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Abstract

Data arriving in time order (time series) arises in disciplines ranging from music

to meteorology to finance to motion capture data, to name a few. In many cases,

a natural way to query the data is what we call time series matching - a user

enters a time series by hand, keyboard or voice and the system finds “similar”

time series.

Existing time series similarity measures, such as DTW (Dynamic Time

Warping), can accommodate certain timing errors in the query and perform

with high accuracy on small databases. However, they all have high computa-

tional complexity and the accuracy drops dramatically when the data set grows.

More importantly, there are types of errors that cannot be captured by a single

similarity measure.

Here we present a general time series matching framework. This frame-

work can easily optimize, combine and test different features to execute a fast

similarity search based on the application’s requirements. Basically we use a

multi-filter chain and boosting algorithms to compose a ranking algorithm. Each

filter is a classifier which removes bad candidates by comparing certain features

of the time series data. Some filters use a boosting algorithm to combine a

few different weak classifiers into a strong classifier. The final filter will give a

ranked list of candidates in the reference data which matches the query data.
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The framework is applied to build query algorithms for a Query-by-Humming

system. Experiments show that the algorithm has a more accurate similarity

measure and its response time increases much more slowly than the pure DTW

algorithm when the number of songs in the database increases from 60 to 1400.
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Chapter 1

Introduction

1.1 Motivation

Many applications naturally generate time series data. The research on time

series matching is becoming increasingly popular as more and more applications

emerge and the sizes of data increase dramatically. For example:

• Millions of traders try to find patterns by tracking similar stocks using the

up to 100,000 quotes and trades (ticks) which are generated per second in

the United States;

• Meteorologists try to predict weather based on similarities between cloud

movements using new satellites (launched last year) which collect 3GB of

data every day;

• Many real-time 3D games today need a way to automate a virtual charac-

ter’s transition movement; using a motion-captured animation database,

the next motion sequence is selected from the motions whose beginning

matches the ending of the current motion.
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As the above examples illustrate, the most convenient way to investigate the

data is by using existing examples as queries to find similar data.

Existing time series matching similarity measure, such as DTW (Dynamic

Time Warping) [37], can accommodate certain timing errors in the query and

perform similarity search with high accuracy when matching queries to small

databases. However, they all have high computational complexity and the accu-

racy drops dramatically when the data set grows. In short, they don’t scale well.

Another problem is that the type and amount of time warping may be differ-

ent for different applications. There is a need for scalable matching algorithms

which can be easily customized for different applications.

1.2 Problem Statement

In summary, there are two major difficulties for the time series matching prob-

lem.

• First is the error in the query and the ambiguity of similarity

There should be either an accurate definition of similarity measure be-

tween data or a system that can learn this similarity measure. This way

users can find the data they really need.

• Second is the large scale of the database

The more data, the more difficult it is to discriminate the correct result

from other ones and the greater the challenge of giving an accurate defini-

tion of similarity. Additionally, the larger the scale, the more computation

power needed and the more efficient the query algorithm must be.
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This thesis will address both of these challenges. It will discuss how to build

fast, accurate and customizable similarity search algorithms for large scale time-

series systems that allow for errors in the query.

1.3 Our Contribution

We will present a general time series matching framework. This frame-

work can easily optimize, combine and test different features to conduct fast

similarity searches based on the requirements of the application. It takes a

multi-filter approach plus Boosting [11, 25] to compose a ranking algorithm.

Both theoretical discussions and experimental results are presented.

1.4 Thesis Outline

We first review related work and common techniques; this includes the GEMINI

indexing framework and the most commonly used template matching algorithm,

Dynamic Time Warping (DTW) [20, 37].

Second, we present the time series matching framework. This framework is

designed and implemented to address both the ambiguity of the query and the

large scale of the database with emphasis on finding the best similarity measure.

The idea is to extract and compare different features of the time series data,

then configure a composite of features to efficiently measure the similarity be-

tween a specific type of the data. The selection of features is based on the time

complexity and discriminating power of the different features and the charac-

teristics of the data. This framework can easily optimize the parameters of the

new features as well as combine them into comprehensive similarity measure
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algorithms.

Third, a concrete application example of a Query-by-Humming system is

studied in detail. This music retrieval application is built based on the time

series matching framework. A Query-by-Humming system enables the user

to find songs by humming part of the tune. In our system, both music and

humming are represented as time series data. Thus we can directly use the

time series matching framework to build a similarity algorithm with the goal of

maximizing the music recognition percentage for the humming we collected.

In this case study, we first review techniques specifically related to music

information retrieval; second, we present our algorithm architecture and com-

pare the results with other systems. Finally, we conclude the thesis and discuss

possible directions for future work.
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Chapter 2

Underlying Technology

2.1 Brief Overview

There are a few important works related to time series matching. Here we

provide a brief overview followed by a detailed discussion of each technique.

1. GEMINI framework and related transformations techniques

GEMINI framework theory[10] essentially transforms the data into

a lower-dimension and speeds up the matching process. Various trans-

formation techniques have been developed, mainly for Euclidean distance

comparison. Each transformation guarantees no false negatives and has a

different computational complexity and tightness of lower-bounding.

2. DTW and related indexing techniques

Dynamic Time Warping (DTW) [5] is a similarity matching technique

that allows alignment shifting between time series. The DTW distance

does not satisfy the triangle inequality, so special transformation tech-

niques are developed to speed up the matching process and guarantee no
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false negatives. These kinds of transformations act as indexing techniques

which reduce comparison computational complexity.

Besides the framework and indexing techniques, preprocessing tech-

niques which normalize the data are important to make sure that the com-

parison makes sense.

2.2 GEMINI framework

Similarity querying for time series databases has been a topic of research in

the database community for many years. A lot of work used Euclidean distance

between time series as a similarity measure [3, 10, 23, 36, 7, 22, 32, 17, 33, 15, 34].

They can all be applied in the GEMINI framework introduced by Christos

Faloutsos, M Ranganathan and Yannis Manolopoulos [10].

The key concept of the GEMINI framework (Figure 2.1) is to first map each

time series to a lower dimension, then find similar ones by looking them up in a

multidimensional index structure and finally, compare those time series in the

original space. The important thing is that the transformations should satisfy

the lower-bounding property:

• Lower-Bounding

Dindex−space(x, y) ≤ Dtrue(x, y) (2.1)

Lower-Bounding means the distance between each of the transformed time

series should be less than the distance between each of the original time series.

• No false negatives

6



Syn(s2) in indexSyn(s1) in index

to close points in the index.

if their synopses map

are probably close

s1 and s2

Store in

index structure.

multidimensional

Synopsis of s2Synopsis of s1

Time Series s2Time Series s1

Figure 2.1: GEMINI framework

With the lower-bounding property, the GEMINI framework guarantees no

false negatives: any time series that is similar to the query in the original space

will be selected by the indexing structure. False negatives refer to the situation

that discards reference data which are actually similar to the query datum;

similarly, true negatives refer to the discarded reference data that are not similar

to the query datum.

• Tightness of Lower-Bounding

The differences among the works cited above is that they used different

transformations to satisfy the lower-bounding property. The tightness of lower-

bounding determines the performance of the transformations.
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Assume we define:

T =
Dindex−space

Dtrue

T is in the range of [0, 1] and a larger T gives a tighter bound. The tighter

the bound, the better the distance in the transformed space approximates the

distance in the original space, thus the better the pruning power of the indexing.

2.3 Dynamic Warping Distance Measure (DTW)

Time Series 1
Time Series 2

Figure 2.2: Dynamic Time Warping (from [37])

Although the Euclidean distance is used as a similarity measure in a lot of

work, it is not suitable for cases where the time series are out of phase in the

time axis, see Figure 2.2 for an example. The two time series look similar but

they are not close in Euclidean distance. As a solution to this, D. Berndt and J.

Clifford [5] introduced DTW into the database community. The Dynamic Time

Warping (DTW) distance is a much more robust distance measure for similarity
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matching which allows alignment shifting between time series. For the two time

series in Figure 2.2, the DTW distance is much smaller than their Euclidean

distance.

2.3.1 Definition of DTW Distance

The Dynamic Time Warping distance between two time series x, y is

D2
DTW (x, y) = D2(First(x), F irst(y)) + min



















D2
DTW (x, Rest(y))

D2
DTW (y, Rest(x))

D2
DTW (Rest(x), Rest(y))

where First(x) is the first element of x, and Rest(x) is the remainder of the

time series after the First(x) has been removed.

2.3.2 Computation of the DTW Distance

4.1 Uniform time warping

0 1 2

0

1

2

3

4

5

6

7

8

9

10

11

3 4 5 6 7 8 9 10 11

j

i

4.2 Local dynamic time warping

Figure 2.3: DTW distance computation (from [37])
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The process of computing the DTW distance can be visualized as a string

matching style dynamic program, see Figure 2.3. For time series x of length n

and time series y of length m, we use an n × m matrix M to align them. The

cell Mi,j corresponds to the alignment of element xi and yj. Any monotonic and

continuous path P from M0,0 to Mn−1,m−1 forms a particular alignment between

x and y:

P = p1, p2, . . . , pl = (px
1 , p

y
1), (p

x
2, p

y
2), . . . , (p

x
l , p

y
l )

max(n, m) ≤ l ≤ n + m − 1

and

• P is monotonic if px
t − px

t−1 ≥ 0 and py
t − py

t−1 ≥ 0

• P is continuous if px
t − px

t−1 ≤ 1 and py
t − py

t−1 ≤ 1

If we associate each cell alignment with its corresponding cost, say D2(i, j),

then the sum of the cost along a path represents the cost of the particular align-

ment. One can prove that the minimum path cost for all possible alignments is

the DTW distance between x and y. The minimum-cost path also determines

the optimal alignment between x and y.

The time computation cost for DTW distance is O(mn) using Dynamic

Programming [37].

2.3.3 Variants of DTW

Usually we add constraints to DTW to avoid too much flexibility in the warping.

Two popular global constraints are Sakoe-Chiba Band and Itakura Parallelo-
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difference of their value and the maximum (minimum) 

value of the other sequence to the final DTW distance.  

Figure 5 illustrates the idea. 

 
Figure 5: A visual intuition of the lower bounding measure 

introduced by Yi et al. The sum of the squared length of 

gray lines represent the minimum the corresponding points 

contribution to the overall DTW distance, and thus can be 

returned as the lower bounding measure   

3.3   Proposed lower bounding measure 

Before introducing our lower bounding technique we 

must review an additional detail of the DTW algorithm 

that we deliberately omitted until now. 

3.3.1   Global constraints on time warping 

In addition to the constraints on the warping path 

enumerated in Section 2.2, virtually all practitioners using 

DTW also constraint the warping path in a global sense 

by limiting how far it may stray from the diagonal [3]. 

The subset of matrix that the warping path is allowed to 

visit is called the warping window. Figure 6 illustrates 

two of the most frequently used global constraints, the 

Sakoe-Chiba Band and the Itakura Parallelogram [27, 29].  

 
Figure 6: Global constraints limit the scope of the warping 

path, restricting them to the gray areas. The two most 

common constraints in the literature are the Sakoe-Chiba 

Band and the Itakura Parallelogram 

There are several reasons for using global constraints, 

one of which is that they slightly speed up the DTW 

distance calculation.  However the most important reason 

is to prevent pathological warpings, where a relatively 

small section of one sequence maps onto a relatively large 

section of another. The importance of global constraints 

was documented by the originators of the DTW 

algorithm, who where exclusively interested in aligning 

speech patterns [29]. However, has been empirically 

confirmed in other settings, including finance, medicine, 

biometrics, chemistry, astronomy, robotics and industry.   
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As a motivating example consider the two sequences 

in Figure 1 which were used to illustrate DTW. The 

smooth peaks in each correspond to increase in demand 

for electrical power during weekdays. In the topmost 

sequence there is no peak on Monday because it was a 

national holiday, the same is true for Wednesday in the 

bottom sequence. In this domain, we may well decide that 

that it makes sense to allow warpings of up to one day, i.e. 

Monday may warp to Tuesday and Tuesday may warp to 

Wednesday etc, but more drastic warpings (i.e. Monday to 

Friday) should not be allowed. This constraint can easily 

be enforced by using a Sakoe-Chiba Band with a width 

equal to n/7. 

3.3.2   Proposed lower bounding measure 

We can view a global constraint as constraining the 

indices of the warping path wk = (i,j)k such that j-r  i  

j+r where r is a term defining the reach, or allowed range 

of  warping, for a given point in a sequence. In the case of 

the Sakoe-Chiba Band r is independent of i, for the 

Itakura Parallelogram r is a function of i.  

We will use the term r to define two new sequences, U 

and L: 

 Ui = max(qi-r : qi+r)    (6) 

Li = min(qi-r : qi+r)  (7) 

U and L stand for Upper and Lower respectively, we 

can see why if we plot them together with the original 

sequence Q as in Figure 7. They form a bounding 

envelope that encloses Q from above and below. Note that 

although the Sakoe-Chiba Band is of constant width, the 

corresponding envelope generally is not of uniform 

thickness. In particular, the envelope is wider when the 

underlying query sequence is changing rapidly, and 

narrower when the query sequence plateaus.  

 C 

Q  

C

Q  

Sakoe-Chiba Band Itakura Parallelogram 

  

U   

L   

0 5 10 15 20 25 30 35 40

L   

A  

B  
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Q

Q

 
Figure 7: An illustration of the sequences U and L, created 

for sequence Q (shown dotted). A was created using the 

Sakoe-Chiba Band and B using the Itakura Parallelogram 

Figure 2.4: DTW distance with global constraints (figure from [14])

gram constraints, illustrated in Figure 2.4. Alignments of cells can be selected

only from the shaded area. The Sakoe-Chiba Band constraint is also called

k-Local Dynamic Time Warping (k-LDTW ). With k-LDTW, the ith element

of x can be aligned only to one of the k nearest elements of y.

k-LDTW Distance

The k-LDTW between two time series x, y is

D2
LDTW (k)(x, y) = D2

constraint(k)(First(x), F irst(y))

+min



















D2
LDTW (k)(x, Rest(y))

D2
LDTW (k)(y, Rest(x))

D2
LDTW (k)(Rest(x), Rest(y))

(2.2)

where

D2
constraint(k)(xi, yj) =







D2(xi, yj) if |i − j| ≤ k

∞ if |i − j| > k
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α%-LDTW Distance

The α%-LDTW distance of x and y is equivalent to the k-LDTW distance

where k is the production of the α% and the larger value between the x and y’s

lengths.

Other variants of DTW have been introduced to accommodate different

situations. Selina Chu, Eamonn Keogh, David Hart and Michael Pazzani [9] in-

troduced an iterative deepening DTW which automatically adjusts the warping

parameter based on user specified tolerance for the probability of false dismissal.

C. A. Ratanamahatana and E. Keogh [24] added a machine learning tech-

nique to DTW, so that each datum in the database had a learned constraint

to be applied during the DTW distance computation. In this way, both the

accuracy and efficiency are improved, although the learning process is compu-

tationally expensive. This method generally requires a large number of training

samples, so it has limited applications.

More general variants of DTW are discussed in Sergios Theodoridis and

Konstantinos Koutroumbas’s book Pattern Recognition [29]. These include ap-

plying different local or global constraints and allowing the omission or insertion

of data elements.

2.3.4 Advantages and Disadvantages

One advantage of DTW is that the DTW distance measure is less sensitive to

local time shift distortion than the Euclidean distance measure. Also, it can

handle time series of various lengths while the Euclidean distance measure can

compare only equal length time series.

However, the cost of the DTW distance computation is much higher than

12



that of the Euclidean distance computation, which is O(n) if both time series are

of length n. Secondly, the DTW distance does not obey the triangle inequality

and it is difficult to index precisely.

Triangle Inequality

A distance measure D satisfies triangle inequality if:

D(x, y) ≤ D(x, z) + D(y, z), for any data x, y, z

“Virtually all techniques to index data require the triangle inequality to

hold.” [13]

A very simple example that DTW distance does not obey the triangle in-

equality is as follows:

Suppose there are three time series data x, y, z where

x = 1, 1, 1, 2, 2, 2

y = 1, 1, 2, 2, 2, 2

z = 1, 1, 1, 1, 2, 2

The local DTW distances between them with 5%-warping are D(x, y) = 0,

D(x, z) = 0 and D(y, z) =
√

2. Thus D(y, z) > D(x, y) + D(x, z) where it does

not obey the triangle inequality.

2.4 Indexing the DTW distance

Despite the fact that DTW distance still does not satisfy the triangle inequality,

Keogh’s paper [14] proposed a novel indexing technique by introducing envelope

filtering and transformed envelope filtering to exactly index the DTW distance.
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Y. Zhu, D. Shasha, X. Zhao [37] further generalized the idea into a GEM-

INI framework for the DTW distance measure by introducing the container-

invariant property of the transformations. They also improved the pruning

power of the indexing by introducing a transformation which gives a tighter

lower-bounding.

2.4.1 Envelope Filter

difference of their value and the maximum (minimum) 

value of the other sequence to the final DTW distance.  

Figure 5 illustrates the idea. 

 
Figure 5: A visual intuition of the lower bounding measure 

introduced by Yi et al. The sum of the squared length of 

gray lines represent the minimum the corresponding points 

contribution to the overall DTW distance, and thus can be 

returned as the lower bounding measure   
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visit is called the warping window. Figure 6 illustrates 

two of the most frequently used global constraints, the 

Sakoe-Chiba Band and the Itakura Parallelogram [27, 29].  
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Band and the Itakura Parallelogram 
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distance calculation.  However the most important reason 

is to prevent pathological warpings, where a relatively 
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As a motivating example consider the two sequences 

in Figure 1 which were used to illustrate DTW. The 

smooth peaks in each correspond to increase in demand 

for electrical power during weekdays. In the topmost 

sequence there is no peak on Monday because it was a 

national holiday, the same is true for Wednesday in the 

bottom sequence. In this domain, we may well decide that 

that it makes sense to allow warpings of up to one day, i.e. 

Monday may warp to Tuesday and Tuesday may warp to 

Wednesday etc, but more drastic warpings (i.e. Monday to 

Friday) should not be allowed. This constraint can easily 

be enforced by using a Sakoe-Chiba Band with a width 

equal to n/7. 

3.3.2   Proposed lower bounding measure 

We can view a global constraint as constraining the 

indices of the warping path wk = (i,j)k such that j-r  i  

j+r where r is a term defining the reach, or allowed range 

of  warping, for a given point in a sequence. In the case of 

the Sakoe-Chiba Band r is independent of i, for the 

Itakura Parallelogram r is a function of i.  

We will use the term r to define two new sequences, U 

and L: 

 Ui = max(qi-r : qi+r)    (6) 

Li = min(qi-r : qi+r)  (7) 

U and L stand for Upper and Lower respectively, we 

can see why if we plot them together with the original 

sequence Q as in Figure 7. They form a bounding 

envelope that encloses Q from above and below. Note that 

although the Sakoe-Chiba Band is of constant width, the 

corresponding envelope generally is not of uniform 

thickness. In particular, the envelope is wider when the 

underlying query sequence is changing rapidly, and 

narrower when the query sequence plateaus.  

 C 

Q  

C

Q  

Sakoe-Chiba Band Itakura Parallelogram 

  

U   

L   

0 5 10 15 20 25 30 35 40

L   

A  

B  

U   

Q

Q

 
Figure 7: An illustration of the sequences U and L, created 

for sequence Q (shown dotted). A was created using the 

Sakoe-Chiba Band and B using the Itakura Parallelogram 

Figure 2.5: Envelope of a time series (figure from [14])

An envelope time series E = (E, E) contains two time series: the lower

envelope E and upper envelope E where each element of upper envelope has a

larger value than the corresponding element of the lower envelope.

k-Envelope

The k-Envelope of a time series x of length n is

Envk(x) = (x, x) (2.3)
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where x and x are the upper and lower k-envelope of x respectively:

xi = min{xi−k, xi−k+1, . . . , xi+k−1, xi+k} for i = 1, 2, . . . , n

xi = max{xi−k, xi−k+1, . . . , xi+k−1, xi+k} for i = 1, 2, . . . , n

See Figure 2.5 for an example.

k-Envelope Distance

The k-envelope distance between time series x and y is

DEnvk
(x, y) = DtoEnv(x, Envk(y))

= DtoEnv(x, (y, y))

=

√

√

√

√

√

√

√

√

n
∑

i=1



















(xi − y
i
)2 if xi < y

i

(xi − yi)
2 if xi > yi

0 otherwise

We say x ∈ Env(y) if DEnv(x, y) = 0, which is the case that x is contained

within Env(y). Note that this envelope distance is not necessarily symmetric:

DEnvk
(x, y) 6= DEnvk

(y, x)

However, this is not a problem for a similarity query since all the comparisons

refer to the time series used as query.

Lower-bounding Property of Envelope Distance

Keogh proved that k-envelope distance is a distance metric which lower-

bounds the k-LDTW distance [14].

DEnvk
(x, y) ≤ Dk−LDTW (x, y) (2.4)
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One thing to note is that if we use absolute element distance instead of

squared element distance in k-LDTW distance and k-envelope distance compu-

tation, the same property still holds.

k-LDTW Distance with absolute element distance

The k-LDTW between two time series x, y is

DLDTW (k)(x, y) = Dconstraint(k)(First(x), F irst(y))

+min



















DLDTW (k)(x, Rest(y))

DLDTW (k)(y, Rest(x))

DLDTW (k)(Rest(x), Rest(y))

(2.5)

where

Dconstraint(k)(xi, yj) =







|D(xi, yj)| if |i − j| ≤ k

∞ if |i − j| > k

and |x| is the absolute value of x.

Envelope Filter

We can use envelope distance as a filter to quickly weed out bad candidates

at a computation cost lower than that of the DTW distance. More importantly,

with this lower-bounding property, we can make slight modifications to the

transformations in the GEMINI framework to achieve the indexing of the DTW

distance.

2.4.2 Transformed Envelope Filter

Container-Invariant Envelope Transform
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Suppose a transformation Γ of an envelope Env(x) is still an evenlope

Γ(Env(x)), Env(x) it is container-invariant if:

∀y, if y ∈ Env(x) then Γ(y) ∈ Γ(Env(x))

Lower-bounding Property of Envelope Distance

It is easy to prove that the transformed envelope distance lower-bounds the

envelope distance if the transformation of the envelope is container-invariant

[37].

DtoEnv(Γ(x), Γ(Env(y))) ≤ DEnvk
(x, y) (2.6)

Figure 2.6: Transformed Envelope of a time series (figure from [37])

Transformed Envelope Filter

It is with the above properties that we use the transformed envelope distance

as a filter to eliminate bad candidates at a lower computation cost than that of

computing the envelope distance.

2.4.3 Adaptive Multi-level Filter Algorithm

From equation 2.4 and 2.6, we have:
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DtoEnv(Γ(x), Γ(Env(y))) ≤ DEnvk
(x, y) ≤ Dk−LDTW (x, y)

Let:

transformedEnvDis(x, y) = DtoEnv(Γ(x), Γ(Env(y)))

envDis(x, y) = DEnvk
(x, y)

DTWDis(x, y) = Dk−LDTW (x, y)

We have:

transformedEnvDis(x, y) ≤ envDis(x, y) ≤ DTWDis(x, y)

Given this hierarchical lower-bounding property, we have the following Adaptive

Multi-level Filter Algorithm in pseudo-code for nearest neighbor query:
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Given a query time series q

1 //set minimum distance to infinity

2 minDis=infinity

3 for all candidates x in database

4 { disLevelOne = transformedEnvDis(q,x)

5 //transformed envelope filter check

6 if (disLevelOne < minDis)

7 { disLevelTwo = envDis(q,x)

8 //envelope filter check

9 if (disLevelTwo < minDis)

10 { disLastLevel = DTWDis(q,x)

11 //true DTW distance check

12 if (disLastLevel < minDis)

13 { //found a better match

14 bestMatch = x

15 //update the minimum distance

16 minDis = disLastLevel

17 }//if at last level

18 }//if at level two

19 }//if at level one

20 }//for

This algorithm guarantees no false negatives and can be easily modified to

handle k-nearest neighbor query.
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2.4.4 Piecewise Aggregate Approximation Based Trans-

formation

The envelope transformation which was constructed based on Piecewise Ag-

gregate Approximation (PAA) has proven to be a good transformation for the

multi-level filter Algorithm [37]. The following gives its definition.

• Piecewise Aggregate Approximation (PAA)

5 KAIS Long paper submitted 5/16/00

3. Piecewise Aggregate Approximation

3.1 Dimensionality reduction

We denote a time series query as X = x1,…,xn, and the set of time series which constitute the
database as Y = {Y1,…YK}. Without loss of generality, we assume each sequence in Y is n units
long. Let N be the dimensionality of the transformed space we wish to index (1 ≤ N ≤ n). For
convenience, we assume that N is a factor of n. This is not a requirement of our approach,
however it does simplify notation.

A time series X of length n is represented in N space by a vector NxxX ,,1= . The ith element
of X is calculated by the following equation:

∑
+−=

=
i

ij
jn

N
i

N
n

N
n

xx
1)1(

(3)

 Simply stated, to reduce the data from n dimensions to N dimensions, the data is divided into N
equi-sized "frames". The mean value of the data falling within a frame is calculated and a vector
of these values becomes the data reduced representation. Figure 2 illustrates this notation. The
complicated subscripting in Eq. 3 is just to insure that the original sequence is divided into the
correct number and size of frames.

Figure 2: An illustration of the data reduction technique utilized in this paper. A time series consisting of
eight (n) points is projected into two (N) dimensions. The time series is divided into two (N) frames and the
mean of each frame is calculated. A vector of these means becomes the data reduced representation.

Two special cases worth noting are when
N = n the transformed representation is
identical to the original representation. When
N = 1 the transformed representation is
simply the mean of the original sequence.
More generally the transformation produces
a piecewise constant approximation of the
original sequence, we therefore call our
approach Piecewise Aggregate
Approximation (PAA).

In order to facilitate comparison of PAA
with the other dimensionality reduction
techniques it is useful to visualize it as
approximating a sequence with a linear
combination of "box" basis functions. Figure
3 illustrates this idea.

The time complexity for building the
index for the subsequence matching problem
appears to be O(nm), because for
approximately m "windows" we must
calculate Eq. 3 N times, and Eq. 3 has a

0 1 2 3 4 5 6 7 8 9
-2

-1

0

1

2

X = (-1, -2, -1, 0, 2, 1, 1, 0) n = |X| = 8

X = (mean(-1,-2,-1,0), mean(2,1,1,0)  ) N = | X | = 2

X = ( -1 , 1)

Figure 3: For comparison purposes it is convenient to regard
the PAA transformation X’, as approximating a sequence X
with a linear combination of "box" basis functions
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x0
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X’

Figure 2.7: The PAA transformation (figure from [16])

PAA was proposed independently by B. K. Yi and C. Faloutsos [33] and

E. Keogh, K. Chakrabarti, M. Pazzani and S. Mehrotra [16]. It is a data

reduction method which divides a time series of length n into N segments

of equal length, see Figure 2.7.

A time series x of length n can be approximated in N space by a vector

X = X1, X2, . . . , XN :

Xi =
N

n

b n

N
∗ic

∑

j=b n

N
∗(i−1)c+1

xj (2.7)
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where bxc is called the floor function which returns the maximum integer

that is not greater than x.

The time complexity is O(N + n) = O(n) [16].

• PAA Envelope Transformation

The PAA envelope transformation is constructed as follows:

Ei =
N

n

b n

N
∗ic

∑

j=b n

N
∗(i−1)c+1

xj , Ei =
N

n

b n

N
∗ic

∑

j=b n

N
∗(i−1)c+1

xj (2.8)

It can be proven that the PAA envelope transformation is container invari-

ant. Suppose that there is a time series y = y1, y2, ..., yn and an envelope

time series Env(x) = (x, x) and y ∈ Env(x), we know xj ≤ yj ≤ xj for

all j = 1, 2, ..., n

Consider applying the PAA transformation on y and the PAA envelope

transformation on Env(x), then for i = 1, 2, ..., N ,

Ei =
N

n

b n

N
∗ic

∑

j=b n

N
∗(i−1)c+1

xj ≤
N

n

b n

N
∗ic

∑

j=b n

N
∗(i−1)c+1

yj = Γ(y)i

Similarly Γ(y)j ≤ Ej. So Γ(y) ∈ Γ(Env(x)). Therefore, the PAA transfor-

mation is container invariant and the PAA transformed envelope distance

lower-bounds the envelope distance.

2.5 Data Preparation

In most cases, a good similarity measure allows various distortions of the time

series. Otherwise the time series need to be normalized before the actual sim-
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ilarity measure. The following is a list of distortions and the corresponding

solutions to eliminate the distortions.

• Amplitude Shifting Distortion:

An (amplitude) shifting by δ on a time series x = (x1, x2, ..., xn) is

Shift(x, δ) = x + δ = (x1 + δ, x2 + δ, ..., xn + δ).

This distortion can be eliminated by subtracting the average of each time

series from the values in the time series. In this way, every time series

is normalized to have an average 0. Let δ = avg(x) =
∑n

i=1 xi, the time

series x after normalization is Shift(x,−δ).

• Amplitude Scaling Distortion:

An (amplitude) scaling by β on a time series x = (x1, x2, ..., xn) is

Scale(x, β) = βx = (βx1, βx2, ..., βxn).

This distortion can be eliminated by first subtracting the average value

and then dividing by the resultant time series’s standard deviation. In

this way, every time series is normalized to have the average 0 and the

same standard deviation value 1. Let β = std(x) =
√

∑n
i=1(xi − avg(x))2

; the time series x after normalization is Scale(Shift(x − avg(x)), 1/β).

• Global Time Scaling Distortion:

A global time scaling on a time series uniformly squeezes or stretches the

time series on the time axis.

A w-up-scaling of a time series x of length n is Uw(x) = y of length nw,

where yi = xbi/wc, i = 0, 1, ..., nw − 1;
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A w-down-scaling of a time series x of length n is Dw(x) = z of length

bn/wc, where zi = xiw, i = 0, 1, ..., bn/wc − 1.

This distortion can be eliminated by up-scaling or down-scaling each time

series to a uniform length.

• Global Time Shifting Distortion:

A global time shifting by i (which can be negative) on a time series x =

(x1, x2, ..., xn) is TShift(x, i) = (x′
1, x

′
2, ..., x

′
n), where x′

j = xj+i for 0 <

j ≤ n and xj+i = x1 if j + i < 1(when i is negative) and xj+i = xn if

j + i > n(when i is positive).

This distortion, also called lag, can be detected and eliminated by applying

a lagged distance measure or a time warping distance measure, which

allows for extra or missing elements at the beginning or end.

• Local Time Shifting Distortion:

For local time shifting, the shifting happens locally and non-uniformly.

This distortion can be solved by applying a distance measure that allows

time warping.

• Background Noise:

Sometimes the query or data contains unavoidable random noise data.

This noise is comparable to the low-pitch or high-pitch background noise

in a recording or the disturbance in a radio broadcast.

This noise can be removed by applying signal processing techniques such

as low- or high-band-filtering.
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For more detailed information about related work on time series matching,

see D. Gunopulos and G. Das[12] and Keogh [13]; both gave a tutorial on

time series similarity search which covered the topics of similarity measures and

indexing. Shasha and Zhu’s book [28] is also a valuable tutorial on time series

techniques with case studies.

2.6 Summary

This chapter reviewed a few important techniques related to time series match-

ing: the GEMINI framework, the DTW and related indexing techniques such

as the envelope filter and the tranformed envelope filter. The next chapter will

present our time series matching framework.
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Chapter 3

Time Series Matching

Framework

Here we present our time series matching framework. It is a framework to easily

optimize, combine and test different features to perform fast similarity searches

based on the application requirements. The framework can be easily extended

and it provides a collection of simple and easy-to-use tools. For example, there

is a tool analyze feature measure and generate distribution charts; there is a

tool to combine a few feature measures into a feature measure; there is tool to

generate algorithm which is written tersely in the configuration file.

We will first formalize the problem, then present the functionality and struc-

ture of the framework and finally give explanatory examples. In the following

we discuss time series, but the framework works on any ordered array data.
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3.1 Formal Problem Statement

Our goal is to build a time series matching algorithm which can be customized

for any application. It can be formalized as follows:

Given any training data for an application, there is a set of time series data

pairs:

S = {(q1, r1), (q2, r2), ...(qn, rn)}

where

• Each ri = {ri(0), ri(1), . . . , ri(li)} is a time series reference data of some

finite length li; r = ∪ri for i = 1, 2, . . . n,

• Each qi = {qi(0), qi(1), . . . , qi(hi)} is a time series query data of some finite

length hi; q = ∪qi for i = 1, 2, . . . n,

• The ri is considered the best match to qi

Let us say that for each query q there is a function correctmatch such that

correctmatch(q) is the best match for q in the database. (The criterion for

“best” depends on the application, e.g. the song the most closely corresponds

to a humming as far as the user is concerned.) Here we assume all the correct

match ri for qi are in the database.

If G is an algorithm for matching and we have a threshold k, then G(qi) =

p1, p2, ..., pk. We say G is correct on qi if ri belongs to G(qi). We want to find

the G that maximize the number of qi for which G is correct.
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Figure 3.1: Multi-filter algorithm structure

3.2 Framework Overview

Given any application training data, the framework can be used to build a

multi-filter algorithm as shown in Figure 3.1. At each filter level, the algorithm

compares certain features of the query and reference data and filters out bad

candidates; the number of candidates becomes smaller and smaller; finally the

algorithm gets a list of candidates which are similar to the query data. The last

filter will rank the results.

A filter can be very simple and compare only a simple feature of the query

and candidates; or it can be very complicated and by itself be a ranking algo-

rithm; or it can be a boosted set of filters. We will discuss Boosted Filters in
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detail later in the thesis.

Unlike the GEMINI framework where the similarity measure is defined be-

forehand, the framework “learns” the best similarity measure on the training

data. The best similarity measure with the correct goal is not explicitly defined

before training and it may not match all the query data to the correct reference

data. Thus it is hard to define “guarantee no false negatives”. Each filter simply

maximizes the correctness of the labeling on good candidates.

3.3 Functionalities

The major functionalities of the framework are analyzing features, building

matching algorithms, boosting filters, benchmarking and validating algorithms.

3.3.1 Feature Analysis

The framework helps analyze any specific feature of the time series data. Tech-

nically, it is analyzing different feature parameters or comparison methods for

any particular feature. The user defines how to compute a particular feature

and how to compare two feature values; the framework automatically computes

the features for all the training data, compares them and outputs an analysis;

based on the analysis, the user can decide whether or not, and how, to use the

feature to build a filter in the algorithm.

3.3.2 Building an Algorithm

The framework can be used to build a similarity matching algorithm. The user

simply defines the filters in a text configuration file. Each filter is a line of text
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which consists of the name of the feature comparison function and the condition

test. The framework will read the configuration file and dynamically generate a

multi-filter algorithm for the similarity measure. The order of the filters in the

text file is the order of the filters in the algorithm.

The filters to be used in the algorithm are selected based on both the feature

analysis and on the benchmark results. The configuration for building the

algorithm can be easily altered to change the order and the parameters of each

filter.

In some cases, a simple filter may not work well, such as when it has a high

percentage of false negatives . Then a more sophisticated filter should be used,

such as boosted filters as described next.

3.3.3 Boosted Filters

Boosting [11, 26, 25] is an algorithm for constructing a ‘stronger’ classifier using

only a training set and a set of ‘weak’ classifiers. We can use it to combine

simple filters into a more discriminating filter.

Figure 3.2 is an example of simple boosting. W1, W2, W3 are three weak

classifiers, each of which has above 50% but much less than 100% probability to

correctly classify a datum. Each datum can be classified as one of two classes:

black or white.

Suppose A, B, C are three data each respectively belonging to the class black,

white and black. W1 will label A, B, C as black, white and white respectively;

W2 will label A, B, C as all black; W3 will label A, B, C as white, white and

black respectively. We can construct a stronger classifier S which is a linear

combination of W1, W2, W3. By assigning appropriate weights to W1, W2, W3
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Figure 3.2: Ada boosting

(1/3 each), S will treat A as 1
3

black + 1
3
black + 1

3
white, and by rounding it to

the majority decision, it will correctly classify A as black. Also, S will correctly

classify B and C. The probability to correctly classify a datum for S is 100%.

As proven in [11], for reasonable distributions, for any other datum D, it is

highly likely that S will classify it correctly. The process of computing the

appropriate weights for weak classifiers is called boosting.

Our framework is using a specific version of the boosting algorithm called

AdaBoost.MR: a multiclass, multi-label version of AdaBoost based on ranking

loss. More details can be found in Appendix A.

It is suggested in [29] that the decision tree algorithm is a good algorithm
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to detect weak classifiers as good candidates for boosting [26]. So the framework

also supplies a tool to build decision trees.

3.3.4 Algorithm Assessment

Benchmark

Once an algorithm is built, the framework can be used to benchmark and val-

idate the algorithm. By selecting different testing data sets, the benchmark

result will show whether the algorithm is general enough to cover not only the

training data but also the testing data.

Cross-validation

The simplest and most widely used method for estimating prediction error is

k-fold cross-validation [30]. Basically, given the training data, we randomly

divide them into k roughly equal-sized parts; picking the i-th part, we train the

algorithm with the other k − 1 parts and test the result on the i-th part; we

do this for each i in 1 . . . k. We usually choose 10 as k based on the general

observation that 10 is a good value.

If the training error and testing error do not change more than 5% as i

changes, it means that the algorithm is general enough with regards to the

data selection. If the testing error is much bigger than the training error, it

means that the algorithm has an overfitting problem, indicating that a different

parameter setting should be used.

The framework uses 10-fold cross-validation to assess the generality of the

parameters, such as the condition test value for the simple filters and the weights

for the boosting filters.
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Scalability Test

By increasing the size of the reference database step by step, the framework can

assess the scalability of the algorithm it builds.

For each scale level of the reference database, we need to make sure the

prediction error estimate is accurate. So Bootstrapping [30] is used to make

sure the data selected for testing is general enough that our prediction error for

this scale level is reasonable.

Suppose:

• The scale we want to test is a reference database R′ of m time series;

• The whole reference data space is R of size n (m < n);

• The current testing data are k (k < m) pair of time series

S = {(q1, r1), (q2, r2), ...(qk, rk)}

and

RT = ∪ri, RT ⊂ R for i = 1, 2, . . . k

where

1. the ri is considered the best match to qi.

Bootstrapping:

For about C = 1000 times (a customary number),

• Select m−k time series data uniformly with replacements from R to form

a set RS;
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• Use R′ = RT ∪ RS as a benchmark reference database and compute the

prediction error

Output the C prediction errors and the average prediction error.

If the C prediction errors have low standard deviation, then the algorithm

does not depend much on the selection of data. The average prediction error

gives a good idea of what the prediction error is in the general case.

3.4 Framework Components

3.4.1 Overview

The framework consists of the following major components from bottom to top:

• Transformation Functions

• Comparison Functions

• Features

• Feature Measures

• Conditions

• Filters

• Algorithms

The relationship between the different components is shown in Figure 3.3.

A more detailed explanation can be found in the following subsections.
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Figure 3.3: Framework components from bottom to top

3.4.2 Transformation Functions

Transformation functions are primitive functions that transform data from one

form to another, such as the Discrete Fourier Transform (DFT) [28] that trans-

forms data from the time domain to the frequency domain.

Currently there are three data forms in the framework: scalar, time series

and envelope time series.

• Scalar

A single real value.

• Time Series

A real value sequence with finite length.
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• Envelope Time Series

A set of two finite length real number value sequences. In the case that

each element’s value in the first number sequence is greater than the corre-

sponding element in the second number sequence, we call the first number

sequence a higher envelope and the other a lower envelope.

3.4.3 Comparison Functions

Comparison functions are functions that compare two data items and return a

scalar value. The scalar value is 0 when two data are considered equal. It can

be negative; a positive value means the first datum is “bigger” in the measure’s

sense and a negative value means the first datum is smaller.

The comparison function is often reflexive and symmetric. It might either

be transitive or satisfy the triangle inequality. Currenly we don’t make use of

these properties. But they can served as meta information in case we want to

automate the framework process in the future. The two data items could be of

the same or of different form; the restriction on the function is very loose. The

maintainer of the framework needs to understand the functions to use them.

Suppose F is the comparison function and q, r are two data inputs. It may

satisfy the following properties. These properties may be used to automate the

process to create new feature measures.

• Reflexive

F (q, q) = 0

This property does not usually hold when F applies only to two data of

different forms with a special order such as envelope distance measure.
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• Symmetric (on absolute value)

|F (q, r)| = |F (r, q)|

under the condition that F (q, r),F (r, q) can be computed.

This property does not usually hold when F only applies to two data of

different forms with a special order such as envelope distance.

• Transitive

F (q, r2) = F (q, r1) + F (r1, r2)

when q, r1, r2 are of the same data form and F (q, r) could return a negative

value.

This property does not usually hold when F only applies to two data

of different forms with a special order such as dynamic warping distance

measure.

• Triangle Inequality (on absolute value)

|F (q, r2)| ≤ |F (q, r1)| + |F (r1, r2)|

when q, r1, r2 are of the same data form and F (q, r) returns a negative

value.

3.4.4 Features

Transformation functions compute feature data from the original time series

data or other feature data, as in Figure 3.1.
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3.4.5 Feature Measures

The comparison functions, together with the feature data, comprise feature

measures, as in Figure 3.1. A comparison function can apply to different feature

data to construct different feature measures.

3.4.6 Conditions

The condition functions, together with the feature measures, construct filters.

A feature measure having different condition thresholds forms different filters,

one for each threshold.

3.4.7 Filters

As we mentioned earlier, we built a multi-filter algorithm based on the filters.

At each filter level, the algorithm uses one or more feature measures to com-

pare certain features of the query and reference data and filters out some bad

reference candidates.

Consider a classifier which labels each candidate ‘good’ or ‘bad’. If it always

gives the correct answer, it is considered a perfect classifier which can be directly

used as one filter in the multi-filter chain; if it gives the correct answer much

more than 50% of the time, it is called a strong classifier; if it gives the correct

answer slightly more than 50% of the time, then it is called a weak classifier,

which can be combined with other weak classifiers to create a boosted strong

classifier. Each filter in the multi-filter chain of the algorithm should be at least

a strong classifier if not a perfect classifer.
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3.5 Component Examples

In this chapter we will show how easy it is to create components with K[1] ex-

ample codes. A long list of the example framework components are in Appendix

B. Here we present only a few examples, which will be helpful in understanding

Section 3.6.

3.5.1 Example Transformation Functions

Each transformation function component has 3 APIs: name, description and

compute, where the API function compute is required and the other two are

helpers for the purpose of debugging or display.

For K[1] code implementation, each transformation function has an entry in

the dictionary .transform.

• Remove Average(deavg):

Subtract the average value from each element in the time series.

K code:

\d .transform.deavg

name:”Subtract the Average”

description:”Subtract the average value from each element

in the time series”

compute:{[x] :x-(+/x)%x}

• Zero Crossing Rate(zcr):

Compute how many times the time series data cross the average line.
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K code:

\d .transform.zcr

name:”Zero Crossing Rate”

description:”Compute how many times the time series cross

the average line”

compute:{[x] x:.transform.deavg.compute[x]

/rest of the implementation omitted}

This transformation reuses the deavg tranformation to preprocess input

data.

• Direction Change Count(dcc):

Compute how many times the time series data changes direction, either

up or down.

K code:

\d .transform.dcc

name:”Direction Change Count”

description:”Compute how many times the time series data

changes up or down direction”

compute:{[x] /implementation omitted}

3.5.2 Example Comparison Functions

Each comparison function component has 3 APIs: name, description, com-

pare, where the API function compare is required and the other two are
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helpers for the purpose of debugging or display. API compare takes two values

as input. The forms of the two input values may be different and the order of

input usually matters.

For the K[1] code implementation, each comparison function has an entry

in the dictionary .measure.

• Subtraction(subtraction)

C(q, r) = r− q, where q, r are both scalars or both time series of the same

length.

It is reflexive, symmetric on absolute value and transitive. It satisfies the

triangle inequality on absolute value when both input are scalars.

K code:

\d .measure.subtraction

name: ”subtraction”

description: ”Subtraction of the first datum from the second”

input: ‘ts

compare:{[q;r]:r-q}

/note that the order of the subtraction is important

• α%-Local Dynamic Time Warping(ldtw)

It computes the k-local dynamic time warping distance between two time

series q, r where k = 1 + n ∗ α% and n is the length of q. It is reflexive.
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3.5.3 Example Feature

Each feature component has 4 APIs: name, description, input and com-

pute where the API functions input and compute are required and the other

two are helpers for the purpose of debugging or display.

For the K[1] code implementation, each feature has an entry in the dictionary

.segts features.

• Relative offset of the time series(ts rel):

For each consecutive pair in the time series, subtract the two values in the

pair and we get a new time series.

K code:

\d .segts features.ts rel

name: ‘ts rel

description: ”Relative offset of the time series”

input: ‘ts

compute: {[x]:-’:x}

The above code assumes the time series data feature ‘ts is defined at

.segts features.ts. Its input API refers to ‘ts, meaning that the feature

‘ts rel can be computed from feature ‘ts using its compute API.

3.5.4 Example Feature Measures

Each feature measure component has 5 APIs: name, description, opl, opr

and op, where the API functions opl, opr and op are required and the other
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two are helpers for the purpose of debugging or display. op is the operater and

opl opr are the left and right operands respectively. opl may be different from

opr, depending on the op’s requirement on the input.

For the K[1] code implementation, each feature has an entry in the dictionary

.segts measures.

• Zero-crossing rate difference(ts zcr):

Compute the difference of the zero-crossing rate of two time series.

K code:

\d .segts measures.ts zcr

name: ‘ts zcr

description: ”Subtract the value of the zero-crossing rate

of two time series”

opl:opr:.segts features.ts zcr.name

op:.measure.subtraction.compare

The above code assumes the time series data feature ‘ts zcr is defined at

.segts features.ts zcr. Its opl,opr API both refer to ‘ts zcr, meaning

that the measure is based on feature ‘ts zcr.

The .segts measures and .segts feature appear to be duplicated and

redundant. However, for the same feature, we can apply different compar-

ison functions to create different feature measures. It does not look useful

in this simple case but will be useful when we create complicated feature

measures.
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More importantly, the result of a feature measure is a monotonic scalar

value which we can analyze and determine a parameter to create filters.

In a way similar to creating the feature measure .segts measures.ts zcr,

we can create the feature measure .segts measures.ts dcc using feature

.segts features.ts dcc and comparison function .measure.subtraction.

We will compare these two feature measures ts zcr, ts dcc later in section

3.6.

3.5.5 Example Conditions

The condition keywords are used in the algorithm builder configuration file to

create filters. Some examples are as follows.

• e: Feature value is equal

• le: Measure value equal to or less than

• ge: Measure value equal to or greater than

• in: Measure value is in a range

• rank: Rank of measure value among all reference data in DB

3.5.6 Example Filters

We will show how easy it is to use a configuration file to prototype algorithm

and how easy to make changes to an algorithm.

Each line in the algorithm builder configuration file defines a filter. The

format is ’condition, feature measure, condition value’. To add a new filter,

simply add a new line; to remove a filter, simply remove or comment out the line.
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The framework can load the new configuration file and generate the algorithm

for matching. Each algorithm can be stored in a separate terse text file which

makes it very easy to maintain.

For example, suppose the query datum is q, a reference datum is r, and M

is a feature measure for q, r.

• e,ts zcr,1

M(q, r) = ts zcr(r, q) =







1 if (rts zcr == qts zcr)

0 otherwise

where rts zcr and qts zcr are the ts zcr feature of q and r respectively.

This filter will consider r as a good candidate only if

M(q, r) == 1

In this example, the feature measure ts zcr incidentally has the same

name as the feature name ts zcr it used to test the condition.

• le,ts dcc,3

M(q, r) = ts dcc(r, q) = rts dcc − qts dcc

where rts dcc and qts dcc are the ts dcc feature of q and r respectively.

Since we specify the threshold as 3, this filter will consider r a good

candidate only if

M(q, r) ≤ 3

In this example, the feature measure ts dcc incidentally has the same name

as the feature name ts dcc it used to test the condition.
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• rank,ts ldtw5,15

Here ts ldtw5 is the feature measure that computes the 5% local dynamic

time warping distance between the query datum and reference datum,

M(q, r) = ts ldtw5(r, q) = ldtw(q, r)

where the warping parameter α% is the default 5%.

This filter will consider r as a good candidate only if its 5% local dynamic

time warping distance to q is one of the 15 smallest values among all the

reference data’s 5% local dynamic time warping distances to q.

3.5.7 Example Boosted-Filter

In the algorithm builder configuration file, a boosted filter is represented as a

few text lines as follows:

1. The first line is “boost{ weights” where a “{” separates keyword“boost”

and the weights for the combining filters. The weights are a list of numbers

separated by “,”;

2. Each line of the following lines defines a filter as in Section 3.5.6. The i-th

filter’s weight is the i-th number in the number list;

3. The boosted filter ends with “}”.

Suppose the boosting algorithm suggests that three filters (e,ts zcr,1),

(le,ts dcc,3), (rank,ts ldtw5,15) can be combined with equal weights 0.33,

0.33, 0.33 to create a stronger filter. It can be represented as:
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Config file text:

boost{1,1,1

e,ts zcr,1

le,ts dcc,3

rank,ts ldtw5,15

}

The weights in the example are 1,1,1 which will be automatically normalized.

3.6 Usage Examples

3.6.1 Feature Measure Analysis

The framework can generate a report for any distance feature measure M for

further analysis. This makes it convenient to analyze and experiment new fea-

ture measures.

For any training data S = {(q1, r1), (q2, r2), ...(qn, rn)} where ri is the correct

match for qi, M(qi, rj) will be computed for all i from 1 to n and all rj ∈ R.

We look at two distributions:

• The distribution of M(qi, ri) for all i, (P ):

It gives information about whether the M gives a distance value close to

zero for correct matches.

• The distribution of M(qi, rj) for a fixed i and all rj ∈ R, (Qi):

It gives information about whether the M can distinguish the correct

matches from the incorrect ones.
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Situations:

• If M is consistantly low for correct matches and consistantly high for

incorrect ones, then M is a good feature measure.

• In other cases, M might be used as weak classifier. Since a weak classifier

only needs to have slightly higher than 50% correctness probability, if it

is worse than 50% probability, then the reverse would be a weak classi-

fier. The only case where a measure is useless is when the correctness

probability is 50%.

For example, usually Direction Change Count is not a good feature mea-

sure for data with even small noise.

Considering a time series datum 1, 2, 2, 2, 1 as the reference data, the

direction change count is 1. If there is some noise in the query data, say 1.0,

2.0, 1.9, 2.0, 1.0, the direction change count in the query data is 3!

3.7 Summary

This chapter explained the structure and functions of the time series matching

framework. Given any application training data, the framework can be used

to build a multi-filter algorithm to perform an accurate and efficient similarity

search. In the next chapter, we will study a case of a music retrieval system. We

will apply this time series matching framework to analyze music data and build

a similarity search algorithm to match people’s humming to music melodies.
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Chapter 4

Case Study: Query-by-humming

A Query by Humming (QbH) system allows the user to find a song by humming

part of the tune. The idea is simple: the user hums into the microphone;

the computer records the humming and extracts certain melody and rhythm

features; then it compares these features to those of the songs in the database;

finally it returns a ranked list of the songs or song segments most similar to

the humming. There are several applications for this technology, such as music

search engines, cell phone ring-tone searches, karaoke scoring and music learning

software.

Usually the evaluation of a query-by-humming system is based on human

judgment. We say a hummed tune is human recognizable if any person who

knows the song being hummed can recognize the song from the humming. We

say a hummed tune is top-K system recognizable if the song name is in the

system’s top K list (K is usually small, 1, 5 or 10). Given a set of hummed

tunes, the percentage of hummed tunes that are recognizable by the system is

called the hit rate. The higher the hit rate, the higher the accuracy.
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TopKhitrate =
the number of TopK system recognizable

the number of human recognizable

My goal is to build a fast and accurate system with thousands and eventually

millions of songs. I will first compare related work on QbH systems, then pro-

pose an approach to improve one of them, and finally show some experimental

results.

4.1 Related Work Review

Currently there are several Query-by-Humming systems being built and various

techniques have been applied.

1. String-represented note sequence matching

Alexandra Uitdenboderd and Justin Zobel [31] at RMIT University used

strings to represent the note sequence of music so that many fast and ma-

ture string-matching algorithms could be directly used. For example, each

interval between two notes is represented as a letter ”S” if the interval is

close to 0. However, it is very hard for a human to hum exact music notes;

so humming cannot be represented accurately by symbolic sequences of

music notes. As a result the accuracy of the system is not satisfactory.

The New Zealand Digital Library MELody inDEX developed by Rodger

J. McNab, Lloyd A. Smith, David Bainbridge and Ian H. Witten [21]

also used stringsa to represent music. They applied an approximate

string matching technique which is basically Dynamic Time Warped string

matching. As a result, the extended time taken to perform the approxi-

mate matching in large databases was still a problem. “The system con-
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tains 9,400 folk songs and a 20-note search pattern requires approximately

21 seconds.” The bigger problem is that the returned list contains too

many entries and does not have a high top-K hit-rate for small K. An

online version of the system recently become available [2].

W. Archer’s [4] string editing matching algorithm is another variant of

the DTW string matching technique which allows missing of notes in the

humming.

Another novel idea is to not only dynamically match note values but also

dynamically match duration values.

2. Time Normalization and Partial Tone Transition

N. Kosugi, Y. Nishihara, T. Sakata, M. Yamamuro and K. Kushima’s

Large Music Database [19] “holds over 10,000 songs but the retrieval time

is about one second. And it is able to recognize the song and rank it

within the first 5 places on the list for about 70% of hummed tunes that

are recognizable to human beings as a part of a song”. Although this

performance is far from perfect, it is very good considering the scale of

the system. Also, it is a system that supports sub-sequence matching.

However, the system requires the user to hum with the syllable ‘ta’ and

requires the user to hum following the beats of a metronome.

Their system uses the music notes information from MIDI files. The dura-

tion of the notes in a song are normalized based on the most frequent du-

ration among all the notes. Then the song is segmented into subsequences

with equal duration lengths. The subsequence may be segmented into

subsubsequence if the most frequent duration among the notes in the sub-
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sequence is smaller than the one among all the song notes; the subsequence

may be merged if the most frequent duration is bigger. Then the tone-

transition (relative note offset) feature is computed for each subsequence.

The partial tone-transition feature are extracted from the tone-transition

starting from a high note in the subsequence. Then the features are used

to compare query and reference candidates. Some indexing techniques are

used to speed up the system.

3. Melody slope matching

Y. Zhu, M. S. Kankanhalli and C. Xu [35] matched music based on the

music’s melody slope. For example, several adjacent notes are approxi-

mated by a line and the slope of the line will be treated as a feature. This

method is not equipped to handle a bad humming query, and thus will

not have high accuracy. However, this method may be used as one filter

to quickly remove bad candidates.

4. Dynamic Time Warping (DTW) on pitch contour time series

D. Mazzoni and R. B. Dannenberg [20] proposed a subsequence matching

algorithm which uses local time-warped distance measure to match music.

Although the precision is better than Euclidean distance, the response

time is not ideal because no indexing on DTW distance is applied.

Y. Zhu, D. Shasha and X. Zhao [37] used DTW distance measure and

the GEMINI framework with PAA-based envelope transforms. The songs

in the database were chopped into song segments based on melody and

transcribed into pitch contour. The query is compared to each song seg-

ment in the system using the adaptive multi-level filter algorithm. Both
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the efficiency and precision results are very good on a small demo system

with 53 Beatles songs.

5. Survey

The survey paper on audio fingerprinting by Pedro Cano, Eloi Batlle, Ton

Kalker and Jaap Haitsma [6] is a significant paper on audio retrieval-by-

content algorithms. It gives a general framework with a list of algorithm

design requirements and a long list of algorithms. It also discusses different

distance metrics and different indexing methods.

Conclusion

From the survey and our experimental results, we can summarize the related

work as follows:

1. Warped distance is more robust

Generally, similarity measures that allow time warping have higher accu-

racy than those which use Euclidean distance or exact string matching.

2. Need to scale up

The computational complexity of time-warped matching is still prohibitive.

A real large scale system with millions of songs needs a better indexing

method and a more discriminative similarity measure.

3. Difficulty of performance comparison

Although there are successful works on query-by-humming systems, it is

hard to compare the results for the following reasons:

• No standard for evaluation
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(a) The data set and testing set are different.

The music collection and the size of the database varies greatly.

The testing sets are generally too small to be statistically mean-

ingful. Also, the selection of the testing will affect the result. For

example, some melodies are more distinguishable than others.

(b) The definition of accuracy is not reliable

The hit-rate definition is based on human’s recognition of hum-

ming, which is not reliable. For example, a human can recog-

nize a hummed tune by recognizing the most distinguishable part

even if other parts may be out of tune. Also, a human who knows

only a few songs might more easily recognize more hummed tunes

than a human who knows a lot of songs, who may not recognize

a hummed tune because it is similar to many tunes. So a human

may mistakenly label a hummed tune because of their personal

knowledge.

• No easy access to the system

Only two of above systems have online interfaces, one of which was

not accessible until very recently.

Since I am continuing my work based on Yunyue Zhu’s system [37], I will

use that system as a benchmark reference. The evalution process is to first

have more than 3 people verify each humming. Only hummings that can be

recognized by at least 3 people are used for the system training. Also, the

reference database for training contains only songs of the training hummings to

avoid influence of other song data.
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4.2 Our Query-by-humming System

Our system uses the time series matching framework to learn the measure in-

stead of relying purely on a single distance measure.

4.2.1 New Workflow

The workflow of the new system is an extension of the old system from [37], see

Figure 4.1. We will first give a query work flow example here and then discuss

the key ideas in detail.

note/duration
sequence

segment
notes

Query criteria

Database

Humming with ‘ta’

keywords

Top N
match

Nearest-N
search

on DTW
distance
with 
transformed
envelope filter

melody (note)

Top
N’

match

Alignment

verifier

rhythm (duration)
& melody (note)

Database

statistics
based
features

Boosted
feature

filter

boosting

Database

Keyword

filter

Figure 4.1: New Query-by-humming System

Given a query,

1. Preprocessing
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The humming is transcribed into pitch contours and extracted as a note

value sequence and duration value sequence.

2. Keyword filter

The candidate set is first filtered using the keyword if any keyword is

supplied.

3. Multiple Statistical Feature Filters

The candidate set is further filtered based on a multi-filter chain, some of

which are boosted filters.

4. Adaptive multi-level DTW filters

The melody (note-sequence) information is used as a query to obtain a

top-K list. This step uses the same adaptive multi-level filter algorithm

as Yunyue Zhu’s framework except that note-sequences are used instead

of pitch-contours.

5. Alignment verifiers

For each candidate in the top-K list, the alignment between it and the

query is verified based on both the melody (note-sequence) and rhythm

(duration-sequence) information.

4.2.2 Key Idea: ‘ta’-based humming

Kosugi et al [19] showed that humming with only the syllable ‘ta’ can be easily

segmented into note-sequences; experiments also show the same result. Figure

4.2 shows two hummings of the same song segment. Unlike humming using ‘la’,
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Figure 4.2: Compare humming using ‘ta’ and ‘la’

the humming using ‘ta’ has obvious rests between music notes which may be

because of the hard, short sound ‘t’.

By using ‘ta’-based humming, we can reduce the length of the time series

by orders of magnitude (from hundreds to less than 30). Then we can still use

DTW distance measure to compute the similarity. This preserves the flexibility

of warping while reducing the computational complexity.

The difference between our system and Kosugi’s system is that we don’t

require the user to hum with the aid of a metronome because a metronome is

usually not available and that requirement is not natural for a common user.
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4.2.3 Key Idea: Low-Computation-Cost Filters

If a (boosted) filter has a lower computation cost than the DTW distance mea-

sure, then the system can use it as a filter to quickly weed out bad candidates,

thus improving the speed of the system. Many statistical feature measures, if

we set the condition loosely, can yield good filters.

Some features that the new framework currently uses to build filters are:

standard deviation of note value, zero crossing rate of note value, number of

local minima/maxima of note value, and a histogram of notes.

For example, based on the feature analysis, if the standard deviation of

the query note-sequence’s note value is 3.0, a standard-deviation-based weak

classifier may be defined as follows: any candidate whose standard deviation is

not between 1.5 and 4.5 is labeled “not similar” to the query.

Also, many statistical features are weak classifiers and usually computation

is fast. They can be combined into a boosted strong classifier.

Note that although a boosted classifier does not guarantee no false negatives,

it gives a high probability guarantee if we set parameters appropriately.

4.2.4 Key Idea: Alignment Verifiers

Whenever we compute a minimum DTW distance between two time series, we

get a particular alignment between them. It is wise to verify the alignment.

If two time series align well to each other globally (have a low DTW distance)

but align badly locally (the aligned elements have huge distance), we should not

consider it a good match. Figure 4.3 is such an example, the two time series do

not match. They align well globally but align badly at the 12, 13, 14th elements.

The 13th element of the upper time series is aligned to the 12th element of the
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Figure 4.3: Good global alignment, bad local alignment

lower time series; the 14th element of the upper time series is aligned to the

13th element of the lower time series.

In our framework, the DTW distance is computed based solely on the melody

information. It is also wise to verify that the alignment is a reasonable alignment

for rhythm. Note that we cannot verify the rhythm alignment unless we know

which notes in the query correspond to which notes in the reference because

of the possibile note add/delete error. Several consecutive notes in the query

may correspond to one note in the reference or vice versa. After we determine

the time alignment based on the DTW distance computation, we can verify the

rhythm alignment.
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4.3 Building the algorithm

4.3.1 Order of filters

Since speed is an important concern, the initial filters in the multi-filters chain

are better if they have a low computation cost. Here we assume that all the

features for the reference and query data are pre-computed, so the computation

cost for a filter mostly depends on the comparison function.

If a filter is based on a lower computation cost comparison function than

other filters, then it should be used first in the filter chain; on the other hand, if

a filter can largely reduce the size of the reference database, thus reducing the

full-scan cost for the next level, it should be used first as long as its computation

cost is not too high. The trade-off depends on how much of the full scan cost

the filter can save in the next level and how much the filter will cost for the

current level.

In our experiments, a filter based on the number of musical notes can be com-

puted quickly and effectively reduces the reference database set of candidates.

Suppose the query has kq notes, this filter computes the reference candidate

melody’s music note number, say kr, if kq/kr is not in (1 − a, 1 + b) (a, b are

trained parameters with positive value), then the reference candidate is not a

match for the query with very high probability (99.9%), and the filter can usu-

ally reduce the reference database size by about 25%. So this filter is placed at

the beginning of the algorithm filter chain.

Some filters have dependence on other filters such that they must be placed

after those prerequisite filters. For example, the duration alignment verifier can

be placed only after the DTW algorithm determines the alignment of notes,
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because comparing the duration size is meaningful only if they correspond to

the same note.

4.3.2 Feature Analysis and Selection

For each feature, we can create different feature measures using different com-

parison functions. Then we can analyze the output of the comparison function

between the query datum’s feature and other reference data’s feature, as de-

scribed in section 3.6.1. The analysis will also give insights about the errors

people tend to make when they hum.

1. Number of Notes: Subtraction vs. Ratio

In our system, the songs are segmented into melody phases so we know

exactly the number of notes in each melody phases. For the training data,

the analysis shows the distribution for all the differences of the number of

notes between all the training (qi, ri) pairs. For example, given a query

qi and its matching reference ri, suppose the note number of query qi

is len(qi) and the note number of ri is len(ri); the distribution of the

difference len(qi) − len(ri) over i is what we are analyzing. If we use

the difference between the query and reference data’s number of notes to

check whether the reference data is a possible good match for the query,

it would be a good estimate since the distribution is condensed around a

small region with only a few exceptions, as shown in Figure 4.4(a).

Using the ratio betwen the number of notes is more intuitive since the

note number can be very small or big but the number of notes people add

in the humming may be proportional to the length of the melody. Figure

4.4(b) shows the distribution of len(qi)/len(ri) − 1 for all i. Although
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Figure 4.4: The distribution of the measures based on the number of notes
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it is only a little more condensed than Figure 4.4(a), here training data

are mostly short queries. More longer queries in the training data should

show a bigger difference.

2. Note value sequence’s standard deviation: Subtraction vs. Ratio

For the same reason, we chose to use the ratio between the query and the

reference data’s standard deviation of note value sequence rather than the

difference as a feature measure to build a filter. See Figure 4.5 for the

distribution of the subtraction/ratio between queries and the matching

songs’ standard deviation of the note value sequence.

3. Direction change count vs. Zero-crossing-rate

In our experiments, we find that the direction change count is not a good

filter, as shown in Figure 4.6(a). Slight noise in the data sequence dra-

matically changes the direction change count feature as in the example

below, which we have already seen:

Consider a time series datum 1, 2, 2, 2, 1 as the reference data, its direction

change count is 1. If there is some noise in the query data, say 1.0, 2.0,

1.9, 2.0, 1.0, the direction change count in the query data is 3! Each data

distortion might introduce two new direction changes.

Zero-crossing-rate tends to be a better measure, however, it is not stable

either, see Figure 4.6(b). So we will use the zero-crossing-rate measure to

build one of the filters to be boosted.

4. Relative note offset vs. Note value

There have been arguments about whether or not people will change bases

while humming. If so, then the relative note offsets between consecutive
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Figure 4.5: The distribution of note values’ standard deviation
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(b) Ratio of Zero Crossing Rate

Figure 4.6: Compare the direction change count and zero-crossing rate
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note pairs form a better representation of the humming; otherwise the

absolute note values relative to the average captures the more accurate

information. Here we analyze and compare different feature measures

based on both relative consecutive note offset sequences and absolute note

sequences.

For each feature measure related to the note value sequence, a similar

feature measure is built based on the relative note sequence. For example,

one feature measure compares the most significant value (biggest absolute

value) of the mean-removed note sequence of the query and the refer-

ence candidate. A similar feature measure compares the most significant

value of the relative consecutive note offsets sequence of the query and the

reference candidate.

The experimental results do not strongly favor one over the other in most

cases. If we use the most significant absolute value in the mean-removed

note sequence as a feature, the ratios between the query and reference

pairs have a distribution similar to that if we use the most significant

absolute value in the relative note offset sequence, as in Figure 4.7. In

our algorithm, we use the former feature to build one of the filters to be

boosted.

If a feature is based on the difference between the maximum and minimum

values in the note sequence, the ratios between the query and reference

pairs’ feature have a distribution slightly more condensed than that if we

use the most significant absolute value in the relative note offset sequence,

as in Figure 4.8. In our algorithm, we use the former feature to build one

of the filters to be boosted.

65



no_deavg_sig_ratio

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

-0
.5
9
-0
.5
1
-0
.4
4
-0
.3
6
-0
.2
8
-0
.2
0
-0
.1
3
-0
.0
5
0.
03
0.
11
0.
18
0.
26
0.
34
0.
42
0.
49
0.
57
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(b) For relative note offsets

Figure 4.7: The distribution of the ratio of most significant value
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(b) For relative note offsets

Figure 4.8: The distribution of the max-min value difference
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Figure 4.9: The distribution of the LDTW measure on the first 5 values
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If a feature is based on the local dynamic time warping (DTW) distance of

the first 5 elements’ values in the mean-removed note sequence, the ratios

between the query and reference pairs’ feature have a distribution that

is more condensed than that if we use the local dynamic time warping

distance of the first 5 elements in the relative note sequence, as in Figure

4.9. This is easily explained: if there is some note added into or deleted

from a few consecutive notes with similar values in the note sequence, the

relative note sequence would have errors that cannot be handled by the

dynamic time warping measure. For example, suppose the song melody is

55, 62, 62, 55, 58, . . . where the durations are 4, 1, 1, 4, 4, . . ., the query

may merge two short notes of value 62 into one longer note, such as 55, 62,

55, 58, . . .. The DTW distance measure will give a small distance between

the query and reference note sequence. But for the relative note sequence

feature, the query becomes 7, -7, 3, . . . and the reference becomes 7, 0,

-7, 3, . . . and the DTW distance measure will give a big distance between

them. In our algorithm, we use the local dynamic time warping distance

of the first 5 elements’ values in the mean-removed note sequence as a

feature to build one of the filters to be boosted. No duration information

is used though.

5. Which to use as measure reference: humming vs. music

Some measures, such as envelope distance and dynamic time warping dis-

tance, are non-symmetric. This begs the question of whether we should

measure the humming against music or vice versa. It looks more intuitive

to measure the humming against music because humming is a distorted

version of its corresponding music. The experiment shows the same result,
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Distribution of DTW distance between humming and the matching music
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Figure 4.10: The distribution of the LDTW measures using different order

as illustrated in Figure 4.10.

What’s interesting is that some humming can be recognized in the top list

if we measure the humming against music but cannot be recognized if we

measure music against humming. So it may be a good idea to combine

both results to get a better result than using either one alone.

An example configuration file for the algorithm we built follows:

Configuration File:

/good filters

/based on note length

in,no len ratio,-0.50,0.50
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/based on note value’s variance

in,no stddev ratio,-0.50,0.50

/based on the difference between maximum and minimum note value

in,no maxVSmin ratio,-0.50,0.50

/based on the the most significant note value

in,no deavg sig ratio,-0.50,0.50

/based on the the envelope distance of uniform length note values

le,no uni128 env5percent paa8,1.50

/based on the the moving average’s auto-correlation’s parameter number

in,no MArank,-4,4

/based on the the LDTW distance between the first 5 notes

le,no ldtw no5,4.0

/boosted filter, each weak classifier has same weight

boost{1,1,1,0,0,0

/based on the note length

in,no len,-1,2

/based on the note value variance

in,no stddev,-1.0,1.0

/based on the zero-crossing rate

in,no zcr,-3,3

}

/final ranker, based DTW distance

rank,no ldtw 5percent,5
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4.4 Evaluating the algorithm

4.4.1 Setup

• Training Data

– Label confirmed by at least 3 people

230 hummed tunes from 66 songs were collected from all over the

world. They were labeled by the person who contributed the hum-

mings, the thesis author and a few amateur musicians.

– Labeled by the contributor him/herself

In addition to the above hummed tunes, 167 hummed tunes from 29

songs are collected from all over the world, labeled by the person who

contributed the hummings.

– Song pool

The hummed tunes are from 1400 songs including 123 Beatles MIDI

files, 937 pop song MIDI files and 340 ringtones. The ringtones in-

clude selections from the following categories: anthems, arcade, car-

toons, children’s songs, christmas, classical, entertainment, military,

soccer, TV and films. Each song is segmented based on the melody,

merged (if appropriate) and organized into 40891 melody segments.

• Computing Environment

Pentium III 1.0G Hz CPU and 384M memory. Not all the data in the

database can be loaded into the memory but the system is first “warmed

up” using a few sample tests before doing performance measurements.

The queries are preprocessed into pitch-contour representations without
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any normalization. The query-handling server is written in the array-

processing-language K which processes sequential data very efficiently.

• Scalibility test

For the same set of testing query data, the algorithm is benchmarked

against a few different scales of the reference database. The reference

database at the minimum scale includes only the songs to which the testing

query data corresponds. Then the size doubles and triples by randomly

selecting other songs in the song pool. The size increases until it reaches

the full size of the song pool.

4.4.2 Observations

Multi-filter outperforms pure DTW

Experiments show that if only the DTW distance is used to measure the simi-

larity between the humming and music, the top-5 and top-10 hit rate is about

5% less than using multi-filters, as shown in Figure 4.11. 167 hummings are

tested on a reference database with 540 melody segments of 25 songs. (Note

that the size of the reference database is quite small here.)

The multi-filters algorithm for this experiment is a chain of 3 simple statistics

based filters with the DTW distance measure at the end of the chain. The three

simple filters are based on the length, the standard deviation and the zero-

crossing-rate of the note sequence. This demonstrates that pure DTW distance

measure is not good enough to measure the similarity and that the time series

matching framework is helpful in identifying better similarity measure.

Not only can the hit-rate can be improved, but the response time can also
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Hit Rate for 167 hummings on
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Figure 4.11: Compares the hit-rate to pure DTW distance measure

be improved as well, as shown in Figure 4.12. Later in the section, we will show

that the response time for the new system scales much better than for the old

system.

Scalability of the algorithm

Here we study the scalability of the proposed multi-filter system and compare

it to the old system [37].

The benchmark used 230 hummings from 66 randomly chosen songs, each

verified by at least 3 people. The database at each test scale respectively con-

tains 66, 317, 819, 1323 songs; each including the 66 hummed songs. The

number of melody segments in the database for each test scale is respectively
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Response Time for 167 hummings on a 540 melody segments database
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Figure 4.12: Compares the response time to pure DTW distance measure

1363, 9398, 24804, 40891, which is the number of references the algorithm needs

to measure similarity against. The more melody segments in the database, the

greater the discriminating power needed to find the correct match, and the

greater the computation cost.

Figure 4.13 shows the top-10 hit-rate for the algorithm in the old system

[37] and the top-1, top-5 and top-10 hit-rate for the multi-filter based algorithm

we use in the new system. The old system uses DTW distance measure on

pitch contours along with envelope filter and transformed envelope filters. It

is clear that even the top-1 hit rate of the multi-filter algorithm is better than

the top-10 hit rate of the old system. And the multi-filter algorithm’s hit rate’s

scalability has a similar pattern.
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Figure 4.13: Compare the hit-rate’s scalability

Figure 4.14 compares the top-10 response time of the old system and the

new system. It is clear that the multi-filter algorithm’s response time scales

much better.

Overall, the scalability of the multi-filter algorithm is much better.

4.4.3 System Demo and User Feedback

The system is available online at http://querybyhum.cs.nyu.edu. It has an

easy web interface (see Figure C.4) to upload wave files of hummings to query

the database. Also, a Java-based GUI client can be downloaded to support more

interaction, (see Figure C.5). The GUI client is also used to collect hummings

from fans and label them automatically. This helps a lot in the data collection
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process and in improving our system, because the key to getting an accurate

analysis of the hummings is to get enough data from a variety of users for a

variety of songs.

The efforts of the team members of the query-by-humming project has re-

sulted in our project page being ranked in the top result list by major search

engines if a user searches keywords such as “query by humming”, “whats that

song” and “humming”1. Please see Appendix C for some example snapshots.

We participated in a Tech-Show hosted by the Swiss Broadcasting Company

to demostrate the power of query-by-humming and the demo “was a big success”

according to the organizer. More detailed feedback can be found in Appendix

1As of the written month of this thesis: December 2005.
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C.

Also, many websites and blogs discovered us and some users say it “works

like a dream ...”.

4.5 Future Work

There are some techniques developed in related recent work that we can inte-

grate into our framework.

For example, a VLDB 2005 paper “Scaling and Time Warping in Time Series

Querying” [8] by Ada Wai-chee Fu, Eamonn Keogh, Leo Yung Hang Lau and

Chotirat Ann Ratanamahatana proposes a technique to exactly index both the

DTW and uniform scaling. This technique would be useful to speed up partial

sub-sequence matching where the query time series data may match the leading

portion of the reference time series data with some time-scaling.

Naoko Kosugi’s thesis [18] includes updated information about her group’s

music retrieval system: SoundCompass. Their extensive study of people’s

humming behavior can be used to build better preprocessing components in

our framework. For example, the most frequent note duration in each melody

segment in SoundCompass is used as the time-domain unit length for the seg-

ment. Each note’s duration is then represented as the discrete ratio to the unit

length, thus each melody segment’s length in terms of the unit can be deter-

mined. If the query’s length is represented the same way, we can quickly filter

out reference melody segments which have much larger or smaller length. This

length-based filter takes into account the duration information, thus it may be

better than a filter based on the numbers of notes.

“QBH2- A Query by Humming Retrieval System Based On Polyphonic
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Karaoke Music Database” [27] is a recent work that discusses various indepth

issues dealing with polyphonic music retrieval. Engineering effort and low-level

data analysis are the highlights. The authors have a good idea about music

theory and the paper is heavy on music signal processing. The insight corcern-

ing music data and the signal processing techniques may be useful in building

databases from polyphonic music data and in building better filters.

Building a large content-based commercial music retrieval system is quite

difficult because of the nature of the problem. The human humming input

accuracy is hard to predict; different people’s perception of the same music

might be quite different and the existence of many similar songs make them

hard to distinguish. Techniques that immitate human’s perception of the music,

such as machine learning, may have great potential to solve these problems.

Besides, processing the large amount of data requires greater computation power

than usual text information. More efficient data structures or algorithms are in

demand. Even with all of the recent work, a lot of work needs to be done on

this topic.
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Chapter 5

Conclusion

Our experiments on the query-by-humming system show that the multi-filter

based time series matching framework is useful in identifying and building fast

and accurate similarity measures between time series data.

If the process to select the features and tune the parameters can be auto-

mated using some generic algorithm, that would improve the process even more.

Future work may follow in that direction to adapt more machine learning tech-

niques and generic algorithms to further automate the system.
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Appendix A

Boosting Algorithm

• AdaBoost.MR

Given a problem in which the goal is to find a hypothesis which ranks the labels

with the hope that the correct labels will receive the highest ranks, the problem

can be formalized in the following (quoted from [26]):

“We seek a hypothesis of the form f : X × Y → R with the interpretation

that, for a given instance x, the labels in Y should be ordered according to

f(x, ·). That is, a label l1 is considered to be ranked higher than l2 if f(x, l1) >

f(x, l2). With respect to an observation (x, Y ), we care only about the relative

ordering of the crucial pairs l0, l1 for which l0 /∈ Y and l1 ∈ Y . We say that f

misorders a crucial pair l0, l1 if f(x, l1) ≤ f(x, l0) so that f fails to rank l1 above

l0. Our goal is to find a function f with a small number of misorderings so that

the labels in Y are ranked above the labels not in Y .

Our goal then is to minimize the expected fraction of crucial pairs which

are misordered. This quantity is called the ranking loss, and, with respect to a
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distribution D over observation, it is defined to be

E(x,Y )∼D

[ |{(l0, l1) ∈ (Y − Y ) × Y : f(x, l1) ≤ f(x, l0)}|
|Y | · |Y − Y |

]

We denote this measure rlossD(f). Note that we assume that Y is never

empty nor equal to all of Y for any observation since there is no ranking problem

to be solved in this case.”

The AdaBoost.MR algorithm follows:

Given: (x1, Y1), . . . , (xm, Ym) where xi ∈ X , Yi ⊂ Y

Initialize

D1(i, l0, l1) =







1
m·|Yi|·|Y−Yi|

x if l0 /∈ Yi and l1 ∈ Yi

0 else

For t = 1, . . . , T :

1. Train weak learner if necessary using distribution Dt

2. Get weak hypothesis ht : X × Y → R

3. Choose αt ∈ R

4. Update:

Dt+1(i, l0, l1) =
Dt(i, l0, l1)exp(1

2
αt(ht(xi, l0) − ht(xi, l1)))

Zt

where Zt is a normalization factor (chosen so that Dt+1 will be a distri-

bution: non-negative, sum is 1).

Output the final hypothesis:

f(x, l) =
∑

t = 1T αtht(x, l)
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Appendix B

Components Examples

• Example Transformation Functions

The actual code implementation name of each example component is in

the bracket.

1. Average (avg):

Compute the average value of a time series.

2. Remove Average (deavg):

Subtract the average value from each element in the time series.

3. Length (len):

Compute the number of elements in a time series.

4. Standard Deviation (stddev):

Compute the standard deviation of a time series.

5. Zero Crossing Rate (zcr):

Compute how many times the time series crosses the average line.

6. Direction Change Count (dcc):
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Compute how many times the time series changes direction, either

up or down.

7. Map to Uniform Axis (uni128):

Map the time series to a uniform length (default is 128). It is the same

as the global time scaling function in Section Underlying Technology

2 except that it up-scales the data when the original size is less than

the uniform length and down-scales the data otherwise.

8. Envelope with α%-Warping (env5percent):

Compute the k-Envelope (see Equation 2.3) of the time series where

k is α% ∗ n, where n is the length of the time series. By default,

α = 5.

9. n-PAA: Piecewise Aggregate Approximation (paa8):

Divide the time series into n equal length pieces and average the value

by piece (see Equation 2.7). The result is a time series of length n.

By default, n = 8.

If the input is an envelope time series, the result is still an enve-

lope where the resulting higher (lower) envelope is the n-PAA of the

original higher (lower) envelope.

10. k-DFT: Discrete Fourier Transform (dft8):

Compute the first k real-part coefficients of the Discrete Fourier

Transform of the time series, see reference [28]. By default, k = 8.

11. k-db2-DWT: Discrete Wavelet Transform (db2dwt8):

Compute the first k co-efficient of the db2 Discrete Wavelet

Transform (see reference [28]) of the time series. By default, k = 8.
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12. k-offset filter (noisefilter):

Low/high-pass filter: delete any element if its value v satisfies |v −

v̄| ≥ k where v̄ is the average value of the time series. It also resets

any value less than 0 as 0.

13. Transform value-duration pair sequence to value sequence (nd2ts):

Given a value-duration pair sequence, X = [(v1, d1), (v2, d2), . . . , (vn, dn)]

where vi is a real number, di is a positive integer for any i, this

transformation function T outputs a real-value time series where vi

is padded di times. E.g. T ([(3, 2), (5, 1), (4, 3)]) = [3, 3, 5, 4, 4, 4].

14. Transform zero-separated value sequence into value-duration pair se-

quence (segts2nd):

Given a zero-separated value sequence X = [V1, 0, V2, 0, . . . , Vn],

where Vi = [Vi(1), Vi(2), . . . , Vi(ki)], ki > 0 for each i,Vi(ji) is a real

number for any 1 ≤ ji ≤ ki, this transformation function T outputs

a value-duration pair sequence Y = [(V̄1, k1), (V̄2, k2), . . . , (V̄n, kn)]

where V̄i is the average of all the values in Vi. E.g. T ([3, 3, 0, 5, 0, 4, 4, 4] =

[(3, 2), (5, 1), (4, 3)].

• Example Comparison Functions

1. Subtraction (subtraction)

C(q, r) = q − r, where q, r are both scalars or both time series of the

same length.

It is reflexive and transitive; its absolute value is symmetric and

satisfies triangle inequality when both input are scalars.

2. Ratio (ratio)
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C(q, r) = q
r
− 1

It is reflexive.

3. Normalized Manhattan Distance (manhattan dis)

C(q, r) =
P

n

i
|qi−ri|

n
, where q, r are both time series of the length n

and qi, ri is respectively the i-th element of q, r.

It is reflexive, symmetric, transitive and satisfies triangle inequality.

4. Normalized Euclidean Distance (euclidean)

C(q, r) =
P

n

i

√
(qi−ri)2

n
, where q, r are both time series of the length

n and qi(ri) is the i-th element of q(r).

It is reflexive, symmetric, transitive and satisfies triangle inequality.

5. Normalized Envelope distance (env dis)

C(q, env) =

∑n
i envD(qi − envi)

n

where q is a time series of length n, env is an envelope time series of

the length n and qi/envi is the i-th element of q/env.

and

envD(qi, envi) =



















0 if bi ≤ qi ≤ ti

qi − ti if qi > ti

bi − qi if qi < bi

where ti, bi are the i-th element of the top/bottom envelope of env.

It is non-reflexive, non-symmetric, non-transitive and does not satisfy

triangle inequality.

6. α%-Local Dynamic Time Warping (ldtw)

86



It computes the k-local dynamic time warping distance between two

time series q, r where k = 1 + n ∗ α% and n is the length of q. See

Equation 2.5. It is reflexive.
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Appendix C

Feedback on the system

Figure C.1: Google search result top-1 with keywords “query by humming”

The efforts of the team members of the query-by-humming project have
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Figure C.2: Yahoo search result top-1 with keywords “query by humming”

resulted in our project page being ranked in the top result list by major search

engines if a user searches keywords such as “query by humming”, “whats that

song” and “humming”. See Figure C.1, C.2 and C.3.

Besides the website, our team also participated a tech-show event. “The

demo was a big success. There were more ‘hummers’ than we expected and

there was a lot of enthusiasm and amazement. I prepared mp3-files for the 25

selected titles in the database and so the attendees had the possibility to listen

to the audio-file before humming. Result was much better, when the hummer

listened to the midi-sequence instead of the audio-file before humming. It seems

that for some titles it’s hard to filter a simple melody from a complex title in

mp3 format. But for 70% of the hummers the matching score was very high
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Figure C.3: MSN search result top-1 with keywords “query by humming”

(ranking 1 or 2) and there were about two persons with bad matching, but not

everyone is really an apt hummer... Sometimes it was very noisy in the demo

room and it seemed to me that this also has had an influence on the matching

score.” — Swiss Broadcasting Company

“ Works like a dream... ” — a user on www.digg.com’s post about us

90



Figure C.4: Screenshot of the web demo
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Figure C.5: Screenshot of the Java GUI client
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