
Deciding Subtyping for
Asynchronous Multiparty Sessions

Elaine Li⋆1 , Felix Stutz2 , and Thomas Wies1

1 New York University, New York, USA efl9013@nyu.edu, wies@cs.nyu.edu
2 Max Planck Institute for Software Systems, Kaiserslautern, Germany fstutz@mpi-sws.org

Abstract. Multiparty session types (MSTs) are a type-based approach to veri-
fying communication protocols, represented as global types in the framework.
We present a precise subtyping relation for asynchronous MSTs with communi-
cating state machines (CSMs) as implementation model. We address two prob-
lems: when can a local implementation safely substitute another, and when does
an arbitrary CSM implement a global type? We define safety with respect to a
given global type, in terms of subprotocol fidelity and deadlock freedom. Our
implementation model subsumes existing work which considers local types with
restricted choice. We exploit the connection between MST subtyping and refine-
ment to formulate concise conditions that are directly checkable on the candidate
implementations, and use them to show that both problems are decidable in poly-
nomial time.

Keywords: Protocol verification · Multiparty session types · Communicating
state machines · Subtyping · Refinement.

1 Introduction

Multiparty session types (MSTs) [31] are a type-based approach to verifying commu-
nication protocols. In MST frameworks, a communication protocol is expressed as a
global type, which describes the interactions of all protocol participants from a birds-
eye view. The key property of interest in MST frameworks is implementability, which
asks whether there exists a collection of local implementations, one per protocol par-
ticipant, that is deadlock-free and produces the same set of behaviors described by the
global type. The latter property is known as protocol fidelity. Given an implementable
global type, the synthesis problem asks to compute such a collection. To solve im-
plementability and synthesis, MST frameworks are often equipped with a projection
operator, which is a partial map from global types to a collection of local implementa-
tions. Projection operators compute a correct implementation for a given global type if
one exists.

However, projection operators only compute one candidate out of many possible
implementations for a given global type, which narrows the usability of MST frame-
works. As we demonstrate below, substituting this candidate can in some cases achieve
an exponential reduction in the size of the local implementation. Furthermore, appli-
cations may sometimes require that an implementation produce only a subset of the
⋆ corresponding author

https://orcid.org/0000-0003-0173-4498
https://orcid.org/0000-0003-3638-4096
https://orcid.org/0000-0003-4051-5968

2 E. Li, F. Stutz, and T. Wies

global type’s specified behaviors. We refer to this property as subprotocol fidelity. For
example, a general client-server protocol may customize the set of requests it handles to
the specific devices it runs on. Subtyping reintroduces this flexibility into MST frame-
works, by characterizing when an implementation can replace another while preserving
desirable correctness guarantees.

Formally, a subtyping relation is a reflexive and transitive relation that respects
Liskov and Wing’s substitution principle [39]: T ′ is a subtype of T when T ′ can be
safely used in any context that expects a term of type T . While implementability for
MSTs was originally defined on syntactic local types [29, 31], other implementation
models have since been investigated, including communicating session automata [21]
and behavioral contracts [16]. We motivate our work with the observation that a subtyp-
ing relation is only as powerful as its notion of safety, and the expressivity of its under-
lying implementation model. Existing subtyping relations adopt a notion of safety that
is agnostic to a global specification. For example, [2, 3] define safety as the successful
completion of a single role in binary sessions, [36] defines safety as eventual reception
and progress of all roles in multiparty sessions, and [26] defines safety as the termi-
nation of all roles in multiparty sessions. As a result, these subtyping relations eagerly
reject subtypes that are viable for the specific global type at hand. In addition, existing
implementation models are restricted to local types with directed choice for branching,
or equivalent representations thereof [9], which prohibit a role from sending messages
to or receiving messages from different participants in a choice. This restrictiveness
undermines the flexibility that subtyping is fundamentally designed to provide.

We present a subtyping relation that extends prior work along both dimensions. We
define a stronger notion of safety with respect to a given global type: a substitution is
safe if in all well-behaved contexts, the resulting implementation satisfies both deadlock
freedom and subprotocol fidelity. We assume an implementation model of unrestricted
communicating state machines (CSMs) [4] communicating via FIFO channels, which
subsumes implementation models in prior work [20, 26, 36]. We demonstrate that this
generalization renders existing subtyping relations which are precise for a restrictive
implementation model incomplete. As a result of both extensions, our subtyping rela-
tion requires reasoning about available messages [40] for completeness, a novel feature
that is absent from existing subtyping relations.

Our result applies to global types with sender-driven choice, which generalize global
types from their original formulation with directed choice [31], and borrows insights
from recent work on a sound and complete projection operator for this class of global
types [38].
Contributions. In this paper, we present the first precise subtyping relation that guar-
antees deadlock freedom and subprotocol fidelity with respect to a global type, and that
assumes an unrestricted, asynchronous CSM implementation model. We solve the Pro-
tocol Verification problem and the Protocol Refinement problem with respect to global
type G and a set of roles P:

1. Protocol Verification: Given a CSM A, does A implement G?
2. Protocol Refinement: Let p be a role and let B be a safe implementation for p in any

well-behaved context for G. Given A, can A safely replace B in any well-behaved
context for G?

Deciding Subtyping for Asynchronous Multiparty Sessions 3

We exploit the connection between MST subtyping and CSM refinement to formulate
concise conditions that are directly checkable on candidate state machines. Using this
characterization, we show that both problems are decidable in polynomial time.

2 Motivation

We first showcase that sound and complete projection operators can yield local imple-
mentations that are exponential in the size of its global type, but can be reduced to
constant size by subtyping. We then demonstrate the restrictiveness of existing subtyp-
ing relations both in terms of their notion of safety and their implementation model.
Subset projection with exponentially many states. We first construct a family of im-
plementable global types Gn for n ∈ N such that Gn has size linear in n and the
deterministic finite state machine for q that recognizes the projection of the global lan-
guage onto q’s alphabet Σq, denoted L(Gn)⇓Σq

, has size exponential in n.
The construction of the Gn’s builds on the regular expression (a∗(ab∗)na)∗, which

can only be recognized by a deterministic finite state machine that grows exponentially
with n [23, Thm. 11].

First, we construct the part for (ab∗)ia recursively. In global types, p→q :m de-
notes role p sending a message m to role q, + denotes choice, µt binds a recursion
variable t that can be used in the continuation, and 0 denotes termination.

Gi := p→q :a. µt3,i.+

{
p→r :m3. p→q :b. t3,i

p→r :n3. Gi−1

for i > 0 and G0 := p→q :a. t1

Here, each Gi for i > 0 generates (ab∗) and G0 adds the last a. Role p’s choice to
send either m3 or n3 to r respectively encodes the choice to continue iterating b’s or
to stop in b∗; q however, is not involved in this exchange and thus q’s local language is
isomorphic to (ab∗)ia.

Next, we define some scaffolding G(-) for the outermost Kleene Star and the first a∗:

G(G′) := µt1. +

p→r :m1. µt2.+

{
p→r :m2. p→q :a. t2

p→r :n2. G
′

p→r :n1. 0

.

We combine both to obtain the family Gn := G(Gn).
As Gn is implementable, the subset projection [38] for each role is defined. One

feature of the implementations computed by this projection operator is local language
preservation, meaning that the language recognized by the local implementation is pre-
cisely the projection of the global language onto its alphabet, e.g. L(Gn)⇓Σq

for role q
with alphabet Σq. In this case, because L(Gn)⇓Σq

can only be recognized by a deter-
ministic finite state machine with size exponential in n, the corresponding local lan-
guage preserving implementation also has size exponential in n.

However, not all implementations need to satisfy local language preservation. Con-
sider the type µt.(p→q :o. t+p→q :b. 0). The projection of the global language onto q
limits q to only receiving a sequence of o messages terminated by a b message. How-
ever, an implementation for q can rely on p to send correct sequences of messages, and

4 E. Li, F. Stutz, and T. Wies

p◁q?m p◁r?m

p◁r?m

(a) A

p◁q?m p◁r?m

(b) B

Fig. 1: Two state machines for role q

instead accept any message that it receives. A similar pattern arises in the family Gn,
where the exponentially-sized implementation for role q can simply be substituted with
an automaton that allows to receive any message from p.

The restrictiveness of existing MST subtyping relations. Consider the two imple-
mentations for role p, represented as finite state machines A and B in Figs. 1a and 1b.
State machine A embodies the idea of input covariance [25] by adding receive actions,
namely p◁q?m , which denotes role p receiving a message m from role q. But is it
the case that A is a subtype of B? A preliminary answer based on prior work [26, 34]
is no, for the reason that A falls outside of the implementation models considered in
these works: the initial state in A contains outgoing receive transitions from two dis-
tinct senders, q and r, and one of the final states contains an outgoing transition. Thus,
there exists no local type representation of A.

As a first step, let us generalize the implementation model to machines with ar-
bitrary finite state control, and revisit the question. It turns out that the answer now
depends on what protocol role p, alongside the other roles in the context, is following.
Consider the two global types

G1 := q→p :m. r→p :m. 0 and G2 := q→p :m. 0 .

We observe that A is a subtype of B under the context of G2, but not under the context
of G1. Suppose that roles q and r are both following G1, and thus both roles send a
message m to p. Under asynchrony, the two messages can arrive in p’s channel in any
order; this holds even in a synchronous setting. Therefore, there exists an execution
trace in which p takes the transition labeled p◁r?m in A and first receives from r.
Role p then finds itself in a final state with a pending message from q that it is unable to
receive, thus causing a deadlock in the CSM. On the other hand, if q were following G2,
the addition of the receive transition p◁r?m is safe because it is never enabled, and
thus A can safely compose with any context following G2 without violating protocol
fidelity and deadlock freedom.

3 Preliminaries

We restate relevant definitions from [38].

Words. Let Σ be a finite alphabet. Σ∗ denotes the set of finite words over Σ, Σω the
set of infinite words, and Σ∞ their union Σ∗ ∪Σω . A word u ∈ Σ∗ is a prefix of word
v ∈ Σ∞, denoted u ≤ v, if there exists w ∈ Σ∞ with u · w = v.

Deciding Subtyping for Asynchronous Multiparty Sessions 5

Message Alphabet. Let P be a set of roles and V be a set of messages. We define the
set of synchronous events Σsync := {p→q :m | p, q ∈ P and m ∈ V} where p→q :m
denotes that message m is sent by p to q atomically. This is split for asynchronous
events. For a role p ∈ P , we define the alphabet Σp,! = {p▷q!m | q ∈ P, m ∈ V}
of send events and the alphabet Σp,? = {p◁q?m | q ∈ P, m ∈ V} of receive events.
The event p▷q!m denotes role p sending a message m to q, and p◁q?m denotes role p
receiving a message m from q. We write Σp = Σp,! ∪ Σp,?, Σ! =

⋃
p∈P Σp,!, and

Σ? =
⋃

p∈P Σp,?. Finally, Σasync = Σ! ∪ Σ?. We say that p is active in x ∈ Σasync

if x ∈ Σp. For each role p ∈ P , we define a homomorphism ⇓Σp
, where x⇓Σp

= x if
x ∈ Σp and ε otherwise. We fix P and V in the rest of the paper.

Global Types – Syntax. Global types for MSTs [40] are defined by the grammar:

G ::= 0 |
∑
i∈I

p→qi :mi.Gi | µt. G | t

where p, qi range over P , mi over V , and t over a set of recursion variables.
We require each branch of a choice to be distinct: ∀i, j ∈ I. i ̸= j ⇒ (qi,mi) ̸=

(qj ,mj), the sender and receiver of an event to be distinct: p ̸= qi for each i ∈ I , and
recursion to be guarded: in µt.G, there is at least one message between µt and each t
in G. We omit

∑
for singleton choices. When working with a protocol described by a

global type, we use G to refer to the top-level type, and G to refer to its subterms.
We use the extended definition of global types from [40] featuring sender-driven

choice. This definition subsumes classical MSTs that only allow directed choice [31].
We focus on communication primitives and omit features like delegation or parametriza-
tion, and refer the reader to §7 for a discussion of different MST frameworks.

Global Types – Semantics. As a basis for the semantics of a global type G, we construct
a finite state machine GAut(G) = (QG, Σsync , δG, q0,G, FG) where

– QG is the set of all syntactic subterms in G together with the term 0,
– δG consists of the transitions (

∑
i∈I p→qi :mi.Gi, p→qi :mi, Gi) for each i ∈ I ,

as well as (µt.G′, ε,G′) and (t, ε, µt.G′) for each subterm µt.G′,
– q0,G = G and FG = {0}.

We define a homomorphism split onto the asynchronous alphabet:

split(p→q :m) := p▷q!m. q◁p?m .

The semantics L(G) of a global type G is given by C∼(split(L(GAut(G)))) where
C∼ is the closure under the indistinguishability relation ∼ [40]. Two events are inde-
pendent if they are not related by the happened-before relation [33]. For instance, any
two send events from distinct senders are independent. Two words are indistinguishable
if one can be reordered into the other by repeatedly swapping consecutive independent
events. The full definition can be found in the extended version [37].

We call a state qG ∈ QG a send-originating state, denoted qG ∈ QG,! for role p if
there exists a transition qG

p→ q :m−−−−−→ qG′ ∈ δG, and a receive-originating state, denoted
qG ∈ QG,? for p if there exists a transition qG

q→ p :m−−−−−→ qG′ ∈ δG. We omit mention of
role p when clear from context.

6 E. Li, F. Stutz, and T. Wies

Communicating State Machine [4]. A = {{Ap}}p∈P is a CSM over P and V if Ap =
(Qp, Σp, δp, q0,p, Fp) is a deterministic finite state machine over Σp for every p ∈ P .
Let

∏
p∈P Qp denote the set of global states and Chan = {(p, q) | p, q ∈ P, p ̸= q}

denote the set of channels. A configuration of A is a pair (s⃗, ξ), where s⃗ is a global
state and ξ : Chan → V∗ is a mapping from each channel to a sequence of messages.
We use s⃗p to denote the state of p in s⃗. The CSM transition relation, denoted →, is
defined as follows.

– (s⃗, ξ)
p ▷q !m−−−−→ (s⃗ ′, ξ′) if (s⃗p, p▷q!m, s⃗ ′

p) ∈ δp, s⃗r = s⃗ ′
r for every role r ̸= p,

ξ′(p, q) = ξ(p, q) ·m and ξ′(c) = ξ(c) for every other channel c ∈ Chan.

– (s⃗, ξ)
q◁ p?m−−−−−→ (s⃗ ′, ξ′) if (s⃗q, q◁p?m, s⃗ ′

q) ∈ δq, s⃗r = s⃗ ′
r for every role r ̸= q,

ξ(p, q) = m · ξ′(p, q) and ξ′(c) = ξ(c) for every other channel c ∈ Chan.

In the initial configuration (s⃗0, ξ0), each role’s state in s⃗0 is the initial state q0,p of Ap,
and ξ0 maps each channel to ε. A configuration (s⃗, ξ) is said to be final iff s⃗p is final
for every p and ξ maps each channel to ε. Runs and traces are defined in the expected
way. A run is maximal if either it is finite and ends in a final configuration, or it is
infinite. The language L(A) of the CSM A is defined as the set of maximal traces.
A configuration (s⃗, ξ) is a deadlock if it is not final and has no outgoing transitions.
A CSM is deadlock-free if no reachable configuration is a deadlock.

Definition 3.1 (Implementability). We say that a CSM {{Ap}}p∈P implements a global
type G if the following two properties hold: (i) protocol fidelity: L({{Ap}}p∈P) =
L(G), and (ii) deadlock freedom: {{Ap}}p∈P is deadlock-free. A global type G is im-
plementable if there exists a CSM that implements it.

One candidate implementation for global types can be computed directly from
GAut(G), by removing actions unrelated to each role and determinizing the result.
The following two definitions define this candidate implementation in two steps.

Definition 3.2 (Projection by Erasure [38]). Let G be some global type with its state
machine GAut(G) = (QG, Σsync , δG, q0,G, FG). For each role p ∈ P , we define the

state machine GAut(G)↓p= (QG, Σp⊎{ε}, δ↓, q0,G, FG) where δ↓ := {q
split(a)⇓Σp−−−−−−−−→

q′ | q a−→ q′ ∈ δG}. By definition of split(-), it holds that split(a)⇓Σp
∈ Σp ⊎ {ε}.

We determinize GAut(G)↓p via a standard subset construction [46] to obtain a de-
terministic local state machine for p. Note that the construction ensures that Qp only
contains subsets of QG whose states are reachable via the same traces.

Definition 3.3 (Subset Construction [38]). Let G be a global type and p be a role.
Then, the subset construction for p is defined as

C (G, p) =
(
Qp, Σp, δp, s0,p, Fp

)
where

– δ(s, a) := {q′ ∈ QG | ∃q ∈ s, q
a−→ ε−→∗ q′ ∈ δ↓}, for every s ⊆ QG and a ∈ Σp,

– s0,p := {q ∈ QG | q0,G
ε−→∗ q ∈ δ↓},

– Qp := lfp⊆{s0,p}λQ.Q ∪ {δ(s, a) | s ∈ Q ∧ a ∈ Σp} \ {∅},

Deciding Subtyping for Asynchronous Multiparty Sessions 7

– δp := δ|Qp×Σp
, and

– Fp := {s ∈ Qp | s ∩ FG ̸= ∅}.

Li et al. [38] showed that if G is implementable, then {{C (G, p)}}p∈P implements G
and satisfies the following property:

Definition 3.4. Let G be a global type. We call an implementation {{Ap}}p∈P local
language preserving with respect to G if L(Ap) = L(G)⇓Σp

for all p ∈ P .

For the remainder of the paper, we fix a global type G that we assume is imple-
mentable.

4 Deciding Protocol Verification

Protocol Verification asks: Given a CSM A, does A implement G? For two CSMs A
and B, we say that A refines B if and only if every trace in A is a trace in B, and a
trace in A terminates maximally in A if and only if it terminates maximally in B. If
A and B refine each other, we say that they are equivalent. Further, in the case that B
is deadlock-free, one can simplify the condition to the following: every trace in A is a
trace in B, and if a trace terminates in A, then it terminates in B and is maximal in A.

We can recast Protocol Verification in terms of CSM refinement using the fact that
{{C (G, p)}}p∈P is an implementation for G. Therefore, the question amounts to asking
whether A and {{C (G, p)}}p∈P are equivalent.

Our goal is then to present a characterization C1 that satisfies the following:

Theorem 4.1. Let G be an implementable global type and A be a CSM. Then, the
subset construction {{C (G, p)}}p∈P and A are equivalent if and only if C1 is satisfied.

We motivate our characterization for Protocol Verification using a series of exam-
ples. Consider the following simple global type G1:

G1 := +

{
p→q :b. q→p :b. 0

p→q :m. q→p :m. 0

This global type is trivially implementable; the subset construction for role q obtained
by the projection operator in [38] is depicted in Fig. 2a. Clearly, in any CSM imple-
menting G1, the subset construction can be replaced with the more compact state ma-
chine A1, shown in Fig. 2b.

For a local state machine in a CSM, control flow is determined by both the local
transition relation and the global channel state. However, in some cases, the local in-
formation is redundant: the role’s channel contents alone are enough to enforce that it
produces the correct behaviors. In the example above, after p chooses to send q either
m or b, q will guarantee that the correct message, i.e. the same one, is sent back to p.
Role p’s state machine can rely on its channel contents to follow the protocol – it does
not need separate control states for each message. In fact, we can further replace p’s
control states after sending with an accepting universal receive state, as shown in A2 in
Fig. 2c. Finally, we can add send transitions from unreachable states, as shown in A3 in
Fig. 2d.

8 E. Li, F. Stutz, and T. Wies

p▷q!m

p▷q
!b

p◁q?m

p◁q?b

(a) C (G1, p)

p▷q!m

p▷q!b

p◁q?m

p◁q?b

(b) A1

p▷q!m

p▷q!b
p◁_?_

(c) A2

p▷q!b

p▷q!m

p◁
q?
o

p▷q!o

p◁_?_

(d) A3

Fig. 2: Subset construction of G1 onto p and three alternative implementations

p▷q!m

p▷q
!b

p▷q!o

p▷q!o

p◁q?m

p◁q?b

(a) C (G2, p)

p▷q!m

p▷q
!b

p▷q
!o

p▷q!o

p◁_?_

(b) A4

p▷q!m

p▷q!b p▷q!o
p◁_?_

(c) A5

Fig. 3: Subset construction of G2 onto p and two alternative implementations

Similar patterns arise for send actions. Consider the following variation of the first
global type, G2:

G2 := +

{
p→q :b. p→r :o. q→p :b. 0

p→q :m. p→r :o. q→p :m. 0

The subset construction from [38] yields the state machine for p shown in Fig. 3a.
Our reasoning above shows that A4, depicted in Fig. 3b, is a correct alternative

implementation for p. Now observe that the pre-states of the two p▷q!o transitions
can be collapsed because their continuations are identical. This yields another correct
alternative implementation A5, shown in Fig. 3c.

Informally, the subset construction takes a “maximalist” approach, creating as many
distinct states as possible from the global type, and checking whether they are enough
to guarantee that the role behaves correctly. However, sometimes this maximalism cre-
ates redundancy: just because two states are distinct according to the global type does
not mean they need to be. In these cases, an implementation has the flexibility to merge
certain distinct states together, or add transitions to a state. We wish to precisely char-
acterize when such modifications to local state machines preserve protocol fidelity and
deadlock freedom.

Our conditions for C1 are inspired by the Send and Receive Validity conditions that
precisely characterize implementability for global types, given in [38]. We restate the
conditions, in addition to relevant definitions, for clarity.

Definition 4.2 (Available messages [40]). The set of available messages is recursively
defined on the structure of the global type. For completeness, we need to unfold the dis-
tinct recursion variables once. For this, we define a map getµ from variable to subterms
and write getµG for getµ(G):

getµ(0) := [] getµ(t) := [] getµ(µt.G) := [t 7→ G] ∪ getµ(G)

getµ(
∑

i∈I p→qi :mi.Gi) :=
⋃

i∈I getµ(Gi)

The function MB,T
(-...) keeps a set of unfolded variables T , which is empty initially.

Deciding Subtyping for Asynchronous Multiparty Sessions 9

MB,T
(0...)

:= ∅ MB,T
(µt.G...)

:= M
B,T∪{t}
(G...) MB,T

(t...)
:=

{
∅ if t ∈ T

M
B,T∪{t}
(getµG(t)...) if t ̸∈ T

MB,T
(
∑

i∈I p→ qi :mi.Gi...)
:=

{⋃
i∈I,m∈V(M

B,T
(Gi...)

\ {p▷qi !m}) ∪ {p▷qi !mi} if p ̸∈ B⋃
i∈I M

B∪{qi},T
(Gi...)

if p ∈ B

We write MB
(G...) for MB,∅

(G...). If B is a singleton set, we omit set notation and write

Mp

(G...) for M{p}
(G...).

Intuitively, the available messages definition captures all of the messages that can
be at the head of their respective channels when a particular role is blocked from taking
further transitions.

For notational convenience, we define the origin and destination of a transition fol-
lowing [38], but generalized from the subset construction automaton.

Definition 4.3 (Transition Origin and Destination). Let G be a global type and let
δ↓ be the transition relation of GAut(G)↓p. For x ∈ Σp and s, s′ ⊆ QG, we define the
set of transition origins tr-orig(s

x−→ s′) and transition destinations tr-dest(s
x−→ s′)

as follows:

tr-orig(s
x−→ s′) := {G ∈ s | ∃G′ ∈ s′. G

x−→∗ G′ ∈ δ↓} and

tr-dest(s
x−→ s′) := {G′ ∈ s′ | ∃G ∈ s.G

x−→∗ G′ ∈ δ↓} .

Li et al. [38] showed that G is implementable if and only if the subset construction
CSM {{C (G, p)}}p∈P satisfies Send and Receive Validity for each C (G, p).

Definition 4.4 (Send Validity). C (G, p) satisfies Send Validity iff every send transi-
tion s

x−→ s′ ∈ δp is enabled in all states contained in s:

∀s x−→ s′ ∈ δp. x ∈ Σp,! =⇒ tr-orig(s
x−→ s′) = s .

Definition 4.5 (Receive Validity). C (G, p) satisfies Receive Validity iff no receive
transition is enabled in an alternative continuation that originates from the same source
state:

∀s p◁ q1 ?m1−−−−−−→ s1, s
p◁ q2 ?m2−−−−−−→ s2 ∈ δp.

q1 ̸= q2 =⇒ ∀ G2 ∈ tr-dest(s
p◁ q2 ?m2−−−−−−→ s2). q1 ▷p!m1 /∈ Mp

(G2...)
.

We wish to adapt these conditions to define C1. However, unlike Send and Receive
Validity, which are defined on special state machines, namely the subset construction
for each role, the Protocol Verification problem asks whether arbitrary state machines
implement the given G.

We first present a state decoration function which maps local states in an arbitrary
deterministic finite state machine to sets of global states in G. Intuitively, state decora-
tion captures all global states that can be reached in the projection by erasure automaton
GAut(G)↓q on the same prefixes that reach the present state in the local state machine.

10 E. Li, F. Stutz, and T. Wies

Definition 4.6 (State decoration with respect to G). Let p ∈ P be a role and let
A = (Q,Σp, s0, δ, F) be a deterministic finite state machine for p. Let GAut(G)↓p
= (QG, Σp ⊎ {ε}, δ↓, q0,G, FG) be p’s projection by erasure state machine for G. We
define a total function dG,A : Q → 2QG that maps each state in A to a subset of states
in GAut(G)↓p such that:

dG,A,p(s) = {q ∈ QG | ∃u ∈ Σ∗
p . s0

u−→∗ s ∈ δ ∧ q0,G
u−→∗ q ∈ δ↓} .

We refer to dG,A,p(s) as the decoration set of s, and omit the subscripts G, A, p when
clear from context.

Remark 4.7. Note that the subset construction can be viewed as a special state machine
for which the state decoration function is the identity function. In other words, for all
s ∈ Qp where Qp is the set of states of C (G, p), d(s) = s.

We are now equipped to present C1.

Definition 4.8 (C1). Let G be a global type and A be a CSM. C1 is satisfied when for
all p ∈ P , with Ap = (Qp, Σp, δp, s0,p, Fp) denoting the state machine for p in A, the
following conditions hold:

– Send Decoration Validity: every send transition s
x−→ s′ ∈ δp is enabled in all states

decorating s:

∀s p ▷q !m−−−−→ s′ ∈ δp. tr-orig(d(s)
p ▷q !m−−−−→ d(s′)) = d(s).

– Receive Decoration Validity: no receive transition is enabled in an alternative con-
tinuation originating from the same state:

∀s p◁ q1 ?m1−−−−−−→ s1, s
x−→ s2 ∈ δp. x ̸= p◁q1?_ =⇒

∀G′ ∈ tr-dest(d(s)
x−→ d(s2)). q1 ▷p!m1 /∈ Mp

(G′...).

– Transition Exhaustivity: every transition that is enabled in some global state deco-
rating s must be an outgoing transition from s:
∀s ∈ Q. ∀G x−→∗ G′ ∈ δ↓. G ∈ d(s) =⇒ ∃s′ ∈ Q. s

x−→ s′ ∈ δp.

– Final State Validity: a reachable state with a non-empty decorating set is final if its
decorating set contains a final global state:
∀s ∈ Q. d(s) ̸= ∅ =⇒ (d(s) ∩ FG ̸= ∅ =⇒ s ∈ Fp).

We want to show the following equivalence to prove Theorem 4.1:

C1 ⇔ A refines {{C (G, p)}}p∈P and {{C (G, p)}}p∈P refines A.

We address soundness (the forward direction) and completeness (the backward di-
rection) in turn. Soundness states that C1 is sufficient to show that A preserves all
behaviors of the subset construction, and does not introduce new behaviors.

We say that a state machine A for role p satisfies Local Language Inclusion if it
satisfies L(G)⇓Σp

⊆ L(A). The following lemma, proven in the extended version [37],
establishes that Local Language Inclusion follows from Transition Exhaustivity and
Final State Validity.

Deciding Subtyping for Asynchronous Multiparty Sessions 11

Lemma 4.9. Let Ap = (Qp, Σp, δp, s0,p, Fp) denote the state machine for p in A. Then,
Transition Exhaustivity and Final State Validity imply L(G)⇓Σp

⊆ L(Ap).

The fact that A preserves behaviors follows immediately from Local Language In-
clusion. The fact that A does not introduce new behaviors, on the other hand, is enforced
by Send Decoration Validity and Receive Decoration Validity.

In the soundness proof for each of our conditions, we prove refinement via structural
induction on traces. We show refinement in two steps, first showing that any trace in one
CSM is a trace in the other, and then showing that any terminated trace in one CSM is
terminated in the other and maximal.

We recall two definitions from [38] used in the soundness proof.

Definition 4.10 (Intersection sets). Let G be a global type and GAut(G) be the cor-
responding state machine. Let p be a role and w ∈ Σ∗

async be a word. We define the set
of possible runs RG

p (w) as all maximal runs of GAut(G) that are consistent with p’s
local view of w:

RG
p (w) := {ρ is a maximal run of GAut(G) | w⇓Σp

≤ split(trace(ρ))⇓Σp
} .

We denote the intersection of the possible run sets for all roles as

I(w) :=
⋂
p∈P

RG
p (w) .

Definition 4.11 (Unique splitting of a possible run). Let G be a global type, p a role,
and w ∈ Σ∗

async a word. Let ρ be a possible run in RG
p (w). We define the longest prefix

of ρ matching w:

α′ := max{ρ′ | ρ′ ≤ ρ ∧ split(trace(ρ′))⇓Σp
≤ w⇓Σp

} .

If α′ ̸= ρ, we can split ρ into ρ = α ·G l−→ G′ ·β where α′ = α ·G, G′ denotes the state
following G, and β denotes the suffix of ρ following α ·G ·G′. We call α ·G l−→ G′ ·β the
unique splitting of ρ for p matching w. We omit the role p when obvious from context.
This splitting is always unique because the maximal prefix of any ρ ∈ RG

p (w) matching
w is unique.

Lemma 4.12 (Soundness of C1). C1 implies that A and {{C (G, p)}}p∈P are equiva-
lent.

Proof. The proof that C1 implies {{C (G, p)}}p∈P refines A depends only on Local
Language Inclusion and can be straightforwardly adapted from [38, Lemma 4.4]. We
instead focus on showing that C1 implies A refines {{C (G, p)}}p∈P , which depends
on the other two conditions in C1. First, we prove that any trace in A is a trace in
{{C (G, p)}}p∈P :
Claim 1: ∀ w ∈ Σ∞

async . w is a trace in A implies w is a trace in {{C (G, p)}}p∈P .
We prove the claim by induction for all finite w. The infinite case follows from the

finite case because {{C (G, p)}}p∈P is deterministic and all prefixes of w are traces of A
and, hence, of {{C (G, p)}}p∈P . The base cases, where w = ε, is trivially discharged by

12 E. Li, F. Stutz, and T. Wies

the fact that ε is a trace of all CSMs. In the inductive step, assume that w is a trace of A.
Let x ∈ Σasync such that wx is a trace of A. We want to show that wx is also a trace of
{{C (G, p)}}p∈P .

From the induction hypothesis, we know that w is a trace of {{C (G, p)}}p∈P . Let ξ
be the channel configuration uniquely determined by w. Let (s⃗, ξ) be the A configura-
tion reached on w, and let (⃗t, ξ) be the {{C (G, p)}}p∈P configuration reached on w.

Let q be the role such that x ∈ Σq, and let s, t denote s⃗q, t⃗q from the respective
CSM configurations reached on w for A and {{C (G, p)}}p∈P .

To show that wx is a trace of {{C (G, p)}}p∈P , it thus suffices to show that there
exists a state t′ and a transition t

x−→ t′ in C (G, q).
Since {{C (G, p)}}p∈P implements G, all finite traces of {{C (G, p)}}p∈P are pre-

fixes of L(G). In other words, w ∈ pref(L(G)). Let ρ be a run such that ρ ∈ I(w);
such a run must exist from [38, Lemma 6.3]. Let α ·G l−→ G′ · β be the unique splitting
of ρ for q matching w. From the definition of state decoration, it holds that G ∈ d(s).
From the definition of the subset construction, it holds that G ∈ t.

We proceed by case analysis on whether x is a send or receive event.

– Case x ∈ Σq,!. Let x = q▷r!m. By assumption, there exists s
q ▷r !m−−−−→ s′ in Aq. We

instantiate Send Decoration Validity from C1 with q and this transition to obtain:

tr-orig(d(s)
q ▷r !m−−−−→ d(s′)) = d(s) .

From G ∈ d(s), it follows that there exists G′ ∈ QG such that G x−→∗ G′ ∈ δ↓.

Because G ∈ t, the existence of t′ such that t
q ▷r !m−−−−→ t′ is a transition in C (G, p)

follows immediately from the definition of C (G, q)’s transition relation.
– Case x ∈ Σq,?. Let x = q◁r?m.

From the fact that ρ is a maximal run in G with unique splitting α ·G l−→ G′ · β for
q matching w, it holds that w⇓Σq

· split(l)⇓Σq
∈ pref(L(G))⇓Σq

. From [38,
Lemma 4.3], L(G)⇓Σq

= L(C (G, q)). Therefore, there exists a t′′ such that

t
split(l)⇓Σq−−−−−−−→ t′′ is a transition in C (G, q). From Transition Exhaustivity, there

likewise exists an s′′ such that s
split(l)⇓Σq−−−−−−−→ s′′ is a transition in Aq.

We now proceed by showing that it must be the case that split(l)⇓Σq
= x. The

reasoning closely follows that in [38, Lemma 6.4], which showed that if Receive
Validity holds for the subset construction, and some role’s subset construction au-
tomaton can perform a receive action, then the trace extended with the receive
action remains consistent with any global run it was consistent with before. We
generalize this property in terms of available message sets in the following lemma,
whose proof can be found in the extended version [37].

Lemma 4.13. Let A be a CSM, q be a role, and w, wx be traces of A such that
x = q◁r?m. Let s be the state of q’s state machine in the A configuration reached
on w. Let ρ be a run that is consistent with w, i.e. for all p ∈ P. w⇓Σp

≤

split(trace(ρ))⇓Σp
. Let α ·G l−→ G′ · β be the unique splitting of ρ for q match-

ing w. If r▷q!m /∈ M
q

(G′...), then x = split(l)⇓Σq
.

Deciding Subtyping for Asynchronous Multiparty Sessions 13

We wish to apply Lemma 4.13 with ρ to conclude that split(l)⇓Σq
= x. We

satisfy the assumption that r▷q!m /∈ Mq

(G′...) by instantiating Receive Decora-

tion Validity with s
q◁ r?m−−−−−→ s′, s

split(l)⇓Σq−−−−−−−→ s′′ and G′. The fact that G′ ∈

tr-dest(d(s)
split(l)⇓Σq−−−−−−−→ d(s′′)) follows from the fact that α · G l−→ G′ · β is a

run in G and the definition of state decoration (Definition 4.6). Thus, we conclude
from split(l)⇓Σq

= x that there exists a transition t
x−→ t′′ in C (G, q).

This concludes our proof that any trace in A is also a trace of {{C (G, p)}}p∈P .
Claim 2: ∀ w ∈ Σ∗

async . w is terminated in A =⇒ w is terminated in {{C (G, p)}}p∈P
and w is maximal in A.

Let w be a terminated trace in A. By Claim 1, w is also a trace in {{C (G, p)}}p∈P .
Let ξ be the channel configuration uniquely determined by w. Let the {{C (G, p)}}p∈P
configuration reached on w be (⃗t, ξ), and let (s⃗, ξ) be the A configuration reached on w.
To see that every terminated trace in A is also terminated in {{C (G, p)}}p∈P , assume
by contradiction that w is not terminated in {{C (G, p)}}p∈P . Because {{C (G, p)}}p∈P
is deadlock-free, there must exist a role that can take a step in {{C (G, p)}}p∈P . Let q
be this role, and let x be the transition that is enabled from t⃗q. From Local Language
Inclusion and the fact that {{C (G, p)}}p∈P is deadlock-free, it holds that x is also en-
abled from s⃗q. We arrive at a contradiction. To see that every terminated trace in A in
maximal, from the above we know that w is terminated in {{C (G, p)}}p∈P . From the
fact that {{C (G, p)}}p∈P is deadlock-free, w is maximal in {{C (G, p)}}p∈P : all states
in t⃗ are final and all channels in ξ are empty. From Local Language Inclusion, it follows
that all states in s⃗ are also final, and thus w is maximal in A. ⊓⊔
Lemma 4.14 (Completeness of C1). If A and {{C (G, p)}}p∈P are equivalent, then
C1 holds.

We show completeness via modus tollens: we assume a violation in C1 and the
fact that A and {{C (G, p)}}p∈P are equivalent, and prove a contradiction. Since C1 is
a conjunction of four conditions, we derive a contradiction from the violation of each
condition in turn. In the interest of proof reuse, we specify which of the two refine-
ment conjuncts we contradict for each condition, and refer the reader to the extended
version [37] for the full proofs.

From the negation of Transition Exhaustivity and Final State Validity, we contradict
the fact that {{C (G, p)}}p∈P refines A.

Lemma 4.15. If A violates Transition Exhaustivity or Final State Validity, then it does
not hold that {{C (G, p)}}p∈P refines A.

Unlike the proofs for Transition Exhaustivity and Final State Validity, the proofs
for the remaining two conditions require both refinement conjuncts to prove a contra-
diction. Both proofs find a contradiction by obtaining a witness from the violation of
Send Decoration Validity and Receive Decoration Validity respectively, and showing
that the same witness can be used to refute Send and Receive Validity for the subset
construction.

Lemma 4.16. If A violates Send Decoration Validity or Receive Decoration Validity,
then it does not hold that A and {{C (G, p)}}p∈P are equivalent.

14 E. Li, F. Stutz, and T. Wies

p▷q!m

(a) State machine C (G, p) (b) State machine B′
q

Fig. 4: CSM violating subprotocol fidelity with respect to Gloop

5 Deciding Protocol Refinement

We now turn our attention to Protocol Refinement, which asks when an implementation
can safely substitute another in all well-behaved contexts with respect to G. Here, we
introduce a new notion of refinement with respect to a global type.

Definition 5.1 (Protocol refinement with respect to G). We say that a CSM {{Ap}}p∈P
refines a CSM {{Bp}}p∈P with respect to a global type G if the following properties
hold: (i) subprotocol fidelity: ∃S ⊆ L(GAut(G)). L({{Ap}}p∈P) = C∼(split(S)),
(ii) language inclusion: L({{Ap}}p∈P) ⊆ L({{Bp}}p∈P), and (iii) deadlock freedom:
{{Ap}}p∈P is deadlock-free.

Item i, subprotocol fidelity, sets our notion of refinement apart from standard refine-
ment. We motivate this difference briefly using an example. Consider the CSM consist-
ing of the subset construction for p and B′

q, depicted in Fig. 4. This CSM recognizes
only words of the form (p▷q!m)ω . It is nonetheless considered to refine the global type
Gloop := µt. p −→ q : m. t according to the standard notion of refinement, despite the
fact that p’s messages are never received by q. This is because L(Gloop), containing
only infinite words, is defined in terms of an asymmetric downward closure operator
⪯ω

∼, which allows receives to be infinitely postponed. We desire a notion of refinement
that allows roles to select which runs to follow in a global type, but disallows them from
selecting which words to implement among ones that follow the same run. More for-
mally, our notion of protocol refinement prohibits selectively implementing words that
are equivalent under the indistinguishability relation ∼: any CSM that refines another
with respect to a global type has a language that is closed under ∼.

In the remainder of the paper, we refer to refinement with respect to G, and omit
mention of G when clear from context. Again using the fact that {{C (G, p)}}p∈P
is an implementation for G, we say that a CSM {{Ap}}p∈P refines G if it refines
{{C (G, p)}}p∈P .

We motivate our formulation of the Protocol Refinement problem by posing the
following variation of Protocol Verification, which we call Monolithic Protocol Refine-
ment:

Given an implementable global type G and a CSM A, does A refine {{C (G, p)}}p∈P?

This variation asks for a condition, C ′
1, that satisfies the equivalence:

C ′
1 ⇔A refines {{C (G, p)}}p∈P .

Clearly, C1 is still a sound candidate as equivalence of two CSMs implies bi-
directional protocol refinement. It is instructive to analyze why the completeness ar-
guments for C1 fail. Recall that the completeness proofs for Send Decoration Validity

Deciding Subtyping for Asynchronous Multiparty Sessions 15

p▷q!m p▷r!m

(a) State machine C (G, p)

q◁p?m

q◁r?b

q◁r?b

q◁r?o

q▷r!b

(b) State machine A′
q

r▷q!o

r◁p?m

r◁q?o

r◁q?b

r◁q?o

(c) State machine A′
r

Fig. 5: Subset construction for p and two state machines for q and r for G′

and Receive Decoration Validity used the violation of each condition to obtain a local
state with a non-empty decoration set, which in turn gives rise to a prefix in L(G) that
must be a trace in the subset construction. This trace is then replayed in the arbitrary
CSM, extended in the arbitrary CSM, and then replayed again in the subset construc-
tion. This sequence of replaying arguments critically relied on both the assumption that
A refines {{C (G, p)}}p∈P , and the assumption that {{C (G, p)}}p∈P refines A.

If we cannot assume that A recognizes every behavior of {{C (G, p)}}p∈P , then the
reachable local states of A are no longer precisely characterized by having a non-empty
decoration set.

Consider the example global type G′:

G′ := p→q :m. +

r→q :b. p→r :m. +

{
q→r :b. 0

q→r :o. 0

r→q :o. p→r :m. +

{
q→r :b. 0

q→r :o. 0

Let the CSM A′ consist of the subset construction automaton for p, and the state ma-
chines A′

q and A′
r, given in Figs. 5b and 5c. The receive transitions highlighted in red

are safe despite violating Receive Decoration Validity, because q and r coordinate with
each other on which runs of G they eliminate: r chooses to never send a b to q, thus q’s
highlighted transition is safe, and conversely, q never chooses to send o to r, thus r’s
highlighted transition is safe. Consequently, A′ refines G′ despite violating C1.

This example shows that any condition C ′
1 that is compositional must sacrifice com-

pleteness. In fact, deciding whether an arbitrary CSM A refines the subset construction
{{C (G, p)}}p∈P for some global type G can be shown to be PSPACE-hard via a reduc-
tion from the deadlock-freedom problem for 1-safe Petri nets [24]. We refer the reader
to the extended version [37] for the full construction.

Lemma 5.2. The Monolithic Protocol Refinement problem is PSPACE-hard.

Fortunately, we can recover completeness and tractability by only allowing changes
to one state machine in A at a time. Next, we formalize the notions of CSM contexts
and well-behavedness with respect to G. We use A[·]p to denote a CSM context with a
hole for role p ∈ P , and A[A]p to denote the CSM obtained by instantiating the context
with state machine A for p. We define well-behaved contexts in terms of the canonical
implementation C (G, p).

16 E. Li, F. Stutz, and T. Wies

p▷q!b

q◁p?m

q◁p?b

(a) Removing sends

p▷q!m

p▷q!b q◁p?b

(b) Removing receives

Fig. 6: Two candidate implementations for p

Definition 5.3 (Well-behaved CSM contexts with respect to G). Let A[·]p be a CSM
context. We say that A[·]p is well-behaved with respect to G if A[C (G, p)]p refines G.
We omit G when clear from context.

Protocol Refinement asks to find a C2 that satisfies the following:

Theorem 5.4. Let G be an implementable global type, p be a role, and A, B be state
machines for role p such that for all well-behaved contexts A[·]p, A[B]p refines G.
Then, for all well-behaved contexts A[·]p, A[A]p refines A[B]p if and only if C2 is
satisfied.

5.1 Protocol Refinement Relative to Subset Construction

As a stepping stone, we first consider the special case of Protocol Refinement when B
is the subset construction automaton for role p. That is, we present C ′

2 that satisfies the
following equivalence:

C ′
2 ⇔ for all well-behaved contexts A[·]p, A[A]p refines A[C (G, p)]p.

The relaxation on language equality from Protocol Verification means that state ma-
chine A no longer needs to satisfy Local Language Inclusion, which grants us more
flexibility: state machines are now permitted to remove send events. Let us revisit our
example global type, G1:

G1 := +

{
p→q :b. q→p :b. 0

p→q :m. q→p :m. 0

Consider the candidate state machine for role p given in Fig. 6a. The CSM obtained
from inserting this state machine into any well-behaved context refines G, despite the
fact that p never sends m. In general, send events can safely be removed from reach-
able states in a local state machine without violating subprotocol fidelity or deadlock
freedom, as long as not all of them are removed.

The same is not true of receive events, on the other hand. The state machine in
Fig. 6b is not a safe candidate for p, because it causes a deadlock in the well-behaved
context that consists of the subset construction for every other role.

Our characterization intuitively follows the notion that input types (receive events)
are covariant, and output types (send events) are contravariant. However, note that the
state machine above cannot be represented in existing works [8, 20, 26]: their local
types support neither states with both outgoing send and receive events, nor states with
outgoing send or receive events to/from different roles.

Deciding Subtyping for Asynchronous Multiparty Sessions 17

Our characterization C ′
2 reuses Send Decoration Validity, Receive Decoration Va-

lidity and Final State Validity from C1, but splits Transition Exhaustivity into a sep-
arate condition for send and receive events, to reflect the aforementioned asymmetry
between them.

Definition 5.5 (C ′
2). Let p ∈ P be a role and let A = (Q,Σp, s0, δ, F) be a state

machine for p. C ′
2 is satisfied when the following conditions hold in addition to Send

Decoration Validity, Receive Decoration Validity and Final State Validity:

– Send Preservation: every state containing a send-originating global state must have
at least one outgoing send transition:
∀s ∈ Q. ∃G ∈ QG,!. G ∈ d(t) =⇒ ∃x ∈ Σp,!, s

′ ∈ Q. s
x−→ s′ ∈ δ.

– Receive Exhaustivity: every receive transition that is enabled in some global state
decorating s must be an outgoing transition from s:
∀s ∈ Q. ∀G x−→∗ G′ ∈ δ↓. G ∈ d(s) ∧ x ∈ Σp,? =⇒ ∃s′ ∈ Q. s

x−→ s′ ∈ δ.

We want to show the following equivalence:

C ′
2 ⇔ for all well-behaved contexts A[·]p, A[A]p refines A[C (G, p)]p.

We first prove the soundness of C ′
2.

Lemma 5.6 (Soundness of C ′
2). If C ′

2 holds, then for all well-behaved contexts A[·]p,
A[A]p refines A[C (G, p)]p.

Proof. Let A[·]p be a well-behaved context with respect to G. Like before, we first
prove that any trace in A[A]p is a trace in A[C (G, p)]p.
Claim 1: ∀ w ∈ Σ∞

async . w is a trace in A[A]p =⇒ w is a trace in A[C (G, p)]p.
The proof of Claim 1 for C ′

2 differs from that for C1 in only two ways. We discuss
the differences in detail below, and avoid repeating the rest of the proof.

1. C1 grants that every role’s state machine satisfies Send Decoration Validity and Re-
ceive Decoration Validity, whereas C2 only guarantees the conditions for role p.
Correspondingly, A[A]p only differs from A[C (G, p)]p in p’s state machine; all
other roles’ state machines are identical between the two CSMs. Therefore, the in-
duction step requires a case analysis on the role whose alphabet the event x belongs
to. In the case that x ∈ Σq where q ̸= p, the induction hypothesis is trivially re-
established by the fact that q’s state machine is identical in both CSMs. In the case
that x ∈ Σp, we proceed to reason that x can also be performed by C (G, p) in the
same well-behaved context.

2. C1 includes Transition Exhaustivity, which allows us to conclude that given a run
with unique splitting α · G l−→ G′ · β for p matching w and the fact that G ∈ s,

there must exist a transition s
split(l)⇓Σp−−−−−−−→ s′′ in p’s state machine. Lemma 4.13

can then be instantiated directly with α ·G l−→ G′ · β to complete the proof. C2, on
the other hand, splits Transition Exhaustivity into Send Preservation and Receive
Exhaustivity, and we can only establish that such a transition exists and reuse the
proof in the case that split(l)⇓Σp

∈ Σp,?. Since A is permitted to remove send

18 E. Li, F. Stutz, and T. Wies

events, if split(l)⇓Σp
∈ Σp,!, the transition s

split(l)⇓Σp−−−−−−−→ s′′ may not exist at all

in A. However, the existence of a run α ·G l−→ G′ · β where l is a send event for p
makes G a send-originating global state in p’s projection by erasure automaton.

Send Preservation thus guarantees that there exists a transition s
x′

−→ s′′′ in A such
that x′ ∈ Σp,!. By Send Decoration Validity, x′ originates from G in the projec-

tion by erasure, and we can find another run ρ′ such that α′ · G l′−→ G′′ · β′ is the
unique splitting for p matching w and split(l′)⇓Σp

= x′. We satisfy the assump-
tion that r▷p!m /∈ Mp

(G′′...) by instantiating Receive Decoration Validity with p,

s
x−→ s′, s

split(l′)⇓Σp−−−−−−−−→ s′′ and G′′. The fact that G′′ ∈ tr-dest(dG(s)
split(l′)⇓Σp−−−−−−−−→

dG(s′′)) follows from the fact that α ·G l′−→ G′′ ·β′ is a run in G and Definition 4.6.
Instantiating Lemma 4.13 with ρ′, we obtain split(l′)⇓Σp

= x, which is a contra-
diction: x is a receive event and split(l′)⇓Σp

is a send event. Thus, it cannot be
the case that split(l′)⇓Σp

∈ Σp,!.

This concludes our proof that any trace in A[A]p is also a trace in A[C (G, p)]p.
The following claim completes our soundness proof:

Claim 2: ∀w ∈ Σ∗
async . w is terminated in A[A]p =⇒ w is terminated in A[C (G, p)]p

and w is maximal in A[A]p.
The proof of Claim 2 for C1 again relies on Local Language Inclusion, which is

unavailable to C ′
2. Instead, we turn to Send Preservation, Receive Exhaustivity and Fi-

nal State Validity to establish this claim. Let w be a terminated trace in A[A]p. By
Claim 1, it holds that w is a trace in A[C (G, p)]p. Let ξ be the channel configuration
uniquely determined by w. Let (s⃗, ξ) be the A[C (G, p)]p configuration reached on w,
and let (⃗t, ξ) be the A[A]p configuration reached on w. To see that w is terminated
in A[C (G, p)]p, suppose by contradiction that w is not terminated in A[C (G, p)]p.
Because A[C (G, p)]p is deadlock-free, and because the state machines for all non-p
roles are identical between the two CSMs, it must be the case that p witnesses the
non-termination of w, in other words, C (G, p) can take a transition that A cannot.
Let s⃗p

x−→ s′ be the transition that p can take from s⃗p. Let G be a state in s⃗p; such a
state is guaranteed to exist by the fact that no reachable states in the subset construc-
tion are empty. Then, in the projection by erasure automaton, the initial state reaches G
on w⇓Σp

. By the fact that w is a trace of A[A]p, it holds that s0 reaches s⃗p on w⇓Σp

in A. By the definition of state decoration, G ∈ d(⃗tp).

– If x ∈ Σ!, it follows that G is a send-originating global state. By Send Preservation,
for any state in A that contains at least one send-originating global state, of which

t⃗p is one, there exists a transition t⃗p
x′

−→ t′ such that x′ ∈ Σp,!. Because send
transitions in a CSM are always enabled, role p can take this transition in A[A]p.
We reach a contradiction to the fact that w is terminated in A[A]p.

– If x ∈ Σ?, it follows that G is a receive-originating global state. From Receive
Exhaustivity, any receive event that originates from any global state in d(⃗tp) must
also originate from t⃗p. Therefore, there must exist t′ such that t⃗p

x−→ t′ is a transition
in B′

p. Because the channel configuration is identical in both CSMs, role p can

Deciding Subtyping for Asynchronous Multiparty Sessions 19

take this transition in A[A]p. We again reach a contradiction to the fact that w is
terminated in A[A]p.

To see that w is maximal in A[A]p, observe that for all roles q ̸= p, s⃗q = t⃗q. Thus, it
remains to show that t⃗p is a final state in A. Because s⃗p is a final state, by the definition
of the subset construction there exists a global state G ∈ s⃗p such that the projection
erasure automaton reaches G on w⇓Σp

and G is a final state. Because A reaches t⃗p on
w⇓Σp

, by Definition 4.6 it holds that G ∈ d(⃗tp). By Final State Validity, it holds that t⃗p
is a final state in A. This concludes our proof that any terminated trace in A[A]p is also
a terminated trace in A[C (G, p)]p, and is maximal in A[A]p.

Together, Claim 1 and 2 establish that A[A]p satisfies language inclusion (Item ii)
and deadlock freedom (Item iii). It remains to show that A[A]p satisfies subprotocol
fidelity (Item i). This follows immediately from [40, Lemma 22], which states that all
CSM languages are closed under the indistinguishability relation ∼. ⊓⊔

Lemma 5.7 (Completeness of C ′
2). If for all well-behaved contexts A[·]p, A[A]p re-

fines A[C (G, p)]p, then C ′
2 holds.

As before, we prove the modus tollens of this implication, which states that if C ′
2

does not hold, then there exists a well-behaved context A[·]p such that A[A]p does not
protocol-refine A[C (G, p)]p.

We first turn our attention to finding a well-behaved witness context A[·]p such that
we can refute subprotocol fidelity, language inclusion, or deadlock freedom. It turns
out that the context consisting of the subset construction automaton for every other role
is a suitable witness. We denote this context by C (G)[·]p and note that it is trivially
well-behaved because C (G)[C (G, p)]p = {{C (G, p)}}p∈P .

Recall from the completeness arguments for C1 that we obtained a violating state
in some state machine A with a non-empty decoration set from the negation of each
condition in C1. From this state’s decoration set we obtained a witness global state G,
and in turn a run α · G in G, and from the assumption that {{C (G, p)}}p∈P refines A,
we argued that split(trace(α · G)) is a trace in A. We then showed that A is in the
violating state in the A configuration reached on split(trace(α ·G)), and from there
we used each violated condition to find a contradiction.

The completeness proof for C ′
2 cannot similarly use the fact that {{C (G, p)}}p∈P re-

fines C (G)[A]p. Instead, we must separately establish that every state with a non-empty
decoration set can be reached on a trace shared by both C (G)[A]p and {{C (G, p)}}p∈P .
The following lemma achieves this:

Lemma 5.8. Let A be a state machine for p and s be a state in A. Let G ∈ d(s), and let
u ∈ Σ∗

p be a word such that s0
u−→∗ s in A. Then, there exists a run α ·G of GAut(G)

such that split(trace(α ·G))⇓Σp
= u, split(trace(α ·G)) is a trace in C (G)[A]p

and in the CSM configuration reached on split(trace(α ·G)), A is in state s.

With Lemma 5.8 replacing the assumption that {{C (G, p)}}p∈P refines C (G)[A]p,
we can reuse the construction in Lemma 4.16 to obtain a word that is a trace in C (G)[A]p
but not a trace in {{C (G, p)}}p∈P , thus evidencing the necessity of Send Decoration Va-
lidity and Receive Decoration Validity. The proof of Lemma 5.9 proceeds identically to
that of Lemma 4.16 and is thus omitted.

20 E. Li, F. Stutz, and T. Wies

Lemma 5.9. If A violates Send Decoration Validity or Receive Decoration Validity,
then it does not hold that for all well-behaved contexts A[·]p, A[A]p refines C (G)[A]p.

We also use Lemma 5.8 to show the necessity of Send Preservation, Receive Ex-
haustivity and Final State Validity. As a starting point, let A, s, u and α · G be ob-
tained from Lemma 5.8 and the violation of Send Preservation. To show the necessity
of Send Preservation, we consider the largest extension v of u in C (G)[A]p. In the
case that u is terminated in C (G)[A]p, we refute deadlock freedom from the fact that
u is not maximal: G ∈ s is a send-originating state, and final states in GAut(G) do
not contain outgoing transitions. If v ̸= u, there exists a run α · G p−→q:m−−−−−→ G′ ·
β such that split(trace(α · G p−→q:m−−−−−→ G′ · β)⇓Σp

= v⇓Σp
. By subprotocol fi-

delity, split(trace(α · G p−→q:m−−−−−→ G′ · β)) is a trace in C (G)[A]p. Consequently,
split(trace(α ·G p−→q:m−−−−−→ G′ ·β))⇓Σp

is a prefix in A. We find a contradiction from
the fact that A is deterministic and there is no outgoing transition labeled p▷q!m from
s. Similar arguments can be used to show the necessity of Receive Exhaustivity. Finally,
for Final State Validity, in the case that s is non-final in A but contains a final state in
GAut(G), we can instantiate Lemma 5.8 with this final state and show that u evidences
a deadlock.

Lemma 5.10. If A violates Send Preservation, Receive Exhaustivity or Final State
Validity, then it does not hold that for all well-behaved contexts A[·]p, A[A]p refines
C (G)[A]p.

5.2 Protocol Refinement (General Case)

Equipped with the solution to a special case, we are ready to revisit the general case of
Protocol Refinement, which asks to find a C2 that satisfies the following:

C2 ⇔ for all well-behaved contexts A[·]p, A[A]p refines A[B]p.

Critical to the former problems is the fact that the state decoration function precisely
captures those states in a local state machine that are reachable in some CSM execution,
under some assumptions on the context: a state is reachable if and only if its decoration
set is non-empty. This allows the conditions in C1 and C ′

2 to precisely characterize the
reachable local states.

The second problem generalizes the subset projection to an arbitrary state machine
B, and asks whether a candidate state machine A (the subtype) refines B (the supertype)
in any well-behaved context. Unfortunately, we cannot simply decorate the subtype with
the supertype’s states, because not all states in the supertype are reachable. Instead, we
need to restrict the set of states in the supertype to those that themselves have non-empty
decoration sets with respect to G.

In the remainder of this section, let p ∈ P be a role, let B = (QB , Σp, t0, δB , FB)
denote the supertype state machine for p, and let A = (QA, Σp, s0, δA, FA) denote the
subtype state machine for p. We modify our state decoration function in Definition 4.6
to map states of A to subsets of states in B that themselves have non-empty decoration
sets with respect to G.

Deciding Subtyping for Asynchronous Multiparty Sessions 21

Definition 5.11 (State decoration with respect to a supertype). Let G be a global
type. Let p ∈ P be a role, and let B = (QB , Σp, t0, δB , FB) and A = (QA, Σp, s0, δA, FA)
be two deterministic finite state machines for p. We define a total function dG,B,A :
Q′ → 2Q that maps each state in A to a subset of states in B such that:

dG,B,A(s) = {t ∈ QB | ∃u ∈ Σp
∗. s0

u−→∗ s ∈ δA ∧ t0
u−→∗ t ∈ δB ∧ d(t) ̸= ∅}

We again omit the subscripts G and A when clear from context, but retain the subscript
B to distinguish dB from d in Definition 4.6.

We likewise require a generalization of tr-orig and tr-dest to be defined in terms
of B, instead of the projection by erasure automaton for p.

Definition 5.12 (Transition origin and destination with respect to a supertype). Let
G be a global type, and let B = (QB , Σp, t0, δB , FB) be a state machine. For x ∈ Σp

and s, s′ ⊆ QB , we define the set of transition origins tr-orig(s x−→ s′) and transition
destinations tr-dest(s x−→ s′) as follows:

tr-origB(s
x−→ s′) := {t ∈ s | ∃t′ ∈ s′. t

x−→∗ t′ ∈ δB} and

tr-destB(s
x−→ s′) := {t′ ∈ s′ | ∃t ∈ s. t

x−→∗ t′ ∈ δB} .

We present C2 in terms of the newly defined decoration function dB .

Definition 5.13 (C2). Let G be a global type, p ∈ P be a role, and let further
B = (QB , Σp, t0, δB , FB) and A = (QA, Σp, s0, δA, FA) be two deterministic state
machines for p. C2 is the conjunction of the following conditions:

– Send Decoration Subtype Validity: every send transition s
x−→ s′ ∈ δA must be

enabled in all states of B decorating s:

∀s p ▷q !m−−−−→ s′ ∈ δA. tr-origB(dB(s)
p ▷q !m−−−−→ dB(s

′)) = dB(s).

– Receive Decoration Subtype Validity: no receive transition is enabled in an alter-
native continuation originating from the same state:

∀s p◁ q1 ?m1−−−−−−→ s1, s
x−→ s2 ∈ δA. x ̸= p◁q1?_ =⇒

∀G ∈
⋃

t∈dB(s2)

{d(t) | t ∈ tr-destB(dB(s)
x−→ dB(s2))}. q1 ▷p!m1 /∈ Mp

(G...).

– Send Subtype Preservation: every state decorated by a send-originating global
state must have at least one outgoing send transition:
∀s ∈ QA. (

⋃
t∈dB(s)

d(t) ∩QG,! ̸= ∅) =⇒ ∃x ∈ Σp,!, s
′ ∈ QA. s

x−→ s′ ∈ δA.

– Receive Subtype Exhaustivity: every receive transition that is enabled in some
global state decorating s must be an outgoing transition from s:
∀s ∈ QA. ∀G

x−→∗ G′ ∈ δ↓. G ∈
⋃

t∈dB(s)

d(t) =⇒ ∃s′ ∈ QA. s
x−→ s′ ∈ δA.

– Final State Validity: a reachable state is final if its decorating set contains a final
global state:
∀s ∈ QA.

⋃
t∈dB(s)

d(t) ̸= ∅ =⇒ (
⋃

t∈dB(s)

d(t) ∩ FG ̸= ∅) =⇒ s ∈ FA.

22 E. Li, F. Stutz, and T. Wies

We want to show the following equivalence to prove Theorem 5.4:

C2 ⇔ for all well-behaved contexts A[·]p, A[A]p refines A[B]p.

Lemma 5.14 (Soundness of C2). If C2 holds, then for all well-behaved contexts A[·]p,
A[A]p refines A[B]p.

Predictably, the proof of soundness is directly adapted from the proof for C ′
2 by

applying suitable “liftings”, and can be found in the extended version [37].

Lemma 5.15 (Completeness of C2). If for all well-behaved contexts A[·]p, A[A]p re-
fines A[B]p, then C2 holds.

Again, we prove the modus tollens of this implication, and we again are required
to find a witness well-behaved context A[·]p, such that A[A]p does not refine A[B]p
under the assumption of the negation of C2. In the special case where B is the subset
construction automaton, we observed that any state in A with a non-empty decoration
set with respect to G is reachable by the CSM consisting of A and the subset con-
struction context, denoted C (G)[A]p. We were therefore able to use C (G)[·]p as the
witness well-behaved context. A similar characterization is true in the general case:
a state in A is reachable by C (G)[A]p if it has a non-empty decoration set with respect
to B. This in turn depends on the fact that we only label states in A with states in B that
themselves have non-empty decorating sets with respect to G. The following lemma
lifts Lemma 5.8 to the general problem setting:

Lemma 5.16. Let A,B be two state machines for p, such that for all well-behaved
contexts A[·]p, A[B]p refines G. Let s be a state in A, and let t be a state in B such
that t ∈ dB(s). Let u ∈ Σ∗

p be a word such that s0
u−→∗ s in A. Then, there exists a

run α ·G of GAut(G) such that split(trace(α ·G))⇓Σp
= u, split(trace(α ·G))

is a trace in both C (G)[A]p and C (G)[B]p and in the CSM configuration reached on
split(trace(α ·G)), A is in state s.

Proof. From the fact that t ∈ dB(s) and the definition of state decoration (Defini-
tion 5.11), it holds that d(t) ̸= ∅ and t0

u−→∗ t ∈ δB . Let G ∈ d(t). We apply Lemma 5.8
to obtain a run α ·G such that split(trace(α ·G))⇓Σp

= u, split(trace(α ·G)) is
a trace in C (G)[B]p and in the C (G)[B]p configuration reached on split(trace(α ·
G)), B is in state t. Because s0

u−→∗ s ∈ δA, and all non-p state machines are identical
from C (G)[B]p to C (G)[A]p, it is clear that split(trace(α · G)) is also a trace of
C (G)[A]p and in the CSM configuration reached on split(trace(α · G)), A is in
state s. ⊓⊔

Having found our witness well-behaved context C (G)[·]p, established Lemma 5.16
to replace Lemma 5.8, and observed that the violation of each condition in C2 likewise
yields a state with a non-empty decoration set with respect to B, completeness then
amounts to showing the existence of a w ∈ Σ∗

async such that w refutes subprotocol fi-
delity, language inclusion, or deadlock freedom. Recall that the proofs for the necessity
of Send Preservation, Receive Exhaustivity and Final State Validity in the case where

Deciding Subtyping for Asynchronous Multiparty Sessions 23

B is the subset construction constructed a trace that refuted either subprotocol fidelity
or deadlock freedom. These two properties are identical across both formulations of
the problem, and therefore the construction can be wholly reused to show the necessity
of Send Subtype Preservation, Receive Subtype Exhaustivity and Final State Subtype
Validity.

Lemma 5.17. If A[A]p violates Send Decoration Subtype Validity or Receive Deco-
ration Subtype Validity, then it does not hold that for all well-behaved contexts A[·]p,
A[A]p refines A[B]p.

The proofs for the necessity of Send Decoration Validity and Receive Decoration
Validity, on the other hand, construct a word that is a trace in A[A]p but not a trace in
C (G)[A]p. In the general case, we can show that the same construction is a trace in
A[A]p but not a trace in A[B]p. We omit the proofs to avoid redundancy.

Lemma 5.18. If {{Ap}}p∈P violates Send Subtype Preservation, Receive Subtype Ex-
haustivity, or Final State Subtype Validity, then it does not hold that for all well-
behaved contexts A[·]p, A[A]p refines A[B]p.

6 Complexity Analysis

We complete our discussion with a complexity analysis of the two considered problems,
building on the characterizations established in Theorem 4.1 and Theorem 5.4.

For the Protocol Verification problem, let m be the size of A and n the size of G.
Moreover, let Ap be the local implementation of some role p in A. Observe that the
sets dG(s) for each state s of Ap as well as the sets Mp

(G′...) for each subterm G′ of G
are at most of size n. It is then easy to see that C1 can be checked in time polynomial
in n and m, provided that the sets dG(s) and Mp

(G′...) are also computable in polyno-
mial time.

To see this for the sets Mp

(G′...), observe that the definition expands each occurrence
of a recursion variable in G at most once. So the traversal takes time O(n2). For each
traversed event p→q :m in G, we need to perform a constant number of lookup, inser-
tion, and deletion operations on a set of size at most n, which takes time O(log n). The
time for computing Mp

(G′...) is thus in O(n2 log n).
Similarly, observe that the function dG can be computed for the local implemen-

tation of each role Ap ∈ P using a simple fixpoint loop. Each set dG(s) can be rep-
resented as a bit vector of size n, making all set operations constant time. The loop
inserts at most n subterms of G into each dG(s), which takes time O(mn) for all inser-
tions. Moreover, for each G inserted into a set dG(s) and each transition s

x−→ s′ in Ap,
we need to compute the set {G′ | G x−→∗ G′ ∈ δ↓} which is then added to dG(s′).
Computing these sets takes time O(mn) for each G and s.

Following analogous reasoning, we can also establish that C2 is checkable in poly-
nomial time.

Theorem 6.1. The Protocol Verification and Protocol Refinement problems are decid-
able in polynomial time.

24 E. Li, F. Stutz, and T. Wies

7 Related Work

Session types were first introduced in binary form by Honda in 1993 [29]. Binary ses-
sion types describe interactions between two participants, and communication safety of
binary sessions amounts to channel duality. Binary session types were generalized to
multiparty session types – describing interactions between more than two participants
– by Honda, Yoshida and Carbone in 2008 [31], and the corresponding notion of safety
was generalized from duality to multiparty consistency. Binary session types were in-
spired by and enjoy a close connection to linear logic [11, 28, 50]. Horne generalizes
this connection to multiparty session types and non-commutative extensions of linear
logic [32]. The connection between multiparty session types and logic is also explored
in [10,12,13]. MSTs have since been extensively studied and widely adopted in practi-
cal programming languages; we refer the reader to [19] for a comprehensive survey.

Session type syntax. Session type frameworks have enjoyed various extensions since
their inception. In particular, the choice operator for both global and local types has
received considerable attention over the years. MSTs were originally introduced as
global types, with a directed choice operator that restricted a sender to sending differ-
ent messages to the same recipient. [15] and [40] relax this restriction to sender-driven
choice, which allows a sender to send different messages to different recipients, and
increases the expressivity of global types. Our paper targets global types with sender-
driven choice. For local types, a direct comparison can be drawn to the π-calculus, for
which mixed choice was shown to be strictly more expressive than separate choice [43].
Mixed choices allow both send and receive actions, whereas separate choices consist
purely of either sends or receives. [38] showed that any global type with sender-driven
choice can be implemented by a CSM with only separate choice. Mixed choice for
binary local types was investigated in [14], although [44] later showed that this vari-
ant falls short of the full expressive power of mixed choice π-calculus, and instead
can only express separate choice π-calculus. Other communication primitives have also
been studied, such as channel delegation [17, 30, 31], dependent predicates [48, 49],
parametrization [18, 22] and data refinement [51].

Session type semantics. MSTs were introduced in [31] with a process algebra seman-
tics. The connection to CSMs was established in [21], which defines a class of CSMs
whose state machines can be represented as local types, called Communicating Ses-
sion Automata (CSA). CSAs inherit from the local types they represent restrictions on
choice discussed above, “tree-like” restrictions on the structure (see [47] for a charac-
terization), and restrictions on outgoing transitions from final states. The CSM imple-
mentation model in our work assumes none of the above restrictions, and is thus true to
its name.

Session subtyping. Session subtyping was first introduced by [25] in the context of the
π-calculus, which was in turn inspired by Pierce and Sangiorgi’s work on subtyping
for channel endpoints [45]. The session types literature distinguishes between two no-
tions of subtyping based on the network assumptions of the framework: synchronous
and asynchronous subtyping. Both notions respect Liskov and Wing’s substitution prin-
ciple [39], but differ in the guarantees provided. We discuss each in turn.

Deciding Subtyping for Asynchronous Multiparty Sessions 25

Synchronous subtyping follows the notions of covariance and contravariance intro-
duced by [25], and checks that a subtype contains fewer sends and more receives than
its supertype. For binary synchronous session types, Lange and Yoshida [34] show that
subtyping can be decided in quadratic time via model checking of a characteristic for-
mulae in the modal µ-calculus. For multiparty synchronous session types, Ghilezan et
al. [26] present a precise subtyping relation that is universally quantified over all con-
texts, and restricts the local type syntax to directed choice. As mentioned in §1, [26],
their subtyping relation is incomplete when generalized to asynchronous multiparty
sessions with directed choice. As discussed in §2, their subtyping relation is further
incomplete when generalized to asynchronous multiparty sessions with mixed choice,
due to the “peculiarity [...] that, apart from a pair of inactive session types, only in-
puts and outputs from/to a same participant can be related” [26]. The complexity of the
subtyping relation in [26] is not mentioned.

Unlike subtyping relations for synchronous sessions which preserve language in-
clusion, subtyping relations for asynchronous sessions instead focus on deadlock-free
optimizations that permute roles’ local order of send and receive actions, also called
asynchronous message reordering, or AMR [20]. First proposed for binary sessions by
Mostrous and Yoshida [41], and for multiparty sessions by Mostrous et al. [42], this
notion of subtyping does not satisfy subprotocol fidelity in general; indeed, in some
cases, the set of behaviors recognized by a supertype is entirely disjoint from that of its
subtype [5]. Asynchronous subtyping was shown to be undecidable for both binary and
multiparty session types [6, 35]. Existing works are thus either restricted to binary pro-
tocols [1,5,6,35], prohibit non-deterministic choice involving multiple receivers [7,27],
or make strong fairness assumptions on the network [7].

The connection between session subtyping and behavioral contract refinement has
been studied only in the context of binary session types, and is thus out of scope of our
work. We refer the reader to [26] for a survey.

Acknowledgements The authors thank Damien Zufferey for discussions and feedback.
This work is funded in parts by the National Science Foundation under grant CCF-
2304758. Felix Stutz was supported by the Deutsche Forschungsgemeinschaft project
389792660 TRR 248—CPEC.

References

1. Bacchiani, L., Bravetti, M., Lange, J., Zavattaro, G.: A session subtyping tool. In: Dami-
ani, F., Dardha, O. (eds.) Coordination Models and Languages - 23rd IFIP WG 6.1 Inter-
national Conference, COORDINATION 2021, Held as Part of the 16th International Fed-
erated Conference on Distributed Computing Techniques, DisCoTec 2021, Valletta, Malta,
June 14-18, 2021, Proceedings. Lecture Notes in Computer Science, vol. 12717, pp. 90–105.
Springer (2021). https://doi.org/10.1007/978-3-030-78142-2_6, https://doi.
org/10.1007/978-3-030-78142-2_6

2. Barbanera, F., De’Liguoro, U.: Sub-behaviour relations for session-based client/server sys-
tems. Mathematical Structures in Computer Science 25(6), 1339–1381 (2015). https:
//doi.org/10.1017/S096012951400005X

https://doi.org/10.1007/978-3-030-78142-2_6
https://doi.org/10.1007/978-3-030-78142-2_6
https://doi.org/10.1007/978-3-030-78142-2_6
https://doi.org/10.1007/978-3-030-78142-2_6
https://doi.org/10.1017/S096012951400005X
https://doi.org/10.1017/S096012951400005X
https://doi.org/10.1017/S096012951400005X
https://doi.org/10.1017/S096012951400005X

26 E. Li, F. Stutz, and T. Wies

3. Bernardi, G.T., Hennessy, M.: Modelling session types using contracts. Math. Struct.
Comput. Sci. 26(3), 510–560 (2016). https://doi.org/10.1017/S0960129514000243,
https://doi.org/10.1017/S0960129514000243

4. Brand, D., Zafiropulo, P.: On communicating finite-state machines. J. ACM 30(2),
323–342 (1983). https://doi.org/10.1145/322374.322380, https://doi.org/10.
1145/322374.322380

5. Bravetti, M., Carbone, M., Lange, J., Yoshida, N., Zavattaro, G.: A sound algorithm for
asynchronous session subtyping and its implementation. Log. Methods Comput. Sci. 17(1)
(2021), https://lmcs.episciences.org/7238

6. Bravetti, M., Carbone, M., Zavattaro, G.: On the boundary between decidability
and undecidability of asynchronous session subtyping. Theor. Comput. Sci. 722, 19–
51 (2018). https://doi.org/10.1016/j.tcs.2018.02.010, https://doi.org/10.
1016/j.tcs.2018.02.010

7. Bravetti, M., Lange, J., Zavattaro, G.: Fair refinement for asynchronous session types. In:
Kiefer, S., Tasson, C. (eds.) Foundations of Software Science and Computation Structures
- 24th International Conference, FOSSACS 2021, Held as Part of the European Joint Con-
ferences on Theory and Practice of Software, ETAPS 2021, Luxembourg City, Luxembourg,
March 27 - April 1, 2021, Proceedings. Lecture Notes in Computer Science, vol. 12650,
pp. 144–163. Springer (2021). https://doi.org/10.1007/978-3-030-71995-1_8,
https://doi.org/10.1007/978-3-030-71995-1_8

8. Bravetti, M., Zavattaro, G.: Relating session types and behavioural contracts: The asyn-
chronous case. In: Ölveczky, P.C., Salaün, G. (eds.) Software Engineering and Formal Meth-
ods. pp. 29–47. Springer International Publishing, Cham (2019)

9. Bravetti, M., Zavattaro, G.: Asynchronous session subtyping as communicating automata
refinement. Softw. Syst. Model. 20(2), 311–333 (apr 2021). https://doi.org/10.1007/
s10270-020-00838-x, https://doi.org/10.1007/s10270-020-00838-x

10. Caires, L., Pérez, J.A.: Multiparty session types within a canonical binary theory, and be-
yond. In: Albert, E., Lanese, I. (eds.) Formal Techniques for Distributed Objects, Compo-
nents, and Systems - 36th IFIP WG 6.1 International Conference, FORTE 2016, Held as
Part of the 11th International Federated Conference on Distributed Computing Techniques,
DisCoTec 2016, Heraklion, Crete, Greece, June 6-9, 2016, Proceedings. Lecture Notes in
Computer Science, vol. 9688, pp. 74–95. Springer (2016). https://doi.org/10.1007/
978-3-319-39570-8_6, https://doi.org/10.1007/978-3-319-39570-8_6

11. Caires, L., Pfenning, F., Toninho, B.: Linear logic propositions as session types. Math. Struct.
Comput. Sci. 26(3), 367–423 (2016). https://doi.org/10.1017/S0960129514000218,
https://doi.org/10.1017/S0960129514000218

12. Carbone, M., Lindley, S., Montesi, F., Schürmann, C., Wadler, P.: Coherence generalises
duality: A logical explanation of multiparty session types. In: Desharnais, J., Jagadeesan, R.
(eds.) 27th International Conference on Concurrency Theory, CONCUR 2016, August 23-
26, 2016, Québec City, Canada. LIPIcs, vol. 59, pp. 33:1–33:15. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik (2016). https://doi.org/10.4230/LIPIcs.CONCUR.2016.33,
https://doi.org/10.4230/LIPIcs.CONCUR.2016.33

13. Carbone, M., Montesi, F., Schürmann, C., Yoshida, N.: Multiparty session types as co-
herence proofs. Acta Informatica 54(3), 243–269 (2017). https://doi.org/10.1007/
s00236-016-0285-y, https://doi.org/10.1007/s00236-016-0285-y

14. Casal, F., Mordido, A., Vasconcelos, V.T.: Mixed sessions. Theor. Comput. Sci. 897, 23–
48 (2022). https://doi.org/10.1016/j.tcs.2021.08.005, https://doi.org/10.
1016/j.tcs.2021.08.005

15. Castagna, G., Dezani-Ciancaglini, M., Padovani, L.: On global types and multi-party ses-
sion. Log. Methods Comput. Sci. 8(1) (2012). https://doi.org/10.2168/LMCS-8(1:
24)2012, https://doi.org/10.2168/LMCS-8(1:24)2012

https://doi.org/10.1017/S0960129514000243
https://doi.org/10.1017/S0960129514000243
https://doi.org/10.1017/S0960129514000243
https://doi.org/10.1145/322374.322380
https://doi.org/10.1145/322374.322380
https://doi.org/10.1145/322374.322380
https://doi.org/10.1145/322374.322380
https://lmcs.episciences.org/7238
https://doi.org/10.1016/j.tcs.2018.02.010
https://doi.org/10.1016/j.tcs.2018.02.010
https://doi.org/10.1016/j.tcs.2018.02.010
https://doi.org/10.1016/j.tcs.2018.02.010
https://doi.org/10.1007/978-3-030-71995-1_8
https://doi.org/10.1007/978-3-030-71995-1_8
https://doi.org/10.1007/978-3-030-71995-1_8
https://doi.org/10.1007/s10270-020-00838-x
https://doi.org/10.1007/s10270-020-00838-x
https://doi.org/10.1007/s10270-020-00838-x
https://doi.org/10.1007/s10270-020-00838-x
https://doi.org/10.1007/s10270-020-00838-x
https://doi.org/10.1007/978-3-319-39570-8_6
https://doi.org/10.1007/978-3-319-39570-8_6
https://doi.org/10.1007/978-3-319-39570-8_6
https://doi.org/10.1007/978-3-319-39570-8_6
https://doi.org/10.1007/978-3-319-39570-8_6
https://doi.org/10.1017/S0960129514000218
https://doi.org/10.1017/S0960129514000218
https://doi.org/10.1017/S0960129514000218
https://doi.org/10.4230/LIPIcs.CONCUR.2016.33
https://doi.org/10.4230/LIPIcs.CONCUR.2016.33
https://doi.org/10.4230/LIPIcs.CONCUR.2016.33
https://doi.org/10.1007/s00236-016-0285-y
https://doi.org/10.1007/s00236-016-0285-y
https://doi.org/10.1007/s00236-016-0285-y
https://doi.org/10.1007/s00236-016-0285-y
https://doi.org/10.1007/s00236-016-0285-y
https://doi.org/10.1016/j.tcs.2021.08.005
https://doi.org/10.1016/j.tcs.2021.08.005
https://doi.org/10.1016/j.tcs.2021.08.005
https://doi.org/10.1016/j.tcs.2021.08.005
https://doi.org/10.2168/LMCS-8(1:24)2012
https://doi.org/10.2168/LMCS-8(1:24)2012
https://doi.org/10.2168/LMCS-8(1:24)2012
https://doi.org/10.2168/LMCS-8(1:24)2012
https://doi.org/10.2168/LMCS-8(1:24)2012

Deciding Subtyping for Asynchronous Multiparty Sessions 27

16. Castagna, G., Gesbert, N., Padovani, L.: A theory of contracts for web services. ACM Trans.
Program. Lang. Syst. 31(5), 19:1–19:61 (2009). https://doi.org/10.1145/1538917.
1538920, https://doi.org/10.1145/1538917.1538920

17. Castellani, I., Dezani-Ciancaglini, M., Giannini, P., Horne, R.: Global types with internal del-
egation. Theor. Comput. Sci. 807, 128–153 (2020). https://doi.org/10.1016/j.tcs.
2019.09.027, https://doi.org/10.1016/j.tcs.2019.09.027

18. Charalambides, M., Dinges, P., Agha, G.A.: Parameterized, concurrent session types for
asynchronous multi-actor interactions. Sci. Comput. Program. 115-116, 100–126 (2016).
https://doi.org/10.1016/j.scico.2015.10.006, https://doi.org/10.1016/j.
scico.2015.10.006

19. Coppo, M., Dezani-Ciancaglini, M., Padovani, L., Yoshida, N.: A gentle introduction to mul-
tiparty asynchronous session types. In: Bernardo, M., Johnsen, E.B. (eds.) Formal Methods
for Multicore Programming - 15th International School on Formal Methods for the Design
of Computer, Communication, and Software Systems, SFM 2015, Bertinoro, Italy, June 15-
19, 2015, Advanced Lectures. Lecture Notes in Computer Science, vol. 9104, pp. 146–178.
Springer (2015). https://doi.org/10.1007/978-3-319-18941-3_4, https://doi.
org/10.1007/978-3-319-18941-3_4

20. Cutner, Z., Yoshida, N., Vassor, M.: Deadlock-free asynchronous message reordering in rust
with multiparty session types. In: Lee, J., Agrawal, K., Spear, M.F. (eds.) PPoPP ’22: 27th
ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming, Seoul,
Republic of Korea, April 2 - 6, 2022. pp. 246–261. ACM (2022). https://doi.org/10.
1145/3503221.3508404, https://doi.org/10.1145/3503221.3508404

21. Deniélou, P., Yoshida, N.: Multiparty session types meet communicating automata. In:
Seidl, H. (ed.) Programming Languages and Systems - 21st European Symposium on
Programming, ESOP 2012, Held as Part of the European Joint Conferences on Theory
and Practice of Software, ETAPS 2012, Tallinn, Estonia, March 24 - April 1, 2012. Pro-
ceedings. Lecture Notes in Computer Science, vol. 7211, pp. 194–213. Springer (2012).
https://doi.org/10.1007/978-3-642-28869-2_10, https://doi.org/10.1007/
978-3-642-28869-2_10

22. Deniélou, P., Yoshida, N., Bejleri, A., Hu, R.: Parameterised multiparty session types. Log.
Methods Comput. Sci. 8(4) (2012). https://doi.org/10.2168/LMCS-8(4:6)2012,
https://doi.org/10.2168/LMCS-8(4:6)2012

23. Ellul, K., Krawetz, B., Shallit, J.O., Wang, M.: Regular expressions: New results and open
problems. J. Autom. Lang. Comb. 10(4), 407–437 (2005). https://doi.org/10.25596/
jalc-2005-407, https://doi.org/10.25596/jalc-2005-407

24. Esparza, J., Nielsen, M.: Decidability issues for petri nets - a survey. J. Inf. Process. Cybern.
30(3), 143–160 (1994)

25. Gay, S.J., Hole, M.: Subtyping for session types in the pi calculus. Acta Informatica 42(2-
3), 191–225 (2005). https://doi.org/10.1007/s00236-005-0177-z, https://doi.
org/10.1007/s00236-005-0177-z

26. Ghilezan, S., Jakšić, S., Pantović, J., Scalas, A., Yoshida, N.: Precise subtyping
for synchronous multiparty sessions. Journal of Logical and Algebraic Methods in
Programming 104, 127–173 (2019). https://doi.org/https://doi.org/10.1016/
j.jlamp.2018.12.002, https://www.sciencedirect.com/science/article/pii/
S2352220817302237

27. Ghilezan, S., Pantovic, J., Prokic, I., Scalas, A., Yoshida, N.: Precise subtyping for asyn-
chronous multiparty sessions. Proc. ACM Program. Lang. 5(POPL), 1–28 (2021). https:
//doi.org/10.1145/3434297, https://doi.org/10.1145/3434297

28. Girard, J.: Linear logic. Theor. Comput. Sci. 50, 1–102 (1987). https://doi.org/
10.1016/0304-3975(87)90045-4, https://doi.org/10.1016/0304-3975(87)
90045-4

https://doi.org/10.1145/1538917.1538920
https://doi.org/10.1145/1538917.1538920
https://doi.org/10.1145/1538917.1538920
https://doi.org/10.1145/1538917.1538920
https://doi.org/10.1145/1538917.1538920
https://doi.org/10.1016/j.tcs.2019.09.027
https://doi.org/10.1016/j.tcs.2019.09.027
https://doi.org/10.1016/j.tcs.2019.09.027
https://doi.org/10.1016/j.tcs.2019.09.027
https://doi.org/10.1016/j.tcs.2019.09.027
https://doi.org/10.1016/j.scico.2015.10.006
https://doi.org/10.1016/j.scico.2015.10.006
https://doi.org/10.1016/j.scico.2015.10.006
https://doi.org/10.1016/j.scico.2015.10.006
https://doi.org/10.1007/978-3-319-18941-3_4
https://doi.org/10.1007/978-3-319-18941-3_4
https://doi.org/10.1007/978-3-319-18941-3_4
https://doi.org/10.1007/978-3-319-18941-3_4
https://doi.org/10.1145/3503221.3508404
https://doi.org/10.1145/3503221.3508404
https://doi.org/10.1145/3503221.3508404
https://doi.org/10.1145/3503221.3508404
https://doi.org/10.1145/3503221.3508404
https://doi.org/10.1007/978-3-642-28869-2_10
https://doi.org/10.1007/978-3-642-28869-2_10
https://doi.org/10.1007/978-3-642-28869-2_10
https://doi.org/10.1007/978-3-642-28869-2_10
https://doi.org/10.2168/LMCS-8(4:6)2012
https://doi.org/10.2168/LMCS-8(4:6)2012
https://doi.org/10.2168/LMCS-8(4:6)2012
https://doi.org/10.25596/jalc-2005-407
https://doi.org/10.25596/jalc-2005-407
https://doi.org/10.25596/jalc-2005-407
https://doi.org/10.25596/jalc-2005-407
https://doi.org/10.25596/jalc-2005-407
https://doi.org/10.1007/s00236-005-0177-z
https://doi.org/10.1007/s00236-005-0177-z
https://doi.org/10.1007/s00236-005-0177-z
https://doi.org/10.1007/s00236-005-0177-z
https://doi.org/https://doi.org/10.1016/j.jlamp.2018.12.002
https://doi.org/https://doi.org/10.1016/j.jlamp.2018.12.002
https://doi.org/https://doi.org/10.1016/j.jlamp.2018.12.002
https://doi.org/https://doi.org/10.1016/j.jlamp.2018.12.002
https://www.sciencedirect.com/science/article/pii/S2352220817302237
https://www.sciencedirect.com/science/article/pii/S2352220817302237
https://doi.org/10.1145/3434297
https://doi.org/10.1145/3434297
https://doi.org/10.1145/3434297
https://doi.org/10.1145/3434297
https://doi.org/10.1145/3434297
https://doi.org/10.1016/0304-3975(87)90045-4
https://doi.org/10.1016/0304-3975(87)90045-4
https://doi.org/10.1016/0304-3975(87)90045-4
https://doi.org/10.1016/0304-3975(87)90045-4
https://doi.org/10.1016/0304-3975(87)90045-4
https://doi.org/10.1016/0304-3975(87)90045-4

28 E. Li, F. Stutz, and T. Wies

29. Honda, K.: Types for dyadic interaction. In: Best, E. (ed.) CONCUR ’93, 4th In-
ternational Conference on Concurrency Theory, Hildesheim, Germany, August 23-
26, 1993, Proceedings. Lecture Notes in Computer Science, vol. 715, pp. 509–523.
Springer (1993). https://doi.org/10.1007/3-540-57208-2_35, https://doi.org/
10.1007/3-540-57208-2_35

30. Honda, K., Vasconcelos, V.T., Kubo, M.: Language primitives and type discipline for struc-
tured communication-based programming. In: Hankin, C. (ed.) Programming Languages
and Systems - ESOP’98, 7th European Symposium on Programming, Held as Part of
the European Joint Conferences on the Theory and Practice of Software, ETAPS’98, Lis-
bon, Portugal, March 28 - April 4, 1998, Proceedings. Lecture Notes in Computer Sci-
ence, vol. 1381, pp. 122–138. Springer (1998). https://doi.org/10.1007/BFb0053567,
https://doi.org/10.1007/BFb0053567

31. Honda, K., Yoshida, N., Carbone, M.: Multiparty asynchronous session types. In: Nec-
ula, G.C., Wadler, P. (eds.) Proceedings of the 35th ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, POPL 2008, San Francisco, California, USA,
January 7-12, 2008. pp. 273–284. ACM (2008). https://doi.org/10.1145/1328438.
1328472, https://doi.org/10.1145/1328438.1328472

32. Horne, R.: Session subtyping and multiparty compatibility using circular sequents. In: Kon-
nov, I., Kovács, L. (eds.) 31st International Conference on Concurrency Theory, CONCUR
2020, September 1-4, 2020, Vienna, Austria (Virtual Conference). LIPIcs, vol. 171, pp. 12:1–
12:22. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2020). https://doi.org/10.
4230/LIPIcs.CONCUR.2020.12, https://doi.org/10.4230/LIPIcs.CONCUR.2020.
12

33. Lamport, L.: Time, clocks, and the ordering of events in a distributed system. Commun.
ACM 21(7), 558–565 (1978). https://doi.org/10.1145/359545.359563, https://
doi.org/10.1145/359545.359563

34. Lange, J., Yoshida, N.: Characteristic formulae for session types. In: Chechik, M., Raskin,
J. (eds.) Tools and Algorithms for the Construction and Analysis of Systems - 22nd
International Conference, TACAS 2016, Held as Part of the European Joint Confer-
ences on Theory and Practice of Software, ETAPS 2016, Eindhoven, The Netherlands,
April 2-8, 2016, Proceedings. Lecture Notes in Computer Science, vol. 9636, pp. 833–
850. Springer (2016). https://doi.org/10.1007/978-3-662-49674-9_52, https:
//doi.org/10.1007/978-3-662-49674-9_52

35. Lange, J., Yoshida, N.: On the undecidability of asynchronous session subtyping. In: Es-
parza, J., Murawski, A.S. (eds.) Foundations of Software Science and Computation Struc-
tures - 20th International Conference, FOSSACS 2017, Held as Part of the European
Joint Conferences on Theory and Practice of Software, ETAPS 2017, Uppsala, Swe-
den, April 22-29, 2017, Proceedings. Lecture Notes in Computer Science, vol. 10203,
pp. 441–457 (2017). https://doi.org/10.1007/978-3-662-54458-7_26, https://
doi.org/10.1007/978-3-662-54458-7_26

36. Lange, J., Yoshida, N.: Verifying asynchronous interactions via communicating session
automata. In: Dillig, I., Tasiran, S. (eds.) Computer Aided Verification - 31st Interna-
tional Conference, CAV 2019, New York City, NY, USA, July 15-18, 2019, Proceed-
ings, Part I. Lecture Notes in Computer Science, vol. 11561, pp. 97–117. Springer
(2019). https://doi.org/10.1007/978-3-030-25540-4_6, https://doi.org/10.
1007/978-3-030-25540-4_6

37. Li, E., Stutz, F., Wies, T.: Deciding subtyping for asynchronous multiparty sessions. CoRR
abs/2305.17079 (2024). https://doi.org/10.48550/arXiv.2305.17079, https://
doi.org/10.48550/arXiv.2305.17079

https://doi.org/10.1007/3-540-57208-2_35
https://doi.org/10.1007/3-540-57208-2_35
https://doi.org/10.1007/3-540-57208-2_35
https://doi.org/10.1007/3-540-57208-2_35
https://doi.org/10.1007/BFb0053567
https://doi.org/10.1007/BFb0053567
https://doi.org/10.1007/BFb0053567
https://doi.org/10.1145/1328438.1328472
https://doi.org/10.1145/1328438.1328472
https://doi.org/10.1145/1328438.1328472
https://doi.org/10.1145/1328438.1328472
https://doi.org/10.1145/1328438.1328472
https://doi.org/10.4230/LIPIcs.CONCUR.2020.12
https://doi.org/10.4230/LIPIcs.CONCUR.2020.12
https://doi.org/10.4230/LIPIcs.CONCUR.2020.12
https://doi.org/10.4230/LIPIcs.CONCUR.2020.12
https://doi.org/10.4230/LIPIcs.CONCUR.2020.12
https://doi.org/10.4230/LIPIcs.CONCUR.2020.12
https://doi.org/10.1145/359545.359563
https://doi.org/10.1145/359545.359563
https://doi.org/10.1145/359545.359563
https://doi.org/10.1145/359545.359563
https://doi.org/10.1007/978-3-662-49674-9_52
https://doi.org/10.1007/978-3-662-49674-9_52
https://doi.org/10.1007/978-3-662-49674-9_52
https://doi.org/10.1007/978-3-662-49674-9_52
https://doi.org/10.1007/978-3-662-54458-7_26
https://doi.org/10.1007/978-3-662-54458-7_26
https://doi.org/10.1007/978-3-662-54458-7_26
https://doi.org/10.1007/978-3-662-54458-7_26
https://doi.org/10.1007/978-3-030-25540-4_6
https://doi.org/10.1007/978-3-030-25540-4_6
https://doi.org/10.1007/978-3-030-25540-4_6
https://doi.org/10.1007/978-3-030-25540-4_6
https://doi.org/10.48550/arXiv.2305.17079
https://doi.org/10.48550/arXiv.2305.17079
https://doi.org/10.48550/arXiv.2305.17079
https://doi.org/10.48550/arXiv.2305.17079

Deciding Subtyping for Asynchronous Multiparty Sessions 29

38. Li, E., Stutz, F., Wies, T., Zufferey, D.: Complete multiparty session type projection with
automata. In: Enea, C., Lal, A. (eds.) Computer Aided Verification. pp. 350–373. Springer
Nature Switzerland, Cham (2023)

39. Liskov, B., Wing, J.M.: A behavioral notion of subtyping. ACM Trans. Program. Lang. Syst.
16(6), 1811–1841 (1994). https://doi.org/10.1145/197320.197383, https://doi.
org/10.1145/197320.197383

40. Majumdar, R., Mukund, M., Stutz, F., Zufferey, D.: Generalising projection in asynchronous
multiparty session types. In: Haddad, S., Varacca, D. (eds.) 32nd International Confer-
ence on Concurrency Theory, CONCUR 2021, August 24-27, 2021, Virtual Conference.
LIPIcs, vol. 203, pp. 35:1–35:24. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2021).
https://doi.org/10.4230/LIPIcs.CONCUR.2021.35, https://doi.org/10.4230/
LIPIcs.CONCUR.2021.35

41. Mostrous, D., Yoshida, N.: Session-based communication optimisation for higher-order mo-
bile processes. In: Curien, P. (ed.) Typed Lambda Calculi and Applications, 9th International
Conference, TLCA 2009, Brasilia, Brazil, July 1-3, 2009. Proceedings. Lecture Notes in
Computer Science, vol. 5608, pp. 203–218. Springer (2009). https://doi.org/10.1007/
978-3-642-02273-9_16, https://doi.org/10.1007/978-3-642-02273-9_16

42. Mostrous, D., Yoshida, N., Honda, K.: Global principal typing in partially commuta-
tive asynchronous sessions. In: Castagna, G. (ed.) Programming Languages and Sys-
tems, 18th European Symposium on Programming, ESOP 2009, Held as Part of the Joint
European Conferences on Theory and Practice of Software, ETAPS 2009, York, UK,
March 22-29, 2009. Proceedings. Lecture Notes in Computer Science, vol. 5502, pp. 316–
332. Springer (2009). https://doi.org/10.1007/978-3-642-00590-9_23, https:
//doi.org/10.1007/978-3-642-00590-9_23

43. Palamidessi, C.: Comparing the expressive power of the synchronous and asynchronous pi-
calculi. Math. Struct. Comput. Sci. 13(5), 685–719 (2003). https://doi.org/10.1017/
S0960129503004043, https://doi.org/10.1017/S0960129503004043

44. Peters, K., Yoshida, N.: On the expressiveness of mixed choice sessions. In: Castiglioni,
V., Mezzina, C.A. (eds.) Proceedings Combined 29th International Workshop on Expres-
siveness in Concurrency and 19th Workshop on Structural Operational Semantics, EX-
PRESS/SOS 2022, and 19th Workshop on Structural Operational Semantics Warsaw, Poland,
12th September 2022. EPTCS, vol. 368, pp. 113–130 (2022). https://doi.org/10.
4204/EPTCS.368.7, https://doi.org/10.4204/EPTCS.368.7

45. Pierce, B.C., Sangiorgi, D.: Typing and subtyping for mobile processes. Math. Struct.
Comput. Sci. 6(5), 409–453 (1996). https://doi.org/10.1017/s096012950007002x,
https://doi.org/10.1017/s096012950007002x

46. Sipser, M.: Introduction to the theory of computation. PWS Publishing Company (1997)
47. Stutz, F.: Asynchronous multiparty session type implementability is decidable - lessons

learned from message sequence charts. In: Ali, K., Salvaneschi, G. (eds.) 37th European
Conference on Object-Oriented Programming, ECOOP 2023, July 17-21, 2023, Seattle,
Washington, United States. LIPIcs, vol. 263, pp. 32:1–32:31. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik (2023). https://doi.org/10.4230/LIPIcs.ECOOP.2023.32,
https://doi.org/10.4230/LIPIcs.ECOOP.2023.32

48. Toninho, B., Caires, L., Pfenning, F.: Dependent session types via intuitionistic linear type
theory. In: Schneider-Kamp, P., Hanus, M. (eds.) Proceedings of the 13th International ACM
SIGPLAN Conference on Principles and Practice of Declarative Programming, July 20-
22, 2011, Odense, Denmark. pp. 161–172. ACM (2011). https://doi.org/10.1145/
2003476.2003499, https://doi.org/10.1145/2003476.2003499

49. Toninho, B., Caires, L., Pfenning, F.: A decade of dependent session types. In: 23rd Inter-
national Symposium on Principles and Practice of Declarative Programming. PPDP 2021,

https://doi.org/10.1145/197320.197383
https://doi.org/10.1145/197320.197383
https://doi.org/10.1145/197320.197383
https://doi.org/10.1145/197320.197383
https://doi.org/10.4230/LIPIcs.CONCUR.2021.35
https://doi.org/10.4230/LIPIcs.CONCUR.2021.35
https://doi.org/10.4230/LIPIcs.CONCUR.2021.35
https://doi.org/10.4230/LIPIcs.CONCUR.2021.35
https://doi.org/10.1007/978-3-642-02273-9_16
https://doi.org/10.1007/978-3-642-02273-9_16
https://doi.org/10.1007/978-3-642-02273-9_16
https://doi.org/10.1007/978-3-642-02273-9_16
https://doi.org/10.1007/978-3-642-02273-9_16
https://doi.org/10.1007/978-3-642-00590-9_23
https://doi.org/10.1007/978-3-642-00590-9_23
https://doi.org/10.1007/978-3-642-00590-9_23
https://doi.org/10.1007/978-3-642-00590-9_23
https://doi.org/10.1017/S0960129503004043
https://doi.org/10.1017/S0960129503004043
https://doi.org/10.1017/S0960129503004043
https://doi.org/10.1017/S0960129503004043
https://doi.org/10.1017/S0960129503004043
https://doi.org/10.4204/EPTCS.368.7
https://doi.org/10.4204/EPTCS.368.7
https://doi.org/10.4204/EPTCS.368.7
https://doi.org/10.4204/EPTCS.368.7
https://doi.org/10.4204/EPTCS.368.7
https://doi.org/10.1017/s096012950007002x
https://doi.org/10.1017/s096012950007002x
https://doi.org/10.1017/s096012950007002x
https://doi.org/10.4230/LIPIcs.ECOOP.2023.32
https://doi.org/10.4230/LIPIcs.ECOOP.2023.32
https://doi.org/10.4230/LIPIcs.ECOOP.2023.32
https://doi.org/10.1145/2003476.2003499
https://doi.org/10.1145/2003476.2003499
https://doi.org/10.1145/2003476.2003499
https://doi.org/10.1145/2003476.2003499
https://doi.org/10.1145/2003476.2003499

30 E. Li, F. Stutz, and T. Wies

Association for Computing Machinery, New York, NY, USA (2021). https://doi.org/
10.1145/3479394.3479398, https://doi.org/10.1145/3479394.3479398

50. Wadler, P.: Propositions as sessions. J. Funct. Program. 24(2-3), 384–418 (2014).
https://doi.org/10.1017/S095679681400001X, https://doi.org/10.1017/
S095679681400001X

51. Zhou, F., Ferreira, F., Hu, R., Neykova, R., Yoshida, N.: Statically verified refinements for
multiparty protocols. Proceedings of the ACM on Programming Languages 4, 1–30 (11
2020). https://doi.org/10.1145/3428216

https://doi.org/10.1145/3479394.3479398
https://doi.org/10.1145/3479394.3479398
https://doi.org/10.1145/3479394.3479398
https://doi.org/10.1145/3479394.3479398
https://doi.org/10.1145/3479394.3479398
https://doi.org/10.1017/S095679681400001X
https://doi.org/10.1017/S095679681400001X
https://doi.org/10.1017/S095679681400001X
https://doi.org/10.1017/S095679681400001X
https://doi.org/10.1145/3428216
https://doi.org/10.1145/3428216

	Deciding Subtyping for Asynchronous Multiparty Sessions

