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Abstract. Multiparty session types (MSTs) are a type-based approach
to verifying communication protocols. Central to MSTs is a projection
operator : a partial function that maps protocols represented as global
types to correct-by-construction implementations for each participant,
represented as a communicating state machine. Existing projection op-
erators are syntactic in nature, and trade efficiency for completeness. We
present the first projection operator that is sound, complete, and efficient.
Our projection separates synthesis from checking implementability. For
synthesis, we use a simple automata-theoretic construction; for checking
implementability, we present succinct conditions that summarize insights
into the property of implementability. We use these conditions to show
that MST implementability is PSPACE-complete. This improves upon
a previous decision procedure that is in EXPSPACE and applies to a
smaller class of MSTs. We demonstrate the effectiveness of our approach
using a prototype implementation, which handles global types not sup-
ported by previous work without sacrificing performance.

Keywords: Protocol verification · Multiparty session types · Commu-
nicating state machines · Protocol fidelity · Deadlock freedom.

1 Introduction

Communication protocols are key components in many safety and operation crit-
ical systems, making them prime targets for formal verification. Unfortunately,
most verification problems for such protocols (e.g. deadlock freedom) are unde-
cidable [11]. To make verification computationally tractable, several restrictions
have been proposed [2, 3, 10, 14, 33, 42]. In particular, multiparty session types
(MSTs) [24] have garnered a lot of attention in recent years (see, e.g., the sur-
vey by Ancona et al. [6]). In the MST setting, a protocol is specified as a global
type, which describes the desired interactions of all roles involved in the protocol.
Local implementations describe behaviors for each individual role. The imple-
mentability problem for a global type asks whether there exists a collection of
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local implementations whose composite behavior when viewed as a communicat-
ing state machine (CSM) matches that of the global type and is deadlock-free.
The synthesis problem is to compute such an implementation from an imple-
mentable global type.

MST-based approaches typically solve synthesis and implementability simul-
taneously via an efficient syntactic projection operator [18,24,34,41]. Abstractly,
a projection operator is a partial map from global types to collections of imple-
mentations. A projection operator proj is sound when every global type G in its
domain is implemented by proj(G), and complete when every implementable
global type is in its domain. Existing practical projection operators for MSTs are
all incomplete (or unsound). Recently, the implementability problem was shown
to be decidable for a class of MSTs via a reduction to safe realizability of glob-
ally cooperative high-level message sequence charts (HMSCs) [38]. In principle,
this result yields a complete and sound projection operator for the considered
class. However, this operator would not be practical. In particular, the proposed
implementability check is in EXPSPACE.

Contributions. In this paper, we present the first practical sound and complete
projection operator for general MSTs. The synthesis problem for implementable
global types is conceptually easy [38] – the challenge lies in determining whether
a global type is implementable. We thus separate synthesis from checking imple-
mentability. We first use a standard automata-theoretic construction to obtain
a candidate implementation for a potentially non-implementable global type.
However, unlike [38], we then verify the correctness of this implementation di-
rectly using efficiently checkable conditions derived from the global type. When
a global type is not implementable, our constructive completeness proof provides
a counterexample trace.

The resulting projection operator yields a PSPACE decision procedure for
implementability. In fact, we show that the implementability problem is PSPACE-
complete. These results both generalize and tighten the decidability and com-
plexity results obtained in [38].

We evaluate a prototype of our projection algorithm on benchmarks taken
from the literature. Our prototype benefits from both the efficiency of existing
lightweight but incomplete syntactic projection operators [18,24,34,41], and the
generality of heavyweight automata-based model checking techniques [28,36]: it
handles protocols rejected by previous practical approaches while preserving the
efficiency that makes MST-based techniques so attractive.

2 Motivation and Overview

Incompleteness of existing projection operators. A key limitation of exist-
ing projection operators is that the implementation for each role is obtained via
a linear traversal of the global type, and thus shares its structure. The following
example, which is not projectable by any existing approach, demonstrates how
enforcing structural similarity can lead to incompleteness.
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Fig. 1: Odd-even: An implementable but not (yet) projectable protocol and its
local implementations

Example 2.1 (Odd-even). Consider the following global type Goe:

+

{
p→q :o. q→r :o. µt1. (p→q :o. q→r :o. q→r :o. t1 + p→q :b. q→r :b. r→p :o. 0)

p→q :m.µt2. (p→q :o. q→r :o. q→r :o. t2 + p→q :b. q→r :b. r→p :m. 0)

A term p→ q :m specifies the exchange of message m between sender p and
receiver q. The term represents two local events observed separately due to
asynchrony: a send event p ▷ q!m observed by role p, and a receive event q ◁ p?m
observed by role q. The + operator denotes choice, µt.G denotes recursion, and
0 denotes protocol termination.

Fig. 1a visualizes Goe as an HMSC. The left and right sub-protocols respec-
tively correspond to the top and bottom branches of the protocol. Role p chooses
a branch by sending either o or m to q. On the left, q echoes this message to r.
Both branches continue in the same way: p sends an arbitrary number of o mes-
sages to q, each of which is forwarded twice from q to r. Role p signals the end
of the loop by sending b to q, which q forwards to r. Finally, depending on the
branch, r must send o or m to p.

Figs. 1b and 1c depict the structural similarity between the global type Goe

and the implementations for p and q. For the “choicemaker” role p, the reason is
evident. Role q’s implementation collapses the continuations of both branches in
the protocol into a single sub-component. For r (Fig. 1d), the situation is more
complicated. Role r does not decide on or learn directly which branch is taken,
but can deduce it from the parity of the number of o messages received from q:
odd means left and even means right. The resulting local implementation features
transitions going back and forth between the two branches that do not exist in
the global type. Syntactic projection operators fail to create such transitions. ◀

One response to the brittleness of existing projection operators has been to give
up on global type specifications altogether and instead revert to model checking
user-provided implementations [28, 36]. We posit that what needs rethinking is
not the concept of global types, but rather how projections are computed and
how implementability is checked.
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Fig. 2: High-level message sequence charts for the global types of Example 2.2.

Our automata-theoretic approach. The synthesis step in our projection op-
erator uses textbook automata-theoretic constructions. From a given global type,
we derive a finite state machine, and use it to define a homomorphism automa-
ton for each role. We then determinize this homomorphism automaton via sub-
set construction to obtain a local candidate implementation for each role. If
the global type is implementable, this construction always yields an implemen-
tation. The implementations shown in Figs. 1b to 1d are the result of applying
this construction to Goe from Example 2.1. Notice that the state labels in Fig. 1d
correspond to sets of labels in the global protocol.

Unfortunately, not all global types are implementable.

Example 2.2. Consider the following four global types also depicted in Fig. 2:

Gr = +

{
p→q :o. q→r :o. p→r :o. 0

p→q :m. p→r :o. q→r :o. 0
Gs = +

{
p→q :o. r→q :o. 0

p→q :m. r→q :m. 0

G
′
r = +

{
p→q :o. q→r :o. r→p :o. p→r :o. 0

p→q :m. p→r :o. r→q :o. q→r :o. 0
G

′
s = +

{
p→q :o. r→q :b. 0

p→q :m. r→q :b. 0

Similar to Goe, in all four examples, p chooses a branch by sending either o or
m to q. The global type Gr is not implementable because r cannot learn which
branch was chosen by p. For any local implementation of r to be able to execute
both branches, it must be able to receive o from p and q in any order. Because
the two send events p ▷ r!o and q ▷ r!o are independent of each other, they may
be reordered. Consequently, any implementation of Gr would have to permit
executions that are consistent with global behaviors not described by Gr, such
as p→q :m. q→r :o. p→r :o. Contrast this with G′

r, which is implementable. In
the top branch of G′

r, role p can only send to r after it has received from r, which
prevents the reordering of the send events p▷r!o and q▷r!o. The bottom branch
is symmetric. Hence, r learns p’s choice based on which message it receives first.

For the global type Gs, role r again cannot learn the branch chosen by p.
That is, r cannot know whether to send o or m to q, leading inevitably to dead-
locking executions. In contrast, G′

s is again implementable because the expected
behavior of r is independent of the choice by p. ◀

These examples show that the implementability question is non-trivial. To
check implementability, we present conditions that precisely characterize when
the subset construction for G yields an implementation.
Overview. The rest of the paper is organized as follows. §3 contains relevant
definitions for our work. §4 describes the synthesis step of our projection. §5
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presents the two conditions that characterize implementability of a given global
type. In §6, we prove soundness of our projection via a stronger inductive in-
variant guaranteeing per-role agreement on a global run of the protocol. In §7,
we prove completeness by showing that our two conditions hold if a global type
is implementable. In §8, we discuss the complexity of our construction and con-
dition checks. §9 presents our artifact and evaluation, and §10 as well as §11
discuss related work. Additional details including omitted proofs can be found
in the extended version of the paper [29].

3 Preliminaries

Words. Let Σ be a finite alphabet. Σ∗ denotes the set of finite words over Σ,
Σω the set of infinite words, and Σ∞ their union Σ∗ ∪Σω. A word u ∈ Σ∗ is a
prefix of word v ∈ Σ∞, denoted u ≤ v, if there exists w ∈ Σ∞ with u · w = v.

Message Alphabet. Let P be a set of roles and V be a set of messages. We define
the set of synchronous events Σsync := {p→q :m | p, q ∈ P and m ∈ V} where
p→ q :m denotes that message m is sent by p to q atomically. This is split for
asynchronous events. For a role p ∈ P, we define the alphabet Σp,! = {p ▷ q!m |
q ∈ P, m ∈ V} of send events and the alphabet Σp,? = {p◁q?m | q ∈ P, m ∈ V}
of receive events. The event p ▷ q!m denotes role p sending a message m to q,
and p ◁ q?m denotes role p receiving a message m from q. We write Σp =
Σp,! ∪Σp,?, Σ! =

⋃
p∈P Σp,!, and Σ? =

⋃
p∈P Σp,?. Finally, Σasync = Σ! ∪Σ?. We

say that p is active in x ∈ Σasync if x ∈ Σp. For each role p ∈ P, we define a
homomorphism ⇓Σp

, where x⇓Σp
= x if x ∈ Σp and ε otherwise. We write V(w)

to project the send and receive events in w onto their messages. We fix P and V
in the rest of the paper.

Global Types – Syntax. Global types for MSTs [31] are defined by the grammar:

G ::= 0 |
∑
i∈I

p→qi :mi.Gi | µt. G | t

where p, qi range over P, mi over V, and t over a set of recursion variables.
We require each branch of a choice to be distinct: ∀i, j ∈ I. i ̸= j ⇒ (qi,mi) ̸=

(qj ,mj), the sender and receiver of an atomic action to be distinct: ∀i ∈ I. p ̸= qi,
and recursion to be guarded: in µt.G, there is at least one message between µt
and each t in G. When |I| = 1, we omit

∑
. For readability, we sometimes use

the infix operator + for choice, instead of
∑

. When working with a protocol
described by a global type, we write G to refer to the top-level type, and we
use G to refer to its subterms. For the size of a global type, we disregard multiple
occurrences of the same subterm.

We use the extended definition of global types from [31] that allows a sender
to send messages to different roles in a choice. We call this sender-driven choice,
as in [38], while it was called generalized choice in [31]. This definition subsumes
classical MSTs that only allow directed choice [24]. The types we use focus on
communication primitives and omit features like delegation or parametrization.
We defer a detailed discussion of different MST frameworks to §11.
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Global Types – Semantics. As a basis for the semantics of a global type G, we
construct a finite state machine GAut(G) = (QG, Σsync , δG, q0,G, FG) where
– QG is the set of all syntactic subterms in G together with the term 0,
– δG is the smallest set containing (

∑
i∈I p→ qi :mi.Gi, p→ qi :mi, Gi) for

each i ∈ I, as well as (µt.G′, ε,G′) and (t, ε, µt.G′) for each subterm µt.G′,
– q0,G = G and FG = {0}.

We define a homomorphism split onto the asynchronous alphabet:

split(p→q :m) := p ▷ q!m. q ◁ p?m .

The semantics L(G) of a global type G is given by C∼(split(L(GAut(G))))
where C∼ is the closure under the indistinguishability relation ∼ [31]. Two events
are independent if they are not related by the happened-before relation [26].
For instance, any two send events from distinct senders are independent. Two
words are indistinguishable if one can be reordered into the other by repeatedly
swapping consecutive independent events. The full definition is in the extended
version [29].

Communicating State Machine [11]. A = {{Ap}}p∈P is a CSM over P and V if Ap

is a finite state machine over Σp for every p ∈ P, denoted by (Qp, Σp, δp, q0,p, Fp).
Let

∏
p∈P sp denote the set of global states and Chan = {(p, q) | p, q ∈ P, p ̸= q}

denote the set of channels. A configuration of A is a pair (s⃗, ξ), where s⃗ is a
global state and ξ : Chan → V∗ is a mapping from each channel to a sequence of
messages. We use s⃗p to denote the state of p in s⃗. The CSM transition relation,
denoted →, is defined as follows.

– (s⃗, ξ)
p▷q!m−−−−→ (s⃗ ′, ξ′) if (s⃗p, p ▷ q!m, s⃗ ′

p) ∈ δp, s⃗r = s⃗ ′
r for every role r ̸= p,

ξ′(p, q) = ξ(p, q) ·m and ξ′(c) = ξ(c) for every other channel c ∈ Chan.

– (s⃗, ξ)
q◁p?m−−−−→ (s⃗ ′, ξ′) if (s⃗q, q ◁ p?m, s⃗ ′

q) ∈ δq, s⃗r = s⃗ ′
r for every role r ̸= q,

ξ(p, q) = m · ξ′(p, q) and ξ′(c) = ξ(c) for every other channel c ∈ Chan.

In the initial configuration (s⃗0, ξ0), each role’s state in s⃗0 is the initial state q0,p
of Ap, and ξ0 maps each channel to ε. A configuration (s⃗, ξ) is said to be final iff
s⃗p is final for every p and ξ maps each channel to ε. Runs and traces are defined
in the expected way. A run is maximal if either it is finite and ends in a final
configuration, or it is infinite. The language L(A) of the CSM A is defined as the
set of maximal traces. A configuration (s⃗, ξ) is a deadlock if it is not final and has
no outgoing transitions. A CSM is deadlock-free if no reachable configuration is
a deadlock.

Finally, implementability is formalized as follows.

Definition 3.1 (Implementability [31]). A global type G is implementable
if there exists a CSM {{Ap}}p∈P such that the following two properties hold:
(i) protocol fidelity: L({{Ap}}p∈P) = L(G), and (ii) deadlock freedom: {{Ap}}p∈P
is deadlock-free. We say that {{Ap}}p∈P implements G.
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4 Synthesizing Implementations

The construction is carried out in two steps. First, for each role p ∈ P, we define
an intermediate state machine GAut(G)↓p that is a homomorphism of GAut(G).
We call GAut(G)↓p the projection by erasure for p, defined below.

Definition 4.1 (Projection by Erasure). Let G be some global type with
its state machine GAut(G) = (QG, Σsync , δG, q0,G, FG). For each role p ∈ P,
we define the state machine GAut(G)↓p= (QG, Σp ⊎ {ε}, δ↓, q0,G, FG) where

δ↓ := {q
split(a)⇓Σp−−−−−−−−→ q′ | q a−→ q′ ∈ δG}. By definition of split(-), it holds that

split(a)⇓Σp
∈ Σp ⊎ {ε}.

Then, we determinize GAut(G)↓p via a standard subset construction to obtain
a deterministic local state machine for p.

Definition 4.2 (Subset Construction). Let G be a global type and p be a
role. Then, the subset construction for p is defined as

C (G, p) =
(
Qp, Σp, δp, s0,p, Fp

)
where

– δ(s, a) := {q′ ∈ QG | ∃q ∈ s, q
a−→ ε−→∗ q′ ∈ δ↓}, for every s ⊆ QG and a ∈ Σp

– s0,p := {q ∈ QG | q0,G
ε−→∗ q ∈ δ↓},

– Qp := lfp⊆{s0,p}λQ.Q ∪ {δ(s, a) | s ∈ Q ∧ a ∈ Σp} \ {∅} , and
– δp := δ|Qp×Σp

– Fp := {s ∈ Qp | s ∩ FG ̸= ∅}

Note that the construction ensures that Qp only contains subsets of QG whose
states are reachable via the same traces, i.e. we typically have |Qp| ≪ 2|QG|.

The following characterization is immediate from the subset construction;
the proof can be found in the extended version [29].

Lemma 4.3. Let G be a global type, r be a role, and C (G, r) be its subset
construction. If w is a trace of GAut(G), split(w)⇓Σr

is a trace of C (G, r). If u
is a trace of C (G, r), there is a trace w of GAut(G) such that split(w)⇓Σr

= u.
It holds that L(G)⇓Σr

= L(C (G, r)).

Using this lemma, we show that the CSM {{C (G, p)}}p∈P preserves all be-
haviors of G.

Lemma 4.4. For all global types G, L(G) ⊆ L({{C (G, p)}}p∈P).

We briefly sketch the proof here. Given that {{C (G, p)}}p∈P is deterministic,
to prove language inclusion it suffices to prove the inclusion of the respective
prefix sets:

pref(L(G)) ⊆ pref(L{{C (G, p)}}p∈P)

Let w be a word in L(G). If w is finite, membership in L({{C (G, p)}}p∈P) is im-
mediate from the claim above. If w is infinite, we show that w has an infinite run
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in {{C (G, p)}}p∈P using König’s Lemma. We construct an infinite graph Gw(V,E)
with V := {vρ | trace(ρ) ≤ w} and E := {(vρ1

, vρ2
) | ∃ x ∈ Σasync . trace(ρ2) =

trace(ρ1) · x}. Because {{C (G, p)}}p∈P is deterministic, Gw is a tree rooted at
vε, the vertex corresponding to the empty run. By König’s Lemma, every infi-
nite tree contains either a vertex of infinite degree or an infinite path. Because
{{C (G, p)}}p∈P consists of a finite number of communicating state machines, the
last configuration of any run has a finite number of next configurations, and Gw is
finitely branching. Therefore, there must exist an infinite path in Gw representing
an infinite run for w, and thus w ∈ L({{C (G, p)}}p∈P).

The proof of the inclusion of prefix sets proceeds by structural induction and
primarily relies on Lemma 4.3 and the fact that all prefixes in L(G) respect the
order of send before receive events.

5 Checking Implementability

We now turn our attention to checking implementability of a CSM produced
by the subset construction. We revisit the global types from Example 2.2 (also
shown in Fig. 2), which demonstrate that the naive subset construction does
not always yield a sound implementation. From these examples, we distill our
conditions that precisely identify the implementable global types.

In general, a global type G is not implementable when the agreement on
a global run of GAut(G) among all participating roles cannot be conveyed via
sending and receiving messages alone. When this happens, roles can take locally
permitted transitions that commit to incompatible global runs, resulting in a
trace that is not specified by G. Consequently, our conditions need to ensure
that when a role p takes a transition in C (G, p), it only commits to global runs
that are consistent with the local views of all other roles. We discuss the relevant
conditions imposed on send and receive transitions separately.

Send Validity. Consider Gs from Example 2.2. The CSM {{C (Gs, p)}}p∈P has
an execution with the trace p▷q!o·q◁p?o·r▷q!m. This trace is possible because the
initial state of C (Gs, r), s0,r, contains two states of GAut(Gs)↓r, each of which
has a single outgoing send transition labeled with r▷q!o and r▷q!m respectively.
Both of these transitions are always enabled in s0,r, meaning that r can send
r ▷ q!m even when p has chosen the top branch and q expects to receive o
instead of m from r. This results in a deadlock. In contrast, while the state
s0,r in C (G′

s, r) likewise contains two states of GAut(G′
s)↓r, each with a single

outgoing send transition, now both transitions are labeled with r ▷ q!b. These
two transitions collapse to a single one in C (G′

s, r). This transition is consistent
with both possible local views that p and q might hold on the global run.

Intuitively, to prevent the emergence of inconsistent local views from send
transitions of C (G, p), we must enforce that for every state s ∈ Qp with an
outgoing send transition labeled x, a transition labeled x must be enabled in all
states of GAut(G)↓p represented by s. We use the following auxiliary definition
to formalize this intuition subsequently.
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Definition 5.1 (Transition Origin and Destination). Let s
x−→ s′ ∈ δp

be a transition in C (G, p) and δ↓ be the transition relation of GAut(G)↓p. We
define the set of transition origins tr-orig(s

x−→ s′) and transition destinations
tr-dest(s

x−→ s′) as follows:

tr-orig(s
x−→ s′) := {G ∈ s | ∃G′ ∈ s′. G

x−→∗ G′ ∈ δ↓} and

tr-dest(s
x−→ s′) := {G′ ∈ s′ | ∃G ∈ s.G

x−→∗ G′ ∈ δ↓} .

Our condition on send transitions is then stated below.

Definition 5.2 (Send Validity). C (G, p) satisfies Send Validity iff every
send transition s

x−→ s′ ∈ δp is enabled in all states contained in s:

∀s x−→ s′ ∈ δp. x ∈ Σp,! =⇒ tr-orig(s
x−→ s′) = s .

Receive Validity. To motivate our condition on receive transitions, let us revisit
Gr from Example 2.2. The CSM {{C (Gr, p)}}p∈P recognizes the following trace
not in the global type language L(Gr):

p ▷ q!o · q ◁ p?o · q ▷ r!o · p ▷ r!o · r ◁ p?o · r ◁ q?o .

The issue lies with r which cannot distinguish between the two branches in Gr.
The initial state s0,r of C (Gr, r) has two states of GAut(Gr) corresponding to
the subterms Gt := q→ r : o. p→ r : o. 0 and Gb := p→ r : o. q→ r : o. 0 . Here,
Gt and Gb are the top and bottom branch of Gr respectively. This means that
there are outgoing transitions in s0,r labeled with r ◁ p?o and r ◁ q?o. If r takes
the transition labeled r ◁ p?o, it commits to the bottom branch Gb. However,
observe that the message o from p can also be available at this time point if the
other roles follow the top branch Gt. This is because p can send o to r without
waiting for r to first receive from q. In this scenario, the roles disagree on which
global run of GAut(Gr) to follow, resulting in the violating trace above.

Contrast this with G′
r. Here, s0,r again has outgoing transitions labeled with

r◁p?o and r◁q?o. However, if r takes the transition labeled r◁p?o, committing
to the bottom branch, no disagreement occurs. This is because if the other roles
are following the top branch, then p is blocked from sending to r until after it
has received confirmation that r has received its first message from q.

For a receive transition s
x−→ s1 in C (G, p) to be safe, we must enforce that

the receive event x cannot also be available due to reordered sent messages
in the continuation G2 ∈ s2 of another outgoing receive transition s

y−→ s2.
To formalize this condition, we use the set MB

(G...) of available messages for a
syntactic subterm G of G and a set of blocked roles B. This notion was already
defined in [31, Sec. 2.2]. Intuitively, MB

(G...) consists of all send events q ▷ r!m
that can occur on the traces of G such that m will be the first message added
to channel (q, r) before any of the roles in B takes a step.
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Available messages. The set of available messages is recursively defined on the
structure of the global type. To obtain all possible messages, we need to unfold
the distinct recursion variables once. For this, we define a map getµ from variable
to subterms and write getµG for getµ(G):

getµ(0) := [ ] getµ(t) := [ ] getµ(µt.G) := [t 7→ G] ∪ getµ(G)

getµ(
∑

i∈I p→qi :mi.Gi) :=
⋃

i∈I getµ(Gi)

The function MB,T
(-...) keeps a set of unfolded variables T , which is empty initially.

MB,T
(0...)

:= ∅ MB,T
(µt.G...)

:= M
B,T∪{t}
(G...) MB,T

(t...)
:=

{
∅ if t ∈ T

M
B,T∪{t}
(getµG(t)...) if t ̸∈ T

MB,T
(
∑

i∈I p→qi:mi.Gi...)
:=

{⋃
i∈I,m∈V(M

B,T
(Gi...)

\ {qi ◁ p?m}) ∪ {qi ◁ p?mi} if p ̸∈ B⋃
i∈I M

B∪{qi},T
(Gi...)

if p ∈ B

We write MB
(G...) for MB,∅

(G...). If B is a singleton set, we omit set notation and

write Mp

(G...) for M
{p}
(G...). The set of available messages captures the possible

states of all channels before a given receive transition is taken.

Definition 5.3 (Receive Validity). C (G, p) satisfies Receive Validity iff no
receive transition is enabled in an alternative continuation that originates from
the same source state:

∀s p◁q1?m1−−−−−→ s1, s
p◁q2?m2−−−−−→ s2 ∈ δp.

q1 ̸= q2 =⇒ ∀ G2 ∈ tr-dest(s
p◁q2?m2−−−−−→ s2). q1 ▷ p!m1 /∈ Mp

(G2...)
.

Subset Projection. We are now ready to define our projection operator.

Definition 5.4 (Subset Projection of G). The subset projection P(G, p)
of G onto p is C (G, p) if it satisfies Send Validity and Receive Validity. We lift
this operation to a partial function from global types to CSMs in the expected way.

We conclude our discussion with an observation about the syntactic structure
of the subset projection: Send Validity implies that no state has both outgoing
send and receive transitions (also known as mixed choice).

Corollary 5.5 (No Mixed Choice). If P(G, p) satisfies Send Validity, then
for all s x1−→ s1, s

x2−→ s2 ∈ δp, x1 ∈ Σ! iff x2 ∈ Σ!.

6 Soundness

In this section, we prove the soundness of our subset projection, stated as follows.

Theorem 6.1. Let G be a global type and {{P(G, p)}}p∈P be the subset projec-
tion. Then, {{P(G, p)}}p∈P implements G.
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Recall that implementability is defined as protocol fidelity and deadlock free-
dom. Protocol fidelity consists of two language inclusions. The first inclusion,
L(G) ⊆ L({{P(G, p)}}p∈P), enforces that the subset projection generates at
least all behaviors of the global type. We showed in Lemma 4.4 that this holds
for the subset construction alone (without Send and Receive Validity).

The second inclusion, L({{P(G, p)}}p∈P) ⊆ L(G), enforces that no new be-
haviors are introduced. The proof of this direction relies on a stronger inductive
invariant that we show for all traces of the subset projection. As discussed in §5,
violations of implementability occur when roles commit to global runs that are
inconsistent with the local views of other roles. Our inductive invariant states
the exact opposite: that all local views are consistent with one another. First,
we formalize the local view of a role.

Definition 6.2 (Possible run sets). Let G be a global type and GAut(G) be
the corresponding state machine. Let p be a role and w ∈ Σ∗

async be a word. We
define the set of possible runs RG

p (w) as all maximal runs of GAut(G) that are
consistent with p’s local view of w:

RG
p (w) := {ρ is a maximal run of GAut(G) | w⇓Σp

≤ split(trace(ρ))⇓Σp
} .

While Definition 6.2 captures the set of maximal runs that are consistent
with the local view of a single role, we would like to refer to the set of runs that
is consistent with the local view of all roles. We formalize this as the intersection
of the possible run sets for all roles, which we denote as

I(w) :=
⋂
p∈P

RG
p (w) .

With these definitions in hand, we can now formulate our inductive invariant:

Lemma 6.3. Let G be a global type and {{P(G, p)}}p∈P be the subset projection.
Let w be a trace of {{P(G, p)}}p∈P . It holds that I(w) is non-empty.

The reasoning for the sufficiency of Lemma 6.3 is included in the proof of
Theorem 6.1, found in the extended version [29]. In the rest of this section,
we focus our efforts on how to show this inductive invariant, namely that the
intersection of all roles’ possible run sets is non-empty.

We begin with the observation that the empty trace ε is consistent with all
runs. As a result, I(ε) =

⋂
p∈P RG

p (ε) contains all maximal runs in GAut(G). By
definition, state machines for global types include at least one run, and the base
case is trivially discharged. Intuitively, I(w) shrinks as more events are appended
to w, but we show that at no point does it shrink to ∅. We consider the cases
where a send or receive event is appended to the trace separately, and show that
the intersection set shrinks in a principled way that preserves non-emptiness. In
fact, when a trace is extended with a receive event, Receive Validity guarantees
that the intersection set does not shrink at all.

Lemma 6.4. Let G be a global type and {{P(G, p)}}p∈P be the subset projection.
Let wx be a trace of {{P(G, p)}}p∈P such that x ∈ Σ?. Then, I(w) = I(wx).
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x = p ▷ q!m, w ∈ Σ∗
async

RG
p (wx)

⋂
r∈P RG

r (w)
RG

p (w)

y = q ◁ p?m, w′ = wxu with u ∈ Σ∗
async

RG
p (w′) RG

q (w′y)

RG
q (w′)

⋂
r∈P RG

r (w′)

Fig. 3: Evolution of RG
- (-) sets when p sends a message m and q receives it.

To prove this equality, we further refine our characterization of intersection
sets. In particular, we show that in the receive case, the intersection between the
sender and receiver’s possible run sets stays the same, i.e.

RG
p (w) ∩ RG

q (w) = RG
p (wx) ∩ RG

q (wx) .

Note that it is not the case that the receiver only follows a subset of the sender’s
possible runs. In other words, RG

q (w) ⊆ RG
p (w) is not inductive. The equality

above simply states that a receive action can only eliminate runs that have
already been eliminated by its sender. Fig. 3 depicts this relation.

Given that the intersection set strictly shrinks, the burden of eliminating
runs must then fall upon send events. We show that send transitions shrink the
possible run set of the sender in a way that is prefix-preserving. To make this
more precise, we introduce the following definition on runs.

Definition 6.5 (Unique splitting of a possible run). Let G be a global type,
p a role, and w ∈ Σ∗

async a word. Let ρ be a possible run in RG
p (w). We define

the longest prefix of ρ matching w:

α′ := max{ρ′ | ρ′ ≤ ρ ∧ split(trace(ρ′))⇓Σp
≤ w⇓Σp

} .

If α′ ̸= ρ, we can split ρ into ρ = α · G l−→ G′ · β where α′ = α · G, G′ denotes
the state following G, and β denotes the suffix of ρ following α ·G ·G′. We call
α · G l−→ G′ · β the unique splitting of ρ for p matching w. We omit the role p

when obvious from context. This splitting is always unique because the maximal
prefix of any ρ ∈ RG

p (w) matching w is unique.

When role p fires a send transition p ▷ q!m, any run ρ = α · G l−→ G′ · β in
p’s possible run with split(l)⇓Σp

̸= p ▷ q!m is eliminated. While the resulting
possible run set could no longer contain runs that end with G′ ·β, Send Validity
guarantees that it must contain runs that begin with α · G. This is formalized
by the following lemma.

Lemma 6.6. Let G be a global type and {{P(G, p)}}p∈P be the subset projection.
Let wx be a trace of {{P(G, p)}}p∈P such that x ∈ Σ! ∩Σp for some p ∈ P. Let
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ρ be a run in I(w), and α · G l−→ G′ · β be the unique splitting of ρ for p with
respect to w. Then, there exists a run ρ′ in I(wx) such that α ·G ≤ ρ′.

This concludes our discussion of the send and receive cases in the inductive
step to show the non-emptiness of the intersection of all roles’ possible run
sets. The full proofs and additional definitions can be found in the extended
version [29].

7 Completeness

In this section, we prove completeness of our approach. While soundness states
that if a global type’s subset projection is defined, it then implements the global
type, completeness considers the reverse direction.

Theorem 7.1 (Completeness). If G is implementable, then {{P(G, p)}}p∈P
is defined.

We sketch the proof and refer to the extended version [29] for the full proof.
From the assumption that G is implementable, we know there exists a witness

CSM that implements G. While the soundness proof picks our subset projection
as the existential witness for showing implementability – thereby allowing us
to reason directly about a particular implementation – completeness only guar-
antees the existence of some witness CSM. We cannot assume without loss of
generality that this witness CSM is our subset construction; however, we must
use the fact that it implements G to show that Send and Receive Validity hold
on our subset construction.

We proceed via proof by contradiction: we assume the negation of Send and
Receive Validity for the subset construction, and show a contradiction to the
fact that this witness CSM implements G. In particular, we contradict protocol
fidelity (Definition 3.1(i)), stating that the witness CSM generates precisely the
language L(G). To do so, we exploit a simulation argument: we first show that
the negation of Send and Receive Validity forces the subset construction to
recognize a trace that is not a prefix of any word in L(G). Then, we show that
this trace must also be recognized by the witness CSM, under the assumption
that the witness CSM implements G.

To highlight the constructive nature of our proof, we convert our proof obli-
gation to a witness construction obligation. To contradict protocol fidelity, it
suffices to construct a witness trace v0 satisfying two properties, where {{Bp}}p∈P
is our witness CSM:

(a) v0 is a trace of {{Bp}}p∈P , and
(b) the run intersection set of v0 is empty: I(v0) =

⋂
p∈P RG

p (v0) = ∅.

We first establish the sufficiency of conditions (a) and (b). Because {{Bp}}p∈P
is deadlock-free by assumption, every prefix extends to a maximal trace. Thus,
to prove the inequality of the two languages L({{Bp}}p∈P) and L(G), it suffices
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to prove the inequality of their respective prefix sets. In turn, it suffices to show
the existence of a prefix of a word in one language that is not a prefix of any
word in the other. We choose to construct a prefix in the CSM language that is
not a prefix in L(G). We again leverage the definition of intersection sets (Defi-
nition 6.2) to weaken the property of language non-membership to the property
of having an empty intersection set as follows. By the semantics of L(G), for
any w ∈ L(G), there exists w′ ∈ split(L(GAut(G))) with w ∼ w′. For any
w′ ∈ split(L(GAut(G))), it trivially holds that w′ has a non-empty intersection
set. Because intersection sets are invariant under the indistinguishability rela-
tion ∼, w must also have a non-empty intersection set. Since intersection sets
are monotonically decreasing, if the intersection set of w is non-empty, then for
any v ≤ w, the intersection set of v is also non-empty. Modus tollens of the chain
of reasoning above tells us that in order to show a word is not a prefix in L(G),
it suffices to show that its intersection set is empty.

Having established the sufficiency of properties (a) and (b) for our witness
construction, we present the steps to construct v0 from the negation of Send and
Receive Validity respectively. We start by constructing a trace in {{C (G, p)p}}p∈P
that satisfies (b), and then show that {{Bp}}p∈P also recognizes the trace, thereby
satisfying (a). In both cases, let p be the role and s be the state for which the
respective validity condition is violated.

Send Validity (Definition 5.2). Let s
p▷q!m−−−−→ s′ ∈ δp be a transition such that

tr-orig(s
p▷q!m−−−−→ s′) ̸= s .

First, we find a trace u of {{C (G, p)p}}p∈P that satisfies: (1) role p is in state s
in the CSM configuration reached via u, and (2) the run of GAut(G) on u

visits a state in s \ tr-orig(s
p▷q!m−−−−→ s′). We obtain such a witness u from

the split(trace(−)) of a run prefix of GAut(G) that ends in some state in
s \ tr-orig(s p▷q!m−−−−→ s′). Any prefix thus obtained satisfies (1) by definition of
C (G, p), and satisfies (2) by construction. Due to the fact that send transitions
are always enabled in a CSM, u · p ▷ q!m must also be a trace of {{C (G, p)}}p∈P ,
thus satisfying property (a) by a simulation argument. We then argue that
u ·p▷q!m satisfies property (b), stating that I(u ·p▷q!m) is empty: the negation
of Send Validity gives that there exist no run extensions from our candidate
state in s \ tr-orig(s p▷q!m−−−−→ s′) with the immediate next action p −→ q : m, and
therefore there exists no maximal run in GAut(G) consistent with u · p ▷ q!m.

Receive Validity (Definition 5.3). Let s
p◁q1?m1−−−−−→ s1 and s

p◁q2?m2−−−−−→ s2 ∈ δp

be two transitions, and let G2 ∈ tr-dest(s
p◁q2?m2−−−−−→ s2) such that

q1 ̸= q2 and q1 ▷ p!m1 ∈ M
p

(G2...)
.

Constructing the witness v0 pivots on finding a trace u of {{C (G, p)}}p∈P such
that both u·p◁q1?m1 and u·p◁q2?m2 are traces of {{C (G, p)}}p∈P . Equivalently,
we show there exists a reachable configuration of {{C (G, p)}}p∈P in which p can
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receive either message from distinct senders q1 and q2. Formally, the local state
of p has two outgoing states labeled with p ◁ q1?m1 and p ◁ q2?m2, and the
channels q1, p and q2, p have m1 and m2 at their respective heads. We construct
such a u by considering a run in GAut(G) that contains two transitions labeled
with q1 −→ p : m1 and q2 −→ p : m2. Such a run must exist due to the negation of
Receive Validity. We start with the split trace of this run, and argue that, from
the definition of M(-) and the indistinguishability relation ∼, we can perform
iterative reorderings using ∼ to bubble the send action q1 ▷ p!m1 to the position
before the receive action p◁q2?m2. Then, (a) for u·p◁q1?m1 holds by a simulation
argument. We then separately show that (b) holds for p ◁ q1?m1 using similar
reasoning as the send case to complete the proof that u · p ◁ q1?m1 suffices as a
witness for v0.

It is worth noting that the construction of the witness prefix v0 in the
proof immediately yields an algorithm for computing counterexample traces
to implementability.

Remark 7.2 (Mixed Choice is Not Needed to Implement Global Types). The-
orem 7.1 basically shows the necessity of Send Validity for implementability.
Corollary 5.5 shows that Send Validity precludes states with both send and re-
ceive outgoing transitions. Together, this implies that an implementable global
type can always be implemented without mixed choice. Note that the syntactic
restrictions on global types do not inherently prevent mixed choice states from
arising in a role’s subset construction, as evidenced by r in the following type:
p→ q : l. q→ r :m. 0 + p→ q : r. r→ q :m. 0. Our completeness result thus implies
that this type is not implementable. Most MST frameworks [18,24,31] implicitly
force no mixed choice through syntactic restrictions on local types. We are the
first to prove that mixed choice states are indeed not necessary for completeness.
This is interesting because mixed choice is known to be crucial for the expressive
power of the synchronous π-calculus compared to its asynchronous variant [32].

8 Complexity

In this section, we establish PSPACE-completeness of checking implementability
for global types.

Theorem 8.1. The MST implementability problem is PSPACE-complete.

Proof. We first establish the upper bound. The decision procedure enumerates
for each role p the subsets of GAut(G)↓p. This can be done in polynomial space
and exponential time. For each p and s ⊆ QG, it then (i) checks membership of s
in Qp of C (G, p), and (ii) if s ∈ Qp, checks whether all outgoing transitions of s
in C (G, p) satisfy Send and Receive Validity. Check (i) can be reduced to the
intersection non-emptiness problem for nondeterministic finite state machines,
which is in PSPACE [44]. It is easy to see that check (ii) can be done in poly-
nomial time. In particular, the computation of available messages for Receive
Validity only requires a single unfolding of every loop in G.
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Note that the synthesis problem has the same complexity. The subset con-
struction to determinize GAut(G)↓p can be done using a PSPACE transducer.
While the output can be of exponential size, it is written on an extra tape that is
not counted towards memory usage. However, this means we need to perform the
validity checks as described above instead of using the computed deterministic
state machines.

Second, we prove the lower bound. The proof is inspired by the proof for The-
orem 4 [4] in which Alur et al. prove that checking safe realizability of bounded
HMSCs is PSPACE-hard. We reduce the PSPACE-complete problem of check-
ing universality of an NFA M = (Q,∆, δ, q0, F ) to checking implementability.
Without loss of generality, we assume that every state can reach a final state. We
construct a global type G for p, q and r that is implementable iff L(M) = ∆∗.
For this, we define subterms Gl and Gr as well as Gq for every q ∈ Q and G∗.
We use a fresh letter ⊥ to handle final states of M . We also define p↔q :m as
an abbreviation for p→q :m. q→p :m.

G := Gl +Gr

Gl := p↔q : l . p↔r :go .Gq0

Gq :=

{∑
(a,q′)∈δ(q)(r↔q :a .Gq′) if q /∈ F

r↔q :⊥ . 0 +
∑

(a,q′)∈δ(q)(r↔q :a .Gq′) if q ∈ F

Gr := p↔q :r . p↔r :go .G∗

G∗ := r↔q :⊥ . 0 +
∑
a∈∆

(r↔q :a .G∗)

The global type G is constructed such that p first decides whether words from
L(M) or from ∆∗ are sent subsequently. This decision is known to p and q but not
to r. The protocol then continues with r sending letters from ∆ to q, and p is not
involved. Intuitively, q is able to receive these letters if and only if L(M) = ∆∗.
From Theorems 6.1 and 7.1, we know that {{C (G, p)p}}p∈P implements G if G
is implementable.

We claim that {{C (G, p)p}}p∈P implements G if and only if L(M) = ∆∗.
First, assume that L(M) ̸= ∆∗. Then, there exists w /∈ L(M). We can con-

struct the following run of {{C (G, p)p}}p∈P that deadlocks. Role p chooses the
left subterm Gl and, subsequently, r sends w to q. We do a case analysis on
whether w contains a prefix w′ such that w′ /∈ pref(L(M)). If so, sending the
last letter of a minimal prefix leads to a deadlock in {{C (G, p)p}}p∈P , contra-
dicting deadlock freedom. If not, it holds that w is a prefix of a word in L(M).
Still, role r can send ⊥, which cannot be received, also contradicting deadlock
freedom.

Second, assume that L(M) = ∆∗. With this, it is fine that r does not know
the branch. Role q will be able to receive all messages since C (G, q) can receive,
letter by letter, w.⊥ for every w ∈ L(M) from r. Thus, protocol fidelity and
deadlock freedom hold, concluding the proof.
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Note that PSPACE-hardness only holds if the size of G does not account
for common subterms multiple times. Because every message is immediately
acknowledged, the constructed global type specifies a universally 1-bounded [23]
language, proving that PSPACE-hardness persists for such a restriction. For our
construction, it does not hold that V(L(Gl)⇓Σq,?

) = L(M). We chose so to have
a more compact protocol. However, we can easily fix this by sending the decision
of r first to p, allowing to omit the messages ⊥ to q. ⊓⊔

This result and the fact that local languages are preserved by the subset
projection (Lemma 4.3) leads to the following observation.

Corollary 8.2. Let G be an implementable global type. Then, the subset projec-
tion {{P(G, p)}}p∈P is a local language preserving implementation for G, i.e.,
L(P(G, p)) = L(G)⇓Σp

for every p, and can be computed in PSPACE.

Remark 8.3 (MST implementability with directed choice is PSPACE-hard). The-
orem 8.1 is stated for global types with sender-driven choice but the provided
type is in fact directed. Thus, the PSPACE lower bound also holds for imple-
mentability of types with directed choice.

9 Evaluation

We consider the following three aspects in the evaluation of our approach:
(E1) difficulty of implementation (E2) completeness, and (E3) comparison to
state of the art.

For this, we implemented our subset projection in a prototype tool [1,37]. It
takes a global type as input and computes the subset projection for each role.
It was straightforward to implement the core functionality in approximately 700
lines of Python3 code closely following the formalization (E1).

We consider global types (and communication protocols) from seven different
sources as well as all examples from this work (cf. 1st column of Table 1). Our
experiments were run on a computer with an Intel Core i7-1165G7 CPU and used
at most 100MB of memory. The results are summarized in Table 1. The reported
size is the number of states and transitions of the respective state machine, which
allows not to account for multiple occurrences of the same subterm. As expected,
our tool can project every implementable protocol we have considered (E2).

Regarding the comparison against the state of the art (E3), we directly com-
pared our subset projection to the incomplete approach by Majumdar et al. [31],
and found that the run times are in the same order of magnitude in general (typ-
ically a few milliseconds). However, the projection of [31] fails to project four
implementable protocols (including Example 2.1). We discuss some of the other
examples in more detail in the next section. We further note that most of the
run times reported by Scalas and Yoshida [36] on their model checking based
tool are around 1 second and are thus two to three orders of magnitude slower.
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Source Name Impl. Subset Proj. Size |P| Size [31]
(complete) Proj’s (incomplete)

[35]
Instrument Contr. Prot. A ✓✓✓ ✓✓✓ 0.4ms 22 3 61 ✓✓✓ 0.2ms
Instrument Contr. Prot. B ✓✓✓ ✓✓✓ 0.3ms 17 3 47 ✓✓✓ 0.1ms
OAuth2 ✓✓✓ ✓✓✓ 0.1ms 10 3 23 ✓✓✓ <0.1ms

[34] Multi Party Game ✓✓✓ ✓✓✓ 0.5ms 21 3 67 ✓✓✓ 0.1ms

[24] Streaming ✓✓✓ ✓✓✓ 0.2ms 13 4 28 ✓✓✓ <0.1ms

[13] Non-Compatible Merge ✓✓✓ ✓✓✓ 0.2ms 11 3 25 ✓✓✓ 0.1ms

[45] Spring-Hibernate ✓✓✓ ✓✓✓ 1.0ms 62 6 118 ✓✓✓ 0.7ms

[31]

Group Present ✓✓✓ ✓✓✓ 0.6ms 51 4 85 ✓✓✓ 0.6ms
Late Learning ✓✓✓ ✓✓✓ 0.3ms 17 4 34 ✓✓✓ 0.2ms
Load Balancer (n = 10) ✓✓✓ ✓✓✓ 3.9ms 36 12 106 ✓✓✓ 2.4ms
Logging (n = 10) ✓✓✓ ✓✓✓ 71.5ms 81 13 322 ✓✓✓ 10.0ms

[38]

2 Buyer Protocol ✓✓✓ ✓✓✓ 0.5ms 22 3 60 ✓✓✓ 0.2ms
2B-Prot. Omit No ✓✓✓ ✓✓✓ 0.4ms 19 3 56 (×) 0.1ms
2B-Prot. Subscription ✓✓✓ ✓✓✓ 0.7ms 46 3 95 (×) 0.3ms
2B-Prot. Inner Recursion ✓✓✓ ✓✓✓ 0.4ms 17 3 51 ✓✓✓ 0.1ms

New

Odd-even (Example 2.1) ✓✓✓ ✓✓✓ 0.5ms 32 3 70 (×) 0.2ms
Gr – Receive Val. Violated (§2) × × 0.1ms 12 3 - (×) <0.1ms
G′

r – Receive Val. Satisfied (§2) ✓✓✓ ✓✓✓ 0.2ms 16 3 35 ✓✓✓ 0.1ms
Gs – Send Val. Violated (§2) × × <0.1ms 8 3 - (×) <0.1ms
G′

s – Send Val. Satisfied (§2) ✓✓✓ ✓✓✓ <0.1ms 7 3 17 ✓✓✓ <0.1ms
Gfold (§10) ✓✓✓ ✓✓✓ 0.4ms 21 3 50 (×) 0.1ms
Gunf (§10) ✓✓✓ ✓✓✓ 0.4ms 30 3 61 ✓✓✓ 0.2ms

Table 1: Projecting Global Types. For every protocol, we report whether it is
implementable ✓✓✓ or not ×, the time to compute our subset projection and the
generalized projection by Majumdar et al. [31] as well as the outcome as ✓✓✓ for
“implementable”, × for “not implementable” and (×) for “not known”. We also give
the size of the protocol (number of states and transitions), the number of roles,
the combined size of all subset projections (number of states and transitions).

10 Discussion

Success of Syntactic Projections Depends on Representation. Let us il-
lustrate how unfolding recursion helps syntactic projection operators to succeed.
Consider this implementable global type, which is not syntactically projectable:

Gfold := +

{
p→q :o. µt1. (p→q :o. q→r :o. t1 + p→q :b. q→r :b. 0)

p→q :m. q→r :m.µt2. (p→q :o. q→r :o. t2 + p→q :b. q→r :b. 0)
.

Similar to projection by erasure, a syntactic projection erases events that a role is
not involved in and immediately tries to merge different branches. The merge op-
erator is a partial operator that checks sufficient conditions for implementability.
Here, the merge operator fails for r because it cannot merge a recursion vari-
able binder and a message reception. Unfolding the global type preserves the
represented protocol and resolves this issue:

Gunf := +

p→q :o.

{
p→q :b. q→r :b. 0

p→q :o. q→r :o. µt1. (p→q :o. q→r :o. t1 + p→q :b. q→r :b. 0)

p→q :m. q→r :m.µt2. (p→q :o. q→r :o. t2 + p→q :b. q→r :b. 0)

.
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(We refer to [29] for visual representations of both global types.) This global
type can be projected with most syntactic projection operators and shows that
the representation of the global type matters for syntactic projectability. How-
ever, such unfolding tricks do not always work, e.g. for the odd-even protocol
(Example 2.1). We avoid this brittleness using automata and separating the
synthesis from checking implementability.
Entailed Properties from the Literature. We defined implementability for
a global type as the question of whether there exists a deadlock-free CSM that
generates the same language as the global type. Various other properties of im-
plementations and protocols have been proposed in the literature. Here, we give
a brief overview and defer to the extended version [29] for a detailed analysis.
Progress [18], a common property, requires that every sent message is eventu-
ally received and every expected message will eventually be sent. With deadlock
freedom, our subset projection trivially satisfies progress for finite traces. For in-
finite traces, as expected, fairness assumptions are required to enforce progress.
Similarly, our subset projection prevents unspecified receptions [14] and orphan
messages [9, 21], respectively interpreted in our multiparty setting with sender-
driven choice. We also ensure that every local transition of each role is exe-
cutable [14], i.e. it is taken in some run of the CSM. Any implementation of a
global type has the stable property [28], i.e., one can always reach a configuration
with empty channels from every reachable configuration. While the properties
above are naturally satisfied by our subset projection, the following ones can be
checked directly on an implementable global type without explicitly construct-
ing the implementation. A global type is terminating [36] iff it does not contain
recursion and never-terminating [36] iff it does not contain term 0.

11 Related Work

MSTs were introduced by Honda et al. [24] with a process algebra semantics,
and the connection to CSMs was established soon afterwards [20].

In this work, we present a complete projection procedure for global types with
sender-driven choice. The work by Castagna et al. [13] is the only one to present
a projection that aims for completeness. Their semantic conditions, however, are
not effectively computable and their notion of completeness is “less demanding
than the classical ones” [13]. They consider multiple implementations, generating
different sets of traces, to be sound and complete with regard to a single global
type [13, Sec. 5.3]. In addition, the algorithmic version of their conditions does
not use global information as our message availability analysis does.

MST implementability relates to safe realizability of HMSCs, which is unde-
cidable in general but decidable for certain classes [30]. Stutz [38] showed that
implementability of global types that are always able to terminate is decidable.1
The EXPSPACE decision procedure is obtained via a reduction to safe realiz-
ability of globally-cooperative HMSCs, by proving that the HMSC encoding [39]

1This syntactic restriction is referred to as 0-reachability in [38].
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of any implementable global type is globally-cooperative and generalizing results
for infinite executions. Thus, our PSPACE-completeness result both generalizes
and tightens the earlier decidability result obtained in [38]. Stutz [38] also inves-
tigates how HMSC techniques for safe realizability can be applied to the MST
setting – using the formal connection between MST implementability and safe
realizability of HMSCs – and establishes an undecidability result for a variant
of MST implementability with a relaxed indistinguishability relation.

Similar to the MST setting, there have been approaches in the HMSC liter-
ature that tie branching to a role making a choice. We refer the reader to the
work by Majumdar et al. [31] for a survey.

Standard MST frameworks project a global type to a set of local types
rather than a CSM. Local types are easily translated to FSMs [31, Def.11].
Our projection operator, though, can yield FSMs that cannot be expressed
with the limited syntax of local types. Consider this implementable global type:
p→ q : o. 0 + p→ q :m. p→ r : b. 0 . The subset projection for r has two final
states connected by a transition labeled r ◁p?b. In the syntax of local types, 0 is
the only term indicating termination, which means that final states with outgo-
ing transitions cannot be expressed. In contrast to the syntactic restrictions for
global types, which are key to effective verification, we consider local types un-
necessarily restrictive. Usually, local implementations are type-checked against
their local types and subtyping gives some implementation freedom [12,16,17,27].
However, one can also view our subset projection as a local specification of the
actual implementation. We conjecture that subtyping would then amount to a
variation of alternating refinement [5].

CSMs are Turing-powerful [11] but decidable classes were obtained for differ-
ent semantics: restricted communication topology [33,42], half-duplex communi-
cation (only for two roles) [14], input-bounded [10], and unreliable channels [2,3].
Global types (as well choreography automata [7]) can only express existentially
1-bounded, 1-synchronizable and half-duplex communication [39]. Key to this
result is that sending and receiving a message is specified atomically in a global
type — a feature Dagnino et al. [19] waived for their deconfined global types.
However, Dagnino et al. [19] use deconfined types to capture the behavior of a
given system rather than projecting to obtain a system that generates specified
behaviors.

This work relies on reliable communication as is standard for MST frame-
works. Work on fault-tolerant MST frameworks [8, 43] attempts to relax this
restriction. In the setting of reliable communication, both context-free [25, 40]
and parametric [15, 22] versions of session types have been proposed to capture
more expressive protocols and entire protocol families respectively. Extending
our approach to these generalizations is an interesting direction for future work.
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