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Summary. Iterative substructuring methods with Lagrange multipliers for the el-
liptic system of linear elasticity are considered. The algorithms belong to the family
of dual-primal FETI methods which was introduced for linear elasticity problems in
the plane by Farhat et al. [2001] and then extended to three dimensional elasticity
problems by Farhat et al. [2000]. In dual-primal FETI methods, some continuity
constraints on primal displacement variables are required to hold throughout the it-
erations, as in primal iterative substructuring methods, while most of the constraints
are enforced by the use of dual Lagrange multipliers, as in the older one-level FETI
algorithms. The primal constraints should be chosen so that the local problems be-
come invertible. They also provide a coarse problem and they should be chosen so
that the iterative method converges rapidly.

Recently, the family of algorithms for scalar elliptic problems in three dimen-
sions was extended and a theory was provided in Klawonn et al. [2002a,b]. It was
shown that the condition number of the dual-primal FETI methods can be bounded
polylogarithmically as a function of the dimension of the individual subregion prob-
lems and that the bounds can otherwise be made independent of the number of
subdomains, the mesh size, and jumps in the coefficients.

In the case of the elliptic system of partial differential equations arising from
linear elasticity, essential changes in the selection of the primal constraints have to
be made in order to obtain the same quality bounds for elasticity problems as in the
scalar case. Special emphasis is given to developing robust condition number esti-
mates with bounds which are independent of arbitrarily large jumps of the material
coefficients. For benign coefficients, without large jumps, selecting an appropriate set
of edge averages as primal constraints are sufficient to obtain good bounds, whereas
for arbitrary coefficient distributions, additional primal first order moments are also
required.

1 The equations of linear elasticity

The equations of linear elasticity model the displacement of a linear elastic
material under the action of external and internal forces. The elastic body
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occupies a domain Ω ⊂ IR3, which we assume to be bounded and polyhe-
dral. We denote its boundary by ∂Ω and assume that one part of it, ∂ΩD, is
clamped, i.e., with homogeneous Dirichlet boundary conditions, and that the
rest, ∂ΩN := ∂Ω\∂ΩD, is subject to a surface force g, i.e., a natural boundary
condition. We can also introduce a body force f , e.g., gravity. Using the nota-
tion H1(Ω) := (H1(Ω))3, the appropriate space for a variational formulation
is then the Sobolev space H1

0(Ω, ∂ΩD) := {v ∈ H1(Ω) : v = 0 on ∂ΩD}. The
linear elasticity problem consists in finding the displacement u ∈ H1

0(Ω, ∂ΩD)
of the elastic body Ω, such that

a(u,v) = 〈F,v〉 ∀v ∈ H1
0(Ω, ∂ΩD) (1)

where 〈F,v〉 :=
∫

Ω fTv dx +
∫

∂ΩN
gT v dσ and

a(u,v) =
∫

Ω

G(x)ε(u) : ε(v)dx +
∫

Ω

G(x)β(x) div u div v dx. (2)

Here G and β are material parameters which depend on Young’s modulus
E > 0 and the Poisson ratio ν ∈ (0, 1/2]; we have G = E/(1 + ν) and
β = ν/(1−2ν). In this contribution, we only consider the case of compressible
elasticity, which means that the Poisson ratio ν is bounded away from 1/2.
Furthermore, εij(u) := 1

2 ( ∂ui

∂xj
+ ∂uj

∂xi
) is the linearized strain tensor, and

ε(u) : ε(v) =
3∑

i,j=1

εij(u)εij(v).

For convenience, we also introduce the notation

(ε(u), ε(v))L2(Ω) :=
∫

Ω

ε(u) : ε(v)dx.

The bilinear form associated with linear elasticity is then

a(u,v) = (Gε(u), ε(v))L2(Ω) + (Gβ div,u, div,v)L2(Ω).

We will also use the standard Sobolev space norm

‖u‖H1(Ω) :=
(
|u|2H1(Ω) + ‖u‖2

L2(Ω)

)1/2

with ‖u‖2
L2(Ω) :=

3∑
i=1

∫
Ω

|ui|2dx, and |u|2H1(Ω) :=
3∑

i=1

‖∇ui‖2
L2(Ω). It is clear

that the bilinear form a(·, ·) is continuous with respect to ‖ · ‖H1(Ω), although
the bound depends on the Lamé parameters. Proving ellipticity is far less
trivial but it can be established from a Korn inequality; see, e.g., [Ciarlet, 1988,
pp. 292-295]. The wellposedness of the linear system (1) follows immediately
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from the continuity and ellipticity of the bilinear form a(·, ·). This makes it
possible to use many technical tools, previously developed for scalar second
order elliptic problems, in the analysis of domain decomposition methods for
the system of linear elasticity.

The null space ker (ε) is the space of rigid body motions. Thus, the lin-
earized strain tensor of u and its divergence vanish only for the elements of
the space spanned by the three translations

r1 :=


 1

0
0


 , r2 :=


 0

1
0


 , r3 :=


 0

0
1


 ,

and the three rotations

r4 :=
1
H


 x2 − x̂2

−x1 + x̂1

0


 , r5 :=

1
H


−x3 + x̂3

0
x1 − x̂1


 , r6 :=

1
H


 0

x3 − x̂3

−x2 + x̂2


 ,

where x̂ ∈ Ω̂ and H denotes the diameter of an appropriate region Ω̂. The
scaling and shifting of the rotational rigid body modes make the L2(Ω̂)−norms
of these six functions scale similarly with H.

2 Finite elements and geometry

We will only consider compressible elastic materials. Since the problem is well
posed in H1(Ω), it is sufficient to discretize our elliptic problem (1) by low
order, conforming finite elements, e.g., linear or trilinear elements.

We introduce a triangulation τh of Ω which is shape regular and has a
typical diameter of h. We denote by Wh := Wh(Ω) ⊂ H1

0(Ω, ∂ΩD) the
corresponding conforming finite element space of finite element functions. The
corresponding discrete problem is finding uh ∈ Wh such that,

a(uh,vh) = 〈F,vh〉 ∀vh ∈ Wh. (3)

When there is no risk of confusion, we will drop the subscript h.
Let the domain Ω ⊂ IR3 be decomposed into nonoverlapping subdomains

Ωi, i = 1, . . . , N , each of which is the union of finite elements with matching
finite element nodes, on the boundaries of neighboring subdomains, across
the interface Γ. The interface Γ is the union of subdomain faces, edges, and
vertices, all of them regarded as open sets. We denote the faces of Ωi by F ij ,
its edges by E ik, and its vertices by V il. Faces are sets which are shared by two
subregions, edges by more than two subregions, and vertices are endpoints of
edges. Subdomain vertices that lie on ∂ΩN are part of Γ , while subdomain
faces that are part of ∂ΩN are not; the nodes on those faces will always
be treated as interior. If Γ intersects ∂ΩN along an edge common to the
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boundaries of only two subdomains, we will regard it as part of the face
common to this pair of subdomains; otherwise it will be regarded as an edge
of Γ . We note that any subdomain that does not intersect ∂ΩD is a floating
subdomain, i.e., a subdomain on which only natural boundary conditions are
imposed.

Let us denote the sets of nodes on ∂Ω, ∂Ωi, and Γ by ∂Ωh, ∂Ωi,h, and Γh,
respectively. For any interface point x ∈ Γh, we define

Nx := {j ∈ {1, . . . , N} : x ∈ ∂Ωj},

i.e., Nx is the index set of all subdomains with x on their boundaries. We note
that we can characterize individual faces, edges, and vertices of the interface
in terms of an equivalence relation defined in terms of these index sets.

In our theoretical analysis, we assume that each subregion Ωi is the union
of a number of shape regular tetrahedral coarse elements and that the number
of such tetrahedra is uniformly bounded for each subdomain. Therefore, the
subregions are not very thin and we can also easily show that the diameters
of any pair of neighboring subdomains are comparable. We also assume that
the material parameters are constant in each subdomain.

We denote the standard finite element space of continuous, piecewise linear
functions on Ωi by Wh(Ωi); we always assume that these functions vanish on
∂Ωi ∩ ∂ΩD. To simplify the theory, we will assume that the triangulation of
each subdomain is quasi uniform. The diameter of Ωi is Hi, or generically,
H . We denote the corresponding trace spaces by W(i) := Wh(∂Ωi ∩ Γ ), i =
1, . . . , N, and by W :=

∏N
i=1 W(i) the associated product space. We will often

consider elements of W which are discontinuous across the interface.
For each subdomain Ωi, we define the local stiffness matrix K(i) which

we view as an operator on Wh(Ωi). On the product space
∏N

i=1 Wh(Ωi), we
define the operator K as the direct sum of the local stiffness operators K(i),
i.e.,

K :=
N⊕

i=1

K(i). (4)

In an implementation, K corresponds to a block diagonal matrix since, so far,
there is no coupling across the interface. The finite element approximation of
the elliptic problem is continuous across Γ and we denote the corresponding
subspace of W by Ŵ. We note that while the stiffness matrix K and its
Schur complement, which corresponds to the product space W, generally are
singular, restricted to Ŵ they are not.

In the present study, as in others on dual-primal FETI methods, we also
work with subspaces W̃ ⊂ W for which sufficiently many constraints are
enforced so that the resulting leading diagonal block matrix of the FETI saddle
point problem, to be introduced in (10), though no longer block diagonal,
is strictly positive definite. These constraints are called primal and usually
consist of certain edge averages and moments, which have common values
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across the interface of neighboring subdomains, and possibly of well chosen
subdomain vertices (or other nodes), for which a partial subassembly is carried
out. One of the benefits of working in W̃, rather than in W, is that certain
related Schur complements, S̃ε and Sε, are strictly positive definite; cf. (6)
and (8).

We further introduce two subspaces, ŴΠ ⊂ Ŵ and W̃∆, corresponding to
a primal and a dual part of the space W̃. These subspaces play an important
role in the description and analysis of our iterative method. The direct sum
of these spaces equals W̃, i.e.,

W̃ = ŴΠ ⊕ W̃∆. (5)

The second subspace, W̃∆, is the direct sum of local subspaces W̃(i)
∆ of W̃,

where each subdomain Ωi contributes a subspace W̃(i)
∆ ; only its i-th compo-

nent in the sense of the product space W̃ is non trivial.
We note that the dual subspaces will be associated with Lagrange mul-

tipliers to control jumps across the interface, jumps which will only vanish
at convergence of our iterative methods. The constraints associated with the
degrees of freedom of the primal subspace, on the other hand, will be satisfied
throughout the iteration.

We now define certain Schur complements by using a variational formula-
tion. We first define Schur complements S

(i)
ε , i = 1, . . . , N , operating on W(i)

by
〈S(i)

ε w(i),w(i)〉 = min〈K(i)v(i),v(i)〉, ∀w(i) ∈ W(i), (6)

where we take the minimum over all v(i) ∈ Wh(Ωi) with v(i)|∂Ωi∩Γ = w(i).
We can now define the Schur complement Sε operating on W by the direct
sum of the local Schur complements

Sε :=
N⊕

i=1

S(i)
ε . (7)

We next introduce a Schur complement S̃ε, operating on W̃∆, by a variational
problem: for all w∆ ∈ W̃∆,

〈S̃εw∆,w∆〉 = min
wΠ∈cWΠ

〈Sε(w∆ + wΠ),w∆ + wΠ〉. (8)

We will always assume that we have enough primal constraints, i.e., a large
enough primal subspace ŴΠ , to make S̃ε invertible. We note that any Schur
complement of a positive semi-definite, symmetric matrix is always associated
with such a variational problem. We also obtain, analogously, a reduced right
hand side f̃∆, from the load vectors associated with the individual subdo-
mains.
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3 The dual-primal FETI method

We reformulate the original finite element problem, reduced to the degrees of
freedom of the second subspace W̃∆, as a minimization problem with con-
straints given by the requirement of continuity across all of Γh: find u∆ ∈ W̃∆,
such that

J(u∆) := 1
2 〈S̃εu∆,u∆〉 − 〈̃f∆,u∆〉 → min

B∆u∆ = 0

}
. (9)

The jump operator B∆, with elements from {0, 1,−1}, operates on W̃ and
enforces pointwise continuity at the dual displacement degrees of freedom. At
possible primal vertices, continuity is already enforced by subassembly and
the jump operator applied to a function from W̃ is automatically zero at
these special degrees of freedom.

By introducing a set of Lagrange multipliers λ ∈ V := range (B∆), to
enforce the constraints B∆u∆ = 0, we obtain a saddle point formulation of
(9) [

S̃ε BT
∆

B∆ O

] [
u∆

λ

]
=

[
f̃∆

0

]
. (10)

We note that we can add any element from ker (BT
∆) to λ without changing

the displacement solution u∆.
Since S̃ε is invertible, we can eliminate u∆ and obtain the following system

for the Lagrange multiplier variables:

Fλ = d. (11)

Here, our new system matrix F is defined by

F := B∆S̃−1
ε BT

∆ (12)

and the new right hand side by d := B∆S̃−1
ε f̃∆. Algorithmically, S̃ε is only

needed in terms of S̃−1
ε times a vector w∆ ∈ W̃∆ and such a product can

be computed relatively inexpensively although it involves a small subproblem
that is global. The operator F will obviously depend on the choice of the
subspaces ŴΠ and W̃∆.

The dual-primal FETI Dirichlet preconditioner is defined in terms of cer-
tain scale factors δ†j(x). They depend on one of the Lamé parameters. We first
define a set of functions δj(x), one for each ∂Ωj , by

δj(x) :=

∑
i∈Nx

Gγ
i (x)

Gγ
j (x)

, x ∈ ∂Ωj,h ∩ Γh, (13)

where γ ∈ [1/2,∞). Here, as before, Nx is the set of indices of the subregions
which have x on its boundary; any x ∈ Γh belongs to at least two subdomains.
The pseudo inverses δ†j are defined as
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δ†j (x) = δ−1
j (x), x ∈ ∂Ωj,h ∩ Γh. (14)

The scaled jump operators for the dual-primal FETI Dirichlet preconditioner
is defined by

BD,∆ := [B(1)
D,∆, . . . , B

(N)
D,∆].

Here, the B
(i)
D,∆ are defined as follows: each row of B

(i)
∆ with a nonzero entry

corresponds to a Lagrange multiplier connecting the subdomain Ωi with a
neighboring subdomain Ωj at a point x ∈ ∂Ωi,h ∩∂Ωj,h. Multiplying this row
with δ†j (x) and doing so for all rows with nonzero entries gives us B

(i)
D,∆.

As in [Klawonn and Widlund, 2001, section 5], we solve the dual system
(11) using the preconditioned conjugate gradient algorithm with the precon-
ditioner

M−1 := PBD,∆SεB
T
D,∆PT , (15)

where P is the `2-orthogonal projection from range (BD,∆) onto V =
range (B∆), i.e., P removes the component from ker (BT

∆) of any element
in range (BD,∆). We note that, in the present context, P and PT are only
needed for the theoretical analysis to guarantee that the preconditioned resid-
uals will belong to V; they can be dropped in the implementation.

The dual-primal FETI method is the standard preconditioned conjugate
gradient algorithm for solving the preconditioned system

M−1Fλ = M−1d.

We can see that we can drop the projection operator P and its transpose by
the following argument. Applying BD,∆SεB

T
D,∆ to an element from V results

in a vector µ which can be written as a sum µ = µ0 + µ1 of components
µ0 ∈ ker (BT

∆) and µ1 ∈ V = range (B∆). When F is applied to µ, the
component Fµ0 disappears and we also have Fµ ∈ V. Examining the standard
pcg algorithm, we see that dropping P and PT only affects the computed
Lagrange multiplier solution but not the computed displacements.

Our definition of M−1 clearly depends on the choice of the subspaces ŴΠ

and W̃∆. We can show that M−1 is invertible if S̃ is, i.e., if the subspace ŴΠ

is large enough; cf. Klawonn and Widlund [2004]

4 Selection of constraints

In order to control the rigid body modes of a subregion, we need at least six
constraints. To get an understanding of the type of primal constraints that
are required for our preconditioner, it is useful to examine two special cases.

In the first, we assume that we have two subdomains made of the same
material, which have a face in common and are surrounded by subdomains
made of a material with much smaller coefficients. Such a problem will clearly
have six low energy modes corresponding to the rigid body modes of the
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union of the two special subdomains. Any preconditioner that has less than
six linearly independent primal constraints across that face will have at least
seven low energy modes and is likely to be poor.

In the second case, we again consider two subdomains surrounded by sub-
domains with much smaller coefficients. We now assume that the two special
subdomains share only an edge. In this case, there are seven low energy modes
of the finite element model corresponding to the same rigid body modes as
before and an additional one. The new mode corresponds to a relative rotation
of the two subdomains around their common edge. We conclude that in such a
case, we should introduce five linearly independent primal constraints related
to the special edge. Such edges will be called fully primal in our discussion.

In the convergence theory presented in Section 5, we will assume that the
requirement of the first special case is met for each face; we will select at least
six linearly independent edge constraints for each face of the interface. We
note that such a constraint will serve as a constraint for every face adjacent
to the edge in question. Nevertheless, it is likely that in many cases we will
be able to use fewer constraints and still maintain a good rate of convergence
of our algorithm; we plan to return to these questions in future work. We also
note that using only face constraints can be inadequate; see Klawonn et al.
[2002b, 2003].

For coefficient distributions with only modest jumps across the interface Γ
and for some special decompositions, we are able to exclusively work with edge
averages; cf. Section 5.1. To be able to treat general coefficient distributions
with arbitrarily large jumps, we also need first order moments in addition to
the averages on certain edges as in the second special case discussed above.
We will also introduce the concept of an acceptable path; cf. Section 5.3.

In our theory, we will work with sets of constraints associated with all the
faces of the interface and with the edges designated as fully primal. For a
fully primal edge only five constraints are required; cf. the discussion above
of the second special case. This is related to the fact that one rotational rigid
body mode is invisible on the edge. This can be easily seen by a change of
coordinates such that the chosen edge coincides with an axis of the Cartesian
coordinate system. Without restriction of generality, we assume that it is the
third rotation r6. This motivates the following definition, where p = 6 relates
to the case of pure edge averages and p = 5 to edge averages and first order
moments used on a single edge.

Definition 1. Let F ij be a face and 5 ≤ p ≤ 6. A set fm, m = 1, . . . , p,
of linearly independent linear functionals on W(i) is called a set of primal
constraint functionals if it has the following properties:

1. |fm(w(i))|2 ≤ C H−1
i (1 + log(Hi/hi)){|w(i)|2

H1/2(Fij)
+ 1

Hi
‖w(i)‖2

L2(Fij)}
2. fm(rl) = δml ∀m, l = 1, . . . , p, rl ∈ ker (ε).

We note that these bounds will allow us to prove almost uniform bounds for
the condition number of our algorithms. If point constraints were to replace
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the edge constraints, this would not be possible. We note that while we will
work with functionals which are not uniformly bounded, the growth of these
bounds is quite modest when H/h grows. These growth factors will appear in
the main theorem as is customary for many domain decomposition methods.
We also note that the logarithmic factors cannot be eliminated if we wish to
obtain a result which is uniform with respect to arbitrary variations of the
Lamé parameters.

Let us now first consider the case of six functionals, i.e., p = 6. As an ex-
ample of functionals fm, we can use appropriately chosen linear combinations
of certain edge averages, of components of the displacement,

gm(w(i)) :=

∫
Eik w

(i)
` dx∫

Eik 1dx

for a function w(i) ∈ W(i). Using a Cauchy-Schwarz inequality, we obtain

|gm(w(i))|2 ≤ C H−1
i ‖w(i)‖2

L2(Eik).

We can show, by using standard tools, that

‖w(i)‖2
L2(Eik) ≤ C (1 + log(Hi/hi)) (|w(i)|2H1/2(Fij) +

1
Hi
‖w(i)‖2

L2(Fij)).

Thus, the first requirement of Definition 1 is satisfied. In order to obtain six
linearly independent linear functionals associated with a face F ij , we have to
choose a total of six averages on at least three different edges E ik.

The functionals g1, . . . , g6, provide a basis of the dual space (ker (ε))′.
There always exists a dual basis of (ker (ε))′, which we denote by f1, . . . , f6,
defined by fm(rl) = δml, m, l = 1, . . . , 6. Obviously, there exist βlk ∈ IR, l, k =
1, . . . , 6, such that for w ∈ ker (ε), we have

fm(w) =
6∑

n=1

βmngn(w), m = 1, . . . , 6.

We next consider the case of p = 5 in Definition 1. Let us introduce the
following definition.

Definition 2. An edge is said to be fully primal if we use five linearly inde-
pendent constraints, the averages over the three displacement components and
two first order moments.

Thus, we can define the functionals fm as

fm(w(i)) :=
(w(i), rm)L2(Eik)

(rm, rm)L2(Eik)

, m ∈ {1, . . . , 5}. (16)

Obviously, the second requirement of Definition 1 is satisfied.
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Using a Cauchy-Schwarz inequality, we obtain

|fm(w(i))|2 ≤
‖w(i)‖2

L2(Eik)

‖rm‖2
L2(Eik)

and the first requirement of Definition 1 follows again by using standard tools.
We also need to introduce the concept of acceptable paths.

Definition 3. Let us first consider an arbitrary pair of subdomains (Ωi, Ωk)
which has a face or an edge in common. An acceptable path is a path
{Ωi, Ωj1 , . . . , Ωjn , Ωk} from Ωi to Ωk, possibly via a uniformly bounded num-
ber of other subdomains Ωjq , q = 1, . . . , n, such that the associated coefficients
Gjq satisfy the condition

TOL ∗Gjq ≥ min(Gi, Gk) q = 1, . . . , n, (17)

for some tolerance TOL. We can pass from one subdomain to another either
through a face or through a fully primal edge, if the next subdomain has a
coefficient satisfying (17); cf. Figure 1. We also need to consider all vertices
and all pairs of substructures which only have a vertex, but not a face or an
edge in common. Then, if the vertex is not primal, there must be an acceptable
path, of the same nature as before, with the only difference that here we can
be more lenient and only insist on

TOL ∗Gjq ≥
hi

Hi
min(Gi, Gk) q = 1, . . . , n. (18)
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Fig. 1. Acceptable paths, through edges and faces, left, and only through edges,
right, (planar cut).

We will assume that for each pair (Ωi, Ωk), which has a face, an edge, or a
vertex in common, there exists an acceptable path as defined in Definition 3
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with a modest tolerance TOL and that the path does not exceed a prescribed
length. If TOL becomes too large for a certain edge or vertex or if the length
of the acceptable path exceeds a given uniform bound, we can make the edge
fully primal or the vertex primal; cf. Figure 2 for an example where certain
vertices should be made primal.
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Fig. 2. Example of a decomposition where no acceptable path exists for the vertices
which connect the black subdomains, which have much larger coefficients than those
of the white. These vertices should be made primal.

Finally, we define the spaces ŴΠ and W̃∆ =
⊕N

i=1 W̃(i)
∆ . The first space,

ŴΠ , is spanned by the nodal finite element functions which are associated
with primal vertices and by averages and possibly first order moments, which
belong to primal and fully primal edges, respectively. Each such primal con-
straint is associated with a basis element of ŴΠ ; all these functions are con-
tinuous across the interface Γ . For each subdomain Ωi, we then define a sub-
space W̃(i)

∆ by those functions in W(i) which are zero at primal vertices and
have zero averages or first order moments on primal and fully primal edges,
respectively.

5 Convergence analysis

As in Klawonn et al. [2002a], the two different Schur complements, S̃ε and Sε,
introduced in section 3, play an important role in the analysis of the dual–
primal iterative algorithm. Both operate on the second subspace W̃∆ and we
also recall that S̃ε represents a global problem while Sε does not.

We recall that V := range (B∆) is the space of Lagrange multipliers. As
in [Klawonn and Widlund, 2001, section 5], we introduce a projection

P∆ := BT
D,∆B∆.

A simple computation shows, see [Klawonn and Widlund, 2001, Lemma 4.2],
that P∆ preserves the jump of any function u∆ ∈ W̃∆, i.e.,
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B∆P∆u∆ = B∆u∆ (19)

and we therefore have P∆u = 0 ∀u ∈ Ŵ.
In our proof of Theorem 1, we will use representation formulas for F and

M which allow us to carry out our analysis in the space of displacement
variables. The representation formula for F is given in the next lemma; see
also [Klawonn et al., 2002a, p. 175] or Mandel and Tezaur [2001].

Lemma 1. For any λ ∈ V, we have

〈Fλ, λ〉 = sup
06=v∈fW

〈λ, B∆v〉2
|v|2Sε

.

A similar formula holds for M ; it only differs in the denominator from the one
for F . For a proof, see Klawonn and Widlund [2004].

Lemma 2. For any λ ∈ V, we have

〈Mλ, λ〉 = sup
06=v∈fW

〈λ, B∆v〉2
|P∆v|2Sε

.

For a proof of the lower bound in our main theorem, we will use the following
lemma; cf. Klawonn and Widlund [2004].

Lemma 3. For any µ ∈ V, there exists a w∆ ∈ W̃∆ such that µ = B∆w∆

and (I − P∆)w∆ ∈ ŴΠ . In addition, zw = P∆w∆ ∈ W̃ and µ = B∆zw.

We now require P∆ to satisfy a stability condition which is discussed for
different cases in subsections 5.1, 5.2, and 5.3 and, with full details, in Klawonn
and Widlund [2004].

Condition 1 For all w ∈ W̃, we have,

|P∆w|2Sε
≤ C max(1, TOL) (1 + log(H/h))2|w|2Sε

.

We note that this bound can be developed for individual subdomains and
their next neighbors, one by one. Using Condition 1 and the three previous
lemmas, we can now prove our condition number estimate.

Theorem 1. Assume that Condition 1 holds. Then, the condition number
satisfies

κ(M−1F ) ≤ C max(1, TOL) (1 + log(H/h))2.

Here, C is independent of h, H, γ, and the values of the Gi.

Proof. We have to estimate the smallest eigenvalue λmin(M−1F ) from below
and the largest eigenvalue λmax(M−1F ) from above. We will show that

〈Mλ, λ〉 ≤ 〈Fλ, λ〉 ≤ C max(1, TOL) (1+log(H/h))2〈Mλ, λ〉 ∀λ ∈ V. (20)
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Lower bound: The lower bound follows by using Lemmas 1, 2, and 3: for
all λ ∈ V, we have

〈Mλ, λ〉 = sup
w∈fW

〈λ, B∆w〉2
|P∆w|2Sε

= sup
w∈fW

〈λ, B∆zw〉2
|zw|2Sε

≤ sup
z∈fW

〈λ, B∆z〉2
|z|2Sε

= 〈Fλ, λ〉

Upper bound: Using Condition 1 and Lemmas 1 and 2, we obtain for all
λ ∈ V

〈Fλ, λ〉 = sup
06=w∈fW

〈λ, B∆w〉2
|w|2Sε

≤ C max(1, TOL) (1 + log(H/h))2 sup
06=w∈fW

〈λ, B∆w〉2
|P∆w|2Sε

= C max(1, TOL) (1 + log(H/h))2〈Mλ, λ〉.
We will now discuss Condition 1 successively for different cases.

5.1 First case

Let us first consider a decomposition of Ω, where no more than three subdo-
mains are common to any edge and where each of the subdomains shares a
face with each of the other two. We further assume that all vertices are primal
and that for each face F ij which is shared by two subdomains Ωi and Ωj , we
have six linear functionals fm(·) which satisfy Definition 1 and the property

fm(w(i)) = fm(w(j)) ∀w(i) ∈ W̃
(i)

,w(j) ∈ W̃
(j)

. As mentioned before, cf.
the first example after Definition 1, we can define our functionals fi as prop-
erly chosen linear combinations of certain edge averages, over components of
the displacement, of the form

gm(w(i)) =

∫
Eik w

(i)
` dx∫

Eik 1dx
,

where the E ik ⊂ ∂F ij are appropriately chosen edges. Let us note that for
a square face, we would have to work with three different edges to satisfy
Definition 1.ii. For this case, we are able to prove Condition 1 with TOL = 1;
see Klawonn and Widlund [2004] for a proof.

Lemma 4. For all w ∈ W̃, we have,

|P∆w|2Sε
≤ C (1 + log(H/h))2|w|2Sε

.

Remark 1. The result of Lemma 4 still holds with an additional factor of
max(1, TOL) for decompositions where more than three subdomains have a
single edge in common and an acceptable path through the faces of those
subdomains exists; cf. Definition 3. This is the case, e.g., if four subdomains
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Ωi, Ωj , Ωk, and Ωl have an edge in common as in Figure 3 (left) and the
corresponding coefficients Gi, Gj , Gk, and Gl satisfy the condition

min(Gi, Gk) ≤ TOL max(Gj , Gl)
min(Gj , Gl) ≤ TOL max(Gi, Gk)

with a modest constant TOL > 0 independent of H, h, and the values of the
Gi. This condition can be easily generalized to more than four subdomains
meeting at an edge. Assuming that ε can become arbitrarily large or small,
then this condition still rules out a checkerboard distribution as in Figure 3
(middle), but allows coefficient distributions as in Figure 3 (right).
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Fig. 3. Planar cut of four subdomains meeting at an edge.

5.2 Second case

We again assume that all vertices are primal and also that any edge which is
common to more than three subdomains is fully primal; cf. Definition 2. For
such an edge, we have five linear functionals fm(·) which satisfy Definition
1 and have the property fm(w(i)) = fm(w(k)) ∀w(i) ∈ W(i),w(k) ∈ W(k).
Here, Ωi and Ωk is any arbitrary pair of subdomains with such an edge E ik

in common. The functionals fm(·), m = 1, . . . , 5, are defined in (16). For this
case, as in Subsection 5.1, we are able to establish Condition 1 with TOL = 1;
see Klawonn and Widlund [2004] for a proof.

Lemma 5. For all w ∈ W̃, we have

|P∆w|2Sε
≤ C (1 + log(H/h))2|w|2Sε

.

5.3 Third case

Finally, we show that it is often possible to use a smaller number of fully
primal edges and to have fewer primal vertices. The next lemma is proven in
Klawonn and Widlund [2004] under the assumptions that there are at least
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six linearly independent edge constraints across any face of the interface and
that there is an acceptable path for each pair of subdomains that share an
edge or vertex. We have,

Lemma 6. For all w ∈ W̃, we have,

|P∆w|2Sε
≤ C max(1, TOL) (1 + log(H/h))2|w|2Sε

.
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