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ABSTRACT
Privacy policies dictate how systems handle user data, yet
engineers struggle to verify compliance because policies
use intentionally vague legal language. Current automated
analyzers extract data practices using NLP but fail when
policies say things like “share data for legitimate purposes” -
terms that have no computational definition. This mismatch
between legal flexibility and formal verification creates a
fundamental barrier to automated compliance checking. We
identify four systematic challenges: vague terms, evolving
terminology, exception patterns that appear contradictory,
and external legal dependencies. We propose an approach
that preserves this ambiguity, where we use LLMs to extract
structured parameters and convert them to first-order logic
while keeping vague conditions as explicit placeholders for
human interpretation. Our system can extract hundreds of
data practices and reveals hidden complexities in TikTok
and Meta policies, though the resulting formulas remain too
complex for SMT solvers. This demonstrates the promise
and fundamental limits of formalizing the legal text.
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1 INTRODUCTION
Lawyer: “Our privacy policy is clear: We never share personal
data with anyone, except to comply with the law or with the
user’s express consent.”
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Computer Scientist: “If I translate that into code, I get one
rule saying ‘never share any personal data,’ and another rule
saying ‘it’s okay to share personal data if required by law or
if the user consents.’ My static analyzer flags a contradiction
because it doesn’t know what ‘required by law’ covers or how
to handle user consent.”
Lawyer: “There’s no contradiction for a human reader - the
policy means we generally do not share data, but we make an
exception when legally compelled or when the user agrees.”
Computer Scientist: “Exactly. To a program, those excep-
tions are undefined terms. Without defining which law or how
consent is given, the policy’s meaning is incomplete from a
formal perspective.”

This exchange shows the fundamental gap between legal
language and code verification. Privacy policies govern how
organizations handle personal data: who can access it, share
it, and under what conditions. From a computer science per-
spective, privacy protection often relies on cryptographic
guarantees like differential privacy [7] for statistical disclo-
sure control or secure multi-party computation [17] for con-
fidential data processing. But real privacy policies address
broader concerns than data confidentiality - they encode
legal requirements about appropriate data use, business prac-
tices, and user expectations that resist simple formalization.
Contextual Integrity [13] offers an alternative framework, ar-
guing that privacy violations occur when information flows
inappropriately between contexts according to social norms,
which remain difficult to formalize computationally.

Modern systems enforce privacy policies through multiple
technical mechanisms: encryption protects data confidential-
ity, access controls restrict who can view data, and runtime
monitors like TaintDroid [8] track how data flows through
applications. These mechanisms effectively enforce well-
defined rules - “only users with role X can access database
Y.” But they struggle with ambiguous policy statements like
“share data only with trusted partners for business purposes.”
Developers must somehow translate these vague terms into
concrete access control rules. New regulations like GDPR
and CCPA compound this problem by adding jurisdiction-
specific requirements that change how data can be processed.
The Usable Privacy Policy Project [15] documented that such
vague language appears in over 75% of privacy policies, mak-
ing automated enforcement challenging.
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To bridge the gap between legal text and technical enforce-
ment, researchers have developed automated policy analysis
tools. These systems aim to extract machine-readable rules
from privacy policies that could inform access control de-
cisions or detect policy violations. Recent work has used
semantic parsing [12] to convert natural language to logic,
knowledge graphs [10] to represent relationships between
data practices, and neural models to classify policy state-
ments. Earlier work on semantic role labeling [14] showed
that extracting semantic roles - who does what to whose data
under which conditions - improves accuracy over simple clas-
sification. PoliGraph [5] represents policies as knowledge
graphs where nodes are entities and edges are data practices.
PolicyLR [11] uses predefined taxonomies to classify state-
ments, while NL2FOL [12] directly converts statements to
logic without fixed categories.

Grammar-based parsers fail when “share data with service
providers” and “provide information to third parties” are se-
mantically equivalent with different syntax. Neural parsers
would force vague terms such as “legitimate purposes” into
predefined categories. We thus use LLMs to extract semantic
roles and organize data types into hierarchies while pre-
serving vague terms as uninterpreted predicates for human
interpretation.

1.1 Challenges
We outline four fundamental challenges that act as road-
blocks to making fully automated privacy compliance check-
ing feasible.
The first challenge is vague language. Privacy policies

use terms that have no computational definition. When a
policy states “We share data with service providers for business
operations,” what exactly counts as “business operations”?
Payroll processing? Marketing analytics? Customer support?
Formal verification requires precise predicates, but these
terms are intentionally flexible to cover future business needs.
Recent approaches [5, 10, 14] can identify that a statement
involves data sharing and extract the involved parties, but
they cannot define what “business operations” means in
computational terms.

The second challenge is evolving terminology. Privacy
policies constantly introduce new concepts - biometric tem-
plates, blockchain addresses, AI training datasets - that don’t
fit into predefined categories. Existing tools rely on fixed
categorization schemes (predefined sets of data types and
purposes) to classify policy statements. For example, Poli-
siS [10] uses the OPP-115 taxonomy that includes categories
like “financial info” and “health info.” But when policies men-
tion novel concepts like “neural network embeddings,” these
fixed taxonomies fail. Attempting to dynamically expand
taxonomies [11] risks creating overlapping categories - is

“facial recognition data” a type of “biometric data” or “image
data”? Such overlaps break the logical consistency needed
for formal reasoning. Even MAPS [19], which analyzed over
one million Android apps, struggles when apps collect data
types that weren’t common when the system was trained.
The third challenge is recognizing exceptions. Policies

state general rules then carve out specific exceptions. “We
don’t share location data” followed later by “We share loca-
tion data with mapping services” appears contradictory to
automated tools that treat each statement independently. But
humans understand the second statement creates a specific
exception to the general rule. Current analyzers can detect
that both statements mention location data and sharing [12],
but they struggle to recognize the hierarchical relationship
where specific rules override general ones. PolicyLint [1]
found that 14.2% of apps contain such apparent contradic-
tions; manual review revealed most were actually coherent
exception patterns.
The fourth challenge is external dependencies. Poli-

cies reference external context that isn’t defined within the
policy text. “We share data when required by law” depends
on which laws apply in each jurisdiction. “We notify users
through their account settings” depends on the application’s
actual implementation of those settings. Formalizing these
statements requires information beyond the policy text it-
self. Entity-sensitive analysis like PoliCheck [2] can track
that “law enforcement” is an entity that receives data, but
it cannot determine which specific laws trigger sharing in
which contexts.

1.2 Our Approach in a Nutshell
In this paper, we propose an approach that embraces these
limitations rather than abstracting them away. We extract
structured information from privacy policies while preserv-
ing ambiguity for human review. Specifically, we use an LLM
to identify six key elements in each policy statement: the data
sender, receiver, data subject (whose data it is), data type, ac-
tion performed, and any conditions. We chose these elements
based on Contextual Integrity theory [14], which models pri-
vacy as appropriate information flow. However, we do not
attempt to extract full “transmission principles” (the complex
social norms governing when data sharing is appropriate), as
these require human judgment about social context. Unlike
PolicyLR [11] which relies on fixed taxonomies, we build hi-
erarchies dynamically. Unlike NL2FOL [12] which converts
individual statements, we maintain global context through
hierarchical graphs.

We encode the extracted elements as first-order logic (FOL)
formulas because FOL provides a standard formalism for
expressing relationships and constraints that can be analyzed
by automated theorem provers. Unlike knowledge graphs
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that only capture relationships, FOL can express complex
conditions like “for all users X, if X has opted out, then do
not share X’s data.” When we encounter vague terms like
“legitimate purposes,” we preserve them as uninterpreted
predicates rather than attempting to define them, making
the ambiguity explicit.

2 SYSTEM
Our system transforms natural language privacy statements
into formal first-order logic (FOL) representations by ex-
tracting their key components—the entities, data, and re-
lationships that define each data practice. Specifically, we
identify the information sender, receiver, subject, and
attribute involved in each data practice, as well as the
action (the verb describing the data practice) and any con-
textual condition under which the action occurs. This ap-
proach adapts elements fromContextual Integrity theory [13].
However, we do not attempt to extract full transmission prin-
ciples. Prior work [14] has shown these require significant
human interpretation. This structured representation enables
detection of policy conflicts and incomplete disclaimers. The
pipeline consists of three phases that directly address the
challenges identified in Section 1.
Phase 1: LLM-based Representation Extraction. To han-
dle vague language (Challenge 1), we use large languagemod-
els with few-shot prompting to extract semantic roles from
policy text. A semantic role identifies the function each entity
plays in a data practice—for example, in “TikTok shares data
with advertisers,” TikTok fills the sender role while advertis-
ers fill the receiver role. Unlike rule-based parsers that fail on
ambiguous phrasing, LLMs can interpret varied expressions
of the same concept. This builds on recent successes in legal
text analysis [4]. We resolve coreferences by using the LLM
to identify that pronouns like “we” and “our” refer to the
company name extracted from the policy’s opening. We seg-
ment policies into individual statements about data practices.
Each segment receives a unique identifier based on its con-
tent hash, which enables diff-based tracking when policies
update. Only modified segments require re-extraction. For
each segment, we extract structured parameters that capture
who shares what data with whom under which conditions.
Crucially, when the LLM encounters vague terms like “le-
gitimate business purposes,” these are preserved as-is in the
condition field. This makes the ambiguity explicit rather than
forcing premature interpretation. The hierarchical relation-
ships built in Phase 2 can later help clarify these vague terms
by identifying specific instances that reveal what the broad
category encompasses.
Phase 2: Hierarchical Graph Construction. To address
evolving terminology (Challenge 2), we build dynamic hier-
archies using Chain-of-Layer (CoL) prompting [18] rather

than relying on fixed taxonomies. Unlike previous taxonomy-
based approaches [16] that struggle with novel concepts, CoL
constructs taxonomies iteratively. This approach requires no
domain-specific knowledge and can adapt to healthcare, me-
dia, financial, or educational terminology through the same
iterative process. Starting with a root concept (e.g., “data”),
it identifies immediate subcategories in the first layer (e.g.,
“personal data,” “technical data”), then builds subsequent
layers by finding subcategories of each node (e.g., “email” un-
der “personal data”). This ensures all terms are incorporated
while maintaining semantic consistency. This produces two
structures: a data hierarchy organizing data types by sub-
sumption relationships, and an entity-data graph capturing
who performs which actions on what data. Both structures
persist across policy versions. When text changes, we iden-
tify affected nodes through segment tracking and update
only those branches. Conditions under which actions occur
are modeled as boolean predicates attached to edges in the
entity-data graph. When conditions reference other entities,
we extract these as additional relationships while keeping
the conditions themselves as logical constraints. This sepa-
ration allows the system to handle novel data types through
dynamic hierarchy construction. It also properly recognizes
exceptions (Challenge 3) by maintaining conditions as ex-
plicit constraints on when rules apply.

Phase 3: Semantic Query Verification. To handle both
recognizing exceptions (Challenge 3) and external depen-
dencies (Challenge 4), we employ a hybrid approach com-
bining neural embeddings with formal logic. When a user
poses a query, we first translate it to policy vocabulary using
embedding-based similarity search. This bridges the vocabu-
lary gap between how users phrase questions and how poli-
cies state rules. The approach is similar to that in Polisis [10]
but maintains logical structure. We then extract relevant sub-
graphs that include both direct matches and hierarchically
related terms. For new queries, we construct the subgraph by
reusing existing hierarchy and do local graph traversal rather
than full reconstruction. For instance, if a policy allows shar-
ing “contact information” and we know “email address” is a
subtype, the hierarchy enables proper inference. Conditions
and external references are converted to boolean predicates.
Undefined terms become named predicates that make in-
completeness explicit. The final FOL formula is checked by
an SMT solver to provide formal verification where possi-
ble. When the formula contains undefined predicates like
required_by_law or legitimate_business_purpose, these
appear as uninterpreted symbols in the verification. This sig-
nals that the result depends on how these vague terms are
resolved. It effectively identifies where human judgment or
external input is necessary to complete the analysis.
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This three-phase design directly addresses our core chal-
lenges. Vague language is handled through LLM interpreta-
tion with explicit preservation of ambiguity. Evolving termi-
nology is managed through dynamic hierarchy construction.
Exception recognition leverages hierarchical relationships
in our graphs. External dependencies become explicit predi-
cates in our formal representation. Rather than attempting
full automation, our system provides a structured framework
where formal methods identify clear-cut issues while human
expertise resolves genuine ambiguities.

3 IMPLEMENTATION
We implemented our system in Python using GPT-4o-mini
for extracting semantic roles (sender, receiver, action, etc.)
from policy text, text-embedding-3-large for computing sim-
ilarity between terms, and CVC5 for solving logical formulas.
This section describes the key algorithms and implementa-
tion decisions.

Algorithm 1 shows our complete pipeline. The implemen-
tation makes several key design decisions to handle real-
world privacy policies effectively.

Company Name Extraction and Coreference Reso-
lution. We extract the company name from the policy by
prompting the LLM to identify the organization name in
the first 1000 characters. This enables consistent coreference
resolution throughout the document. We replace pronouns
like “we,” “us,” and “our” with the actual company name.
Each segment maintains context from previous segments to
resolve ambiguous references. For example, when a policy
says “we collect your data,” we replace “we” with “TikTok”
based on the extracted company name.

Semantic Parameter Extraction. The extraction prompt
includes specific normalization rules: actions are converted
to base form (“collects” becomes “collect”), data types are
singularized (“email addresses” becomes “email address”),
and user references are standardized to “user”. The prompt
includes few-shot examples demonstrating how to handle
compound statements by generating multiple sets of param-
eters (one for each data practice mentioned). Conditions are
extracted to capture only the circumstances under which
actions occur, not the main action itself. We preserve logical
operators like AND/OR. This normalization approach fol-
lows best practices from semantic role labeling for privacy
texts [14].
Chain-of-Layer Hierarchy Construction. Following

Chain-of-Layer [18], we implement iterative taxonomy build-
ing. The algorithm first identifies a root concept using an
LLM prompt, then builds the taxonomy layer by layer. At
each iteration, it identifies next-level entities from the re-
maining set and establishes their relationships to existing

nodes. We optionally filter out unlikely relationships by com-
puting SciBERT [3] similarity scores between terms and re-
moving pairs with similarity below a threshold. The algo-
rithm ensures every entity appears exactly once in the final
taxonomy while maintaining hierarchical consistency.
Embedding-Based Semantic Search. We pre-compute

vector representations (embeddings) for all graph elements
using OpenAI’s text-embedding-3-large model. For query
processing, we implement a multi-step translation process.
First, we compute cosine similarity between query terms
and all policy terms. For top-k (k=10) high-similarity pairs,
we verify semantic equivalence using an LLM prompt. The
prompt asks whether the terms mean the same in a privacy
context. The search extends beyond individual terms to edge
representations. We embed the concatenation of source, ac-
tion, and target for more accurate matching.

FOL Formula Generation. The conversion to first-order
logic creates structured formulas where query constraints
become expressions with existential quantifiers (“there exists
some X such that...”) and policy statements become logical
disjunctions (OR operations) of permitted actions. Condi-
tions are converted to boolean predicates (true/false func-
tions). Vague conditions become named uninterpreted predi-
cates that expose their undefined nature. The formula checks
whether the query logically follows from the policy state-
ments. This approach adapts techniques from NL2FOL [9]
to the privacy domain.

SMT-LIB Generation and Solving.We implement a cus-
tom compiler that converts FOL formulas to SMT-LIB v2
format (the standard input language for SMT solvers). The
compiler extracts all predicates and constants from the for-
mula, generates proper declarations, handles variable scop-
ing in quantified expressions, and asserts the negation of the
implication for checking logical validity. We use CVC5 as our
SMT (Satisfiability Modulo Theories) solver - a tool that de-
termines whether logical formulas are satisfiable. We chose
CVC5 for its strong support for formulas with quantifiers
compared to alternatives like Z3 [6]. We interpret “unsat” re-
sults as valid (the query necessarily follows from the policy)
and “sat” results as invalid (the query does not necessarily
follow).

The implementation includes caching mechanisms for seg-
ments, extracted parameters, graphs, and embeddings to en-
able incremental processing and debugging. All intermediate
representations are stored in JSON or pickle format. This
allows inspection of each pipeline stage.
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Algorithm 1 Privacy Policy FOL Extraction and Query Ver-
ification
Input: Policy text P, OPP-115 taxonomy T , User query 𝑄

Output: result ∈ {VALID, INVALID,UNKNOWN }
Parameters: 𝜃 = sender, 𝜌 = receiver, 𝜅 = subject, 𝜋 = data

type, 𝛼 = action, 𝑐 = condition, 𝑝 = permission

1: // Phase 1: Extract Representations
2: 𝐶 ← ExtractCompanyName(P)
3: P′ ← ResolveCoreferences(P,𝐶)
4: 𝑆 ← Segment(P′) // 𝑆 = {𝑠1, 𝑠2, ..., 𝑠𝑛}
5: E ← ∅
6: for 𝑠 ∈ 𝑆 do
7: (𝜃, 𝜌, 𝜅, 𝜋, 𝛼, 𝑐, 𝑝) ← ExtractParams(𝑠,𝐶)
8: D ← Match(𝑠,T) // Identify data types
9: E ← E ∪ {(𝜃, 𝜌, 𝜅, 𝜋, 𝛼, 𝑐, 𝑝,D)}
10: end for
11: // Phase 2: Build FOL Graphs
12: entities← ExtractEntities(E)
13: data types← ExtractDataTypes(E)
14: 𝐻𝐸 ← ChainOfLayer(entities, “entity”)
15: 𝐻𝐷 ← ChainOfLayer(data types, “data”)
16: 𝐺ED,𝐺DD ← BuildGraphs(E, 𝐻𝐸, 𝐻𝐷 )
17: embeddings← ComputeEmbeddings(𝐺ED,𝐺DD)
18: // Phase 3: Query Verification
19: 𝑄 ′ ← ResolveCoreferences(𝑄,𝐶)
20: 𝑞 ← ExtractParams(𝑄 ′,𝐶) // Extract query params
21: 𝑞𝑡𝑟𝑎𝑛𝑠 ← TranslateTerms(𝑞, embeddings)
22: matches← SemanticSearch(𝑞𝑡𝑟𝑎𝑛𝑠 ,𝐺ED, embeddings)
23: subgraph← BuildSubgraph(𝑞𝑡𝑟𝑎𝑛𝑠 ,matches,𝐺DD)
24: Φ← ToFOL(𝑞𝑡𝑟𝑎𝑛𝑠 , subgraph)
25: result ← SMT(¬Φ)
26:
27: return result

4 RESULTS
We evaluated our system on privacy policies from two ma-
jor technology companies: TikTok and Meta. These policies
represent different scales of complexity - TikTok’s policy
contains approximately 15,000 words while Meta’s spans
over 40,000 words. This section presents qualitative analysis
of the extraction quality and verification capabilities.

4.1 Extraction Results
Table 1 summarizes the extraction results for both policies.
The system successfully processed both policies, demonstrat-
ing scalability from shorter to more comprehensive privacy
documents.

Table 1: Extraction Statistics for Privacy Policies

Metric TikTok Meta
Total nodes 419 1,323
Total edges 974 3,801
Entities 217 700
Data types 122 382

4.2 Quality Analysis: TikTok Policy
Our system extracted 974 distinct data practice edges from
TikTok’s policy. Each edge represents a directed relationship
between entities (e.g., [user] –provide–> [email]). Ta-
ble 2 presents representative examples demonstrating how
single policy statements generate multiple such relation-
ships.

The decomposition reveals several key insights. First, the
system identifies multiple actors and actions within single
statements. The contact-finding example shows both user
actions (choosing to find users) and TikTok’s resulting col-
lection activities, capturing the causal relationship. Second,
enumerated lists are properly expanded - the profile informa-
tion statement generates ten distinct edges, ensuring each
data type is individually trackable. This granular extraction
enables precise queries about specific data types rather than
broad categories. The system uses embedding-based similar-
ity to match related terms; for instance, “email address” in a
query matches to “email” in the policy with 0.999 similarity.
The system also preserves implicit relationships. When

TikTok states it will "access and collect" contact information,
the extraction captures both the intermediate access step and
the final collection, revealing the data flow process. This level
of detail is crucial for compliance analysis, as regulations
often distinguish between data access and data retention.

4.3 Quality Analysis: Meta Policy
Meta’s more comprehensive policy yielded 3,801 edges with
notably more complex data flows. Table 3 shows how the
system handles Meta’s intricate policy language.
Meta’s extractions demonstrate the system’s ability to

handle sophisticated data practices. The camera/voice fea-
tures example shows six distinct edges capturing different
aspects of multimedia data collection. Notably, the system
distinguishes between content provided through different
mechanisms (camera feature vs. voice features) and identi-
fies both user provision and Meta’s collection as separate
actions.

The interaction tracking example reveals Meta’s compre-
hensive monitoring, generating six edges that capture view-
ing, interacting, and engagement as distinct activities. This
granularity is essential for understanding the full scope of
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Policy Statement Extracted Edges

When you create an account, upload content,
contact TikTok directly, or otherwise use the
Platform, you may provide some or all of the
following information

[user]-create->[account], [user]-upload->[content],
[user]-contact->[TikTok directly], [user]-use->[Platform],
[user]-provide->[information]

Account and profile information, such as name,
age, username, password, language, email, phone
number, social media account information, and
profile image

[user]-create->[account and profile], [user]-provide->[name],
[user]-provide->[age], [user]-provide->[username],
[user]-provide->[password], [user]-provide->[language],
[user]-provide->[email], [user]-provide->[phone number],
[user]-provide->[social media account information],
[user]-provide->[profile image]

If you choose to find other users through your
phone contacts, TikTok will access and collect
information such as names, phone numbers, and
email addresses

[user]-choose to find->[other users through phone contacts],
[user]-access->[phone contacts], [TikTok]-collect->[contact list],
[TikTok]-collect->[name of contacts], [TikTok]-collect->[phone
number of contacts], [TikTok]-collect->[email address of contacts]

Table 2: TikTok policy statements decomposed into multiple semantic edges

Policy Statement Extracted Edges

Content you provide through Meta’s camera
feature or your camera roll settings, or through
Meta’s voice-enabled features

[user]-provide->[camera feature content],
[user]-provide->[voice-enabled features content], [user]-allow
access->[photos and videos], [user]-give->[photos and videos],
[Meta]-collect->[information from camera],
[Meta]-collect->[information about how user uses Camera feature]

Types of content, including ads, you view or
interact with, and how you interact with it

[user]-view->[content], [user]-interact with->[content],
[user]-view->[ads], [user]-interact with->[ads], [user]-engage
with->[ads and commercial content], [user]-provide->[interaction
data]

Purchases or other transactions you make, such
as through Meta checkout experiences, including
credit card information

[user]-make->[purchases], [user]-make->[transactions],
[user]-provide->[truncated credit card information],
[user]-make->[payments using Meta Pay], [user]-make->[purchases in
Marketplace], [user]-make->[purchases within online game],
[Meta]-process->[financial information], [Meta]-access->[financial
transaction data], [Meta]-preserve->[financial transaction data]

Table 3: Meta policy statements revealing complex multi-actor data flows

behavioral tracking. The system correctly identifies viewing
and interacting as separate trackable actions on both general
content and advertisements specifically. Through embedding
similarity, queries about “location data” successfully match
related terms like “location information” and “GPS location”
in the policy.
The financial transaction example is particularly reveal-

ing, with nine edges capturing the complete payment ecosys-
tem. The extraction distinguishes between different payment
contexts (Meta Pay, Marketplace, in-game purchases) and
different stages of financial data handling (collection, process-
ing, preservation). This comprehensive extraction enables

queries about specific payment scenarios that might have
different privacy implications.

4.4 Addressing Key Challenges
The multi-edge extraction approach directly addresses our
identified challenges:

Vague Language (Challenge 1). By decomposing state-
ments into individual relationships, vague terms become
isolated and explicit. When Meta mentions collecting "in-
formation about how you use Camera feature," the edge
preserves this vagueness while making it queryable.
Novel Terminology (Challenge 2). New concepts like

"voice-enabled features" and "Meta checkout experiences"
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are captured as distinct nodes, automatically incorporated
into the graph without predefined categories.

Exception Handling (Challenge 3). Conditional actions
are captured through additional metadata on edges. The Tik-
Tok contact example shows how user choice ("if you choose
to find other users") triggers specific collection activities.

External Dependencies (Challenge 4). Complex multi-
actor scenarios are decomposed into individual edges, mak-
ing dependencies explicit. The Meta payment example shows
how user purchases trigger Meta’s processing and preserva-
tion actions.

The successful generation of valid SMT-LIB formulas (the
standard format for SMT solvers) for both policies validates
our approach of combining neural language models with
formal methods. While solver timeouts occur when formu-
las contain hundreds of clauses even for single queries, the
extraction itself scales linearly with policy size through seg-
mentation and caching. The bottleneck lies in logical verifica-
tion of complex nested conditions. Future work can explore
CVC5’s incremental solving capabilities, which maintain
solver state across queries and reuse previous proof work.
We could further reduce complexity with FOL formula simpli-
fication techniques such as pruning irrelevant edges before
encoding. Modern SMT solvers support check-sat-assuming
for conditional verification, which enables exploration of
different query conditions without full re-solving. Despite
current verification limits, the structured extraction provides
standalone value. Legal teams can identify gaps and con-
tradictions between policies, while engineers can extract
concrete implementation requirements for privacy safety.
The systematic analysis of data practices gives practical ben-
efits even when formal proofs remain intractable.

5 DISCUSSION
Combining LLMs with formal methods provides a system-
atic approach for analyzing privacy policies. While existing
approaches either focus on shallow text classification or as-
sume simplified policy representations, real policies contain
vague terms like “legitimate business purpose” that resist
straightforward formalization.

Our approach achieves scalability through specific design
choices. We process policies in segments to avoid LLM con-
text limits, and use content hashing to track each segment
uniquely. This hashing enables incremental updates - when
policies change, we identify modified segments and only
re-extract those. Since we track which edges correspond
to which segments, we update just the affected portions of
the graph while preserving the rest. The system general-
izes across domains without modification. The LLM extracts

parameters from any terminology, while CoL builds hierar-
chies based on semantic relationships rather than predefined
categories.
We demonstrated that privacy policies can be systemati-

cally extracted - processing TikTok and Meta policies yielded
974 and 3,801 data practice edges respectively. The hierar-
chical organization successfully handles terminology varia-
tions, enabling queries to match related terms across differ-
ent phrasings. However, the resulting formal representations
overwhelm current SMT solvers, generating hundreds of
clauses that lead to timeouts. Future work can explore incre-
mental solving and FOL formula simplification techniques.
The system serves four distinct user groups. Policy au-

thors track changes when updating for new regulations and
identify contradictions between policy versions. Companies
test their privacy policies against specific scenarios to en-
sure consistency. Users query whether their data handling
actually complies with stated policies. Engineers extract the
exact logic and conditions needed to implement privacy-safe
systems. Each group benefits from the extracted hierarchical
relationships and the formal compliance verification.
These results reflect fundamental properties of legal text

rather than technical limitations. Privacy policies must bal-
ance precision with flexibility, using intentionally vague lan-
guage that allows contextual interpretation. The value lies in
systematic analysis that augments human expertise - helping
legal teams identify inconsistencies and ensure comprehen-
sive coverage even without complete formal verification.
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