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Abstract8

We present and verify template algorithms for lock-free concurrent search structures that cover a9

broad range of existing implementations based on lists and skiplists. Our linearizability proofs are10

fully mechanized in the concurrent separation logic Iris. The proofs are modular and cover the11

broader design space of the underlying algorithms by parameterizing the verification over aspects12

such as the low-level representation of nodes and the style of data structure maintenance. As13

a further technical contribution, we present a mechanization of a recently proposed method for14

reasoning about future-dependent linearization points using hindsight arguments. The mechanization15

builds on Iris’ support for prophecy reasoning and user-defined ghost resources. We demonstrate16

that the method can help to reduce the proof effort compared to direct prophecy-based proofs.17
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1 Introduction31

A search structure is a key-based store that implements a mutable map of keys to values32

(or a mutable set of keys). It provides five basic operations: (i) create an empty structure,33

(ii) insert a key-value pair, (iii) search for a key and return its value, (iv) delete the entry34

associated with a key, and (v) update the value associated with a particular key. Because of35

their general usefulness, search structures are ubiquitous in data-intensive workloads.36

Earlier works [20, 35, 19] developed a framework to verify a wide range of lock-based37

implementations of concurrent search structures. Specifically, they proved that these imple-38

mentations are linearizable [12].39

A core ingredient of the framework is the idea of template algorithms [38]. A template40

algorithm dictates how threads interact but abstracts away from the concrete layout of nodes41

in memory. Once the template algorithm is verified, its proof can be instantiated on a variety42

of search structures.43
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Figure 1 Skiplist with four levels. A node that is marked (logically deleted) at a level is shaded
gray at that level. The red line indicates the path taken by a traversal searching for key 42.

The template algorithms of [20, 35, 19] use locks as a synchronization technique. Locks44

ensure non-interference on portions of memory to guarantee that certain needed constraints45

hold in spite of concurrency.46

The disadvantage of locks is that if a thread holding a lock on some portion of memory p47

stops, then no other thread can get a conflicting lock on p. For that reason, some practical48

implementations such as Java’s ConcurrentSkipListMap [34] use lock-free algorithms.49

This paper shows how to capture multiple variants of concurrent lock-free skiplists and50

linked lists in the form of template algorithms. Thus, proving the correctness of such a51

template algorithm results in a proof that is applicable to many variants at once. Our52

template algorithms are parametric in the skiplist height and allow variations along the53

following three dimensions: (i) maintenance style (eager vs lazy) (ii) node implementations54

and (iii) the order of maintenance operations on the higher levels of the skiplists.55

By instantiating our template algorithm with appropriate maintenance operations and56

node implementations we obtain verified versions of existing (skip)list algorithms from the57

literature such as the Herlihy-Shavit skiplist algorithm [11, § 14], the Michael set [32], and58

the Harris list algorithm [10]. We also obtain a new concurrent skiplist algorithm that has59

not been considered before. The new algorithm is correct by construction thanks to our60

modular verification framework.61

We mechanize our development in the concurrent separation logic Iris [15, 17]. One62

technical contribution of our work is a formalization of hindsight reasoning [33, 23, 7, 8, 27, 28]63

in Iris. Hindsight reasoning has shown its usefulness in dealing with future-dependent and64

external linearization points, a challenge that commonly arises in lock-free data structures.65

Specifically, we build on the hindsight theory developed in [28], providing a mechanism66

in Iris where one can establish that a linearization point has passed by inferring knowledge67

about past states using a form of temporal interpolation.68

To our knowledge, our development is the first formalization of hindsight theory in a69

foundational program logic. The usefulness of the developed theory extends beyond our70

lock-free template algorithms. In fact, we demonstrate that it can help to reduce the proof71

effort compared to alternative proof techniques in Iris. To this end, we reverify the multicopy72

template algorithms of [35] using our formalization of hindsight as opposed to our previous73

tailor-made proof argument for dealing with future-dependent linearization points. The new74

approach reduces the proof effort by 53%.75

To summarize, our contributions are (i) template algorithms for a wide variety of lock-76

free search structure algorithms, (ii) mechanized proofs of linearizability based on hindsight77

reasoning in Iris. The result is, to our knowledge, the first formal verification of fully-functional78

lock-free algorithms for skiplists of unbounded height.79
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2 The Skiplist Template Algorithm80

A skiplist is a search structure over a totally ordered set of keys K. We focus our discussion81

on skiplists that implement mutable sets rather than maps. The extension of the presented82

algorithms to mutable maps is straightforward. The data structure is composed of sorted83

lists at multiple levels, with the base list determining the actual contents of the structure,84

while higher level lists are used to speed up the search. An example is shown in Figure 1. A85

skiplist node contains a key and has a height, determining how many higher level lists this86

node is a part of. Each node has a next pointer for each of its levels. Two sentinel nodes87

signify the head (hd with key −∞) and the tail (tl with key ∞) of the skiplist. Lock-free88

linked lists often use the technique of logical deletion by marking a node before it is physically89

unlinked from the list. This involves storing a mark bit together with the next pointer, so as90

to allow reading and updating them together in a single (logically) atomic step. Lock-free91

skiplist implementations also use this technique. Since a skiplist node can be part of multiple92

lists, it has one mark bit per level.93

The traversal for a key not only goes left to right as usual, but also top to bottom. The94

red line in Figure 1 depicts a traversal searching for key 42. The traversal begins at the95

highest level of the head node. At each non-base level, the traversal continues till it reaches96

a node with a key greater than or equal to the search key. Thereafter, the traversal drops97

down a level, and continues at the lower levels until it terminates on the bottom level at the98

first node whose key is greater than or equal to the search key.99

The traversals in a concurrent skiplist perform maintenance in the form of physically100

unlinking encountered marked nodes. In Figure 1, node n5 has been unlinked at level 2,101

thus the traversal does not visit it at that level. Operations that mark and change the next102

pointers at the higher levels do not affect the actual contents of the structure. We therefore103

consider them to be part of the maintenance.104

Many variants of lock-free skiplist algorithms have been proposed in the literature and105

implemented in practice. These variants differ in (i) their node implementations, (ii) the106

styles of maintenance operations and/or (iii) the orders in which they perform maintenance107

operations with regard to other operations.108

For example, node implementations in low-level languages often use bit-stealing [11] (or109

an equivalent of Java’s AtomicMarkableReference) so that both the next pointer and mark110

bit can be atomically read or updated. Other implementations use more complex solutions.111

For instance, the skiplists in [9] use nodes with back links to reduce traversal restarts due112

to marked nodes. Java’s ConcurrentSkipListMap [34] implements each node as a list of113

simpler nodes, one per level. The higher level nodes have both right pointers and down114

pointers, while the base nodes only have right pointers. Java’s implementation also uses115

marker nodes for marking, instead of bit-stealing.116

In terms of style of maintenance, the traversal in the Michael Set [32] and Herlihy-Shavit117

lock-free skiplist [11, § 14] unlinks one marked node at a time. By contrast, the traversal in118

the Harris List [10] unlinks the entire sequence of marked nodes in one shot with a single119

CAS operation. The variants also differ in the order of marking of a node at higher levels.120

In the Herlihy-Shavit skiplist, the marking of a node goes from top level to the bottom level.121

This differs from skiplists in [34] and [9], whose marking goes from bottom to top.122

Despite the differences in the skiplist algorithms described above (and others to be123

invented in the future), the bulk of their correctness reasoning remains the same. A goal of124

this paper is to show how to exploit that fact.125

Template algorithm. Our template algorithm for skiplists abstracts away from node-level126
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implementation details and the way in which traversals perform maintenance. As we shall see,127

the particular details regarding how the data is stored internal to the node does not affect128

the correctness of the core operations - search, insert and delete. Nor is the correctness129

affected by whether the traversal unlinks one marked node at a time or an entire sequence of130

marked nodes. We also show that the order in which maintenance operations are performed131

on the higher levels of the list does not matter for correctness. In summary, the template132

algorithm we present abstracts from: (i) node-level details; (ii) the style of unlinking marked133

nodes and (iii) the order of maintenance operations on higher levels.134

The template algorithm is assumed to be operating on a set of nodes N that contains135

the two sentinel nodes head hd and tail tl. Let the maximum allowed height of a skiplist136

node be L (> 1). Each node n is associated with (i) its key key(n) ∈ K = N ∪ {−∞, ∞},137

(ii) its height height(n) ∈ [1, L) , (iii) the next pointers next(n, i) ∈ N for each i from 0 to138

height(n) − 1, and (iv) its mark bits per level mark(n, i) ∈ {true, false} for each i from 0139

to height(n) − 1. When discussing next(n, i) or mark(n, i), we implicitly assume that i lies140

between 0 and height(n) − 1. We sometimes say a node n is unmarked to mean that it is141

unmarked at the base level, i.e., mark(n, 0) = false. The structural invariant maintains the142

following facts: key(hd) = −∞, key(tl) = ∞, height(hd) = height(tl) = L, next(tl, i) = tl for143

all i, next(hd, L − 1) = tl, mark(hd, i) = mark(tl, i) = false for all i.144

The core operations of the skiplist template are expressed using helper functions such145

as findNext and markNode that abstract from the details of the node implementation. We146

describe the behavior of these helper functions as and when we encounter them. The template147

is instantiated by implementing these functions. The helper functions are assumed to be148

logically atomic, i.e., appear to take effect in a single step during its execution.149

Figure 2 shows the core operations of the skiplist template algorithm. (We omit the150

code for the data structure initialization as it is straightforward.) All three operations begin151

by allocating two arrays ps and cs via allocArr, each of size L and values initialized to152

hd and tl respectively. These arrays are then populated by the traverse operation as it153

computes the predecessor-successor pair for operation key k at each level. Intuitively, these154

pairs indicate where k would be inserted at each level. The template algorithm here abstracts155

away from the concrete traverse implementation. We later consider two implementations156

of traverse that differ in the way that maintenance is performed, as discussed earlier.157

As far as the core operations are concerned, they rely on traverse to satisfy the following158

specification. First, it returns a triple (p, c, res) where p and c are nodes and res a Boolean159

such that p = ps[0], c = cs[0] and res is true iff k is contained in c. Second, the node c must160

have been unmarked at some point during the traversal; and third, for each 0 ⩽ i < L, the161

traversal observes that key(ps[i]) < k ⩽ key(cs[i]).162

Let us now describe the core operations, starting with the search operation. The163

search operation simply invokes the traverse function, whose result establishes whether164

k was in the structure. The delete operation starts similarly by invoking traverse and165

checking if the key is present in the structure. If it is, then delete invokes the maintenance166

operation maintainanceOp_del, which attempts to mark c at the higher levels (i.e. all levels167

except 0). We provide the implementation of maintainanceOp_del in a moment. Once168

maintainanceOp_del terminates, delete finally attempts to mark c via markNode at the169

base level. If marking succeeds, it terminates by invoking traverse (which performs the170

task of physically unlinking marked nodes at all levels) and returning true. Otherwise, a171

concurrent thread must have already marked c, in which case delete returns false.172

The insert operation also begins with traverse. If the traversal returns true, then the173

key must already have been present. Hence, insert returns false in this case. Otherwise, a174
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1 let search k =
2 let ps = allocArr L hd in
3 let cs = allocArr L tl in
4 let _, _, res = traverse ps cs k in
5 res
6

7 let delete k =
8 let ps = allocArr L hd in
9 let cs = allocArr L tl in

10 let p, c, res = traverse ps cs k in
11 if not res then
12 false
13 else
14 maintainanceOp_del c;
15 match markNode 0 c with
16 | Success -> traverse ps cs k; true
17 | Failure -> false

18 let insert k =
19 let ps = allocArr L hd in
20 let cs = allocArr L tl in
21 let p, c, res = traverse ps cs k in
22 if res then
23 false
24 else
25 let h = randomNum L in
26 let e = createNode k h cs in
27 match changeNext 0 p c e with
28 | Success ->
29 maintainanceOp_ins k ps cs e; true
30 | Failure -> insert k

Figure 2 The template algorithm for lock-free skiplists. The template can be instantiated
by providing implementations of traverse and the helper functions markNode, createNode and
changeNext. The markNode i c attempts to mark node c at level i atomically, and fails if c has been
marked already. createNode k h cs creates a new node e of height h containing k, and whose next
pointers are set to nodes in array cs. Finally, changeNext i p c cn is a CAS operation attempting to
change the next pointer of p from c to cn. changeNext i p c cn succeeds only if mark(p, i) = false
and next(p, i) = c. Other functions used here include randomNum to generate a random number and
maintenance operations associated with insert and delete. maintainanceOp_del marks node c at
the higher levels, while maintainanceOp_ins inserts a new node e at the higher levels.

new node e is created using createNode. The node’s height is determined randomly using175

randomNum, which generates a random number h such that 0 < h < L. After creating a new176

node, the algorithm attempts to insert it into the list by calling changeNext at the base level177

(line 27). If the attempt succeeds, insert proceeds by invoking the maintenance operation178

maintainanceOp_ins, which also inserts the new node into the list at all higher levels. The179

insert then returns with true. If the changeNext operation fails, then the entire operation180

is restarted.181

We now describe the maintenance operations for insert and delete, shown in Figure 3.182

The maintenance operations here differ from those in traditional skiplist implementations183

in regards to the order in which maintenance is performed at higher levels. In traditional184

implementations, the marking of a node goes from top to bottom, while insertion of a new185

node goes from bottom to top. The skiplist template presented here makes sure that the186

base level gets marked at the end and the insertion first happens at the base level, but it187

imposes no order on how it proceeds at higher levels. That is, when marking a node, a188

delete thread could for instance first mark odd levels, then even levels and finally the base189

level 0. The maintenance operations in the skiplist template captures all such permutations.190

As our proof shows later, the order of maintenance at higher levels has no bearing on the191

correctness of the algorithm.192

The maintainanceOp_del marks node c from levels 1 to height(c). It begins by reading193

the height of c as h, and generating a permutation of [1 . . . (h − 1)] stored in array pm via194

the permute function. The maintainanceOp_del_rec then recursively marks c in the order195

prescribed by pm. Note that the maintenance continues regardless of whether markNode196

succeeds or fails, because c will be marked at the end regardless.197

The maintainanceOp_ins begins in the same way by reading the height, generating198

the permutation and invoking maintainanceOp_ins_rec. The maintainanceOp_ins_rec199

first collects the predecessor-successor pair at the current level from arrays ps and cs,200
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1 let maintainanceOp_del_rec i h pm c =
2 if i < h-1 then
3 let idx = pm[i] in
4 markNode idx c;
5 maintainanceOp_del_rec (i+1) h pm c
6 else
7 ()
8

9 let maintainanceOp_del c =
10 let h = getHeight c in
11 let pm = permute h in
12 maintainanceOp_del 0 h pm c

13 let maintainanceOp_ins_rec i h pm ps cs e =
14 if i < h-1 then
15 let idx = pm[i] in
16 let p = ps[idx] in
17 let c = cs[idx] in
18 match changeNext idx p c e with
19 | Success ->
20 maintainanceOp_ins_rec (i+1) h pm ps cs e
21 | Failure ->
22 traverse ps cs k;
23 maintainanceOp_ins_rec i h pm ps cs e
24 else
25 ()
26

27 let maintainanceOp_ins k ps cs e =
28 let h = getHeight e in
29 let pm = permute h in
30 maintainanceOp_ins 0 h pm ps cs e

Figure 3 The maintenance operations for the skiplist. The getHeight c helper function returns
height(c). The permute function generates a permutation of [1 . . . (h − 1)] as an array.

respectively. Then it tries to insert the new node e using changeNext on predecessor node p.201

If changeNext succeeds, then the recursive operation continues. Otherwise, it recomputes202

the predecessor-successor pairs using traverse. After the recomputation, the insertion is203

retried at the same level.204

We can now finally turn to the implementations of traverse. We consider two imple-205

mentations that differ in their treatment of marked nodes. The eager traversal attempts206

to unlink every marked node it encounters, while the lazy traversal simply walks over the207

marked nodes till it reaches an unmarked node. The traversal then attempts to unlink the208

entire marked segment at once. The two implementations are similar in other aspects, so we209

discuss only the eager traversal in detail here.210

The eager traversal is shown in Figure 4. The traverse function is implemented using211

mutually-recursive functions eager_rec and eager_i1. The function eager_rec populates212

the arrays ps and cs with the predecessor-successor pair at level i computed by eager_i.213

The eager_i performs a traversal at level i by first reading the mark bit and next pointer of214

c using findNext. If c is found to be marked, then eager_i attempts to physically unlink215

the node using changeNext. In the case that changeNext fails (because either p is marked216

or it does not point to c anymore), eager_i simply restarts the traverse function. In the217

case of Success of changeNext, the traversal continues. If c is unmarked, then traverse_i218

proceeds by comparing k to key(c). For key(c) < k, the traversal continues with c and cn.219

Otherwise, eager_i ends at c, returning (p, c, true) if key(c) = k and (p, c, false) otherwise.220

As mentioned before, eager_i attempts to unlink immediately whenever a marked node is221

encountered.222

1 For ease of exposition, the implementation of the eager traversal shown in Figure 4 differs slightly from
the version we have verified in Iris. The Iris version uses option return types instead of mutually-recursive
functions in order to obtain a more modular proof of the eager traversal. We use the mutually recursive
implementation here for clarity of exposition.



N. Patel, D. Shasha, and T. Wies 7

1 let eager_i i k p c =
2 match findNext i c with
3 | cn, true ->
4 match changeNext i p c cn with
5 | Success -> eager_i i k p cn
6 | Failure -> traverse ps cs k
7 | cn, false ->
8 let kc = getKey c in
9 if kc < k then

10 eager_i i k c cn
11 else
12 let res = (kc = k ? true : false) in
13 (p, c, res)

14 let eager_rec i ps cs k =
15 let p = ps[i+1] in
16 let c, _ = findNext i p in
17 let p′, c′, res = eager_i i k p c in
18 ps[i] <- p′;
19 cs[i] <- c′;
20 if i = 0 then
21 (p′, c′, res)
22 else
23 eager_rec (i-1) ps cs k
24

25 let traverse ps cs k =
26 eager_rec (L - 2) ps cs k

Figure 4 The eager traversal for the skiplist template. findNext i k c returns a pair
(next(c, i), mark(c, i)). The getKey c helper function returns key(c).

3 Proof Intuition223

Our goal is to show that the skiplist template is linearizable. That is, we must prove that224

each of the core operations take effect in a single atomic step during its execution, the225

linearization point, and satisfies the sequential specification shown in Figure 5. For the226

skiplist template, we define the abstract state C(N) to be the union of the logical contents227

C(n) of all nodes in N , where C(n) := (mark(n, 0) ? ∅ : {key(n)}). In other words, the228

abstract state of the structure is a collection of keys contained in unmarked nodes at the229

base level. There are existing techniques from the literature that help us analyze the skiplist

Ψop(k, C, C ′, res) :=


C ′ = C ∧ (res ⇔ k ∈ C) op = search

C ′ = C ∪ {k} ∧ (res ⇔ k ̸∈ C) op = insert

C ′ = C \ {k} ∧ (res ⇔ k ∈ C) op = delete

Figure 5 Sequential specification of a search structure. k refers to the operation key, C and C′

to the abstract state before and after operation op, respectively, and res is the return value of op.

230

template. The two main techniques that we rely on are the Edgeset Framework [38] and231

Hindsight Reasoning [33, 23, 7, 8, 27, 28]. We begin by giving a brief overview of the two232

techniques, proceeded by the analysis of the skiplist template using these techniques.233

3.1 The Edgeset Framework234

The Edgeset Framework provides a common terminology to capture how search operations235

navigate in a variety of search structures. We view each search structure as a mathematical236

graph whose edges are associated with an edgeset, a label that is a set of keys. We denote237

the edgeset from n to n′ by es(n, n′), and k ∈ es(n, n′) signifies that a search for key k238

will proceed from node n to n′. In the context of the skiplist template, we define the239

edgeset leaving n to be all values greater than the key in n if n is unmarked. If node240

n is marked, then the edgeset leaving n is the entire keyspace. Formally: es(n, n′) :=241

(n′ = next(n, 0) ∧ mark(n, 0) = false ? (key(n), ∞) : K). Note that, our definition of edgesets242

in the skiplist template depends only on the base list, and not on higher level mark bits and243

next pointers.244
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A notion defined in terms of edgesets is the inset of a node, denoted by inset(n), signifying245

a set of keys for which a search will arrive at n. In order to understand the concept of inset246

intuitively, consider Figure 6. The inset of node n4 is (2, ∞), because, for all keys greater247

than 2, the search will enter n4. We say node n1 is the logical predecessor of n4 if it is248

the first unmarked predecessor of n4. The inset of the root is K and the inset of n is the249

intersection of K with the edgesets of all nodes between the root and n. For sorted linked250

lists in general, a more local notion gives the same result: the inset of an unmarked node n251

is (key(n′), ∞), where n′ is the logical predecessor of n.252

In contrast to inset, we define the outset as the union of all its outgoing edgesets:253

outset(n) :=
⋃

n′∈N es(n, n′).254

We can now define the keyset of a node n as keyset(n) := inset(n)\outset(n), i.e. intuitively,255

the set of keys for which a search enters n but never leaves. The importance of keysets is256

that if k is in keyset(n), then k is either in the contents of n or is nowhere in the structure.257

In Figure 6, the keyset of n4 is (2, 9] and in general, the keyset of an unmarked node n258

is (keyset(n′), key(n)] where n′ is its logical predecessor. The keyset of a marked node is ∅259

because its outset is the set of all keys K.260

The technical definition of inset relies on the global data structure graph, defined as a
solution to the following fixpoint equation

∀n ∈ N. inset(n) = in(n) ∪
⋃

n′∈N

es(n′, n) ∩ inset(n′)

where in(n) := (n = hd ? K : ∅). Thus, the inset is a global quantity and hence difficult to261

reason about. Fortunately, this is where the Flow Framework [21, 22, 29] comes in handy.262

It allows us to reason about quantities that can be expressed as a solution to a fixpoint263

equation (like inset) in a local manner by attaching flow values to the node. The framework264

then provides tools to track changes to the flow values that are induced by changes to the265

underlying graph. Our approach to encoding keysets in Iris using the Flow Framework is266

borrowed from [19]. We defer further details on this matter to the later sections.267

As mentioned above, keyset(n) intuitively is the set of all keys that n is responsible for.268

Consider Figure 6 again, a thread executing search(6) without any interference will reach269

node n4 and terminate, concluding that 6 is not present in the structure. In this sense, we270

say n4 is responsible for key 6 and therefore 6 is part of n4’s keyset. The keysets of all nodes271

partition the set of all keys and provide the crucial Keyset Property:272

∀ n ∈ N, k ∈ K. k ∈ keyset(n) ⇒ (k ∈ C(N) ⇔ k ∈ C(n)) (KeysetPr)273

This property enables one to lift a proof of the specification at the node level to a proof of274

the sequential specification Ψop. A particular situation where (KeysetPr) proves indispensable275

is when search fails to find the search key. Note that search observes only the nodes it276

visited, and hence has only a partial view of the structure. When search fails to find the277

key, the proof has to reconcile this partial view of the structure with the global view. In278

essence, if a concurrent invocation of search on key k fails to find the key, can we conclude279

that there was a point in time during its execution when k was in fact not present in the280

structure? Here, the property (KeysetPr) helps us reconcile facts gathered by search with281

the global state of the structure. Specifically, if search can determine a node n such that282

k ∈ keyset(n) and k /∈ C(n), then we can immediately infer that k was not present in the283

structure at that point in time.284
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Figure 6 Possible state of the base list in the skiplist template. Nodes are labeled with the value
of their key field. Edges indicate next pointers. Marked (logically deleted) nodes are shaded gray.
keyset(hd) = {0}, keyset(n1) = (0, 2], keyset(n4) = (2, 9] and keyset(tl) = (9, ∞). The keyset of a
marked node is always ∅.
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Figure 7 Possible states of search(7) on the base level in presence of interference from concurrent
delete(7) and insert(7).

3.2 Hindsight Reasoning285

Lock-free structures often exhibit future-dependent linearization points. That is, the lineariz-286

ation point of an operation cannot be determined at any fixed moment, but only at the end287

of the execution, once any interference of other concurrent operations has been accounted for.288

To understand the interference issue, consider the search operation. Since, search returns289

the result of traverse, let us look at the eager traversal implementation. To simplify the290

explanation further, let us assume that the maximum height allowed for every non-sentinel291

node is one. Then, we can ignore the eager_rec function and focus on eager_i called at292

the base level.293

Let there be a thread T executing search(7). Concurrently, there is a thread Td executing294

delete(7) and a thread Ti executing insert(7). Figure 7 shows interesting scenarios that295

thread T might potentially observe. Box (a) captures the state of the structure at the296

beginning of the eager_i call processing n2. Let Scenario 1 be the situation when thread297

T faces no interference from Td and Ti. Here, thread T finds the key 7 in n2 and eager_i298

returns true. The point when eager_i finds n2 to be unmarked becomes the linearization299

point for this scenario.300

Now consider Scenario 2 to be the situation where thread Td marks n2 before eager_i301

processes it, as shown in Box (b). Thread T will attempt to unlink n2, and assuming no302
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further interference, the unlink will result in the structure in Box (c). Thread T will process303

n3 next, finding n3 to be unmarked with key greater than 7, and will terminate with result304

false. So when is the linearization point in this scenario? It cannot be when T finds n3305

unmarked when processing it. Because there could be further interference from thread Ti306

which inserts key 7 in a new node as shown in Box (d). The new node could be added right307

before T reads the mark bit of n3. Thus, when eager_i finds n3 unmarked and returns false,308

key 7 could actually be present in the structure at that point in time.309

The linearization point is actually the point in time shown in Box (c), i.e., right after n2 is310

unlinked. However, thread T cannot confirm this when n2 is unlinked because eager_i may311

not terminate at n3 with false as the result. The reason is that by the time T processes n3, it312

could get marked in a manner similar to n2 in Box (b), resulting in the unlinking of n3 and313

potentially a restart. That Box (c) is the linearization point is confirmed when T has found314

n3 to be unmarked later. The structure maintains the invariant that once a node is marked,315

it remains marked. Using this invariant, an analysis of thread T ’s history concludes that n3316

must have been unmarked at the point when n2 was unlinked. Once eager_i terminates at317

n3 with false, an analysis can establish in hindsight that Box (c) indeed was the linearization318

point.319

Hindsight reasoning as formalized in [27, 28] is designed to deal with situations like the320

search in Figure 7. It enables temporal reasoning about computations using a past predicate321

⟐q, which expresses that proposition q held true at some prior state in the computation322

(up to the current state). For instance, ⟐(next(n1, 0) = n2) holds in Box (c) even though323

next(n1, 0) = n3 at that point. The reason is that next(n1, 0) = n2 was true at an earlier324

point in time, namely in Box (b). Note that the past operator ⟐ abstracts away the exact325

time point when the predicate held true. Note also that a past predicate is not affected by326

concurrent interferences, as it merely records some fact about a past state.327

There are two ways to establish a past predicate that are relevant for our proofs. The328

first is to establish the predicate in the current state directly. That is, ⟐q holds if q holds329

in the current state. As an example, we obtain (next(n1, 0) = n2) when findNext on n1330

returned n2 in Box (a). Thus, for all subsequent states including Box (b) and (c), we get331

⟐(next(n1, 0) = n2). The second way to establish a past predicate is through the use of332

temporal interpolation [28]. That is, one proves a lemma of the form: if there existed a past333

state that satisfied property q and the current state satisfies r , then there must have existed334

an intermediate state that satisfied o. Such lemmas can then be applied, e.g., to prove that335

if thread T finds n3 to be unmarked in Scenario 2, then it must have been unmarked when336

n2 was unlinked in Box (c).337

Equipped with the Edgeset Framework and hindsight reasoning, we are now ready to338

analyze the core operations of the skiplist template.339

3.3 Proof Outline for Core Operations340

We refer to a linearization point as modifying if the operation changes the abstract state of341

the data structure (like in the case of a succeeding delete and insert) and otherwise refer to342

it as unmodifying (like search and in the case of a failing delete or insert). The modifying343

linearization points of the skiplist template are easier to reason about because they are not344

future-dependent. For delete, the linearization point occurs when markNode succeeds, and345

similarly, for insert the linearization point occurs when the call to changeNext on line 27346

succeeds. The proof strategy for unmodifying linearization points is to combine (KeysetPr)347

with the ⟐ operator from hindsight reasoning. Let us expand on this proof strategy in detail348

and show why the skiplist template is linearizable.349
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We begin by describing the specification for traverse that is assumed for analyzing the350

core operations of the template. Then, we analyze each of the operations in detail. Finally,351

we show how the eager implementations of traverse satisfies the specification that was352

assumed in the beginning. Along the way, we introduce (as and when necessary) invariants353

maintained by the skiplist template that are crucial for proving linearizability.354

Specification of traverse. The function traverse ps cs k updates arrays ps and cs355

with predecessor-successor pairs for each level and returns a triple (p, c, res) that satisfies356

the following past predicate regarding node c: ⟐(k ∈ keyset(c) ∧ (res ⇔ k ∈ C(c))). Recall357

that our definition of edgesets in Section 3.1 implies the following invariant:358

Invariant 1 For all nodes n, if mark(n, 0) is set to true then keyset(n) = ∅.359

Using Invariant 1, we can establish that c is unmarked at the base level at the time point360

when k ∈ keyset(c) holds. Note that traverse may physically unlink marked nodes. However,361

this step does not change the abstract state of the structure. Hence, the specification for362

traverse involves no change of the abstract state.363

We now consider each of the core operations in detail.364

Proof of search. Function search returns res out of the triple (p, c, res) returned by365

traverse. The specification of traverse says res ⇔ k ∈ C(c) at some point, say t, during366

its execution. The specification additionally guarantees k ∈ keyset(c) at time t. These two367

facts, combined with the (KeysetPr) at time point t, allow us to immediately infer that res is368

true iff k was in the structure at that point. Hence, we can establish that (res ⇔ k ∈ C(c))369

was true at some point during the execution of search.370

Proof of delete. We analyze delete by case analysis on the value res returned by371

traverse. If res is false, then again we can establish that k was not in the structure at372

some point during traverse’s execution by the same reasoning used in the proof of search.373

So let us consider the case that res is true. By the specification of traverse, we can374

establish a time point when c was unmarked and contained k. The delete operation then375

calls maintainanceOp_del which marks c at all the higher levels. Finally, the markNode376

on Line 15 attempts to mark c at the base level. If markNode succeeds, then this step377

becomes the linearization point of delete and k can be considered to be deleted from378

the structure. But if markNode fails, then we gain the knowledge that mark(c, 0) = true.379

Hindsight reasoning allows us to infer that c was marked at the base level by a concurrent380

thread between the end of traverse and the invocation of markNode. The point right after381

c was marked by a concurrent thread becomes the linearization point of delete in this case,382

as we can determine that k was not present in the structure at that point.383

This hindsight reasoning relies on two facts: first, the key of a node never changes and384

second, once a mark bit is set to true by a successful markNode operation (at line 15 in385

delete or line 4 in maintainanceOp_del), no other operation will set it back to false. In386

fact, these two facts are invariant for the skiplist template:387

Invariant 2 For all nodes n and level i, once mark(n, i) is set to true, it remains true.388

Invariant 3 For all nodes n, key(n) remains constant.389

Proof of insert. Similar to delete, we begin by case analysis on res returned by390

traverse. If res is true, then we can establish that k was already present in the structure391

at some point. Otherwise, res is false and insert creates a new node e with key k. Using392

changeNext, an attempt is made to insert node e between nodes p and c. If the attempt393

succeeds, then k is now part of the structure and this becomes the linearization point. The394

following maintainanceOp_ins operation does not change the abstract state of the structure,395
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and thus, has no effect in terms of linearizability. If the changeNext fails, then insert396

simply restarts.397

As is evident with the proof outline for the core operations, the specification assumed for398

traverse plays a critical role in case the operation exhibits an unmodifying linearization399

point. Let us now turn to traverse and show how its specification can be proved. We400

analyze the eager traversal in detail in the following section. The proof argument for the401

lazy version is similar.402

3.4 Proof Outline for Eager Traversal403

As stated earlier, traverse returns (p, c, res) such that ⟐(k ∈ keyset(c) ∧ (res ⇔ k ∈ C(c))).404

Since the returned triple is the result of a call to eager_i at the base level, let us begin by405

analyzing the behavior of this call.406

In the sequential setting, the traversal in a search structure maintains the invariant that407

the search key is always in the inset of the current node. This invariant holds by the design408

of the Edgeset Framework. Unfortunately, this invariant no longer holds for the skiplist409

template in the concurrent setting as evidenced by Box (c) in Figure 7. However, we argue410

first that eager_i does maintain the invariant that the search key was in the inset of the411

current node c between the start of the traversal and the point at which the eager_i accesses412

c. We call this the inset in hindsight invariant.413

We prove this invariant inductively. We make use of the following locally maintained414

invariants: (i) At all times, there is one list, denoted the reachable list, from the head node415

that includes all unmarked and some marked nodes. (This list is characterized by the set of416

nodes with non-empty inset, see Figure 6 for intuition). (ii) The keys in the reachable list417

are sorted. A consequence of these two invariants is that if a node n is in the reachable list418

(whether n is marked or not) and has a key less than k, then k is in the inset of n.419

To prove that inset in hindsight is an invariant, we have to show that (a) it is an invariant420

when eager_i takes a step (Line 2) when traversing the base level, and (b) that we can421

establish inset in hindsight when eager_rec initiates eager_i (Line 17) at the base level.422

To show (a), observe that if a node n becomes unlinked from the reachable list, then it423

will never again be part of the reachable list. Hence, if n is not in the reachable list when424

eager_i begins executing at the base list, then eager_i will never visit n. The contrapositive425

of this statement allows us to say that if eager_i reaches some node c, then it must have426

been part of the reachable list at some point during the execution of eager_i. Additionally,427

eager_i proceeds to the node following c only when key(c) < k. With the help of invariants428

(i) and (ii) above, we can thus establish that k was in the inset of n at some point.429

To show (b), we must do a case analysis on whether node p (Line 16) is marked. If it is430

unmarked, then it is straightforward to establish that k is in the inset of c currently. However,431

if p is marked, then we require temporal interpolation based on the following invariant:432

Invariant 4 For all nodes n and level i, once mark(n, i) is set to true, next(n, i) does not433

change.434

This invariant tells us that if p was known to be unmarked in the past, and it is marked435

currently, then p must have been pointing to c right before it got marked. At that point in436

time, we can establish that k must have been in the inset of c.437

This completes the inductive proof that inset in hindsight is indeed an invariant maintained438

by the traversal. The inset in hindsight invariant is sufficient to prove the traverse439

specification by the following simple argument. If the traverse encounters k in an unmarked440

node n, then traverse will return true as it should. If, by contrast, traverse encounters an441
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unmarked node n such that key(n) > k, then by the inset in hindsight invariant, k must have442

been in the inset of n at some point t in the past and k cannot be in the outset of n (because443

key(n) > k and n is unmarked), so therefore k must have been in the keyset of n at time t.444

4 Hindsight Reasoning in Iris445

Linearizability in Iris is defined via (logically) atomic triples [5, 17]. Intuitively, an atomic446

triple
〈

x. P
〉

e
〈

v. Q
〉

says that at some point during the execution of e, the resources447

described by the precondition P will be updated to satisfy the postcondition Q for return448

value v in one atomic step. The variable x can be thought of as the abstract state of the data449

structure before the update at the linearization point.450

Linearizability of a search structure operation op can be expressed by an atomic triple of451

the form452

Inv(r) −∗
〈

C. CSS(r, C)
〉

op r k
〈

res. ∃ C ′. CSS(r, C ′) ∗ Ψop(k, C, C ′, res)
〉
. (ClientSpec)453

Here, r is the pointer to the head of the data structure. The predicate CSS(r, C) is the454

representation predicate that relates the head pointer with the contents C of the structure.455

The predicate Inv(r) is the shared data structure invariant. It can be thought of as a456

thread-local precondition of the atomic triple, which we express using separating implication.457

The invariant ties CSS(r, C) to the data structure’s physical representation and may contain458

other resources necessary for proving the atomic triple. The predicate Ψop(k, C, C ′, res)459

captures the sequential specification of the structure. The specification essentially says there460

is a single atomic step in op where the abstract state changes from C to C ′ according to the461

sequential specification Ψop(k, C, C ′, res) (Figure 5). This step is op’s linearization point.462

We call (ClientSpec) the client-level atomic specification for the data structure under proof.463

Proving atomic triples. The proof of establishing an atomic triple involves a linearizability464

obligation that must be discharged directly at the linearization point. However, it can be465

challenging to determine the linearization point precisely and to discharge the linearizability466

obligation exactly at that point. When the program execution reaches a potential linearization467

point that depends on future interferences by other threads, then the proof will fail if it is468

unable to determine whether the linearizability obligation should be discharged now or later.469

In Iris, this challenge is overcome using prophecy variables [16], which enable the proof to470

reason about the remainder of the computation that has not yet been executed.471

Another challenge is that the linearization point of an operation may be an atomic step472

of another operation that is executed by a different thread (like in Scenario 2 discussed in473

Section 3.2). Data structures that demonstrate such behavior are said to deploy helping. This474

behavior complicates thread modular reasoning. The conventional solution to this challenge475

in Iris is to use a helping protocol [16, 35, 14]. The helping protocol is specified as part476

of the shared data structure invariant and consists of a registry that tracks which threads477

are expected to be linearized by other threads as well as conditional logic that governs the478

correct transfer and discharge of the associated linearizability obligations.479

Both the use of prophecy variables and the helping protocol need to be tailored to the480

specific data structure at hand, which adds considerable overhead to the proof. To reduce this481

overhead, we present an alternative proof method that enables linearizability proofs based482

on hindsight arguments in Iris. Rather than identifying the linearization point precisely, the483

proof can establish linearizability in hindsight using temporal interpolation in the style of484

the intuitive proof argument for the skiplist template presented in Section 3.2.485
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Hindsight specification. Our proof method offers an intermediate specification, a Hoare486

triple specification, which in essence expresses that linearizability has been established in487

hindsight. In our Iris formalization, we show that any data structure whose operations satisfy488

the hindsight specification also satisfy the client-level atomic specification. This proof relates489

the two specifications via prophecy variables and a helping protocol. However, the helping490

protocol is data structure agnostic, making our proof method applicable to a broad class of491

structures exhibiting future-dependent unmodifying linearization points.492

From the perspective of a proof author using our method to prove linearizability of some493

structure, one has to only establish the hindsight specification to obtain the proof of the494

client-level atomic specification. To this end, our method provides further guidance to the495

proof author.496

In order to use hindsight reasoning, one has to have the history of computation at hand.497

Here, we offer a shared state invariant with a mechanism to store the history. The shared498

state invariant has three main components: a mechanism to store the history, the helping499

protocol, and finally, an abstract predicate that can be instantiated with invariants specific500

to the structure at hand. The first two components are data structure agnostic. The proof501

author only needs to specify the data structure-specific invariant and what information about502

the data structure state should be tracked by the history.503

In the rest of this section, we discuss our method in detail. We begin with the hindsight504

specification, followed by a discussion of the shared state invariant and how to use it.505

4.1 Linearizability in Hindsight506

We motivate the hindsight specification using the challenges we face when proving the client-507

level atomic specification for the delete operation of the skiplist template. Let us recall the508

intuitive proof argument for delete from Section 3.3. As per the observation regarding the509

modifying and unmodifying linearization points, a delete thread with modifying linearization510

point can fulfill the obligation at the point when the structure is modified. However, a511

delete thread with an unmodifying linearization point requires helping.512

Prophecy reasoning. An important detail of our proof method is how it determines513

whether a thread requires helping. In the following, we refer to the operation that a thread514

performs at its linearization point as its decisive operation. In delete, the traversal observes515

node c to be unmarked at some point during execution. In the case where c is marked by the516

time that the thread calls its decisive operation markNode (in Line 15), the thread requires517

helping from the thread that marks c.518

In order to determine in advance whether a thread requires helping, our proof method519

attaches a prophecy to each thread. A prophecy in Iris can predict a sequence of values520

and is treated as a resource that can be owned by a thread. Ownership of a prophecy p521

is captured by the predicate Proph(p, pvs), where pvs is the list of predicted values. The522

predicate signifies the right to resolve p when the thread makes a physical step that produces523

some result value v. The resolution of p establishes equality between v and the head of the524

list pvs (i.e., the next value predicted by p). The resolution step yields the updated predicate525

Proph(p, pvs′) where pvs′ is the tail of pvs. This mechanism enables the proof to do a case526

analysis on the predicted values pvs before these values have been observed in the program527

execution2.528

2 For further details on prophecies in Iris, we refer to [16].
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The prophecy attached to a thread predicts the results of the thread’s decisive operation.529

In case of delete, the decisive operation is the call to markNode in the base list, while for530

insert, it is the call to changeNext in the base list. Note that a thread may restart if its531

decisive operation fails (like in the case of insert). Therefore, the prophecy needs to predict532

a sequence of result values, one for each attempted call to the thread’s decisive operation.533

For the purpose of this discussion, we assume that the prophecy predicts a sequence of534

Success or Failure values. If the sequence contains a Success value, then the decisive535

operation will succeed and the thread will modify the structure. Otherwise, the thread’s536

linearization point is unmodifying. Let predicate Upd(pvs) hold when pvs contains at least537

one Success value.538

The proof author only needs to identify the decisive operations that potentially change the539

abstract state of the structure (like markNode as discussed above) by resolving the prophecy540

around these decisive calls.541

Hindsight specification. Before we can present the hindsight specification, we need to542

provide necessary details regarding the atomic triples in Iris. An atomic triple
〈

x. P
〉

e
〈

v. Q
〉

543

is defined in terms of standard Hoare triples of the form ∀ Φ.
{

AUx.P,Q(Φ)
}

e
{

v. Φ(v)
}

. The544

predicate AUx.P,Q(Φ) is the atomic update token and represents the linearizability obligation545

of the atomic triple. At the beginning of each atomic step that the thread takes up to its546

linearization point, the token offers the resources in P and the token itself transforms into a547

choice. That is, at the end of the atomic step, the prover has to chose to either commit the548

linearization or abort. When committing, the prover has to show that the thread’s atomic549

step transforms the resources in P to those in Q, receiving Φ(v) from the update token in550

return, which serves as the receipt of linearization of the atomic triple. In case of an abort,551

the prover needs to show that the thread’s atomic step reestablishes P .552

We also need to introduce two more auxiliary predicates:553

Thread(tid, t0): this predicate is used to register the thread with identifier tid in the554

shared invariant. The argument t0 denotes the time when thread tid began its execution.555

PastLin(op, k, res, t0): this predicate holds if there was a past state in the history between556

time t0 and the point when this predicate is evaluated for which the sequential specification557

Ψop held with result res. It essentially captures whether the sequential specification was558

true for any point after time t0.559

We now have all the ingredients to present the hindsight specification:560

∀ tid t0 pvs. Inv(r) −∗ Thread(tid, t0) −∗{
Proph(p, pvs) ∗ (Upd(pvs) −∗ AUop(Φ))

}
op r k

res. ∃pvs′. Proph(p, pvs′) ∗ pvs = (_ @ pvs′)
∗ (Upd(pvs) −∗ Φ(res))

∗ (¬Upd(pvs) −∗ PastLin(op, k, res, t0))


(HindSpec)561

We explain it piece by piece. The local precondition Thread(tid, t0) ties the thread to its562

identifier tid and provides knowledge that tid begins executing at time t0. The Hoare563

triple can be best understood by observing how prophecy resources are allowed to change564

(highlighted in brown) and what are the obligations when Upd(pvs) holds (in teal) versus565

when it does not hold (in magenta). Let us look at each of these in detail. First, the prophecy566

resource Proph(p, pvs) in the precondition changes to Proph(p, pvs′) in the postcondition567

where pvs′ is a suffix of pvs. It basically says that operation op is allowed to resolve the568

prophecy p as many times as it needs and then return the remaining resource at the end.569
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Now let us consider the case when Upd(pvs) holds. The precondition here provides the570

atomic update token AUop(Φ) to op, expecting the receipt of linearization Φ(res) in return.571

Thus, the responsibility of linearization is delegated to op when Upd(pvs) holds. We can gain572

better insight by relating this situation to the delete operation from the skiplist template as573

before. This case corresponds to when markNode (from line 15) succeeds as Upd(pvs) holds574

here. The point when markNode succeeds becomes the linearization point and so the thread575

does not require help from other threads to linearize. The hindsight specification simply asks576

for the receipt from linearization Φ(res) at the end.577

Finally, let us consider the case when Upd(pvs) does not hold. The precondition provides no578

additional resources here, while the postcondition requires the predicate PastLin(op, k, res, t0).579

In simple terms, this means that if Upd(pvs) is not true, i.e., the prophecy says the thread580

is not going to modify the structure, then the hindsight specification allows exhibiting a581

past state from history when the sequential specification was true. Relating again to delete,582

if the markNode fails, then the thread can look at the history of the structure and exhibit583

precisely the point when the decisive node got marked.584

The proof argument for establishing the hindsight specification is significantly simpler585

than if one were to attempt a direct proof of the client-level atomic specification. In particular,586

the proof author does not need to reason about helping and atomic update tokens in last587

case discussed above. Instead, they only need to reason about the structure-specific history588

invariant.589

Soundness of the hindsight specification. Our proof that relates the hindsight590

specification for op to the atomic triple specification involves a helping protocol. The details591

of the helping protocol and the soundness proof for the hindsight specification are similar to592

those of the proofs presented in [16, 35]. We therefore provide only a brief summary here.593

Additional details regarding the proof and the helping protocol can be found in [36].594

Before op begins executing, the proof creates the prophecy resource Proph(p, pvs) assumed595

in the precondition of the hindsight specification. If the prophecy determines that the thread596

requires helping, then its client-level atomic triple is registered to a predicate which encodes597

the helping protocol as part of the shared state invariant Inv(r). The registered atomic triple598

serves as an obligation for the helping thread to commit the atomic triple. This obligation599

will be discharged by the appropriate concurrent operation determined by the op’s sequential600

specification Ψop. The proof then uses the hindsight specification to conclude that it can601

collect the committed triple from the shared predicate. The committed triple serves as a602

receipt that the obligation to linearize has been fulfilled.603

To govern the transfer of linearizability obligations and fulfillment receipts between604

threads via the shared invariant, the helping protocol tracks a registry of thread IDs with605

unmodifying linearization points that require helping from other concurrent threads. Each606

thread registered for helping is in either pending state or done state, depending on whether607

the thread has already been linearized. A thread registered for helping must be able to608

determine its current protocol state in order to be able to extract its committed atomic triple609

from the registry. For this purpose, the helping protocol includes a linearization condition610

that holds iff a registered thread tid has linearized (and is, hence, in done state).611

From the point of view of a thread which does the helping, the linearization condition612

forces its proof to scan over the pool of uncommitted triples registered in the helping protocol613

and identify those that need to be linearized at its linearization point, changing their protocol614

state from pending to done. This step involves a proof obligation for the helping thread to615

show that the sequential specification of tid’s operation is indeed satisfied at the linearization616

point.617
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One crucial innovation in our helping protocol is that we have formulated a linearization618

condition that is parametric in the sequential specification of the data structure operations,619

making the soundness proof for the hindsight specification applicable to many structures620

at once. In particular, we deal with the aspect of scanning and updating the registry in621

the proof of the helping thread, the proof author simply invokes a lemma provided by our622

method at the identified linearization points. Therefore, the helping protocol mechanism623

remains fully opaque to the proof author.624

4.2 Invariant for Hindsight Reasoning625

Hindsight arguments involve reasoning about past program states. Our encoding therefore626

tracks information about past states using computation histories. We define computation627

histories as finite partial maps from timestamps, N, to snapshots, S. A snapshot describes an628

abstract view of a program state. It is a parameter of our method. For instance, a snapshot629

may capture the physical memory representation of the data structure under proof, while630

abstracting from the remainder of the program state. Another parameter is a function | · |631

that computes the abstract state of the data structure from a given snapshot.632

Inv(r) := ∃ H T C. CSS(r, C) ∗ |H(T )| = C

∗ Hist(H, T ) ∗ Invhelp(H, T ) ∗ Invtpl(r, H, T )
Invtpl(r, H, T ) := resources(r, H(T ))

∗ (∀t, 0 ⩽ t ⩽ T ⇒ per_snapshot(H(t)))
∗ (∀t, 0 ⩽ t < T ⇒ transition_inv(H(t), H(t + 1)))

Figure 8 Definition of the shared state invariant encoding the hindsight reasoning. Variable H

represents the history, T the current timestamp in use and C the abstract state of the structure.

Figure 8 shows a simplified definition of the invariant that encodes the hindsight reasoning.633

For sake of brevity, we provide only a high-level overview of the predicates used in the invariant.634

The predicate Hist(H, T ) contains the mechanism to track the history of snapshots. That635

is, H denotes the history that has been observed so far and T is the current time stamp.636

Using appropriate ghost resources, it ensures that the timestamps are non-decreasing and637

past states recorded in H are preserved by future updates to the history. This allows us to638

define a past predicate ⟐s,t0(q) with the intuitive meaning that the history contains state639

s recorded after (or at) time t0 for which proposition q holds true. The exact definition of640

the past predicate uses the ghost resources used to preserve the past states. The predicate641

Hist(H, T ) also guarantees that dom(H) = {0 . . . T}, ensuring that there are no gaps in the642

history.643

The conjunct |H(T )| = C and the predicate CSS(r, C) together tie the abstract state C644

of the data structure to the latest snapshot in the history. The predicate CSS(r, C) is the645

dual of the representation predicate CSS(r, C) used in the client-level atomic specification.646

Both represent one half of an ownership over the abstract state of the structure, keeping the647

abstract state defined by Inv(r) synchronized with the representation predicate CSS(r, C).648

The helping protocol predicate Invhelp(M, T ) contains a registry of thread IDs with649

unmodifying linearization points that require helping from other concurrent threads. For650

each thread ID tid in the registry, the protocol stores information such as the start time of651

the thread, whether it has been linearized or not, etc.652
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The predicate Invtpl(r, H, T ) captures invariants particular to the data structure under653

proof. It is further composed of three abstract predicates that are meant to be instantiated654

with the structure specific invariants. The three predicates serve the following purpose. The655

first predicate resources(r, H(T )) ties the current snapshot to the physical representation of656

the structure. The predicate Hist(H, T ) contains a conjunct (∀t, t < T ⇒ H(t) ̸= H(t + 1)).657

Together with the predicate resources, this conjunct forces a thread to update the history658

whenever the structure is modified.659

The predicate per_snapshot(H(T )) captures the structural invariants that hold for any660

given snapshot. For instance, when proving the skiplist template, this predicate holds facts661

about the nodes hd and tl having maximum height, etc. The predicate transition_inv(s, s′)662

captures a transition invariant on snapshots observed in the history. That is, it constrains663

how certain quantities evolve over time. Again as an example from the skiplist template664

proof, the fact that a node marked in s remains marked in s′ is included here. Crucially, the665

facts in transition_inv(s, s′) allow temporal interpolation required to establish facts about666

past states in the history (like in Section 3.2).667

To summarize, the proof author defines the snapshot of the structure, the function | · |,668

and instantiates the three abstract predicates in Invtpl appropriately. The resulting shared669

state invariant then tracks the history and handles the helping protocol without requiring670

further fine-tuning to the data structure at hand.671

5 Verifying the Skiplist Template672

We relate the intuitive proof argument from Section 3 to the development on hindsight673

reasoning in Iris in Section 4 to obtain a complete proof of the skiplist template. To achieve674

this, we must perform three tasks required by the proof method in Section 4. The first675

task is to determine the decisive operations that potentially alter the structure, and resolve676

the prophecy around those operations. As discussed previously, the decisive operations are677

markNode for delete and changeNext for insert. The search operation does not modify678

the abstract state and hence, it has no decisive operation.679

The second task is to define a snapshot in the context of the skiplist template and680

instantiate Invtpl appropriately. This includes the predicate resources that ties the concrete681

state of the structure to the latest snapshot, as well as invariants that allow temporal682

interpolation. The third and the final task is to prove the hindsight specification for the core683

operations.684

In this section we focus on the second task of defining the snapshot and providing685

invariants necessary to formalize the intuitive proof argument. Once, we have set up the686

right invariants, the formalized proof follows the intuitive proof very closely. We explain this687

with delete as an example.688

5.1 Snapshot and the Skiplist Template Invariant689

Recall that the notion of keysets are central to the intuitive proof argument for the core690

operations of the skiplist template. Hence, a snapshot of the structure must contain691

information about the keysets. For encoding keysets in Iris, we borrow heavily from [19],692

especially the keyset camera and the representation of keysets via the Flow Framework.693

We define the snapshot of the skiplist template as a tuple containing the following694

components:695

the set of nodes N comprising the structure (also referred to as the footprint below)696
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Invtpl(r, H, T ) := resources(r, H(T ))
∗ (∀t, 0 ⩽ t ⩽ T ⇒ per_snapshot(H(t)))
∗ (∀t, 0 ⩽ t < T ⇒ transition_inv(H(t), H(t + 1)))

resources(s) := ∗
n∈FP(s)

Node(n, mark(s, n), next(s, n), key(s, n), height(s, n))

∗ resources_keyset(s)
transition_inv(s, s′) := (FP(s) ⊆ FP(s′))

∗ (∀n, key(s′, n) = key(s, n) ∧ height(s′, n) = height(s, n))
∗ (∀n i, mark(s, n, i) = true ⇒ mark(s′, n, i) = true)
∗ (∀n i, mark(s, n, i) = true ⇒ next(s′, n, i) = next(s, n, i))

Figure 9 Instantiating Invtpl with invariants of the skiplist template.

the abstract state of the structure (a set of keys)697

the mark bits (a map from N to N → Bool, i.e., a Boolean per level)698

the next pointers (a map from N to N → N)699

the keys (a map from N to K)700

the height of nodes (a map from N to N)701

the representation of flow values702

We reparameterize the mark(n, i) function introduced earlier to take the snapshot as an703

argument. Thus, we use mark(s, n, i) to mean the mark bit of node n at level i in snapshot704

s. We redefine next(·), key(·), keyset(·) and other such functions similarly by adding the705

snapshot s as an additional parameter. We also use FP(s) to represent the footprint of the706

snapshot s.707

We now present the skiplist template invariant in Figure 9. The resources predic-708

ate ties the snapshot to the concrete state through an intermediary node-level predicate709

Node(n, k, h, mk, nx). This predicate actually ties the physical representation of a node in710

the heap to the abstract quantities (key(·), height(·), mark(·) and next(·), respectively) that711

the skiplist template relies on. The Node predicate also owns all the resources needed to712

execute the helper functions. The skiplist template proof is parametric in the definition of713

Node. Thus, we achieve proof reuse across skiplist variants that follow the same high-level714

skiplist algorithm, but implement the node differently. We provide more details on this715

matter later. We discuss some concrete node implementations in Section 6.716

The predicate resources_keyset(s) capture the ownership resources required for keyset717

reasoning. Using the ghost resources in Iris and the keyset camera from [19], it ensures that718

the keysets and the logical contents of nodes in s satisfy (KeysetPr).719

The predicate per_snapshot captures structural invariants that hold for all snapshots720

recorded in the history. This includes invariants of three kinds: first, invariants to ensure that721

each component of the snapshot is of the correct type and the maps (from nodes to mark bits,722

next pointers, etc.) are defined for all nodes in the footprint; second, the node-level invariants723

relating the node’s inset, outset, mark bit, etc (like Invariant 1); and third, invariants about724

the hd and tl nodes, such as key(s, hd) = −∞, height(tl) = L, etc.725

The predicate transition_inv(s, s′) captures invariants about how certain quantities evolve726

over time, such as that mark bits once set to true remain true. The invariants 2, 3, and727
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1
〈

k h mk nx. Node(n, k, h, mk, nx)
〉

getKey n
〈

k. Node(n, k, h, mk, nx)
〉

2
〈

k h mk nx. Node(n, k, h, mk, nx)
〉

getHeight n
〈

h. Node(n, k, h, mk, nx)
〉

3
〈

k h mk nx. Node(n, k, h, mk, nx) ∗ (i < h)
〉

findNext i n
〈

n′. Node(n, k, h, mk, nx) ∗ (nx(i) = n′)
〉

4

5
〈

k h mk nx. Node(n, k, h, mk, nx) ∗ (i < h)
〉

markNode i n

6

〈
x. Node(n, k, h, mk′, nx) ∗ (mk(i) = true ⇒ x = Failure ∗ mk′ = mk)

∗(mk(i) = false ⇒ x = Success ∗ mk′ = mk[i↣ true])

〉
7

8
〈

k h mk nx. Node(n, k, h, mk, nx) ∗ (i < h)
〉

changeNext i n n′ e

9

〈
x. Node(n, k, h, mk, nx ′) ∗ ((mk(i) = true ∨ nx(i) ̸= n′) ⇒ x = Failure ∗ nx ′ = nx)

∗((mk(i) = false ∧ nx(i) = n′) ⇒ x = Success ∗ nx ′ = nx[i↣ e])

〉

Figure 10 Specifications of the helper functions used by the skiplist template.

4 presented in Section 3 are part of this predicate. These invariants form the crux of the728

hindsight reasoning, as they enable temporal interpolation.729

Before we go into the formal proof argument for delete, we must discuss how to reason730

about the node-level helper functions. Figure 10 shows the specification for the helper731

functions assumed by the skiplist template. The specifications are logically atomic, i.e., they732

behave like a single atomic step in the template. The preconditions for all of the functions733

rely solely on the predicate Node. The functions getKey, getHeight and findNext read734

various components of the node. Note that findNext reads both the mark bit and the next735

pointer together.736

The specification for functions markNode and changeNext is slightly more complex because737

they potentially change the structure. Let us explain them briefly. For markNode on node738

n at level i, the return value (Success or Failure) is determined by whether n is already739

marked at i. If it is, then the function returns Failure without modifying the node. If it740

is unmarked, then markNode successfully marks it, and updates the node accordingly. The741

specification for changeNext can be interpreted similarly. Here, the return value hinges upon742

the mark bit being false and the next pointer of n pointing to n′ at i.743

5.2 Proof of delete744

We now have all the ingredients to show that delete satisfies (HindSpec). We provide only745

a high-level summary of the proof here. Please see [36] for more details.746

The precondition provides access to the invariant Inv(r) and knowledge that the thread ID747

is tid with start time t0. Additionally, the thread has the right to resolve prophecy p around748

the decisive operations, and if the thread observes a successful decisive operation, then the749

atomic update AU(Φ) is available to help with the linearization. The delete operation begins750

with traverse. Using the ⟐ operator defined in Section 4.2, we express the postcondition of751

traverse as752

⟐s,t0(k ∈ keyset(s, c) ∧ (res ⇔ k ∈ C(s, c))).753

Intuitively, this assertion captures that there is a past state s in the history (after time point754

t0) in which k is in the keyset of c and res is true iff k is in the logical contents of c.755

The argument here proceeds by case analysis on res. Let us first consider the case that756

res is false. The delete operation also terminates with false. Since the thread terminates757

without any calls to the decisive operations, this case corresponds to the ¬Upd(pvs) case758

in the postcondition of (HindSpec). The postcondition requires delete to establish the759
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predicate PastLin(del, k, false, t0). In this context, establishing this predicate amounts to760

identifying a witness past state in which k was not part of the abstract state. Clearly, this is761

witnessed by state s from the specification of traverse. Applying (KeysetPr) in state s, we762

can establish the predicate PastLin(del, k, false, t0).763

Now, let us consider the case that res is true. The maintainanceOp_del marks node c at764

the higher level, but the interesting part of the proof is when the decisive operation markNode765

is called at the base level (Line 15). Again there are two cases to consider, depending on766

whether markNode succeeds. If markNode succeeds, then we can establish Upd(pvs) as we767

see a Success value being resolved. In this case, the precondition of (HindSpec) provides the768

atomic update AU(Φ). Since, the thread has modified the abstract state, this becomes the769

linearization point. The thread can linearize with AU(Φ) to obtain the receipt Φ and satisfy770

its postcondition. The proof also has to update the history with the new snapshot of the771

structure, as c goes from being unmarked to marked.772

The final (and most interesting) case is when markNode fails. Here again, we must establish773

PastLin(del, k, false, t0) to complete the proof of (HindSpec). Two facts are useful: (i) in774

the past state s referred to in the traverse spec, we can establish that mark(s, c) = false;775

and (ii) since the markNode has failed, in the current state say s0, mark(s0, c) = true.776

Hence, by using the second conjunct of transition_inv in Figure 9 and temporal interpolation777

on the two facts above, we can infer the existence of two consecutive states s1 and s2,778

such that mark(s1, c) = false and mark(s2, c) = true. Clearly, a concurrent delete thread779

marked c in state s2. Hence, this state becomes the witness to establish the predicate780

PastLin(del, k, false, t0). This completes the proof that delete satisfies (HindSpec).781

6 Proof Mechanization and Evaluation782

We now shed light on the mechanization of the hindsight methodology, as well as its application783

to the skiplist template. We additionally reverify the multicopy template from [35] using784

our new hindsight specification to modularize the proof effort. Although the multicopy785

algorithms are lock-based, hindsight reasoning is helpful in their verification. The case study786

demonstrates a substantial reduction in proof size due to the encoding of hindsight reasoning787

in Iris, illustrating the generality of our contribution. Our development is available as a788

VM and docker image on Zenodo [3].789

All of the proofs we discuss below are mechanized in Iris/Coq. The templates, traversals790

and the node implementations are written in Iris’s default programming language Hea-791

pLang. In order to correctly capture the dependence between different layers of the proofs792

(such as hindsight specification and the templates, the templates and the traverse/node793

implementations), we heavily make use of Coq’s module system.794

The organization of our proofs is shown in Figure 11. Going from left to right, the795

first column relates to the formalization of hindsight reasoning in Iris. The box “Hindsight”796

captures the assumptions regarding the hindsight specification from Section 4. These797

assumptions not only include the hindsight specification itself but also the relevant definitions798

of snapshots, histories, etc. The module “Client-level Spec” relates the client-level specification799

expressed in terms of atomic triples to the hindsight specification used for the template-level800

proofs. The corresponding proof involves the reasoning about prophecies and the helping801

protocol, which is done once and for all and applicable to all data structures that fulfill the802

assumptions made in the “Hindsight” module.803

The middle column consists of modules for the two verified templates (skiplist and804

multicopy) and the associated proofs verifying the template operations against the hindsight805
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−→ 99K
satisfies assumes

Hindsight

Client-level Spec

Node

Traverse

Skiplist Template

Multicopy Template

Node Impl. 1

Node Impl. 2

Eager Travresal

Lazy Travresal

Figure 11 The structure of our proofs. Each box represents a collection of modules relevant to
the label. The dashed arrows represent module dependence, i.e., assumption of specifications. The
normal arrows represent implementation of the target module (fulfillment of the assumptions).

specification. We discuss them in turn.806

Skiplist template case study. The skiplist template, as described in Figure 2, abstracts807

from the concrete implementations of nodes and the traverse operation. Hence, we package808

their specifications into separate modules. To ensure that the specified data structure809

invariant for the skiplist template is not vacuous, we also verified an init routine that810

initializes the data structure and establishes the invariant.811

The final column shows modules for the two node implementations of the skiplist template,812

as well as the eager and lazy traversal discussed in Section 2. The helper functions markNode813

and changeNext are implemented using an atomic CAS operation in both of the node814

implementations. The crux of the node implementation for the skiplist template is to815

determine a memory representation of the mark bit and the next pointer (at some level)816

such that both values can be read or written together with one atomic CAS operation. The817

first node implementation does this by using a sum type. The second node implementation818

is conceptually similar but uses more low-level data types instead of a sum type.819

The traversal and node implementations above correspond to several existing lock-free820

(skip)list algorithms from the literature. The Herlihy-Shavit skiplist algorithm [11, § 14] is821

obtained by instantiating our template with the eager traversal, the node implementation822

2, and maintenance operations that link higher-level nodes in increasing order of level and823

unlink nodes in the opposite order. The Michael set [32] is obtained as a degenerate case of824

the Herlihy-Shavit template instantiation where the skiplist is restricted to L = 2 (For L = 2,825

Level 1 consists of only a fixed single edge between the sentinel nodes. So, conceptually,826

Level 1 can be ignored in this case.)827

We obtain a novel variant of a skiplist by replacing the eager traversal in the Herlihy-828

Shavit instantiation with the lazy traversal. The lazy traversal is inspired by the Harris list829

algorithm [10], which is obtained as a degenerate case of this new lazy skiplist algorithm by830

restricting it to L = 2.831

We present a summary of the proof effort for the skiplist template in Table 1. The832

proof-checking time was measured on the Docker image running on an Apple M1 Pro chip833

with 16GB RAM. The flow library contains the Iris formalization of the Flow Framework834

developed in [19, 35]. As a minor contribution, we extend this library with general lemmas for835

reasoning about graph updates that have an affect on an unbounded number of nodes. These836

lemmas are useful for the proofs of insert, delete and lazy traverse. The unbounded837

updates, as well as the maintenance operations, are the reason for the relatively high number838

of proof lines for the insert and delete operations.839
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Skiplist Template (Iris/Coq)
Module Code Proof Total Time
Flow Library 0 5330 5330 33
Hindsight 0 950 950 11
Client-level Spec 9 329 338 18
Skiplist 12 1693 1705 26
Skiplist Init(∗) 6 319 325 15
Skiplist Search(∗) 7 62 69 6
Skiplist Insert(∗) 37 3457 3494 111
Skiplist Delete(∗) 28 2401 2429 72
Node Impl. 1 118 908 1026 35
Node Impl. 2 106 836 942 35
Eager Traversal 38 1165 1203 96
Lazy Traversal 47 2063 2110 145
Total 408 19513 19921 603

Herlihy-Shavit 243 11212 11455 390
Table 1 Summary of the proof effort. For each module, we show the number of lines of program

code, lines of proof, total number of lines, and the proof-checking time in seconds. The code for the
initialization and the core operations of the skiplist (entries with (∗)) is technically defined in the
“Skiplist” module, however here we present them separately for each operation to provide a better
picture. The count for Herlihy-Shavit is the summation of rows “Hindsight”, “Client-level Spec”, all
“Skiplist” modules, “Node Impl. 2” and “Eager Traversal”.

Multicopy template case study. The multicopy template from [35] generalizes search840

structures such as the lock-based Log-Structured Merge (LSM) tree used widely in modern841

database systems. It satisfies the Map ADT specification, with search and upsert (for842

insert/update) as its core operations. To deal with the complexity of future-dependent843

external linearization points, the original proof relies on an intermediate template-level844

specification based on the concept of search recency.845

Table 2 presents a detailed comparison of the multicopy template proofs from [35] versus846

the new proof based on the hindsight framework. The original proof consists of a total847

of 2779 lines. By contrast, the definitions (“Defs”) and “Client-level Spec” proofs can be848

factored out of the total cost of the hindsight-based proof, because it is part of the hindsight849

library itself. Hence, the new proof based on hindsight reasoning consists of only 1310 lines,850

which is a reduction of 53%. To summarize, the improvement stems from the fact that the851

original proof relies on an intermediate specification and a helping protocol that is tailored852

to multicopy structures, while our new proof uses a helping protocol that is shared among853

all proofs that build on the new hindsight proof method.854

While the majority of the reduction in the proof size stems from the elimination of855

structure-specific specifications and helping protocol proofs, we also saw a minor reduction in856

the size of the remainder of the proof. One outlier is the proof of upsert. Here, the increase857

is attributed to the fact that the proof has to construct a fresh snapshot when the operation858

succeeds. However, this construction is conceptually simple and could be factored out into859

more abstract lemmas that are provided directly by the hindsight library.860
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Multicopy Template (Iris/Coq)
Module Original Hindsight
Defs 866 (950)
Client-level Spec 434 (338)
LSM 741 540
Search 411 399
Upsert 327 371
Total 2779 1310

Table 2 Comparison of multicopy template proofs. The column “Original” shows the number
of lines from the proofs in [35], while “Hindsight” shows them for our new proof effort. Module
“Defs” represents definitions required for proving the client-level specification (helping invariant,
history predicate, etc). Module “Client-level Spec” contains the proof relating the intermediate
specification (Search Recency Specification from [35] and Hindsight Specification in our paper) to the
client specification. Module “LSM” contains definitions required to instantiate the frameworks for
LSM trees. Modules “Search” and “Upsert” refer to the proofs for the search and upsert operations,
respectively. Entries in ‘()’ for the ‘Hindsight’ column are not included in the total due to being
part of the hindsight library.

7 Related Work861

The formal verification of linearizability has received much attention in recent years. We862

refer to [6] for a survey of relevant techniques and focus our discussion to the most closely863

related works.864

Our work builds on the idea of template algorithms for lock-based concurrent search865

structures of [20, 35, 19], which we extend to the setting of lock-free implementations. A866

common challenge when verifying linearizability of lock-free data structures is the prevalence867

of future-dependent and external linearization points. Hindsight theory [33, 23, 7, 8, 27, 28]868

has emerged as a suitable technique to address this challenge in the context of concurrent869

search structures. To our knowledge, we are the first to formalize hindsight reasoning within a870

foundational program logic. Tools like Poling [39], plankton [27, 28], and nekton [26] automate871

hindsight reasoning at the expense of an increased trusted code base. However, these tools872

currently cannot handle complex data structures with unbounded outdegree like skiplists.873

Also, they do not aim to characterize the design space of related concurrent data structures874

like our template algorithms do.875

Other techniques for dealing with future-dependent linearization points include argu-876

ments based on forward simulation (e.g., by tracking all possible linearizations of ongoing877

operations [13], tracking a partial order [18], or using commit points [4]) and backward878

simulation (e.g., using prophecy variables [1, 24, 16]). Our encoding of hindsight reasoning879

in Iris combines forward reasoning (by tracking the history of the data structure state) and880

backward reasoning (by using prophecies). However, the details of this encoding are for the881

most part hidden from the proof engineer by providing a higher-level reasoning interface882

based on past predicates and temporal interpolation as proposed in [28]. Our comparison883

with a prior proof of multicopy structure templates [35] suggests that this abstraction helps884

to reduce the proof complexity.885

Several works propose techniques for automatically verifying concurrent skiplists. Abdulla886

et al. [2] propose a technique for verifying linearizability of lock-free list-based data structures887

using forest automata. The evaluation considers bounded skiplists with up to 3 levels.888

However, the implementation does not scale to larger bounds and the unbounded case is889
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outside the scope of the technique. We note that the height of the skiplist is tied to the890

expected runtime of the skiplist operations. To guarantee the expected worst-case runtime891

bounds, the skiplist’s height must be of order O(log(n)) where n is the expected maximal892

number of entries in the list. For this reason, real-world skiplist implementations are also893

parametric in the height. Heights up to 63 levels are feasible in deployed skiplists [25], so the894

restriction to height 3 in [2] is unrealistic. By contrast, our proofs cover skiplists of arbitrary895

height.896

Sánchez and Sánchez [37] present an SMT-based approach towards an automated veri-897

fication of concurrent lock-based skiplists. The approach is based on a decidable theory of898

unbounded skiplists. However, it does not consider lock-free implementations and focuses on899

establishing shape invariants preserved by the structure instead of proving linearizability.900

Unlike these automated tools, our approach does not rely on data-structure specific901

decidable theories for reasoning about inductive properties of heap graphs. Instead, we build902

on the Flow Framework [21, 22, 29], which enables local reasoning about such properties over903

general graphs in separation logic. As a minor contribution, we extend the mechanization904

of the Flow Framework from [20] with lemmas to reason about graph updates that affect905

properties of an unbounded number of nodes.906

There are some skiplist algorithms that are not immediately covered by our template907

algorithm. For example, skiplists based on the algorithm presented in [9] such as Java’s908

ConcurrentSkipListMap [34] use backlinks to avoid restarts when a traversal fails. However,909

we believe that our template algorithm can be extended to subsume such algorithms by910

abstracting from the restart policy, similarly to how the present template abstracts from the911

maintenance policy.912

In this paper, we assume a programming language with a garbage collected semantics.913

The rationale for this assumption is that issues arising from manual memory reclamation can914

be addressed by orthogonal means. For instance, [30, 31] propose a technique that decouples915

the proof of data structure correctness from that of the underlying memory reclamation916

algorithm, allowing the correctness proof of the data structure to be carried out under the917

assumption of garbage collection. Recent work also showed how to carry out such modular918

proofs in program logics like Iris [14].919

8 Conclusions and Future Work920

This paper shows how to verify some of the most challenging concurrent data structure921

algorithms in existence. The accompanying proofs are fully mechanized in the foundational922

program logic Iris. The proofs are modular and cover the broader design space of the923

underlying algorithms by parameterizing the verification over aspects such as the low-level924

representation of nodes and the style of data structure maintenance.925

Besides being the first work to verify unbounded lock-free skiplists, the work has developed926

technologies for Iris, particularly hindsight reasoning, that can be useful in many applications.927

Our proofs guarantee safety but not liveness. This limitation is shared by the algorithms928

they verify: in any highly concurrent (minimal or no locking) setting, a thread t may never929

complete because of other threads that overtake it. Fortunately, this never happens in930

practice where threads all advance more or less at the same pace. Verifying liveness under931

such fairness assumptions remains an interesting direction for future work.932

Another area of future work is to verify algorithms that mix locking parts with lock-free933

parts both for single copy and multicopy search structures. We believe that the present934

framework will be a good basis for that effort.935
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