Canonical Implementations
	3.4 Simplification of Soundness

	4 Related Work
	5 Conclusion

