
Representing Control in Parallel
Applicative Programming

Chi Yao

A Dissertation Submitted in Partial Ful�llment

of the Requirements for the Degree of

Doctor of Philosophy

Department of Computer Science

New York University

September 1994

Approved:

Benjamin Goldberg, Research Advisor

ii

cCopyright by Chi Yao, 1994

All rights Reserved

To My Parents

iv

Acknowledgments

First of all, I would like to express my deepest gratitude to my advisor Benjamin

Goldberg for his guidance, supports, and encouragements over these years. He has helped

a lot to realize this research idea since its formation. I am very glad that we have walked

through this together.

I would like to thank Suresh Jagannathan and Edmond Schonberg for providing helpful

comments on my work in the early stage and giving me suggestions in the implementa-

tion. My thanks also go to Malcolm Harrison and Ernest Davis, who, as my committee

members, provide many interesting ideas regarding my thesis research.

A lot of e�ort of this research is spent in the implementation. I am glad that I have

a chance to develop the system on NYU's Ultracomputer. Thank Allan Gottlieb and the

Ultra Lab. They have been of great help during the passed year. I have bene�ted a lot

especially from my discussion with Jan Edler and Eric Freudenthal. Thank you both.

I had many inspirational discussions with my fellow students in Courant, especially

with Tyng-Ruey Chuang, Karpjoo Jeong, Yaw-Tai Lee and Shih-Chen Huang. They,

together with many friends, have made my student life here memorable.

My cousin and the Fang's family have also given me a wonderful time in New York.

My girl friend Jean has always been supportive and understanding. I couldn't imagine

how I would have survived without them. But now, I am so glad to share my happiness

with them.

Finally, I want to sincerely thank my parents. They always have con�dence in me,

and always accompany me to go through tough moments even they're on the other side

of the earth. I dedicate all my accomplishments to them. Thank you, Mom and Dad.

This research was supported in part by a grant from ARPA/ONR (contract #N00014-

92-J-1719).

v

Abstract

This research is an attempt to reason about the control of parallel computation in the

world of applicative programming languages.

Applicative languages, in which computation is performed through function applica-

tion and in which functions are treated as �rst-class objects, have the bene�ts of elegance,

expressiveness and having clean semantics. Parallel computation and real-world concur-

rent activities are much harder to reason about than the sequential counterparts. Many

parallel applicative languages have thus hidden most control details with their declarative

programming styles, but they are not expressive enough to characterize many real world

concurrent activities that can be easily explained with concepts such as message passing,

pipelining and so on.

Ease of programming should not come at the expense of expressiveness. Therefore,

we design a parallel applicative language Pscheme such that programmers can express

explicitly the control of parallel computation while maintaining the clean semantics and

the ease of programming of applicative languages. In Pscheme, we propose the concept of

ports to model the general control in parallel computation. Through program examples,

we show how Pscheme and ports support various parallel programming paradigms. We

have also built libraries for higher level control facilities with ports so that programming

in Pscheme becomes easier.

We provide an operational semantics for Pscheme, and develop a compiler and a run

time system on NYU's Ultracomputer. Our experiments with parallel programs have

shown satisfactory speedup. We claim that ports are the natural parallel extensions of

continuations in sequential computation, and thus conclude that representing general

control in parallel applicative programming is feasible.

vi

vii

Contents

1 Introduction 1

1.1 Motivation : 1

1.2 Approach and Background : 3

1.2.1 Continuations : 3

1.2.2 Extensions of Continuations : 4

1.3 Dissertation Outline : 6

2 Pscheme { A Parallel Applicative Language Providing a General Control

Mechanism 9

2.1 Main Features : 10

2.2 De�nitions of Pscheme Parallel Constructs : : : : : : : : : : : : : : : : : : 11

2.2.1 pcall: A Simple Construct for Expressing Parallelism : : : : : : : 11

2.2.2 Ports: Parallel Extensions of Continuations : : : : : : : : : : : : : 11

2.2.3 Multi vs. Single Ports : 13

2.2.4 Pscheme Thread Creation and Termination : : : : : : : : : : : : : 13

2.2.5 Exclusive Functions : 14

2.2.6 Further Notes about De�nitions : : : : : : : : : : : : : : : : : : : 17

2.3 The Relationship Between Ports and Continuations : : : : : : : : : : : : : 18

3 Programming in Pscheme 21

3.1 Divide and Conquer { Horizontal Parallelism : : : : : : : : : : : : : : : : 22

3.2 Using pcall and Ports as a Synchronizing Mechanism : : : : : : : : : : : 22

3.3 Blocking and Locking : 26

3.4 Shared Mutable Objects and Atomic Assignments : : : : : : : : : : : : : 28

3.5 Shared FIFO Queues : 31

3.6 Futures : 33

3.7 Stream-based Programming and Vertical Parallelism : : : : : : : : : : : : 35

3.7.1 A Small Example { Stream of Fibonacci Numbers : : : : : : : : : 36

3.7.2 Filters : 37

3.8 Applications : 41

3.8.1 Quicksort : 41

3.8.2 Merge Sort : 43

3.9 Remarks : 46

4 Operational Semantics 47

4.1 The Abstract Machine : 47

4.2 Meanings of Semantic Notations : 48

4.3 Operational Semantics of Pscheme : 50

4.3.1 Basic Reductions Regarding Sequential Computation : : : : : : : : 51

4.3.2 Exclusive Functions : 52

4.3.3 Function Application : 53

4.3.4 Blocking : 55

4.3.5 Environment Recovery : 57

4.3.6 First Class Ports : 57

4.3.7 Parallel Control : 58

viii

4.4 An Example : 60

5 The Compiler 63

5.1 Intermediate Representation : 65

5.2 Syntactic Preprocessing, Scope analysis and Assignment Conversion : : : 69

5.2.1 Syntactic Preprocessing : 69

5.2.2 Scope Analysis : 70

5.2.3 Assignment Conversion : 70

5.3 The CPS Transform Process : 72

5.3.1 Transforming Sequential Expressions : : : : : : : : : : : : : : : : : 72

5.3.2 Ports and Parallel Constructs : 74

5.3.3 Mutual Recursion and letrec : 81

5.4 Free Variable Set Computing and Hoisting : : : : : : : : : : : : : : : : : : 83

5.5 Closure Conversion : 86

5.6 Thread Abstraction : 89

5.7 Heap-based Code Generation : 91

6 The Run Time System 95

6.1 The Execution Model and The Current Platform : : : : : : : : : : : : : : 95

6.2 Implementation of The Run Time System : : : : : : : : : : : : : : : : : : 98

6.3 Storage Management : 99

6.4 Garbage Collection of The Shared Heap : : : : : : : : : : : : : : : : : : : 100

6.5 The Ordering Mechanism : 101

6.5.1 Implementation of Exclusive Functions : : : : : : : : : : : : : : : : 102

7 Performance 105

7.1 Sample Parallel Programs : 105

ix

7.2 Stream Based Programs : 110

7.3 Sequential Programs : 113

8 Related Work 117

8.1 Multilisp and Futures : 117

8.2 Qlisp : 119

8.3 Actors : 120

8.4 Lucid : 121

8.5 Other Models of Parallel Continuations : : : : : : : : : : : : : : : : : : : 122

8.6 Pscheme's Approach to Parallelism : 123

8.7 Comparison in Terms of Expressiveness : : : : : : : : : : : : : : : : : : : 124

9 Future Work and Conclusion 127

9.1 Future Work : 127

9.1.1 Compiler Optimization : 127

9.1.2 Run Time System Improvement : : : : : : : : : : : : : : : : : : : 128

9.1.3 I/O and System Interface : 128

9.2 Conclusion : 128

A Transforming The Parallel Sum Program 131

A.1 Input Program : 131

A.2 Continuation Passing Style: (hoisted) : 131

A.3 Closure Passing Style: (hoisted) : 133

A.4 Thread Abstraction : 136

B Internal Representation of Pscheme Objects 141

Bibliography 146

x

xi

List of Figures

2.1 A simple data-ow diagram : 12

2.2 Finding an element in a tree in parallel : 15

2.3 Checking if two trees have the same fringe in parallel. In this program, nil

is not considered as a leaf but a null child link. : : : : : : : : : : : : : : : 16

2.4 A sequential representation of function application using CPS : : : : : : : 19

3.1 Parallel sum : 22

3.2 Quicksort : 23

3.3 Implementation of Ada-like rendezvous : 25

3.4 Implementation of semaphores : 27

3.5 Two implementations of stores supporting atomic access : : : : : : : : : : 30

3.6 Implementation of shared FIFO queues : : : : : : : : : : : : : : : : : : : 32

3.7 Implementation of Multilisp futures : 34

3.8 A data-ow diagram for computing the Fibonacci stream : : : : : : : : : 36

3.9 Implementation of the Fibonacci stream : : : : : : : : : : : : : : : : : : : 37

3.10 Implementing the Fibonacci stream without using set! : : : : : : : : : : 38

3.11 Conversion between lists and streams : 39

3.12 Generating the stream of prime numbers : : : : : : : : : : : : : : : : : : : 40

3.13 Stream-based quicksort : 42

3.14 Stream-based merge sort : 44

3.15 Implementing the cell merging two sorted streams : : : : : : : : : : : : : 45

4.1 Notation de�nitions in Pscheme's operational semantics : : : : : : : : : : 49

5.1 The CPS transform algorithm for sequential constructs : : : : : : : : : : : 75

5.2 The CPS transformed Factorial function : : : : : : : : : : : : : : : : : : : 76

5.3 The CPS transform algorithm for parallel constructs : : : : : : : : : : : : 78

5.4 An example of hoisting : 85

5.5 An example of closure conversion : 88

5.6 Closure conversion with restricted sharing : : : : : : : : : : : : : : : : : : 90

6.1 Pscheme's execution model : 96

7.1 Three sample programs for parallel performance : : : : : : : : : : : : : : 106

7.2 Sample program for the N-queens problem : : : : : : : : : : : : : : : : : : 107

7.3 Performance of the four parallel sample programs : : : : : : : : : : : : : : 109

7.4 Speedup curve for all sample programs : 111

7.5 Performance for two stream based programs : : : : : : : : : : : : : : : : : 112

7.6 Two sequential sample programs : 114

xii

xiii

List of Tables

7.1 Execution time (ms) of sequential programs on di�erent platforms : : : : 114

7.2 Execution time (ms) of sequential programs through di�erent implementa-

tions : 114

8.1 Paradigms for various parallel languages : : : : : : : : : : : : : : : : : : : 125

xiv

1

Chapter 1

Introduction

This research is an attempt to reason about parallel computation in the world of ap-

plicative programming by exposing control details in the language level to obtain more

expressive power in a language.

In the dissertation, we propose a parallel applicative language Pscheme to illustrate

our idea. We provide a formal de�nition of Pscheme, describe its implementation, and

perform experiments with various examples.

1.1 Motivation

Applicative languages, in which computation is performed through function application

and in which functions are treated as �rst-class objects, have the bene�ts of elegance,

expressiveness and having clean semantics.

With the increasing need of parallel computation, there have been proposals for vari-

ous parallel applicative languages. Since parallel computation and real-world concurrent

activities are much harder to reason about than the sequential counterparts, many par-

allel languages have hidden most control details and support a particular programming

paradigm which represents a certain aspect of parallel computation. In the case of ap-

plicative languages, the aspect that most parallel dialects illustrate is to apply functions

in parallel.

Clearly, not all parallel behaviors can be modeled by function application, but the

declarative style of applicative programming hides all other control details. Ease of pro-

gramming should not come at the expense of expressiveness. Therefore, the goal of this

research is to design a parallel applicative language such that programmers can express

explicitly the control of parallel computation while maintaining the clean semantics and

the ease of programming of applicative languages.

Speci�cally, we are proposing a language that

� supports more expressive parallel applicative programming,

� provides a general control mechanism in parallel computation,

� is compatible with di�erent parallel programming paradigms, and

� can characterize various parallel behaviors in the real world.

We also believe that parallel computing means more than high performance comput-

ing. From a language designer's view point, a language should executes well on various

computer architectures, so should it model well on various issues and activities. Through

our proposed language, we hope to answer the following questions:

� How expressive can a parallel language be?

� How hard is it for a programmer to reason about or model parallel computation?

� How e�cient can it be for a parallel language to support multiple programming

paradigms?

2

1.2 Approach and Background

To provide a general control mechanism in a parallel language, it is not enough to have

just a set of process control primitives. It would be better to have an orthogonal construct

that can represent a particular control point during the computation. This approach is

adopted by many sequential languages.

In the world of lambda-calculus based languages, each expression has a return value,

and the returning of this value corresponds to a state in the course of the whole com-

putation based on a particular evaluation order. This state can be made available to

programmers as a language-level construct so as to model control in many applicative

languages, and is called a continuation. Since we are focusing on parallel applicative pro-

gramming, we would like to model as well the state that an expression represents during

the parallel execution of a program This motivates our proposing the concept of ports,

which we will explain in following chapters.

1.2.1 Continuations

The concept of continuations traces back to denotational models of the call-by-value

lambda calculus [53,54]. Traditional semantics of a lambda expression is based on a

meaning function of a domain expression and an environment. The meaning function

gives a denotation of the expression in the environment. An alternative semantic model

is the continuation model, in which, the meaning function takes one more argument { a

continuation function, and the denotation of the expression in the environment is obtained

by applying the continuation function with the result of interpreting the expression in the

environment. This is called the continuation passing style (CPS) semantics.

The CPS semantics makes the expression evaluation order explicit by specifying each

sub-expression's meaning and its continuation in turn so as to get the meaning of the whole

3

expression. This denotational model helps provide language-level continuations because

it becomes easier to develop a CPS denotational semantics for a language providing �rst-

class continuations, and it is also easier to implement it.

In most applicative languages, continuations appear in the form of one-argument func-

tions. At the interpretation meta-level, however, applying such a one-argument function

causes computation to go on towards the completion of the whole evaluation. In other

words, application of continuation function never returns even if it happens within an ex-

pression block. In fact, it serves as a control point in the course of the whole computation.

Such a control point, when provided in the language level, becomes a very useful tool to

programmers.

Therefore, with �rst-class continuations provided, programs become more expressive

because any control point can be captured in the form of a continuation. Various control

facilities such as non-local escape, J-operator [48], label values [56], coroutines [32], and

engines [14] can hence be implemented.

It is known that continuations provide a general control mechanism in applicative

languages with acceptable performances (close to high order languages without contin-

uations). However, continuations also decrease the readability of programs written in

applicative languages. Solving the trade-o� between readability and expressiveness relies

on building higher level control operators so that the language has enough expressive

power while it is still easy to program with.

1.2.2 Extensions of Continuations

In a parallel applicative language, it is natural to represent control with an extension of

continuations. There have been attempts to propose parallel continuations [33]. Since

continuations represent control points in sequential threads, most proposed parallel con-

4

tinuations represent the rest of the computation for a particular process. Invoking a

parallel continuation still behaves like a transfer of control, but the concept of the rest of

computation does not apply across processes.

Our approach views parallel continuations as the links in the data-ow diagram rep-

resenting the expression being evaluated in parallel. For example, in a Scheme expression

(+ e1 e2), e1 and e2 may be evaluated in parallel before + is applied. The two links

in the data-ow diagram shown below can be rei�ed as language-level constructs which

represents ports to the + operator. The + operation will be triggered when data elements

ow to both ports.

+

/ \

e1 e2

In any given expression of an applicative language, there is a corresponding data-

ow diagram. If those links in the data-ow diagram become �rst-class language-level

constructs, it is then possible to make any link accessible to any expression node, and

hence enables us to provide a general control mechanism with them.

Such intuition motivates our designing the language Pscheme, a parallel dialect of

Scheme, and its primary new construct, the port, a concrete representation for those

conceptual links. Ports distinguish continuations conceptually in the following aspects:

1. A port no longer represents the rest of the computation. In the above example, each

port only represents some information about the rest of computation.

2. A port is no longer a procedural abstraction or a label for control to be transferred

to. Data elements passed to a port sometimes have to synchronize with those in

other ports before following computation starts.

5

Formal and detailed de�nitions regarding ports are provided in subsequent chapters.

In our approach to model control in parallel applicative programming, we believe that

ports are the natural parallel extension of continuations not only in the language level,

but also in the semantics and implementation aspects.

Ports are useful to explain the semantics of multi-threaded applicative languages. As

continuations are used in compilers for applicative languages (the intermediate represen-

tation is in continuation passing style), ports can be also be used to implement synchro-

nization among function arguments evaluated in parallel. We will give further details in

chapters regarding formal semantics and the Pscheme compiler.

1.3 Dissertation Outline

The dissertation presents the work to represent general control in parallel applicative

programming through the language Pscheme. In chapter 2, we de�ne Pscheme, describe

its features, and introduce the �rst-class language construct port.

Chapter 3 discusses programming in Pscheme and presents various programming

styles. It demonstrates how ports can be used to represent di�erent control facilities.

Chapter 4 gives a formal de�nition of Pscheme. We have an operational semantics

which interprets Pscheme expressions in terms of transition rules on our abstract reduction

machine.

The implementation work is shown in chapter 5 and 6. Chapter 5 describes our

Pscheme-to-C translator, and chapter 6 discusses the run time system and our execution

model.

We present our performance results in chapter 7, and discuss issues of scalability,

granularity, slow down factors and so on.

Chapter 8 discusses related works in other languages including: Multilisp, Actors,

6

Lucid and Qlisp, and other parallel extensions of continuations. We will also make com-

parisons between Pscheme and those languages.

Chapter 9 describes our future work and concludes the dissertation.

7

8

9

Chapter 2

Pscheme { A Parallel Applicative

Language Providing a General

Control Mechanism

In this chapter, we describe Pscheme, a parallel dialect of Scheme [Cl91]. The primary

construct for specifying parallelism, synchronization, and communication is a natural ex-

tension of �rst-class continuations which we call a port. The bene�t of using Pscheme is

that the user has complete control over the order of parallel evaluation, while at the same

time bene�ting from the use of a very high level language like Scheme. Other parallel vari-

ants of LISP and Scheme have been proposed, based on �rst-class continuations, but we

feel that our ports provide the most natural parallel extension of sequential continuations

of the methods suggested.

Like �rst-class continuations, ports are very powerful constructs that can lead to

complicated programs that are di�cult to read. We envision ports (and continuations) to

be primarily the tool of advanced system programmers who provide libraries of higher level

parallel constructs (futures, barriers, engines, etc.) for use by the general programming

community. We show how ports are su�ciently powerful to easily implement such high

level parallel constructs in chapter 3.

We present the language Pscheme in this chapter through our design motivation and

short program examples. Formal semantics will be given later in chapter 4.

2.1 Main Features

Pscheme is a parallel extension of the Lisp dialect Scheme. It can be viewed as the

following formula shows:

Pscheme = Scheme + Parallel Control + First Class Ports

The main features of Pscheme are:

1. As in Scheme, Pscheme is lexically scoped, has call by value semantics, and supports

�rst-class functions.

2. It is a multi-threaded language with a global name space.

3. It provides a �rst-class construct named port, which represents a particular control

point and its related environmental information in the course of computation.

4. It provides an ordering mechanism through ports so that order preservation of data

elements, messages or thread execution is all possible.

5. It provides exclusively accessed functions (similar to Hoare's monitor [35]) so that

there can only be one activation of an exclusive function at any time during the

execution. These functions are used to control the thread ordering as well.

6. It supports horizontal parallelism, in which the arguments in a function call are

evaluated in parallel, as well as vertical parallelism, which is parallelism between a

producer (e.g. of stream of values) and a consumer.

10

As the above formula shows, Scheme is a subset of Pscheme. A program that does

not contain any parallel construct has exactly the same semantics as in Scheme. In other

words, any sequential thread in Pscheme is actually the execution of a Scheme expression.

2.2 De�nitions of Pscheme Parallel Constructs

Pscheme contains relatively few constructs for specifying parallel program behavior. These

constructs, primarily pcall, call/mp, call/sp, throw, die, and exclusive are simple

to describe and use, but are very powerful when used in conjunction with each other.

2.2.1 pcall: A Simple Construct for Expressing Paral-
lelism

Before discussing ports and continuations, we introduce pcall, the basic construct for

expressing parallelism in Pscheme. It is a simple fork-join construct seen in many lan-

guages. The innovation of the work described here results from the interaction of pcall

with ports, as described later in this paper. The pcall construct takes the form

(pcall e0 e1 ... en)

and causes the evaluation of e1, ... , en in parallel after e0 is evaluated. When each

of the expressions ei has been evaluated to its value vi, the procedure value v0 (resulting

from evaluating e0) is invoked with arguments v1 � � �vn. It is important to note that

the body of the procedure is not invoked until the parallel evaluation of the arguments

has completed. Thus, pcall serves as a barrier synchronization for the evaluation of

the expressions e1 ... en. This synchronization becomes very important in our later

examples.

2.2.2 Ports: Parallel Extensions of Continuations

11

b

c

a

f

p1

p2

p3

Figure 2.1: A simple data-ow diagram

The expression (pcall f a b c) can be thought of as being graphically represented by

the picture in �gure 2.1.

When a, b, and c have been evaluated, their values are sent along their corresponding

arcs to f. In order to capture the arcs as �rst-class values, we introduce a construct called

call-with-current-multiport, which is written call/mp (the term \multi-" will be addressed

later). Like its sequential analog call/cc, call/mp takes a single parameter which is a

function that takes a single parameter, the current port, that is, the arc.

Thus, the expression

(pcall f (call/mp (lambda (p1) a))

(call/mp (lambda (p2) b))

(call/mp (lambda (p3) c)))

binds p1, p2, and p3 to the arcs as shown in �gure 2.1

Looking at the illustration as a data-ow graph, it is clear that f is invoked whenever

a trio of values are sent to ports p1, p2, and p3. It was mentioned above that one way to

produce values along the arcs is for the evaluation of a, b, and c to complete. However,

12

now that p1, p2, and p3 are tangible objects, values can also be sent down the arcs by

explicitly throwing the values to the respective ports (using the throw construct described

below). With the explicit use of ports, f can be invoked many times, once each time all

of its input ports have a value available (due to a throw or a returned value). Thus, not

only is parallelism generated by the use of pcall, but also by multiple invocations of f

occurring in parallel due to multiple values being thrown to each of f's input ports. The

image of a single f being a consumer of the values is no longer accurate. A new activation

of f is created for each trio of values thrown to its input ports (later on, we will introduce

a new construct, exclusive, that speci�es that only one activation of f can execute at

any given time).

2.2.3 Multi vs. Single Ports

It might also be desirable for a given function to be invoked only once, but to be able to

invoke it either by having its arguments return values, or by explicitly passing values to

its input ports. That is, it might be desirable to restrict the ow of data to each input

port to a single value. After a value is sent to the port, the port shuts down and refuses

to accept any more values. Subsequent values thrown to that port have no e�ect.

This special kind of port is called a single-port, and is made into a �rst-class object

by the construct call/sp (meaning call-with-current-single-port). The usual port, one to

which many values can be sent, is therefore called a multi-port.

In general, each sub-expression in a Pscheme program corresponds to a port which is

implicitly multi-entrant if it is not made single-entrant by call/sp.

2.2.4 Pscheme Thread Creation and Termination

In Pscheme, threads (processes) are created by the pcall construct, as described above.

In addition, the throw construct, which sends a value to a port explicitly, sometimes also

13

creates a thread. Thread termination is speci�ed by the die construct, which terminates

the current thread's computation.

(throw e1 e2) evaluates expressions e1 and e2, resulting in a port p and a value v

respectively, sends v to p, and returns v. If p is a closed single-port, then the throw has

no e�ect other than to return v. However, if p is a multi-port or an open single-port, a

new thread is created if the receiver is not blocked waiting for values from other ports.

Otherwise, v is queued within p. 1 In either case, the throw expression returns the value

v, and the current thread continues. 2 throw is an atomic action in the sense that if a

process throws one value after another to the same port, the arrival order is the same as

the sending order.

(die) terminates the computation of the current thread and returns no value. A

(die) in a parent process does not kill its child processes. Here is an example of the

typical use of a single-port: to commit to the �rst value computed by competing parallel

processes. For example, suppose a binary tree is encoded in the list form (key left-child

right-child). To �nd an element with a key value in this tree, a parallel search along

all branches can be performed as shown �gure 2.2. The �rst value passed to the answer

port is the value that find returns.

2.2.5 Exclusive Functions

As described above, a new activation of a function is created each time there is a value

available on each of its input ports. Thus, this is a method for creating multiple invoca-

tions of the same function in parallel.

1For example, a new thread cannot be spawned if the value is passed to a port associated with a function

argument position, and it has to synchronize with other arguments in order to apply the function.
2Notice that our de�nition of throw is di�erent from those in sequential languages supporting contin-

uations. Our throw does not transfer control, but tries to spawn a new thread.

14

(define (find1 x tr port)

(cond ((null? tr) #f)

((eq? x (car tr)) (throw port #t) (die))

(else (pcall (lambda (a1 a2) #f)

(find1 x (cadr tr) port)

(find1 x (caddr tr) port)))))

(define (find elt tree)

(call/sp (lambda (p) (find1 elt tree p))))

Figure 2.2: Finding an element in a tree in parallel

It might be the case, however, that it is desirable for there to be only one invocation

of the function active at any given time. Such a function is said to be exclusive (and has

essentially the same behavior as a Hoare's monitor). An exclusive function is desirable,

for example, if it modi�es some data structure that requires mutually exclusive access.

Another (related) possibility is that the function produces output or results whose order

is important.

The Pscheme construct exclusive is used to create exclusive functions. The expression

(exclusive e)

evaluates e to some function value f , and returns a function f 0 with the same behavior as

f except that f 0 is exclusive. When f 0 is called, subsequent requests to call f 0 are blocked

and queued until the current invocation of f 0 returns or a (die) is executed during the

evaluation of the current invocation of f 0.

Consider the program in �gure 2.3 for comparing the fringes of two trees. The paral-

lelism between the searching of the two trees is desirable. However, an exclusive version

of compare is essential to avoid a race condition in which compare reports success because

15

(define (samefringe t1 t2)

(call/sp (lambda(p)

(pcall (exclusive compare)

(call/mp (lambda(p1) (search t1 p1) nil))

(call/mp (lambda(p2) (search t2 p2) nil))))))

(define (search tree outport)

(cond ((null? tree) nil)

((atom? tree) (throw outport tree))

(else (search (car tree) outport)

(search (cdr tree) outport))))

(define (compare a b)

(cond ((null? a) (null? b))

((eq? a b) (die))

(else nil)))

Figure 2.3: Checking if two trees have the same fringe in parallel. In this program,
nil is not considered as a leaf but a null child link.

16

the right most leaves of the two trees are identical, even though some of the interior leaves

(which may be di�erent in the two trees) have not yet been compared. The call/sp in

samefringe avoids the problem of success being reported after failure has already been

reported.

(exclusive f) returns a function f' which can have only one activation at any time.

However, during the evaluation of f', exclusiveness can be violated if pcall is invoked, or a

multi-port is captured inside of f' and gets thrown a value. The language de�nition only

enforces exclusiveness of the entry point of an exclusive function. The e�ect of creating

parallel threads executing the body of an exclusive function is left unspeci�ed by the

language de�nition and should be avoided.

2.2.6 Further Notes about De�nitions

We have introduced all constructs regarding parallelism in Pscheme. All these primitives

have to appear in the forms as described. None of them is a �rst-class function. For

example, (pcall throw e1 e2) and (exclusive call/mp) are both illegal expressions.

In other words, pcall, throw, call/mp, call/cp, exclusive and die are all special

terms.

The concept of threads needs further explanation. A thread is the execution of a

Pscheme expression. When a throw happens, say (throw p v), the current thread con-

tinues by taking the return value v of the throw expression. A new thread, if necessary, is

created to execute the context that the port p represents. This is considered a side e�ect

of the the throw expression. Therefore, in the body of an exclusive function f, there can

be a throw of an object to a port outside of the body, and does not violate the exclusive

property of f. There is still only one thread executing the function body.

With the existence of multiports, codes become re-entrant, and expressions could

17

return values more than once. However, at the top level, a program should give its answer

only once. Top-level parallelism, where a program keeps returning values from multi-port

outputs, is not allowed. In other words, any top-level expression (the expression that

represents the whole program) can be viewed as implicitly associated with a single-port.

Whenever a program returns its result, the whole computation stops even if there are still

running threads. This is also guaranteed in our formal semantics.

On the other hand, a program might not return anything because a die blocks all

threads at the top level. Such programs are considered non-terminating.

2.3 The Relationship Between Ports and Con-

tinuations

Although we introduced call/mp in the context of pcall, they are really orthogonal con-

structs. We saw above that pcall is useful by itself, and is actually a very common

parallel construct. What is the e�ect of using call/mp without using pcall? Consider

the expression

(f (call/mp (lambda (p1) a))

(call/mp (lambda (p2) b))

(call/mp (lambda (p3) c)))

Because the evaluation of expressions a, b, and c occurs sequentially, the illustration used

in �gure 2.1 would be misleading for this example. Assuming a left-to-right evaluation

order among function arguments, the evaluation order is clearly seen when the expression

is represented in continuation passing style (CPS). Assuming k is the continuation for the

entire expression, the cps-converted expression would be

(a' (lambda (v1) (b' (lambda (v2) (c' (lambda (v3) (f' v1 v2 v3 k)))))))

18

a’ b’ c’ f’

Figure 2.4: A sequential representation of function application using CPS

where a', b', c', and f' are the cps-converted versions of a, b, c, and f, respectively.

This might be illustrated graphically as in �gure 2.4, Each continuation is a procedure

with a single input port. When a value is sent to the port, the continuation is invoked.

This is exactly the behavior caused by the capture of the continuation using call/cc and

the invocation of that continuation. This is yet another reason that we are convinced that

ports are the logical extension of continuations in a parallel Scheme.

In a sequential computation, such as the one pictured above, each function has only

one input multi-port. When a value is thrown to that port, a new thread computing

the function call is created. This is not the case when call/cc is used in a sequential

language. Thus, one way to simulate the e�ect of invoking a continuation by throwing to

a port is to kill o� the throwing process. Speci�cally, the expression

(call/cc f)

in ordinary (sequential) Scheme is equivalent to

(call/mp (lambda (p) (f (lambda (v) (throw p v) (die)))))

in Pscheme.

Pscheme provides all features in Scheme except call/cc and �rst class continuations.

When a Pscheme expression contains none of the six parallel constructs described above,

its semantics is the same as Scheme's. That is, expressions are evaluated in applica-

tive order, and the relative evaluation order among the arguments in a function call is

unspeci�ed.

19

As mentioned above, Pscheme's view of computation is a dynamic data-ow diagram.

Data streams may ow between nodes as thread execution is ordered through exclusive

functions. In Scheme or other sequential applicative languages, the sequential execution

is actually a depth �rst search with a post order traversal of the data-ow diagrams (this

is what the CPS transform does). First class continuations enable us to jump anywhere in

the traversal. On the other hand, in Pscheme, �rst class ports allow us to throw elements

to any link, or disconnect a link (close a single port), which gives us more control of the

data-ow diagram.

20

21

Chapter 3

Programming in Pscheme

In this chapter, we show how to program in Pscheme. Examples will explain how ports and

exclusive functions can represent synchronization, blocking, pipelining style parallelism

and ordering.

Through various programming styles, we have built higher level control facilities such

as semaphores, Ada-like rendezvous and Multilisp futures. Parallel data structures such

as shared atomic-accessed variables and FIFO queues have also been implemented. From

theses examples, we can see that Pscheme gives us various aspects of parallelism, and

enables us to apply di�erent programming paradigms in one language.

The chapter is also an experiment to see the feasibility of, and limits to, representing

control in a parallel applicative language. We claim that ports provide a control mech-

anism as general as continuations in sequential languages. Our experience also suggests

that they are easily understood by a programmer familiar with call/cc and continuation-

based codes.

(define (sum m n)

(cond ((eq? m n) m)

((eq? n (+ 1 m)) (+ m n))

(else (let ((x (/ (+ m n) 2)))

(pcall + (sum m x) (sum (+ 1 x) n))))))

Figure 3.1: Parallel sum

3.1 Divide and Conquer { Horizontal Paral-

lelism

A typical case of parallel execution is to evaluate argument expressions of a function call

in parallel, that is, to exploit horizontal parallelism. Problems that can be solved with

a recursive divide-and-conquer algorithm can usually be parallelized in this way. For

example, computing the sum of all numbers from 1 to n (as in �gure 3.1), or sorting a list

of numbers with the quicksort algorithm (as in �gure 3.2).

Horizontal parallelism is often seen in other parallel languages. Programs with hori-

zontal parallelism are easy to understand and are usually used to measure the performance

speedup.

3.2 Using pcall and Ports as a Synchronizing

Mechanism

Divide and conquer programs, as shown above, use pcall to create parallel threads. But

at the same time, pcall also creates synchronous multiple ports so that subsequent pairs of

arguments can synchronize and reactivate the function body evaluation. The samefringe

example in chapter 2 shows such use of pcall. This enables us to build synchronizing

22

(define (qs num-list)

(if (null? num-list)

nil

(if (null? (cdr num-list))

num-list

(let ((pivot (car num-list)))

(let ((left-right (partition pivot (cdr num-list) nil nil)))

(pcall append

(qs (car left-right))

(cons pivot (qs (cdr left-right)))))))))

(define (partition p l l-buf r-buf)

(if (null? l)

(cons l-buf r-buf)

(letrec ((x (car l)))

(if (< x p)

(partition p (cdr l) (cons x l-buf) r-buf)

(partition p (cdr l) l-buf (cons x r-buf))))))

Figure 3.2: Quicksort

23

facilities using pcall.

Ada's rendezvous is a synchronous communication in that the sender and the receiver

of a message have to synchronize before further execution. The rendezvous is itself a

function call with the arguments passed by the sender. The return value of the function

call is actually the return value of the rendezvous expression for both the sender (the

entry call expression) and the receiver (the accept expression).

We can easily build an Ada-like rendezvous facility in Pscheme. The expression

(make-rendezvous f) returns what we call a rendezvous object r to serve as an entry of a

task in Ada. Tasks communicating through a rendezvous in Ada are just Pscheme sequen-

tial threads in which the rendezvous object is visible. A thread evaluating ((r 'send)

argument-list) causes f to be applied with argument-list. It synchronizes with the

expression (r 'accept) in another thread. Both the send and the accept expression

returns the result of applying f with argument-list.

Implementation of rendezvous is shown as in �gure 3.3. The idea is for the message

sender and receiver to capture their current single-ports and pass them to a pair of synchro-

nizing input ports to a pcall'ed function, which evaluates (apply f arguments-list)

and then passes the result back to the sender and receiver respectively.

The (make-rendezvous f) expression does everything. It de�nes the send and

accept operations in the binding of rendezvous, and it creates the synchronizing mech-

anism by pcall'ing a function that takes the sender's thunk and receiver's current port

as arguments. This function simply invokes the thunk and sends the result back to the

receiver. What the thunk does is to apply f with arguments provided by the sender, and

then pass the result back to sender. The pcall'ed function never returns because only

the threads for the sender and the receiver need to be reactivated.

We also utilize the pcall mechanism to return the created rendezvous object to where

24

(define (make-rendezvous f)

(let ((port1 nil) (port2 nil))

(let ((rendezvous

(lambda (op)

(if (eq? op 'send)

(lambda (arg)

(call/sp (lambda(p)

(throw port1 (lambda() (throw p (f arg))))

(die))))

;else op = 'accept

(call/sp (lambda(p) (throw port2 p) (die)))))))

(call/sp

(lambda (result)

(pcall (lambda (sender-thunk receiver-port)

(throw receiver-port (sender-thunk))

(die))

(call/mp (lambda(p) (set! port1 p) (lambda() rendezvous)))

(call/mp (lambda(P) (set! port2 p) result))))))))

> (let ((r (make-rendezvous (lambda(x) x))))

(pcall cons

(r 'accept)

(begin ... ((r 'send) 1) ... 2)))

==> (1 . 2)

Figure 3.3: Implementation of Ada-like rendezvous

25

make-rendezvous is called by wrapping the rendezvous object in a thunk and passing the

thunk to the current single port of the make-rendezvous expression.

The short example in �gure 3.3 shows how to perform synchronous communication

among threads in Pscheme.

3.3 Blocking and Locking

In Pscheme, the basic blocking mechanism is provided by exclusive functions. As has been

stated in previous chapters, it helps control the ordering of threads or data elements. It

also provide exclusive access to shared variables. To guarantee mutual exclusion, an

alternative approach is to use semaphores to protect critical sections.

In Pscheme, binary semaphores can be implemented. That is, only one thread can

execute the critical section. Subsequent access requests (that is, the \P" operations) will

be queued up and satis�ed later. To implement binary semaphores in Pscheme, the idea

is also to utilize pcall, call/sp and call/mp.

In �gure 3.4, (make-semaphore) returns a semaphore s such that a thread evaluating

(s 'p) performs the \P" operation on s, and returns the symbol 'dontcare. The call

(s 'v) performs the \V" operation and returns 'dontcare as well.

s is created by pcall'ing a function f of two parameters next-process and

release-signal. What the function f does is simply to invoke the thunk next-process.

Any thread evaluating (s 'p) captures its current single-port p, passes p to entry-port

(the port associated with next-process), and then dies. Evaluating (s 'v) throws

'dontcare to exit-port (the port associated with release-signal), and thus synchro-

nizes with the requesting thread (the thread evaluating (s 'p)) through the pcall'ed

function f. s is initialized by having the 'dontcare symbol queued in exit-port so that

the �rst thread calling (s 'p) will not block.

26

(define (make-semaphore)

(let ((entry-port nil) (exit-port nil))

(let ((semaphore

(lambda(op)

(if (eq? op 'p)

(call/sp

(lambda(p)

(throw entry-port

(lambda() (throw p 'dontcare) (die)))

(die)))

;else op = 'v

(throw exit-port 'dontcare)))))

(pcall (lambda (next-process release-signal) (next-process))

(call/mp (lambda(p) (set! entry-port p)

(lambda() semaphore)))

(call/mp (lambda(p) (set! exit-port p)

(throw exit-port 'dontcare)))))))

Figure 3.4: Implementation of semaphores

27

Both semaphores and exclusive functions provide exclusive access. But, in our current

implementation, exclusive functions cause busy-waiting blocking, while semaphores cause

back-o� blocking, since threads making access requests have to idle themselves before

sending their current ports to the request handler. In the case of a large critical section

and high contention, semaphores perform better than exclusive functions. On the other

hand, exclusive functions should be light weight activations in order to perform well.

Our current implementation puts each created thread in a global shared ready queue,

and several virtual processors will execute them. If this model is not on a platform that

supports �ne grain parallelism, the back-o� blocking will take some turn-around time,

but the total running time should be close to the busy-waiting model. When we discuss

our implementation in chapter 6, we will talk about this in more detail.

3.4 Shared Mutable Objects and Atomic As-

signments

Scheme is not a purely functional language because any variable can be modi�ed through

the use of set!. In the parallel extension Pscheme, the non-atomic set! on a shared

mutable variable may cause nondeterministic results. It is usually suggested that pro-

grammers are responsible to guarantee atomic access on shared variables in a parallel

language (e.g. by using locks explicitly), but it is also usually desirable for a language

to provide parallel data structures with atomic access operations. For the case of shared

mutable variables, we need atomic reads and writes.

One way to implement shared mutable variables in Pscheme is to use exclusive func-

tions to handle all update requests. The simplest approach is to devote an exclusive

function for each shared mutable variable as in the �rst implementation shown in �g-

ure 3.5. Of course, if a shared variable is guaranteed to be updated only in a piece of

28

exclusive codes, set! can be used directly.

The other way is to use the pcall mechanism to serialize all update requests as is done

in the semaphore implementation. The second implementation in �gure 3.5 illustrates this

idea. The current value is stored in the value port, and the access requests are queued

within the request port. The request is handled by the function monitor. It either passes

the current value v to the read requester and restores v back to the current value port,

or stores a new value v0 in the current value port. The identi�cations of the request port

and the current value port are not stored globally. Instead, they are passed as parameters

each time an access request is issued.

The interesting thing about doing this is that the implementation needs no set!

or any assignment operator, and can be used to represent assignment in languages not

supporting assignment. It demonstrates the fact that ports are expressive enough to

describe assignment. However, it also shows the fact that a control mechanism based on

ports and threads violates referential transparency in parallel programs as is the case will

continuations in sequential programs.

As shown in the �gure 3.5, (make-cell val) creates a cell containing a request port

and a value port. A read request is of the pattern ('read requester-current-port

value-port), and an assign request is of the pattern ('assign new-value value-port).

On a read request, the cell passes the current value to the requester's current port as well

as the value port. On an assign request, the cell simply passes the current value to the

value port.

29

(define (read x) (x 'read)) ; x is a cell

(define (assign x v) ((x 'assign) v))

; first implementation of stores with atomic accesses

(define (cell v)

(exclusive

(lambda(op)

(case op

((read) v)

((assign) (lambda (new-v) (set! v new-v)))))))

;second implementation of stores with atomic accesses

(define (make-cell val)

(let ((monitor

(lambda (p1 p2)

(if (list? p1) ;handle access requests

(if (eq? (car p1) 'read) ;p1= request, p2= current value

(begin (throw (cadr p1) p2)

(throw (caddr p1) p2)

(die))

;else (car p1) = 'assign

(begin (throw (caddr p1) (cadr p1))

(die)))

;else create the monitor and return

(lambda(op)

(case op ; p1 = request port, p2 = value port

((read)

(callsp (lambda(p) (throw p1 (list 'read p p2))

(die))))

((assign)

(lambda(v) (throw p1 (list 'assign v p2)) v))))))))

(pcall monitor

(callmp (lambda(p) p)) ;create request port

(callmp (lambda(p) (throw p p) val))))) ;create value port and

;initialize with val

Figure 3.5: Two implementations of stores supporting atomic access

30

3.5 Shared FIFO Queues

Pscheme supports order preservation of messages, data elements or thread execution 1

through �rst class ports. The ordering is guaranteed implicitly because of the nature

of ports. But, sometimes it may also be desirable to provide explicit ordering, that

is, FIFO queues with atomic access that can be shared by multiple threads. Scheme's

management of data structures is mostly list-based, so are most applicative languages

providing list constructors (such as ML [50], Haskell [37], etc.) because the LIFO feature

�ts well in recursive programming. However, if Pscheme is to support other parallel

programming paradigms, lists or cons-cells may not be su�cient for a program that,

for example, processes a stream of data and stores them in the order they arrive. This

motivates our implementation of shared FIFO queues.

The idea is similar to the implementation of atomic assignments, that is, to use ex-

clusive functions to serialize requests. The internal structure of a FIFO queue is a linked

list with the links implemented with free variable pointers in a closure. (Pscheme does

not provide set-car! and set-cdr!.) Enqueue and Dequeue are both constant time

operations containing several function calls. Since this is only a sequential FIFO mecha-

nism under the protection of exclusive, we may use it without exclusive as long as it

is guaranteed to be accessed only by exclusive functions.

In fact, queues are often used in stream-based programs as a local data structure of a

particular exclusive function which processes streams. Later on in following sections, we

will see larger examples using the FIFO queues to store elements in FIFO order.

1For example, keeping throwing values to a particular multiport creates waves of threads executing the

same code. These threads can be ordered through the use of exclusive functions.

31

(define (new-q)

(let ((hd nil) (tl nil))

(exclusive

(lambda (op)

(case op

((deq) (let ((elt (hd 'val)))

(set! hd (hd 'next))

elt))

((enq) (lambda (v)

(let ((new (new-q-elt v nil)))

(if (null? hd) ;queue empty

(set! hd (set! tl new)) ;initialize with 1st elt

(begin

((tl 'set-next) new)

(set! tl new))))))

((empty?) (null? hd))))))

(define (new-q-elt val next)

(lambda(op)

(case op

((val) val)

((next) next)

((set-next) (lambda(v) (set! next v))))))

(define (dequeue q) (q 'deq)) ; return fisrt element

(define (enqueue q v) ((q 'enq) v) ; return v

(define (queue-empty? q) (q 'empty)) ; return #t or #f

Figure 3.6: Implementation of shared FIFO queues

32

3.6 Futures

Multilisp's future is a powerful construct that allows programmers to specify parallelism

in very �ne granularity. Programmers have su�cient control of what jobs are to spawn

for parallel execution without worrying about how to get back the result of the spawned

task.

Speci�cally, in multilisp, (future exp) spawns a new process evaluating exp, and

returns a future object, which, when passed to a strict function, gives the evaluated value

v of exp. If the evaluation of exp is not complete, the function waits for its completion.

The future object will always have the value v once the evaluation of exp is complete

(supposing no interaction with continuations).

In our Pscheme implementation of futures, the value of a future object needs to be

explicitly retrieved by applying the function future-val to the future object. Figure 3.7

shows the implementation.

(future exp) initiates a new thread evaluating exp, and returns a future object f ,

which can be stored or passed to other functions. A strict operator needing exp's value

v can call (future-val f), which returns v immediately if the evaluation of exp has

completed, or blocks until v is available. Once the evaluation of exp is complete, the

result value is committed as the value of this future object.

Similarly, a future object can be created by pcall'ing a function f of two parame-

ters val and req, representing the future value and the value requester's current port,

respectively. Before the future value v is available, there might be several requests for it,

so f performs (throw req val), and then throws val back to the value port to synchro-

nize with subsequent requests. The short example in �gure 3.7 shows how to speed up

computation in call-by-value languages.

33

(def-syntax (future exp)

(make-future (lambda() (call/sp (lambda(p) exp)))) ; not re-entrant

(define (future-val future-object) (future-object))

(define (make-future thunk)

(call/sp

(lambda (return)

(letrec

((value nil) (touched? nil) (val-port nil) (req-port nil)

(future-obj (lambda()

(if touched?

value

(call/sp (lambda(p) (throw req-port p) (die)))))))

(pcall (lambda (val req) (throw req val) (throw val-port val) (die))

(call/mp (lambda (p) (set! val-port p)

(set! value (thunk))

(set! touched? #t)

value))

(call/mp (lambda (p) (set! req-port p)

(throw return future-obj)

(die))))))))

> (let ((x (future (largest-prime-less-than 1000))))

(.... (future-val x) ...)

Figure 3.7: Implementation of Multilisp futures

34

3.7 Stream-based Programming and Vertical

Parallelism

Most parallel applicative languages exploit parallelism through a fork-join structure such

as Pscheme's pcall demonstrates. It is sometimes necessary for a program to specify

vertical parallelism, a parallelism between a producer and a consumer. For example, we

may want to evaluate the function body and the function's argument expression in parallel

if the argument value is not needed immediately by the body. Futures, as mentioned

above, can satisfy our need. In Pscheme, we may say

((lambda(x) (future-val x) ...) (future exp))

to gain vertical parallelism.

Furthermore, we can generalize this idea to express pipelining style parallelism. This

is usually hard to express in most parallel applicative languages. Even with futures

provided as in Multilisp, we still need exclusive access facilities to control the order of

racing threads, but exclusive functions are not supported in Multilisp.

On the other hand, pipelining is a kind of parallelism that is often seen in real world

activities. Although there are attempts to model streams in applicative languages [19],

most are only sequential simulation of data streams, and fail to really provide pipelining

parallelism in a parallel language. The reason may be that current Von Neumann archi-

tectures force the implementation of pipelining parallelism to be simulated by light weight

processes, which is not considered to have good enough performances. We think that if

massive �ne-grained parallelism or data-ow computing is supported by the underlying

platform, it is worth trying to express pipelining at the language level. In this section, we

show how to develop stream-based programs with pipelining-style parallelism in Pscheme,

and demonstrate another dimension of its expressiveness.

35

 add

X+Y

X

X

Y

Figure 3.8: A data-ow diagram for computing the Fibonacci stream

3.7.1 A Small Example { Stream of Fibonacci Numbers

The idea of representing computation in terms of streams comes from the data-ow lan-

guages such as VAL [1], Id [7], Lucid [63] and so on.

For example, to calculate Fibonacci numbers in Lucid, we observe that the in�nite

Fibonacci stream f satis�es the recurrence equation:

f = 1 :: 1 :: (add_list f (cdr f))

The stream f can be generated by an adding cell with feedback wires to its two inputs as

shown in Figure 3.8.

In Pscheme, the \stream" data type is not supported. In order to model streams

in Pscheme, multiports are used. A stream is expressed by throwing data elements to

a multiport. Figure 3.9 shows how to interpret the conceptual model of computing the

Fibonacci stream in �gure 3.8.

The input arcs are captured by multi-ports in Pscheme, and the adding cell is simply

a function which also counts the cycle number n in order to compute up to fib(n). Since

the two input ports are not visible inside add, we use two global variables next-x and

next-y to store the captured ports. The initial values (the two 1's) are sent to the ports

and added together after next-x and next-y are initialized properly. add only returns

36

(define (fib n)

(let ((counter 1) (next-x nil) (next-y nil))

(let ((add (lambda (x y)

(if (eq? n counter)

x

(begin (set! counter (+ 1 counter))

(throw next-y x)

(throw next-x (+ x y))

(die))))))

(pcall add

(call/mp (lambda(p) (set! next-x p) 1))

(call/mp (lambda(p) (set! next-y p) 1))))))

Figure 3.9: Implementation of the Fibonacci stream

the sum when the counter reaches n. Otherwise, it dies. Notice that die does not have to

be exclusive because the barrier synchronization caused by pcall naturally enforces the

exclusiveness of the application of add.

The use of set! in fib is awkward and unnecessary. The state of the computation

that counter represents can be passed as parameters as are x and y. Therefore, we can

have a more functional adding cell as shown in �gure 3.10.

Streams are often processed through multiple stages. In the following sections, we will

show larger examples that illustrate pipelining style parallelism.

3.7.2 Filters

Basic stream programming applies a few processing stages to an input stream and gener-

ates a result stream. These stages work concurrently in the pipelining model, and serve

as �lters of their inputs. We give examples in this section of how to implement �lters and

data streams to express pipelining style parallelism.

37

(define (fib n)

(let ((next-x nil) (next-y nil) (next-c nil))

(let ((add (lambda (x y counter)

(if (eq? n counter)

x

(begin (throw next-c (+ 1 counter))

(throw next-y x)

(throw next-x (+ x y))

(die))))))

(pcall add

(call/mp (lambda(p) (set! next-x p) 1))

(call/mp (lambda(p) (set! next-y p) 1))

(call/mp (lambda(p) (set! next-c p) 1))))))

Figure 3.10: Implementing the Fibonacci stream without using set!

Since Pscheme is a call-by-value language, a �lter receiving an input stream will be

represented as a one-argument function. Each activation of the function is the process

an element from the stream. Filtering a stream requires reactivating the function for

each stream element by throwing the element to the port associated with the function

argument position.

The Relationship between Lists and Streams

The input stream is often generated from data structures such as lists, and the output

stream is collected and stored into data structures as well. Since the �lter function does

not know when there is no element coming (it is decided by the caller or thrower), a

special token is often passed to the function to signal the end of the stream.

Figure 3.11 shows how lists and streams of numbers can be transformed to each

other via the function list->stream and stream->list. (stream->list eos) returns

38

(define (list->steam l receiving-port eos)

(if (null? l)

(begin (throw receiving-port eos) (die))

(begin (throw receiving-port (car l))

(list->stream (cdr l) receiving-port eos))))

(define (stream->list eos)

(let ((buf nil))

(exclusive

(lambda(v) (if (eq? v eos)

buf

(begin (set! buf (cons v buf)) (die)))))))

Figure 3.11: Conversion between lists and streams

a stream-to-list converter, which is a one-argument exclusive function that takes stream

elements as its argument and stores them in its internal bu�er. (The stream ends with

eos.) This converter �nally returns a list of elements in the reverse order.

Examples { Generating Prime Numbers

We compute the prime numbers within a given range by creating an exclusive function

which �lters all numbers from the input stream that is a multiple of previous elements in

the stream. Any application program that works on primes can take as input the stream

generated by prime-cell.

If we just want to collect all primes less than or equal to n, we may use stream->list

to return the prime list as shown in �gure 3.12.

In traditional applicative call-by-value languages, the list of primes in some given

range will only be available when all elements have been computed. Pscheme lifts the

restriction. The �rst prime is available for use even when the second prime is still being

39

(define (num-stream a b port)

(if (> a b)

(begin (throw port 'eos) (die))

(begin (throw port a) (num-stream (+ 1 a) b))))

(define (multiple? val num-list) ; to see if val is a multiple of

(if (null? num-list) ; a number in num-list

#f

(if (eq? (modulo val (car num-list)) 0)

#t

(multiple? val (cdr num-list)))))

(define (prime-cell out-port)

(let ((prime-num-list nil))

(exclusive

(lambda(val)

(if (eq? 'eos val)

(begin (throw out-port 'eos) (die))

(if (multiple? val prime-num-list)

(die)

(begin (throw out-port val)

(set! prime-num-list (cons val prime-num-list))

(die))))))))

(define (primes n) ; return a list of primes <= n

((stream->list 'eos)

(call/mp (lambda (out-port)

((prime-cell out-port)

(call/mp (lambda (p) (num-stream 2 n p))))))))

Figure 3.12: Generating the stream of prime numbers

40

computed. We can achieve �ner grained pipelining by splitting the testing of multiples

into stages, each of which tests if the input number is a multiple of one number. If the

underlying platform supports �ne grain parallelism, this is worth trying.

3.8 Applications

We present in this section two larger examples of stream-based programming { quicksort

and merge sort. The idea is to use any available result as early as possible.

3.8.1 Quicksort

Quicksort is a recursive function which partitions its input list in two, sorts them recur-

sively, and appends them to get the result. We try to parallelize the partition and the

two sub-sorts so that once a number less than the pivot is found, it is passed to the sorter

for numbers less than the pivot. Numbers larger than the pivot are handled similarly.

The whole sorting process is a number of partitions that internally build up a binary

search tree (BST). Our program views it as a binary tree of concurrent partitioning cells.

Each cell passes the input from its parent to one of its two children depending on whether

it is less or larger than the pivot. When the input stream comes to an end, we perform

a depth �rst search with in order traversal of this BST based on the pivot value of each

partitioning cell.

The partitioning cells in this scenario are exclusive functions in Pscheme. The outgoing

arcs of a cell are actually ports visible in the exclusive function. Cells are created only

when needed. When a cell is created, an input arc to the cell is also built as a multiport

visible in its parent cell.

Figure 3.13 shows the code for our quicksort. As seen in the function qs, the sorting

starts with one partitioning cell. The end-of-stream token is actually a port where the

41

(define (new-partition-cell pivot port1 port2)

(exclusive

(lambda (v)

(if (number? v)

(if (< v pivot)

(if (null? port1)

((new-partition-cell v nil nil)

(call/mp (lambda (p) (set! port1 p) (die))))

(throw port1 v))

(if (null? port2)

((new-partition-cell v nil nil)

(call/mp (lambda (p) (set! port2 p) (die))))

(throw port2 v)))

;else v is a port, so partition is done, now collect results

(throw v (lambda () ; delay result collection

(pcall

(lambda (th1 th2)

(append (th1) (cons pivot (th2))))

(call/sp (lambda (p)

(if (null? port1)

(lambda () nil)

(begin (throw port1 p) (die)))))

(call/sp (lambda (p)

(if (null? port2)

(lambda () nil)

(begin (throw port2 p) (die)))))))))

(die))))

(define (qs l)

(if (null? l)

nil

(let ((partition-cell (new-partition-cell (car l) nil nil)))

((call/sp

(lambda (result-port)

(partition-cell

(call/mp (lambda (p)

(list->stream (cdr l) p result-port))))))))))

Figure 3.13: Stream-based quicksort

42

result should go. When a cell receives a non-number element, it knows it is a result port.

Then, it prepares to pass the sorted result (a list) to the result port by throwing two

newly created receiving ports to its children respectively. After receiving two sorted lists

from its children, the cell appends then and passes the whole sorted list to its parent cell.

We implement the result-collecting protocol a little di�erently from the above idea.

That is, the result is collected lazily. A thunk is always passed to a result port, and

calling it gives the real sorted list. The reason to do this is to keep exclusive functions

light, and avoid parallelism or a \context switch" (that is, a die) in the middle of exclusive

functions' bodies.

3.8.2 Merge Sort

Another application of pipelining-style parallelism is the merge sort. It is natural to think

of a cell merging two sorted input streams and generating a sorted output stream. We

use a recursive function ms to sort a vector of numbers as shown in �gure 3.14.

When a merging cell is created in ms, it merges two streams whose lengths di�er by

at most one from each other so that pcall works. Since the pcall expression forces the

merging cell to take numbers from both input ports, we bu�er the larger one in one of

the two local queues for subsequent comparisons.

Figure 3.15 shows the implementation of a merging cell. In a merging cell, there are

two local queues to store elements from the two input streams respectively. At least one

of them must be empty. The function call (compare-deq value queue port all) keeps

comparing value with numbers in queue, throwing the smaller to port until val is thrown

or queue is empty. If the ag all is true, everything will be thrown to port.

43

(define (merge-sort vct)

((stream->list 'eos)

(call/mp (lambda(p) (ms vct 0 (- (vector-length vct) 1) p)))))

(define (ms num-vct i1 i2 out-port)

(cond ((eq? i1 i2)

(throw out-port (vector-ref num-vct i1))

(throw out-port 'eos)

(die))

((eq? i2 (+ 1 i1))

(let ((n1 (vector-ref num-vct i1))

(n2 (vector-ref num-vct i2)))

(if (< n1 n2)

(begin (throw out-port n1) (throw out-port n2))

(begin (throw out-port n2) (throw out-port n1)))

(throw out-port 'eos)

(die)))

(else

(let ((i3 (/ (+ i1 i2) 2)))

(pcall (new-ms-cell out-port)

(call/mp (lambda(p) (ms num-vct i1 i3 p)))

(call/mp (lambda(p) (ms num-vct (+ i3 1) i2 p))))))))

; auxiliary functions used by new-ms-cell

(define (deq-all q p)

(if (q 'empty?)

nil

(begin (throw p (q 'deq)) (deq-all q p))))

(define (compare-deq val queue port all)

(if (queue 'empty?)

(if all (throw port val) nil)

(if (< val (queue 'head))

(begin (throw port val)

(if all (deq-all queue port) nil))

(begin (throw port (queue 'deq))

(compare-deq val queue port all)))))

Figure 3.14: Stream-based merge sort

44

(define (new-ms-cell out-port q1 q2 state)

(exclusive

(lambda(n1 n2)

(cond ((and (eq? n1 'eos) (eq? n2 'eos))

(if (eq? state 1)

(deq-all q1 out-port)

(deq-all q2 out-port))

(throw out-port 'eos))

((eq? n1 'eos)

(if (eq? state 1)

(compare-deq n2 q1 out-port #t)

(begin (deq-all q2 out-port) (throw out-port n2)))

(throw out-port 'eos))

((eq? n2 'eos)

(if (eq? state 1)

(begin (deq-all q1 out-port) (throw out-port n1))

(compare-deq n1 q2 out-port #t))

(throw out-port 'eos))

((null? state) ; initial state

(if (< n1 n2)

(begin (throw out-port n1) ((q2 'enq) n2) (set! state 2))

(begin (throw out-port n2) ((q1 'enq) n1) (set! state 1))))

((eq? state 1)

((q1 'enq) n1)

(compare-deq n2 q1 out-port #f)

(if (q1 'empty?)

(begin ((q2 'enq) n2) (set! state 2))

(die)))

(else ; (eq? state 2)

((q2 'enq) n2)

(compare-deq n1 q2 out-port #f)

(if (q2 'empty?)

(begin ((q1 'enq) n1) (set! state 1))

(die))))

(die))))

Figure 3.15: Implementing the cell merging two sorted streams

45

3.9 Remarks

What was the objective of this chapter? We have shown that Pscheme can model di�erent

kinds of parallel programming paradigms. For programmers familiar with continuation-

based programs, understanding Pscheme programs is not harder because port operations

(call/sp,call/mp and throw) are similar to continuation operations. As a matter of

fact, it is easy to program in Pscheme with the help of our library of higher order control

facilities and parallel data structures.

Our point, however, is not to develop programs that can beat those written in Mul-

tilisp, Lucid or Actors. Instead, we try to reason about control within the world of

applicative programming, and illustrate the fact that ports are expressive enough to de-

scribe most concepts in parallel computation. Furthermore, the concept of ports can be

used to explain the semantics of multi-threaded applicative languages. 2 We believe that

ports do play the role that continuations do in sequential languages.

We would also like to point out that Pscheme does support the declarative program-

ming style. Issues that are easily solved by, for example, functional programs, should be

solved in that way. But, programming in Pscheme, we have more alternatives.

As for practical programming in Pscheme, we will give performance numbers for the

two practical stream-based examples quicksort and merge sort to see how well they scale

up on a Von Neumann machine.

2We use the concept of ports to develop Pscheme's operational semantics. This can be seen in chapter

4.

46

47

Chapter 4

Operational Semantics

In this chapter, we give a formal de�nition of Pscheme. The framework is an operational

semantics that can be used to de�ne any multi-threaded expression language with a global

naming space. Our approach is similar to CML's operational semantics developed by

Reppy [55] and Berry, Milner and Turner [8].

We �rst introduce an abstract reduction machine that illustrates our computation

model. Then, we present Pscheme's operational semantics in terms of the reduction rules

on our abstract machine. As CPS is used to de�ne sequential languages, the reduction

rules are presented in port passing style, which also constitutes the basis of Pscheme's

compiler.

4.1 The Abstract Machine

Our abstract machine contains

� a shared memory which maps addresses to values in the language domain,

� a shared queuing mechanism which maps queue addresses to FIFO queues, and

� a set of reduction operations applicable to threads running on it.

At any time, the con�guration of the abstract machine is represented by the triple:

(set of running threads, shared memory, shared queuing mechanism)

The semantics of a Pscheme program is de�ned by the initial and terminating con�gura-

tion of the abstract machine with this input program.

The �rst component of the machine con�guration is de�ned by a set of running threads.

Each thread is expressed as a triple (expression, environment, port), where expression is

a legal expression in Pscheme, environment is a mapping from identi�ers in a Pscheme

program to locations (addresses) in the shared memory, and port is a semantic abstraction

to be de�ned later.

The instructions of the abstract machine are the reduction operations between ma-

chine con�gurations. At any time during the program execution, only one reduction step

can occur, but the one to apply among all applicable reductions is selected nondetermin-

istically.

4.2 Meanings of Semantic Notations

A thread [exp, env, port] has the meaning that a process is currently evaluating the

expression exp under the environment env, and then passes the result to the port port.

port is syntactically a series of operation tags separated by the symbol \::". A port can be

rei�ed 1 at the expression level, (and hence becomes an object in the language domain and

can be manipulated by the programmer) and stored in the shared memory. The top-level

port is denoted as RETURN, meaning the control point where a program is to return its

�nal result. If a thread is denoted as [val; env; port]
done

, it means that it is about to pass

1The term reify comes from the concept of computational reection [20,59,49] It means to make an

invisible meta-level object (such as a construct used in the language interpreter or the semantic framework)

available or tangible at the language level so that the programmer can manipulate it directly. For example,

reifying a continuation in the semantics gives a one-argument function in the language.

48

K 2 Constant
I 2 Identifier

a; ai 2 Address
F; A;Ai; v; vi 2 Expression
� 2 Identifier ! Address

M 2 Address! Representation
P;< � >;< � >:: P 2 Port

Q 2 QueueAddress! Queue
q 2 Queue

[�]; [�]done 2 Process
S 2 powerset(Process)
S[�] = S [f[�]g
update 2 ((Address! Representation) �Address� Representation)

! (Address! Representation)
update(M; a; v) = M � f(a;Ma)g+ f(a; v)g
enqueue(Q; q; v) = Q � f(q; Qq)g+ f(q; enq(Qq; v))g
dequeue(Q; qset) = Q � f(q; Qq)jq 2 qsetg + f(q; deq(Qq))jq 2 qsetg
PRIM = the set of all identi�ers represting primitive functions

Figure 4.1: Notation de�nitions in Pscheme's operational semantics

the evaluated value val to the port port, and there is no need to evaluate val in env.

We use the notion C1 =) C2 to denote an atomic reduction step in which con�gura-

tion C1 is transformed to con�guration C2. As mentioned above, the system con�guration

will be changed through only one reduction rule at a time. If there are more than one

reduction rules applicable to some system con�guration, the rule to apply is chosen non-

deterministically.

Figure 4.1 shows the notations (and their de�nitions) we will use in our reduction

rules. We use the character \�" to match any content in the context. To simplify the

con�guration expression, we express the set of threads without the curly brackets \fg".

Instead, for a thread set S, S [f[�]g is expressed as S[�]. Also, representing the triple for

the machine con�guration is abbreviated without the parentheses \()". The de�nitions of

49

the function enq, deq and powerset in �gure 4.1 are not provided for the obvious meanings

of these names.

We de�ne a series of reductions by the symbol =)� as follows.

C =)� C0 i� C = C0 or 9C00 C =) C00 and C00 =)� C0

De�nition of a Pscheme Program

Let eval(Exp) be the set of all possible results of evaluating the program expression Exp,

and RETURN be the top-level output port. Then,

1. v 2 eval(Exp) i�

9�; S;M;Q; f[Exp; fg;RETURN]g; fg; fg=)� S[v; �;RETURN]done;M;Q

2. eval(Exp) = ? i�

:9v; �; S;M;Q; f[Exp; fg;RETURN]g; fg; fg=)� S[v; �;RETURN]done;M;Q

4.3 Operational Semantics of Pscheme

In this section, we present the reduction rules for Pscheme expressions on our abstract ma-

chine. This is a parallel extension of the sequential continuation-passing style semantics.

The continuation abstraction in the sequential semantics is replaced by a port abstraction

which is syntactically composed of a series of operation tags. We call it the port pass-

ing style semantics. As in the case of the continuation abstraction, the port abstraction

also encapsulates the information regarding the environment and the computation that

follows. Side e�ects caused by destructive assignments or parallel primitives are reected

in the shared memory or the shared queuing mechanism, which are part of the system

con�guration.

As stated in previous chapters, Pscheme views parallel computation as a dynamic

data-ow diagram. Our port-passing-style semantics described here makes all links in

50

the data-ow diagram explicit. Evaluated values are passed explicitly along the links to

receiving nodes just as a thread passes a value to its port abstraction in the operational

semantics.

4.3.1 Basic Reductions Regarding Sequential Computa-

tion

Constants do not require evaluation and can be passed to ports directly. Evaluating an

identi�er requires looking it up in the environment to get the address where the value

of the identi�er is stored. Conditional expressions and assignment expressions have the

same semantics as in CPS semantics. Primitive operators, if not bound to new values,

are treated as �rst class closures as lambda forms are.

Constants and Identi�ers

S[K; �; P] ; M ; Q =) S[K; �; P]done ; M ; Q

S[I; �; P] ; M ; Q =) S[M(�I); �; P]done ; M ; Q

Conditionals

S[(if e1 e2 e3); �; P] ; M ; Q =) S[e1; �; < branch; e2; e3 >:: P] ; M ; Q

S[v; �; < branch; e1; e2 >:: P]done ; M ; Q

=)

8><
>:

S[e1; �; P] ; M ; Q if v = nil

S[e2; �; P] ; M ; Q otherwise

Shared Memory

S[(set!X Y); �; P] ; M ; Q =) S[Y; �;< assign; X >:: P] ; M ; Q

S[v; �; < assign; X >:: P]done ; M ; Q =) S[v; �; P] ; update(M; �X; v) ; Q

51

Function Abstraction

S[(lambda args body); �; P] ; M ; Q =) S[closure(args; body; �); �; P]done ; M ; Q

S[F; �; P];M;Q=) S[primop(F); �; P]done;M;Q if F 2 PRIM , and �F unde�ned

4.3.2 Exclusive Functions

A function can be made exclusive, that is, at most one activation of an exclusive function

can exist at any time. When an exclusive function is called, a shared lock and a shared

queue is created to guarantee the exclusiveness and to store the calling requests. At the

same time, another thread is created to retrieve arguments (if any) in the queue and dis-

patch them to the function. The following rules show that the primitive exclusive can

only take as its argument normal functions or primitive operators. No exclusive functions

can be passed to exclusive.

S[(exclusive exp); �; P]; M; Q =) S[exp; �; <makeexclusive >:: P]; M; Q

S[closure(args; body; �); �0; < makeexclusive >:: P]done ; M; Q =)8>>>>><
>>>>>:

S[exclosure(args; body; �; q; a); �0; P]done[exclosure(args; body; �; q; a); �0; < exgetval; q >:: P 0]done;

M [(a; free); Q[(q; empty) if P =< ApplyWith; � >:: P 0 or < ParaApplyWith; � >:: P 0

S[exclosure(args; body; �; q; a); �0; P]done;M [(a; free); Q[(q; empty) otherwise

S[primop(F); �; <makeexclusive >:: P]done; M; Q =)8>>>>><
>>>>>:

S[exprimop(F; q; a); �; P]done[exprimop(F; q; a); �;< exgetval; q >:: P 0]done;

M [(a; free); Q[(q; empty) if P =< ApplyWith; � >:: P 0 or < ParaApplyWith; � >:: P 0

S[exprimop(F; q; a); �; P]done;M [(a; free); Q[(q; empty) otherwise

52

4.3.3 Function Application

Function application expressions are handled by evaluating the function �rst, and then

evaluating all argument expressions sequentially or in parallel depending on whether pcall

is used or not.

The Sequential Case

In a sequential function application expression, arguments are evaluated left to right.

When all arguments have been evaluated, the function is called if it is not exclusive. Oth-

erwise, arguments are enqueued for exclusive calls.

F 62 fpcall; call=sp;call=mp;throw; exclusive; set!g

S[(FA1 � � �An); �; P] ; M ; Q =) S[F; �; < ApplyWith; A1; � � � ; An >:: P] ; M ; Q

S[f; �; < ApplyWith; A1; � � � ; An >:: P]done ; M ; Q

=) S[A1; �; < EvalArg; 1; f; A2; � � � ; An >:: P] ; M ; Q

S[vi; �; < EvalArg; i; f; v1; � � � ; vi�1; Ai+1; � � � ; An >:: P]done ; M ; Q

=) S[Ai+1; �; < EvalArg; i+ 1; f; v1; � � � ; vi; Ai+2; � � � ; An >:: P];M;Q; 1 � i � n� 1

S[vn; �; < EvalArg; n; f; v1; � � � ; vn�1 >:: P]done;M;Q =)8><
>:

S ; M ; enqueue(Q; q; list(v1 � � �vn)) If f = exprimop(F; a; q) or exclosure(args; body; �; q)

S[f; �; < CallWith; v1; � � � ; vn >:: P]done ;M;Q otherwise

53

The Parallel Case

In a pcall expression, the function expression is evaluated �rst. At the same time, a

queue is built as the implicit port for each argument position so that the evaluated value

of can be passed to. Then, all the argument expressions are evaluated in parallel.

S[(pcall F A1 � � �An); �; P];M;Q=) S[F; �; < ParaApplyWith; A1; � � � ; An >:: P];M;Q

S[f; �; < ParaApplyWith; A1; � � � ; An >:: P]done;M;Q

=) S[A1; �; < enter; q1 >] � � � [An; �; < enter; qn >][f; �; < getval; q1; � � � ; qn >:: P]done;

M; Q [f(qi; empty)j1 � i � ng

S[v; �; < enter; q >]done ; M ; Q =) S ; M ; enqueue(Q; q; v)

Function Call

In a function application expression, when the function and all the argument expressions

have been evaluated, the function call occurs. Calling a non-exclusive function has the

same semantics as in Scheme except that arguments evaluated in parallel have to syn-

chronize and then be retrieved from the queue by a dispatching process.

S[primop(F); �; < CallWith; v1; � � � ; vn >:: P]done ; M ; Q

=) S[OP(F; list(v1 � � �vn)); �; P]done ; M ; Q

2

2The formal de�nition of OP is deliberately eliminated. In general, the function OP applies a primitive

function to a list of arguments and returns a result value.

54

S[closure(list(x1 � � �xn); body; �); �
0; < CallWith; v1; � � � ; vn >:: P]done ; M ; Q

=) S[body; �[x1=a1; � � � ; xn=an]; < getenv; �0 >:: P];M [f(ai; vi)j1 � i � ng ; Q

where a1 � � �an are new addresses

If vi = hd(Qqi) 6= empty; 1 � i � n

S[primop(F); �; < getval; q1; � � � ; qn >:: P]done ; M ; Q

=) S[primop(F); �;< getval; q1; � � � ; qn >:: P]done

[OP(F; list(v1 � � �vn)); �; P]done;M; dequeue(Q; fqij1 � i � ng)

If vi = hd(Qqi) 6= empty; 1 � i � n

S[closure(list(x1 � � �xn); body; �); �0; < getval; q1; � � � ; qn >:: P]done ; M ; Q

=) S[closure(list(x1 � � �xn); body; �); �0; < getval; q1; � � � ; qn >:: P]done

[body; �[x1=a1; � � � ; xn=an]; < getenv; �0 >:: P];

M [f(ai; vi)j1 � i � ng; dequeue(Q; fqij1 � i � ng),

where a1 � � �an are new addresses

4.3.4 Blocking

If the lock of an exclusive function is not free, the invocation of it will be blocked until

the shared lock is released. In the parallel case, when the lock is free, evaluated argu-

ments that are dequeued and supplied to the pcalled exclusive function will be dispatched

directly without going through the queue associated with the exclusive function. This is

to preserve the order of values that are sent to these ports.

55

If Ma = free and hd(Qq) = list(v1 � � �vn)

S[exprimop(F; q; a); �0; < exgetval; q >:: P]done ; M ; Q

=) S[exprimop(F; q; a); �0; < exgetval; q >:: P]done

[OP(F; list(v1; � � � ; vn)); �; < release; a >:: P]done;

update(M; a; locked); dequeue(Q; fqij1 � i � ng)

If Ma = free and hd(Qq) = list(v1 � � �vn)

S[exclosure(list(x1 � � �xn); body; �; q; a); �
0; < exgetval; q >:: P]done ; M ; Q

=) S[exclosure(list(x1 � � �xn); body; �; q; a); �
0; < exgetval; q >:: P]done

[body; �[x1=a1; � � � ; xn=an]; < release; a >::< getenv; �0 >:: P];

update(M; a; locked) [f(ai; vi)j1 � i � ng; dequeue(Q; fqij1 � i � ng)

where a1 � � �an are new addresses

S[v; �; < release; a >:: P]done ; M ; Q =) S[v; �; P]done ; update(M; a; free) ; Q

If Ma = free and vi = hd(Qqi) 6= empty; 1 � i � n

S[exprimop(F; q; a); �;< getval; q1; � � � ; qn >:: P]done;M;Q

=) S[exprimop(F; q; a); �;< getval; q1; � � � ; qn >:: P]done

[OP(F; list(v1; � � � ; vn)); �; < release; a >:: P]done;

update(M; a; locked); dequeue(Q; fqij1 � i � ng)

If Ma = free and vi = hd(Qqi); 1 � i � n

S[exclosure(list(x1 � � �xn); body; �; q; a); �
0; < getval; q1; � � � ; qn >:: P]done;M;Q

=) S[exclosure(list(x1 � � �xn); body; �; q; a); �
0; < getval; q1; � � � ; qn >:: P]done

[body; �[x1=a1; � � � ; xn=an]; < release; a >::< getenv; �0 >:: P];

56

update(M; a; locked)[f(ai; vi)j1 � i � ng; dequeue(Q; fqij1 � i � ng)

where a1 � � �an are new addresses

4.3.5 Environment Recovery

When a function is called, its lexical environment stored in the closure is referred for

evaluation. When the call returns, the old environment is retrieved.

S[v; �; < getenv; �0 >:: P]done ; M ; Q =) S[v; �0; P]done ; M ; Q

4.3.6 First Class Ports

Ports can be rei�ed as language constructs. The shared information about the rei�ed

port, including the control point, current environment and its state, is stored in a shared

memory location, and can be referenced by any thread. A singleport is represented by

the control point, its current environment, and its active/closed state. In the case of

multiports, if the current port is associated with an argument position of a pcall expres-

sion (the second rule below), or with the last argument position of an exclusive function

call expression (the third and fourth rule below), the queuing information in the current

port has to be stored and shared as well. Otherwise, only the control point and current

environment information are stored, and the multiport degenerates to be a procedural

abstraction (the �fth rule below). In general, a port provides ordering information only

when ordering is important at the control point the port represents.

S[(call=sp F); �; P] ; M ; Q

=) S[F; �; < CallWith; a >::< refport; a >];M [f(a;< singleport; � >:: P)g; Q

57

S[(call=mp F); �; < enter; q >] ; M ; Q

=) S[F; �; < CallWith; a >::< refport; a >];M [f(a;< multiport; �; q >)g; Q

S[(call=mp F); �; < EvalArg; n; exclosure(args; body; �0; q; a); v1; � � � ; vn�1 >:: P] ; M ; Q

=) S[F; �; < CallWith; a >::< refport; a >]M [f(a;<multiport; �; q >)g; Q

S[(call=mp F); �; < EvalArg; n; exprimop(F; q; a); v1; � � � ; vn�1 >:: P] ; M ; Q

=) S[F; �; < CallWith; a >::< refport; a >]M [f(a;<multiport; �; q >)g; Q

If P 6=< enter; q >, or

< EvalArg; n; exclosure(�); v1; � � � ; vn >:: P 0 or

< EvalArg; n; exprimop(�); v1; � � � ; vn >:: P 0

S[(call=mp F); �; P] ; M ; Q

=) S[F; �; < CallWith; a >:: P];M [f(a;< getenv; � >:: P)g; Q

4.3.7 Parallel Control

A (die) expression terminates the execution of the current thread without returning any-

thing. If during the invocation of an exclusive function, a (die) is evaluated, the lock is

released so that pending requests to call the exclusive function can be satis�ed. A (die)

releases all locks in the current thread if it happens in nested exclusive function calls.

S[(die); �;RETURN] ; M ; Q =) S ; M ; Q

58

S[(die); �; < enter; q >] ; M ; Q =) S ; M ; Q

S[(die); �; tag :: P] ; M ; Q

=)

8><
>:

S[(die); �; P] ; update(M; a; free) ; Q if tag =< release; a; q >

S[(die); �; P] ; M ; Q otherwise

A throw expression causes the left-to-right evaluation of its arguments, and passes

the result of the second argument to the result of the �rst argument (a location storing a

port). The semantic rules of throw guarantee that two throws by the same thread to a

multiport with a queuing mechanism will cause the values to be enqueued in the throwing

order.

S[(throw A1 A2); �; P];M;Q=) S[A1; �; < throw; A2 >:: P];M;Q

S[v; �; < throw; A2 >:: P]done;M;Q =) S[A2; �; < PassTo; v >:: P];M;Q

S[v; �; < PassTo; a >:: P]done;M;Q =)8>>>>>>>>><
>>>>>>>>>:

S[v; �; P]done[v; �0; P 0]done; update(M; a; closed); Q if Ma =< singleport; �0 >:: P 0

S[v; �; P]done;M;Q if Ma = closed

S[v; �; P]done;M; enqueue(Q; q; v) if Ma =< multiport; �0; q >

S[v; �; P]done[v; �0; P 0]done;M;Q if Ma =< getenv; �0 >:: P 0

S[v; �; < singleport; �0 >:: P 0]done;M;Q =) S[v; �0; P 0]; update(M; a; closed); Q

S[v; �; closed]done;M;Q =) S;M;Q

59

S[v; �; <multiport; �0; q >]done;M;Q =) S;M; enqueue(Q; q; v)

S[v; �; < refport; a >]done;M;Q =) S[v; �;Ma]done;M;Q

4.4 An Example

We illustrate in this section, with the short example (pcall + (call/mp (lambda(p)

1)) 2), that our operational semantics correctly de�nes the meaning of a Pscheme ex-

pression. The following series of reduction shows that the expression will return 3 as its

�nal answer. In this example, the series of rules to apply is chosen nondeterministically.

However, it is not di�cult to observe that the order of reduction rules chosen will not

a�ect the terminating con�guration, in which the value 3 will be returned as the �nal

result.

[(pcall + (call/mp (lambda(p) 1)) 2),fg,RETURN]; fg; fg

=) [+,fg,<ParaApplyWith,(call/mp (lambda(p) 1)),2>::RETURN]; fg; fg

=) [primop(+); fg; < ParaApplyWith; (call/mp (lambda(p) 1)); 2 >:: RETURN]done;

fg; fg

=) [primop(+); fg; < getval; q1; q2 >:: RETURN]done

[(call/mp (lambda(p) 1)); fg; < enter; q1 >][2; fg; < enter; q2 >];

fg; f(q1; empty); (q2; empty)g

=) [primop(+); fg; < getval; q1; q2 >:: RETURN]done

[(call/mp (lambda(p) 1)); fg; < enter; q1 >][2; fg; < enter; q2 >];

60

fg; f(q1; empty); (q2; empty)g

=) [primop(+); fg; < getval; q1; q2 >:: RETURN]done

[(lambda(P) 1); fg; < CallWith; a >::< refport; a >][2; fg; < enter; q2 >];

f(a;<multiport; fg; q1 >g; f(q1; empty); (q2; empty)g

=) [primop(+); fg; < getval; q1; q2 >:: RETURN]done

[closure(list(p); 1; fg); fg;< CallWith; a >::< refport; a >]done[2; fg; < enter; q2 >];

f(a;<multiport; fg; q1 >g; f(q1; empty); (q2; empty)g

=) [primop(+); fg; < getval; q1; q2 >:: RETURN]done

[1; f(p; a)g;< refport; a >][2; fg; < enter; q2 >];

f(a;<multiport; fg; q1 >g; f(q1; empty); (q2; empty)g

=) [primop(+); fg; < getval; q1; q2 >:: RETURN]done

[1; f(p; a)g;< refport; a >]done[2; fg; < enter; q2 >];

f(a;<multiport; fg; q1 >g; f(q1; empty); (q2; empty)g

=) [primop(+); fg; < getval; q1; q2 >:: RETURN]done

[1; fg; <multiport; fg; q1 >]done[2; fg; < enter; q2 >];

f(a;<multiport; fg; q1 >g; f(q1; empty); (q2; empty)g

=) [primop(+); fg; < getval; q1; q2 >:: RETURN]done[2; fg; < enter; q2 >];

f(a;<multiport; fg; q1 >g; f(q1; 1:: empty); (q2; empty)g

=) [primop(+); fg; < getval; q1; q2 >:: RETURN]done[2; fg; < enter; q2 >]done;

f(a;<multiport; fg; q1 >g; f(q1; 1:: empty); (q2; empty)g

=) [primop(+); fg; < getval; q1; q2 >:: RETURN]done

f(a;< multiport; fg; q1 >g; f(q1; 1:: empty); (q2; 2:: empty)g

=) [primop(+); fg; < getval; q1; q2 >:: RETURN]done

[3; fg;RETURN]done; f(a;<multiport; fg; q1 >g; f(q1; empty); (q2; empty)g

(Termination condition)

61

62

63

Chapter 5

The Compiler

Our implementation of Pscheme consists of two parts: the compiler and the run time

system. The compiler generates portable C code so that Pscheme can run on di�erent

parallel platforms. The run time system takes care of resource management, ordering,

locking and process control. We describe our compilation process in this chapter and the

run time system in the next.

The Pscheme compiler is based on the approach of the SML/NJ compiler [4,5]. Be-

cause our port mechanism is an extension of continuations, we only need to modify the

continuation-passing-style program representation so as to be able to characterize multi-

ple threads and ports. By continuation passing style, we mean all function calls are tail

calls, and all function bodies end with function call expressions. In general, a compiled

Pscheme program will have the following features.

� C code, instead of assembly, is generated to increase portability among di�erent

parallel platforms.

� All objects are heap allocated. The compiler does no escape analysis to decide

whether a closure (or a continuation) should be stack-allocated or heap-allocated.

� Every thread is in the continuation passing style, and is abstracted as a single

function application expression.

� Ports are parallel data structures containing parallel control information such syn-

chronization, thread creation and thread termination.

Our operational semantics associates each subexpression in a Pscheme program with

an implicit port, and interprets the program in the port passing style. Our compiler follows

this viewpoint except that ports will only be constructed when they are made explicit (via

call/mp, call/sp or pcall). Since the ordering is important only when there is an order

among elements passed to an explicit port, the continuation passing thread representation

su�ces if ports can be encapsulated in continuations, and the order of elements passed

to a port can be guaranteed. In other words, passing a value to a port is the same as

invoking a continuation which does nothing but the pass operation. 1

The Pscheme compiler is composed of a series of program transformation processes,

which transforms the input program into an intermediate representation for the code gen-

erator to use. These stages are:

1. Syntactic preprocessing

2. Scope analysis

3. Assignment conversion

4. CPS transform

5. Closure conversion

6. Thread abstraction

7. Code generation

1The pass operation is implemented as a parallel primitive operation in the run time system.

64

Since the Pscheme compiler generates C code, we do not perform register allocation.

Instead, we assume a su�cient number of virtual registers allocated by the run time sys-

tem, and those virtual registers can be cached (for example, declared as register variables)

in C.

5.1 Intermediate Representation

Our compiler assumes the input program to be a series of define expressions followed by

a series of regular Pscheme expressions. The answer to the program will be the return

value of the last expression under the bindings of all those define expressions and the

side e�ects of previous expressions. With a legal input, these transformations generate

an intermediate representation, which is a big letrec expression in CPS form. 2 A CPS

expression cexp in our compiler is a tagged tuple de�ned as follows:

2The port-passing style representation used in the operational semantics is not adopted here for there

is no need to create a port for each subexpression. As mentioned above, a port is only created when the

ordering matters. Instead, continuation-passing style su�ces as long as we are able to encapsulate relevant

port information in continuations.

65

cexp = < letrec; binding list; cexp >

or < primop; sexp list; id; cexp >

or < content; id; cexp >

or < assign; id; sexp; id; cexp >

or < if; id; cexp; cexp >

or < para; apply-expression list >

or < pass; sexp; id >

or < enq � port; sexp; id >

or < deq � port; id >

or < apply; id; sexp list >

or < end; sexp >

or < die >

where

� id denotes a legal identi�er in Pscheme,

� sexp denotes a \simple expression", which is either an identi�er or a language level

constant (which could be a number, a character, a boolean, a string or a quoted

symbol), and

� a binding is a (id; bexp) pair where bexp is a data structure expression de�ned as

follows.

66

bexp = < lambda; id list; cexp >

or < singleport; id >

or < multiport; id >

or < exclusive; id >

or < build � port; id; int >

or < sync; id; int; id >

or < bind; id; sexp >

or < vector; constant list >

or < cell; id >

or < closure; id list >

or < select; id; int >

or < o�set; id; int >

or a cexp containing only primop, content, assign or if expressions

A binding expression bexp represents the construction of a compound data object to

be bound to an identi�er. It only appears in the letrec binding.

In the intermediate representation, the only thread-creating expression is the para

expression, which speci�es a list of thread abstractions to create, each of which is actually

an apply expression. Passing values to ports are done by the pass expression, which can

either terminate the current thread or activate a new continuation that the port object

encapsulates depending on the locking information in the port object. The end expression

returns the answer to the top level. The die expression terminates the current thread.

All other expressions are similar to their sequential CPS counterparts. The apply

expression is a no-return function call (a tail call). The primitive function call (the

67

primop expression shown above) is also in CPS form except that its continuation is not

explicitly constructed to take the result as the argument. Instead, we bind a new variable

(the component id) with the result and perform the subsequent computation (the last

component cexp) directly. The same case applies to the content and assign expressions.

The de�nition of the binding expression bexp represents objects of all data types aside

from those of expressible constants (numbers, characters, booleans, strings and quoted

symbols). It is worth noticing that we have distinguished lambda objects (or lambdas) and

closure objects (or closures) so that lambdas contain primarily the code information of a

lambda expression, and closures are records whose �elds can be lambdas or free variable

values. (Our transformation always builds closure records with several consecutive lambda

�elds followed by several consecutive free variable �elds.)

Closures may possibly have common free variables. In order to let closures share �elds,

a closure is characterized by a pointer to a record and a non-negative o�set that locates

the closure's base address (where in the record the closure starts) by the distance to that

record's �rst �eld. select selects a �eld of a closure. o�set returns another closure sharing

some �elds with the original closure record but with a di�erent base address (that is, a

di�erent o�set). exclusive takes a lambda and returns another identical one except that

calling it is exclusive.

bind binds the label with a simple constant or another identi�er. A cell < cell; id >

is a pointer object pointing to some location stored with the object that id denotes.

Port-related expressions will be explained later in this chapter.

A binding expression can also be a CPS expression as long as function applications or

parallel primitives do not occur in it. The principle is to allow only primitive operations

and storage operations in a binding expression so as not to violate the CPS form.

68

Notice that our binding expression contains no construct for building lists or cons-cells.

Cons-cells are only constructed through the primitive operator CONS. Even for a constant

list, the compiler will create a new identi�er (and allocate space) for each cons-cell needed

to construct the list.

5.2 Syntactic Preprocessing, Scope analysis and

Assignment Conversion

5.2.1 Syntactic Preprocessing

The �rst stage of the Pscheme compiler translates syntactic forms into Pscheme domain

expressions. There are four kinds of syntactic forms related to conditional expressions:

case, cond, and and or. They are all transformed into if expressions. 3

The let form is translated into a lambda application expression as follows.

(let ((x1 exp1)..(xn expn)) body)

=) ((lambda (x1 .. xn) body) exp1 .. expn)

The letrec expression, according to Scheme's de�nition, should be translated as fol-

lows.

(letrec ((x1 exp1)..(xn expn)) body)

=) (let ((x1 nil)..(xn nil)) (set! x1 exp1)..(set! xn expn) body)

The letrec form is usually used to express mutually recursive functions, but Scheme's

letrec form means more. Transforming a letrec expression according to the de�nition

may cause extra ine�ciency. We would like to keep a structure characterizing mutual

recursion at the intermediate representation level. Such a selective transformation will be

3The transform algorithm is trivial by de�nition, and is thus omitted.

69

discussed in more details in section 5.3.3.

5.2.2 Scope Analysis

The next stage is scope analysis, which renames identi�ers with the same names but

appearing in di�erent scopes so that every identi�er name is unique. The reason to

perform such transformation is that it makes it easier to restructure the program by

removing nested binding blocks. (We call it hoisting.) This is done simply by recording

the scope pointer in the entry of each identi�er in the symbol table so that each occurrence

of the variable to rename can be found.

5.2.3 Assignment Conversion

In Scheme (and all imperative languages), identi�ers denote values sometimes and lo-

cations in other time. In most imperative languages, the compiler has to distinguish

left-hand-side identi�ers and right-hand-side identi�ers to generate appropriate code. In

an expression language such as Scheme, where every expression returns a value, this vi-

olates the orthogonality of an expression's meaning. One solution to this problem is to

let the compiler explicitly distinguish locations and values in its intermediate representa-

tion. Some Scheme compilers (such as ORBIT [47]) transform all the set! expressions so

that the meanings of identi�ers are not subject to change, and the compiler can translate

program expressions regardless where they appear. The Pscheme compiler also performs

such a transformation. The principle is shown as follows.

Case 1 : Binding through lambda

(lambda (x) .. x .. (set! x v) ..)

+

70

(lambda (x)

(let ((x' (cell x)))

.. (content x') ..

(assign x' v)

...))

+

(lambda (x)

((lambda (x')

.. (content x') ..

(assign x' v)

...)

(cell x)))

Case 2 : Binding through letrec

(letrec (.. (x init-exp) ..)

.. x ..

(set! x v)

..)

+

(letrec (.. (x init-exp) (x' (cell x)) ..)

.. (content x') ..

(assign x' v)

..)

71

That is, if an identi�er x will be assigned a new value by set!, we create a new

identi�er x' denoting the location storing x. For all references to the value of x, we use

(content x') in place, and for all set! expressions referring the location of x such as

(set! x exp), we use (assign x' exp) instead.

After assignment conversion, we are able to perform CPS transform, the kernel part

of the compiler.

5.3 The CPS Transform Process

The CPS transform is a technique used in compilers for languages supporting �rst-class

continuations. If the implementation is stack based, capturing a continuation may require

saving the whole run time stack, and invoking the continuation requires restoring the stack.

If the program is in continuation passing style, all function calls are tail calls. Invoking

a continuation is the same as calling a function because neither needs to return. The

run time stack degenerates to an activation record since the callee's activation can always

overwrite the caller's activation.

Pscheme's compiler uses an extension of the CPS transform to characterize ports and

parallelism. We will discuss the CPS transform in Pscheme's sequential part �rst, and

then extend it to the whole parallel language.

5.3.1 Transforming Sequential Expressions

Continuation passing style is a form for program expressions in which any lambda expres-

sion and any function call satisfy the following property:

1. The last step of a lambda expression's body must be a function call expression

2. Any function call expression must appear at the tail position of a lambda expression's

body

72

Before the CPS transform, if in an expression, a function call does not appear in a tail

position, whatever follows the function call will be wrapped into another function, which

we call the function's continuation. This continuation is passed as a parameter of the

function call, and will be invoked later. After such a transform process, the expression is

in the continuation passing style (CPS). In a CPS expression, each function takes one more

argument, the continuation, than its original form. All continuation functions constructed

during the transform are one-argument functions.

For example, the factorial function

(define (fac n) (if (eq? 0 n) 1 (* n (fac (- n 1)))))

can be transformed into continuation passing style as follows.

(define (fac n cont)

(eq? 0 n (lambda (v1)

(if v1

(cont 1)

(- n 1 (lambda (v2)

(fac v2 (lambda (v3)

(* n v3 cont)))))))))

This new factorial function satis�es the two CPS properties stated above. When fac

is called at the top level, the continuation argument cont is a function that just prints

its argument and terminates.

The CPS transform algorithm for sequential expressions is shown in �gure 5.1. The

transformation function CPS takes a language domain expression (in bold fonts and

Pscheme syntax) and a (meta-level) continuation function, and returns a transformed

domain expression. The continuation function can be rei�ed to become a language level

73

continuation (a one-argument lambda expression) during the transformation. The begin

expression actually represents, in general, any list of expressions to be evaluated sequen-

tially such as the body of a lambda or a letrec.

As we have explained in the intermediate representation, primitive function calls are

also in CPS form, but no continuation for a primitive operation is explicitly constructed

in a lambda form. Instead, we create a new variable bound to the result of the primitive

operation, and perform the computation following it. Therefore, the factorial function,

after the CPS transform, has the representation shown in �gure 5.2.

The transform automatically builds a continuation function representing the top level

(the end instruction) so that when it is invoked, the answer is printed and the computation

is complete.

Transforming a letrec expression needs some preprocessing, and will be discussed in

section 5.3.3.

5.3.2 Ports and Parallel Constructs

The CPS transform in the Pscheme compiler is extended to deal with pcall, throw,

die, call/sp, call/mp and exclusive. The idea is to enscapsulate port information in

continuations, and to use a uniform construct para to specify thread creation. (That is,

parallelism is only generated via the command para.)

In the compiler's internal representation, a port created by call/mp or call/sp is

an asynchronous port, which contains internally a FIFO queue for objects passed in and

a pointer to a continuation function representing the rest of the computation. A port

created by pcall is a synchronous port, which internally also contains a FIFO queue, a

pointer to a synchronizer, (which is the function whose argument position is associated

with the port) and an index indicating which argument position of the synchronizer the

74

CPS : E � (E ! E) ! E

CPS(e; k) = k(e) if e 2 Constants [Identifiers

CPS((if e1 e2 e3); k)
= CPS(e1; �v:(if v CPS(e2; k) CPS(e3; k)))

CPS((content x); k) = (content x reify(k))

CPS((asign x e); k) = CPS(e; �v: (assign x v reify(k)))

CPS((func arg1 arg2 .. argn); k)
= CPS(func; �f:CPS(arg1; �v1: � � �CPS(argn; �vn:(f v1 � � �vn reify(k))) � � �)

CPS((lambda args body); k)
= k((lambda append(args; list(k)) CPS(body; �v:(k v))))

where k is a new identi�er

CPS((begin e1 .. en); k)
= CPS(e1; �v1: CPS(� � �CPS(en; �vn:(reify(k) vn)) � � �)

CPS((letrec ((x1 e1) .. (xn en)) body); k)
= (letrec ((x1 CPS(e1; �v: (bind x1 v))) .. (xn CPS(en; �v: (bind xn v))))

CPS(body; k))

reify(�v:exp) = (lambda(v) exp[v/v])

Figure 5.1: The CPS transform algorithm for sequential constructs

75

(define (fac n) (if (zero? n) 1 (* n (fac (- n 1)))))

(fac 3)

LETREC

FAC = LAMBDA N f1

LETREC

f3 = LAMBDA v2

APPLY f1 v2

PRIM EQ? 0 N v5

IF v5

THEN APPLY f3 1

ELSE LET

f13 = LAMBDA v12

PRIM * N v12 v14

APPLY f3 v14

PRIM - N 1 v11

APPLY FAC v11 f13

f17 = LAMBDA v17

END v17

APPLY FAC 3 f17

Figure 5.2: The CPS transformed Factorial function

76

port represents.

Transforming a pcall expression creates a synchronizer object, which speci�es inter-

nally the pcalled function, its arity and its continuation so that when a data element is

received at each of its synchronous ports, the pcalled function can be invoked with the

continuation argument speci�ed in the synchronizer. These compiler-constructed objects

are represented by the following instructions.

< singleport; continuation >

< multiport; continuation >

< buildport; pcalled function; index >

< sync; pcalled function; arity; continuation >

All of these are binding expressions that only occur in the letrec binding in a trans-

formed expression. The CPS transform algorithm for parallel constructs is shown in

�gure 5.3, We give short examples for these instructions to show how the transformation

works.

Transforming the expression (pcall e0 e1 .. en)

The compiler transforms e0, e1, .. en, and generates codes that evaluate e0 �rst, and

then e1 to en in parallel. For example, the following pcall expression

(pcall (lambda(x y) (+ x y)) 1 2)

can be CPS transformed into:

LETREC

f3 = LAMBDA X Y f2

PRIM + X Y v4

APPLY f2 v4

77

CPS((pcall e0 e1 .. en); k)
= CPS(e0; �f:(letrec ((s (make-synchronizer f reify(k))))

(para
CPS(e1; �v:(pass v s))

...
CPS(en; �v:(pass v s)))))

CPS((call/mp func); k)
= CPS(func; �f:(letrec ((p (multiport reify(k))))) (f p reify(k))))

CPS((call/sp func); k)
= CPS(func; �f:(letrec ((p (singleport reify(k))))) (f p reify(k))))

CPS((throw e1 e2); k)
= CPS(e1; �p:CPS(e2; �v:(begin (enq-port v p)

(para (deq-port p)

(reify(k) v)))))

CPS((exclusive func); k)
= CPS(func; �f:(letrec ((f' (exclusive f))) (reify(k) f ')))

CPS((die); k) = (die)

reify(�v:exp) = (lambda(v) exp[v/v])

Figure 5.3: The CPS transform algorithm for parallel constructs

78

f7 = LAMBDA v5

END v5

s1 = SYNC f3 2 f7

p1 = BUILD-PORT s1 1

p2 = BUILD-PORT s1 2

PARA

PASS 1 p1

PASS 2 p2

Since a two-argument function is called, two synchronous ports and a synchronizer

are built. Our idea is to keep a parallel expression in CPS form, while dealing with side

e�ects concerning parallelism and synchronization through shared data structures.

Transforming throw, call/sp and call/mp expressions

The throw expression causes left-to-right evaluation of the arguments to get a port p and

a value v. It passes v to p, and then spawns a new thread which dequeues the port p and

performs the computation encapsulated in the port. 4

In the next example, we introduce our three port operations: < pass; v; p >,

< enq-port; v; p >, and < deq-port; p >. < enq-port; v; p > puts an element v into

the queue for port p. < deq-port; p > dequeues the queue for port p to get a value v,

and starts the computation that follows if no blocking occurs. In some cases, such as bar-

rier synchronization or exclusive access, where the computation following the port cannot

4A port contains internally a pointer to a continuation function, which will be invoked whenever an

element, if any, is dequeued from its internal queue. Invoking this continuation performs the computation

that is called encapsulated in (or following) the port.

79

proceed, the deq-port operation will not dequeue elements from the queue. Instead, the

elements will stay in the queue until blocking is released. This preserves the order in

which elements are sent to a port, and is important in stream based programming.

The pass operation generally combines enq-port and deq-port. The reason to de-

compose it into two operations is for the implementation of throw. As shown in �gure 5.3,

to throw an element into a port, we have to enqueue it before spawning a new dequeuing

thread. This guarantees an observationally atomic throw, that is, the values thrown by

the same thread to the same port will arrive in the order in which they are thrown.

The call/mp and call/sp expressions cause the creation of asynchronous ports ex-

plicitly. Here is an example combining call/sp and throw.

The expression (call/sp (lambda(p) (throw p 1))) can be transformed to:

LETREC

f1 = LAMBDA v1

END v1

p1 = SINGLEPORT f1

f2 = LAMBDA v2

PASS v2 p1

f4 = LAMBDA P f3

LETREC

f5 = LAMBDA v4

APPLY f3 v4

ENQ-PORT 1 P

PARA

APPLY f5 1

80

DEQ-PORT P

APPLY f4 p1 f2

Transforming the exclusive expressions

The exclusive construct is not implemented at the compiler level. The locking and

ordering mechanism depends on the facilities provided by the underlying platform, so it

is implemented in the run time system. The compiler simply binds a new identi�er for

every occurrence of the exclusive construct.

For example, the ((exclusive (lambda(x) x)) 1) will be transformed into:

LETREC

f3 = LAMBDA X f2

APPLY f2 X

f1 = EXCLUSIVE f3

f5 = LAMBDA v3

END v3

APPLY f1 1 f5

5.3.3 Mutual Recursion and letrec

In our CPS transform, we keep the letrec expression as our basic binding construct. (The

let forms have been translated as lambda applications.) letrec is used to represent

mutually recursive functions primarily. Unfortunately, unlike other languages such as

ML, Scheme's letrec also introduces circular de�ned objects because the bindings are

not restricted to lambdas. Therefore, there could be expressions like:

81

(letrec ((x x)) x) or (letrec ((x1 x2) (x2 x1)) x1)

They are well de�ned in the syntactic letrec de�nition, but will return unexpected

objects depending on implementation.

Our Pscheme compiler, however, rejects such circular de�nitions among objects other

than lambda expressions. That is, mutual recursion applies only to lambda de�nitions.

For non-lambda objects de�ned in the same letrec, there can only be non-circular de-

pendencies among them. As a result, we can reorder all non-lambda bindings so that

there is no forward reference among them.

Recall that aside from data structure building operations, a binding expression bexp

can also be a CPS expression containing none of these control constructs: apply, para,

pass, end and die. If no control construct appears in a letrec binding part, the CPS

transform is simply applied to each of the binding expressions. If, however, the ith non-

lambda binding contains a control instruction, we perform the following transform before

the CPS transform.

(letrec ((f1 lbd1) .. (fm lbdm) (x1 e1) .. (xi ei) .. (xn en))

body)

+

(letrec ((f1 lbd1) .. (fm lbdm)

(x1 e1) .. (xi�1 ei�1) (xi nil) .. (xn nil))

(set! xi ei)

...

(set! xn en)

body)

The assignment conversion is needed again for such letrec expressions that generate

82

new assignments during the transform. At last, after the CPS transform, the binding of

the letrec expression will contain only those bexp instructions de�ned in section 5.1.

Our treatment of the letrec form saves unnecessary indirection caused by mutual

recursion. Keeping the constructs for de�ning mutually recursive functions allows as

many functions as possible to share the same closure record, as long as we de�ne them in

the same letrec. This is what the next compilation stage, closure conversion, is based

on.

5.4 Free Variable Set Computing and Hoisting

As we have mentioned above, a compiled Pscheme program is a big letrec construct with

many mutually recursive functions de�ned at the tope level. This requires a structural

rearrangement of the whole letrec expression. The principle is to move as many functions

as possible into the same letrec. This is an auxiliary stage called hoisting in our compiler.

Hoisting removes unnecessary nested bindings, and is performed before the closure

conversion stage, and also before the thread abstraction stage. In general, transforming a

hoisted expression produces less redundancy than transforming an unhoisted expression.

On the other hand, since the transformation is a recursive traversal of the expression

tree, it usually generates some redundant nestings. This auxiliary stage helps remove

them. Remember that after the scope analysis stage, every identi�er has a unique name,

so generally we need not worry about the scope of any identi�er when rearranging an

expression.

The two basic cases in which nesting can be removed are:

(letrec def-list1 (letrec def-list2 body))

! (letrec append(def-list1,def-list2) body)

83

(letrec ((x1 e1)..(xi�1 ei�1)

(xi (letrec ((y1 e01)..(ym e0m)) bodyi))

(xi+1 ei+1)..(xn en))

body)

! (letrec ((x1 e1)..(xi�1 ei�1)

(y1 e01)..(ym e0
m
)

(xi bodyi)

(xi+1 ei+1)..(xn en))

body)

There are cases, however, in which we have to take care of scopes. That is when new

bindings are introduced by lambda expressions. Consider the expression:

(letrec def-list1 (lambda(x) (letrec def-list2 body)))

We can transform it to be

(letrec append(def-list1,def-list2) (lambda(x) body))

if x does not occur free in def-list2. The principle applies to the second basic case, too.

In general, if the binding part of a letrec expression should be lifted out of a non-letrec

binding such as a lambda, primop, content, or assign expression, a scope check is

necessary to see if the new bound variable occurs free in the lifted part.

For example, the expression

(letrec ((f1 (lambda(x1) (letrec ((y1 x1)) y1)))

(f2 (lambda(x2) (letrec ((y2 1)) 2))))

84

PPS form :

LET

F1 = LAMBDA X1 f1

LET

Y1 = BIND Y1 X1

APPLY f1 Y1

F2 = LAMBDA X2 f3

LET

Y2 = BIND Y2 1

APPLY f3 2

PRIM + 1 2 v8

LET

Z = BIND Z 3

END F2

Hosted form:

LET

F1 = LAMBDA X1 f1

LET

Y1 = BIND Y1 X1

APPLY f1 Y1

Y2 = BIND Y2 1

F2 = LAMBDA X2 f3

APPLY f3 2

Z = BIND Z 3

PRIM + 1 2 v8

END F2

Figure 5.4: An example of hoisting

85

(+ 1 2)

(letrec ((z 3)) f2))

can be transformed as shown in �gure 5.4. The letrec in f2's binding can be lifted but

the one in f1's can not due to the free variable x1.

In order to perform hoisting, we have to compute the free variable set for each expres-

sion. The free variable set computation is also a recursive traversal through the expression

tree. The more tedious part is to maintain the free variable set during hoisting so that an

expression node will correctly have its free variable information although it is rearranged.

The free variable set is also essential for the the next transform stage { closure con-

version, a transformation that makes functions have no free variables.

5.5 Closure Conversion

A CPS expression is used in a compiler's intermediate representation because it is very

close to the instructions of a Von Neumann machine. Function calls are just control

transfers. However, the notion of functions is less primitive than on the Von Neumann

machine because a CPS function has free variables. Therefore, a function representation

must have free variable information aside from code information. Such a representation is

more complicated than the instructions on the Von Neumann machine. Looking up free

variable information also makes the function application more expensive.

One technique to transform functions into forms in which no function has free variables

is the closure conversion. 5 Since a closure contains information for the code as well as

the free variables, if it can be passed as a function argument, all the information that a

function needs can be found in it, thus the function needs no reference to those original

free variables. In other words, closure conversion makes the closure representation explicit

5There is another technique called lambda lifting proposed by Thomas Johnson [41].

86

at the language level. Closure construction and free variable lookups become language

instructions, too. The explicit representation of closure operations also makes the internal

representation more machine independent.

Speci�cally, the idea is to let a function with free variables take one more argument,

its own closure, so that any free variable can be referenced through the closure argument.

Therefore, the function is closed. The caller of this function, on the other hand, has to

pass an extra closure argument. The closure is constructed in the same binding block

where the function is de�ned so as to be visible to all call sites.

Since the closure is distinguished from the function, whenever there is a function

object passed, stored or returned, we pass, store or return the closure object. Whenever

a function is called, we invoke the lambda object.

In our implementation, closures are records with several �elds of code pointers followed

by several �elds of free variable values. Functions are all represented uniformly in a closure

passing style. However, explicitly constructing a closure for each function is too expensive.

Our hoisting stage has put as many function de�nitions as possible in the same letrec

binding block. These functions de�ned in the same binding block have the same lexical

environment, so it is reasonable to let them share a closure record. The free variables in

the shared closure record are the union of all sharing functions' free variables, and the

code pointer �elds are naturally pointing to these sharing functions' codes. Since free

variable �elds follow code pointer �elds, the closure for each function can be expressed by

the base address of the shared record and an o�set.

Figure 5.5 shows a simple example of how the closure conversion transforms the input

expression (letrec ((f (lambda(x) x)) (f 0))). In the transformed expression, F

and f4 are two closures sharing the same record, and the code �elds point to lambda F'

and f4' respectively. When F' (that is F''') is called, its self-closure F is passed as the

87

Input expression:

(letrec ((f (lambda(x) x))) (f 0))

Continuation passing style: (hoisted)

LETREC

F = LAMBDA X f1

APPLY f1 X

f4 = LAMBDA v4

END v4

APPLY F 0 f4

Closure passing style: (hoisted)

LETREC

F' = LAMBDA F'' X f1

LETREC

f1' = SELECT f1 0

APPLY f1' f1 X

f4' = LAMBDA f4'' v4

END v4

F = CLOSURE F' f4'

f4 = OFFSET F 1

F''' = SELECT F 0

APPLY F''' F 0 f4

Figure 5.5: An example of closure conversion

88

�rst argument of F' (although there is no free variable in the original F). Again, hoisting

is performed after closure conversion for subsequent processing.

Closure sharing is sometimes restricted. Functions de�ned in the same letrec binding

cannot shared a closure record if it results in circularity. For example, the input expression

in �gure 5.6 is legal because there is no circularity among non-lambda objects. But,

closure conversion with sharing creates circularity among closure F and variable X. A

correct transformation needs a dependency check to partition bindings into groups for

shared closure records. In the second transformation, F and G do not share a closure, and

no circularity is created.

5.6 Thread Abstraction

Our execution model is to express a sequential thread with a series of CPS function

applications, and to describe parallelism through data structures (ports) and the thread

spawning construct para, which takes a list of CPS expressions. The Pscheme compiler

abstracts these CPS expressions into the form of function applications. That is, using one

function application to represent a series of function applications.

Thread abstraction is the last stage of transformation. It transforms argument expres-

sions of every para expression into a function application form so that it is easy to store

it into data structures in the run time system.

A thread can be abstracted by computing its free variables, and creating a new function

taking those free variables as arguments. For example, the expression

PARA

PASS 1 p1

PASS 2 p2

can be abstracted to be:

89

Input:

(letrec ((f (lambda() 1))

(x f)

(g (lambda() x)))

0)

Transform 1: closure sharing causes circular definition

LETREC

F' = LAMBDA F'' f1

LETREC

f1' = SELECT f1 0

APPLY f1' f1 1

G' = LAMBDA G'' f3

LETREC

X' = SELECT G'' 1

f3' = SELECT f3 0

APPLY f3' f3 X'

F = CLOSURE F' G' X

G = OFFSET F 1

X = BIND X F

END 0

Transform 2: closure conversion without sharing

LETREC

F' = LAMBDA F'' f1

LETREC

f1' = SELECT f1 0

APPLY f1' f1 1

F = CLOSURE F'

X = BIND X F

G' = LAMBDA G'' f3

LETREC

X' = SELECT G'' 1

f3' = SELECT f3 0

APPLY f3' f3 X'

G = CLOSURE G' X

END 0

Figure 5.6: Closure conversion with restricted sharing

90

LETREC

f1 = LAMBDA v1

PASS 1 v1

f2 = LAMBDA v2

PASS 2 v2

PARA

APPLY f1 p1

APPLY f2 p2

Functions representing thread abstractions are not in CPS form. Since these are all

known functions (the compiler knows all the call sites) , we need not worry about how to

call them (in CPS or not). Again, hoisting is applied after thread abstraction to remove

nested bindings.

At last, we have our intermediate representation, which is close to the instruction level

of a Von Neumann machine. All function de�nitions are lifted to the top level because

none of them has free variables. In fact, a function body can have free reference to other

function (lambda) names, but those are considered label constants, not free variables.

The code generator knows all these de�nitions, too, and will have no problem generating

code for such free references.

We show the whole transform process through the parallel sum example in appendix

A.

5.7 Heap-based Code Generation

To generate C code that are as portable as possible, we leave the implementation of ports

and all the parallel control primitives to the run time system.

The execution model that Pscheme compiler assumes is queue-based multiprocessing

91

with a shared heap. That is, any thread newly created is put in a global shared task

queue. A number of processors keep taking thread abstractions from the task queue to

execute. Coordination among threads are through ports. Any thread returning a value

to the top level signals the completion of the whole computation.

Due to the global naming space, we use a shared heap to store all objects. Since C

is not a tail recursive language, our CPS representation is translated into C di�erently.

Because a sequential thread is composed of a series of tail calls, that is, a series of control

transfers, we can use a dispatching function to transfer control. Calling a function can be

translated as the caller returns the callee's code address to the dispatching function, and

let the dispatching function call it. Thus, we have the same e�ect as the tail recursive

language.

For each thread, we only need to allocate one activation frame because the caller's

frame can always be overwritten by the callee's. All pointers (for instance, in a cons-cell,

port, or closure) go to the shared heap, so overwriting the caller's frame will not cause

the loss of information about any object.

The heap is an array in C. The frame for each thread works as a set of virtual registers

on a processor. The size need not be large for every CPS function is light weight and

contains only a few temporary variables. The frame's actual layout may depend on the

platform. Currently, we use register variables in C, and do not perform real register

allocation.

The dispatching function interacts with the compiled functions through a dispatching

loop so as to achieve the same e�ect as Pscheme function's tail calls. A simpli�ed version

of the dispatching loop may look as follows:

while (!Done)

start = (function_ptr) (*start)();

92

Given a thread abstraction, we can initialize start to be our starting function to apply.

The intermediate representation of a transformed Pscheme program is a big letrec

form with all the lambdas de�ned at its top level (which is good for C does not support

nested de�ned functions). Before code-generation, the compiler computes the frame size

(that is, number of arguments and temporary variables) needed for each lambda. This is

the necessary information for the garbage collector to traverse activation frames.

Generating code for binding a variable to a lambda f causes the de�nition of a C

function f , and the construction of a lambda object containing information for the code

pointer to f , its frame size, and locking information (explained in the next chapter). Gen-

erating code for binding a variable to a non-lambda object simply causes the construction

of the object. The main body of the top level letrec is abstracted into a function with

zero arguments. An application of this function is put in the global task queue initially

so that the run time system can start the whole computation with this initialized task

queue.

All parallel primitives are translated into function calls to the run time system. These

operations, as well as Scheme's primitive operations are the only function call instructions

in the code generated by the compiler.

93

94

95

Chapter 6

The Run Time System

6.1 The Execution Model and The Current

Platform

Our run time system assumes a shared memory machine. As mentioned in last chapter,

the execution model is characterized as follows, and is shown in �gure 6.1.

� queue-based multi-processing: A �xed number of virtual processors keep executing

threads in a global shared task queue. [21]

� A thread represents a series of tail calls to compiled Pscheme functions.

� A tail call transfers control back to the dispatching function, and the callee is then

dispatched.

� Thread coordination is achieved through shared ports and the shared task queue.

� All the shared objects are in the global shared heap, and the heap can be garbage

collected.

The run time system contains

� the implementation of all parallel primitives,

task

task

task Global
 Task
Queue

 HeapTop

HEAP

 Shared Space

Virtual Processors

Activation Frames

P1 P2 Pn

. . .

. . .

..

Figure 6.1: Pscheme's execution model

96

� an ordering mechanism,

� a garbage collector for the shared heap,

� a function dispatcher for sequential threads,

� a resource manager providing semaphores, queues, locks etc., and

� the implementation of all Scheme's primitive functions.

It is currently running on NYU Ultra II computer, which is a shared memory 8-processor

machine [26,57]. Processors are 8M Hz MC68010 chips. The machine has a 32KB cache

and 4MB user memory. When the 16-processor 64 MB Ultra III is available, we will be

able to port our system onto it.

The key element of the Ultra computer is the hardware primitive fetch-and-add op-

eration, which atomically adds an integer v to an integer variable n in the memory, and

returns the old value of n. Since fetch-and-add is implemented with non-blocking parallel

access to a shared word, it is naturally used to implement locks, semaphores, synchronizing

barriers or parallel FIFO queues. [27]

Provided with these mechanisms, it is easy for our run time system to provide a

shared heap with parallel access because the heap top pointer can be fetch-and-add'ed in

parallel. Ports also support parallel access due to parallel FIFO queues, and together with

locks and semaphores, they help implement an ordering mechanism, which is essential for

exclusive functions and stream based programming. Also, of course, the global task queue

is accessed in parallel. Synchronizing barriers are used in our garbage collection protocol

to stop virtual processors and to reactivate them.

97

6.2 Implementation of The Run Time System

Before starting to execute the compiled program, the run time system will spawn a �xed

number of virtual processors (no more than the number of real processors { 8), which are

unix processes executing the same code. All of them are concurrently reading the global

task queue and trying to take thread abstractions o� the queue to execute. The global

task queue has only one thread abstraction in the beginning. When a thread abstraction

is taken by a virtual processor, it is handed to a dispatching function, and a series of

function calls follows as it enters the dispatching loop. Those virtual processors having

no threads to execute will keep reading the global task queue until it gets one to execute.

Whenever a virtual processor executes a para command, one or more new thread

abstractions will be put into the task queue. Whenever one executes a die command,

or any parallel primitive causing it to idle itself, it performs a context switch, meaning it

accesses back to the task queue to take the next thread available to execute.

During the execution of a sequential thread, there can be primitive function calls.

Recall that in the intermediate representation, the primitive function call is in a semi-CPS

form. That is, no continuation argument is explicitly passed as its argument. Instead, the

result is bound to a new variable, and the computation proceeds with this new binding.

Therefore, all primitive function calls are directly implemented in terms of C function

calls without going through the dispatcher.

Dynamic type checking is performed at each entrance to primitive functions. Symbolic

primitive operations are mostly heap based pointer manipulation. Numerical primitive

operations are not implemented according to Scheme's number system. Instead, we use

C's number system.

Every object has a 4-bit type tag. The types are CHAR, BOOLEAN, QUOTED SBL, INTEGER,

REAL, CELL, CONS CELL, LAMBDA, CLOSURE, STRING, VECTOR, SYNC PORT, ASYNC PORT, and

98

SYNCHRONIZER. The constant nil is of type BOOLEAN, and has the value FALSE. Ports

captured at the language level are of type ASYNC PORT, and ports constructed implicitly

by pcall are of type SYNC PORT. String constants are not stored in the heap. Instead, they

are in an auxiliary shared memory which will be described in the next section. Detailed

internal representation of objects can be found in Appendix B.

6.3 Storage Management

In our run time system, each virtual processor executes a sequential thread that is com-

posed of a series of tail calls. The local space it needs is the current activation frame,

which is implemented as a local object array. Calling a function causes the loading of ar-

guments onto the activation frame. Temporary variables in a function are also allocated

in the frame. Heap allocation is performed whenever a pointer is needed to construct

an object. All pointers point to the heap so that no object is lost when a new frame

overwrites the old one, and every pointer can be shared.

For example, constructing a closure allocates heap space for the shared record while

the closure object containing the record pointer may be stored in current activation frame.

Similarly, a cons-cell can be stored in the frame with its car and cdr �elds pointing to the

heap.

The heap stores only shared language-level objects. There is other shared space avail-

able for data elements invisible at the intermediate representation level such as shared

queues, shared queue elements, locks and semaphores etc. We use another piece of preal-

located shared space for them, and there also can be pointers to them from the frame or

the heap. However, this piece of shared space cannot be garbage collected because inter-

nal pointers of library-provided constructs (queues, locks and so on) are not accessible.

As mentioned in last section, string constants are also stored in this shared space.

99

6.4 Garbage Collection of The Shared Heap

The global shared heap is composed of two halves. One is in use (called the from-space).

When it is exhausted, garbage collection is initiated, and live objects are to be copied to

the other half (called the to-space). Cheney's copying collection algorithm [11] is among

the simplest to implement. It is essentially a breadth-�rst traversal that copies objects

from the from-space to the to-space. An object that has been visited contains a forwarding

pointer that redirects any re-visits. The traversal starts from the activation frames of all

threads and all thread abstractions in the global task queue.

Since there are more than one virtual processors allocating space from the shared heap,

we need a protocol to stop all virtual processors and let one of them perform garbage col-

lection when the heap is exhausted.

GC polling protocol:

A virtual processor stops for GC only when it fails to allocate enough space from the heap

or it sees the GC request from another when context switching.

The GC polling happens only when a virtual processor performs context switching,

that is, it has completed (or cannot go on further) the current thread and ready to take

another from the task queue. When a virtual processor makes a GC request, it checks if

it is the �rst one requesting GC. If so, it waits for every one to stop through a barrier. If

not, it simply stops at the barrier. If a virtual processor is not polled or needs no heap

allocation, it simply keeps running.

100

6.5 The Ordering Mechanism

Order preservation is an essential issue in Pscheme because ports are viewed as FIFO

constructs, and di�erent threads executing the same code need to be ordered through the

use of ports and exclusive functions. This is often seen in stream-based programming

examples. A stream of data elements may go through several processing stages. The

output stream has to preserve the same order as the input stream.

Ordering is guaranteed in the run time system by locking and the use of ports. Ports

are implemented with FIFO queues. An element can be dequeued from the port (syn-

chronous or asynchronous) only when it will not out race previous dequeued elements.

For example, if an asynchronous port p is connected 1 to a synchronous port q, in order to

dequeue p and then enqueue q, we have to block subsequent dequeues until the enqueuing

of q is done. This happens in the case of a pcall expression when the arguments' current

ports are captured. For example, in the expression

(pcall f

(call/mp (lambda (p1) ...))

(call/mp (lambda (p2) ...)))

p1 is a captured asynchronous port, which may keep receiving values, but in the imple-

mentation, a synchronous port p1' is also built because of pcall. A value v dequeued

from p1 is passed to a continuation k, which enqueues v into p1'. If we make the in-

vocation of k exclusive 2, we are guaranteed that values thrown to p1 repetitively will

be enqueued to p1' in the same order. In this case, we say that p1 is connected to p1'

through the continuation k.

1to be explained later

2Actually, k's access lock is examined before v is dequeued from p1)

101

At the language level, programmers usually enforce the order through exclusive func-

tions. For example, a �ltering function for a data stream must be exclusive so that data

elements can be explicitly thrown to the port leading to that function. When we are

to dequeue the port and then call the exclusive function, we have to get access to the

exclusive function (and thus lock it) �rst before any element is taken o� the queue. This

is because once data elements are dequeued, their order is lost. Both asynchronous ports

and synchronous ports can lead to exclusive functions. This principle is obeyed in any

case in our implementation of port related primitives such as dequeue and pass.

6.5.1 Implementation of Exclusive Functions

Exclusive functions are not implemented in the compiler. In the intermediate representa-

tion, the instruction <exclusive, f > constructs a lambda object f 0, which is the same as

the lambda object f except that its access is exclusive. An exclusive lambda can appear

in the �eld of any closure record. An exclusive closure is just a closure with an exclusive

lambda as its �eld 0.

Our internal representation of a lambda has a �eld containing a pointer to a semaphore.

If this pointer is not null, the lambda is exclusive, and calling the lambda requires the

P operation on the semaphore �rst. If this pointer is null, the lambda is non-exclusive.

Constructing an exclusive lambda does not build a queue to store calling requests.

Threads contending for a call to an exclusive lambda will be busy-waiting at the

semaphore. For a port p leading to an exclusive function f , repetitively throwing val-

ues to p has the same e�ect as storing ordered calling requests to f . Therefore, we do not

need another queue for f to store calling requests.

Releasing locks on exclusive lambdas is a little more complicated because our program

is in CPS form, and there is no return operation in CPS form. But, since every function

102

except continuations takes a continuation argument, we know that when that continua-

tion is invoked, the original function returns. Therefore, whenever an exclusive lambda

is called, we store its semaphore in its continuation argument. But the continuation ar-

gument is a closure, so we actually store the semaphore in the closure's �eld 0, the real

continuation function (a lambda object). Later on, when that continuation is invoked,

we perform the V operation on that semaphore so that subsequent requests to call the

exclusive lambda can be satis�ed.

This approach works under the assumption that no continuation is exclusive so that

the semaphore �eld of a lambda is not overloaded. Since continuations are all constructed

by the compiler, they will not be exclusive. 3

In addition to continuations, semaphores for exclusive lambdas have to be stored in

each virtual processor as well because a die in the body of an exclusive lambda also

releases the lock. As seen in our operational semantics, a die causes a trace all the way

to the top level to release the locks for all nested exclusive function calls in the current

thread. In the run time system, each virtual processor control block contains a stack

of semaphores. Calling an exclusive lambda pushes its semaphore onto the stack., and

releasing the lock for an exclusive lambda causes a pop on that stack. Clearly, a die

empties the stack.

3except when a continuation is used to connect two ports, it has to be exclusive to guarantee elements

enqueued to the second port have the same order as they are dequeued from the �rst port. (Please refer to

last section for more explanation.) But, such a continuation function cannot possibly be the continuation

argument of any user-de�ned exclusive lambda, so it does not violate our assumption.

103

104

105

Chapter 7

Performance

In this chapter, we show the performances of several sample programs. We will see how

parallel Pscheme programs scale up in our system. We will also compare the performance

of sequential Pscheme programs on Sun work stations with their performances on our

current run time system.

7.1 Sample Parallel Programs

To observe the speedup of parallel programs in our implementation, we use the four

samples:

� Parallel summation of integers from 1 to n.

� Quicksort a list of numbers

� The N-queens problem

� Computing Fibonacci numbers

The source codes of these four samples are provided in �gure 7.1 and �gure 7.1. The

N-queens problem is to calculate the number of solutions for putting n queens on a n by

(define (sum m n) ; parallel sum

(cond ((eq? m n) m)

((eq? n (+ 1 m)) (+ m n))

(else (let ((x (/ (+ m n) 2)))

(pcall + (sum m x) (sum (+ 1 x) n))))))

(define (fib n) ; Fibonacci number

(if (<= n 3)

n

(pcall + (fib (- n 2)) (fib (- n 1)))))

(define (qs num-list) ; quicksort

(cond ((null? num-list) nil)

((null? (cdr num-list)) num-list)

(else

(let ((pivot (car num-list)))

(let ((l-r (partition pivot (cdr num-list) nil nil)))

(pcall append

(qs (car l-r))

(cons pivot (qs (cdr l-r)))))))))

(define (partition p l l-buf r-buf)

(if (null? l)

(cons l-buf r-buf)

(let ((x (car l)))

(if (< x p)

(partition p (cdr l) (cons x l-buf) r-buf)

(partition p (cdr l) l-buf (cons x r-buf))))))

(qs (create-list 200))

Figure 7.1: Three sample programs for parallel performance

106

(define (queen n) (find-all n nil 0))

(define (find-all n board len)

(if (eq? n len)

1

(letrec

((loop (lambda(v)

(if (safe board v 1)

(pcall +

(find-all n (cons v board) (+ 1 len))

(if (< v n) (loop (+ v 1)) 0))

(if (< v n) (loop (+ v 1)) 0)))))

(loop 1))))

(define (safe board elt distance)

(if (null? board)

#t

(let ((last (car board)))

(if (or (eq? elt last)

(eq? elt (+ last distance))

(eq? elt (- last distance)))

#f

(safe (cdr board) elt (+ distance 1))))))

(queen 6)

Figure 7.2: Sample program for the N-queens problem

107

n chess board so that they cannot attack one another. Computing Fibonacci numbers is

via the parallel version of the recursive program with exponential complexity.

We vary the number of pre-spawned virtual processors to see how these programs

speed up. Due to the memory limitation (4MB user space), we are unable to perform

experiments with large amount of parallelism (that is, large input) . Here we provide the

results of running these four programs with small parameters in �gure 7.3.

Each of these programs has a very �ne granularity. This a�ects the absolute per-

formance because we only have a �xed number of virtual processors to execute a large

number of threads in the global task queue, and no dynamic control of parallelism is

provided. On the other hand, the speedup is good for programs with enough parallelism.

The parallel summation program and the computation of Fibonacci numbers scale up well

because of large and stable parallelism.

The quicksort program scales up the worst because there might be very uneven parti-

tioning of a random list, and not enough parallelism may be generated. As the number of

virtual processors increases, memory and bus contention increases. If there is not enough

parallelism, the performance may scale poorly. The 6-queen problem has a better speedup

than quick sort, but worse than parallel sum and Fibonacci. The speedup curve for these

four samples is shown in �gure 7.4. We expect better scalability for the quick sort and

N-queens problem when the input parameter is larger.

Two important factors of parallel programs' performance are the degree of parallelism

and locality. Pscheme is a shared memory language (one requiring no explicit copying

of data in order to make it accessible to some part of the program), and it provides no

mechanism to control excessive parallelism dynamically. Therefore, the implementation

had better be able to take care of such optimizations.

108

0 2 4 6 8
0

0.5

1

1.5

2
x 10

4 Parallel sum 1 to 1000

number of processors

tim
e

(m
s)

0 2 4 6 8
2000

4000

6000

8000

10000
Fibonacci 15

number of processors

tim
e

(m
s)

0 2 4 6 8
0.5

1

1.5

2

2.5
x 10

4 N-queen problem (N=6)

number of processors

tim
e

(m
s)

0 2 4 6 8
0

0.5

1

1.5

2

2.5
x 10

4

100
200

300

 Quick sort

number of processors

tim
e

(m
s)

Figure 7.3: Performance of the four parallel sample programs

109

Our current compiler generates C code. All virtual registers and activation frames have

the same access cost as the shared global heap unless the C compiler can successfully cache

these hot spots. If the compiler generates assembly code and allocates machine registers

directly, the locality can be improved.

Since programs in applicative languages are highly recursive, it is easy to create a lot

of parallel tasks which consume resources quickly. To control excessive parallelism, some

languages allow users to query the system load to decide whether to generate more tasks.

For example, Qlisp [25] users can check if the global task queue is empty. Pscheme does

not provide any such meta-level information at the language level. One way to solve this

problem in the run time system is to apply an unfair scheduling policy as in Multilisp

implementation [29,43,44]. That is, a newly created task is put in a local LIFO task

queue for the creating processor. A processor with an empty task queue can steal tasks

from other processor's task queue. The unfair scheduler simulates the sequential LIFO

behavior to prevent combinatorial explosion of parallelism in a recursive program. At the

same time, better locality can be achieved. Our run time system has not su�ered from the

problem of excessive parallelism when input is not too large in the experiments. When

the memory limitation is relieved, we may modify the global task queue model to apply

the unfair scheduling policy in order to experiment with large inputs.

7.2 Stream Based Programs

In chapter 3, we demonstrated two examples of stream based programming { quicksort

and merge sort. The source code can be found in �gure 3.13 and �gure 3.14. These two

examples show another dimension (vertical) of parallelism, and are expected to have a bet-

ter performance speedup than programs exploiting only horizontal parallelism. Figure 7.5

shows the results of running these two programs with small inputs.

110

1 2 3 4 5 6 7 8
1

2

3

4

5

6

7

8

psum 1000
fib 15
queen 6
ms 100 (streamed)
qs 100 (streamed)
qs 100

.......
-.-.
+
o
*

linear

speedup

number of processors

sp
ee

du
p

Figure 7.4: Speedup curve for all sample programs

111

0 2 4 6 8
0

0.5

1

1.5

2

2.5
x 10

4

150

100

50

quick sort

number of processors

tim
e

(m
s)

0 2 4 6 8
0

1

2

3

4
x 10

4

100

50

merge sort

number of processors
tim

e
(m

s)

Figure 7.5: Performance for two stream based programs

112

Stream based programming is very resource consuming because data elements in a

stream are implemented as light weight tasks. On a machine with a small number of

processors or not supporting massive parallelism, the absolute performance su�ers from

insu�cient resource or excessive parallelism. However, there will always be enough par-

allelism to keep all processors busy, so these programs scale up better. As we can see

in �gure 7.4, stream based quicksort has a larger speedup factor than normal parallel

quicksort (although contention still a�ects it much when more processors provided), and

merge sort's speedup is even larger. One reason that the speedup is not as satisfactory as

for psum or fib is that processors spend more time busy waiting due to the heavy use of

exclusive functions (though busy waiting implementation of exclusive functions decreases

context switching and improves absolute performance).

The experiment tells that more non-trivial parallelism can be obtained via the use of

streams. It also tells us, however, that stream based programming is more feasible when

the language is implemented on a machine supporting massive parallelism. In any case,

users are provided with the possibility to explore more useful parallelism in Pscheme.

7.3 Sequential Programs

In a practical computation, the absolute performance is as important as the scalability.

We would like to observe the execution of sequential programs to see how e�cient the

codes that Pscheme compiler generates can be. To exclude any slow down factor in our

run time system, we run the generated codes on top of a sequential run time system,

which contains no global task queue or virtual processors, but only a dispatching loop.

Experiments are performed on a Sun3 (MC68020 CPU, 15M Hz clock) and a Sun4

(SPARC, 20M Hz clock) architecture respectively. Sequential sample programs are still

the summation and Fibonacci. The Pscheme codes are in �gure 7.6.

113

(define (sum m n) ; sequential sum

(if (eq? m n)

m

(+ m (sum (+ m 1) n))))

(define (fib n) ; Fibonacci number

(if (<= n 3)

n

(+ (fib (- n 2)) (fib (- n 1)))))

Figure 7.6: Two sequential sample programs

sun4 sun3 no. of processors on Ultra
1 2 3 4 5 6 7 8

sum 500 96 320 1750 1750 1812 1937 2125 2312 2563 2813

sum 1000 196 620 3375 3500 3500 3813 4187 5750 5187 5687

�b 10 14 40 188 250 188 250 250 375 313 375

�b 15 142 460 2375 2438 2500 2750 2938 3187 3563 4000

Table 7.1: Execution time (ms) of sequential programs on di�erent platforms

sum �b
10000 20000 30000 20 21 22

Pscheme 1754 3590 5260 1492 2413 3908

SCM 766 1633 2216 417 716 1050

Table 7.2: Execution time (ms) of sequential programs through di�erent implementations

114

We compare the performance with that of our run time system on Ultra computer (8M

Hz MC68010 CPUs). The generated C codes for these samples are compiled through the

same compiler: cc. From table 7.1, we see that sequential programs can have a slow down

factor about 1.7 to 2 at worst. This explains how much the memory or bus contention

on Ultra computer can a�ect the performance. As we have seen, the sequential programs

run faster on faster platforms. But, how e�cient are these sequential codes generated

by the Pscheme compiler? We make a comparison here with SCM [40] in table 7.2 by

running the same Scheme programs on the same platform (Sun3). It shows that the codes

generated by the Pscheme-to-C translator and the C compiler will be two to four times

slower.

The experiment tells us how much the absolute performance is a�ected by the con-

tention on a parallel machine, and how much ine�ciency is caused by indirect code gener-

ation through C for the purpose of portability. This means that the continuation-passing,

closure-passing transform approach in the Pscheme compiler can produce intermediate

representation that is e�cient enough for the code generator. We expect competitive

performance if machine codes can be generated directly.

In conclusion, Pscheme programs will have a good performance if

� the underlying machine supports massive parallelism,

� improved scheduling policy is provided in the run time system to control excessive

parallelism, or

� e�cient machine codes can be generated directly to better utilize machine registers

and the cache memory.

While our goal is to add more expressive power in a parallel language, we have shown

that Pscheme can also have satisfactory performance. Although experiments are per-

115

formed only on small inputs, we are able to improve the run time system in larger scaled

machines to get a better speedup. This explains the feasibility of representing general

control in a parallel applicative language. Therefore, programmers are provided with

more expressive power without losing much performance.

116

117

Chapter 8

Related Work

Various parallel programming languages have been proposed. In this chapter, we will make

comparisons among them based on language design issues. The work of designing Pscheme

has bene�ted a lot from the concepts in these languages including two parallel Lisps

Multilisp and Qlisp, the Actors model, Lucid, and proposals for parallel continuations.

8.1 Multilisp and Futures

Most parallel Lisps are shared memory languages with side e�ects because, with explicit

parallelism provided, it is easier to model shared objects containing mutable states with

side e�ects, and easier to express �ner grained parallelism without worrying about copying

shared data from one domain to another. Such a design decision also makes the language

closest to the sequential Lisp counterpart, and hence is adopted by Multilisp, Qlisp and

Pscheme. On the other hand, the way of introducing parallelism varies, and leads to

di�erent programming styles.

The concept of pcall is natural in parallel functional programming. Multilisp has

another primary approach to parallelism { futures 1. Futures enable programmers to

1The idea of futures had been around for a while when Multilisp was proposed, but Multilisp's future

express parallelism at di�erent levels of granularity. It is a more fundamental construct

than pcall in that it characterizes more parallel behaviors and in fact, it can implement

pcall. On the other hand, it is high level enough to save programmers concerns of

synchronization.

Since a future process commits the result it has computed 2 , a future value usually

serves as a constant once it becomes available. When a language supports continuations,

this becomes a problem. The code for the future process can be re-entered through the

invocation of continuations captured inside. The interaction between continuations and

futures makes the semantics for either construct hard to understand. It is suggested that

the meaning of continuations are extended in the spirit that any mixed use of futures and

continuations expects to have the same result as the sequential program without using

futures. However, continuations, based on concepts of sequential computation, cause

problems although there have been proposals to improve the interaction between futures

and continuations [42]. That is why we feel the need to provide an alternative parallel

extension for continuations.

Ports do provide a lower level construct than the future, and can implement more

other parallel constructs. The future implemented with ports as shown in �gure 3.7

restricts multiple returned results. This is guaranteed by a single-port captured at the

future constructing point so that the �rst result that the future computes is committed

as its value.

Exclusiveness is another concern of parallel languages. Multilisp has two low-level

primitives replace and replace-if-eq supported by the Concert platform [3,31], a

32-processor multiprocessor. They are as low level as test-and-set and Ultra com-

is the �rst implementation on real parallel machines.

2Otherwise, there could be problems such as top level parallelism as mentioned in [42].

118

puter's fetch-and-add, and are actually used to implement semaphores, futures and so

on. Pscheme's exclusive seems to provide a higher level mechanism to express shared

objects with mutable values.

8.2 Qlisp

Qlisp's design goal is medium-grained parallelism [25,24,22]. It applies queue-based mul-

tiprocessing to support a variable number of processors, and allows users to check the

task queue to control excessive parallelism.

Computation is in the form of tree-structured processes with AND/OR parallelism

relating them. The OR parallelism is accomplished by a mechanism called heavyweight

future, whose value is computed by several processes. When a value computed by a process

satis�es an end test, the future is realized (or touched), and other processes associated

with the future are killed.

Qlisp provides primitives for explicit process synchronization, process killing, and

locking. Common Lisp's catch and throw are extended so that programmers can use

throw to kill processes 3. This is similar to passing a value to a single-port in Pscheme,

but in Pscheme, no process is killed until processes themselves commit suicide when

passing values to a closed single-port. In Qlisp, the kill-process primitive takes a future

argument and kills all processes associated with it. Locks are available at the language

level together with another locking construct { the process closure qlambda, which is the

same as Pscheme's exclusive function.

A special feature of Qlisp is the PMI functions (partially, multiply invoked functions).

The idea is to separate the coordination of the arrivals of arguments from the processing of

3This is actually the invocation of process continuations except that they cannot be upward continua-

tions, and only serve as non-local exits.

119

them. Applying such a function can be in various forms depending on which parameter(s)

is (are) submitted. That is, a function can be partially invoked as well as multiply invoked.

This is similar to passing values to synchronous ports built by pcall in Pscheme. With

PMI functions, streams can be implemented. Qlisp's approach di�ers from Pscheme in

that data elements in a stream are submitted to PMI functions in the form of function

application, while in Pscheme, explicit throws to the port are used.

Many constructs are introduced in Qlisp to express di�erent concepts, but most of

them can be explained in terms of ports. In Pscheme, ports have a more general meaning

than Qlisp's continuations that are mainly used for non-local exits. Qlisp's PMI functions

are examples of Pscheme's synchronous ports. Qlisp's design philosophy tends to provide

language constructs for all concepts they consider important, but Pscheme does not em-

phasize any particular aspect. Instead, it allows users to build higher level facilities for

various applications.

8.3 Actors

Actors [2] is a model of concurrent computation, which integrates functional program-

ming and object based programming in the sense that computation is performed through

message passing among concurrent active objects (actors) whose behaviors are functional

and can be changed functionally.

Actors can be created dynamically, and communication between them is asynchronous

so that maximal concurrency can be exploited. The language is expressive enough to

model imperative data structures (such as stacks), recursive functions (such as factorial),

and the nodes in a dataow computing environment via the use of dynamically created

actors.

Pscheme's approach to expressing message passing processes is similar to the Actors

120

model in the sense that exclusive function can also be created dynamically, and ports can

be used to store incoming messages. Though Scheme takes a completely di�erent approach

from Actors, embedding ports in Pscheme makes it possible to apply message passing

paradigms. Order preserving channels can be implemented in Actors as in Pscheme,

where values thrown to a port by the same process preserves the sending order.

Actors de�ne an orthogonal active construct in the message-passing paradigm, and

therefore provide a fundamental model for concurrency. The message passing model is

powerful enough to explain most concepts or activities in parallel computation. How-

ever, since message passing is intrinsically operational, it becomes a contradiction to

the declarative programming style. Operational reasoning of parallel computation also

makes programming more di�cult. Pscheme's approach is to support the message pass-

ing paradigm in a declarative context. For example, there is no need to model recursion

through message passing activations. 4 Provided with ports, Pscheme programmers are

able to express middle grained message passing processes, and at the same time, keep the

program declarative.

8.4 Lucid

Lucid is a data-ow language attempting to evolve from functional languages that are

either Lisp-like or have single-assignments (such as ID [7]). It abstracts iteration and

recursion into a higher level form of data streams. Data streams are viewed as lazy

lists with element retrieving operations provided. Computation can be speci�ed through

recursive equations among stream identi�ers while having an iterational semantics. It is

a declarative language, but programmers are encouraged to think operationally in terms

4In the Actors model, each activation of a recursive function becomes a created actor which passes

parameters in the forms of messages.

121

of dataow.

Lucid is designed to completely depart from the Von Neumann model of computation,

and expects to suit well on data-ow architectures. In fact, Lucid is a high level language

but not a parallel language because programmers have no control of parallelism, which is

contrary to Pscheme's design goal.

8.5 Other Models of Parallel Continuations

Hieb and Dybvig's process continuation [33] provides �ne control of parallel processes in

an environment where there is a tree structure relationship among them. That means,

each process has a parent, who spawns it. A process continuation is a partial (or local)

continuation representing the control state captured back to the spawn point. It is actually

the parallel counterpart of Felleisen's F -continuation. [15] Such partial continuations are

functional in the sense that invoking them is like calling a function representing the

captured computation. Capturing them suspends all tasks from below the spawn point

to the capture point. Process continuations are useful to control the parallel search,

implement parallel OR or kill other tasks. On other hand, the degree of parallelism is

quite limited, and they only apply to tree structured parallelism.

PaiLisp [38,39] is another parallel extension of Lisp. It distinguishes single-use and

multiple-use continuations. PaiLisp handles continuations according to the identity of the

process that captures it (processes can be spawned by any expression.) When invoking

a continuation, if the invoking process is the capturing process, sequential semantics ap-

plies (i.e. it is a goto). If not, the invoking process goes on, and the capturing process

abandons its current computation (if any) and unconditionally jumps to the control point

the continuation represents. PaiLisp may not have such precise control as process contin-

uations, but a PaiLisp process has control of other processes in addition to those in the

122

same subtree.

Both versions of parallel continuations, together with the suggested continuation model

in Multilisp, have one point in common. None of them allows the invocation of a contin-

uation to fork a new thread within the invoking process so that activations are actually

disjoint, and thus no race condition stated above will occur. Pscheme has no such limits,

but it provides a die to control the interference among activations.

8.6 Pscheme's Approach to Parallelism

It is mentioned that we consider ports to be the natural parallel extension of continu-

ations. When designing Pscheme, however, we have no intention to de�ne ports so as

to be compatible with continuations or programs with heavy use of continuations. This

di�ers from previous attempts for parallel continuations, and we can thus come up with

an orthogonal construct that is well de�ned across processes, and has its independent

meaning.

Pscheme views parallel computation as a dynamic dataow diagram. Processes do

not have to have a tree-structure relationship. With the ports available, a process is

able to communicate to one that would have been invisible in the process tree. Moreover,

passing an object to a port has nothing to do with transferring control. That is why throw

does not terminate the current thread (though it is a little bit misleading to continuation

programmers).

Since no tree-structure relationship is among processes, Pscheme provides no process

killing primitive except that suicides can be committed through die. Of course, exclusive

functions are needed to enforce order and atomicity in the computation described by the

dynamic dataow diagram.

We think that this aspect (dynamic dataow diagram) of parallel computation is

123

more general, and makes programmers more capable of modeling real world concurrent

activities. On the other hand, Pscheme programmers are not suggested to commit to

a particular programming paradigm. Concepts of ports have made programming much

more exible.

8.7 Comparison in Terms of Expressiveness

The design of Pscheme is actually an integration of the related work stated above. We

start from a parallel Lisp supporting horizontal parallelism and exclusive functions, and

then extend the sequential control mechanism, continuations, into the parallel world.

Therefore, the proposal of ports makes possible parallelism in the message passing and

the dataow style.

In the example of stream based quicksort, processes can be created and passed around

dynamically, which demonstrates the expressiveness as in the message passing Actor

model. A partition cell can function in parallel with its producer and two consumers,

which illustrates not only the vertical parallelism Pscheme can exploit, but the single-

producer-multi-consumer relationship that many dataow or non-strict/lazy languages

have problems to express. Pscheme is more expressive in the sense that control ow can

be relieved from the call-return structure, which expression languages are based on. Also,

ports are more expressive than parallel continuations in the sense that they are clearly

de�ned across thread boundaries.

Aside from those models motivating the design of Pscheme, there are many other

parallel languages pursuing various programming paradigms. For example, the concurrent

logic programming paradigm is not among those Pscheme attempts to model. In the

family of concurrent logic languages, processes are used to solve conjunctive goals, and

shared logical variables serve as communication channels. The implicit communication

124

program process communication aspect of
structure model model parallelism

Ada imperative task sync msg passing

Actors object based actor async msg passing

Futures applicative thread 5 implicit speculative

Linda { implicit shared memory shared
/ anonymous memory

Concurrent logic implicit shared AND/OR
Prologs variable /stream

Dataow declarative implicit implicit dataow
languages

Pscheme applicative ex-function sync/async various
/ thread ports

Table 8.1: Paradigms for various parallel languages

among processes through these shared variables can generates su�cient parallelism to

model stream based programming. (see [60]) For example, the stream based quicksort

can be written in PARLOG declaratively. [28]

Linda [23,10] is a coordination language that provides a shared space (called tuple

space) for tasks to communicate. Synchronization and dataow relationship among tasks

is enforced by tuple space operations implicitly. Linda puts little restriction on program-

ming styles (, which actually depend on mother languages such as C that take care of

the computation part,) because it only cares for the coordination part in parallel compu-

tation. Although a universal shared memory is expressive enough to model all kinds of

process interaction, its aspect of parallelism is far from the message passing model in the

sense that it ignores the locality of communication.

Table 8.1 illustrates the coordination paradigm in various parallel programming lan-

guages or models. We will not make comparisons between the applicative programming

5A thread is a sequential expression in evaluation.

125

paradigm and those adopted by other languages, but we would like to compare Pscheme's

approach to parallelism with those of other models.

We view ports as higher level abstractions that contain information about queuing,

synchronization, and subsequent computation. On the other hand, the implementation

of ports makes them inexpensive (and thus low-level) enough to build up higher level

constructs such as futures, rendezvous objects or asynchronous channels. Pscheme pro-

grammers are suggested to program in a correct style in the sense that ports should be

used to model what is conceptually similar or close to them.

Speaking of the process model, ports can be as expressive as actors (�rst class pro-

cesses). In terms of the communication model, ports serve as message queues, and can

express synchronous or asynchronous communication, either by naming the receiver or

anonymously. 6 As for the aspect of parallelism, ports can express all in the table but

the AND/OR parallelism in most concurrent logic programming languages. The reason

is that there is no tree structure relationship among Pscheme threads, and it is hard to

de�ne the parent-child relation of processes. Therefore, there is no way to kill processes

implicitly as soon as their computation becomes redundant. The shared memory model

is easy to express because Pscheme is a language with global name space, and we have

mechanisms protecting shared variables.

To sum up, the concept of ports is not far from major coordination mechanisms in

various parallel computation models. Pscheme provides optional additional expressiveness

in a declarative programming context.

6Anonymous communication can be done by donating a channel process with an entry port for incoming

messages and an exit port for read requests.

126

127

Chapter 9

Future Work and Conclusion

9.1 Future Work

Most of the work to be done in the future is regarding the Pscheme implementation.

There will be improvement in Pscheme compiler as well as the run time system. System

interfaces will also be implemented to facilitate programming.

9.1.1 Compiler Optimization

Uniform closure conversion may generate expensive code in that not every function needs

to be converted into closure-passing style, and not every function application needs to �rst

select �eld zero from a closure record to get the code to apply. The compiler can perform

some dataow analysis to decide whether to convert a closed function into closure-passing

style so that some run time closure operations can be saved.

The dispatching loop is expensive because a C procedure call happens each time a

compiled function is dispatched. If the compiler can generate code that transfer control to

a known function through the label (i.e. via a goto) without going back to the dispatcher,

many procedure calls can be saved. 1 This technique is used in the SML-to-C translator

1In a CPS transformed, closure converted program, instruction execution is all through the procedure

by Darditi, Lee and Acharya [61]. The dispatcher is still needed for functions that are

not known by the compiler.

As is mentioned in chapter 7, to get better sequential performance, assembly code can

be generated for various platforms, and machine registers will be allocated directly.

9.1.2 Run Time System Improvement

We would also like to have a more portable run time system that does not rely on the

support of fetch-and-add or parallel queues. Queues that serialize requests can be used to

implement ports because the contention among di�erent threads is not high, but the global

task queue had better be implemented without serialization, or can even be replaced by

hierarchical queues that decrease contention. For instance, in Multilisp, each process has

a local task queue, and there is a protocol for processes to retrieve non-local tasks so as

to balance the load.

Dynamic control of excessive parallelism may also be implemented in the run time

system with an alternative task scheduling policy such as in Multilisp.

9.1.3 I/O and System Interface

It is desired to provide I/O functions in Pscheme as well as other system interface primi-

tives such as dynamic loading facility, foreign language interface, timing instructions and

so on.

9.2 Conclusion

This research is an attempt to reason about control in parallel computation. Through our

experiments in the parallel applicative language Pscheme, we found that various control

calls on continuations. A simple control transfer implemented by a calling sequence of several instructions

results in a large slowdown factor, so it should be avoided as much as possible.

128

concepts such as synchronization, blocking and ordering can be explained in terms of

ports, which we claim to be a general control mechanism.

Modeling computation as a dynamic dataow net with the tangible links enables us

to express di�erent aspects of parallel computation, which makes it possible to apply

di�erent programming paradigms in one language. Because of the expressive power, we

conclude that the port plays the same role in parallel computation as the continuation

does in the sequential world.

Pscheme indicates how expressive a parallel language can be. At the same time, we

claim that exposing control details in parallel computation through ports makes the pro-

grams no harder to understand than sequential programs with heavy use of continuations.

In other words, it shows the extent of di�culty for a programmer to reason about or model

parallel computation.

Is programming in Pscheme di�cult? No, if higher level control libraries are provided.

As a matter of fact, it makes it a lot easier to model other aspects of parallel computation

(such as pipelining or message passing) for an applicative language programmer. More

expressive power without sacri�cing the advantage of the original declarative style never

makes programming more di�cult.

How e�cient are Pscheme programs? We have seen good speedups for parallel pro-

grams. Dataow programs, however, have a less satisfactory absolute performance. Also,

programs with �ne-grained parallelism are not e�cient enough. Observing the perfor-

mance of sequential Pscheme programs and the scalability of parallel programs, we think

that, with architectural support, Pscheme can have performance as good as other dataow

languages or languages supporting �ne-grained parallelism.

Our �nal conclusion is: representing general control in parallel computation is feasible.

129

130

131

Appendix A

Transforming The Parallel Sum

Program

A.1 Input Program

(define (sum m n)

(cond ((eq? m n) m)

((eq? n (+ 1 m)) (+ m n))

(else (letrec ((x (/ (+ m n) 2)))

(pcall + (sum m x) (sum (+ 1 x) n))))))

(sum 1 250)

A.2 Continuation Passing Style: (hoisted)

LETREC

f23 = LAMBDA v23 v24 f24

PRIM + v23 v24 v25

APPLY f24 v25

SUM = LAMBDA M N f1

LETREC

f3 = LAMBDA v2

APPLY f1 v2

PRIM EQ? M N v5

IF v5

THEN APPLY f3 M

ELSE LETREC

f7 = LAMBDA v6

APPLY f3 v6

PRIM + 1 M v11

PRIM EQ? N v11 v12

IF v12

THEN PRIM + M N v15

APPLY f7 v15

ELSE LETREC

X = PRIM + M N v19

PRIM / v19 2 v21

BIND X v21

s1 = SYNC f23 2 f7

p1 = BUILD-PORT s1 1

p2 = BUILD-PORT s1 2

PARA

132

LETREC

f28 = LAMBDA v29

PASS v29 p1

APPLY SUM M X f28

LETREC

f34 = LAMBDA v35

PASS v35 p2

PRIM + 1 X v33

APPLY SUM v33 N f34

f37 = LAMBDA v39

END v39

APPLY SUM 1 250 f37

A.3 Closure Passing Style: (hoisted)

LETREC

f23' = LAMBDA f23'' v23 v24 f24

LETREC

f24' = SELECT f24 0

PRIM + v23 v24 v25

APPLY f24' f24 v25

f3' = LAMBDA f3'' v2

LETREC

f1' = SELECT f3'' 1

f1'' = SELECT f1' 0

APPLY f1'' f1' v2

133

f7' = LAMBDA f7'' v6

LETREC

f3'''' = SELECT f7'' 1

f3''''' = SELECT f3'''' 0

APPLY f3''''' f3'''' v6

f28' = LAMBDA f28'' v29

LETREC

p1' = SELECT f28'' 1

PASS v29 p1'

f34' = LAMBDA f34'' v35

LETREC

p2' = SELECT f34'' 1

PASS v35 p2'

SUM' = LAMBDA SUM'' M N f1

LETREC

f23''' = OFFSET SUM'' -1

f3 = CLOSURE f3' f1

PRIM EQ? M N v5

IF v5

THEN LETREC

f3''' = SELECT f3 0

APPLY f3''' f3 M

ELSE LETREC

f7 = CLOSURE f7' f3

PRIM + 1 M v11

134

PRIM EQ? N v11 v12

IF v12

THEN LETREC

f7''' = SELECT f7 0

PRIM + M N v15

APPLY f7''' f7 v15

ELSE LETREC

X = PRIM + M N v19

PRIM / v19 2 v21

BIND X v21

s1 = SYNC f23''' 2 f7

p1 = BUILD-PORT s1 1

p2 = BUILD-PORT s1 2

PARA

LETREC

f28 = CLOSURE f28' p1

SUM''' = SELECT SUM'' 0

APPLY SUM''' SUM'' M X f28

LETREC

f34 = CLOSURE f34' p2

SUM'''' = SELECT SUM'' 0

PRIM + 1 X v33

APPLY SUM'''' SUM'' v33 N f34

f37' = LAMBDA f37'' v39

END v39

135

f23 = CLOSURE f23' SUM' f37'

SUM = OFFSET f23 1

f37 = OFFSET f23 2

SUM''''' = SELECT SUM 0

APPLY SUM''''' SUM 1 250 f37

A.4 Thread Abstraction

LETREC

f23' = LAMBDA f23'' v23 v24 f24

LETREC

f24' = SELECT f24 0

PRIM + v23 v24 v25

APPLY f24' f24 v25

f3' = LAMBDA f3'' v2

LETREC

f1' = SELECT f3'' 1

f1'' = SELECT f1' 0

APPLY f1'' f1' v2

f7' = LAMBDA f7'' v6

LETREC

f3'''' = SELECT f7'' 1

f3''''' = SELECT f3'''' 0

APPLY f3''''' f3'''' v6

f28' = LAMBDA f28'' v29

LETREC

136

p1' = SELECT f28'' 1

PASS v29 p1'

f34' = LAMBDA f34'' v35

LETREC

p2' = SELECT f34'' 1

PASS v35 p2'

f38 = LAMBDA SUM'''''' p1'' f28''' X' M'

LETREC

f28 = CLOSURE f28''' p1''

SUM''' = SELECT SUM'''''' 0

APPLY SUM''' SUM'''''' M' X' f28

f39 = LAMBDA SUM''''''' p2'' f34''' X'' N'

LETREC

f34 = CLOSURE f34''' p2''

SUM'''' = SELECT SUM''''''' 0

PRIM + 1 X'' v33

APPLY SUM'''' SUM''''''' v33 N' f34

SUM' = LAMBDA SUM'' M N f1

LETREC

f23''' = OFFSET SUM'' -1

f3 = CLOSURE f3' f1

PRIM EQ? M N v5

IF v5

THEN LETREC

f3''' = SELECT f3 0

137

APPLY f3''' f3 M

ELSE LETREC

f7 = CLOSURE f7' f3

PRIM + 1 M v11

PRIM EQ? N v11 v12

IF v12

THEN LETREC

f7''' = SELECT f7 0

PRIM + M N v15

APPLY f7''' f7 v15

ELSE LETREC

X = PRIM + M N v19

PRIM / v19 2 v21

BIND X v21

s1 = SYNC f23''' 2 f7

p1 = BUILD-PORT s1 1

p2 = BUILD-PORT s1 2

PARA

APPLY f38 SUM'' p1 f28' X M

APPLY f39 SUM'' p2 f34' X N

f37' = LAMBDA f37'' v39

END v39

f23 = CLOSURE f23' SUM' f37'

SUM = OFFSET f23 1

f37 = OFFSET f23 2

138

SUM''''' = SELECT SUM 0

APPLY SUM''''' SUM 1 250 f37

139

140

141

Appendix B

Internal Representation of

Pscheme Objects

typedef unsigned int heap_ptr; /* index of the heap array */

typedef int (*function_ptr)();

struct b_i_l_s /* bool_int_label structure */

{

heap_ptr forwarding;

int val;

};

struct char_s

{

heap_ptr forwarding; /* forwarding is for GC */

char val;

};

struct real_s

{

heap_ptr forwarding;

float val;

};

struct string

{

heap_ptr forwarding;

short length;

char *val;

};

struct lambda

{

heap_ptr forwarding;

unsigned int is_prim:1;

int hv_no;

function_ptr code;

bw_sem_t *sem;

};

142

struct cons_cell

{

heap_ptr car; /* forwarding */

heap_ptr cdr;

};

struct cell

{

heap_ptr point_to; /* forwarding */

};

struct closure

{

heap_ptr fields; /* forwarding */

short field_no;

short offset; /* non-negative */

};

struct vector

{

heap_ptr val; /* forwarding */

int length;

};

143

struct synchronizer

{

unsigned int arity:4;

unsigned int count:4;

heap_ptr destination; /* forwarding */

heap_ptr cont;

bw_rwlock_t *lock;

queue_t **oqs; /* pointer to shared bytes */

short *qlens; /* pointer to shared bytes */

};

struct async_port

{

int single_closed; /* 2-byte single and 2-byte closed */

heap_ptr destination; /* forwarding */

queue_t *queue;

};

struct sync_port

{

short index;

heap_ptr sync; /* forwarding */

};

144

union u_obj

{

struct b_i_l_s label;

struct b_i_l_s int_num;

struct b_i_l_s bool;

struct char_s ch;

struct real_s real_num;

struct cell pointer;

struct cons_cell pair;

struct lambda *lbd;

struct closure clsr;

struct string str; /* also used by quoted symbol */

struct vector vct;

struct sync_port s_port;

struct async_port a_port;

struct synchronizer *sync;

};

typedef struct

{

unsigned int type: 4;

union u_obj content;

} obj;

145

146

147

Bibliography

[1] W.B. Ackerman and J.B. Dennis. VAL - a calue-oriented algorithmic language.
Technical Report LCS/TR-218, MIT lab for computer science, 1979.

[2] Gul Agha. ACTORS: A model of concurrent computation in distributed systems.
Technical report, MIT Press, 1986.

[3] T. Anderson. The design of a multiprocessor development system. Technical Report
TR-279, MIT lab for computer science, 1982.

[4] A. W. Appel. Continuation-passing, closuring-passing style. In Annual ACM Sym-
posium on Principles of Programming Languages, 1989.

[5] A. W. Appel. Compiling with Continuations. Cambridge University Press, 1992.

[6] Arvind and R.S. Nikhil. Executing a program on the MIT tagged-token dataow
architecture. In G. Goos and J. Hartmanis, editors, Parallel Architectures and Lan-
guages Europe. Springer-Verlag, 1987.

[7] Arvind, R.S. Nikhil, and K.K. Pingali. I-structures: Data structures for parallel
computing. In J. Fasel and R.M. Keller, editors, Proceedings of Workshop on Graph
Reduction. Springer-Verlag, 1987.

[8] D. Berry, R. Milner, and D.N. Turner. A semantics for ml concurrency primitives.
In Annual ACM Symposium on Principles of Programming Languages, 1992.

[9] Albert Cahana, Jan Edler, and Edith Schonberg. How to write Parallel Programs
for the NYU Ultracomputer Prototype, 1986.

[10] Nicholas Carriero and David Gelernter. How to Write Parallel Programs: A First
Course. MIT Press, 1990.

[11] C.J. Cheney. A nonrecursive list compacting algorithm. Communications of the
ACM, 13(11), 1970.

[12] Jerome Chiabout. Timing Programs on the NYU Ultracomputer, 1986.

[13] O. Danvy and A. Fiinsky. Abstracting control. In ACM Conference on Lisp and
Functional Programming, 1990.

[14] R.K. Dybvig and R. Hieb. Engines from continuations. Computer Languages, 14(2),
1989.

[15] M. Felleisen. The theory and practice of �rst-class prompts. In Annual ACM Sym-
posium on Principles of Programming Languages, 1988.

[16] M. Felleisen. Modeling continuations without continuations. In Annual ACM Sym-
posium on Principles of Programming Languages, 1991.

[17] M. Felleisen, D.P. Friedman, E. Kohlbecker, and B. Duba. Reasoning with continu-
ations. In Symposium on login in computer science, 1986.

[18] A. Filinski. Linear continuations. In Annual ACM Symposium on Principles of
Programming Languages, 1992.

[19] J. Franco, D.P.Friedman, and D. Johnson. Multiway streams in Scheme. Computer
Languages, 1989.

[20] D. Friedman and M. Wand. Rei�cation: Reection without metaphysics. In ACM
Conference on Lisp and Functional Programming, 1984.

[21] R.P. Gabriel and J. McCarthy. Queue-based multiproccessing Lisp. In ACM Con-
ference on Lisp and Functional Programming, 1984.

[22] R.P. Gabriel and J. McCarthy. Qlisp. In J.S. Kowalik, editor, Parallel Computation
and Computers for Arti�cial Intelligence. Kluwer Academic Publishers, 1988.

[23] D. Gelernter, N. Carriero, S. Chandran, and S. Chang. Parallel programming in
linda. In International Conference on Parallel Processing, 1985.

[24] R. Goldman and R.P. Gabriel. Qlisp: Experience and new directions. Parallel Pro-
gramming: Experience with Applications, Languages and Systems, SIGPLAN No-
tices, 23(9), 1988.

[25] R. Goldman, R.P. Gabriel, and C. Sexton. Qlisp: An interim report. In US/JAPAN
Workshop on Parallel Lisp, Lecture Note in Computer Science 441. Springer-Verlag,
1990.

[26] A. Gottlieb et al. The NYU Ultracomputer { designing an MIMD shared memory
computer. IEEE transactions on computers, C-32(2), 1983.

[27] A. Gottlieb, B. Lubachevsky, and L. Rudolph. Basic techniques for the e�cient co-
ordination of very large numbers of cooperating sequential processors. ACM Trans-
actions on Programming Languages and Systems, 5(2), 1983.

148

[28] Steve Gregory. Parallel Logic Programming in PARLOG. Addison Wesley, 1987.

[29] R. Halstead. Multilisp: A language for concurrent symbolic computation. ACM
Transactions on Programming Languages and Systems, October 1985.

[30] R. Halstead. New ideas in parallel lisp: Language design, implementation, and
programming tools. In US/JAPAN Workshop on Parallel Lisp, Lecture Note in
Computer Science 441. Springer-Verlag, 1990.

[31] R. Halstead, T. Anderson, R. Osborne, and T. Sterling. The design of a multi-
processor development system. In 13th annual international symposim on computer
architecture, 1986.

[32] C.T. Haynes, D.P. Friedman, and M. Wand. Obtaining coroutines with continua-
tions. Computer languages, 11(1), 1986.

[33] R. Hieb and R.K. Dybvig. Continuations and concurrency. In ACM Conference on
the Principles and Practice of Parallel Programming, 1990.

[34] R. Hieb, R.K. Dybvig, and C. Bruggeman. Representing control in the presence of
�rst-calss continuations. In ACM Conference on Programming Language Design and
Implementation, 1990.

[35] C. A. R. Hoare. Monitors: An operating system structuring concept. Communica-
tions of the ACM, 17(10), 1974.

[36] C. A. R. Hoare. Communicating sequential processes. Communications of the ACM,
21(8), 1978.

[37] P. Hudak, S. Peyton Jones, and P. Wadler. Report on the programming language
Haskell, a non-strict puely functional language (version 1.2). ACM SIGPLAN No-
tices, 27(5), 1992.

[38] T. Ito and M. Matsui. A parallel lisp language PaiLisp and its kernel speci�cation.
In US/JAPAN Workshop on Parallel Lisp, Lecture Note in Computer Science 441.
Springer-Verlag, 1990.

[39] T. Ito and T. Seino. On PaiLisp continuation and its implementation. In ACM
SIGPLAN Workshop on Continuations, 1992.

[40] Aubrey Ja�er. SCM - a scheme language interpreter. personal communication.

[41] Thomas Johnson. Lambda-lifting: transforming programs to recursive equations. In
Conference on Functional Programming Languages and Computer architecture, 1985.

[42] M. Katz and D. Weise. Continuing into the future: On the interaction of futures and
�rst-class continuations. In ACM Conference on Lisp and Functional Programming,
1990.

149

[43] R. Keller. Rediow multiprocessing. In IEEE COMPCON, 1984.

[44] R. Keller. Simulated performance of a reduction-based multiprocessor. IEEE trans-
actions on computers, 17(7), 1984.

[45] R.R. Kessler and M.R. Swanson. Concurrent scheme. In US/JAPAN Workshop on
Parallel Lisp, Lecture Note in Computer Science 441. Springer-Verlag, 1990.

[46] D.A. Kranz, R.H. Halstead, and E. Mohr. Mul-T: a high performance parallel Lisp.
In US/JAPAN Workshop on Parallel Lisp, Lecture Note in Computer Science 441.
Springer-Verlag, 1990.

[47] David A. Kranz. ORBIT: an optimizing compiler for Scheme. PhD thesis, Yale
University, 1988.

[48] P.J. Landin. The mechanical evaluation of expressions. Computer Journal, 6(4),
1964.

[49] Pattie Maes. Computational Reection. PhD thesis, Vrije Universiteit Brussel, Brus-
sels, Be lgium, 1987.

[50] Robin Milner. A proposal for standard ML. In ACM Conference on Lisp and Func-
tional Programming, 84.

[51] R. Osborne. Speculative computation in Multilisp. In US/JAPAN Workshop on
Parallel Lisp, Lecture Note in Computer Science 441. Springer-Verlag, 1990.

[52] K. Pingali and Arvind. E�cient demand-driven evaluation. ACM Transactions on
Programming Languages and Systems, 7(2), 1985.

[53] G.D. Plotkin. Call-by-name, call-by-value and lambda calculus. Theoretical Com-
puter Science, 1, 1975.

[54] G.D. Plotkin. LCF considered as a programming language. Theoretical Computer
Science, 5, 1977.

[55] J.H. Reppy. An operational semantics of �rst-class synchronous operations. Techni-
cal report, Department of Computer Science, Cornell University, 1991.

[56] J.C. Reynolds. GEDANKEN { a simple typeless laguage based on the principle of
completeness and the reference concept. Comminications of the ACM, 13(5), 1971.

[57] J. Schwartz. Ultracomputers. ACM Transactions on Programming Languages and
Systems, 2(4), 1980.

[58] D. Sitaram and M. Felleisen. Reasoning with continuations II: full abstraction for
models of control. In ACM Conference on Lisp and Functional Programming, 1990.

150

[59] B. Smith. Reection and semantics in LISP. In 11th Annual ACM Symposium on
Principl es of Programming Languages, 1984.

[60] A. Takeuchi and K. Furukawa. Parallel logic programming languages. Concurrent
Prolog, 1987.

[61] David Tarditi, Peter Lee, and Anurag Acharya. No assembly required: compiling
standard ML to C. ACM letters on programming languages and systems, 1(2), 1992.

[62] NYU Ultra Lab. NYU Ultracomputer Unix Programmer's Manual: symunix 1.1,
1986.

[63] Wadge and Ashcroft. Lucid, the Dataow Programming Language. Academic Press,
1985.

[64] S.C. Wray and J. Fairbairn. Non-strict languages { programming and implementa-
tion. The Computer Journal, 32(2), 1989.

151

