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Abstract Memory safety is a fundamental correctness property of soft-
ware. For programs that manipulate linked, heap-allocated data structures,
ensuring memory safety requires analyzing their possible shapes. Despite
significant advances in shape analysis, existing techniques rely on hand-
crafted domains tailored to specific data structures, making them difficult
to generalize and extend. This paper presents a novel approach that
reduces memory-safety proofs to the verification of heap-less imperative
programs, enabling the use of off-the-shelf software verification tools. We
achieve this reduction through two complementary program instrumenta-
tion techniques: space invariants, which enable symbolic reasoning about
unbounded heaps, and flow abstraction, which encodes global heap prop-
erties as local flow equations. The approach effectively verifies memory
safety across a broad range of programs, including concurrent lists and
trees that lie beyond the reach of existing shape analysis tools.

1 Introduction

One of the most severe and common types of flaws in software systems are
memory safety violations. Memory safety violations typically happen in unsafe
languages such as C and C++, for instance when the program tries to use a
pointer to a memory location that has already been freed or that is out of bounds.

In this paper, we focus on automatic methods to prove the memory safety of
programs operating on linked mutable data structures. We explicitly ignore issues
related to the use of low-level patterns such as pointer arithmetic, union types,
and casts as these are of orthogonal concern.

The key difficulty to verifying memory safety in this context is to deter-
mine the expected shape of the data structures, a challenge that has led to
the field of shape analysis [37,13] and a plethora of different methods; for
instance, based on three-valued logic [59], automata techniques [31], separa-
tion logic [16,5,15,17], bi-abduction [12,33], and other tailor-made abstract do-
mains [57,14,2,10,18,34,62,22]. Today, the best tools competing in the MemSafety

category of the software verification competition SV-COMP are based on an intri-
cate combination of shape analysis techniques, including abstract interpretation,
symbolic execution, and model checking.
⋆ This work was completed prior to the author’s employment at Amazon.
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The mentioned approaches have in common that they generally need to be
carefully tuned for a particular class of linked data structures to obtain good
performance. As a result, practical shape analyses often make trade-offs such
as targeting only specific data structures, e.g., linked lists. The engineering
effort involved in developing and maintaining these sophisticated analyses makes
an extension to other classes of data-structures (e.g., to trees), support for
concurrency in programs [49,64], or an integration with techniques that target
properties unrelated to memory safety (e.g., reasoning about data [10]) highly
non-trivial. At SV-COMP, shape analysis-based tools largely form a class of
their own, whereas software model checkers that aim at general safety properties
provide only very limited support for reasoning about pointers. State-of-the-art
verifiers, even though they might perform well on general verification tasks, can
fail even on simple memory safety benchmarks involving singly-linked lists.

The goal of this paper is to provide a new avenue for adding shape reasoning
to general-purpose verification tools, bypassing the need to develop and integrate
sophisticated shape analysis domains. To this end, we propose a reduction-based
approach that can be implemented in a preprocessing step for static analyzers
targeting heap-free programs. The reduction builds on recent advances on local
reasoning techniques for heap-manipulating programs. Specifically, we combine
ideas from the flow framework [42,43,50], an approach based on separation logic
for node-local reasoning about inductive properties of general heap graphs, with
space invariants [38], which can summarize heap properties using node-local
invariants. We formalize the approach in terms of rewrite rules that translate heap-
manipulating programs to heap-less programs, and thus effectively arithmetize

shape analysis for memory safety verification.
Compared to bespoke shape analysis methods, our reduction-based approach

has several advantages. (i) Our approach is not tailored to any specified class
of data-structures, but can handle, e.g., lists, nested lists, and trees out of the
box. By plugging in different flow domains, the precision of the analysis can
be controlled and increased on demand. (ii) Since the final analysis is carried
out by an off-the-shelf verification tool, our approach inherits all capabilities
for reasoning about data from the back-end tool; similarly, the approach is
agnostic of the control structure (e.g., recursion) present in programs. (iii) Our
approach is easy to extend to concurrent programs, which can be analyzed in a
thread-modular way. We show that the reduction method can handle yield points
and locks, and thus analyze challenging concurrent programs fully automatically.
(iv) Our approach is simple to implement, since the required symbolic reasoning
is offloaded to the off-the-shelf verification tool used as back-end.

For evaluation, we have implemented our approach in a prototype verifi-
cation tool triceratops, utilizing the off-the-shelf software model checkers
seahorn [23] and tricera [20] as back-ends, and evaluate using a set of bench-
marks from the SV-COMP [7], as well as implementations of standard data
structures written by us. The benchmarks include both sequential and concur-
rent programs and cover a variety of different shapes, including singly-linked
lists, doubly-linked lists, and trees. We find that triceratops is able to verify
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1 Node* List = new_dummy();
2 void pop() {
3 lock(List);
4 Node* item = List->next;
5 if (item != NULL) {
6 lock(item);
7 List->next = item->next;
8 unlock(item);
9 free(item); }

10 unlock(List);
11 }

12 void insert() {
13 Node* curr = List; lock(curr);
14 while (havoc && curr->next != NULL) {
15 Node* next = curr->next;
16 lock(next); unlock(curr);
17 curr = next; }
18 Node* item = malloc;
19 item->next = curr->next;
20 curr->next = item;
21 unlock(curr);
22 }

Figure 1. A NULL-terminated singly-linked list implementation that pops elements from
the front and inserts elements at a non-deterministically chosen position. Adding the
colored lines turns the sequential implementation into a concurrent one that supports
arbitrarily many concurrent pops and inserts.

memory safety effectively on such a diverse range of problems. In comparison
with predator-hp [56,30], the 2024 SV-COMP gold medalist in the memory
safety category [7], we observe that triceratops tends to exhibit longer run-
times, but is able to cover a wider range of problems than the more specialized
tool predator-hp.

The main contributions of our paper are (i) a new reduction-based approach
to shape analysis that combines space invariants (§3) with flow reasoning (§4)
and extends to concurrent programs (§5); (ii) an implementation of our approach,
resulting in the triceratops tool; and (iii) an empirical evaluation of the ap-
proach using a diverse set of sequential and concurrent programs (§6). The paper
presents the overarching ideas of our new shape analysis and takes an operational
view that lends itself to an implementation via program transformation. For a
formalization of the analysis, we direct the reader to [68].

2 Motivating Example

We address the challenge of proving memory safety for heap-manipulating pro-
grams. Our goal is to fully automate the verification of the following properties:

(M1) Absence of unsafe accesses: heap reads and writes happen only through
valid pointers, i.e., pointers that reference memory addresses that are
allocated and have not been freed.

(M2) Absence of double frees: no memory is deallocated more than once.
(M3) Absence of memory leaks: all allocated memory is eventually deallocated.

Ensuring memory safety is a foundational aspect of program correctness but is
often challenging due to the inherent complexity of understanding and capturing
the shape of heap-allocated structures.
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Running Example. We use the singly-linked list implementation from Fig. 1 as
the running example (ignore the colored lines for a moment). The implementation
includes a shared pointer List that references a dummy node whose successor is
the head of the list. Initially, the list is empty and List’s next field is NULL. This
initialization is performed by new_dummy() on Line 1, which we elide.

New elements are added using the insert function. The insertion location is de-
noted by pointer curr, which is chosen by traversing the list for a non-deterministic
number of steps, Lines 14–17. A new node item is allocated using malloc and its
next field is set to curr’s current successor, curr->next, on Line 19. Then, the
new item is inserted after curr on Line 20 by updating curr’s next field to item.

The pop function removes the head of the list. It begins by reading the current
head into the pointer item, Line 4. If item is non-null, its successor becomes the
new head, Line 7, and item is deallocated using free, Line 9.

a1 a3 a4 NULL

a2List item

next

next

next next

Figure 2. A possible heap resulting
from three inserts and one pop.

Figure 2 illustrates a possible heap graph
after inserting three nodes and popping one.
Concretely, node a1 represents the dummy
node referenced by List. Nodes a2, a3, and a4

have been inserted into the list in that order.
Node a2 has been unlinked (Line 7) and freed
(Line 9) while pointer item from pop is still
referencing it.

We are working in the regime of whole-program analysis. When we refer to the
program in Fig. 1 below, we mean the most general client of the given functions.

Although simple, verifying the program automatically turns out to be surpris-
ingly challenging. To establish memory safety, we have to identify the following
invariant that the program maintains: the allocated heap objects that have not
yet been deallocated are precisely those reachable from List by traversing next
links. Deriving this invariant automatically is non-trivial, as it requires global
reasoning about the structure of the heap graph. While existing shape analysis
techniques can derive such invariants, they rely on carefully designed shape
domains to achieve efficiency and are typically precise only for specific shapes
they are tailored to. Additionally, these techniques are often difficult to combine
with other static analysis methods, such as those needed to reason about data
[10,22]. Consequently, many software model checkers and automatic verification
tools are unable to verify memory safety of our running example.

Our Approach. We present a source-to-source code transformation (instru-

mentation) that carries out the required shape analysis in a completely local way,
making it both easy to automate and easy to integrate with other automatic ver-
ification methods. After instrumentation, we obtain a heap-less program that can
be verified using off-the-shelf verification tools, such as the software model checker
seahorn [23]. To achieve heap-lessness, our approach is based on two main
reasoning principles: space invariants [38] and flow abstraction [42,43]. While
both space invariants and flow abstraction have been developed in previous works,
we are the first to combine them in order to obtain a fully automatic approach for
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verifying memory safety of programs like the one in Fig. 1. We stress that neither
of the two approaches, by itself, is able to (automatically) verify such programs.

Space invariants over-approximate the heap: they capture all possible values
that the fields of the object at a given address may have. This means that
space invariants are per-object invariants. Materializing them for the addresses
referenced by the pointers in the program allows us to mirror in the stack the
(finitely many) heap locations that are accessible at any given program location.
Hence, reads and writes targeting the heap can be mimicked by equivalent
reads and writes targeting the stack. Since space invariants can be encoded
using uninterpreted predicates [20,66], they can be automatically inferred by
verification tools.

Flow abstraction, intuitively, performs a data-flow analysis on the heap graph.
That is, the flow at a node is computed by propagating some initial flow value
from a set of root nodes along the links in the heap. Hence, the flow captures
global properties of the heap graph in a node-local way. We can use this abstrac-
tion, for instance, to capture the number of paths starting in a set of roots that
a given node lies on. Flows like this path count can reveal shape information
such as reachability (path count ≥ 1) and tree-ness (path count at most 1 at all
nodes). To access the flow in our instrumentation, we treat it as ghost field flow
on every object that is updated whenever there are writes to the heap.

Using the above abstractions, our instrumentation is capable of checking for
memory safety. For (M1), we add assertions prior to dereferencing a pointer x to
ensure that x is neither NULL nor freed. For the latter, we extend all objects with a
special free flag that is raised by free. That is, x is not freed if x->free is not raised.
For (M2), we do the same prior to freeing a pointer x. For (M3), we rely on the
path counting flow and let our instrumentation assert that the space invariant
is strong enough to imply that every object is either reachable or has been freed.

Figure 3 gives the instrumentation of function pop from Fig. 1. The accessible
heap locations are mirrored using stack variables, one for each field of each object.
For example, field next of pointer List is mirrored in List_next, and similarly
for all other pointers. Dereferences like List->next on Line 4 in Fig. 1 are then
replaced with the corresponding stack variable List_next on Line 26. The memory
safety (M1) of this dereference is ensured by the assertion on Line 25. Similarly, an
instance for checking (M2) is on Line 39. Checking (M3) is wrapped within func-
tion sync on Line 43, detailed in Fig. 6. In the following sections we elaborate on
the ingredients of our instrumentation and discuss how to obtain the one in Fig. 3.

3 Core Instrumentation

We present an idealized version of our code instrumentation for rewriting the
input program into a new program that does not use dynamically allocated heap
memory. Our instrumentation conservatively overapproximates the behavior of
the original program by overapproximating the actual values that it may read
from or write to the heap. Later, we incorporate orthogonal techniques for the
instrumentation to handle flow reasoning (§4) and concurrency (§5).
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23 void pop() {
24 // Line 4: Node* item = List->next;
25 assert(List != 0 && List_free == 0);
26 int item = List_next;
27 int item_next = havoc, item_free = havoc, item_flow = havoc;
28 assume(Inv(item, item_next, item_free, item_flow));
29 int item_0_next = item_next, item_0_flow = item_flow;
30 assume(item_flow >= 1);
31 // Line 5: if (item != NULL) { ... }
32 if (item != 0) {
33 // Line 7: List->next = item->next;
34 assert(List != 0 && List_free == 0);
35 assert(item != 0 && item_free == 0);
36 List_next = item_next;
37 if (List == item) { item_next = List_next; }
38 // Line 9: free(item);
39 assert(item != 0 && item_free == 0);
40 item_free = 1;
41 if (item == List) { List_free = 1; }
42 // combined push site for Lines 7 and 9
43 sync(List, item);
44 assert(Inv(List, List_next, List_free, List_flow));
45 assert(Inv(item, item_next, item_free, item_flow));
46 List_0_next = List_next; List_0_flow = List_flow;
47 item_0_next = item_next; item_0_flow = item_flow;
48 } }

avail(List)

materialize(item)

avail(List)
avail(item)

dyn_up(List,next)

avail(item)

dyn_up(List,next)

push(List),
push(item)

Fprop(List,item)

Fpush(List), Fpush(item)

Fmaterialize(item)

Figure 3. Instrumentation of function pop from Fig. 1. The instrumentation is heap-less,
mirroring the accessed heap locations in the stack by materializing the space invariant Inv.
Moreover, the instrumentation ensures memory safety by inserting appropriate assertions.
Helper sync on Line 43 performs flow reasoning and is discussed in detail in §4.

3.1 Overview

The instrumentation closely follows the structure of the original program, retain-
ing control structures such as loops and branching. Primitive commands and
expressions are rewritten to not use the heap. To make this precise, we assume
that programs adhere to the following EBNF:

st ::= while (havoc) { st } | if (havoc) { st } else { st } | st∗ | com;

com ::= int x | T* x | x = y | x = y->f | x->f = y | x = malloc

| free(x) | assert(x ⊕ y) | assume(x ⊕ y)

Both while and if statements are non-deterministic, as indicated by their con-
ditions being havoc. This way, only primitive commands require rewriting. The
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Rule Input com Instrumentation com ⇝ . . .

Intro T* x; int x; int x_f1, ..., x_fn, x_free, x_flow;
Intro2 int x; int x;
Assign x = y; x = y; x_f1 = y_f1; ...; x_fn = y_fn;

x_free = y_free; x_flow = y_flow;
Read x = y->f; avail(y); x = y_f; materialize(x);
Write x->f = y; avail(x); x_f = y; dyn_up(x, f); push(x);
Free free(x); avail(x); x_free = 1; dyn_up(x, f); push(x);
Malloc x = malloc; x = ++ALLOC; x_f1 = havoc; ...; x_fn = havoc;

x_free = 0; x_flow = 0; no_alias(x); push(x);
Assume assume(x ⊕ y); prf(⊕, x, y); assume(x ⊕ y);
Assert assert(x ⊕ y); prf(⊕, x, y); assert(x ⊕ y);

49 avail(x) ≡ assert(x != 0 && x_free == 0);
50 materialize(x) ≡ if (x is not a pointer) { /* no-op */ } else {
51 x_f1 = havoc; ...; x_fn = havoc; x_free = havoc; x_flow = havoc;
52 assume(Inv(x, x_f1, ..., x_fn, x_free, x_flow)); }
53 push(x) ≡ assert(Inv(x, x_f1, ..., x_fn, x_free, x_flow));
54 dyn_up(x, f) ≡ for i in 1..k: if (x == yi) { yi_f = x_f; }
55 no_alias(x) ≡ for i in 1..k: assume(x != yi &&

∧m

j=1
x != yi_ptrj);

56 prf(⊕, x, y) ≡ if (⊕ is other than ==) { /* no-op */ } else {
57 assert(x == 0 || y_free == 0); assert(y == 0 || x_free == 0); }

Figure 4. Instrumentation rules (top) and abbreviations (bottom). For a streamlined
presentation, we assume that pointers are of type T* and have fields f1, . . . , fn, of which
ptr1, . . . , ptrm are those that are pointers themselves. We also assume that y1, . . . , yk

are all pointers in scope other than x. We use for loops to syntactically repeat code.

primitive commands include variable declarations for integers and pointers T,
variable assignments, reads from the heap, writes to the heap, heap memory
allocation and deallocation, as well as assertions and assumptions that compare
variables using an operator ⊕. Note that assumptions enable this language to
model standard conditional loops and branching.

Our instrumentation is a relation sto ⇝ sti among statements, where sto is
from the original program and sti is the instrumented version of sto. As mentioned
earlier, statements themselves need no rewrite, only the primitive commands do.
An overview of the rewriting rules is given in Fig. 4 and further detailed in the
remainder of this section.

3.2 Heap Abstraction

Our instrumentation abstracts from the actual heap by overapproximating it
with a space invariant. The space invariant is a family of uninterpreted predi-
cates InvT (a, f1, . . . , fn, free, flow), one for each pointer type T in the program,
indicating whether or not the fields of the object at address a may have the given
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values. The invariant takes all fields f1, . . . , fn of type T as well as the special
fields free and flow.

A crucial aspect of our approach is the fact that the space invariant is uninter-
preted. This allows us to pose requirements to it without explicitly specifying it,
relying on the back-end solver to synthesize an appropriate invariant when veri-
fying our instrumented program. While uninterpreted predicates are no standard
feature, they are supported by tools like seahorn [23,66] and tricera [20].

3.3 Reading from the Heap

The original program accesses the heap with dereferences, such as x->f to access
field f of the address a that x points to. These accesses are replaced to refer to the
stack. To that end, our instrumentation mirrors the heap portion referenced by x
by introducing a program variable x_f, for each field f of x. This is implemented
by rule Intro. The dereference x->f is then simply replaced with x_f.

To ensure the memory safety of dereferences (M1), our instrumentation
inserts assertions prior to every dereference x->f that ensure that x is neither
NULL nor freed. This check is implemented by avail(x) from Fig. 4.

For the newly introduced stack variables x_f to appropriately mirror the
actual heap portions they correspond to, we materialize their values from the
space invariant. Hence, we refer to those variables as materialization variables.
Concretely, when a pointer x receives a new address (is assigned to) from a
heap read, rule Read non-deterministically chooses new values for all materi-
alization variables associated with x and then constrains them to satisfy the
space invariant, implemented by materialize(x) from Fig. 4. This guarantees
that subsequent accesses to the fields of x, including the special fields flow and
free, overapproximate the values that the actual heap may hold.

Example 1. Consider the assignment Node* item = List->next; on Line 4 of our
running example from Fig. 1. The instrumentation of this assignment is on
Lines 25–28 from Fig. 3 and proceeds as follows. First, Line 25 ensures that
dereferencing List is safe (avail(List)). Second, Line 26 updates item to its
new value as read from List’s materialization variable List_next. Last, Line 27
havocs the materialization variables for item and Line 28 materializes them from
the space invariant Inv (materialize(List)).

Note that Line 27 deviates from materialize(List) in that it declares the
materialization variables for item. This is because our running example does not
separate the declaration of item from its assignment, which is why we combine
rules Intro and Read. ⊓⊔

3.4 Writing to the Heap

In the instrumentation, updates to the heap are reflected by updates to the
materialization variables, rule Write. As expected, we replace writes to the heap,
say to x->f, with writes to the corresponding materialization variables, x_f. Since
we store materialization variables for every pointer, simply updating x_f may
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result in an inconsistent state where the materialization variable y_f of an alias
y of x does not reflect the update. To overcome this, we perform a semantic alias

analysis and mirror the update on aliasing pointer’s materialization variables. The
alias analysis is semantic in the sense that we encode it into the instrumentation
such that it is performed by the back-end solver. Concretely, we use dyn_up(x,f)
from Fig. 4 which adds conditionals that, for every pointer y, check if it aliases x
and, if so, update y_f to x_f.5

Besides updating the materialization variables, our instrumentation has to
reconcile heap updates with the space invariant, ensuring that it conservatively
overapproximates all possible heap values. To that end, we simply assert the space
invariant for the updated pointer and its materialization variables, cf. push(x)
from Fig. 4. We refer to the program locations where this happens as push sites.

In practice, it is beneficial not to push each update on its own, but collect
multiple updates and push them together. Coarse-grained pushes lead to more
sensible space invariants as they avoid capturing intermediate states.

Technically, we require a push site for an update to x->f after updating the
corresponding materialization variable x_f and before x_f becomes inaccessible.
Materialization variable x_f may become inaccessible if it goes out of scope, i.e., if
x goes out of scope, or if x is assigned to, i.e., x_f represents a potentially different
memory portion. Due to space constraints, we do not detail this optimization.

Example 2. Consider the heap update List->next = item->next; on Line 7. The
instrumentation in Fig. 3 proceeds as follows. First, Lines 34 and 35 ensure
that it is safe to dereference pointers List (avail(List)) and item (avail(item)),
respectively. Second, Line 36 updates the materialization variable List_next
corresponding to List->next in order to reflect its new value, item_next. Third,
Line 37 mirrors the update on aliases of List (dyn_up(List, next)). In the
example, item is the only potential aliasing pointer in scope. Last, Line 44 asserts
the invariant for List with its updated field values (push(List)).

In Fig. 3, the push site for List is deferred until the subsequent free of item
from Line 9, the instrumentation of which is detailed below. Combining the push
sites for these two commands alleviates the space invariant from capturing the
intermediate state where item has been unlinked but not yet freed, improving
the precision of our analysis. ⊓⊔

3.5 Frees

The instrumentation of memory reclamation free(x) by rule Free is straightfor-
ward: we treat it as if it was an ordinary heap update to the special field free, i.e.,

5 The attentive reader readily realizes that reading from the heap may result in pointers
being aliases of the same object, which our materialization does not detect. Since
this does not affect soundness, we omit an improved Read rule. Extending Read

with a semantic alias analysis such as the one discussed here follows naturally.
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we treat it as x->free = 1. Consequently, the instrumentation of frees ensures that
x is neither NULL nor freed. This, in turn, ensures that x is not freed twice (M2).6

It is worth pointing out that in order to check for double frees, the instru-
mentation does not need to consider the free field of pointers y that alias x. This
is because heap updates to y keep the materialization variables of x consistent,
i.e., freeing y sets the free materialization variables associated with both x and y.

Example 3. The instrumentation in Fig. 3 of free(item) on Line 9 proceeds as
expected: Line 39 ensures memory safety (avail(item)), Line 40 performs the
deletion by setting the free flag to 1, and Line 41 frees List should it alias item.
The push site for the deletion is on Line 45. ⊓⊔

3.6 Allocation

Instrumenting allocations, rule Malloc, is similar to materializing from the
space invariant: we assign a new value to the receiving pointer x and havoc its
materialization variables, except for the special field free which is set to 0 (not
freed). We do not assume the space invariant because allocations do not initialize
fields but leave them unspecified. For the address that the allocation returns
we use a global allocation counter ALLOC to produce a new address for every
allocation. Moreover, we use no_alias(x) to add assumptions that guarantee that
the returned address is distinct from all pointers and all materialization variables
of pointer type in scope. This resembles a garbage-collected semantics and not
a standard C/C++ semantics where previously freed memory can be reused. For
this to be sound, we require that the program cannot distinguish whether or
not memory is actually reclaimed [25,32,51,52]. This requirement boils down to
proving that the program satisfies memory safety properties (M1) and (M2)

and, additionally, that pointers referencing freed memory are not compared to
other pointers (except NULL). These assertions are implemented by the helper prf
from Fig. 4 used in rules Assert and Assume. Note that this means that our
instrumentation inlines an analysis akin to [25,32].

Similar to heap updates, pushing new allocations to the space invariant
immediately will pollute the space invariant with states of uninitialized objects.
In practice, we thus follow standard verification practice [63,65] and treat new
allocations as owned, deferring their push until they are published into the shared
heap so that the space invariant captures only shared objects. Due to space
constraints and the fact that this optimization is not relevant for soundness, we
refrain from making it explicit here.

Example 4. Consider the allocation of a Node into pointer item on Line 18. The
instrumentation for item = malloc is given in Fig. 5. Line 58 assigns the next
available address to item and increases the allocation counter ALLOC, which is
declared along the shared pointer List. Line 59 havocs the fields of item and
initializes the special fields free and flow. Lines 60 and 61 ensure that the allocation
for item is fresh, i.e., distinct from List, curr, and any of their pointer fields. ⊓⊔
6 This is stricter than necessary as it prevents freeing NULL, which is allowed and simply

does nothing in C/C++. We ignore this technicality here.
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58 int item = ++ALLOC;
59 int item_next = havoc, item_free = 0, item_flow = 0;
60 assume(item != List && item != List->next);
61 assume(item != curr && item != curr->next);
62 // assert(Inv(item, item_next, item_free, item_flow)); // push deferred

Figure 5. Instrumentation of malloc, Line 18. The allocation returns a fresh address.
It is treated as owned memory and not pushed immediately.

4 Flows Instrumentation

We extend our instrumentation with flows. Flows provide light-weight shape
information so that we can detect memory leaks, (M3). Together with the
assertions for (M1) and (M2) discussed in the previous section, this completes
our memory safety analysis. Additionally, the shape information provided by
flows increases the overall precision of our technique.

The changes required to integrate flow reasoning into our instrumentation
are summarized in Fig. 6. We elaborate on the key components.

Flow Abstraction. The flow framework [42,43,50] associates a flow value with
each node in the heap graph. Similar to forward data flow analyses, the flow
values are computed by solving a fixed-point equation: each node is assigned an
initial value and propagates updated values along its outgoing edges (pointers)
based on its current flow value. This enables the flow framework to express
inductive, global properties such as reachability in a local way, through the flow
values of individual nodes.

To illustrate the reasoning carried out by our approach, we associate a path

count with each node, a natural number that counts the number of paths starting
in a root node and leading to the respective node on the heap. In terms of the
running example from Fig. 2, we associate numbers f1, . . . , f4 ∈ N with the nodes
a1, . . . , a4, respectively. The fixed-point equations for each node are derived by
summing the path counts of the incoming next links:

f1 = 1, f2 = 0, f3 = f1 + f2, f4 = f3.

The unique solution to these equations is f1 = f3 = f4 = 1 and f2 = 0, which
enables us to differentiate between nodes that are still reachable (path count
> 0) and nodes that are not part of the list (path count 0). Note that a1 receives
f1 = 1 despite having no predecessors because it is the root of the list.

Towards detecting memory leaks (M3), observe that the path-counting flow
characterizes reachability: nodes with a path count of 0 are no longer reachable
from the roots. Consequently, property (M3) is satisfied if all nodes with a path
count of 0 have been reclaimed when the program under scrutiny terminates.

To perform this flow reasoning within our instrumentation, we extend the heap
by adding a field flow to each object. In our example, field ai->flow represents
value fi. The flow fields are updated dynamically by the instrumentation whenever
heap objects or the heap graph change.



12 S. Wolff, E. Gupta, Z. Esen, et al.

Localizing Flow Updates. The challenge in incorporating flows into the
instrumentation arises because they are defined as fixed points over the entire
heap graph, making a straightforward recomputation intractable.

We refer to the set of nodes whose flow values are affected by a heap update
as the footprint of the update. A key observation that helps to address the issue
of recomputing flow values is that the footprint is often localized to a small
bounded region in the vicinity of the update. It then suffices to recompute the
flow only in this bounded region, avoiding a recomputation of the full fixed point.

The key idea for this localization of the flow update is thus to (i) guess a
bounded set of nodes (the footprint) for which the flow values are changed by the
update, (ii) compute new flow values, but just within the footprint, (iii) verify
that the update is really local to the chosen footprint.

Identifying a footprint that is guaranteed to localize the recomputation (i.e.,
step (i) above) is algorithmically challenging and oftentimes not possible to do
statically. Instead, we use a heuristic for choosing the footprint: we include objects
whose fields are updated by the program and neighboring objects with a statically
fixed distance to the updated objects. In our implementation, we include only
the immediate successors of updated objects.

We explain step (ii) below. Step (iii) guarantees the soundness of the local-
ization to a given footprint. It requires our instrumentation to ensure that the
flow at the boundary of the footprint is not changed by the update [42,43,50].
To be precise, for all objects y outside the footprint, we have to ensure that the
total flow they receive from the footprint is exactly the same before and after
the update. If so, the flow update is indeed local to the footprint and does not
change outside of the footprint. Otherwise, verification fails.

Revisited Instrumentation. In order to compare the footprint before and
after the update, we have to duplicate the materialization variables of all pointers
before any update is performed. Our instrumentation creates such duplicates
whenever a pointer is declared, rule FIntro from Fig. 6. For pointer x and field
f, the duplicate is x_0_f. (We do not duplicate the free field, it is not needed.)
Whenever x is materialized (Fmaterialize), the duplicates x_0_f are set to the
corresponding original x_f to reflect that no updates have been performed so far.

The main change for integrating flows concerns pushing updates as part of
rules Write and Free. Our revised instrumentation from Fig. 6 employs Fpush
to do this. To present it in a way that does not rely on the actual flow that is
being used, we use the following placeholders: I(x) produces the initial flow value
for object x, Epre(x, y) produces the flow that y receives from x before the update
(using the duplicates x_0_f), and Epost(x, y) produces the flow that y receives from
x after the update (using the originals x_f). Note that Epre and Epost produce the
sum of all edges between the nodes, should there be multiple. For an instantiation
of these placeholders to the path-counting flow, refer to Example 5 below.

After choosing some footprint x1, . . . , xk, e.g., according to the above heuristic,
the most interesting part of Fpush is sync. It computes the new flow in the footprint
(step (ii) above) and checks that the updates did not change the flow at the
boundary of the footprint (step (iii)). Intuitively, to compute the new flow, we



Arithmetizing Shape Analysis 13

Rule Input com Flow-aware instrumentation com ⇝ . . .

FIntro T* x; int x; int x_f1, ..., x_fn, x_free, x_flow;
int x_0_f1, ..., x_0_fn, x_0_flow;

FAssign x = y; x = y; x_f1 = x_f1; ...; x_fn = x_fn;
x_0_f1 = y_0_f1; ...; x_0_fn = y_0_fn;
x_free = y_free; x_flow = y_flow; x_0_flow = y_0_flow;

FRead x = y->f; avail(y); x = y_f; Fmaterialize(x); Fprop(y, x);
FMalloc x = malloc; x = ++ALLOC; x_f1 = havoc; ...; x_fn = havoc;

x_free = 0; x_flow = 0; no_alias(x);
x_0_f1 = x_f1; ...; x_0_fn = x_fn;
x_0_flow = x_flow; push(x);

63 Fprop(y, x) ≡ if (x is a pointer) { assume(x_flow >= Epost(y, x)); }
64 Fmaterialize(x) ≡ materialize(x); if (x is a pointer) {
65 x_0_f1 = x_f1; ...; x_0_fn = x_0_fn; x_0_flow = x_flow; }
66 Fpush(x) ≡ let x1, ..., xk = footprint of x; sync(x1, ..., xk);
67 for i in 1..k, j in 1..n: push(xi); xi_0_fj = xi_fj;
68 sync(x1, ..., xk) ≡
69 for i in 1..k: int xi_in = havoc; xi_flow = havoc;
70 for i in 1..k: assume(xi_0_flow == xi_in + I(xi) +

∑k

j=1
Epre(xi,xj));

71 for i in 1..k: assume(xi_flow == xi_in + I(xi) +
∑k

j=1
Epost(xi,xj));

72 int out = havoc; assume(out > 0 &&
∧k

i=1
out != xi);

73 assert(
∑k

i=1
Epre(xi, out) ==

∑
1≤i≤k

Epost(xi, out));

Figure 6. Revision of the core instrumentation from Fig. 4 to support flow reasoning.
Changes to the rules (top) are colored. The F-prefixed abbreviations (bottom) replace
the ones from Fig. 4 in all remaining and otherwise unchanged rules. In sync, functions
Epre(x, y) and Epost(x, y) encode the flow-specific values that are sent from x to y before
and after the update, respectively.

havoc the new flow values and constrain them to guarantee that they are a fixed
point (lines 69-71). We explain the relevant steps in more detail.

Since we compute the flow fixed point only for the footprint, we have to
account for the flow that the footprint receives from objects outside the footprint.
To that end, sync introduces xi_in, for each xi, which reflects that flow xi receives
from the outside. The value of xi_in is chosen non-deterministically on Line 69,
and then constrained by the flow from before the update on Line 70. Intuitively,
Line 70 performs one step of a Kleene fixed point iteration and assumes that the
result equals the expected flow. Technically, the Kleene iteration for xi sums up
the initial value I(xi), the flow xi_in that xi receives from outside the footprint,
and the flow xi receives from within the footprint (via Epre).

Next, sync computes the flow after the update on Line 71. While we could
explicitly implement a standard least fixed point computation to do so, we found
it to be more efficient to non-deterministically choose new flow values and enforce
on Line 71 that they are a fixed point, analogous to the Kleene iteration above.
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Step (iii) is implemented on lines 72-73. Similar to the previous step, we
found it to be more efficient to perform this final check for a non-deterministically
chosen object outside the footprint, rather than iterating over all the links that
the objects in the footprint have to the outside. Concretely, Line 72 first havocs
a node outside the footprint (this is variable out). Then Line 73 asserts that the
flow that this node receives from within the footprint has remained unchanged,
i.e., the flow it received before the update is the same as after the update.

Example 5. Consider the updates pop performs, namely unlinking and freeing
item on Lines 7 and 9, respectively. The instrumentation of pop in Fig. 3 imple-
ments the flow reasoning presented so far. The interesting part is the combined
push site for both updates on Lines 43–47. First, it invokes sync to recompute
the flow after the update and check that choosing {List, item} as the footprint is
a sound, local update. Then, it asserts the invariant for each node participating
in the footprint, Lines 44 and 45. Finally, it resets the duplicated materialization
variables, Lines 46 and 47.

The implementation for sync follows the blueprint from Fig. 6. We instantiate
the flow-specific helpers according to our intuition for the path-counting flow,
initializing the path count (flow) at root nodes and forwarding it along next links:

I(x) ≡ x == List ? 1 : 0
Epre(x, y) ≡ x_0_next == y ? x_0_flow : 0

Epost(x, y) ≡ x_next == y ? x_flow : 0

Note that the above definitions need to be copied verbatim into sync, because
the instrumentation has to dynamically compute the flow. ⊓⊔

Lastly, it is worth noting that we also change rule FRead. When reading a
pointer field y->f into x, then flow may propagate along the f edge if y receives
flow. We capture this propagation using Fprop from Fig. 6, which assumes that
the flow in x is at least what it receives from y, Epost(y, x). In the running example,
the read on Line 4 leads to the flow propagation on Line 30 in the instrumentation,
where item is guaranteed to receive at least path count 1 from List because the
shared List pointer is the root of the structure.

Memory Leaks. With the flow instrumentation in place, we are ready to check
for memory leaks. To that end, we rely on the space invariant: we require that
all objects, as captured by the space invariant, are either deleted or have a
flow other than 0. The universal quantifier in this requirement is resolved by
non-deterministically choosing some object with some field values, assuming the
object satisfies the space invariant, and then asserting the above requirement.
The following code implements this check for a type with fields f1, . . . , fn:

int x = havoc; int x_f1, ..., x_fn, x_free, x_flow; materialize(x);
assume(x != NULL); assert(x_flow > 0 || x_free == 1);

It does not matter where exactly this code is inserted because it only poses a
requirement to the invariant. If the back-end solver cannot satisfy this requirement,
verification fails. Our prototype tool inserts the check at the end of main.
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Rule Input com Flow-aware instrumentation com ⇝ . . .

Yield yield(x); if (x_lock != 1) { Fmaterialize(x);
assume(x_lock != 1); }

Lock lock(x); avail(x); assume(x_lock == 0); x_lock = 1;
Unlock release(x); avail(x); assert(x_lock == 1); x_lock = 0;
CWrite x->f = y; avail(x); assert(x_lock == 1); x_f = y;

dyn_up(x, f); push(x);

Figure 7. Instrumentation for verifying concurrent programs using a thread-modular
abstraction. New rules and changes to existing ones are colored. The instrumentation
uses locks to avoid unnecessary materializations when no interference is possible.

5 Concurrency

Our instrumentation is readily extended to perform a thread-modular abstraction
[6,21,36,55], allowing us to verify the program as if it was executed concurrently
by an arbitrary number of threads. To that end, our instrumentation verifies
the program from the point of view of an isolated thread that is subject to
interference, i.e., heap updates, from other threads. The interference is applied
whenever the isolated thread may be preempted, at so-called yield points. The
possible heap updates from interfering threads are dictated by the space invariant:
we continue to enforce that all atomic updates maintain the space invariant, so
we can rely on it to always hold even in the presence of concurrency. For our
instrumentation, summarized in Fig. 7, this simply means that we re-materialize
all pointers at every yield point.

To make this precise, we assume that the yield points of the program under
scrutiny are annotated with commands yield x, for every pointer x in scope.
Annotating yield points in a given program is straightforward as they are required
after every atomic command. Note that this approach easily supports applying
standard moverness arguments [45,19,24,40] to reduce the number of yields,
thereby increasing both precision and performance. Our instrumentation then
replaces these yield x with Fmaterialize(x).

To improve the precision of our instrumentation, we make it lock-aware,
with the goal of reducing unnecessary materializations. To that end, we equip
all objects x with a lock x->lock, which can be acquired and released using
commands lock(x) and unlock(x). To distinguish which thread is holding a lock,
our instrumentation uses value 0 to indicate that the lock is available, value 1 to
indicate that the isolated thread holds the lock, and any other value to indicate
that an interferer is holding the lock. Hence, the instrumentation for acquiring
x->lock sets its value to 1 if it is currently available (rule Lock), and releasing
x->lock reverts it back to 0 if it is currently held (rule Unlock).

Using locks, we can now elide materializing x at a yield point if the isolated
thread holds x->lock, rule Yield. Since interferers cannot acquire the lock on
behalf of the isolated thread, it is safe for the rule to include an assumption
stating that the newly materialized lock of x is distinct from 1.
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Table 1. Each cell gives the number of solved benchmarks and average time over
10 runs. tricera and seahorn use instrumented benchmarks, while predator uses
uninstrumented ones. “Broom” and “Shape” denote memsafety-broom and standard
shape analysis benchmarks, respectively.

Properties Benchmark Set tricera seahorn predator Total

sequential, safe Broom 20 (9.4s) 21 (9.2s) 30 (0.8s) 31
sequential, safe Shape1 9 (10.1s) 9 (4.3s) 8 (0.9s) 9
sequential, unsafe Shape2 4 (4.8s) 4 (3.2s) 4 (0.9s) 4

concurrent, safe Concurrent 4 (17.4s) 4 (39.6s) 0 (–) 5

To ensure that eliding materializations is sound, we add assertions to up-
dates of x to guarantee that its lock is held during the update, rule CWrite.
This enforces that all threads adhere to this policy, so that holding x->lock
indeed prevents interferers from updating x. More involved locking strategies are
straightforward to integrate, but are beyond the scope of this paper.

Example 6. Consider the pop function from Fig. 1, including the concurrent
extension in pink color. Line 4 reads item from the locked List’s next field.
Between this line and the subsequent locking of item on Line 6, there is a yield
point. At this yield point, item is re-materialized because it is not locked. However,
List is not re-materialized because it is locked, Line 3. In particular, this allows
our instrumentation to remember that item equals List->next on Line 7, which
is crucial to derive the fact that item is being unlinked. ⊓⊔

Our instrumentation enabled us to verify complex concurrent structures,
such as lock-based linked lists and trees (cf. §6), substantiating the merit of our
approach. Notably, it generalizes far more easily to various settings compared to
traditional, hand-crafted shape analyses.

6 Evaluation

We have implemented our proposed approach in a tool called triceratops.
triceratops accepts programs in a C-like language, performs the instrumenta-
tion from the previous sections, and analyzes the instrumented program with an
off-the-shelf solver to verify the assertions added through instrumentation, thereby
proving memory safety. The supported solver toolchains are seahorn [23,66]
with z3/spacer [39] as well as tricera [20] with eldarica [29,28]. Our tool
currently requires manual preparation of input programs to match its simplified in-
put language, such as separating chained pointer dereferences into individual ones.
While automating this manual preprocessing step is conceptually straightforward,
we did not prioritize it in the prototype.

Our instrumentation relies on several constructs and operators not native to
C but widely supported by verification tools: (i) havoc for non-deterministically
choosing values, (ii) assert for raising a runtime error if a given condition fails,
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and (iii) assume for blocking the execution if the given condition is not satisfied.
Additionally, our encoding of space invariants Inv depends on (iv) uninterpreted
predicates [20,66], which are less commonly supported. Our back-end solvers,
seahorn and tricera, support all of these features. While we are not aware of
a general method to encode uninterpreted predicates in any verification tool, we
believe it is straightforward to do so in Horn clause-based tools.

Limitations of the current implementation are that we rely on a simplified
acyclicity requirement for the localized flow update instrumentation instead
of running a fixed point computation, for performance reasons. This precludes
handling of data structures like circular lists. Currently, we also only support
the path-counting flow domain. Neither of these are inherent limitations of
the technique; our implementation can be extended to support different flow
domains, but we decided to focus on the path-counting flow domain since it
suffices to handle a large variety of data structures most relevant in practice, and
to demonstrate the usefulness of our technique. As mentioned previously, our
analysis is a whole-program analysis—if the input program has no main function,
triceratops inserts one that implements a most general client by invoking the
remaining program functions in a nondeterministic order and analyzes it.

We evaluated triceratops on a set of benchmarks that covers a variety
of shapes, including singly-linked, doubly-linked, and nested lists, as well as
trees, to substantiate that our approach is capable of verifying programs where
this task inherently relies on shape information. Our benchmark set is divided
into three parts: (1) 31 sequential memsafety-broom [1] examples from SV-
COMP [7,8], featuring singly-linked, doubly-linked, and nested lists. Amongst
these, four examples feature circular queues and three more examples feature
pointer arithmetic and are thus incompatible with triceratops. We limit
our evaluation to the memsafety-broom subset of the MemSafety-LinkedLists
sub-category of SV-COMP due to the manual preprocessing of benchmarks
required by triceratops. (2) 13 standard sequential shape analysis examples
with singly- and doubly-linked lists and binary trees, including four with memory-
safety violations, to stress-test triceratops. (3) Five memory-safe examples
of concurrent singly-linked lists and binary trees, designed for memory safety
verification; they non-deterministically generate, traverse (and possibly modify),
and free dynamic structures in the heap.

We compare triceratops with the state-of-the-art shape analysis tool
predator-hp [56,30], the 2024 SV-COMP gold medalist in the memory safety
category [7]. Table 1 summarizes the number of sequential and concurrent bench-
marks solved by triceratops using tricera and seahorn, and the number
solved by predator-hp. Detailed results for the concurrent benchmarks are in
Table 2. All experiments were conducted on an Apple M1 Pro.

The experiments show that our approach is capable of verifying intricate
memory safety tasks. As expected, the runtimes are slower than those of a fine-
tuned shape analysis tool like predator-hp. predator-hp is able to handle a
wider variety of linked list examples than triceratops. It is able to correctly
solve 30 of the 31 examples from the memsaftey-broom benchmark with runtimes
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Table 2. Concurrent benchmarks with runtimes averaged over 10 runs. The tricer-

atops column shows instrumentation time. tricera and seahorn columns show solving
times using those backends. LoC = lines of code; LoI = lines after instrumentation.
Symbols ✓ and ✗ indicate if the tool produced a correct verification verdict.

Benchmark LoC LoI triceratops tricera seahorn

Running Example (Fig. 1) 37 303 0.77s 15.73s ✓ 0.99s ✗

Coarse Stack 38 260 0.42s 8.37s ✓ 4.39s ✓

Fine List [26, §9.5] 60 392 2.25s 30.56s ✓ 92.19s ✓

Internal BST (no maintenance) 41 281 1.73s 14.77s ✓ 5.78s ✓

Internal BST (simple removal) 78 441 6.04s 122.62s ✗ 55.93s ✓

of less than one second, whereas triceratops can only handle 21. Seven of
the examples from this set are incompatible with triceratops because they
involve circular lists or pointer arithmetic. Another three examples fail due to
unbounded flow updates. We note that swapping the order of two operations
in each of these three benchmarks makes the resulting flow updates bounded,
without changing the semantics. Such transformations could be implemented
with a simple heuristic. Overall, the better performance of predator-hp on
these benchmarks is expected since it is a highly specialized and mature tool.

However, our adaptable approach verifies sequential and concurrent tree
benchmarks that are beyond predator-hp’s capabilities. We believe that ex-
tending predator-hp to handle trees or concurrency would be non-trivial and
labor intensive. This substantiates the usefulness of arithmetizing shape analysis
to leverage a broader range of verification tools.

Notably, runtimes for sequential and concurrent benchmarks are comparable,
likely due to materializing the space invariant, yielding similarly precise shape
information in both cases, and the re-materialization required for concurrent
instrumentation (cf. rule Yield) can be dealt with efficiently by the solvers.

Finally, our over-approximate analysis may produce spurious counter-examples.
However, these often allow reconstructing why a failing assertion was added, re-
vealing actual bugs in the input program. Although not automated, this approach
was effective during the development of triceratops and our experiments.

7 Related Work

Shape Analysis. We briefly survey existing approaches in shape analysis that
our work is related to; for a more in-depth overview, we refer the reader to [13].

A parametric framework based on three-valued logic was introduced in [59]
and later reformulated in terms of predicate abstraction in [57]. The effectiveness
of this approach depends on manually chosen predicates tailored to each program.

The tool predator [18] uses an abstract shape domain for lists. predator

can report spurious counterexamples, which is addressed in the version predator-

hp [53] by running additional instances of predator without heap abstraction
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in parallel. predator only provides limited support for non-pointer data, and
cannot handle programs with trees, skip-lists, or concurrency in a sound way.
The approach of predator is also used by cpachecker [3] in combination with
symbolic execution [9] for the purpose of checking unbounded memory safety.
memcad [62,34,22] combines sequence and shape abstractions and supports lists
and trees. The sequence abstraction enables the tracking of data constraints on
such data structures, like value ranges and lengths of sequences.

Several studies employ expensive global reasoning about heap memory, but de-
liberately stay within decidable logics in order to enable automation [35,44,46,67].

More generally, many points-to domains have been proposed to reason ab-
stractly about pointers and linked data-structures stored on the heap, e.g., [61,27].
Such domains are less precise, but can be implemented more efficiently than
shape analysis domains. Space invariants resemble points-to analysis in that
they summarize the possible states of objects using a symbolic invariant; the
inference of space invariants is carried out symbolically using a model checker,
however, and not with the help of abstract interpretation. Refined versions of
space invariants [38] are related to recency-abstraction [4], which distinguishes
objects based on allocation sites and summarizes object states separately for the
most recent allocation and all earlier allocations.

Separation Logic and the Flow Framework. Separation logic (SL) [54,58]
is widely used for reasoning about memory safety and functional properties. It
enables compositional reasoning by partitioning the heap into smaller regions,
allowing properties for different heap regions to be expressed locally, such that
modifications to one region do not invalidate properties about other regions.

The flow framework [42,43,50], which we build on in this paper, endows the
(heap) graph with a flow that allows global properties to be specified in terms
of node-local invariants by referring to that flow. Flows augment the nodes in
the heap with additional ghost information, and are computed inductively over
the graph structure using data-flow equations. The flow framework has been
used in the verification of sophisticated algorithms that are difficult to handle
by other techniques, such as the Priority Inheritance Protocol, object-oriented
design patterns, and complex concurrent data structures [41].

A general proof technique for reasoning about global graph properties using
the flow framework is presented in [43]. The framework automatically checks
that each modified heap region preserves invariants, and is implemented using
the tool viper. In this setting, invariants must be manually provided but can
then be verified automatically. Similarly, [48,49,47] devise (semi-)automatic flow
framework-based techniques for fine-grained concurrent data structures.

Bi-abduction-based Shape Analysis. Bi-abduction [12] is an SL-based shape
analysis technique that simultaneously identifies both the missing preconditions
required for safe code execution and the portions of memory that remain un-
changed after execution. This enables a compositional analysis strategy that
analyzes parts of a program independently and later combines the results, leading
to improved scalability, as demonstrated by the success of the infer tool [11].
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The broom tool implements a bi-abduction analysis for low-level C code [33].
Classical bi-abduction often yields imprecise invariants for loops. The authors
of [60] address this limitation by introducing “biabductive loop acceleration”,
which directly constructs and verifies candidate loop invariants, complemented by
a shape extrapolation heuristic that leverages locality in list-like data structures.

Our technique has strengths and weaknesses orthogonal to those of bi-
abduction-based approaches. On the one hand, our reduction-based approach
enables easy integration into existing software verification tool chains. The ap-
proach also promises to be more easily extensible, e.g., by instantiating the
flow abstraction with different flow domains to track different kinds of shape
properties. In particular, we can use the same flow domain to prove memory
safety of both concurrent and sequential programs manipulating lists and trees.

On the other hand, our approach reduces the verification problem to a
whole program analysis that is not immediately amenable to the more efficient
compositional reasoning that underlies biabduction techniques. Exploring a
combination of the two approaches is an interesting direction for future work.

8 Conclusions

We have presented a new automatic shape analysis method based on two reasoning
principles: flow abstraction, which reduces global properties of the heap graph to
local flow equations that are required to hold for every object on the heap, and
space invariants, for representing an unbounded number of heap objects using
symbolic invariants. As our approach is implemented through a source-to-source
transformation, it can be used in conjunction with different verification back-ends,
and is able to leverage all data types and language features supported by the
back-end tool. Our experiments show that the analysis approach covers a wide
range of shapes and can even be extended to concurrent programs.

Several avenues for future work exist. At the moment, concurrency support
in triceratops is only experimental, more research is needed to work out the
details of how to analyze concurrent programs operating on linked data structures
using our approach. We also plan to investigate the use of other flow domains,
beyond path counting, to obtain more precise shape analysis. Lastly, the details
of how to combine shape analysis with data analysis (e.g., sortedness of lists or
well-formedness of search trees) remain to be investigated.
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