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Abstract nekton is a new tool for checking linearizability proofs of highly com-
plex concurrent search structures. The tool’s unique features are its parametric
heap abstraction based on separation logic and the flow framework, and its sup-
port for hindsight arguments about future-dependent linearization points. We de-
scribe the tool, present a case study, and discuss implementation details.
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1 Introduction

We present nekton, a mostly automated deductive program verifier based on separa-
tion logic (SL) [23,27]. The tool is designed to aid the construction of linearizabil-
ity proofs for complex concurrent search structures. Similar to many other SL-based
tools [2,8,14,22,33,33], nekton uses an SMT solver to automate basic SL reasoning.
Similar to the original implementation of CIVL [7], it uses non-interference reasoning
à la Owicki-Gries [25] to automate thread modularity. What makes nekton stand out
among these relatives is its inbuilt support for expressing complex inductive heap in-
variants using the flow framework [12,13,20] and the ability to (partially) automate
complex linearizability arguments that require hindsight reasoning [4,5,15,18,19,24].
Together, these features enable nekton to verify challenging concurrent data structures
such as the FEMRS tree [4] with little user guidance.

nekton [17] is derived from the tool plankton [18,19], which shares the same over-
all goals and features as nekton but strives for full proof automation at the expense of
generality. In terms of the trade-off between automation and expressivity, nekton aims
to occupy a sweet spot between plankton and general purpose program verifiers. In
the following, we discuss nekton’s unique features in more detail and explain how it
deviates from plankton’s design.

The flow framework can be used to express global properties of graph structures in
a node-local manner, aiding compositional verification of recursive data structures. The
framework is parametric in a flow domain which determines what global information
about the graph is provided at each node. Various flow domains have been proposed
that have shown to be useful in concurrency proofs [11,26]. To simplify proof automa-
tion, plankton uses a fixed flow domain that is geared towards verifying functional
correctness of search structures. In contrast, nekton is parametric in the flow domain.
For instance, it supports custom domains for reasoning about overlayed structures and
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other data-structure-specific invariants. This design choice significantly increases the
expressivity of the tool at the cost of a mild increase in the annotation burden for the
user. For instance, the FEMRS tree case study that we present in this paper relies on a
flow domain that is beyond the scope of plankton. In fact, the flow domain is also be-
yond state-of-the-art abstract interpretation-based verification tools checking lineariz-
ability [1]. However, computing relative to a given flow domain is considerably more
difficult than computing with a hard-coded one: it requires parametric versions for (1)
computing post images, (2) checking entailment, and (3) checking non-interference.
Yet, it allows for sufficient automation compared to general user-defined (recursive)
predicates as accepted by, e.g., Viper [22] and VeriFast [9].

The second key feature of nekton is its support for hindsight reasoning. Intuitively,
hindsight arguments rely on statements of the form “if q holds in the current state and
p held in some past state, then r must have held in some intermediate state”. Such
arguments can greatly simplify the reasoning about complex concurrent algorithms that
involve future-dependent linearization points. At a technical level, hindsight reasoning
is realized by lifting a state-based separation logic to one defined over computation
histories [18,19]. nekton’s support for this style of reasoning goes beyond the simple
hindsight rule in [18] but does not yet implement the general temporal interpolation
rule introduced more recently in [19], which is already supported by plankton.

These features set nekton apart from its competitors. First, it offers more expres-
sivity compared to tools with a higher degree of automation like plankton [18,19],
Cave [29–31], and Poling [34]. Second, it’s proofs require less annotation effort than
more flexible refinement-proofs for fine-grained concurrency, like those of CIVL [7,10]
and Armada [16]. Last, it integrates techniques for proving linearizability, which are
missing in industrial grade tools like Anchor [6].

In the remainder of this paper, we provide a high-level overview of the tool (Sect. 2),
present a case study (Sect. 3), and discuss implementation details some of which also
concern plankton and have not yet been reported on before (Sect. 4).

2 Input

nekton checks the correctness of proof outlines for the linearizability of concurrent
data structures. Its distinguishing feature compared to its ancestor plankton is that
the heap abstraction is not hard-coded inside the tool, but taken as an input parameter.
That is, nekton’s input is a heap abstraction and a set of proof outlines, one for each
function manipulating the data structure state. The heap abstraction defines how the
data structure’s heap representation is mapped onto a labeled graph that captures the
properties of interest and that can then be reasoned about in separation logic. It also
embeds the mechanism for checking linearizability.

nekton works with the recent flow graphs proposed by Krishna et al. [12,13], in
their latest formulation due to [18]. Flow graphs augment heap graphs with ghost state.
The ghost state can be understood as a certificate formulating global properties of heap
graphs in a node-local manner. It takes the form of a so-called flow value that has been
propagated through the heap graph and, therefore, brings global information with it. The
propagation is like in static analysis, except that we work over heap graphs rather than
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control-flow graphs. To give an example, assume we want to express the global property
that the heap graph is a tree. A helpful certificate would be the path count, the number
of paths from a distinguished root node to the node of interest. It allows us to formulate
the tree property node-locally, by saying that the path count is always at most one.

Our first input is a flow domain (M, gen). The parameter (M,+, 0) is a commuta-
tive monoid from which we draw the flow values. The propagation needs standard fixed
point theory: the natural ordering a ≤ a + b for a, b ∈ M on the monoid should form
an ω-complete partial order. We expect the user to specify both + and ≤ to avoid the
quantifier over the offset in the definition of ≤. The parameter gen generates the trans-
fer functions labeling the edges in the heap graph. Transfer functions transform flow
values to record information about the global shape. The generator has the type

gen : PointerFld → (DataFld → Data) → Mon(M → M) .

We assume flow graphs distinguish between pointer fields (PointerFld) and fields that
hold data values (DataFld). Flow values are propagated along every pointer field, in a
way that depends on the current data values but that does not depend on the target of
the field. To see that the data values are important, imagine a node has already been
deleted logically but not yet physically from a data structure, as is often the case in
lock-free processing. Then the logical deletion would be indicated by a raised flag (a
distinguished data field), and we would not forward the current path count. To reason
about flow values with SMT solvers, we restrict the allowed types of flow values to

M ::= B | N | P(B) | P(N) | M ×M .

Flow values are (sets of) Booleans or integers, or products over these base types. When
defining a product type, the user has to label each component with a selector allowing
to project a tuple onto this component. Importantly, the user can define the addition
operation + for the flow monoid freely over the chosen type as long as the definition
is expressible within the underlying SMT theory (e.g., for N one may choose as + the
usual addition or the maximum). The tool likewise inherits the assertion language for
integers and Booleans that is supported by the SMT solver. There are two more user-
defined inputs that are tightly linked to the heap representation.

Linearizability. We establish the linearizability of functions manipulting a data struc-
ture with the help of the keyset framework [11,28], which we encode using flows. A
crucial problem when proving linearizability are membership queries: we have to de-
termine whether a given key has been in the data structure at some point in time while
the function was running. The keyset framework localizes these membership queries
from the overall data structure to single nodes. It assigns to each node n a set of keys
for which n is responsible, in the sense that n has to answer the membership queries for
these keys. This set of keys is n’s keyset. Imagine we have a singly linked list

Head−−−−−→(−∞,∞)
(n1, 5)−−−→[6,∞)

(n2, 7)
† −−−→[6,∞)

(n3, 10)−−−−→[11,∞) ⊥ .

The shared pointer Head propagates the keys in the interval (−∞,∞) as a flow value to
node n1 holding key 5. This set is called n1’s inset. The inset of a node n contains all
keys k for which a search will reach n. If k > 5, the search will proceed to n2, otherwise
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it will stay at n1. Thus, the keyset of n1 is (−∞, 5]. That is, if k ∈ (−∞, 5], the answer
to the membership query is determined by the test k = 5. Node n1 forwards [6,∞)
to the successor node n2 with key 7. Since n2 has been logically deleted, indicated by
the tombstone †, it cannot answer membership queries: the keyset is empty. Instead,
the node forwards its entire inset [6,∞) to node n3, which is now responsible for the
keyset [6, 10]. We speak of a framework because whether a given key k belongs to a
node’s keyset or whether it is propagated to one of the node’s successors is specific to
each data structure, but the way in which the linearizability argument for membership
queries is localized to individual flow graph nodes is always the same.

In nekton, the user can define P(N) for sets of keys as (a component in) the flow do-
main of interest. With parameter gen , they can implement the propagation. We also pro-
vide flexibility in the definition of the keyset and membership queries in the form of two
predicates rsp (responsible) resp. cnts (contains). To give an example, we would define

rsp(x, k) ≜ k ∈ x flow.is ∗ k ≤ x key ∗ ¬x marked .

With x flow, we denote x’s flow value. The flow domain is a product, and we refer to
the component called is. With x key and x marked we denote the x’s key and marked
fields. Formally, the dereference notation is a naming convention for logical variables
that refer to values of resources defined in the node-local invariant explained below. Re-
consider the example and let k = 6. The key belongs to the inset [6,∞) that n2 receives
from n1. We discussed that the node’s keyset is empty, and indeed rsp(n2, 6) is false.
For n3, we have rsp(n3, 6) true. With the predicate rsp in place, we can also refer to
n.keyset in assertions.

For verifying functions with non-fixed linearization points, nekton implements the
hindsight principle [24]. Reasoning with that principle goes as follows. We record in-
formation about bygone states of the data structure in past predicates⟐ a. For example,
⟐(k ∈ x flow.is) says that the key of interest was in the node’s inset at some point
while the function was running. Moreover, the assertion about the current state may tell
us that the key is smaller than the key held by the node and that the node is not marked
now, k ≤ x key ∗ ¬n marked. Then the hindsight principle will guarantee that there
has been a state in between the two moments where the node still had the key in its in-
set, the inequality held true, and the node was unmarked. This is⟐ rsp(n, k) as defined
above. To draw this conclusion, the hindsight principle inspects the interferences the
data structure state may experience from concurrently executed functions. In the exam-
ple, no interferene can unmark a node or change a key. So the predicates encountered in
the current state must have held already in the past state when k ∈ x flow.is was true.
This form of hindsight reasoning is stronger than the one in [18] but not yet as elaborate
as the one in [19]. From a program logic point of view, hindsight reasoning relies on a
lifting of state-based to computation-based separation algebras [18].

Implications. Reasoning about automatically generated transfer functions is difficult,
in particular when they relate different components in a product flow domain. Consider
N× P(N) with the first component the path count at a node and the second component
the keyset. The transfer functions will never forget to count a path, and so the following
implication will be valid over all heap graphs:

(x flow.pcount) = 0 =⇒ (x flow.keyset) = ∅ . (1)
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Despite the help of an SMT solver, nekton will fail to establish the validity of such an
implication. Therefore, the user may input a set of such formulas that the tool will then
take for being valid without further checks. Correctness of a proof is always relative to
this set of implications.

2.1 Proof Outlines

A concurrent data structure consists of a set of structs defining the heap elements and
a set of functions for manipulating the data structure state. nekton expects as input a
proof outline for each such function. The program logic implemented by nekton is an
Owicki-Gries system that, besides partial correctness, requires interference freedom of
the given proof outlines. The user is expected to give the interferences as input.

The proof outlines accepted by nekton take the form { pre } po { post } with

po ::= com | { a } | po ; po | (po + po) { a } | { a } po* { a } | atomic po .

The proof outlines are partial in that intermediary assertions, say in com1 ; com2, may
be omitted. nekton will automatically generate the missing information using strongest
postconditions. What has to be given are loop invariants and unifying assertions for
the different branches of if-then-else statements. Consecutive assertions { a } ; { b } are
interpreted as a weaking of a to b.

Programs are given in a dialect of C. Commands are assignments to/from variables
and memory locations, allocations, assumptions, and acquires/releases of locks

com ::= p := q | p fld := q | p := q fld | p := malloc

| assume(cond) | acquire(p fld) | release(p fld) .

Here, p, q are program variables, fld is a field name, and dereferences are denoted by
an arrow. The language is strictly typed with base types void, bool, and int. The
latter represents the mathematical integers, i.e., has an infinite domain. We admit the
usual conditions over the base types. Using the struct keyword users can specify their
own types. In addition, nekton supports syntactic sugar like if-then-else, (do-)while
loops, non-recursive macros, break and return statements, assertions, simultaneous as-
signments, and compare-and-swaps. These can be expressed in terms of the core lan-
guage in the expected way.

The assertion language is a standard separation logic defined over the base types,
heap graphs, and the given flow domain. It has the separating conjunction and classical
implication (no magic wand). Our heap model is divided into a local and a shared heap,
and we use the box operator a to indicate assertions over the shared state. The shared
state is represented by an iterated separating conjunction. Since this conjunction refers
to a set of nodes and we want to reason first-order, we handle it implicitly. We let each
assertion a in a proof outline stand for ∃x. a ∗ ∗n∈N\Nodes(a) NInv(n). The iterated
separating conjunction is over all nodes that do not occur in a, and asserts a node-local
invariant for each of them. The existential quantifier is over all logical variables in the
assertion. Keeping it implicit makes the assertions more concise and aids automation.

Node Invariants. nekton expects the node-local invariant NInv(n) as another in-
put. The role of this invariant is to make use of the flow framework and state global
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properties of the data structure in a local way. The invariant would say, for instance,
that sentinel nodes are never marked. Compared to the implication list, the node-local
invariant has the advantage that its claims are actually checked. Technically, the node-
local invariant is a separation logic formula that is only allowed to refer to the given
node n and its fields. It will often define logical variables like n flow that refer to the
entry of the flow field and can be used outside the node-local invariant. These variables
are quantified away by ∃x above.

Interferences. Interferences are RGSep actions [32] restricted to the format

NInv(x). { a }⇝ [fld1, . . . , fldn]{ b } . (2)

To give an example, we formulate that a concurrently executed function may mark a
node using the action NInv(x). {¬(x marked) } ⇝ [marked]{x marked }. An action
refers to a single node in the heap graph as described by the above node-local invariant.
The action applies if the assertion a evaluates to true, and modifies the node in a way
that satisfies b. Like the invariant, the assertions a and b have to be node-local and only
refer to the values of x’s fields. The assertions may introduce logical variables that are
implicitly existentially quantified and whose scope extends over a and b. Such variables
allow us to relate the pre- and post-state of the interference. The fields given in the
brackets are the ones that may change under the action. If assertion b does not refer to
the value of a field that is given in the list, the field may receive arbitrary values. If a
field is not named, it is guaranteed to stay unchanged.

3 Case Study

We present a linearizability proof of the FEMRS tree [4] conducted with nekton. We
omit the data structure’s maintenance operation because it leads to flow updates that
neither nekton nor another state-of-the-art technique aimed at automation can handle.
Each node in the tree stores one key and points to up to two child nodes left and
right, storing keys with lower and higher values, respectively. In addition, each node
contains two Boolean fields del and rem for the removal of nodes. This is because
the tree distinguishes the logical removal, indicated by the del flag, from the physical
unlinking of a node, indicated by the rem flag. As long as a logically removed node has
not been unlinked, it can become part of the tree again. The idea is to save the creation
of new nodes for keys that are physically but no longer logically part of the tree. Lastly,
every node can be locked.

9

5 15

2 12 20

(−∞,∞)

(−∞, 8] [10,∞)

(−∞, 4] [10, 14] [16,∞)

Figure 1: A state of the FEMRS tree.

Figure 1 depicts a possible state of the
FEMRS tree. Each node is labeled with
its key. Dashed nodes have been logically
removed. To prove linearizability, we rely
on the keyset framework. The inset flow is
used to define the keysets, as explained ear-
lier. The edges in the figure are labeled with
the flow they propagate. The transfer func-
tions leading to this propagation stem from
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the following generator gen:

gen(fld) ≜ λf. x del ? f : f \
(
fld = left ? [x key,∞) : (−∞, x key]

)
.

The predicates defining the keyset and membership are

rsp(x, k) ≜ k ∈ x flow.is ∗ k = x key

∨ k ∈ x flow.is ∗ k < x key ∗ x left = nil

∨ k ∈ x flow.is ∗ k > x key ∗ x right = nil

cnts(x, k) ≜ k ∈ x flow.is ∗ k = x key ∗ ¬x del .

In the example, rsp(5, 7), rsp(15, 15), rsp(20, 17), cnts(12, 12) and more hold.
The set of interferences expresses this: (I1) As long as the lock of the node is not

held by the thread under consideration and as long as the node has not been marked
unlinked, the child pointers and the (logical and physical) removal flags may change
arbitrarily. The proof does not rely, e.g., on the fact that the rem flag is raised only once
and only when the del flag is true. (I2) A lock that is not held by the thread may change
arbitrarily. (I3) A node that is being physically unlinked ceases to receive flow. The
following nekton actions formalize this:

NInv(x).{x lock ̸=owned ∗ ¬x rem }⇝ [left, right, del, rem]{ true } (I1)
NInv(x).{x lock ̸=owned }⇝ [lock]{ true } (I2)
NInv(x).{x lock ̸=owned ∗ x flow.is ̸=∅ ∗ x rem}⇝ [is]{x flow.is=∅}. (I3)

We prove the linearizability of the functions contains(k), insert(k), and remove(k).
All of them call the auxiliary function locate(k), which returns the last edge it traversed
during a search for key k . Figure 2 gives the proof outline of locate. The proof for the
full implementation can be found in [17].

We use a product flow domain P(N)×N. The first component is the inset flow with
the generator function discussed above. The second component is the pathcount, whose
gen() simply yields the identity for all edges. The benefit of the product flow is that we
can prove memory safety on the side, while conducting the linearizability proof.

In the node-local invariant, we introduce logical variables like x left to make the
proof more readable. We refer to these variables in the generator function. The invariant
for the node pointed to by the shared Root differs from that of the remaining nodes:

NInv(x) ≜ x 7→ ⟨ flow = (x flow.is, x flow.pcount),

left = x left, right = x right, key = x key,

lock = x lock, del = x del, rem = x rem ⟩
∗ NInv all(x) ∗ (x = Root ⇒ NInv Root(x))

NInv Root(x) ≜ x key = −∞ ∗ ¬x del ∗ ¬x rem

∗ x flow.is = (−∞,∞) ∗ x flow.pcount = 1

NInv all(x) ≜ (¬x rem ⇒ x key ∈ x flow.is) ∗ x flow.pcount < 3

∗ (x rem ⇒ x del) ∗ (x left = x right ⇒ x left = nil) .
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1

{
−∞ < k < ∞ ∗ NInv(Root)

}
2 inline <Node*, Node*> locate(data_t k) {

3 Node* p, c; p = Root; c = Root;

4

{
p = c = Root ∗ NInv(Root) ∗ ⟐[NInv(c) ∗ k ∈ c flow.is] ∗ −∞ < k < ∞

}
5 do

{
NInv(p) ∗ (NInv(c) ∗ ⟐[NInv(c) ∗ k ∈ c flow.is] ∨⟐[NInv(p) ∗ rsp(p, k)] ∗ c = nil)

}
6 {

{
NInv(p) ∗ NInv(c) ∗ ⟐[NInv(c) ∗ k ∈ c flow.is] ∗ c key ̸= k

}
7 p = c;

8 if (p key < k) {

9 assert(p right = nil || p right ̸= nil);

10 c = p right;

11

{
NInv(p) ∗ (NInv(c) ∨⟐[NInv(p) ∗ p right = nil] ∗ c = nil)

∗ ⟐[NInv(p) ∗ k ∈ p flow.is] ∗ p right = c ∗ p key < k

}
12

{
NInv(p) ∗ (NInv(c) ∗ ⟐[NInv(c) ∗ k ∈ c flow.is] ∨⟐[NInv(p) ∗ rsp(p, k)] ∗ c = nil)

}
13 } else { /* symmetric to 'then' branch */ }

14

{
NInv(p) ∗ (NInv(c) ∗ ⟐[NInv(c) ∗ k ∈ c flow.is] ∨⟐[NInv(p) ∗ rsp(p, k)] ∗ c = nil)

}
15 } while (c ̸= nil && c key ̸= k);

16

{
NInv(p) ∗ (NInv(c) ∗ ⟐[NInv(c) ∗ k ∈ c flow.is] ∗ c key = k

∨⟐[NInv(p) ∗ rsp(p, k)] ∗ c = nil)

}
17 return <p, c>;

18 }

Figure 2: Proof outline for locate as verified by nekton.

The node-local invariant makes the expected claims. The root has key −∞, is neither
logically deleted nor unlinked, has as incoming keys (−∞,∞) and the pathcount is 1.
These flow values are established by the data structure’s initialization function using an
auxiliary edge with an appropriate generator. For all nodes, we have that their key is
in the inflow, provided the node has not yet been unlinked, the path count is at most 3,
a node has to be first logically deleted before it can be unlinked, and the only case in
which the left and the right child can coincide is when they are both the null pointer. We
treat nil as a node outside the set of nodes N. This in particular means the node-local
invariant does not apply to it. It will follow from the definition of the generator function
that the keysets are disjoint. We do not need to state this in the invariant as it is only
important when interpreting the verification results.

The assertion on line 9 helps our implication engine, which is designed for conjunc-
tive assertions, deal with the disjunctions.

We explain the implication between Lines 11 and 12. It starts with the assertion{
NInv(p) ∗ NInv(c) ∗ ⟐[NInv(p) ∗ k ∈ p flow.is] ∗ p right = c ∗ p key < k

}
.

To apply the hindsight principle, we derive the following guarantees from the set of in-
terferences. A node’s key is never changed. The only way a node’s inset can shrink is
by unlinking, after which its left and right pointers are no longer changed. The right
child of p is not nil in the current state. From this information, the hindsight principle
concludes

{
⟐[NInv(p) ∗ NInv(c) ∗ k ∈ p flow.is ∗ p key < k ∗ p right = c]

}
.

Together with the definition of the transfer functions labeling the edges, this asser-
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tion yields
{
⟐[NInv(c) ∗ k ∈c flow.is]

}
. Another hindsight application starts with{

NInv(p) ∗ c = nil ∗ ⟐[NInv(p) ∗ k ∈ p flow.is ] ∗ p right = c ∗ p key < k
}

and moves the facts known in the current state into the past predicate. The definition of
rsp(x, k) then yields

{
⟐[NInv(p) ∗ rsp(p, k)]

}
.

The full proof consists of 99 lines of code, 48 lines of assertions to prove them lin-
earizable, and 56 lines of definitions for the flow domain, interferences, and invariants.
nekton takes 45s to verify the proof’s correctness on an Apple M1 Pro.

4 Correctness and Implementation

nekton checks that the verification conditions generated from the given proof outlines
hold and that the assertions are interference-free. The program logic from [18,19] then
gives the following semantic guarantee: no matter how many client threads execute the
data structure functions, partial correctness holds. That is, if a function is executed from
a state satisfying the precondition and terminates, it must have reached a state in which
the postcondition held true. Termination itself is not guaranteed. The postcondition will
relate the function’s return value to a statement about membership of the given key in
the data structure, and the keyset framework will allow us to conclude linearizability
from this relation. The verification conditions will in particular make sure the node
invariant is maintained. We discuss the actual checks.

The first step is to derive and check verification conditions for all commands com. If
the command is surrounded by assertions, { p }; com; { q }, the verification condition is
sp(p, com) |= q , the strongest postcondition sp of p under com entails q . If the assertion
{ q } is not given, nekton completes the given proof by using q = sp(p, com). The
verification conditions for loops are similar. For two consecutive assertions { p } ; { q },
as they occur for example at the end of a branch, the verification condition is p |= q .

The second step is to check that the assertions { p } and { q } in the proof are
interference-free, i.e., cannot be invalidated by the actions of other threads.

Finally, nekton checks that the interferences given by the user cover the actual
interferences of the program. We review the above steps in more detail.

Strongest Postconditions. The computation of the strongest postcondition follows the
standard axioms for separation logic [23]. However, they do not deal with the flow
which may not only be directly modified by com but also indirectly by an update else-
where. To deal with such indirect updates, nekton computes a footprint fp: a subset
of the heap locations that the standard axioms require plus those locations whose flow
changes due to com. The footprint yields a decomposition p = fp ∗ f of predicate p,
where f is a frame that is not affected by the update. From this decomposition, we com-
pute the strongest postcondition as sp(p, com) = sp(fp, com) ∗ f , using the frame rule.
Actually, nekton also shows that the update maintains the node invariant, which only
requires a check for sp(fp, com).

For fp to be a footprint wrt. com, all nodes outside fp should receive the same flow
from sp(fp, com) as from fp. This holds if fp and sp(fp, com) induce the same flow
transformer function [20]. To determine a footprint, nekton takes a strategy that is
justified by lock-free programming [18]. Starting from the updated nodes, it gathers a
small (fixed) set of locations that forms an acyclic subgraph. Acyclicity guarantees that
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fp and sp(fp, com) have the same transformer iff they agree on the transformation along
all paths: if n belongs to fp and n fld does not, then n fld must point to the same
location and transform inflows to outflows in the same way in fp and in sp(fp, com).

The strongest postcondition above is for state-based reasoning. For predicates over
computations, which have state and past predicates, we use the following observation:
past predicates are never invalidated by commands. This allows us to just copy them
to the postcondition: sp(p ∗ ⟐ q , com) = sp(p, com) ∗ ⟐ p ∗ ⟐ q . Note that we add
the precondition as a new past predicate. Moreover, we may add new past predicates
derived by hindsight arguments. As these derived past predicates are implied by the
postcondition, they formally do not strengthen the assertion, but of course help the tool.

Hindsight Reasoning. Recall from Section 2 that hindsight reasoning draws conclu-
sions of the form ⟐ p ∗ q ⇒ ⟐ r : every computation from a p-state must inevitably
transition through r in order to reach q . In nekton, p and q are restricted to node-local
predicates in the sense defined above, and r is fixed to p ∧ q .

To prove the implication, assume it did not hold. Then there is a computation where
p is invalidated before q is established. This is covered by the interference: there is
an action actp invalidating p and an action actq establishing q . Let actp and actq be
NInv(n). { op }⇝ [. . . ]{ . . . } resp. NInv(n). { oq }⇝ [. . . ]{ . . . }. There is (always)
a decomposition op = oi

p ∗ om
p such that oi

p is immutable. Immutability holds if oi
p

is shared and interference-free. Consequently, oi
p must still hold when q is established.

Now, we check if oi
p and oq are contradictory, oi

p ∧ oq |= false . If so, actq is not
enabled after actp . This, in turn, means q cannot be established after p is invalidated—
the computation cannot exist. nekton draws the hindsight conclusion if it can prove the
contradiction for all pairs actp , actq of interferences that invalidate p and establish q .

Entailment. Our assertions p ∗ ∗i∈I ⟐ pi consist of a predicate p for the current
state and a set of past predicates ⟐ pi tracking information about the computation. We
have p ∗ ∗i∈I ⟐ pi |= q ∗ ∗j∈J ⟐ qj , if p |= q and ∀j ∃i. ⟐ pi |= ⟐ qj . To show
⟐ pi |= ⟐ qj , we rely on the algorithm for state predicates and prove pi |= qj .

Entailment checks p |= q between state predicates decompose into reasoning about
resources and reasoning about logically pure facts. The latter degenerates to an implica-
tion in classical logic: nekton uses a straightforward encoding into SMT and discharges
it with Z3 [21]. For reasoning about resources, nekton implements a custom matching
procedure to correlate the resources in p and q . The procedure is guided by the program
variables x: if the value of x is a in p and b in q , then a and b are matched, meaning b
is renamed to a. The procedure then continues to match the fields of already matched
addresses. Finally, nekton checks syntactically if all the resources in q occur in p.

If nekton fails to prove an implication, it consults the implication list. It takes the
implications as they are, and does not try to embed them into a context as would be
justified by congruence. nekton does not track the precise implications it has used.

Interference Freedom. A state predicate p is interference-free wrt. act of the form
NInv(n). { r } ⇝ [fld1, . . . , fldn]{ o }, if the strongest postcondition of p under act
entails p itself, sp(p, act) |= p. Towards sp(p, act), let p = NInv(x) ∗ q , meaning
x is an accessible location. Applying act to x in p acts like an assignment to the fields
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such that their new values satisfy o. The strongest postcondition for this is standard [3]:

spx(p, act) ≜ o[n\x] ∗ ∃y1 · · · yn. (p ∗ r [n\x])[x fld1\y1, . . . , x fldn\yn] .

We strengthen p with the precondition r of act to make sure the action is enabled.
We use r [n\x] for r with n replaced by x, meaning we instantiate r to location x.
We replace the old values of the updated fields with fresh quantified variables and add
the fields’ new valuation o[n\x]. Then, the strongest postcondition sp(p, act) applies
spx(p, act) to all locations x in p.

Interference Coverage. Consider act1 = NInv(x). { p } ⇝ [fld1, . . . , fldn]{ q }
and act2 = NInv(x). { r } ⇝ [fld′1, . . . , fld

′
m]{ o }. We say that act1 covers act2 if

act1 can produce all updates induced by act2. This is the case if r |= p, o |= q , and
{ fld′1, . . . , fld′m } ⊆ { fld1, . . . , fldn }. It remains to extract the actual interferences
of the program and check if they are covered by the user-specified ones. The extraction
is done while computing the strongest postcondition sp: the computed footprints fp and
sp(fp, com) from above reveal the updated fields as well as the pre- and post-states.

Flow Encoding. The flow monoid is not yet parsed from the user input but defined
programmatically in nekton. The transfer function generator is parsed. nekton has five
flow domains predefined, including path counting and keysets, which are easy to extend.
nekton does not check whether the flow monoid is indeed a monoid and satisfies the
requirements of an ω-cpo, nor whether ≤ coincides with the natural partial order.

The main task in dealing with a parametric rather than fixed flow domain is to en-
code predicates involving the flow into SMT formulas. This encoding is then used to
implement the aforementioned components for strongest postconditions, hindsight, en-
tailment, and interferences. Devising the encoding is challenging because it requires a
representation of flow values that is sufficiently expressive to define relevant flow do-
mains, yet sufficiently restricted to have efficient SMT solver support (we use Z3 [21]).
With the input format described in Sect. 2, we encode flows using the theory of integers
and uninterpreted functions.

Limitations. For the future, we see several directions for extensions of our current
implementation: (i) a parser for flow monoids rather than a programmatic interface,
(ii) support for partial annotations that are automatically completed by nekton, (iii) the
ability to prove atomic triples instead of just linearizability for sets, and (iv) more help-
ful error messages or counterexamples to guide the proof-writing user.

Data Availability Statement

The nekton tool and case studies generated and/or analysed in the present paper are
available in the Zenodo repository [17], https://doi.org/10.5281/zenodo.7931936.
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