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Abstract. We present Sprout, the first sound and complete imple-
mentability checker for symbolic multiparty protocols. Sprout supports
protocols with dependent refinements on message values, loop memory,
and multiparty communication with generalized, sender-driven choice.
Sprout checks implementability via an optimized, sound and complete
reduction to the fixpoint logic µCLP, and uses MuVal as a backend
solver for µCLP instances. We evaluate Sprout on an extended bench-
mark suite of implementable and non-implementable examples, and show
that Sprout outperforms its competititors in terms of expressivity and
precision, and provides competitive runtime performance. Sprout ad-
ditionally provides support for verifying custom functional correctness
properties beyond implementability.

1 Introduction

Implementability is the decision problem at the heart of top-down approaches to
protocol verification, including choreographic programming [6,12,13] , high-level
message sequence charts [1, 2, 7–10, 18–22] and session types [3, 4, 14, 16, 23, 26].
Implementability asks whether a global protocol, specifying message exchanges
between all participants from a bird’s-eye view, admits an asynchronous dis-
tributed implementation, namely one that is deadlock-free and exhibits the same
behavior as the global specification.

In [17], we identify a sound and complete characterization of implementabil-
ity for global communicating labeled transition systems (GCLTSs). GCLTS is an
expressive semantic model of protocols that subsumes many existing fragments
of multiparty session types [3,4,23,25,26] and choreography automata [11]. The
characterization of GCLTS implementability consists of three Coherence Condi-
tions: Send Coherence, Receive Coherence, and No Mixed Choice, which reduce
implementability to reachability and co-reachability in the GCLTS. In a nutshell,
these are 2-hyperproperties stating that from two locally indistinguishable global
protocol states, a participant can either perform a send action that is enabled
in both states, or perform a receive action that uniquely distinguishes the two
states, but cannot choose between performing a send or receive action. Symbolic
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protocols finitely represent infinite-state protocols using dependent refinements
and mutable register variables. [17] derives sound and complete Symbolic Co-
herence Conditions for GCLTS-eligible symbolic protocols, expressed as µCLP
instances. µCLP [24] is a fixpoint logic featuring recursive predicates with least
and greatest fixpoint semantics, where the predicate body is constrained by a
first-order logic formula over a background theory.

In this paper, we present Sprout§, the first sound and complete imple-
mentability checker for symbolic, multiparty protocols. Sprout takes as input
a symbolic protocol, and first checks whether the protocol is GCLTS-eligible.
If so, it proceeds to generate µCLP instances corresponding to the Symbolic
Coherence Conditions from [17], which it then discharges to the µCLP solver
MuVal [24]. If all instances return invalid, Sprout reports that the protocol is
implementable; if one instance returns valid, Sprout reports non-implementable
along with the specific states and transitions that violate implementability; oth-
erwise Sprout returns inconclusive. Sprout is sound and complete relative to
the completeness and soundness of MuVal.

Sprout extends [17] with explicit GCLTS checking, optimized µCLP encod-
ings of the Symbolic Coherence Conditions, and support for verification of func-
tional correctness properties beyond implementability. We evaluate Sprout’s
expressivity, precision and efficiency against comparable tools [25, 26] on an ex-
panded benchmark suite containing both implementable and non-implementable
examples. Sprout is able to correctly classify protocols that are out of reach
of its competitors, outperforming them in terms of expressivity and precision.
In terms of efficiency, Sprout’s performance is competitive. On multiparty pro-
tocols, its verification times vary with the size of the protocol and are largely
bottlenecked by the efficiency of MuVal, although remaining in the order of
seconds in most cases. We envision Sprout as a complementary intermediate
step in existing top-down code generation toolchains for multiparty protocols
whose implementability checks are incomplete.

2 Overview

2.1 Running Example

We introduce Sprout using the running example of the two-bidder protocol [17].
The two-bidder protocol specifies the message-passing behaviors of a seller S

and two bidders B1 and B2, who negotiate to split the cost of a book. Bidder B1
initiates the protocol by announcing a book title, identified by its ISBN number.
Seller S informs B1 of the book’s price c, which is undisclosed to B2. Then, B1
and B2 enter a bidding loop to determine their respective contributions b1 and
b2. After B1 proposes its contribution b1, B2 can either respond with a bid, or
stop bidding by sending a quit message to S, who forwards it to B1. The bidding
continues until either B2 chooses to stop, or the sum of the two bids exceeds c, in
which case B1 informs S that the negotiation was successful. Refinements enforce

§https://github.com/nyu-acsys/sprout

https://github.com/nyu-acsys/sprout
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{
ry = 0 ∧ rc = 0

∧ rz1 = 0 ∧ rz2 = 0

}
B1→S :y

{
ISBN(y)
∧ ry′ = y

}
B1→B2 :y{y = ry}

S→B1 :z

{
z > 0

∧ rc′ = z

}

B1→B2 :b1

{
b1 > rz1

∧ rz′
1 = b1

}

B2→S :x{x = quit}

S→B1 :x{x = quit}

B2→B1 :b2

{
b2 > rz2 ∧ b2 < rc

∧ rz′
2 = b2

}

B1→S :x

{
x = succ

∧ rz1 + rz2 ≥ rc

}

S→B2 :x{x = succ}

B1→B2 :x

{
x = cont

∧ rz1 + rz2 < rc

}

Fig. 1: Candidate specification for the two-bidder protocol.

that y is a valid ISBN number, and that B1 and B2’s bids are increasing from
one round to the next, thus guaranteeing termination. A candidate specification
for the two-bidder protocol is depicted in Fig. 1.

Sprout’s input format closely follows the definition of symbolic protocols,
formally defined over a set of participants P as follows:

Definition 2.1 (Symbolic protocol [17]). A symbolic protocol is a tuple
S = (S,R,∆, s0, ρ0, F ) where

– S is a finite set of control states,
– R is a finite set of register variables,
– ∆ ⊆ S×P×X×P×F×S is a finite set that consists of symbolic transitions of

the form s
p→q:x{φ}−−−−−−→ s′, where the formula φ with free variables R⊎R′⊎{x}

expresses a transition constraint over the old and new register values (R and
R′) and the sent value x,

– s0 ∈ S is the initial control state,
– ρ0 : R → V is the initial register assignment, and
– F ⊆ S is a set of final states.

The definition assumes a fixed but unspecified first-order background theory
of message values (e.g. linear integer arithmetic). We denote by F the set of first-
order formulas with free variables drawn from some set X that are interpreted
over the set of message values V. We assume standard syntax and semantics for
first-order formulas. For a valuation ρ ∈ X → V and φ ∈ F(X), we write ρ |= ϕ
to indicate that φ evaluates to true under ρ in the underlying theory. Transi-
tion constraints simultaneously describe the current value being communicated

and internal register updates. For q3
B1→B2:b1{b1>rz1∧rz′

1=b1}−−−−−−−−−−−−−−−−−→ q4, the transition
constraint both enforces that the bid b1 sent from B1 to B2 is greater than B1’s
previous bid, and describes a register assignment z1 := b1. For readability, we
assume implicit equality constraints over unmentioned post-state registers that
are not updated. The input file for our candidate specification is given in Fig. 2.
2.2 Implementability

Before checking implementability, Sprout first determines GCLTS eligibility.
GCLTSs satisfy four assumptions: sink-finality, sender-driven choice, determin-
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Initial state: (0)
Initial register assignments: ry=0, rc=0, rz1=0, rz2=0
(0) B1->S:y{(y>987000000000/\y<9880000000000)/\ry’=y} (1)
(1) B1->B2:y{y=ry} (2)
(2) S->B1:z{z>0/\rc’=z} (3)
(3) B1->B2:b1{b1>rz1/\rz1’=b1} (4)
(4) B2->S:quit{quit=0} (5)
(5) S->B1:quit{quit=0} (6)
(4) B2->B1:b2{b2>rz2/\b2<rc/\rz2’=b2} (7)
(7) B1->S:succ{succ=1/\rz1+rz2>=rc} (8)
(8) S->B2:succ{succ=1} (6)
(7) B1->B2:cont{cont=2/\rz1+rz2<rc} (3)
Final states: (6)

Fig. 2: Sprout input file for protocol specification in Fig. 1.

ism, and deadlock freedom. Sink-finality states that only non-final states have
outgoing transitions, sender-driven choice states that all outgoing transitions
from the same state have a unique sender, determinism states that no transi-
tion can lead to two distinct post-states, and deadlock freedom states that every
protocol run can be extended to a maximal run.

After confirming that our protocol is GCLTS-eligible, Sprout proceeds to
generate µCLP instances corresponding to the implementability characteriza-
tion from [17], which consists of three Symbolic Coherence Conditions: Symbolic
Send Coherence, Symbolic Receive Coherence and Symbolic No Mixed Choice.
Sprout generates the queries in negation form, and discharges them to the
µCLP solver MuVal [24]. Sprout reports implementable if and only if all in-
stances return invalid, indicating that all conditions are satisfied.

Unfortunately, Sprout reports a violation to Symbolic Send Coherence for
B2 and the transition: (4) B2->B1:b2{b2>rz2/\b2<rc/\rz2’=b2} (7). The vi-
olation indicates the existence of two global protocol states both with control
state q4 that are indistinguishable from B2’s point of view, and a message value,
such that sending the value to B1 follows the protocol in one case but violates
the protocol in the other. Closer inspection of this transition’s constraint re-
veals that B2 is required to send a bid that is strictly less than the price of the
book c. However, c is not disclosed to B2 during the protocol: B2 is bidding in
the dark. Thus, depending on the initial exchanges between B1 and S, which are
not observable to B2, a bid could either satisfy or violate the middle conjunct,
subsequently following or violating the entire protocol.

We can repair our candidate protocol by either omitting b2<rc from the
aforementioned transition constraint, or by including a transition informing B2
of the book’s price before the bidding loop begins. Upon incorporating either fix,
we find that all instances now return invalid as expected, and Sprout reports
that the repaired two-bidder protocol is implementable in ∼19s.

Sprout also provides support for the verification of functional correctness
properties beyond implementability. For example, we can verify that the sum of
B1 and B2’s bids never decreases once they enter the bidding loop. This verifica-
tion problem can be expressed in negation form as a µCLP instance as follows,



Sprout: A Verifier for Symbolic Multiparty Protocols 5

where stcon is a least fixpoint predicate describing st-connectivity between two
states in the global protocol:
exists (s1: int) (ry1: int) (rc1: int) (rza1: int) (rzb1: int)
(s2: int) (ry2: int) (rc2: int) (rza2: int) (rzb2: int).
s1 > 3 /\
s2 > 3 /\
stcon s1 ry1 rc1 rza1 rzb1 s2 ry2 rc2 rza2 rzb2 /\
rza2 + rzb2 < rza1 + rzb1
s.t.
stcon (s1: int) ... : bool =mu
...

Sprout provides a suite of least and greatest fixpoint predicate definitions
for defining custom verification queries that are then discharged to MuVal.
MuVal confirms that this instance is indeed invalid in ∼9s.

3 Implementation

Sprout is implemented in ∼3500 lines of OCaml code. The tool and benchmarks
used in the evaluation are available as part of the artifact accompanying this
paper [15]. In this section, we describe aspects of its implementation, focusing
on differences from the theory.

3.1 GCLTS Eligibility

The Coherence Conditions from [17] are precise for the GCLTS fragment of sym-
bolic protocols, namely protocols that satisfy sink-finality, sender-driven choice,
determinism and deadlock-freedom. Sink-finality and sender-driven choice are
syntactic conditions that can be checked on the input protocol straightforwardly,
without invoking MuVal. Determinism and deadlock freedom are undecidable
in general. Sprout encodes the latter two as µCLP instances and discharges
them to MuVal. We present the formal definition and µCLP encoding of each
property below, assuming a symbolic protocol S = (S,R,∆, s0, ρ0, F ) in the
remainder of the section.

Determinism states that from a reachable protocol state, no transition can
simultaneously satisfy two transition constraints that lead to two distinct post-
states. Reachability is expressed as a least fixpoint in µCLP as follows:

Definition 3.1 (Reachability in symbolic protocol). Let s ∈ S. Then,

reach(s′, r′) :=µ ( s′ = s0 ∧ r′ = ρ0 ) ∨ (
∨

(s, p→q:x{φ}, s′)∈∆

∃x r. reach(s, r) ∧ φ ) .

The reach predicate takes as its arguments a control state s′ and a set of reg-
isters r′, which together constitute a symbolic protocol state. The first disjunct
covers the base case in which s′ is the initial state, and r′ satisfy the initial
register assignments. The second disjunct ranges over all transitions with s′ as
the post-state, and represents following a transition to reach s′, which requires
the transition predicate φ to hold in addition to reach on the pre-state s.

Equipped with the predicate reach, determinism is defined as follows.
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Definition 3.2 (Determinism of symbolic protocol). S is deterministic

when for each pair of transitions s
p→q:x1{φ1}−−−−−−−−→ s1, s

p→q:x2{φ2}−−−−−−−−→ s2 ∈ ∆, the
following is valid:
∀x r r′

1 r′
2. reach(s, r) ∧ φ1[x/x1, r

′
1/r

′] ∧ φ2[x/x2, r
′
2/r

′] =⇒ s1 = s2 ∧ r′
1 = r′

2 .

Deadlock freedom states that every run in the protocol can be extended to
a maximal run, meaning that it is either infinite or ends in a final state. Equiv-
alently, we require that every reachable protocol state has an enabled outgoing
transition, stated as follows.

Definition 3.3 (Deadlock freedom of symbolic protocol). S is deadlock-
free when for each non-final state s ∈ S \ F , the following is valid:

∀r. reach(s, r) =⇒
∨

(s, p→q:x{φ}, s′)∈∆

∃x. φ .

For determinism, Sprout generates one µCLP query per state; for deadlock
freedom, Sprout generates one µCLP query per pair of transitions sharing a pre-
state. If the input protocol is not GCLTS-eligible, Sprout reports specifically
which assumption is violated by which state or transitions.

The GCLTS checking step of Sprout is sound and relatively complete with
respect to the completeness of MuVal, and Sprout only checks implementabil-
ity of GCLTS-eligible protocols.

3.2 Optimizations

The first Sprout optimization elides implementability checking for binary pro-
tocols, which by [17, Lemma 5.10] are implementable by construction if they
satisfy the GCLTS assumptions. Between checking GCLTS eligibility and gen-
erating implementability µCLP instances, Sprout checks whether the input
protocol is binary, and if so, returns implementable immediately. Given that a
large subset of benchmarks in the multiparty protocol literature are binary pro-
tocols, this optimization allows us to achieve performance within the same order
of magnitude as existing tools for binary protocols, as we detail in §4.

The second and primary Sprout optimization concerns the encoding of
Symbolic Coherence Conditions into µCLP instances. The conditions univer-
sally quantify over participants in the protocol, and then universally quantify
over pairs of simultaneously reachable protocol states from the perspective of
that participant. Together, the conditions rely on three recursive predicates:
prodreachp(s1, r1, s2, r2), which expresses that symbolic protocol states (s1, r1)
and (s2, r2) are simultaneously reachable for p, unreachεp,q(s2, r2, x1), which ex-
presses that p cannot follow ε transitions from (s2, r2) to a state where it can
send x1 to q, and availp,q,B(x1, s2, r2), which expresses that message x1 from p

can be received by q from state (s2, r2) without participants from B sending or
receiving messages.

The Symbolic Coherence Conditions are defined as follows:

Definition 3.4 (Symbolic Coherence Conditions [17] ). Let S be a sym-
bolic protocol. Then,
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– S satisfies Symbolic Send Coherence when for each participant p, transition

s1
p→q:x1{φ1}−−−−−−−−→ s′1 ∈ ∆1 and state s2 ∈ S:

prodreachp(s1, r1, s2, r2) ∧ φ1 ∧ unreachεp,q(s2, r2, x1) =⇒ ⊥ .

– S satisfies Symbolic Receive Coherence when for every pair of transitions

s1
p→q:x1{φ1}−−−−−−−−→ s′1 ∈ ∆1 and s2

r→q:x2{φ2}−−−−−−−−→ s′2 ∈ ∆2 with p ̸= r:

prodreachq(s1, r1, s2, r2) ∧ φ1 ∧ φ2 ∧ availp,q,{q}(x1, s
′
2, r

′
2) =⇒ ⊥ .

– S satisfies Symbolic No Mixed Choice when for every pair of transitions

s1
p→q:x1{φ1}−−−−−−−−→ s′1 ∈ ∆1 and s2

r→p:x2{φ2}−−−−−−−−→ s′2 ∈ ∆2:

prodreachp(s1, r1, s2, r2) ∧ φ1 ∧ φ2 =⇒ ⊥ .

A µCLP instance is a pair (ϕ,R) of a query ϕ, which is a first order for-
mula over a background theory, and a body R, which is a sequence of inductive
predicates with least or greatest fixpoint semantics. Symbolic Send Coherence in
negation form thus naturally corresponds to one µCLP instance per participant.
Each instance’s query existentially quantifies over control states and registers,
and is a series of |Q| ∗ |Q| disjuncts that perform case analysis over pairs of
control states, i.e. each disjunct is of the form

s1 = q1 ∧ s2 = q2 ∧ prodreachp(s1, r1, s2, r2) ∧ φ1 ∧ unreachεp,q(s2, r2, x1)

where q1
p→q:x1{φ1}−−−−−−−−→ q2 ∈ ∆. Each instance’s body comprises the inductive pred-

icates prodreach and unreach, defined as least and greatest fixpoints respectively:

prodreachp(s1, r1, s2, r2) =µ . . . ; unreachεp,q(s2, r2, x1) =ν . . . ;

This naive encoding of [17]’s three conditions amounts to 3∗ |P| µCLP instances
per protocol, where each instance is orders of magnitude larger than the av-
erage benchmark in MuVal’s benchmark suite¶, and the verification time for
e.g. our running example exceeds 10 minutes. Thus, Sprout takes a differ-
ent approach to structuring the Symbolic Coherence Conditions as µCLP in-
stances. First, Sprout distributes each disjunct into a separate instance, yield-
ing |P| ∗ |Q| ∗ |Q| instances for each condition. Next, Sprout decomposes the
prodreach and unreach predicates by “currying” state arguments, generating one
prodreach predicate per participant per pair of states, amounting to |P|∗|Q|∗|Q|
predicate definitions, and one unreach predicate per pair of participants per state,
amounting to |P| ∗ |P| ∗ |Q| predicate definitions. We show in §4 that decom-
posing large instances into multiple instances with smaller queries and more
inductive predicates improves the running time of MuVal by over two orders of
magnitude for most protocols.

Thirdly, Sprout implements an overapproximation of simultaneous reacha-
bility that pre-filters pairs of control states before generating µCLP instances.

¶https://github.com/hiroshi-unno/coar/tree/main/benchmarks/muCLP/popl2023mod

https://github.com/hiroshi-unno/coar/tree/main/benchmarks/muCLP/popl2023mod
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Approximate simultaneous reachability disregards message values, only consid-
ering the sender and receiver of each event in a trace, e.g. p!q:4 · r?p:7 · s!q:5
is abstracted to p!q:- · r?p:- · s!q:-. This optimization preserves soundness and
completeness of the tool: if two states are not approximately simultaneously
reachable, then the Coherence Conditions say nothing about them; if two states
are approximately simultaneously reachable, then the corresponding instances
will be generated and checked, and in the case that they are not actually si-
multaneously reachable, will simply return invalid due to the prodreach conjunct
being false.

Finally, for Send Coherence instances concerning simultaneously reachable
states that share a control state, we add a conjunct to the µCLP query re-
quiring that not all register values in the two simultaneously reachable states
are equal. This eliminates quantifier instantiations that simplify to the trivially
false formula: prodreachp(s, r, s, r) ∧ φ ∧ unreachεp,q(s, r, x).

Bugs found in MuVal. While implementing Sprout, we discovered a soundness
bug in MuVal’s parallel and parallel_exc modes that led its output to
depend on the order of least and greatest fixpoint predicates in µCLP instances
containing only one kind of fixpoint. We also discovered a minor bug in MuVal’s
constraint simplifier when optimizing queries containing negation or implication.
Both bugs were reported to and subsequently fixed by MuVal’s developers.

4 Evaluation

All experiments in this section are run on a 2024 MacBook Air with an Apple
M3 chip and 16GB of RAM. Verification times reported are the sum of GCLTS
checking time and implementability checking time, with timeouts for individual
µCLP instances specified separately.

4.1 Optimization Efficacy

We first evaluate the efficacy of Sprout’s optimizations, detailed in §3. We com-
pare the verification times of Sprout’s pre-filtered, optimized µCLP instances
against the naive encoding of definitions in [17]. We benchmark on examples of
various sizes, measured by the number of transitions in the protocol specifica-
tion. All examples are non-binary so as to reflect a difference in implementability
checking time. The results in Table 1 show that naively encoding [17]’s conditions
renders verification intractable for protocols with more than 2 transitions, and
that Sprout’s optimizations yield a speedup by over two orders of magnitude.

4.2 Evaluation and Comparison Against Session*

Next, we evaluate Sprout in terms of expressivity, precision and efficiency.
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Example |P| |∆| Sprout time Naive [17] time
figure12-yes 3 2 impl. 2.0s impl. 2.4s
figure12-no 3 2 non-impl. 3.0s non-impl. 2.3s
TwoBuyer 3 9 impl. 3.8s timeout (300s) 311.2s

higher-lower-ultimate 3 9 impl. 11.1s out of memory 610.4s
higher-lower-no 3 9 non-impl. 16.1s non-impl. 349.8s

symbolic-two-bidder-yes 3 10 impl. 27.4s timeout (300s) 648.4s
symbolic-two-bidder-no1 3 11 non-impl. 30.0s out of memory 891.5s

Table 1: Comparison of verification times with and without optimizations.

Expressivity. To evaluate expressivity, we took the union of two benchmark
suites from tools most closely related to Sprout: Session* [26] and Rumpsteak
with refinements [25]. Both works target multiparty protocols with refinements,
and in addition to checking implementability, generate type signatures against
which user-provided local implementations can be statically type-checked. Ses-
sion*’s benchmark suite contains 11 examples, all of which utilize refinements.
Despite the title of [25], Rumpsteak’s suite of 10 examples contains only 5 with
refinements, and 4 that are multiparty, for a total of 2/10 multiparty examples
with refinements. We omitted finite, binary protocols that can be handled by ex-
isting sound and complete tools for finite multiparty session types, such as [16],
leaving us with 6 examples from Rumpsteak. Sprout was able to express all
17 examples from the literature. We then attempted to translate Session*’s
examples into Rumpsteak’s syntax, and vice versa, in an attempt to compare
all three tools. Although both Session* and Rumpsteak adopt a Scribble-like
syntax, we found that Session* could express all 6 of Rumpsteak’s examples,
whereas Rumpsteak could only express 3/11 of Session*’s examples, even after
accommodating minor discrepancies that were immaterial to the high-level pro-
tocol intent. The key expressivity gap lay in the fact that Sprout and Session*
both support loop recursion variables, e.g. in the two-bidder protocol, z1 and z2
that track B1 and B2’s respective last bids, whereas Rumpsteak does not.

Precision. The benchmark suites of both Session* and Rumpsteak exclusively
contain implementable examples. In evaluating precision, we are interested in
both the soundness and completeness of the tool: does it correctly accept im-
plementable protocols, and correctly reject non-implementable ones? Thus, we
expand our benchmark suite with a new set of examples based on protocols
from prior works [5, 16, 17], where for each protocol we include both an imple-
mentable and non-implementable version. We also introduce implementable and
non-implementable variations of common protocols in the literature (e.g. two-
bidder, higher lower guessing game). Some of the non-implementable examples
were inspired by bugs inadvertently introduced in the process of translating
examples into Sprout, and most non-implementable examples have a small
edit distance to their implementable counterpart. A short description of each
new example and any bugs contained can be found at https://github.com/
nyu-acsys/sprout/tree/main/examples. In translating our new examples to
Session* and Rumpsteak, we found a similar pattern as before: Session*
could express 20/21 examples, whereas Rumpsteak could only express 10/21.

https://github.com/nyu-acsys/sprout/tree/main/examples
https://github.com/nyu-acsys/sprout/tree/main/examples
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Calculator was not expressible in Session* due to lack of support for multi-
plication, whereas higher-lower-no’s implementability bug was ruled out by
Session*’s type checker.

The result of evaluating Session* and Sprout on the overall set of 37 exam-
ples is given in Table 2. We omitted evaluation results from Rumpsteak due to
the tool’s lack of formal guarantees and limited expressivity. To achieve a faith-
ful comparison, verification times reported for Session* are only for checking
projectability of global types and computing local types for each role.

Source Example |P| Impl. Sprout Time Session* Time

[26]

Calculator 2 ✓✓✓ ✓✓✓ 0.6s N/A 2.0s
Fibonacci 2 ✓✓✓ ✓✓✓ 0.5s ✓✓✓ 1.8s
HigherLower 3 ✓✓✓ ✓✓✓ 15.2s ✓✓✓ 3.9s
HTTP 2 ✓✓✓ ✓✓✓ 0.4s ✓✓✓ 1.9s
Negotiation 2 ✓✓✓ ✓✓✓ 1.0s ✓✓✓ 1.9s
OnlineWallet 3 ✓✓✓ ✓✓✓ 9.4s ✓✓✓ 3.3s
SH 3 ✓✓✓ ✓✓✓ 237.1s ✓✓✓ 5.6s
Ticket 2 ✓✓✓ ✓✓✓ 0.6s ✓✓✓ 1.9s
TravelAgency 2 ✓✓✓ ✓✓✓ 9.2s ✓✓✓ 3.1s
TwoBuyer 3 ✓✓✓ ✓✓✓ 3.8s ✓✓✓ 2.8s

[25]

DoubleBuffering 3 ✓✓✓ ✓✓✓ 1.5s ✓✓✓ 2.3s
OAuth 3 ✓✓✓ ✓✓✓ 6.2s ✓✓✓ 2.3s
PlusMinus 3 ✓✓✓ ✓✓✓ 5.2s × 2.1s
RingMax 7 ✓✓✓ ✓✓✓ 3.7s ✓✓✓ 4.7s
SimpleAuth 2 ✓✓✓ ✓✓✓ 0.5s ✓✓✓ 2.0s
TravelAgency2 2 ✓✓✓ ✓✓✓ 1.7s ✓✓✓ 1.8s

[16]

send-validity-yes 4 ✓✓✓ ✓✓✓ 1.9s × 2.1s
send-validity-no 4 × × 1.9s × 2.1s
receive-validity-yes 3 ✓✓✓ ✓✓✓ 5.1s × 2.3s
receive-validity-no 3 × × 3.6s × 2.0s

[17]

symbolic-two-bidder-yes 3 ✓✓✓ ✓✓✓ 27.4s × 2.0s
symbolic-two-bidder-no1 3 × × 30.0s × 2.1s
figure12-yes 3 ✓✓✓ ✓✓✓ 2.0s ✓✓✓ 2.0s
figure12-no 3 × × 3.0s ✓✓✓ 3.0s
symbolic-send-validity-yes 4 ✓✓✓ ✓✓✓ 6.5s × 2.5s
symbolic-send-validity-no 4 × × 5.3s × 2.6s
symbolic-receive-validity-yes 3 ✓✓✓ ✓✓✓ 6.6s × 2.8s
symbolic-receive-validity-no 3 × × 7.6s × 2.8s

[5] fwd-auth-yes 3 ✓✓✓ ✓✓✓ 10.3s × 2.3s
fwd-auth-no 3 × ? T/O × 2.2s

new

symbolic-two-bidder-no2 3 × × 23.9s × 2.8s
higher-lower-ultimate 3 ✓✓✓ ✓✓✓ 11.1s × 2.4s
higher-lower-winning 3 ✓✓✓ ? T/O ✓✓✓ 229.8s
higher-lower-no 3 × × 16.1s N/A 2.2s
higher-lower-encrypt-yes 4 ✓✓✓ ✓✓✓ 9.3s × 2.3s
higher-lower-encrypt-no 4 × × 177.3s × 2.4s
higher-lower-mixed 3 × × 19.3s × 2.3s

Table 2: Comparison of verification times with [26]. For each example, we report the num-
ber of participants (|P|), ground truth implementability (✓✓✓ or ×), verification times for Ses-
sion* [26] and Sprout with a 30s timeout per µCLP instance (T/O), and the result: ✓✓✓ for im-
plementable/projectable, × for non-implementable/non-projectable, and ? for inconclusive due to
timeout. Examples not expressible in Session* are marked with N/A.

The incompleteness of Session* is made apparent by our evaluation: of
the 20 new examples expressible in Session*, containing an even mix of im-
plementable and non-implementable protocols, Session* rejected all but 3/20.
The source of incompleteness is twofold. For one, Session*’s notion of imple-
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mentability is relative to local types, whose syntax a priori rules out communica-
tion patterns such as receiver choice from different senders. In contrast, [17] and
Sprout’s notion of implementability is relative to a more expressive semantic
model, called communicating labeled transition systems [17, Definition 3.3]. For
two, Session* implements the merge-based projection operator from [14]. This
projection operator is inherently incomplete even for global types without refine-
ments (see [16] for a detailed discussion), and thus the refinement type system
presented in [26] inherits all sources of incompleteness. ‖

Efficiency. In terms of efficiency, Session*’s verification times were mostly be-
low 5s∗∗, whereas Sprout’s verification times varied widely depending on the
number of transitions in the protocol, and whether the protocol is binary. For
binary protocols, the verification times of Sprout are competitive with those
of Session*. For multiparty protocols, most examples returned in less than 10s,
with the exception of 3 timeouts, whose timeout limits were set to 30s per µCLP
instance. †† As mentioned in §3, the verification bottleneck of Sprout lies in
the efficiency of MuVal– instance generation introduces negligible overhead.
The modularity of [17]’s Coherence Conditions means Sprout’s efficiency could
be improved by running all generated µCLP instances in parallel.
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