Decision Procedures for
Automating Termination Proofs

Ruzica Piskac! and Thomas Wies?

! Ecole Polytechnique Fédérale de Lausanne (EPFL), Switzerland
2 Institute of Science and Technology (IST), Austria

Abstract. Automated termination provers often use the following schema to
prove that a program terminates: construct a relational abstraction of the pro-
gram’s transition relation and then show that the relational abstraction is well-
founded. The focus of current tools has been on developing sophisticated tech-
niques for constructing the abstractions while relying on known decidable logics
(such as linear arithmetic) to express them. We believe we can significantly in-
crease the class of programs that are amenable to automated termination proofs
by identifying more expressive decidable logics for reasoning about well-founded
relations. We therefore present a new decision procedure for reasoning about mul-
tiset orderings, which are among the most powerful orderings used to prove termi-
nation. We show that, using our decision procedure, one can automatically prove
termination of natural abstractions of programs.

1 Introduction

The standard technique for proving program termination is to construct a ranking func-
tion [11]. A ranking function maps the states of the program into some well-founded
domain, i.e., a set equipped with a well-founded ordering. The mapping is such that,
with each transition taken by the program, the value of the ranking function decreases
in the ordering. The canonical well-founded ordering for constructing ranking functions
is the strict order on the natural numbers. However, constructing global ranking func-
tions for this ordering (i.e., functions that decrease with every transition of the program)
requires a lot of ingenuity.

Despite the general result of undecidability of the halting problem, recent advances
in program analysis have brought forth tools that can automatically prove termination
of real-world programs [3, 5, 6]. The success of these tools is due to the development
of new proof techniques for termination [15, 23]. These techniques avoid the construc-
tion of a global termination argument and, instead, decompose the program into sim-
pler ones. Each of these simpler programs is then proved terminating independently,
by constructing a simpler ranking function. The automation of these proof techniques
relies on decision procedures for reasoning about constraints on well-founded domains.
The existing tools use known decidable logics such as linear arithmetic to express these
constraints [4,22], which effectively restricts the range of ranking functions that can be
constructed automatically. We believe that by providing decision procedures for more
sophisticated well-founded domains, one can significantly increase the class of pro-
grams that are amenable to automated termination proofs.

http://icwww.epfl.ch/~piskac
http://ist.ac.at/~wies

2 R. Piskac and T. Wies

Among the most powerful well-founded domains for proving program termination
are multiset orderings [9]. In this paper, we present a decision procedure for automated
reasoning about such orderings. A multiset is an unordered collection of elements from
a base set, where each element may occur multiple times. For instance, {1,2,2,3} is
a multiset of natural numbers. This multiset is equal to the multiset {1, 3,2, 2} but
different from the multiset {1,2,3}. A (strict) ordering < on the base set S can be
lifted to an ordering <, on (finite) multisets over .S as follows. For two multisets X
and Y, X <, Y holds iff X and Y are different and for every element x € S which
occurs more times in X than in Y, there exists an element y € S which occurs more
times in Y than in X and z < y. For instance, {1,1,1,2,2} < {1,3} since 1 < 3
and 2 < 3. Multiset orderings are interesting because they inherit important properties
of the ordering on the base set. In particular, the multiset ordering <, is well-founded
iff the ordering < on the base set is well-founded [9]. Multiset orderings have been
traditionally used for manual termination proofs in program verification [7, 9], term
rewriting systems [1, 8], and theorem proving [2, 16]. The question whether reasoning
about multiset orderings can be effectively automated was open.

Contributions. In this paper, we present a new logic called POSSUM for expressing
ordering constraints on finite multisets. The logic is parameterized by the theory of the
base set, which can be an arbitrary theory equipped with a preorder (not necessarily
well-founded). We show that if the base theory is decidable then so is its extension to a
multiset ordering. What is more, we show that if the base theory is decidable in NP then
the satisfiability problem for its POSSUM extension is NP-complete. Our decision pro-
cedure can be easily implemented using off-the-shelf SMT solvers. We demonstrate the
usefulness of our decision procedure for proving termination of interesting programs.
We therefore believe that it can be a useful component of future automated termination
provers.

2 Examples

We motivate the usefulness of our decision procedure for proving termination through
two examples.

Example 1: counting leaves in a tree. Our first example is a program taken from [9]
and shown in Figure 1. The termination behavior of this program is representative for
many programs that traverse algebraic data types.

The program COUNTLEAVES counts the number of leaves in a binary tree. For this
purpose it maintains a stack S that contains all subtrees of the input tree root that still
need to be traversed. In each iteration the first element y is removed from S. If y is a
leaf then the count is increased. Otherwise the subtrees of y are pushed on the stack.
Then the computation continues with the updated stack.

In order to prove termination of program COUNTLEAVES we need to find a well-
founded ordering on the states of the program that decreases with every iteration of the
loop. This well-founded ordering needs to capture the fact that in each loop iteration
either some tree is removed from the stack, or some tree on the stack is replaced by
finitely many smaller trees. This can be naturally expressed in terms of a multiset or-
dering. We therefore abstract the program COUNTLEAVES by a program over multisets.

Decision Procedures for Automating Termination Proofs 3

prog CountLeaves(root : Tree) : int =
var S : Stack[Tree] = root
varc:int=20
do
y := head(S)
if leaf (y) then
S = tail(S)
c:=c+1
else S := left(y) - right(y) - tasl(S)
until S =«
return c

Fig. 1. Program COUNTLEAVES: counting the leaves in a binary tree

prog AbsCountLeaves(root : Tree) =
var X5 : multiset[Tree] = {root}
do
y := choose(Xs)
if leaf (y) then X5 := X5\ {y}
else X := (Xs \ {y}) w {lefi(y)} W {right(y)}
until XS = @

Fig. 2. Multiset abstraction of program COUNTLEAVES

The result of this abstraction is shown in Figure 2. The program ABSCOUNTLEAVES
is obtained from program COUNTLEAVES by mapping the stack S to a multiset X,
i.e., in program ABSCOUNTLEAVES we abstract from the order of the elements in S In
program ABSCOUNTLEAVES the stack operations are replaced by operations on mul-
tisets. For instance, the operation head(S) is abstracted by the operation choose(Xg)
that non-deterministically chooses an element from the multiset X g. The computation
of such multiset abstractions of programs could be automated by combining techniques
developed in [27] and [5, 24]. In this paper we focus on automating the termination
proofs for the resulting multiset program.

We prove termination of program ABSCOUNTLEAVES by proving that for every
iteration of the loop, the variable X g decreases in the ordering <,. The ordering <, is
the multiset extension of the subtree ordering < on the trees stored in the multiset. The
subtree ordering is well-founded; consequently, so is its multiset extension. Termination
of program ABSCOUNTLEAVES is therefore implied by the validity of the termination
condition given in Figure 3. The decision procedure presented in this paper decides the
validity of such termination conditions (respectively, unsatisfiability of their negation).
In Section 3 we show how the decision procedure works on a formula similar to the one
shown in Figure 3.

Example 2: computing negation normal form. Our second example is a rewrite
system that computes the negation normal form of a propositional formula. It con-
sists of the three rewrite rules shown in Figure 4. The three rules are applied non-
deterministically to any matching subformula.

In order to prove termination of this rewrite system, Dershowitz [8] suggested the
following mapping from a propositional formula F' to a multiset of natural numbers

4 R. Piskac and T. Wies

Xs Z0ANXs(y) >0A
(Xs = Xs \ {y} vV X5 = (Xs \ {y}) 0 {left(y)} ¥ {right(y)}) = X5 <m Xs

Fig. 3. Termination condition for program ABSCOUNTLEAVES

~(FAG) ~ —F V-G
~(FVG) ~ —F A-G

Fig. 4. Rewrite system for computing negation normal form

XF. Let [G] denote the number of operators other than — that occur in G, then define
Xr = {|G] | =G is a subformula of F'}

We can then prove that, for each rewrite rule applied to a formula F', X decreases
in the multiset extension <, of the ordering < on natural numbers. This amounts to
checking validity of the following two implications:

XF:X/FL‘H{.'IJ,.I} — XIF <m Xp
Xr=YuW{z+y+1} A >0NXr =YW {z,y} - Xp <m Xp

Again, these checks can be automated using our decision procedure.

3 Decision Procedure through an Example

We now explain our decision procedure through an example. The decision procedure
is parameterized by the theory of the base elements comprising the multisets. For in-
stance, in the first example given in Section 2, the base theory is the theory of trees with
the subtree ordering. This theory is decidable in NP [28]. In general, the base theory
can be any decidable theory equipped with a preorder. Our decision procedure reduces
the formula with ordering constraints over multisets to a formula containing ordering
constraints on the base elements. Satisfiability of the reduced formula is then checked
using the decision procedure of the base theory.

To demonstrate how our decision procedure works, we apply it to the following
formula, which is a slightly generalized version of the negated termination condition
given in Figure 3:

YCXAX' =X\Y)WZAZ<nY A =(X'<nX))]

This formula is unsatisfiable in the theory of preordered multisets (where the base the-
ory is the theory of all preordered sets). The reduction of the formula works as follows.
First we purify and flatten the input formula by introducing fresh variables for multisets
and base elements to separate the multiset constraints from constraints in the base the-
ory. In our example there are no base theory constraints. So, purification and flattening
of formula (1) results in the formula:

YCXAX =XiWZAX;=X\Y AZ<,Y A~(X <0 X)

Decision Procedures for Automating Termination Proofs 5

The next step is to replace all multiset atoms by their point-wise definitions on the base
elements. This gives the following formula:

(Va.Y(z) < X(x)) A

(Ve. X' (z) = X1(x) + Z(x)) A

(Vz. X1 (z) = max{X(z) — Y (z),0}) A

(Fy-Z(y) #Y(y) A (V2. Y (2) < Z(2) = Fy. Z(y) <Y(y) Nz=<y) A

(V. X'(z) = X(x)) VI X(2') < X' (2') A V. X' (2) < X(x) = —(2' <x)))

Next, we skolemize all existentially quantified variables. In our example this introduces
two Skolem constants e1, e and one Skolem function w. The resulting formula is:

Ve.Y(z) < X(z)) A

(Vo. X' (z) = X1(z) + Z(x)) A

(V. X1 (z) = max{X (z) — Y(x),0}) A

Zer) #Y(e) NV Y (y) < Z(y) = Z(w(y)) <Y(w(y)) Ay <wy))) A
(V. X' () = X(z)) V X(e2) < X'(e2) A Va. X'(z) < X(x) — —(e2 <))

The idea is now to replace each remaining universal quantifier with a finite conjunc-
tion by instantiating each quantifier with finitely many ground terms generated from
the constants appearing in the formula and the introduced Skolem functions. The prob-
lem is that finite instantiation is in general incomplete because the Skolem functions
coming from the ordering constraints generate an infinite Herbrand universe. Before
instantiation we therefore first conjoin the skolemized formula with additional axioms
that further constrain the Skolem functions. In our example, we add the two axioms:

Vey.Y(z) < Z(z) Nw(z)<y — Y(y) < Z(y), Vz.Z(x)=Y(z) = w() ==

We will show in Section 6 that this step is sound and ensures that instantiation of the
strengthened formula with the terms ey, e2, w(ey) and w(es) is sufficient for proving
unsatisfiability of the original constraint. The instantiated formula is a quantifier-free
formula over symbols of the base theory (such as the preorder <), the theory of lin-
ear arithmetic, and the theory of free function symbols (the multisets and the Skolem
functions). The satisfiability of such formulas can be decided using a Nelson-Oppen
combination of the decision procedures for the corresponding component theories. In
our example, the instantiated formula implies the following disjunction:

Z(e1) £Y(e1) AN X'(e1) = X(e1) = Y(e1)+ Z(e1) AN X'(e1) = X(e1) V
X'(e2) = X(e2) —=Y(e2) + Z(ea) A X(ea) < X'(e2) ANY (e2) > Z(e2) V
X'(w(e2)) = X(wlez)) — Y(wlez)) + Z(w(e2)) A

Z(w(e2)) <Y(w(e2)) A X'(w(e2)) = X(w(e2)) V
e2 <w(ez) A —(ea <w(esz))

Observe that each of the disjuncts is unsatisfiable and, hence, so is the original for-
mula (1).
4 Preliminaries

Before we describe the logic and decision procedure for multiset orderings, we briefly
fix our formal framework.

6 R. Piskac and T. Wies

Sorted logic. A signature X is a tuple (.S, £2), where S is a countable set of sorts and {2
is a countable set of function symbols f. Every f € 2 is associated with an arity n > 0
and asort s; X - -+ X s, — sg with s; € S for all ¢+ < n. Function symbols of arity 0 are
called constant symbols. For the description of our problem we will consider three sorts:
S = {int, bool, elem}. We treat predicates of sort $; X --- X s, as function symbols of
sort s1 X ... X 8, — bool. We say that a signature }; extends a signature Y5 if 3y
contains at least the sorts and function symbols of Y5. Let V' be a countably infinite set
of sorted variables, disjoint from (2. Terms are built as usual from the function symbols
in {2 and variables taken from V. We denote by ¢ : s that term ¢ has sort s. A term
t is ground, if no variable appears in ¢. We denote by Terms(X') the set of all ground
X-terms. An atom is either constructed from the equality symbol t; = %5 applied to
terms ¢ and to of the same sort, or by applying a predicate symbol to terms of the
respective sorts. Formulas are built from atoms as usual, using boolean connectives and
quantifiers. A formula F' is called closed or a sentence if no variable appears free in F.

Structures. Given a signature X' = (5, {2), a X-structure o is a function that maps
each sort s € S to a non-empty set a(s) and each function symbol f € (2 of sort
81 X -+ X 8, = So to a function a(f) : a(s1) X -+ X a(s,) = a(sg). Set a(s) is
also called a-domain of the sort s. We assume that all structures interpret the sort bool
by the set of Booleans {true, false}, and the sort int by the set of all integers Z. The sort
elem will serve as our base set for defining multisets. We speak of «(elem) simply as
the domain of « and often identify the two.

For a X-structure « and a variable assignment 8 : V. — «(S), the evaluation
of a term (respectively a formula) in «, 8 is defined as usual. In particular, we use
the standard interpretations for the equality symbol and propositional connectives. A
quantified variable of sort s ranges over all elements of «(s). For ground terms ¢t we
skip the variable assignment and simply write «(t) for its evaluation in «. The notions
of satisfiability, validity, and entailment of formulas are also defined as usual. We write
a,f | F if « satisfies F' under §. Similarly, we write o = F if « satisfies F for all
variable assignments 3. In this case we also call o a model of F'.

Theories. A X-theory T for a signature X' is simply a set of X'-structures. Sometimes
we identify a theory by a set of X'-sentences K, meaning the set of all 2-models of K.
We then call K the axioms of the theory. The satisfiability problem for a X-theory T
and a set of X'-formulas F is to decide whether a given F' € F is satisfiable in some
structure of 7. If the set of formulas F is clear from the context, we simply speak of the
satisfiability problem of the theory 7. A Ys-theory 75 is an extension of a X';-theory
Ty if X5 is an extension of X and for every o € Ta, the restriction ax, of « to the
sorts and symbols of X is a structure in 77. A X-theory 7T is called stably infinite with
respect to a set of formulas F, if for every formula F' € F which is satisfiable in 7T,
there exists a model « of F' in T, such that the domain of « has infinite cardinality.

5 POSSUM: Multiset Constraints over Preordered Sets

In this section we formally define the constraints whose satisfiability we study in this
paper. Before we define the syntax and semantics of these constraints, we first define
the theories of preordered sets and their extensions to finite preordered multisets.

Decision Procedures for Automating Termination Proofs 7

5.1 Finite Multisets over Preordered Sets

We assume that Xgem is a signature containing at least the binary predicate symbol <
over sort elem. Let F¢em be the set of all quantifier-free ground formulas over signature
Yetem- We will use the formula ¢ <to as syntactic shorthand for the formula t; #
taAt; <to. A binary relation R defined on a set F/, such that R is reflexive and transitive
is called a preorder and set (F, R) is called a preordered set. A theory of preordered
sets Telem 1S @ Xelem-theory such that for all structures & € Tgem, (a(elem), a(=X)) is a
preordered set, i.e., every structure o € Tgem satisfies the following two axioms:

Vo :elem. z <z (refl) Ve,y,z:elemx 2y Ay=<z—x =<z (trans)

For the rest of this paper, we fix such a theory Tgem. We require that the satisfiability
problem for Feem and Teiem is decidable. We further require that 7Tgjen, is stably-infinite
with respect to the formulas Fejem. We call Tgiem the base theory.

Let {2, be the function and constant symbols of linear integer arithmetic

Q@ = {+, —, max, min, ..., —2,-1,0,1,2,...,—2-, —1-,0-, 1., 2:}

with their appropriate sorts (the function symbol C- denotes multiplication with integer
constant C'). We assume that these symbols are disjoint from the symbols in Ygjem. We
represent multisets as function symbols of sort elem — int. Let M be a countably
infinite set of function symbols of this sort, disjoint from the symbols in YXgjem and (2.
Further, let X,set be the signature Ygem extended with the symbols M and (2,. We then
define the theory Tmset Of finite preordered multisets over Tgem as follows. The theory
Tmset 1S the set of all structures « such that «v is an extension of a structure in 7gem to a
Ymset-structure and « satisfies the following conditions:

— « gives the standard interpretation to the arithmetic symbols, and

- « interprets each X € M as a finite multiset, i.e., (1) for all e € «(elem),
a(X)(e) > 0 and (2) there are only finitely many e € «(elem) such that
a(X)(e) > 0.

5.2 Syntax and Semantics of POSSUM Formulas

Syntax. Figure 5 defines the POSSUM formulas. A POSSUM formula is an arbitrary
propositional combination of atomic formulas. The atomic formulas are relations be-
tween multiset expressions, relations between arithmetic expressions, atoms over the
base signature Ygjem, and restricted quantified formulas F¥. An example of a base sig-
nature atom is the formula e; < e5, where e; and ey are two constants of sort elem. The
formulas F” express universal quantification over variables of sort elem. The formu-
las below the quantifiers can express arithmetic relations between multiplicities X (x)
of the quantified variables or ordering constraints between these variables. Using these
quantified formulas we can, for instance, express that some constant e is maximal in
a multiset X: Vz. X (z) > 0 — x <e. The important restriction for the formulas be-
low the universal quantifiers is that the quantified variables x are not allowed to appear
below function symbols of the base signature Ygem. This is enforced by allowing only

8 R. Piskac and T. Wies

top-level formulas:
F:=A|FAF|-F
As=M=M|MCM|K=K|K<K|M=,M| Agem | F’
Mao=X[0|{t"} I MOM|MUM|MuwyM|M\M |setOf(M)
K:=k|C|K+K|C-K

restricted quantified formulas:
F" ::=Vaz : elem.F" | Vz : elem F"
Fin o= AN | FM A FP | = —Fin

Ain _ tll‘l < tln ‘ tm_tm ‘ Eln = Ein | Ein:Ein
tin - X(Eln) ‘ C ‘ tin +tin | C .tin
EM n=x |t

terminals:

Aglem - ground YXgiem-atom ; X - multiset ; k - integer variable; C' - integer constant
t - ground Ygem-term of sort elem; x - variable of sort elem

Fig. 5. Syntax for Multiset Constraints over Preordered Sets (POSSUM)

ground Ygem-terms ¢ below the quantifiers. Note also that there are no POSSUM for-
mulas with F¥ atoms that have an alternating quantifier prefix. We call a subset F of
POSSUM formulas quantifier-bounded if the number of quantified variables appearing
in F¥ subformulas of formulas in F is bounded.

Semantics. POSSUM formulas are interpreted in the structures of the theory 7nset- The
semantics of POSSUM formulas extends the semantics of first-order formulas defined
in Section 4. Note that with the exception of atomic formulas that express relations on
multisets, all atomic formulas are first-order formulas. Thus, we only need to define the
semantics of formulas of the form My, = My, M; C Ms, and M, <., M>. Let o be
a structure in Tmset. First, we extend the interpretation a(X) of multisets X € M in
« to multiset expressions. The interpretation is defined point-wise for all e € « and
recursively on the structure of the expression:

a(D)(e) =
a({t"}} (e) = if a(t) = e then a(K) else 0
o(My U M) (e) = max {a(My)(e), a(Ma) ()}
a(M; N Ms)(e) = min {a(M;)(e), a(Mz)(e)}
a(My ¥ My)(e) = a(Mi)(e) + a(Ma)(e)
a(My \ M)(e) = max {a(M)(e) — a(M2)(e), 0}
a(setOf(M))(e) = min {a(M)(e), 1}

For defining the interpretations of the predicate symbols =, C, and =<, on multisets
we define corresponding relations =p,, C,, and =, at the meta-level. Let mq, mo be
functions a(elem) — N. The relations =p, and Cp, are defined point-wise as expected:

mp =mma < Ve € a(elem).mq(e) = ma(e)

m; Cmma & Ve € a(elem).mq(e) < ma(e)

Decision Procedures for Automating Termination Proofs 9

For defining the multiset ordering we identify < with the irreflexive reduct of the rela-
tion «(=<). The relation <, is then defined as follows:

mi <mmg < Ve € a.mq(er) > ma(er) =)

Jes € avma(es) > my(ex) Nep <ey

Note that this is not the standard definition of the multiset ordering that was originally
used in [9]. However, in order to reduce the number of multiset variables we use the
simpler definition (2). For finite multisets, definition (2) is equivalent to the standard
one (for proof see [1, Lemma 2.5.6, p.24]).

6 Decision Procedure

We now describe the decision procedure for POSSUM. The idea of the decision proce-
dure is to reduce satisfiability of a POSSUM formula to satisfiability of a formula in a
particular first-order theory, namely, the disjoint combination of the base theory 7giem,
the theory of linear integer arithmetic, and the theory of uninterpreted function symbols.

Reduction to a first-order theory. In the following, we show how to decide conjunc-
tions of POSSUM literals. The extension of the decision procedure to arbitrary Boolean
combinations of literals is straightforward. Thus, let ' be a fixed POSSUM conjunc-
tion. The first step of our decision procedure is to rewrite F' into a quantified first-order
formula by expanding all multiset constraints to their point-wise definitions.

For two multiset variables X and Y we denote by Lx y the multiset X \ Y and
by Ux,y the multiset Y \ X. Similarly, for a given element x we use Lx y(z) as
a shorthand for the expression X (z) — Y (x) and Ux y (z) for Y (z) — X (x). The
algorithm for rewriting F' is then as follows:

1. Purify and flatten all multiset constraints in F':
CIM] ~ Xy=MANC[Xy]
where X; € M is a fresh multiset and M is
(a) either of the form My U Ma, My N Ma, My & My, My \ Ms, and at least one
M; is not a multiset X € M
(b) or of the form @, {t*}, setOf(M;), and they are not in a conjunct of the form
X = M or M = X for some multiset X € M.
2. Replace all multiset atoms by their point-wise definitions

CX=0] ~ CM¥eX(z)=0]
Cl1xX —{ek}] ~ C[X(e)=kAVr.x#e — X(e) =0]
ClX=YUZ] ~ C¥Vz. X(x) = max{Y (z), Z(x)}]
CX=YNnZ] ~ C¥Vz. X(z) =min{Y (z), Z(x)}]
ClX =Y WZ] ~ CNz. X(z) = Y(z) + Z(z)]
CIX=Y\Z] ~ CNz.X(x) =max{Y (z) — Z(z),0}]
ClX =Y] ~ CVz. X(x) =Y ()]

ClIX =nY] ~ CNVz.Lxy(z) >0 = Jy.Uxy(y) > 0Az<y]

3. Compute negation normal form, i.e., push all negations down to the atoms

10 R. Piskac and T. Wies

4. Skolemize all existentially quantified variables
5. For every multiset X occurring in the formula add the formula V. X (x) > 0 as an
additional conjunct

After rewriting, the resulting formula is of the form IC A G where G is a ground
formula and K is a conjunction of universally quantified formulas. Clearly, each step of
the rewriting transforms the input formula into an equisatisfiable formula.

Lemma 1. The formulas F and KC N\ G are equisatisfiable in the theory of preordered
multisets.

Quantifier instantiation. We will now show that there exists a finite and computable
set of ground terms Tk ¢ of sort elem such that U A G is equisatisfiable to the formula
K[Tk c]\G, where K[Tx] is a ground formula obtained by instantiating all quantified
variables appearing in C with the terms in Tk .

Throughout the rest of this section we denote by F the set of all ground terms of sort
elem appearing in /JC A G. The set E contains the ground terms appearing in the initial
formula F' and Skolem constants that have been introduced for top-level existentially
quantified variables in Step 4 of the rewrite algorithm. Zarba showed in [29] that for
formulas F without ordering constraints on multisets and formulas FY, the theory K is
(what is now known as) a stably local theory extension [25]. This means that if F' does
not contain ordering constraints then F is equisatisfiable to the formula K[E] A G. The
reason for locality of K in this case is simply that instantiation of the quantifiers in /C
with terms of sort elem will not create new terms of the same sort. Unfortunately, in the
presence of ordering constraints this is no longer true, i.e., instantiation of C with the
terms in E alone is not sufficient.

For illustration of this behavior, reconsider the defining formula (2) for the ordering
constraint X <, Y. This formula contains V3 quantification over variables of sort elem.
Skolemization of this formula thus gives

Vx.LX,y(.T) >0 — UX7y(wX7y(J))) > 0/\l‘-<’wx7y(l‘) 3)

where wx y is a fresh Skolem function. We call these Skolem functions <pm-witness
functions and terms constructed from these functions <,,-witnesses. Instantiation of
formula (3) with a term e € E generates a new —<p,-witness wx y (e) of sort elem,
which is not already contained in E. For completeness we have to instantiate /C recur-
sively with these <,-witnesses.

We now show that we can put additional constraints on the <p,,-witness functions
such that we only need to consider finitely many <,-witnesses for the instantiation of
IC. These additional constraints are as follows. First, we enforce that the <,,-witness
function wx y only chooses maximal elements in the multiset Ux y and, second, we
require that each element outside L x y is mapped to itself. Formally, these constraints
are expressed by the following two axioms:

Vey. Lxy(z) >0ANwxy(z)<y — Uxy(y) =0)
Ve.Lxy(z) =0 - wxy(z) =2 (5)

Decision Procedures for Automating Termination Proofs 11

The existence of such constrained witness functions is guaranteed by the fact that we
restrict ourselves to finite multisets. In particular, given a <n,-witness function wx y
satisfying axiom (3), we can define a new witness function that maps every e in Lx y to
the maximal element of some ascending chain starting from wx y (e) in Ux,y . Finite-
ness of the multiset Ux y guarantees the existence of such a maximal element.

For the rest of this section let W be the set of all <,,-witness functions occurring in
KC and let KCyyr be the conjunction of axioms (4) and (5) forall wx y € W.

Lemma 2. The formulas K AN G and K N Kw A G are equisatisfiable in the theory of
preordered multisets. a

Let Ty, be the smallest set of ground terms that satisfies the following two condi-
tions: (i) E C Tw g and (i) if ¢t € Ty g and wx y € W then wx y(t) € Ty g. Fora
term ¢ € Ty g of the form ¢ = w,, ... w1 (e) where e € S, we define t; = e and denote
by t;, for 1 < 4 < n, the subterm w; ... w1 (e) of t. We call ¢t € Ty g a strict chain in
a structure « iff o satisfies ¢; < t;4 for all 7 with 0 < 7 < n. We say that a strict chain
t € Tw,g in a structure « is maximal if ¢ is not a proper subterm of any other strict
chaint’ € Ty, g in o For a structure « and a set of ground terms 7', we denote by a(T')
the set a(T) = {a(t) |t € T}.

Now, define T ¢ as the set of all terms ¢t € Ty, g such that each function wx y
occurs at most once in ¢. Clearly, the set T ¢ is finite, since W is finite. We can now
show that in models of I A Ky, the terms Ty, g are partitioned into finitely many
equivalence classes, each of which is represented by some term in Tk .

Lemma 3. For all models o of K A Kw, o(Tw,g) = a(Tk.c).

Proof. Let o be a model of ICA Kyy. Note that from strictness of <, and axioms (3) and
(5) it follows that for all terms ¢ of sort elem and wx y € W, either o = wx y (t) =1
or o =t < wx,y (t) holds.

The proof goes by contradiction. Thus, assume there exists ¢ € Ty, g such that
a(t) ¢ a(Tk,q). Then remove all function applications w; from ¢ for which a =
w;(t;—1) = t;_1, obtaining a term ¢’ € Ty g. Then ¢ is a strict chain and o =t = t/.
From this we conclude that a(t') ¢ a(Tk) and therefore ¢’ ¢ Tx . Hence, there
exists i,j with 1 < i < j < k and multiset variables X, Y such that w; = w} =
wx,y € W. We then have o |= t,_; <wx y(t;_;). Based on strictness of <, axiom
(5) and axiom Vz.Lx y(x) > 0 we conclude o = Lx y(¢,_;) > 0. Similarly, we
conclude a = Ly y(t;_;) > 0. By transitivity of < and construction of ', we further
have that a satisfies wx v (t;_;) < wx,y (t}_;). From axiom (4) we then conclude o [=
Ux,y(wx,y(t;;l)) = 0. However, axiom (3) implies « = UX,y(wX,y(t;;l)) > 0,
which gives us a contradiction. ad

From Lemma 3 it follows that we only need to instantiate the axioms K A Ky with
the terms in Tic .

Lemma 4. The formulas KAKw AG and K[Tx] ANKw [Tk,] AG are equisatisfiable
in the theory of preordered multisets.

12 R. Piskac and T. Wies

The formula K[Ti] A Kw [Tk,c] A G can now be purified obtaining an equisatis-
fiable formula Geem A Gig A Gyt such that the three conjuncts Geem, Gla, and Gy only
share constant symbols and:

— Glglem 1S a constraint over symbols in the theory Teem
— (), is a linear integer arithmetic constraint, and
— Gyt 1s a constraint built from uninterpreted function symbols and equality

We can thus check satisfiability of F' by checking satisfiability of Geem A Gia A Geut
in the disjoint combination of the theory Tgem, the theory of linear integer arithmetic,
and the theory of uninterpreted function symbols with equality. By our assumptions on
the theory Tgjem, this combined theory can be decided using standard Nelson-Oppen
combination techniques [18].

Theorem 1. The satisfiability problem for POSSUM formulas is decidable.

Complexity. We will now establish that the satisfiability problem for the quantifier-
bounded fragments of POSSUM is in NP, provided the base theory Tejem is also decid-
able in NP. Since POSSUM formulas subsume propositional logic this bound is tight.

We have seen in the previous section that we can reduce a POSSUM conjunction F’
to a ground formula K[Tx ¢] AKw [Tk, ¢] A G whose satisfiability can be decided using
the decision procedure of the base theory. However, the size of the resulting formula
can be exponential in the size of the input formula F' because the size of the set Tx ¢
used for the instantiation is exponential in the number of <,-witness functions . The
following lemma implies that this exponential blowup can be avoided.

Lemma 5. [If the formula KK N Kyw A G is satisfiable then it has a model o such that
lo(Tic.c)| € O(W - |E]).

Proof. Assume K A Ky A G is satisfiable and let oy be one of its models. Further, let
n = |W|and m = |E|. From o we construct a model o with |a(Tk.¢)| € O(n?m)
by collapsing redundant strict chains in . For this purpose, we choose a set 1" of strict
chains in g such that for every term e € E and witness function wx y € W, there
is at most one chain ¢ € T that starts in Lx y, i.e., t contains wX7y(e) as a subterm.
Formally, let E_ be the quotient of E with respect to the interpretation of the equality
predicate = in o and denote by [e] € E_ the equivalence class of e € E. Let T be a
maximal subset T" of Tk ¢ such that (i) each ¢ € T' is a maximal strict chain in o, and
(ii) for each w € W, if there is some ¢ € T" which contains w and starts in e € E then
there is no other ¢’ € T which contains w(e’) as a subterm, for any e’ € [e]. Clearly
such a set T exists. Let 7™ be the set of all subterms tg, ..., of the chains t € T,
where k is the length of chain ¢.

We now construct a from o by collapsing all strict chains in g to the chains in
T'. First, we let o agree with o on the interpretation of all sorts and all symbols that
are not witness functions. For each witness function w € W and v € a(elem), we then
define a(w)(v) as follows: if v = ag(e) for some e € E, ap(w(e)) # ap(e), and there
is some term ¢ € T* with t = w(t’) for some ¢’ containing €’ € [e], choose one such
term ¢ and define «(w)(v) = «g(t). In all other cases define a(w)(v) = ap(w)(v).

Decision Procedures for Automating Termination Proofs 13

Note that from the definition of T" and « it follows that for all ¢ € T™*, a(t) = ag(t).
Thus all terms in 7™ are still strict chains in .

We first prove that « is still a model of X A Ky A G. Since «q is a model of
KA Kw A G and « agrees with o on all symbols that are not witness functions, we
immediately conclude that « is also a model of G and all axioms of /C that do not
mention the witness functions. The fact that « still satisfies the remaining axioms (3)-
(5) for all w € W also easily follows from the definition of «. In particular, if for some
w and v, a(w)(v) # ag(w)(v) then, by definition, v = «(e) for some e € FE and
a(w)(v) = a(t) for some term ¢ € T such that ¢ contains €’ € [e]. The fact that ¢ is a
strict chain in « starting in e’ and the transitivity of < imply « |= e’ < t. Since e’ € [e]
we further have o = e = ¢’ and hence o |= e < w(e). Thus « still satisfies axiom (3).
The proofs for the other two axioms are similar.

For proving that |a(Tk,c)| € O(n*m) first note that by construction of v we have
a(T*) = a(Tk). We thus need to count the number of elements in 7. For this
purpose, fix e € E and let k be the maximal length of the chains ¢ in 7" that start from
some ¢’ € [e]. From strictness of the chains and Lemma 3 it follows that & < n. We then
have by condition (ii) of the definition of 7" that there are at most n — k+ 1 chains ¢t in T’
that start from some ¢’ € [e]. Each of these chains has at most length k by assumption
and thus at most k + 1 subterms. It follows that 7* contains at most (n — k + 1)(k +
1) terms with some ¢’ € [e] as a subterm. From maxi<k<, {(n =k +1)(k+ 1)} €
O(n?) we then conclude |T*| € O(n?m). O

Lemma 5 implies that we can guess a polynomial subset T of the terms T ¢ and
then use this subset to instantiate the axioms in IC A KCyy. The size of the resulting
formula KC[T]A Ky [T] AG is then polynomial in the size of the input formula, provided
we bound the number of quantified variables in F” subformulas of the input.

Theorem 2. Ifthe base theory Teiem is decidable in NP then for the quantifier-bounded
fragments of its POSSUM extension, the satisfiability problem is NP-complete.

Practical Considerations. Our decision procedure is amenable to practical implemen-
tations using off-the-shelf SMT-solvers. In particular, using techniques developed for
local theory extensions [13], we can postpone the exponential decomposition phase of
guessing the terms used for instantiation, by generating these terms lazily from models
produced by the SMT solver. Also note that in practical applications such as checking
validity of constraints generated from termination proofs, all multiset ordering con-
straints X <, Y will typically have negative polarity. Since only positive occurrences
of such constraints generate <,-witness functions, the set of terms Tk ¢ will, in most
practical cases, already be polynomial in the size of the input constraint.

7 Related Work

The logic POSSUM extends the logic of multisets with integers, which was shown to
be NP-complete by Zarba [29]. This extension is non-trivial. In particular, Zarba only
considers a disjoint combination of a base theory with the theory of multisets and does
not support ordering constraints on multisets. Such constraints generate axioms with V3

14 R. Piskac and T. Wies

quantification, which require a more intricate argument to establish completeness of lo-
cal instantiation. The logic of multisets with cardinality constraints [20] also subsumes
Zarba’s logic and was shown to be NP-complete [21]. It is incomparable to our logic
because it also does not support ordering constraints. On the other hand, POSSUM can
only express very restricted cardinality constraints. In [14] the theory of sets with cardi-
nality constraints over totally ordered base sets was shown to be decidable in NP. This
result can be generalized to multisets. Decidability of multisets over partially ordered
base sets and with general cardinality constraints is open.

Local theory extensions [25] formalize the general category of theories for which
local quantifier instantiation techniques are complete. Some local theory extension of
orders have been studied in [26]. Our extension of preorders to multiset orderings is an
instance of the so called ¥-local theory extensions, which have been introduced in [12].

Simplification orderings are a common tool to prove termination of term rewrite
systems [1,8]. Among the most widely used simplification orderings are recursive path
orderings [8] (which have originally been defined in terms of multiset orderings), lexi-
cographic path orderings [1], and Knuth-Bendix orderings [10]. Constraint solving has
been shown to be decidable in NP for each of these orderings [17, 19, 30]. Unlike sim-
plification orderings, we do not require that the underlying order is total. Thus, one can
use our decision procedure to prove termination even in cases where there are no natural
total orderings, such as Example 1 in Section 2.

8 Conclusion

We presented POSSUM, a new logic and decision procedure for reasoning about multi-
set orderings. POSSUM can express constraints over complex well-founded orderings,
which makes it a useful tool for proving termination. The logic subsumes linear inte-
ger arithmetic which has been traditionally used to express ranking functions in auto-
mated termination proofs. We established that the satisfiability problem for POSSUM
is NP-complete, provided the base theory is in NP. Thus it has the same complex-
ity as quantifier-free linear integer arithmetic. Furthermore, our decision procedure is
amenable to a practical implementation. We thus believe that POSSUM provides a valu-
able tool for extending the scope of existing termination provers. Our next step is to im-
plement the decision procedure and make it available as a component for SMT solvers.

Acknowledgments. We thank Viktor Kuncak for inspiring discussions and his valuable
comments on an earlier draft of this paper.

References

1. F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge University Press, 1998.

2. L. Bachmair and H. Ganzinger. Resolution theorem proving. In Handbook of Automated
Reasoning, pages 19-99. MIT Press, 2001.

3. J. Berdine, B. Cook, D. Distefano, and P. W. O’Hearn. Automatic termination proofs for
programs with shape-shifting heaps. In CAV, pages 386-400, 2006.

4. M. Colén and H. Sipma. Synthesis of linear ranking functions. In TACAS, pages 67-81,
2001.

10.

11.

12.

13.

15.

16.

17.

18.

19.

20.

21.
22.

23.
24.

25.

26.

217.

28.

29.
30.

Decision Procedures for Automating Termination Proofs 15

B. Cook, A. Podelski, and A. Rybalchenko. Abstraction refinement for termination. In SAS,
pages 87-101, 2005.

. B. Cook, A. Podelski, and A. Rybalchenko. Terminator: Beyond safety. In CAV, pages

415418, 2006.

. Y. Deng and D. Sangiorgi. Ensuring termination by typability. Inf. Comput.,

204(7):1045-1082, 2006.

. N. Dershowitz. Orderings for term-rewriting systems. In Symposium on Foundations of

Computer Science (SFCS), pages 123-131, 1979.

. N. Dershowitz and Z. Manna. Proving termination with multiset orderings. Commun. ACM,

22(8):465-476, 1979.

J. Dick, J. Kalmus, and U. Martin. Automating the Knuth Bendix Ordering. Acta Inf.,
28(2):95-119, 1990.

R. W. Floyd. Assigning meanings to programs. In Proc. Amer. Math. Soc. Symposia in
Applied Mathematics, volume 19, pages 19-31, 1967.

C. Ihlemann, S. Jacobs, and V. Sofronie-Stokkermans. On local reasoning in verification. In
TACAS, pages 265-281, 2008.

S. Jacobs. Incremental instance generation in local reasoning. In CAV, pages 368-382,
20009.

. V. Kuncak, R. Piskac, and P. Suter. Ordered sets in the calculus of data structures. In CSL,

pages 34-48, 2010.

C.S. Lee, N. D. Jones, and A. M. Ben-Amram. The size-change principle for program
termination. In POPL, pages 81-92, 2001.

F.-J. Martin-Mateos, J.-L. Ruiz-Reina, J.-A. Alonso, and M.-J. Hidalgo. Proof Pearl: A
Formal Proof of Higman’s Lemma in ACL2. In TPHOLs, pages 358-372, 2005.

P. Narendran, M. Rusinowitch, and R. M. Verma. RPO Constraint Solving is in NP. In CSL,
pages 385-398, 1998.

G. Nelson and D. C. Oppen. Simplification by cooperating decision procedures. ACM
TOPLAS, 1(2):245-257, 1979.

R. Nieuwenhuis. Simple LPO constraint solving methods. Inf. Process. Lett., 47(2):65-69,
1993.

R. Piskac and V. Kuncak. Decision procedures for multisets with cardinality constraints. In
VMCAI, number 4905 in LNCS, 2008.

R. Piskac and V. Kuncak. Linear arithmetic with stars. In CAV, 2008.

A. Podelski and A. Rybalchenko. A complete method for synthesis of linear ranking
functions. In VM CAI’04, 2004.

A. Podelski and A. Rybalchenko. Transition invariants. In LICS’04, 2004.

A. Podelski and A. Rybalchenko. Transition predicate abstraction and fair termination.
ACM TOPLAS, 29(3):15, 2007.

V. Sofronie-Stokkermans. Hierarchic reasoning in local theory extensions. In CADE, pages
219-234, 2005.

V. Sofronie-Stokkermans and C. Ihlemann. Automated reasoning in some local extensions
of ordered structures. In ISMVL, 2007.

P. Suter, M. Dotta, and V. Kuncak. Decision procedures for algebraic data types with
abstractions. In 37th ACM SIGACT-SIGPLAN Symposium on Principles of Programming
Languages (POPL), 2010.

K. N. Venkataraman. Decidability of the purely existential fragment of the theory of term
algebras. Journal of the ACM (JACM), 34(2):492-510, 1987.

C. G. Zarba. Combining multisets with integers. In CADE-18, 2002.

T. Zhang, H. B. Sipma, and Z. Manna. The Decidability of the First-Order Theory of
Knuth-Bendix Order. In CADE, pages 131-148, 2005.

	Decision Procedures for Automating Termination Proofs
	Ruzica Piskac and Thomas Wies

