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Summary. Iterative substructuring methods with Lagrange multipliers for elliptic
problems are considered. The algorithms belong to the family of dual-primal FETI
methods which were introduced for linear elasticity problems in the plane by Farhat
et al. [2001] and were later extended to three dimensional elasticity problems by
Farhat et al. [2000]. Recently, the family of algorithms for scalar diffusion prob-
lems was extended to three dimensions and successfully analyzed by Klawonn et al.
[2002a,b]. It was shown that the condition number of these dual-primal FETI al-
gorithms can be bounded polylogarithmically as a function of the dimension of the
individual subregion problems and that the bounds are otherwise independent of
the number of subdomains, the mesh size, and jumps in the diffusion coefficients. In
this article, numerical results for some of these algorithms are presented and their
relation to the theoretical bounds is studied. The algorithms have been implemented
in PETSc, see Balay et al. [2001], and their parallel scalability is analyzed.

1 Elliptic model problem, finite elements, and geometry

Let Ω ⊂ IR3, be a bounded, polyhedral region, let ∂ΩD ⊂ ∂Ω be a closed
set of positive measure, and let ∂ΩN := ∂Ω \ ∂ΩD be its complement.
We impose homogeneous Dirichlet and general Neumann boundary condi-
tions, respectively, on these two subsets and introduce the Sobolev space
H1

0 (Ω, ∂ΩD) := {v ∈ H1(Ω) : v = 0 on ∂ΩD}.
We decompose Ω into non-overlapping subdomains Ωi, i = 1, . . . , N, where

each is the union of shape-regular elements with the finite element nodes on
the boundaries of neighboring subdomains matching across the interface Γ .
The interface Γ is the union of subdomain faces, which are shared by two
subregions, edges which are shared by more than two subregions and vertices
which form the endpoints of edges. All of them are regarded as open sets.

For simplicity, we will only consider a piecewise trilinear, conforming finite
element approximation of the following scalar, second order model problem:
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find u ∈ H1
0 (Ω, ∂ΩD), such that

a(u, v) = f(v) ∀v ∈ H1
0 (Ω, ∂ΩD), (1)

where

a(u, v) =
N∑

i=1

ρi

∫
Ωi

∇u · ∇vdx, f(v) =
N∑

i=1

( ∫
Ωi

fvdx +
∫

∂Ωi∩∂ΩN

gNvds
)
,

(2)
where gN is the Neumann boundary data defined on ∂ΩN . We further assume
that the diffusion coefficient ρi is a positive constant on each subregion Ωi.

For the theoretical analysis, we also make a number of further technical
assumptions; see Klawonn et al. [2002a,b] for details.

2 The FETI-DP Method

For each subdomain Ωi, i = 1, . . . , N , we assemble local stiffness matrices
K(i) and local load vectors f (i). We denote by u(i) the local solution vectors
of nodal values. The local stiffness matrices K(i) can be partitioned according
to vertex and remaining degrees of freedom, denoted by subscript c and r,
respectively.

K(i) =

[
K

(i)
rr K

(i)
rc

K
(i)
rc

T
K

(i)
cc

]
, u(i) =

[
u

(i)
r

u
(i)
c

]
, f (i) =

[
f

(i)
r

f
(i)
c

]
, i = 1, . . . , N.

By assembling the stiffness matrix contributions from the vertices, we ob-
tain from the local submatrices K

(i)
cc the global matrix K̃cc and from the local

matrices K
(i)
rc the partially assembled matrices K̃

(i)
rc . Here, we choose to as-

semble at all vertices. It is also possible to take only a sufficient number of
them; for details, see Klawonn et al. [2002a]. We introduce the following nota-
tion Krr := diagN

i=1(K
(i)
rr ) and K̃rc := [K̃(1)T

rc · · · K̃(N)T
rc ]T . The global vectors

ũc and f̃c are defined accordingly. We note that the FETI-DP iterates will be
continuous at all vertices throughout the iterations.

To guarantee continuity at the remaining interface nodes, i.e., those which
are not vertices, we introduce the jump operator Br = [B(1)

r , . . . , B
(N)
r ]. The

entries of this matrix are 0, 1,−1 and it is constructed such that components
of any vector ur, which are associated with the same node on the interface Γ ,
coincide when Brur =

∑N
i=1 B

(i)
r u

(i)
r = 0.

We can now reformulate the finite element discretization of (1) asKrr K̃rc BT
r

K̃T
rc K̃cc 0

Br 0 0

ur

ũc

λ

 =

 fr

f̃c

0

 . (3)
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Elimination of the primal variables ur and ũc leads to a reduced linear system
of the form

FAλ = dA,

where the matrix FA and the right hand side dA are formally obtained by block
Gauss elimination. Let us note that the matrix FA is never built explicitly but
that in every iteration appropriate linear systems are solved; see Farhat et al.
[2000] or Klawonn et al. [2002a] for more details.

To obtain better convergence properties for three dimensional problems, a
larger coarse problem was suggested by introducing additional optional con-
straints of the form

Qrur = 0. (4)

Here, Qr := [Q(1)
r . . . Q

(N)
r ], Q

(i)
r := [O Q∆B

(i)
∆ ], and Q∆ is a rectangular

matrix which has as many columns as there are remaining degrees of freedom
which are on the interface; for the latter set, we will also use the subscript
∆. The number of rows is determined by the number of primal edges and
faces. A primal edge is an edge where the average of u is the same across this
edge whichever component of the product space is used in its computation.
Analogously, we define a primal face. The matrix Q∆ is constructed such that
(4) guarantees that certain linear combinations of the rows of B∆u∆ are zero.
These linear combinations are related to primal edges and faces. Then, (4)
enforces that averages at primal edges and faces have common values across
the interface.

Introducing additional optional Lagrange multipliers µ to enforce the extra
constraints given in (4), we obtain from (3) the following linear system

Krr K̃rc QT
r BT

r

K̃T
rc K̃cc 0 0

Qr 0 0 0
Br 0 0 0




ur

ũc

µ
λ

 =


fr

f̃c

0
0

 . (5)

Elimination of ur, ũc, and µ leads again to a reduced linear system of the form

Fλ = d, (6)

where the matrix F and the right hand side d are again formally obtained by
block Gauss elimination.

Let us now define the Dirichlet preconditioner. We need a scaled jump
operator BD,r. It is obtained from Br = [O B∆] by scaling B∆ subdomain-
wise with appropriate diagonal scaling matrices D(i) and setting BD,∆ :=
[D(1)B

(1)
∆ . . . D(N)B

(N)
∆ ]. The scaling matrices D(i) are defined using the dif-

fusion coefficients ρi; for details, see Klawonn et al. [2002a]. Finally, we add
a zero column to BD,r for each vertex node. From the local stiffness matri-
ces K(i), we obtain local Schur complements S(i), by eliminating the interior
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variables, which operate on the degrees of freedom belonging to the inter-
face nodes. Let us define the block diagonal matrix S := diagN

i=1(S
(i)). The

Dirichlet preconditioner is then defined as

M−1 := BD,rSBT
D,r.

The FETI-DP algorithms are preconditioned conjugate gradient methods for
solving the preconditioned linear system

M−1Fλ = M−1d.

Following the notation in Klawonn et al. [2002a,b], we denote the algorithm
using just vertex constraints by Algorithm A. For those methods which ad-
ditionally use optional constraints, we denote the method choosing all edges
and faces as primal by Algorithm B, the one using all edges by Algorithm C,
and finally the algorithm which uses just faces by Algorithm E. We denote
the corresponding matrix F in (6) by FB , FC , and FE .

3 Theoretical Estimates

For Algorithms A, B, C, and E, we have the following estimates; cf. Klawonn
et al. [2002a,b].

Theorem 1. The condition numbers satisfy

1. κ(M−1FA) ≤ C(H/h)(1 + log(H/h))2,
2. κ(M−1FB) ≤ C(1 + log(H/h))2,
3. κ(M−1FC) ≤ C(1 + log(H/h))2,
4. κ(M−1FE) ≤ C max((1 + log(H/h))2, TOL ∗ (1 + log(H/h))),

where C > 0 is a constant which is independent of H, h, TOL, and the values
of the coefficients ρi.

We note that the condition number estimate for Algorithm E is only valid
if, for all pairs of substructures Ωi, Ωk, which have an edge E ik in common,
we have an acceptable face path. An acceptable face path is a path from Ωi

to Ωk, possibly via several other substructures Ωj , which do not necessarily
touch the edge in question, such that the associated coefficients ρj , ρi, and ρk

satisfy TOL ∗ ρj ≥ min(ρi, ρk) for some chosen tolerance TOL.

4 Computational results

We have applied the FETI-DP algorithms A, B, C, and E to the model prob-
lem (1), where Ω := [0, 1]3 is the unit cube. We decompose the unit cube
into N ×N ×N cubic subdomains with sidelength H := 1/N . The diffusion
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coefficients ρi alternate between 1 and 104 and are distributed in a threedi-
mensional checkerboard pattern; cf. Figure 1. On the front, left, and bottom
part, homogeneous Dirichlet boundary conditions are applied. On all the re-
maining parts of the boundary, we imposed homogeneous Neumann boundary
conditions. The coefficients are constant on each subdomain and (1) is dis-
cretized by conforming trilinear elements with finite element diameter h. All
algorithms are implemented in PETSc, see Balay et al. [2001]. We use the
preconditioned conjugate gradient method with a zero initial guess. The stop-
ping criterion is the relative reduction of the initial residual by 10−7 in the
Euclidean norm. In order to analyze the numerical scalability of our algo-

Fig. 1. Model domain decomposed into cubes with discontinuous diffusion coeffi-
cients ρi = 1 and ρi = 104.

rithms, we have carried out two different types of experiments. In our first set
of runs, we kept the subdomain size H/h fixed and increased the number of
subdomains and thus the overall problem size; cf. Tables 1,2,3,4. Our second
series of experiments is carried out with a fixed number of subdomains and an
increasing subdomain size H/h resulting in an increased 1/h; cf. Tables 5 and
6 and Figure 2. From both set of runs, we see that our computational results
support the theoretical condition number estimates. However, for Algorithm
E, we cannot decide if the growth of the condition number is polylogarithmic.
From the range of H/h used in the experiments, it rather looks linear than
polylogarithmic. We note that for this problem, the bound of Theorem 1 is ba-
sically meaningless since TOL = 104. Experiments for an isotropic material,
i.e., with no jumps in the coefficients show the same polylogarithmic growth
as Algorithms B and C. This is an interesting point which needs some fur-
ther analysis. In a third set of experiments, we have tested our algorithms for
parallel scalability. We considered a decomposition into 216 subdomains with
13824 degrees of freedom for each subdomain which yields an overall problem
size of 2 685 619 degrees of freedom; cf. Table 7.

The experiments in Tables 1,2,3,4 were carried out on two dual Athlon MP
2200+ PCs with 2 GByte memory each. The experiments in Tables 5,6 and 7
were computed on the 350 node Linux cluster Jazz at the Argonne National
Laboratory. Each node is a 2.4 GHz Pentium Xeon where half of the nodes
has 2 GByte memory and the other half has 1 GByte.

The experiments show that all algorithms have a good parallel scalability
for our model problem. For this problem and the number of degrees of freedom
considered, the CPU times are not significantly different, although Algorithm
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C is always slightly faster. To decide which method is the best, more exten-
sive testing with different model problems and geometries is needed. This is
currently ongoing research and will be published elsewhere.

Table 1. Algorithm A - Constant H/h

Subdomains Dof/Subdom. Dof Iterations λmin λmax

8 1000 6,859 9 1.00035 11.5539
27 1000 21,952 14 1.00051 28.8335
64 1000 50,653 19 1.00361 25.0130

125 1000 97,336 22 1.00283 28.8335
216 1000 166,375 24 1.00231 25.0127
343 1000 262,144 26 1.00188 28.8335
512 1000 389,017 25 1.00161 25.0127
729 1000 551,368 26 1.00138 28.8335

1000 1000 753,571 24 1.00125 25.0127

Table 2. Algorithm B - Constant H/h

Subdomains Dof/Subdom. Dof Iterations λmin λmax

8 1000 6,859 7 1.00085 1.47091
27 1000 21,952 8 1.00049 1.55036
64 1000 50,653 8 1.00025 1.47011

125 1000 97,336 8 1.00022 1.55036
216 1000 166,375 8 1.00013 1.46995
343 1000 262,144 8 1.00013 1.55036
512 1000 389,017 8 1.00009 1.46989
729 1000 551,368 8 1.00010 1.55036

1000 1000 753,571 7 1.00014 1.46985

Acknowledgement. The authors gratefully acknowledge the use of ”Jazz”, a 350 node
computing cluster operated by the Mathematics and Computer Science Division at
Argonne National Laboratory as part of its Laboratory Computing Resource Center.
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Table 3. Algorithm C - Constant H/h

Subdomains Dof/Subdom. Dof Iterations λmin λmax

8 1000 6,859 8 1.00030 1.61492
27 1000 21,952 9 1.00040 2.06800
64 1000 50,653 9 1.00020 1.93210

125 1000 97,336 10 1.00012 2.06875
216 1000 166,375 9 1.00009 1.93192
343 1000 262,144 10 1.00008 2.06875
512 1000 389,017 9 1.00006 1.93210
729 1000 551,368 10 1.00005 2.06875

1000 1000 753,571 9 1.00005 1.93210

Table 4. Algorithm E - Constant H/h

Subdomains Dof/Subdom. Dof Iterations λmin λmax

8 1000 6,859 8 1.00102 11.4671
27 1000 21,952 10 1.00185 16.2107
64 1000 50,653 14 1.00129 16.2191

125 1000 97,336 16 1.00113 16.2246
216 1000 166,375 19 1.00089 16.2281
343 1000 262,144 19 1.00079 16.2304
512 1000 389,017 20 1.00067 16.2319
729 1000 551,368 20 1.00060 16.2329

1000 1000 753,571 20 1.00054 16.2335

Table 5. Algorithms A and C - Constant H

Subdomains H/h Dof Algorithm A Algorithm C
Iter λmin λmax Iter λmin λmax

216 4 6,859 14 1.00018 4.20279 6 1.00001 1.28960
216 8 79,507 22 1.00147 16.7662 8 1.00029 1.75693
216 12 300,763 27 1.00306 34.0512 10 1.00010 2.08459
216 16 753,571 31 1.00371 53.9590 11 1.00017 2.34317
216 20 1,520,875 32 1.00519 75.7574 11 1.00024 2.55999
216 24 2,685,619 34 1.00651 99.0372 12 1.00029 2.74869
216 28 4,330,747 36 1.00660 123.530 12 1.00035 2.91716
216 32 6,539,203 36 1.00677 149.054 13 1.00034 3.07033

Charbel Farhat, Michel Lesoinne, Patrick LeTallec, Kendall Pierson, and
Daniel Rixen. FETI-DP: A dual-primal unified FETI method - part i:
A faster alternative to the two-level FETI method. Int. J. Numer. Meth.
Engrg., 50:1523–1544, 2001.
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Table 6. Algorithms B and E - Constant H

Subdomains H/h Dof Algorithm B Algorithm E
Iter λmin λmax Iter λmin λmax

216 4 6,859 5 1.01252 1.06768 13 1.00006 4.19816
216 8 79,507 7 1.00052 1.31862 19 1.00044 12.1453
216 12 300,763 8 1.00021 1.62065 22 1.00058 20.3391
216 16 753,571 10 1.00021 1.90164 23 1.00054 28.5889
216 20 1,520,875 10 1.00033 2.14742 23 1.00066 36.8711
216 24 2,685,619 11 1.00040 2.36688 25 1.00062 45.1044
216 28 4,330,747 12 1.00040 2.61352 24 1.00081 53.3703
216 32 6,539,203 12 1.00046 2.80160 24 1.00097 61.5779
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Fig. 2. Condition number growth for varying H/h for Algorithms A and E (left)
and Algorithms B and C (right).

Table 7. Parallel Scalability - Algorithms A, B, C and E with 216 subdomains,
13824 dof for each subdomain (2,685,619 dof).

Algorithm
Processors A B C E

27 223s 207s 205s 216s
54 113s 106s 106s 110s
108 57.0s 54.2s 53.8s 55.4s
216 29.1s 28.9s 27.2s 29.1s
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Axel Klawonn, Olof B. Widlund, and Maksymilian Dryja. Dual-Primal FETI
methods with face constraints. In Luca F. Pavarino and Andrea Toselli, ed-
itors, Recent developments in domain decomposition methods, pages 27–40.
Springer-Verlag, Lecture Notes in Computational Science and Engineering,
Volume 23, 2002b.




