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Abstract

Cooperative systemsare ubiquitous nowadays. In a cooperative system, end users

contribute resource to run the service instead of only receiving the service passively from

the system. For example, users upload and comment pictures and videos on Flicker and

YouTube, users submit and vote on news articles on Digg. As another example, users in

BitTorrent contribute bandwidth and storage to help each other download content. As

long as users behave as expected, these systems benefit immensely from user contribu-

tion. In fact, five out of the ten most popular websites are operating in this cooperative

fashion (Facebook, YouTube, Blogger, Twitter, Wikipedia). BitTorrent is dominating

the global Internet traffic.

A robust cooperative system cannot blindly trust that its users will truthfully partic-

ipate in the system. Malicious users seek to exploit the systems for profit. Selfish users

consume but avoid contributing resource. For example, adversaries have manipulated

the voting system of Digg to promote their articles of dubious quality. Selfish users in

public BitTorrent communities leave the system to avoid uploading files to others, re-

sulting in drastic performance degradation for these content distribution systems. The

ultimate way to disrupt security and incentive mechanisms of cooperative systems is

using Sybil attacks, in which the adversary creates many Sybil identities (fake identi-

ties) and uses them to disrupt the systems’ normal operation. No security and incentive

mechanism works correctly if the systems do not have a robustidentity management

that can defend against Sybil attacks.

This thesis provides robust identity management schemes which are resilient to the

Sybil attack, and uses them to secure and incentivize user contribution in several exam-

ple cooperative systems. The main theme of this work is to leverage the social network
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among users in designing secure and incentive-compatible cooperative systems. First,

we develop a distributed admission control protocol, called Gatekeeper, that leverages

the social network to admit most honest user identities and only few Sybil identities

into the systems. Gatekeeper can be used as a robust identitymanagement for both cen-

tralized and decentralized cooperative systems. Second, we provide a vote aggregation

system for content voting systems, called SumUp, that can prevent an adversary from

casting many bogus votes for a piece of content using the Sybil attack. SumUp lever-

ages unique properties of content voting systems to providesignificantly better Sybil

defense compared with applying a general admission controlprotocol such as Gate-

keeper. Finally, we provide a robust reputation system, called Credo, that can be used to

incentivize bandwidth contribution in peer-to-peer content distribution networks. Credo

reputation can capture user contribution, and is resilientto both Sybil and collusion

attacks.
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Chapter 1

Introduction

Our society is entering an era in which many Internet services are designed to lever-

age the cooperative nature of their users. In acooperative system, end users contribute

resource in the form of contents, opinions, or physical resources instead of simply re-

ceiving the service from the system passively. For example,users share and comment on

pictures (Flickr), or videos (YouTube). Users submit and vote on news articles on Digg,

and answer each others’ questions on Quora. In peer-to-peernetworks such as BitTor-

rent, users are contributing bandwidth and storage to help each other download content.

As long as users behave as expected, cooperative systems canreceive immense benefit

from users’ contribution and scale inexpensively. Cooperative systems are ubiquitous

today: five out of the ten most popular websites are operatingin this cooperative fashion

(Facebook, YouTube, Blogger, Twitter, Wikipedia). BitTorrent is dominating the global

Internet traffic [69].

A robust cooperative system cannot blindly trust that its users will truthfully par-

ticipate in the system. Malicious users seek to exploit the system for profit. Selfish

users consume resource but avoid contribution. For example, adversaries have manipu-
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lated the voting system of Digg to promote their articles of dubious quality [73]. Selfish

users in public BitTorrent communities leave the system as soon as they have finished

downloading a file to avoid uploading the file to others, resulting in serious performance

degradation for these content distribution systems [71]. Arobust cooperative system

must be able to limit the amount of damage inflicted by adversaries and to incentivize

honest users to make adequate contribution.

The biggest threat that cooperative systems face is the Sybil attack [19], in which

the adversary creates many Sybil identities (fake identities) and use them to disrupt the

systems’ normal operation. No security and incentive mechanism can work correctly

if it lacks a robust identity managementthat can defend against Sybil attacks. For ex-

ample, many systems replicate computation and storage among different nodes in order

to protect data integrity (data loss) [16, 70, 8]. Others [25, 12, 26] divide computation

and storage tasks and assign them to different nodes in orderto protect data privacy.

In both cases, these systems achieve the security and integrity guarantees only when

independent tasks are performed by distinct users. Using the Sybil attack, the adver-

sary can violate this security requirement by potentially controlling a majority of the

identities in [78, 36, 19]. Likewise, Sybil attacks also thwart incentive mechanisms. A

common approach to incentivize user contribution for the system is to provide higher

quality of service (or other benefits) to users who have contributed more [54, 57, 31].

To keep track of user contribution, one can use a reputation system. However, the ad-

versaries or selfish users can use Sybil identities to boost their reputation easily [54],

thereby disrupting this incentive mechanism. The Sybil attack is not just a hypotheti-

cal threat investigated by the research community, but is actually happening in the real

world: adversaries are using fake identities to launch spamming campaign on popular

social networks like Facebook [67] and Renren [81], and promote articles with low qual-
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ity on Digg [73]. Therefore, in order to provide security andincentive guarantees for

cooperative systems, we must manage user identities in a Sybil-resilient fashion.

Defending against the Sybil attack is challenging. Existing systems restrict the cre-

ation of Sybil identities by limiting one identity per IP address or per solved CAPTCHA

puzzle. Unfortunately, IP addresses and CAPTCHA solutionscan be cheap to obtain.

An ordinary human can solve a few thousands of CAPTCHA puzzles in one day in or-

der to create thousands of Sybil identities. The adversary can also pay for an online

service to solve CAPTCHA puzzles at a rate of$8 for 1000 puzzles [4]. The adversary

can obtain different IP addresses using public proxies or harvest IP addresses within his

institution. The latter trick was used by MIT and CMU students to game an online poll

for ”the best graduate school in computer science” [7].

This thesis provides robust identity management schemes which are resilient to the

Sybil attack, and uses them to secure and incentivize user contribution in several exam-

ple cooperative systems. The main theme of this work is to exploit the social relationship

among users as a form of user identity. The insight is to associate the identity of each

user with her social links with other users. Since social relationships take significant

human effort to establish, the adversary is limited to a few links with honest users and

thus can only have a few usable identities.

In this thesis, we first develop a distributed admission control protocol, called Gate-

keeper, that leverages the social network to admit most honest user identities and only

a few Sybil identities. Gatekeeper can be used as a foundational mechanism to ad-

mit users and nodes for both centralized and decentralized cooperative systems. Next,

this thesis addresses the security and incentive challenges in two specific applications:

an online content voting system and a peer-to-peer content distribution network (P2P

CDN). A content voting system must prevent the adversary from casting a large num-
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ber of bogus votes to boost the ranking of low quality content. We design a flow-based

vote aggregation system called SumUp to collect most honestvotes while limiting the

number of bogus votes. The defense of both SumUp and Gatekeeper are currently the

state-of-the-art in their respective problems as reportedin a recent survey [82]. A P2P

CDN faces serious performance problems as selfish nodes avoid uploading files after

finishing downloading them. We provide a robust reputation system, called Credo, that

is resilient to Sybil and collusion attacks, and can be used to incentivize bandwidth con-

tribution in peer-to-peer content distribution networks.Credo relies on Gatekeeper to

limit the number of Sybil identities an adversary can bring into the system, and a ”mod-

eling good behavior” technique to defend against the collusion attack in which many

adversaries collude to boost each other’s reputation.

In the rest of this chapter, we first explain the insight of social network based Sybil

defense in Section 1.1. Next, we discuss the main findings of Gatekeeper, SumUp, and

Credo before summarizing the contributions of this thesis in Section 1.5.

1.1 Social network based Sybil defense

In the real world, there exists a social network among people. An edge in this net-

work represents a friendship between two people. Because creating and maintaining

friendships require efforts in the real world, the adversary can only have a limited num-

ber of edges, which are calledattack edges, to honest users. As a result, we can view

these edges as a valuable resource for defending against theSybil attack.

Although the adversary only possesses a limited number of attack edges, he can

create a large number of Sybil identities and link them together arbitrarily to form any

topology. Nevertheless, these Sybil identities are separated from the honest region of the

4



Honest

region

Sybil

region

attack edges

honest node Sybil node

Figure 1.1:Sybil region and honest region are separated by a small cut formed by the attack
edges as illustrated in SybilGuard [84].

social network by the cut which is formed by the attack edges,as showed in Figure 1.1.

A large Sybil region creates an abnormal feature in the overall graph because we expect

the social graph to be well-connected. For example, it is known that social graphs exhibit

the fast mixing property [49, 84], in which a random walk starting from any node reaches

its steady state quickly. To be more precise, the mixing timeis bounded byO(logn),

wheren is the number of honest nodes in the graph. By contrast, it takes a long time for

a random walk starting from the honest region in Figure 1.1 toarrive at a random node in

the Sybil-region because the walk needs to pass through the small cut. A social network

based Sybil defense mechanism exploits this abnormality todetect and eliminate Sybil

identities from the system. As a result, the number of Sybil identities that the adversary

can bring is limited by his ability to create attack edges.

SybilGuard [84] is the first work that exploits this insight to design a distributedad-

mission control protocolin 2006. An admission control protocol is expected to admit

most honest identities while limiting Sybil identities admitted into a system. SybilGuard

guarantees that it only admitsO(
√
n log n) Sybil identities per attack edge with high
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probability. While this bound presents an important first step in limiting the number

of Sybil identities in the system, it is still big for practical systems because the num-

ber of honest users (n) can be on the order of millions for popular systems. In 2008,

the authors of SybilGuard presented a new protocol, called SybilLimit [83], which im-

proves the bound to admitting onlyO(logn) Sybil identities per attack edge. It has

since remained an opened question if this bound can be further improved for an admis-

sion control protocol. We addressed this open challenge with the Gatekeeper protocol.

We showed that Gatekeeper admits onlyO(log k) Sybil identities per attack edge, where

k is the number of attack edges.

Apart from developing Sybil-resilient admission controls, some work also leverage

the social network to secure specific applications. For example, Wh ānau [36] and X-

Vine [48] provide integrity and privacy for distributed hash tables. SumUp [73] protects

online content voting systems. Ostra [47] and SocialFilter[64] mitigate spam in email

systems. Bazaar [59] alerts users about potential fraudulent transactions in online mar-

kets.

It is worth noting that in order for social network based Sybil defenses to be effec-

tive, the number of attack edges must be limited. However, obtaining social links in

today’s online social networks is relatively easy comparedto that in the real world. In

order to effectively defend against Sybil attack, these systems should derive more re-

stricted online social networks from their existing ones. For example, the system can

ask each user to select a constant number of trusted friends from their friend list in or-

der to form the restricted network. A study [20] has shown that a normal human being

cannot manage more than150 friends efficiently. Another way is to derive the restricted

network automatically from observing the interaction among users as suggested in [77].
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1.2 Sybil-resilient admission control

The first contribution of this thesis improves the state-of-the-art defense for admis-

sion control protocols. Our new admission control protocol, called Gatekeeper, exploits

the expander-like property of social graphs to achieve a better bound: admitting only

O(log k) Sybil identities per attack edge, wherek is the number of attack edges the

adversary has. Compared to SybilLimit’s bound ofO(logn), this improvement is sig-

nificant because the number of attack edges is negligible compared with the number of

honest nodes (n) in the graph. When the number of attack edges is a constant, Gate-

keeper admits only a constant number of Sybil identities, thereby achieving and the

optimal result for social network based Sybil defense.

Gatekeeper introduces a technique calleddistributed ticket distributionto admit most

honest nodes while limiting Sybil nodes. In distributed ticket distribution, a source

node preparesΘ(n) number of ”admission” tickets and distributes them in a breath-

first-search fashion. Upon receiving the tickets, each nodekeeps one ticket to itself

and propagates the rest to its neighbors that are further away from the ticket source.

When the number of attack edges (k) is small, Sybil nodes are far from a randomly

chosen source with high probability because of the graph’s expander-like property. As

a result, the number of tickets which pass through an attack edge is a constant with high

probability. In other words, the adversary only gets a constant number of admission

tickets per attack edge, i.e. the system admits only a constant number of Sybil identity

per attack edge. In order to admit most honest nodes, Gatekeeper combines the results of

distributed ticket distributions at many ticket sources. Evaluation shows that Gatekeeper

performs better than SybilLimit in both real world social graphs and synthetic social

graphs.
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1.3 Defending content voting systems against Sybil at-

tack

Many websites rely on users’ votes to rank user-submitted content. Example web-

sites includes YouTube, Digg, and Reddit. A content voting system is susceptible to the

Sybil attack because an adversary can outvote honest users using many Sybil identities.

A Sybil-resilient vote aggregation system aims to collect most votes from honest users

and as few votes from Sybil identities as possible for each piece of content.

One possible solution for vote aggregation is to first perform user admission control

using Gatekeeper and then only collect votes from admitted users. The resulting vote

aggregation system collectsO(k log k) votes from Sybil identities in the face ofk attack

edges. We can improve this bound further by leveraging the fact that the number of

honest users who vote for a specific content is very small compared with the total number

of honest users. Therefore, a vote aggregation system needsto admit fewer number

of users compared to an admission control system, which is a simpler task. Our vote

aggregation system, SumUp, leverages this insight to collect only k votes from Sybil

identities for each piece of content.

SumUp collects votes from users by computing a set of max-flowpaths on the social

graph from all voters to a known trusted identity called the vote collector. In order to

perform max-flow computation, we need to set the flow capacityof each social link. One

possible assignment is to set the capacity of every link to beone. Under such an assign-

ment, the max-flow based vote collection can bound the attackcapacity make between

the set of trusted vote collectors and the adversary to be thenumber of attack edges

(k), thus collecting at mostk bogus votes from the adversary. However, this assignment

also prevents most honest voters from having their votes collected, as the flow capac-
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ity between honest voters and trusted vote collectors is limited by the small number of

immediate neighbors of the vote collectors. To address thislimitation, we devised an as-

signment strategy which gives links close to vote collectors relatively higher capacities

than links that are far away. Such an assignment enables max-flow based vote collec-

tion to gather most honest votes while still limiting the number of bogus votes to be the

number of attack links with high probability. SumUp also incorporates users’ feedback

on the validity of collected votes to further improve its performance. In particular, if the

adversary is found to have casted many bogus votes, SumUp eventually eliminates the

adversary from the social network. SumUp offers immediate benefits to many popular

websites that currently rely on users’ votes to rank content.

We applied SumUp on the social graph and voting trace of Digg and found strong

evidence of Sybil attacks. In particular, we identified hundreds of suspicious articles

that have been promoted to the “popular” status on Digg by possible Sybil attacks.

1.4 Incentivizing bandwidth contribution in P2P CDN

Apart from containing the damage of malicious activities, cooperative systems must

also incentivize contribution from honest but selfish users. Among today’s coopera-

tive systems, peer-to-peer content distribution networks(P2P CDNs) are particularly in

need of incentive mechanisms to encourage nodes to contribute their upload bandwidth.

The existing BitTorrent P2P CDN only provides incentives for nodes to upload to each

other if they are actively downloading the same file. However, as soon as nodes finish

downloading, they no longer have incentives to become a seeder and upload to others.

Therefore, despite a large number of nodes that have previously downloaded a complete

copy of the file, BitTorrent must rely on altruistic nodes provided by the content distribu-
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tor to provide sufficient seeding capacity. Recently, thereis a surge of private BitTorrent

communities which enforce an exclusive user membership andminimal contribution

requirements [71]. Our measurement shows that the average download bandwidth in

private BitTorrent communities is8 to 10 times higher than that in public BitTorrent

communities because private BitTorrent communities have more seeders [71]. This per-

formance disparity demonstrates the importance of providing seeding incentives.

User reputation systems have the potential to serve as a flexible incentive mecha-

nism to incentivize bandwidth contribution in P2P CDNs. Users that have contributed

more to the system obtain higher reputations which in turn entitle them to receive higher

quality of service. e.g. higher download speed. The expectation that one’s contribution

is closely tied to his future service quality can be a strong incentive for contribution. Ex-

isting reputation systems suffer from two limitations. First, they are vulnerable to Sybil

attacks and collusion [54]. In the Sybil attack, an adversary uses his Sybil identities to

report fake downloads to increase his reputation. In collusion attack, many adversaries

report fake downloads from each other in order to boost each other’s reputation. Second,

the reputation scores calculated by existing proposals do not accurately capture a user’s

past contribution.

To address both problems, we have designed the Credo reputation system [71] which

encourages upload contribution by providing higher download speeds to nodes with

higher reputation scores. In Credo, a node gives credits to those nodes that it has down-

loaded data from, and collects credits by uploading to others. Credo quantifies a node’s

net contribution based on the credits that the node has collected from others. By count-

ing the diversity of those credits (i.e. the number of distinct issuers of credits) rather

than quantity, Credo limits the maximum reputation score ofan adversary to the number

of his admitted Sybil identities, regardless of the number of credits issued by these Sybil
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identities. Since Credo uses Gatekeeper to manage user identities, an adversary can only

have a few Sybil identities in the system. However, this technique alone cannot prevent

multiple adversaries from colluding and sharing their Sybil identities with each other in

order to increase the diversity. To address this collusion attack, Credo models the distri-

bution of the amount of self-issued credits of honest users.This technique discourages

Sybil identities from issuing abnormal amounts of credits compared with the modeled

distribution. As a result, the Sybils issue similar amountsof credits compared with hon-

est users. Therefore, each adversary in the collusion groupreceives a fixed amount of

credits from the Sybils independent from the size of the collusion group.

We implemented Credo in the Azureus BitTorrent client. Experiments on PlanetLab

have shown that Credo significantly improves the download times of most nodes by

motivating nodes that have finished downloading a file to stayin the system and upload

to others.

1.5 Contributions

To summarize, this thesis makes three contributions:

• The Gatekeeper Sybil-resilient admission control protocol for limiting the num-

ber of Sybil identities admitted into a cooperative systems. Gatekeeper’s defense

is optimal for the case ofO(1) attack edges and admits onlyO(1) Sybil iden-

tities (with high probability). In the face ofO(k) attack edges (for anyk ∈

O(n/ logn)), Gatekeeper admitsO(log k) Sybils per attack edge.

• The SumUp Sybil-resilient vote aggregation system for limiting the number of

bogus votes collected in an online content voting system. SumUp prevents the

adversary from having more thank of his bogus votes collected if he hask attack
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edges. Using user feedback on votes, SumUp further restricts the voting power

of adversaries who continuously misbehave to below the number of their attack

edges.

• The Credo credit-based reputation system for incentivizing bandwidth contribu-

tion in P2P CDNs. Credo reputation can capture users’ contribution precisely, and

is resilient to Sybil and collusion attacks.

1.6 Thesis organization

The rest of this thesis starts with the description of Gatekeeper protocol and the

comparison with SybilLimit in Chapter 2. We, then, describethe SumUp online con-

tent voting system and how to use SumUp to find real world Sybilattacks on Digg in

Section 3. We explain the Credo reputation system in Chapter4. The evaluation of

each system is presented in its corresponding chapter. We summarize related work in

Chapter 5 before concluding and discussing future work in Chapter 6.
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Chapter 2

Optimal Sybil-resilient admission

control

Open systems like Digg, Youtube, Facebook and BitTorrent allow any user on the

Internet to join the system easily. Such lack of strong user identity makes these open

systems vulnerable to Sybil attacks [19], where an attackercan use a large number

of fake identities (Sybils) to pollute the system with bogusinformation and affect the

correct functioning of the system. The only known promisingdefense against Sybil

attacks is to use social networks to perform user admission control and limit the number

of bogus identities admitted to the system [83, 84, 18, 73]. Alink in the social network

between two users represents a real-world trust relationship between the two users. It

is reasonable to assume that an attacker usually has few links to honest users since

establishing trust links requires significant human efforts. Therefore,Sybil-resilient

admission controlcan be stated as follows: Consider a social networkG consisting of

n honest users and arbitrarily many Sybils connected to honest nodes viak attack edges

(an attack edgeis a link between an honest and a Sybil node). Given an honest node
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acting as the admission controller, determine the set of nodes to be admitted so that the

vast majority of honest nodes inG are admitted and few Sybil nodes are admitted.

The knowledge of the social graphG may reside with a single party or be distributed

across all users. Centralized node admission assumes complete knowledge ofG (e.g.

SybilInfer [18] and SumUp [73]) while distributed admission control only requires each

user/node to be initially aware of only its immediate neighbors inG and seeks to dis-

cover all the other honest users/nodes inG. This paper addresses the distributed node

admission control problem.

We make a few important observations about the Sybil-resilient node admission

problem. First, the problem is inherently probabilistic inits definition; hence, we seek

to admitmosthonest nodes while limiting Sybil nodes. Finding a perfect algorithm that

can detect all honest nodes and reject all Sybil nodes is fundamentally impossible. Sec-

ond, the problem makes no assumption aboutn, the number of honest nodes inG. As

we show in our result, if the social network exhibits expander-graph properties, one does

not require the knowledge ofn to solve the problem. Third, any distributed admission

control protocol can also be run in a centralized setting andhence is more general than

centralized admission control.

The distributed admission control problem has been studiedin prior work. Sybil-

Guard [84] is the first work to show an admission protocol which limits the number of

admitted Sybil identities to beO(
√
n logn) per attack edge, wheren is the number of

honest users in the social network. SybilLimit [83] significantly improves over Sybil-

Guard and limits the number of Sybils admitted per attack edge toO(logn).

In this paper, we present a distributed Sybil-resilient admission control protocol

called Gatekeeper with the following results:

Theorem: Given a social networkG which exhibits a random expander-graph prop-
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erty, Gatekeeper achieves the following properties with high probability:

1. In the face ofk attack edges withk up to O(n/ logn), Gatekeeper limits the

number of admitted Sybil identities to beO(log k) per attack edge. This implies

that onlyO(1) Sybil nodes are admitted per attack edge if the attacker hasO(1)

attack edges.

2. Gatekeeper admits almost all honest users.

To achieve these results, Gatekeeper uses an improved version of theticket distribu-

tionalgorithm in SumUp [73] to perform node admission control ina decentralized fash-

ion. Gatekeeper executes the ticket distribution algorithm from multiple randomly cho-

sen vantage points and combines the results to perform decentralized admission control.

We prove the results under the assumption of random expandergraphs, an assumption

that holds for many existing social networks. Expander graphs are by nature fast-mixing,

a common assumption made in SybilLimit and other related protocols [83, 84, 18, 36].

Our result establishes optimality and improves over SybilLimit by a factor log n

in the face ofO(1) attack edges. Under constraints that attack edges are hard to es-

tablish and there is only a constant number of them, Gatekeeper is an optimal decen-

tralized protocol for the Sybil-resilient admission control problem. The general re-

sult on admittingO(log k) Sybils per attack edge in the face ofk attack edges for any

k ∈ O(n/ logn) establishes a continuum across the attack capacity spectrum. This pro-

vides a graceful degradation with increased number of attack edges. In the worst case

whenk = O(n/ logn), Gatekeeper achieves the same level of resilience as SybilLimit

where both Gatekeeper and SybilLimit admitO(logn) Sybils per attack edge with high

probability.

We have tested our protocol experimentally on real-world social networks and syn-
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thetic topologies for varying number of attack edges. Our analysis shows that our pro-

tocol is able to drastically limit the number of admitted Sybil identities to a very small

number while admitting almost all honest identities. Even when we significantly in-

crease the number of attack edges to cover∼ 2% of the nodes, the number of admitted

Sybil identities per attack edge remains very small.

2.1 System Model and Threat Model

We use a similar system model and threat model as those used inprevious systems

(e.g. SybilLimit [83], SybilGuard [84] and Wh ānau [36]). The system consists ofn

honest nodes belonging ton honest users. There exists an undirected social graph among

all nodes in the system. A link between two honest users reflects the trust relationship

between those users in the real-world. The knowledge of the social graph is distributed

among all nodes. In particular, each honest node knows its immediate neighbors on the

social graph and may not know the rest of the graph, includingthe value ofn. Each

node has a locally generated public/private key pair. A nodeknows the public-keys of

its neighbors, however, there existsno public-key infrastructure that allows a node to

correctly learn of all other nodes’ public-keys.

The system also has one or more malicious users and each malicious user controls

a number of malicious Sybil nodes. All Sybil nodes may collude with each other and

hence are collectively referred to as the adversary or attacker. Honest nodes behave

according to the protocol specification while Sybil nodes are assumed to behave in a

Byzantine fashion. The attacker may know the entire social graph and is able to create

arbitrary links among his Sybil nodes. We assume the attacker hask links with honest

users (attack edges), wherek can be up toO(n/ logn).
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Distributed admission control: A node acting as an admission controller deter-

mines which of the other nodes (suspect nodes) should be admitted into the system. The

process can either be creating a list of admitted nodes, or deciding whether a particular

suspect node can be admitted or not. In the centralized setting, one typically assumes

the existence of a trusted controller that performs admission control on behalf of all

nodes. By contrast, in the distributed setting, there exists no centralized source of trust

and each node must act as its own controller. Each controllerneeds to consult other

nodes to make its admission decisions. We note that a node acts as its own controller as

well as a suspect for other controllers.

Sybil-resilient node admissions:The goal of Sybil-resilient admission is two-fold

– it should accept most honest nodes and it should admit few Sybil nodes. The attacker

aims to maximize the number of admitted Sybil nodes, and to minimize the number of

admitted honest nodes.

It is worth emphasizing that the number of admitted Sybil nodes is ultimately de-

pendent onk, the number of attack edges. Specifically, since attack edges are indistin-

guishable from honest edges, any protocol that admits most honest nodes would admit

approximately one Sybil node per attack edge, resulting ink admitted Sybil nodes. The

goal of a Sybil-resilient admission protocol is to approachthis lower bound of one ad-

mitted Sybil node per attack edge. Separate mechanisms are required to ensure thatk is

likely to be small. Today’s popular online social networks like Facebook do not promise

smallk. To minimizek, one can use techniques proposed in [3] and [77] to ensure that

honest users only establish trust links with their close friends in the real-world so that

the attacker is unlikely to possess many links to honest users, resulting in a smallk.

17



A

B

s

C

E

F

D

10

10

3

3

3

3

3

3

level 1level 0 level 2

1

1

2

3

1

2

1

2

1

Figure 2.1: The ticket distribution process of a particular node S: The number on each link
represents the number of tickets propagated via that link. The dotted lines are links between
nodes at the same distant to the source.

2.2 Design Overview

In this section, we first describe the central component of Gatekeeper, theticket dis-

tribution process. We proceed to discuss the challenges involved in using ticket distribu-

tion for node admission control and explain how Gatekeeper addresses these challenges.

2.2.1 Ticket Distribution

The principle building block of Gatekeeper is the ticket distribution process where

each node acting as a ticket source disseminatest “tickets” throughout the social net-

work until a significant portion of the honest nodes receive some tickets. We originally

designed the distribution algorithm for SumUp [73], acentralizedSybil-resilient vote

collection system. SumUp uses ticket distribution to assign link capacities which are

needed for its centralized max-flow computation. As we will see later, Gatekeeper uses

ticket distribution completely differently.

We illustrate the ticket distribution process using the example of Figure 2.1 where

the ticket source (S) intends to disseminatet = 20 tickets. Tickets propagate in a

breadth-first-search (BFS) manner: Each node is placed (conceptually) at a BFS-level
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according to its shortest-path distance fromS. S divides the tickets evenly and sends

them to its neighbors. Each node keeps one ticket to itself and distributes the rest evenly

among its neighbors at the next level. In other words, a node does not send tickets back

to neighbors that are at the same or smaller distance to the source. If a node does not

have any outgoing links to the next level, it simply destroysall remaining tickets. The

process continues until no tickets remain.

We use ticket distribution as a fundamental building block in Gatekeeper because

of two considerations. First, since each node only needs knowledge of its immediate

neighborhood to propagate tickets, the entire distribution process can be realized in a

completely distributed manner. Second, as nodes propagatetickets in a BFS manner

from the source, edges further away from the ticket source receive exponentially fewer

tickets. Our intuition is that, since the attacker only controls a small number of attack

edges, a randomly chosen ticket source is relatively “far away” from most attack edges,

resulting in few tickets propagated along an attack edge. Asa result, Gatekeeper may

be able to directly use a received ticket as a token for a node’s admission.

2.2.2 Our approach

The naı̈ve strategy for applying ticket distribution to admission control works as fol-

lows: each node admission controller (S) disseminatesn tickets and accepts a suspect

node if and only if it has received some tickets fromS. Such a strategy has two inherent

limitations. First, it is infeasible to reach the vast majority (e.g.> 99%) of honest nodes

by distributingn tickets from a single ticket source. For example, the simulation experi-

ments in [73] shows that only∼ 60% honest nodes receive some tickets. Second, in the

presence of a single ticket source, an attacker may be able tostrategically acquire some

attack edge close to the source, resulting in a large amount of tickets being propagated
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to Sybil nodes via that attack edge.

The key idea of Gatekeeper is to perform distributed ticket distribution frommultiple

ticket sources. In Gatekeeper, an admission controller explicitly picks m random nodes

(using the random walk technique in [83]) to act as ticket sources. Each randomly

chosen ticket source distributest tickets wheret is chosen such thatn
2

nodes receive

some tickets. Later in Section 2.5, we will show that a sourceonly needs to send out

t = Θ(n) tickets. We say that a node isreachablefrom a ticket source if it has received

a ticket disseminated by the source. The admission controller admits a suspect node if

and only if the node is reachable from at leastfadmit ·m ticket sources, wherefadmit is

a small constant (our evaluations suggest usingfadmit = 0.2).

Multi-source ticket distribution addresses both limitations associated with using a

single ticket source. The first limitation is concerned witha single source not being

able to reach the vast majority of honest nodes by sending only t = Θ(n) tickets. In

Gatekeeper, an honest node not reachable from one source maybe reached by other

sources. Ultimately, an honest node is admitted as long as itis reachable byfadmit ·m

sources which is a high probability event. On the other hand,with a small number of

attack edges, the attacker cannot appear close-by to manym randomly chosen sources,

and thus is unlikely to receive a large number of tickets fromas many asfadmit · m

sources. Therefore, by admitting only nodes reachable byfadmit ·m sources, Gatekeeper

ensures that the number of admitted Sybil nodes per attack edge is small. The second

limitation is concerned with an attacker strategically acquires some attack edge close to

a known ticket source. Gatekeeper solves this problem because the admission controller

explicitly picksm random ticket sources as opposed to acting as the ticket source itself.

In Section 2.5, we present a detailed analysis of these intuitions.
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2.3 Gatekeeper: The protocol

The Gatekeeper protocol consists of two phases: abootstrap phasewhere each node

acts as a ticket source to disseminateΘ(n) tickets throughout the network and anad-

mission phasewhere a node acting as the admission controller selectsm ticket sources

and accepts another node if that node possesses tickets fromfadmit ·m of them chosen

sources. Below, we describe the details of these two phases:

2.3.1 Bootstrap: decentralized ticket distribution

To bootstrap the protocol, every node performs decentralized ticket distribution with

the aim of reaching more than half of the honest nodes. Since ticket distribution proceeds

in a BFS fashion, a forwarding node needs to know its neighbor’s “level” (i.e. the

neighbor’s shortest path distance to the ticket source) in order to decide whether to

forward that neighbor any tickets. In order to establish such shortest path knowledge,

all nodes execute a secure path-vector based routing protocol. We adopt a known secure

path-vector protocol [29] where a node explicitly advertises its shortest path to each

ticket source using a signature chain signed by successive nodes along the path. As a

result, Sybil nodes cannot disrupt the shortest path calculation among honest nodes.

The number of tickets a source should disseminate,t, is not a fixed parameter.

Rather, each source adaptst iteratively by estimating whether a sufficiently large frac-

tion of nodes receive some tickets under the current value oft. We first describe how

a sourceS disseminatestj tickets in thej-th iteration and discuss howS adaptstj

later. Each ticket fromS consists of the current iteration numberj, a sequence number

i ∈ [1..tj ], and a message authentication code (MAC) generated using the private key

of S. The MAC is verifiable by the source and is necessary to prevent the forgery and
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tampering of tickets.

A nodeQ receivingr tickets consumes one of them and evenly divides the other

r − 1 tickets to those neighbors at the next BFS “level”, i.e. neighbors that are further

away fromS thanQ. NodeQ can learn which neighbors are further by requesting and

verifying its neighbors’ shortest path signatures. IfQ has no such neighbor, it simply

discards its remaining tickets. WhenQ sends a ticket to its neighborR, it explicitly

transfers the ownership of that ticket by appending a tuple〈Q,R〉 to the ticket and

signing the ticket withQ’s private key. IfQ consumes a ticket, it appends itself〈Q∗〉

to denote the end of the transfer chain. The use of a signaturechain allows a ticket

source to detect a “double-spender”, i.e. a malicious node that has sent the same ticket

to different nodes. The signature chain scheme represents one of many solutions for

detecting double-spenders. Alternative mechanism include secure transferable e-cash

schemes [10]) which allow a source node to act as a “bank” issuing e-coins as tickets.

In order to help sourceS determine its reachable nodes, each node that has con-

sumed a ticket fromS forwards its ticket in the reverse direction of the ticket’ssignature

chain. SupposeS receives a ticket consumed byQ, S must verify the validity of the

signature chain associated with that ticket. In particular, S checks that the chain is not

“broken”, e.g.,〈S,A〉, 〈A,B〉, 〈C,Q〉 is not valid because it misses the link〈B,C〉.

Additionally, S also checks in its database of received tickets to see if there is any

double spending. For example, ifS discovers two tickets(〈S,A〉, 〈A,B〉, 〈B,Q〉) and

(〈S,A〉, 〈A,B′〉, 〈B′, Q′〉), it will blacklist nodeA as a double-spender and ignore both

tickets. IfQ’s ticket passes verification,S recordsQ in its database of reachable nodes.

Adjust the number of tickets distributed iteratively: After a pre-defined time

period, the ticket source terminates the currentj-th iteration of ticket distribution, and

decides if it needs to proceed with the (j + 1)-th iteration with increased number of
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tickets to be distributed. In particular, the ticket sourcesamples a random subset (W )

of nodes in the social network by performing a number of random walks. LetR be the

set of reachable nodes in the source’s database. If less thanhalf of the sampled nodes

are within the reachable set, i.e.|R∩W |
|W |

< 1/2, the source proceeds to the next iteration

(j + 1) with twice the amount of tickets,tj+1 = 2 · tj .

Intuitively, when the attacker controls up toO(n/ logn) attack edges, only a negligi-

ble fraction of nodes (o(1)) are Sybils in the sampled set (W ) and the reachable set (R).

As a result, if the majority of the sampled nodes (W ) are not inR, it implies that the

amount of tickets distributed in the current iteration is insufficient and the source should

distribute more tickets in the next iteration. On the other hand, once the amount of tick-

ets distributed reachesΘ(n), the majority of honest nodes become reachable, thereby

terminating the iterative process.

Our adaptive ticket adjustment process is similar to the benchmarking technique

used in SybilLimit [83]. In SybilLimit, each node performsO(
√
n) random walks and

benchmarking is used to determine the number of random walksto perform without

explicitly estimatingn. Similarly, in Gatekeeper, each ticket source adaptively decides

on the amount of tickets to distribute (t = Θ(n)) without having to explicitly estimate

n.

2.3.2 Node admission based on tickets

After all ticket sources have bootstrapped, each node can carry out its own admission

control to decide upon a list of nodes to be admitted into the system.

To perform admission control, a controller first selectsm random ticket sources

by performingm random walks of lengthO(logn). In fast-mixing social networks,

a random walk of lengthO(logn) reaches a destination node drawn from the node-
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stationary distribution. Because nodes have varying degrees, a forwarding nodei picks

neighborj as the random walk’s next hop with a probability weight ofmin( 1
di
, 1
dj
),

wheredi anddj are the degree of nodei andj, respectively. This ensures thatm random

walks samplem nodes uniformly at random [18]. It is in the attacker’s best interest

to claim that Sybil nodes have degree1 in order to attract random walks into the Sybil

region. To protect an unlucky controller who is a friend or a friend-of-a-friend of some

Sybil node, we make an exception for honest nodes to forward random walks to its

neighbors withequalprobability during the first two hops of a random walk. We use the

same strategy in [83] to estimate the required random walk length without the knowledge

of n.

The controller asks each of them chosen ticket sources for its reachable node list.

The controller admits a node if and only if that node has appeared in more thanfadmit ·m

reachable lists returned by them chosen ticket sources. The parameterfadmit is set to a

fixed value0.2 in our simulations and we will analyze how to set the appropriate value

for fadmit in Section 2.5.

2.4 Protocol Message Overhead

We consider the asymptotic message overhead of Gatekeeper when every node acts

as a controller and compare to that of SybilLimit. During thebootstrap phase, the num-

ber of bits that need to be transferred during the ticket distribution process of a single

source isΘ(n logn) because the source sends outΘ(n) tickets and each ticket travels a

path of lengthΘ(logn). Therefore, in a network ofn ticket sources, the total message

overhead isΘ(n2 log n). In the admission phase, each controller obtainsm node lists

each of sizeΘ(n) from m chosen ticket sources. When each node acts as a controller,
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the total number of bits transferred during the admission phase isΘ(n2). Thus, the total

message overhead incurred by Gatekeeper isΘ(n2 log n) + Θ(n2) = Θ(n2 logn). This

overhead is the same as that of SybilLimit if every honest node aims to admit every other

honest node. However, we must point out that if each controller only intends to admit

a small constant of honest nodes, SybilLimit incurs onlyΘ(n
√
n log n) total overhead.

By contrast, the total overhead in Gatekeeper is alwaysΘ(n2 logn) regardless of the

number of honest nodes each controller intends to admit.

In some circumstances, it may be desirable to run Gatekeeperin a centralized set-

ting using a single admission controller. For example, the online content voting site,

Digg.com, may run Gatekeeper on its social graph using a single controller to decide

upon the list of nodes allowed to cast votes. In these cases, Gatekeeper’s overall runtime

isΘ(n log n), which is much better than that of SybilLimit (Θ(n
√
n log n)).

2.5 Security Analysis

We show Gatekeeper’s Sybil-resilience by proving that, if the attacker possesses

k = O(n/ logn) randomly injected attack edges, a controller admits at mostO(log k)

Sybil nodes per attack edge and that each controller admits almost all honest nodes. Our

proof makes certain assumptions about the social graph formed by honest users, denoted

by G. Specifically, we assume that:

1. G is a fixed degree sequence random graph constructed by the pairing method

in [5, 43] with maximum node degreed. It has been shown that the pairing method

generates an expander graph with expansion factorα with high probability. In

other words, for every setW of vertices with fewer thann/2 nodes,|N(W )| ≥

α|W | whereN(W ) denotes the set of vertices adjacent toW but do not belong to

25



W [2]. Compared to previous work which only assumes fast-mixing graphs [84,

83, 36], expanders represent a stronger assumption. Nevertheless, expander has

been commonly used as reasonable model for large-scale social graphs.

2. G is reasonably balanced. Let∆half (v) be the distance such thatv is less than

∆half (v) distance away from more than half of the honest nodes. In other words,

∆half (v) is the BFS-level whenv reaches more thann
2

nodes. Letdist(u, v) be

the distance betweenu, v. DefineS(v) = {u|u ∈ G, dist(u, v) ≤ ∆half(u)}. In

other words,S(v) represents the set of ticket sources that deemv as reachable.

We sayG is balanced if for almost allv, |S(v)|
n

> fth for a constant threshold value

fth < 0.5. In probabilistic terms,Pr( |S(v)|
n

< fth) for any randomly chosenv

is o(1) (a function asymptotically lower than a constant). Most real world social

graphs satisfy this balance criterion.

2.5.1 Gatekeeper admitsO(log k) Sybils per attack edge

For this proof, we proceed in two steps: first, we bound the number of tickets sent to

the attacker (viak attack edges) by a randomly chosen ticket source toO(k log k). Sec-

ond, we show at mostO(log k) Sybil nodes can receive tickets from more thanfadmit ·m

of them ticket sources using the Chernoff bound.

The more tickets a source distributes, the more tickets thatlikely end up with the

attacker. Therefore, in order to bound the number of ticketsreceived by the attacker, we

must bound the number of tickets distributed by a ticket source, as described formally

by the following theorem:

Theorem 2.1. Suppose the graphG is a fixed degree sequence random graph con-

structed by the pairing method. The expected number of tickets required by a given
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ticket source to reach more thann/2 honest nodes isE[t] = Θ(n). (see proof in Ap-

pendix A)

Given a ticket sourceu, we order honest nodes from closest to farthest fromu ac-

cording to their BFS level. Let∆small be the level of theǫ
k
· n-th node, whereǫ is a

small constant like0.01. Let ∆big be the level of the(1 − ǫ
k
) · n-th node. In other

words,∆small,∆big are chosen so that the BFS levels of1− 2ǫ
k

fraction of honest nodes

fall between(∆small,∆big]. As a result, the probability that allk attack edges are at

some distance within the range(∆small,∆big] is (1 − 2ǫ
k
)k > 1 − 2ǫ, which is high be-

cause of smallǫ. Next, we will bound the number of tickets received by the attacker

for the high probability event that allk attack edges lie within ticket distribution levels

(∆small,∆big].

Lemma 2.2. For a given ticket sourceu, given that allk randomly injected attack edges

are at some distance in the range(∆small,∆big] fromu, the expected number of tickets

received by the attacker isO(k log k).

Proof. Let Ai be the number ofu’s tickets that are sent from level-i to level-(i + 1).

A0 = t is the number of tickets distributed by the sourceu. Let Li be the number of

nodes at level-i. We can calculate the expected number of tickets that pass though a

random node at level(∆small,∆big] as:

∆big
∑

∆small+1

Ai−1

L(∆small+1) + · · ·+ L∆big

(2.1)

≤ (∆big −∆small)
A0

L(∆small+1) + · · ·+ L∆big

(2.2)

By the definition of∆small and∆big, we know that(L(∆small+1) + · · · + L∆big
) has

greater than(1 − 2ǫ
k
) fraction of honest nodes. Furthermore,E(A0) = E(t) = Θ(n)
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according to Theorem 2.1. Hence, A0

L∆small+1+···+L∆big

= O(1).

To show that(∆big−∆small) isO(log k) we consider the two terms(∆half−∆small)

and(∆big −∆half ) where∆half is the level where we reach then/2-th node in the BFS

tree ofu. BecauseG is an expander with expansion factorα across each level, we have

ǫ
k
n · α∆half−∆small ≤ n/2. Hence∆half −∆small is O(log k). Similarly, we can bound

∆big−∆half toO(log k) by expanding from graph from theǫ
k
n nodes farthest fromu to

the n
2
-th node. Summing up the two results, we get(∆half−∆small) asO(log k). Hence,

we can bound the expected number of tickets received by a random node within the level

range(∆small,∆big] to beO(log k). Since an attack edge is connected to a random node

at level within the range(∆small,∆big], the expected number of tickets received by an

attack edge is bounded byO(log k). Hence, withk attack edges all within this range,

the expected number of tickets received by the attacker isO(k log k).

Based on Lemma 2.2, a ticket source givesO(k log k) tickets to the attacker with

k attack edges. However, theO(k log k) bound is only in expectation and some ticket

sources may give much more than the expected number of tickets to the attacker. By

requiring each admitted node to receive tickets from at least fadmit ·m of m randomly

chosen sources, we can prove the following theorem:

Theorem 2.3.Gatekeeper admitsO(log k) Sybils per attack edge with high probability.

Proof. Let T1, T2, · · · , Tm be the random variables representing the total number of

tickets received by the attacker viak attack edges from each of them ticket sources.

SinceE(Ti) = O(log k), according to Markov’s inequality, there exist constants,β > 1

andτ < fadmit

2
, such thatPr(Ti > βk log k) ≤ τ . In other words, the probability that

any ticket source reaches more thanβk log k Sybil nodes is bounded byτ .
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We define a new random variable,Zi, as follows:

Zi =











1 if Ti ≥ βk log k

0 if Ti < βk log k

Let z = Z1 + Z2 + · · ·+Zm. SincePr(Zi = 1) < τ , using Chernoff bound, we can

show that

Pr(z ≥ mfadmit

2
) ≤ e−m·D(τ,

fadmit
2

)

whereD(τ, fadmit

2
) is the Kullback-Leibler divergence function that decreases exponen-

tially with m. Hence, with high probability,z ≤ mfadmit

2
. We refer to thei-th source

as type-A ifZi = 1 or as type-B ifZi = 0. Among them sources, there arez type-A

sources andm− z type-B sources.

Supposēs Sybil nodes are finally admitted. In order to be admitted, each of the s̄

Sybils can present at mostz tickets from type-A sources. Additionally,all s̄ Sybils can

use at most(m − z)βk log k tickets from type-B sources. Hence, the total number of

tickets that can be used for the admission ofs̄ Sybils is at most̄sz + (m − z)βk log k.

Sinces̄ Sybils need at least̄sfadmit ·m tickets for admission, we arrive at the following

inequality:

s̄ · fadmit ·m ≤ s̄ · z + (m− z) · βk log k

s̄ ≤ (m− z)

fadmit · (m− z)
βk log k

s̄ ≤ 2− fadmit

fadmit

βk log k

s̄

k
= O(log k) �
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2.5.2 Gatekeeper admits most honest nodes

Theorem 2.4.Gatekeeper admits any honest node with high probability.

Proof. Recall our earlier definition ofS(v), which represents the set of potential ticket

sources that deemv as reachable. SinceG is balanced, the probability that a randomly

chosen ticket source can reachv is at leastfth. Since the events thatv is reachable

from randomly chosen ticket sources are independent, we canapply the Chernoff bound

to show that the probabilityv is reachable from less thanfadmit · m ticket sources is

bounded bye−m·D(fadmit,fth) whereD(·) is the Kullback-Leibler divergence function.

Thus, when choosingfadmit such thatfadmit < fth, the probability that an honest node

is not admitted decreases exponentially withm. Hence, Gatekeeper admits an honest

node with high probability.

Note that we have proved both Theorem 2.3 and Theorem 2.4 for the case when

all m ticket sources are honest. A Sybil node may be chosen as a source if a random

walk escapes to the Sybil region of the graph. Letfesc be the fraction ofm sources in

the Sybil region. When the attacker controls up toO(n/ logn) attack edges, with high

probability,fesc is asymptotically smaller than a constant, i.e.fesc = o(1). Our earlier

proofs can be extended to handlefesc = o(1). Next, we analyze the worst case scenario

whenfesc is non-negligible.

2.5.3 Worst Case Analysis

The worst case scenario applies to those few unlucky controllers that are extremely

close to some attack edge, resulting in a non-negligiblefesc. Let m′ be the number of
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honest sources, i.e.m′ = (1− fesc) ·m. We adjust the proof for Theorem 2.3 to handle

the case when onlym′ sources are honest. For each of thes̄ Sybils to be admitted, it can

use at mostz tickets from type-A ticket sources and at most(m′ − z) · βk log k from

type-B sources. Additionally,̄s Sybils can usēsfesc ·m from those ticket sources in the

Sybil region. Recall thatz < fadmitm
′

2
, we have:

s̄ · fadmit ·m ≤ s̄fescm+ s̄z + (m′ − z)βk log k

s̄((fadmit − fesc)m− z) ≤ (m′ − z)βk log k

⇒ s̄

k
≤ (1− fesc) ·m− z

(fadmit − fesc)m− z
β log k

Therefore, to admit at mostO(log k) Sybils per attack edge (i.e.s̄
k
= O(log k)), the

escape probabilityfesc must be small enough such that(fadmit−fesc) ·m−z > 0. Since

z < fadmitm
′

2
, we obtain thatfesc <

fadmit

2−fadmit
.

We adjust the proof of Theorem 2.4 similarly. In order for an honest node to be

admitted, it must possess tickets fromfadmit · m nodes out of them′ honest sources.

Therefore, we requirefadmit < (1 − fesc)fth, i.e. fesc < 1 − fadmit

fth
. In summary, to

satisfy both Theorem 2.3 and 2.4, we require thatfadmit < min( fadmit

2−fadmit
, 1−fadmit

fth
).

We usefadmit = 0.2 in our evaluations. Therefore, a controller admitsO(log k)

Sybil nodes per attack edge as long asfesc < 0.11. As a concrete example, let us

consider a controller with degreed who is immediately adjacent to the attacker. In this

case,fesc = 1/d. Hence ifd is bigger than9, fesc will be small enough to satisfy both

Theorem 2.3 and 2.4. Ifd is smaller than9, the controller must be more than 1-hop

away from the attacker to ensure thatfesc is small enough.
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Figure 2.2:The number of Sybil nodes accepted per attack edge as a function of the number of
attack edges (k).

Data set Synthetic YouTube [46] Digg [73]

Nodes varying 446, 181 539, 242
Undirected edges varying 1, 728, 948 4, 035, 247
Average:median degree 6 : 6 7.7 : 2 15 : 2

Table 2.1: Social graph statistics
2.6 Evaluation

We evaluate the effectiveness of Gatekeeper in both synthetic graphs and real-world

social network topologies. Specifically, we show that Gatekeeper admits most honest

nodes (> 90% across different topologies) and significantly limits the number of Sybils

admitted per attack edge to a small value even in the face of a large number of attack

edges (k ≈ 0.02 · n).

2.6.1 Experimental Methodology

For real-world social topologies, we use the YouTube [46] and Digg [73] graph.

For synthetic graphs, we generate random graphs with average node degree of6. Ta-

ble 2.1 summarizes the basic graph statistics. To model the Sybil attack, we randomly

choose a fraction of nodes to collude with the attacker so that all the edges of these

nodes as attack edges. The attacker optimally allocates tickets to Sybils to maximize the
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Figure 2.3:Fraction of honest nodes admitted under varyingfadmit

number of Sybils admitted. In each simulation run, we randomly select a controller to

perform admission control and measure the number of Sybils admitted per attack edge

and the number of honest nodes admitted. We repeat each experiment for2000 runs and

compute the average and the deviation. Unless otherwise mentioned, a controller uses

m = 100 ticket sources and admits another node if it has received tickets from at least

fadmit = 0.2 fraction of them sources.

2.6.2 Number of Sybils admitted

We first measure the number of Sybil nodes admitted per attackedge as a function of

the number of attack edges (k). Figure 2.2 shows the number of admitted Sybil nodes as

a function ofk for a random graph with500, 000 nodes, the YouTube graph and the Digg

graph. Our theoretical result shows that Gatekeeper admitsO(log k) Sybils per attack

edge. Figure 2.2 confirms our analysis showing that the number of Sybils admitted per

attack edge increases very slowly withk; even whenk reaches2% of the network size

(i.e. k = 10, 000), the number of Sybils nodes accepted per attack edge remains smaller

than25.
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SybilLimit
Dataset Synthetic (n = 500, 000) YouTube Digg
Parameterw 12 15 14
Parameterr 3200 3400 5100
Sybils admitted
per attack edge 40.3 49.1 45.1

Gatekeeper
fadmit 0.2 0.15 0.15
Sybils admitted
per attack edge 1.5 4.9 7.1

Table 2.2: Comparison with SybilLimit
Unlike SybilLimit, Gatekeeper’s bound on Sybils admitted per attack edge (O(log k))

is independent of the network sizen for a givenk. We have verified this property by

running Gatekeeper on random graphs with different networksizes.

Comparison with SybilLimit: We compare the performance of Gatekeeper and

SybilLimit under both synthetic and real graph topologies with k = 60 attack edges. In

separate experiments, we find the parameter values so that both Gatekeeper and Sybil-

Limit admit> 95% honest nodes and use these values in our comparison.

Table 2.2 summarizes the parameter values used in each protocol and the number of

Sybils admitted per attack edge. As we can see, SybilLimit admits 40 − 50 Sybils per

attack edge across all the three topologies, while Gatekeeper admits only1 − 7 Sybils

nodes per attack edge. Therefore, Gatekeeper represents a significant improvement over

SybilLimit in practical settings.

Compared to the random graph case, Gatekeeper accepts more Sybil nodes on the

YouTube and Digg graphs because real-world graphs can exhibit certain asymmetries

that are not present in a random graph. Because of this asymmetry, more tickets are

dropped at some node with no neighbors at the next BFS-level.Having more ticket

drops in turn causes a ticket source to send more tickets in order to reach more than half

of honest nodes. As a result, attack edges also receive more tickets, thereby causing
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more Sybils to be admitted.

2.6.3 Admitting honest nodes

The parametersfadmit andm affect the fraction of honest nodes admitted by Gate-

keeper. Choosing the appropriatefadmit is dependent on the balance properties of the

graph. Figure 2.3 measures the fraction of honest nodes admitted for different values

of fadmit under various topologies. We can see that largerfadmit results in fewer honest

nodes being admitted. On the other hand, smallerfadmit will increase the number of

Sybils admitted by a constant factor. Since synthetically generated random graphs are

more balanced than YouTube and Digg graphs, Gatekeeper admits higher fraction of

honest nodes in the random graph than in YouTube and Digg graph for the same value

of fadmit. Whenfadmit = 0.2, Gatekeeper can admit more than90% honest nodes in

all three graphs. Hence, we use 0.2 as the default value forfadmit. We have also exper-

imented with varyingm and found thatm = 100 was sufficient to admit most honest

nodes across different topologies. Settingm to be bigger than100 yields diminishing

returns.

2.6.4 Worst case scenario with a close-by attacker edge

The worst case scenario happens for controllers that are extremely close to some

attack edge such that a significant fraction of them random walks escape into the Sybil

region, causing the controller to use many Sybil nodes as ticket sources. To evaluate

such worst case scenario, we ran Gatekeeper from different controllers with varying

distances to some attack edge and recorded the fraction of the chosen ticket sources that

turn out to be Sybil nodes,fesc.
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Figure 2.4 showsfesc as a function of the distance between the controller and the

closest attack edge under various graph topologies. We can see thatfesc drops off

quickly to a negligible value as long as the controller is more than 2 hops away from

the attacker. The worst case comes when the controller is theimmediate neighbor of

some attack edges. We first note that iffesc > fadmit, the controller may accept arbi-

trarily many Sybil nodes because thefesc ·m sources can give infinitely many tickets to

Sybils. As we have discussed in Section 2.5.3, our theoretical bound only holds when

fesc <
fadmit

2−fadmit
. Specifically, with a default value offadmit = 0.2, fesc must be smaller

than0.11. When the controller is immediately adjacent to some Sybil node, the escape

probability is1/d whered is the controller’s node degree. Hence, only those controllers

with more than9 neighbors can afford to be-friend the attacker while still satisfying

fesc < 0.11 and achieving our proven bound.
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Chapter 3

Sybil-resilient online content voting

The Web 2.0 revolution has fueled a massive proliferation ofuser-generated content.

While allowing users to publish information has led to democratization of Web content

and promoted diversity, it has also made the Web increasingly vulnerable to content pol-

lution from spammers, advertisers and adversarial users misusing the system. Therefore,

the ability to rank content accurately is key to the survivaland the popularity of many

user-content hosting sites. Similarly, content rating is also indispensable in peer-to-peer

file sharing systems to help users avoid mislabeled or low quality content [42, 22, 76].

People have long realized the importance of incorporating user opinion in rating

online content. Traditional ranking algorithms such as PageRank [6] and HITS [33]

rely on implicit user opinions reflected in the link structures of hypertext documents.

For arbitrary content types, user opinion can be obtained inthe form of explicit votes.

Many popular websites today rely on user votes to rank news (Digg, Reddit), videos

(YouTube), documents (Scribd) and consumer reviews (Yelp,Amazon).

Content rating based on users’ votes is prone to vote manipulation by malicious

users. Defending against vote manipulation is difficult dueto theSybil attackwhere
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the attacker can out-vote real users by creating many Sybil identities. The popularity

of content-hosting sites has made such attacks very profitable as malicious entities can

promote low-quality content to a wide audience. SuccessfulSybil attacks have been

observed in the wild. For example, online polling on the bestcomputer science school

motivated students to deploy automatic scripts to vote for their schools repeatedly [28].

There are even commercial services that help paying clientspromote their content to

the top spot on popular sites such as YouTube by voting from a large number of Sybil

accounts [63].

In this paper, we present SumUp, a Sybil-resilient online content voting system that

prevents adversaries from arbitrarily distorting voting results. SumUp leverages the trust

relationships that already exist among users (e.g. in the form of social relationships).

Since it takes human efforts to establish a trust link, the attacker is unlikely to possess

many attack edges (links from honest users to an adversarialidentity). Nevertheless, he

may create many links among Sybil identities themselves.

SumUp addresses thevote aggregation problemwhich can be stated as follows:

Givenm votes on a given object, of which an arbitrary fraction may befrom Sybil

identities created by an attacker, how do we collect votes ina Sybil resilient manner?

A Sybil-resilient vote aggregation solution should satisfy three properties. First, the so-

lution should collect a significant fraction of votes from honest users. Second, if the

attacker haseA attack edges, the maximum number of bogus votes should be bounded

by eA, independent of the attacker’s ability to create many Sybilidentities behind him.

Third, if the attacker repeatedly casts bogus votes, his ability to vote in the future should

be diminished. SumUp achieves all three properties with high probability in the face of

Sybil attacks. The key idea in SumUp is theadaptive vote flowtechnique that appropri-

ately assigns and adjusts link capacities in the trust graphto collect the net vote for an
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object.

Previous works have also exploited the use of trust networksto limit Sybil attacks [9,

37, 87, 84, 83, 47], but none directly addresses the vote aggregation problem. Sybil-

Limit [83] performs admission control so that at mostO(logn) Sybil identities are ac-

cepted per attack edge amongn honest identities. As SybilLimit results in 10∼30 bogus

votes per attack edge in a million-user system [83], SumUp provides notable improve-

ment by limiting bogus votes to one per attack edge. Additionally, SumUp leverages

user feedback to further diminish the voting power of adversaries that repeatedly vote

maliciously.

In SumUp, each vote collector assigns capacities to links inthe trust graph and

computes a set of approximate max-flow paths from itself to all voters. Because only

votes on paths with non-zero flows are counted, the number of bogus votes collected

is limited by the total capacity of attack edges instead of links among Sybil identities.

Typically, the number of voters on a given object is much smaller than the total user

population (n). Based on this insight, SumUp assignsCmax units of capacity in total,

thereby limiting the number of votes that can be collected tobeCmax. SumUp adjusts

Cmax automatically according to the number of honest voters for each object so that it

can aggregate a large fraction of votes from honest users. AsCmax is far less thann, the

number of bogus votes collected on a single object (i.e. the attack capacity) is no more

than the number of attack edges (eA). SumUp’s security guarantee on bogus votes is

probabilistic. If a vote collector happens to be close to an attack edge (a low probability

event), the attack capacity could be much higher thaneA. By re-assigning link capacities

using feedback, SumUp can restrict the attack capacity to bebeloweA even if the vote

collector happens to be close to some attack edges.

Using a detailed evaluation of several existing social networks (YouTube, Flickr),
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we show that SumUp successfully limits the number of bogus votes to the number of

attack edges and is also able to collect> 90% of votes from honest voters. By applying

SumUp to the voting trace and social network of Digg (an online news voting site), we

have found hundreds of suspicious articles that have been marked “popular” by Digg.

Based on manual sampling, we believe that at least50% of suspicious articles exhibit

strong evidence of Sybil attacks.

This chapter is organized as follows. In Section 3.1, we define the system model

and the vote aggregation problem. Section 3.2 outlines the overall approach of SumUp

and Sections 3.3 and 3.4 present the detailed design. In Section 2.6, we describe our

evaluation results.

3.1 The Vote Aggregation Problem

In this section, we outline the system model and formalize the vote aggregation

problem that SumUp addresses.

System model:We describe SumUp in a centralized setup where a trusted central

authority maintains all the information in the system and performs vote aggregation

using SumUp in order to rate content. This centralized mode of operation is suitable for

web sites such as Digg, YouTube and Facebook, where all users’ votes and their trust

relationships are collected and maintained by a single trusted entity.

SumUp leverages the trust network among users to defend against Sybil attacks [87,

9, 37, 84, 83]. Each trust link is directional. However, the creation of each link requires

the consent of both users. Typically, useri creates a trust link toj if i has an offline

social relationship toj. Similar to previous work [47, 83], SumUp requires that links

are difficult to establish. As a result, an attacker only possesses a small number of attack
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edges (eA) from honest users to colluding adversarial identities. Even thougheA is

small, the attacker can create many Sybil identities and link them to adversarial entities.

We refer to votes from colluding adversaries and their Sybilidentities as bogus votes.

SumUp aggregates votes from one or more trustedvote collectors. A trusted collec-

tor is required in order to break the symmetry between honestnodes and Sybil nodes [9].

SumUp can operate in two modes depending on the choice of trusted vote collectors. In

personalized vote aggregation, SumUp uses each user as his own vote collector to col-

lect the votes of others. As each user collects a different number of votes on the same

object, she also has a different (personalized) ranking of content. Inglobal vote aggre-

gation, SumUp uses one or more pre-selected vote collectors to collect votes on behalf

of all users. Global vote aggregation has the advantage of allowing for a single global

ranking of all objects; however, its performance relies on the proper selection of trusted

collectors.

Vote Aggregation Problem: Any identity in the trust network including Sybils can

cast a vote on any object to express his opinion on that object. In the simplest case,

each vote is either positive or negative (+1 or -1). Alternatively, to make a vote more ex-

pressive, its value can vary within a range with higher values indicating more favorable

opinions. A vote aggregation system collects votes on a given object. Based on col-

lected votes and various other features, a separate rankingsystem determines the final

ranking of an object. The design of the final ranking system isoutside the scope of this

paper. However, we note that many ranking algorithms utilizeboththe number of votes

and the average value of votes to determine an object’s rank [6, 33]. Therefore, to en-

able arbitrary ranking algorithms, a vote aggregation system should collect a significant

fraction of votes from honest voters.

A voting system can also let the vote collector providenegativefeedback on mali-
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cious votes. In personalized vote aggregation, each collector gives feedback according

to his personal taste. In global vote aggregation, the vote collector(s) should only pro-

vide objective feedback, e.g. negative feedback for positive votes on corrupted files.

Such feedback is available for a very small subset of objects.

We describe the desired properties of a vote aggregation system. LetG = (V,E)

be a trust network with vote collectors ∈ V . V is comprised of an unknown set of

honest usersVh ⊂ V (includings) and the attacker controls all vertices inV \ Vh, many

of which represent Sybil identities. LeteA represent the number of attack edges from

honest users inVh to V \ Vh. Given that nodes inG cast votes on a specific object, a

vote aggregation mechanism should achieve three properties:

• Collect a large fraction of votes from honest users.

• Limit the number of bogus votes from the attacker byeA independent of the num-

ber of Sybil identities inV \ Vh.

• Eventually ignore votes from nodes that repeatedly cast bogus votes using feed-

back.

3.2 Basic Approach

This section describes the intuition behindadaptive vote flowthat SumUp uses to

address the vote aggregation problem. The key idea of this approach is to appropriately

assign link capacities to bound the attack capacity.

In order to limit the number of votes that Sybil identities can propagate for an object,

SumUp computes a set of max-flow paths in the trust graph from the vote collector to

all voters on a given object. Each vote flow consumes one unit of capacity along each
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Figure 3.1:SumUp computes a set of approximate max-flow paths from the vote collectors to
all voters (A,B,C,D). Straight lines denote trust links andcurly dotted lines represent the vote
flow paths along multiple links. Vote flow paths to honest voters are “congested” at links close
to the collector while paths to Sybil voters are also congested at far-away attack edges.

link traversed. Figure 3.1 gives an example of the resultingflows from the collectors to

voters A,B,C,D. When all links are assigned unit capacity, the attack capacity using the

max-flow based approach is bounded byeA.

The concept of max-flow has been applied in several reputation systems based on

trust networks [9, 37]. When applied in the context of vote aggregation, the challenge

is that links close to the vote collector tend to become “congested” (as shown in Fig-

ure 3.1), thereby limiting the total number of votes collected to be no more than the

collector’s node degree. Since practical trust networks are sparse with small median

node degrees, only a few honest votes can be collected. We cannot simply enhance

the capacity of each link to increase the number of votes collected since doing so also

increases the attack capacity. Hence, a flow-based vote aggregation system faces the

tradeoff between the maximum number of honest votes it can collect and the number of

potentially bogus votes collected.

Theadaptive vote flowtechnique addresses this tradeoff by exploiting two basic ob-

servations. First, the number of honest users voting for an object, even a popular one, is

significantly smaller than the total number of users. For example,99% of popular arti-
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Figure 3.2:Through ticket distribution, SumUp creates a vote envelopearound the collector.
The capacities of links beyond the envelope are assigned to be one, limiting the attack capacity
to be at most one per attack edge for adversaries outside thisenvelope. There is enough capacity
within the envelope, such that nodes inside act like entry points for outside voters.

cles on Digg have fewer than4000 votes which represents1% of active users. Second,

vote flow paths to honest voters tend to be only “congested” atlinks close to the vote

collector while paths to Sybil voters are also congested at afew attack edges. When

eA is small, attack edges tend to be far away from the vote collector. As shown in Fig-

ure 3.1, vote flow paths to honest voters A and B are congested at the link l1 while paths

to Sybil identities C and D are congested at bothl2 and attack edgel3.

The adaptive vote flow computation uses three key ideas. First, the algorithm re-

stricts the maximum number of votes collected on an object toa valueCmax. AsCmax is

used to assign the overall capacity in the trust graph, a small Cmax results in less capacity

for the attacker. SumUp can adaptively adjustCmax to collect a large fraction of honest

votes on any given object. When the number of honest voters isO(nα) whereα < 1, the

expected number of bogus votes is limited to1 + o(1) per attack edge (Section 3.3.4).

The second important aspect of SumUp relates tocapacity assignment, i.e. how to

assign capacities to each trust link in order to collect a large fraction of honest votes and

only a few bogus ones? In SumUp, the vote collector distributesCmax ticketsdown-

stream in a breadth-first search manner within the trust network. The capacity assigned
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to a link is the number of tickets distributed along the link plus one. As Figure 3.2

illustrates, the ticket distribution process introduces avote envelopearound the vote col-

lectors; beyond the envelope all links have capacity1. The vote envelope containsCmax

nodes that can be viewed as entry points. There is enough capacity within the envelope

to collectCmax votes from entry points. On the other hand, an attack edge beyond the

envelope can propagate at most1 vote regardless of the number of Sybil identities be-

hind that edge. SumUp re-distributes tickets based on feedback to deal with attack edges

within the envelope.

The final key idea in SumUp is to leverage user feedback to penalize attack edges that

continuously propagate bogus votes. One cannot penalize individual identities since the

attacker may always propagate bogus votes using new Sybil identities. Since an attack

edge is always present in the path from the vote collector to amalicious voter [47],

SumUp re-adjusts capacity assignment across links to reduce the capacity of penalized

attack edges.

3.3 SumUp Design

In this section, we present the basic capacity assignment algorithm that achieves two

of the three desired properties discussed in Section 3.1: (a) Collect a large fraction of

votes from honest users; (b) Restrict the number of bogus votes to one per attack edge

with high probability. Later in Section 3.4, we show how to adjust capacity based on

feedback to deal with repeatedly misbehaved adversarial nodes.

We describe how link capacities are assigned given a particularCmax in Section 3.3.1

and present a fast algorithm to calculate approximate max-flow paths in Section 3.3.2.

In Section 3.3.3, we introduce an additional optimization strategy that prunes links in
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the trust network so as to reduce the number of attack edges. We formally analyze the

security properties of SumUp in Section 3.3.4 and show how toadaptively setCmax in

Section 3.3.5.

3.3.1 Capacity assignment

The goal of capacity assignment is twofold. On the one hand, the assignment should

allow the vote collector to gather a large fraction of honestvotes. On the other hand, the

assignment should minimize the attack capacity such thatCA ≈ eA.

As Figure 3.2 illustrates, the basic idea of capacity assignment is to construct a

vote envelope around the vote collector with at leastCmax entry points. The goal is to

minimize the chances of including an attack edge in the envelope and to ensure that there

is enough capacity within the envelope so that all vote flows fromCmax entry points can

reach the collector.

We achieve this goal using aticket distributionmechanism which results in decreas-

ing capacities for links with increasing distance from the vote collector. The distribution

mechanism is best described using a propagation model wherethe vote collector is to

spreadCmax tickets across all links in the trust graph. Each ticket corresponds to a ca-

pacity value of 1. We associate each node with a level according to its shortest path

distance from the vote collector,s. Nodes is at level 0. Tickets are distributed to nodes

one level at a time. If a node at levell has receivedtin tickets from nodes at levell − 1,

the node consumes one ticket and re-distributes the remaining tickets evenly across all

its outgoing links to nodes at levell + 1, i.e. tout = tin − 1. The capacity value of each

link is set to be one plus the number of tickets distributed onthat link. Tickets are not

distributed to links connecting nodes at the same level or from a higher to lower level.

The set of nodes with positive incoming tickets fall within the vote envelope and thus
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Figure 3.3:Each link shows the number of tickets distributed to that link from s (Cmax=6). A
node consumes one ticket and distributes the remaining evenly via its outgoing links to the next
level. Tickets are not distributed to links pointing to the same level (B→A), or to a lower level
(E→B). The capacity of each link is equal to one plus the number oftickets.

represent the entry points.

Ticket distribution ensures that allCmax entry points have positive vote flows to the

vote collector. Therefore, if there exists an edge-independent path connecting one of the

entry points to an outside voter, the corresponding vote canbe collected. We show in

Section 3.3.4 that such a path exists with good probability.WhenCmax is much smaller

than the number of honest nodes (n), the vote envelope is very small. Therefore, all

attack edges reside outside the envelope, resulting inCA ≈ eA with high probability.

Figure 3.3 illustrates an example of the ticket distribution process. The vote collector

(s) is to distributeCmax=6 tickets among all links. Each node collects tickets from

its lower level neighbors, keeps one to itself and re-distributes the rest evenly across

all outgoing links to the next level. In Figure 3.3,s sends 3 tickets down each of its

outgoing links. Since A has more outgoing links (3) than its remaining tickets (2), link

A→D receives no tickets. Tickets are not distributed to links between nodes at the same

level (B→A) or to links from a higher to lower level (E→B). The final number of tickets

distributed on each link is shown in Figure 3.3. Except for immediate outgoing edges

from the vote collector, the capacity value of each link is equal to the amount of tickets
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it receives plus one.

3.3.2 Approximate Max-flow calculation

Once capacity assignment is done, the task remains to calculate the set of max-flow

paths from the vote collector to all voters on a given object.It is possible to use existing

max-flow algorithms such as Ford-Fulkerson and Preflow push [14] to compute vote

flows. Unfortunately, these existing algorithms requireO(E) running time to find each

vote flow, whereE is the number of edges in the graph. Since vote aggregation only

aims to collect a large fraction of honest votes, it is not necessary to compute exact max-

flow paths. In particular, we can exploit the structure of capacity assignment to compute

a set of approximate vote flows inO(∆) time, where∆ is the diameter of the graph. For

expander-like networks,∆ = O(logn). For practical social networks with a few million

users,∆ ≈ 20.

Our approximation algorithm works incrementally by findingone vote flow for a

voter at a time. Unlike the classic Ford-Fulkerson algorithm, our approximation per-

forms a greedy search from the voter to the collector inO(∆) time instead of a breadth-

first-search from the collector which takesO(E) running time. Starting at a voter, the

greedy search strategy attempts to explore a node at a lower level if there exists an

incoming link with positive capacity. Since it is not alwayspossible to find such a can-

didate for exploration, the approximation algorithm allows a threshold (t) of non-greedy

steps which explores nodes at the same or a higher level. Therefore, the number of

nodes visited by the greedy search is bounded by(∆+2t). Greedy search works well in

practice. For links within the vote envelope, there is more capacity for lower-level links

and hence greedy search is more likely to find a non-zero capacity path by exploring

lower-level nodes. For links outside the vote envelope, greedy search results in short
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paths to one of the vote entry points.

3.3.3 Optimization via link pruning

We introduce an optimization strategy that performs link pruning to reduce the num-

ber of attack edges, thereby reducing the attack capacity. Pruning is performed prior to

link capacity assignment and its goal is to bound the in-degree of each node to a small

value,din thres. As a result, the number of attack edges is reduced if some adversarial

nodes have more thandin thres incoming edges from honest nodes. We speculate that the

more honest neighbors an adversarial node has, the easier for it to trick an honest node

into trusting it. Therefore, the number of attack edges in the pruned network is likely to

be smaller than those in the original network. On the other hand, pruning is unlikely to

affect honest users since each honest node only attempts to cast one vote via one of its

incoming links.

Since it is not possible to accurately discern honest identities from Sybil identities,

we give all identities the chance to have their votes collected. In other words, pruning

should never disconnect a node. The minimally connected network that satisfies this

requirement is a tree rooted at the vote collector. A tree topology minimizes attack edges

but is also overly restrictive for honest nodes because eachnode has exactly one path

from the collector: if that path is saturated, a vote cannot be collected. A better tradeoff

is to allow each node to have at mostdin thres > 1 incoming links in the pruned network

so that honest nodes have a large set of diverse paths while limiting each adversarial node

to only din thres attack edges. We examine the specific parameter choice ofdin thres in

Section 3.5.

Pruning each node to have at mostdin thres incoming links is done in several steps.

First, we remove all links except those connecting nodes at alower level (l) to neighbors
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at the next level (l + 1). Next, we remove a subset of incoming links at each node so

that the remaining links do not exceeddin thres. In the third step, we add back links

removed in step one for nodes with fewer thandin thres incoming links. Finally, we add

one outgoing link back to nodes that have no outgoing links after step three, with priority

given to links going to the next level. By preferentially preserving links from lower to

higher levels, pruning does not interfere with SumUp’s capacity assignment and flow

computation.

3.3.4 Security Properties

This section provides a formal analysis of the security properties of SumUp assum-

ing an expander graph. Various measurement studies have shown that social networks

are indeed expander-like [34]. The link pruning optimization does not destroy a graph’s

expander property because it preserves the level of each node in the original graph.

Our analysis provides bounds on the expected attack capacity, CA, and the expected

fraction of votes collected ifCmax honest users vote. The average-case analysis assumes

that each attack edge is a random link in the graph. For personalized vote aggregation,

the expectation is taken over all vote collectors which include all honest nodes. In the

unfortunate but rare scenario where an adversarial node is close to the vote collector, we

can use feedback to re-adjust link capacities (Section 3.4).

Theorem 3.1.Given that the trust networkG onn nodes is a bounded degree expander

graph, the expected capacity per attack edge isE(CA)
eA

= 1+O(Cmax

n
logCmax) which is

1 + o(1) if Cmax = O(nα) for α < 1. If eA · Cmax ≪ n, the capacity per attack edge is

bounded by1 with high probability.

Proof. LetLi represent the number of nodes at leveliwithL0 = 1. LetEi be the number
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of edges pointing from leveli− 1 to leveli. Notice thatEi ≥ Li. LetTi be the number

of tickets propagated from leveli−1 to i with T0 = Cmax. The number of tickets at each

level is reduced by the number of nodes at the previous level (i.e. Ti = Ti−1 − Li−1).

Therefore, the number of levels with non-zero tickets is at mostO(log(Cmax)) asLi

grows exponentially in an expander graph. For a randomly placed attack edge, the

probability of its being at leveli is at mostLi/n. Therefore, the expected capacity of

a random attack edge can be calculated as1 +
∑

i(
Li

n
· Ti

Ei
) < 1 +

∑

i(
Li

n
· Cmax

Li
) =

1 + O(Cmax

n
logCmax). Therefore, ifCmax = O(nα) for α < 1, the expected attack

capacity per attack edge is1 + o(1).

Since the number of nodes within the vote envelope is at mostCmax, the probability

of a random attack edge being located outside the envelope is1 − Cmax

n
. Therefore, the

probability that any of theeA attack edges lies within the vote envelope is1 − (1 −
Cmax

n
)eA < eA·Cmax

n
. Hence, ifeA · Cmax = nα whereα < 1, the attack capacity is

bounded by1 with high probability.

Theorem 3.1 is for expected capacity per attack edge. In the worse case when the

vote collector is adjacent to some adversarial nodes, the attack capacity can be a signif-

icant fraction ofCmax. Such rare worst case scenarios are addressed in Section 3.4.

Theorem 3.2. Given that the trust networkG on n nodes is a d-regular expander

graph, the expected number of votes that can be collected outof nv honest voters is

F (Cmax, nv) =
d−λ2

d

m(n−m)
n

whereλ2 is the second largest eigenvalue of the adjacency

matrix of G, andm = min{Cmax, nv}.

Proof. SumUp creates a vote envelop consisting ofCmax entry points via which votes

are collected. To prove that there exists a large fraction ofvote flows, we argue that the
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minimum cut of the graph between the set ofCmax entry points and an arbitrary set of

Cmax honest voters is large.

Expanders are well-connected graphs. In particular, the Expander mixing lemma [50]

states that for any setS andT in a d-regular expander graph, the expected number of

edges betweenS andT is (d− λ2)|S| · |T |/n, whereλ2 is the second largest eigenvalue

of the adjacency matrix ofG. LetS be a set of nodes containingCmax entry points andT

be a set of nodes containingnv honest voters, thus|S|+ |T | = n and|S| ≥ m, |T | ≥ m.

Therefore, the min-cut value betweenS andT is = (d − λ2)|S| · |T |/n ≥ (d − λ2) ·

m(n − m)/n. The number of vote flows betweenS andT is at least1/d of the min-

cut value because each vote flow only uses one of an honest voter’s d incoming links.

Therefore, the votes that can be collected is at leastd−λ2

d

m(n−m)
n

. WhenCmax ≥ nv, i.e.

m = nv, the expected fraction of votes that can be collected out ofnv honest voters is

d−λ2

d
(1− nv

n
).For well-connected graphs like expanders,λ2 is well separated fromd, so

that a significant fraction of votes can be collected.

3.3.5 SettingCmax adaptively

Whennv honest users vote on an object, SumUp should ideally setCmax to benv in

order to collect a large fraction of honest votes on that object. In practice,nv/n is very

small for any object, even a very popular one. Hence,Cmax = nv ≪ n and the expected

capacity per attack edge is 1. We note that even ifnv ≈ n, the attack capacity is still

bounded byO(logn) per attack edge.

It is impossible to precisely calculate the number of honestvotes (nv). However, we

can use the actual number of votes collected by SumUp as a lower bound estimate for

nv. Based on this intuition, SumUp adaptively setsCmax according to the number of
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votes collected for each object. The adaptation works as follows: For a given object,

SumUp starts with a small initial value forCmax, e.g. Cmax = 100. Subsequently, if

the number of actual votes collected exceedsρCmax whereρ is a constant less than1,

SumUp doubles theCmax in use and re-runs the capacity assignment and vote collec-

tion procedures. The doubling ofCmax continues until the number of collected votes

becomes less thanρCmax.

We show that this adaptive strategy is robust: 1) the maximumvalue of the resulting

Cmax will not dramatically exceednv regardless of the number of bogus votes cast by

adversarial nodes , 2) resultingCmax is big enough to collect big fraction of votes, i.e.

Cmax won’t stop early.

ResultingCmax is not too big: Since adversarial nodes attempt to cast enough bogus

votes to saturate attack capacity, the number of votes collected is at mostnv + CA

whereCA = eA(1 +
Cmax

n
logCmax). The doubling ofCmax stops when the number of

collected votes is less thanρCmax. Therefore, the maximum value ofCmax that stops

the adaptation is one that satisfies the following inequality:

nv + eA(1 +
Cmax

n
logCmax) < ρCmax

SincelogCmax ≤ log n, the adaptation terminates withC ′
max = (nv+eA)/(ρ− log n

n
).

As ρ≫ logn
n

, we deriveC ′
max = 1

ρ
(nv + eA). The adaptive strategy doublesCmax every

iteration, hence it overshoots by at most a factor of two. Therefore, the resultingCmax

found isCmax = 2
ρ
(nv+eA). As we can see, the attacker can only affect theCmax found

by an additive factor ofeA. SinceeA is small, the attacker has negligible influence on

theCmax found.
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The previous analysis is done for the expected case with random attack edges. Even

in a worst case scenario where some attack edges are very close to the vote collector, the

adaptive strategy is still resilient against manipulation. In the worst case scenario, the

attack capacity is proportional toCmax, i.e. CA = xCmax. Since no vote aggregation

scheme can defend against an attacker who controls a majority of immediate links from

the vote collector, we are only interested in the case wherex < 0.5. The adaptive

strategy stops increasingCmax whennv + xCmax < ρCmax, thus resulting inCmax ≤
2nv

ρ−x
. As we can see,ρ must be greater thanx to prevent the attacker from causing

SumUp to increaseCmax to infinity. Therefore, we setρ = 0.5 by default.

ResultingCmax is not too small: SupposeC0 is a constant satisfyingρC0 = F (C0, nv).

We will show that the resultingCmax is at leastC0. BecauseF (x,nv)
x

is a decreasing

function, whenCmax < C0, we have:

F (C0, nv)

C0

<
F (Cmax, nv)

Cmax

ρ <
F (Cmax, nv)

Cmax

ρCmax < F (Cmax, nv)

Because the number of votes collected is at leastF (Cmax, nv) by Theorem 3.2, the

condition for doublingCmax holds whenCmax < C0. When we pickρ small enough

such thatρ < d−λ2

d
n−nv

n
, C0 = d−λ2

d
n−nv

n
nv

ρ
> nv. Hence, the resultingCmax is bigger

than number of honest voters.
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3.4 Leveraging user feedback

The basic design presented in Section 3.3 does not address the worst case scenario

whereCA could be much higher thaneA. Furthermore, the basic design only bounds the

number of bogus votes collected on a single object. As a result, adversaries can still cast

up toeA bogus votes oneveryobject in the system. In this section, we utilize feedback

to address both problems.

SumUp maintains a penalty value for each link and uses the penalty in two ways.

First, we adjust each link’s capacity assignment so that links with higher penalties have

lower capacities. This helps reduceCA when some attack edges happen to be close to

the vote collector. Second, we eliminate links whose penalties have exceeded a certain

threshold. Therefore, if adversaries continuously misbehave, the attack capacity will

drop beloweA over time. We describe how SumUp calculates and uses penaltyin the

rest of the section.

3.4.1 Incorporating negative feedback

The vote collector can choose to associate negative feedback with voters if he be-

lieves their votes are malicious. Feedback may be performedfor a very small set of

objects-for example, when the collector finds out that an object is a bogus file or a virus.

SumUp keeps track of a penalty value,pi, for each linki in the trust network. For

each voter receiving negative feedback, SumUp increments the penalty values for all

links along the path to that voter. Specifically, if the link being penalized has capacityci,

SumUp increments the link’s penalty by1/ci. Scaling the increment byci is intuitive;

links with high capacities are close to the vote collector and hence are more likely to

propagate some bogus votes even if they are honest links. Therefore, SumUp imposes a
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lesser penalty on high capacity links.

It is necessary to penalizeall links along the path instead of just the immediate link

to the voter because that voter might be a Sybil identity created by some other attacker

along the path. Punishing a link to a Sybil identity is useless as adversaries can easily

create more such links. This way of incorporating negative feedback is inspired by

Ostra [47]. Unlike Ostra, SumUp uses a customized flow network per vote collector and

only allows the collector to incorporate feedback for its associated network in order to

ensure that feedback is always trustworthy.

3.4.2 Capacity adjustment

The capacity assignment in Section 3.3.1 lets each node distribute incoming tickets

evenly across all outgoing links. In the absence of feedback, it is reasonable to assume

that all outgoing links are equally trustworthy and hence toassign them the same number

of tickets. When negative feedback is available, a node should distribute fewer tickets

to outgoing links with higher penalty values. Such adjustment is particularly useful in

circumstances where adversaries are close to the vote collector and hence might receive

a large number of tickets.

The goal of capacity adjustment is to compute a weight,w(pi), as a function of

the link’s penalty. The number of tickets a node distributesto its outgoing linki is

proportional to the link’s weight, i.e.ti = tout ∗ w(pi)/
∑

∀i∈nbrsw(pi). The question

then becomes how to computew(pi). Clearly, a link with a high penalty value should

have a smaller weight, i.e.w(pi)<w(pj) if pi>pi. Another desirable property is that if

the penalties on two links increase by the same amount, the ratio of their weights remains

unchanged. In other words, the weight function should satisfy: ∀p′, pi, pj, w(pi)
w(pj)

=

w(pi+p′)
w(pj+p′)

. This requirement matches our intuition that if two links have accumulated
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the same amount of additional penalties over a period of time, the relative capacities

between them should remain the same. Since the exponential function satisfies both

requirements, we usew(pi) = 0.2pi by default.

3.4.3 Eliminating links using feedback

Capacity adjustment cannot reduce the attack capacity to below eA since each link

is assigned a minimum capacity value of one. To further reduce eA, we eliminate those

links that received high amounts of negative feedback.

We use a heuristic for link elimination: we remove a link if its penalty exceeds a

threshold value. We use a default threshold of five. Since we already prune the trust

network (Section 3.3.3) before performing capacity assignment, we add back a previ-

ously pruned link if one exists after eliminating an incoming link. The reason why link

elimination is useful can be explained intuitively: if adversaries continuously cast bogus

votes on different objects over time, all attack edges will be eliminated eventually. On

the other hand, although an honest user might have one of its incoming links eliminated

because of a downstream attacker casting bad votes, he is unlikely to experience another

elimination due to the same attacker since the attack edge connecting him to that attacker

has also been eliminated. Despite this intuitive argument,there always exist patholog-

ical scenarios where link elimination affects some honest users, leaving them with no

voting power. To address such potential drawbacks, we re-enact eliminated links at a

slow rate over time. We evaluate the effect of link elimination in Section 2.6.
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Network Nodes Edges Degree Directed?
×1000 ×1000 50%(90%)

YouTube [47] 446 3,458 2 (12) No
Flickr [45] 1,530 21,399 1 (15) Yes
Synthetic [68] 3000 24,248 6 (15) No

Table 3.1:Statistics of the social network traces or synthetic model used for evaluating SumUp.
All statistics are for the strongly connected component (SCC).

3.5 Evaluation

In this section, we demonstrate SumUp’s security property using real-world social

networks and voting traces. Our key results are:

• For all networks under evaluation, SumUp bounds the averagenumber of bogus

votes collected to be no more thaneA while being able to collect>90% of honest

votes when less than1% of honest users vote.

• By incorporating feedback from the vote collector, SumUp dramatically cuts down

the attack capacity for adversaries that continuously castbogus votes.

• We apply SumUp to the voting trace and social network of Digg [1], a news ag-

gregation site that uses votes to rank user-submitted news articles. SumUp has

detected hundreds of suspicious articles that have been marked as “popular” by

Digg. Based on manual sampling, we believe at least 50% of suspicious articles

found by SumUp exhibit strong evidence of Sybil attacks.

3.5.1 Experimental Setup

For the evaluation, we use a number of network datasets from different online social

networking sites [45] as well as a synthetic social network [68] as the underlying trust
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network. SumUp works for different types of trust networks as long as an attacker

cannot obtain many attack edges easily in those networks. Table 3.1 gives the statistics

of various datasets. For undirected networks, we treat eachlink as a pair of directed

links. Unless explicitly mentioned, we use the YouTube network by default.

To evaluate the Sybil-resilience of SumUp, we injecteA = 100 attack edges by

adding10 adversarial nodes each with links from10 random honest nodes in the net-

work. The attacker always casts the maximum bogus votes to saturate his capacity. Each

experimental run involves a randomly chosen vote collectorand a subset of nodes which

serve as honest voters. SumUp adaptively adjustsCmax using an initial value of100 and

ρ = 0.5. By default, the threshold of allowed non-greedy steps is20. We plot the av-

erage statistic across five experimental runs in all graphs.In Section 3.5.6, we apply

SumUp on the real world voting trace of Digg to examine how SumUp can be used to

resist Sybil attacks in the wild.

3.5.2 Sybil-resilience of the basic design

The main goal of SumUp is to limit attack capacity while allowing honest users to

vote. Figure 3.4 shows that the average attack capacity per attack edge remains close

to 1 even when the number of honest voters approaches10%. Furthermore, as shown

in Figure 3.5, SumUp manages to collect more than90% of all honest votes in all net-

works. Link pruning is disabled in these experiments. The three networks under evalu-

ation have very different sizes and degree distributions (see Table 3.1). The fact that all

three networks exhibit similar performance suggests that SumUp is robust against the

topological details. Since SumUp adaptively setsCmax in these experiments, the results

also confirm that adaptation works well in finding aCmax that can collect most of the

honest votes without significantly increasing attack capacity. We point out that the re-
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Figure 3.4:The average capacity per attack edge as a function of the fraction of honest nodes
that vote. The average capacity per attack edge remains close to1, even if1/10 of honest nodes
vote.

sults in Figure 3.4 correspond to a random vote collector. For an unlucky vote collector

close to an attack edge, he may experience a much larger than average attack capacity.

In personalized vote collection, there are few unlucky collectors. These unlucky vote

collectors need to use their own feedback on bogus votes to reduce attack capacity.

Benefits of pruning: The link pruning optimization, introduced in Section 3.3.3,

further reduces the attack capacity by capping the number ofattack edges an adversarial

node can have. As Figure 3.6 shows, pruning does not affect the fraction of honest votes

collected if the thresholddin thres is greater than 3. Figure 3.6 represents data from

the YouTube network and the results for other networks are similar. SumUp uses the

default threshold (din thres) of 3. Figure 3.7 shows that the average attack capacity is

greatly reduced when adversarial nodes have more than 3 attack edges. Since pruning

attempts to restrict each node to at most 3 incoming links, additional attack edges are

excluded from vote flow computation.
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3.5.3 Effectiveness of greedy search

SumUp uses a fast greedy algorithm to calculate approximatemax vote flows to vot-

ers. Greedy search enables SumUp to collect a majority of votes while using a small

threshold (t) of non-greedy steps. Figure 3.8 shows the fraction of honest votes col-

lected for the pruned YouTube graph. As we can see, with a small threshold of 20, the

fraction of votes collected is more than80%. Even when disallowing non-greedy steps

completely, SumUp manages to collect> 40% of votes.

Figure 3.9 shows the running time of greedy-search for different networks. The

experiments are performed on a single machine with an AMD Opteron 2.5GHz CPU

and 8GB memory. SumUp takes around5ms to collect1000 votes from a single vote

collector on YouTube and Flickr. The synthetic network incurs more running time as

its links are more congested than those in YouTube and Flickr. The average non-greedy

steps taken in the synthetic network is6.5 as opposed to0.8 for the YouTube graph.

Greedy-search dramatically reduces the flow computation time. As a comparison, the

Ford-Fulkerson max-flow algorithm requires50 seconds to collect 1000 votes for the

YouTube graph.

3.5.4 Comparison with SybilLimit

SybilLimit is a node admission protocol that leverages the trust network to allow an

honest node to accept other honest nodes with high probability. It bounds the number

of Sybil nodes accepted to beO(logn). We can apply SybilLimit for vote aggregation

by letting each vote collector compute a fixed set of acceptedusers based on the trust

network. Subsequently, a vote is collected if and only if it comes from one of the ac-

cepted users. In contrast, SumUp does not calculate a fixed set of allowed users; rather,
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Figure 3.10:Average attack capacity per attack edge as a function of voters. SumUp is better
than SybilLimit in the average case.

it dynamically determines the set of voters that count toward each object. Such dynamic

calculation allows SumUp to settle on a smallCmax while still collecting most of the

honest votes. A smallCmax allows SumUp to bound attack capacity byeA.

Figure 3.10 compares the average attack capacity in SumUp tothat of SybilLimit

for the un-pruned YouTube network. The attack capacity in SybilLimit refers to the

number of Sybil nodes that are accepted by the vote collector. Since SybilLimit aims

to accept nodes instead of votes, its attack capacity remainsO(logn) regardless of the

number of actual honest voters. Our implementation of SybilLimit uses the optimal

set of parameters (w = 15, r = 3000) we determined manually. As Figure 3.10 shows,

while SybilLimit allows30 bogus votes per attack edge, SumUp results in approximately

1 vote per attack edge when the fraction of honest voters is less than10%. When all

nodes vote, SumUp leads to much lower attack capacity than SybilLimit even though

both have the sameO(logn) asymptotic bound per attack edge. This is due to two

reasons. First, SumUp’s bound of1 + log n in Theorem 3.1 is a loose upper bound of

the actual average capacity. Second, since links pointing to lower-level nodes are not

eligible for ticket distribution, many incoming links of anadversarial nodes have zero
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Figure 3.11: The change in attack capacity as adversaries continuously cast bogus votes
(YouTube graph). Capacity adjustment and link eliminationdramatically reduceCA while still
allowing SumUp to collect more than80% of the honest votes.

tickets and thus are assigned capacity of one.

3.5.5 Benefits of incorporating feedback

We evaluate the benefits of capacity adjustment and link elimination when the vote

collector provides feedback on the bogus votes collected. Figure 3.11 corresponds to

the worst case scenario where one of the vote collector’s four outgoing links is an attack

edge. At every time step, there are 400 random honest users voting on an object and

the attacker also votes with its maximum capacity. When collecting votes on the first

object at time step 1, adaption results inCmax = 2nv

ρ−x
= 3200 becausenv = 400, ρ =

0.5, x = 1/4. Therefore, the attacker manages to cast1
4
Cmax = 800 votes and outvote

honest users. After incorporating the vote collector’s feedback after the first time step,

the adjacent attack edge incurs a penalty of1 which results in drastically reducedCA

(97). If the vote collector continues to provide feedback on malicious votes, 90% of

attack edges are eliminated after only 12 time steps. After another 10 time steps, all

attack edges are eliminated, reducingCA to zero. However, because of our decision to

slowly add back eliminated links, the attack capacity doesn’t remains at zero forever.
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Number of Nodes 3,002,907
Number of Edges 5,063,244
Number of Nodes in SCC 466,326
Number of Edges in SCC 4,908,958
Out degree avg(50%, 90%) 10(1, 9)
In degree avg(50%, 90%) 10(2, 11)
Number of submitted (popular) articles 6,494,987
2004/12/01-2008/09/21 (137,480)
Diggs on all articles
avg(50%, 90%) 24(2, 15)
Diggs on popular articles
avg(50%, 90%) 862(650, 1810)
Hours since submission before a popular
article is marked as popular.
avg (50,%,90%) 16(13, 23)
Number of submitted (popular) articles 38,033
with bury data available (5,794)
2008/08/13-2008/09/15

Table 3.2: Basic statistics of the crawled Digg dataset. The strongly connected component
(SCC) of Digg consists of 466,326 nodes.

Figure 3.11 also shows that link elimination has little effects on honest nodes as the

fraction of honest votes collected always remains above80%.

3.5.6 Defending Digg against Sybil attacks

In this section, we ask the following questions: Is there evidence of Sybil attacks

in real world content voting systems? Can SumUp successfully limit bogus votes from

Sybil identities? We apply SumUp to the voting trace and social network crawled from

Digg to show the real world benefits of SumUp.

Digg [1] is a popular news aggregation site where any registered user can submit an

article for others to vote on. A positive vote on an article iscalled adigg. A negative

vote is called abury. Digg marks a subset of submitted articles as “popular” articles and
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displays them on its front page. In subsequent discussions,we use the termspopular

or popularityonly to refer to the popularity status of an article as markedby Digg. A

Digg user can create a “follow” link to another user if he wants to browse all articles

submitted by that user. We have crawled Digg to obtain the voting trace on all submitted

articles since Digg’s launch (2004/12/01-2008/09/21) as well as the complete “follow”

network between users. Unfortunately, unlike diggs, bury data is only available as a live

stream. Furthermore, Digg does not reveal the user identitythat cast a bury, preventing

us from evaluating SumUp’s feedback mechanism. We have beenstreaming bury data

since 2008/08/13. Table 3.2 shows the basic statistics of the Digg “follow” network

and the two voting traces, one with bury data and one without.Although the strongly

connected component (SCC) consists of only15% of total nodes,88% of votes come

from nodes in the SCC.

There is enormous incentive for an attacker to get a submitted article marked as

popular, thus promoting it to the front page of Digg which hasseveral million page

views per day. Our goal is to apply SumUp on the voting trace toreduce the number

of successful attacks on the popularity marking mechanism of Digg. Unfortunately,
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unlike experiments done in Section 3.5.2 and Section 3.5.5,there is no ground truth

about which Digg users are adversaries. Instead, we have to use SumUp itself to find

evidence of attacks and rely on manual sampling and other types of data to cross check

the correctness of results.

Digg’s popularity ranking algorithm is intentionally not revealed to the public in or-

der to mitigate gaming of the system. Nevertheless, we speculate that the number of

diggs is a top contributor to an article’s popularity status. Figure 3.12 shows the distri-

bution of the number of diggs an article received before it was marked as popular. Since

more than 90% of popular articles are marked as such within 24hours after submission,

we also plot the number of diggs received within 24 hours of submission for all articles.

The large difference between the two distributions indicates that the number of diggs

plays an important role in determining an article’s popularity status.

Instead of simply adding up the actual number of diggs, what if Digg uses SumUp

to collect all votes on an article? We use the identity of Kevin Rose, the founder of

Digg, as the vote collector to aggregate all diggs on an article before it is marked as

popular. Figure 3.13 shows the distribution of the fractionof votes collected by SumUp
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over all diggs before an article is marked as popular. Our previous evaluation on various

network topologies suggests that SumUp should be able to collect at least 90% of all

votes. However, in Figure 3.13, there are a fair number of popular articles with much

fewer than the expected fraction of diggs collected. For example, SumUp only manages

to collect less than 50% of votes for 0.5% of popular articles. We hypothesize that the

reason for collecting fewer than the expected votes is due toreal world Sybil attacks.

Since there is no ground truth data to verify whether few collected diggs are indeed

the result of attacks, we resort to manual inspection. We classify a popular article as

suspicious if its fraction of diggs collected is less than a given threshold. Table 3.3 shows

the result of manually inspecting 30 random articles out of all suspicious articles. The

random samples for different thresholds are chosen independently. There are a number

of obvious bogus articles such as advertisements, phishingarticles and obscure political

opinions. Of the remaining, we find many of them have an unusually large fraction

(>30%) of new voters who registered on the same day as the article’s submission time.

Some articles also have very few total diggs since becoming popular, a rare event since

an article typically receives hundreds of votes after beingshown on the front page of

Digg. We find no obvious evidence of attack for roughly half ofthe sampled articles.

Interviews with Digg attackers [30] reveal that, although there is a fair amount of attack

activities on Digg, attackers do not usually promote obviously bogus material. This is

likely due to Digg being a highly monitored system with fewerthan a hundred articles

becoming popular every day. Instead, attackers try to help paid customers promote

normal or even good content or to boost their profiles within the Digg community.

As further evidence that a lower than expected fraction of collected diggs signals a

possible attack, we examine Digg’sbury data for articles submitted after 2008/08/13,

of which 5794 are marked as popular. Figure 3.14 plots the correlation between the
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Threshold of the 20% 30% 40% 50%

fraction of collected diggs
# of suspicious articles 41 131 300 800

Advertisement 5 4 2 1
Phishing 1 0 0 0

Obscure political articles 2 2 0 0
Many newly registered voters 11 7 8 10

Fewer than 50 total diggs 1 3 6 4
No obvious attack 10 14 14 15

Table 3.3:Manual classification of30 randomly sampled suspicious articles. We use different
thresholds of the fraction of collected diggs for marking suspicious articles. An article is labeled
as having many new voters if> 30% of its votes are from users who registered on the same day
as the article’s submission date.

average number of bury votes on an articleafter it became popular vs. the fraction of

the diggs SumUp collected before it was marked as popular. AsFigure 3.14 reveals, the

higher the fraction of diggs collected by SumUp, the fewer bury votes an article received

after being marked as popular. Assuming most bury votes comefrom honest users that

genuinely dislike the article, a large number of bury votes is a good indicator that the

article is of dubious quality.

What are the voting patterns for suspicious articles? Since88% diggs come from

nodes within the SCC, we expect only12% of diggs to originate from the rest of the

network, which mostly consists of nodes with no incoming follow links. For most sus-

picious articles, the reason that SumUp collecting fewer than expected diggs is due to an

unusually large fraction of votes coming from outside the SCC component. Since Digg’s

popularity marking algorithm is not known, attackers mightnot bother to connect their

Sybil identities to the SCC or to each other. Interestingly,we found 5 suspicious articles

with sophisticated voting patterns where one voter is linked to many identities (∼ 30)

that also vote on the same article. We believe the many identities behind that single
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voter are likely Sybil identities because those identitieswere all created on the same day

as the article’s submission. Additionally, those identities all have similar usernames.
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Chapter 4

Collusion-resilient credit-based

reputation for peer-to-peer content

distribution

With the recent growth in demand for high-quality multimedia content, capacity

requirements for content distribution networks (CDNs) have increased proportionally.

Peer-to-peer content distribution is a natural low cost option to scale distribution ca-

pacity. In a P2P CDN model, content providers serve content using a small number of

“official” seeder nodes and rely on participating users to upload previously downloaded

content to others. By aggregating the bandwidth of thousands or millions of participat-

ing users, P2P CDNs promise extremely high capacity at very low costs. However, in

order to reach their full potential, P2P CDNs must address the long-standing challenge

of incentivizing users to upload content to others.

The P2P incentive problem has been widely studied in the past. Unfortunately, pop-

ular solutions such as the tit-for-tat mechanism provided by BitTorrent [13] and vari-
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ants [56, 38] are insufficient. BitTorrent only incentivizes those peers that areactively

downloading thesamefile to upload to each other. Once a user completes a download,

she has no incentive to act as a seeder and continue uploading. In practice, the distribu-

tion of content on popular torrent networks such as PirateBay is often heavy-tailed, with

most files having only a few simultaneous downloaders. As a result, tit-for-tat is of little

use as an incentive mechanism in these scenarios. An ideal incentive mechanism should

motivate users to contribute to the P2P CDN even after completing their downloads.

This is sometimes referred to as theseeder promotionproblem [65]).

Existing studies [44] as well as our own measurement experiments suggest that P2P

CDNs can achieve significant performance boost by addressing the seeder promotion

problem (Section 4.1). However, the current solutions for solving the seeder promotion

problem is unsatisfactory. PPLive and PPStream distributeproprietary software in that

hope that the software cannot be modified to avoid uploading.However, proprietary

software discourages third-party implementation and prevents external code auditing.

Popular private BitTorrent communities such as TorrentLeech and What.CD maintain an

invitation-only membership. These communities keep trackof members’ self-reported

upload contribution, and kick out members that have failed to make the required amount

of contribution. For example, in TorrentLeech, each peer must serve as a seeder for a file

for 24 hours after downloading and upload at least 0.4 times of its downloaded amount.

Unfortunately, selfish nodes can purposefully misreport their upload contributions, an

attack that is becoming increasingly common in private BitTorrent communities [23].

Current defenses against such attacks are very limited and involves banning client soft-

ware which can be modified to misreport information (e.g. Vuze, Deluge).

One promising direction for solving the seeder promotion problem is to design a

robust reputation system. In such as system, a user’s reputation score accurately reflects
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her upload contribution – to encourage contribution, P2P CDNs can give preferential

treatment to users with high reputation; thus the more a peercontributes (in terms of its

uploads) the better the service (in terms of download speed)it gets. The major challenge

in designing such a reputation system is ensuring a user’s reputation score accurately re-

flects their upload contribution; malicious users should not be able to acquire excessively

high reputation scores via collusion or Sybil attacks. In this paper, we propose Credo,

acredit-based reputationsystem that addresses both challenges and show how it can be

applied to P2P CDNs to solve the seeder promotion problem.

To track a node’s contribution in Credo, a seeder collects a signed upload receipt

whenever it uploads a chunk of data to another node. Credo employs a central server to

periodically aggregate upload receipts from nodes and compute a reputation score for

each node based on these receipts.

Attacks via collusion and Sybil identities are particularly challenging for reputation

systems. Specifically, a number of colluding adversarial nodes may generate a large

number of upload receipts for each other using their respective Sybil identities without

performing any actual uploads. Credo’s reputation algorithm employs two techniques

to defend against such attacks.

First, Credo bounds the reputation gain of attackers by measuring upload contribu-

tion using the concept of credit transfers. Credo keeps track of a credit set (C) for each

node and transfers a credit from node A’s set to B if node B has uploaded a data chunk

to A, as indicated by the corresponding upload receipt. A node with many uploads will

have a large number of credits while a node with many downloads has large number of

debits (i.e. there are many credits of that node in others’ credit sets). Credo measures

a node’s reputation score by its credit setsdiversitywhich counts no more than a few

credits from the same node. Credit diversity allows Credo tobound the maximum rep-
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utation score of colluders: fork colluding adversaries each withs Sybil identities, their

maximum reputation is onlyλ · k · s.

Second, Credo limits sustained collusion attacks where Sybil identities continuously

generate upload receipts for colluding adversarial nodes.Sustained attacks are charac-

terized by credit sets that contain disproportionally manycredits from identities with

large debits. Credo models the distribution of node debits and filters a node’s credit set

according to the measured distribution. The filtering step in Credo is important as it

ensures that an adversarial node’s reputation score will eventually decrease after it has

downloaded a bounded amount of data from honest nodes.

We make three contributions in this paper.

• We propose the design of Credo. To the best of our knowledge, Credo is the first

reputation scheme that accurately assign nodes reputationscores which reflect

their contributions while providing quantifiable guarantees for resistance against

Sybil and collusion attacks.

• We present an analysis of Credo’s security guarantees in theface ofk colluding

adversarial nodes each controllings Sybil identities. Each adversary’s reputation

score is upper bounded byλ ·k ·s. Furthermore, an adversarial node can download

at mostO(s · d̄) data chunks wherēd is the average debits of honest nodes before

its reputation score is diminished.

• We show our implementation of Credo scales to handle a large number of peer

nodes. Simulation results based on the transfer log of an existing P2P CDN show

that Credo can accurately capture node contribution and defend against attacks in

practical workloads.
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4.1 Seeder promotion problem

The importance of seeder promotion.BitTorrent’s tit-for-tat mechanism only mo-

tivates nodes that are currently downloading the same file toupload to each other. Once

a node finishes downloading, there’s no incentive for it to stay online and upload to oth-

ers. Despite such lack of incentive, BitTorrent works fairly well in practice when there

are a few altruistic high-capacity nodes available [57]. Therefore it is worth investgat-

ing how much practical performance gain is achievable if nodes are incentivized to stay

online and become seeders after completing downloads.

In existing P2P distribution systems, most streams do not have a large number of

simultaneous downloading nodes (leechers). In fact, the majority of data transfers (>

80%) in various BitTorrent communities are between seeders andleechers [44]. For

most streams, large numbers of simultaneous leechers only occur during the first few

days when a very popular file initially appears. As a result, because seeders perform

most of the uploads, the more seeders there are in the system,the better the download

speed of leechers. Seeder promotion motivates nodes that have completed downloads to

stay online and act as a seeder – this leads to more seeders andbetter performance. One

way to quantify the impact of seeder promotion is to compare the performance of public

BitTorrents to that of private BitTorrents. While there is no incentive for seeding in a

public BitTorrent, a private BitTorrent demands a certain level of upload contribution

from each node in order to maintain the node’s membership.

We measured the download speed in a public BitTorrent system(PirateBay) as well

as three private BitTorrent communities (Demonoid, What.CD and TorrentLeech). Of

the three private BitTorrent communities, What.CD and TorrentLeech demand a certain

minimum level of upload contribution (or sharing ratio) from each member in order to
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Figure 4.1:CDF of achieved download speeds in various BitTorrent communities. The down-
load speeds in communities that incentivized seeding (TorrentLeech and What.CD) are signif-
icantly better than that of the public BitTorrent (PirateBay) and the private community (De-
monoid) with no seeding incentives.

stay in the community while Demonoid has no such requirement. For each BitTorrent

community, we joined 100 recently active swarms in that community and measured the

download speeds of nodes in the swarm by periodically connecting to a node to obtain

its download progress.

Figure 4.1 shows the cumulative distribution of observed download speed in all four

BitTorrent communities. As we can see, private communitieswhich incentivizes up-

load contribution (i.e. TorrentLeech and What.CD) achieve6-7× the median download

speed of PirateBay (a public BitTorrent) and Demonoid (a private community with no

upload incentive). We also found that the ratio of seeders toleechers in TorrentLeech

and What.CD is more then 10× those in PirateBay and Demonoid; this difference in

available seeders is a large component of the performance gap between the private and

public systems. Our observations are similar to another recent measurement study on a

different set of private BitTorrent communities [44]. Based on these results, we hypoth-

esize that P2P CDNs can achieve significant performance gainby addressing the seeder

promotion problem.
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Fairness incentivizes contribution. How to motivate selfish nodes to act as seeders?

We assume that the utility of each peer is characterized by its average download speed

and the goal of each peer is to employ a strategy that maximizes its download speed. It

is worth pointing out that a selfish peer isnot necessarily interested in minimizing its

upload cost: each user has a different threshold for acceptable upload cost. This model

of selfish peers is similar to that proposed in [38]. A P2P CDN is considered asfair

if the more a peer contributes to the system (i.e. uploads) relative to its consumption

(i.e. downloads), the better average download speed it experiences when competing

with other downloaders. We hypothesize that, in a fair P2P CDN, nodes are motivated

to act as seeders to achieve better download speeds in return.

Achieving fairness is more flexible than enforcing a specificsharing ratio as done in

private BitTorrent communities such as TorrentLeech. Witha specific sharing ratio, a

peer has no incentives to upload more than its required sharing ratio. Worse yet, a peer

unable to meet the sharing ratio requirement for various non-selfish reasons (e.g. it is

seeding unpopular files or has small upload capacity compared to its download capacity)

risks getting expelled from the system.

Our fairness notion maps naturally to a reputation system where each peer’s repu-

tation score reflects its net contribution (i.e. its uploadsminus its downloads) and each

peer allocates its upload capacity to active downloaders according to their reputation

scores. However, this reputation based approach faces two practical challenges: (a) how

to capture a peer’s net contribution? (b) how to defend against attacks on the reputation

system itself? The goal of our work is design a reputation system that addresses both

these challenges.
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4.2 Approach

At a high-level, Credo keeps track of each node’s upload contribution using signed

“receipts”: in exchange for downloading a data chunk from seederB, nodeA gener-

ates a signed receipt (A → B) and gives it toB. Credo employs a central server to

periodically aggregate upload receipts collected by all nodes and compute each node’s

reputation score based on these receipts. To promote contribution, each seeder preferen-

tially selects nodes with higher reputation scores among competing download requests

to upload data to.

Credo performs Sybil-resilient member admission control to prevent an attacker

from joining the system with an arbitarily large number of Sybil identities. However,

each attacker can still participate in the system with a few (s) Sybil identities to manip-

ulate Credo’s reputation mechanism. The main contributionof Credo is a centralized

reputation algorithm that calculates a reputation score for each node based on the col-

lection of upload receipts. The algorithm achieves quantifiable security guarantees for

its defense against both Sybil and collusion attacks. In a Sybil attack, an adversarial

node uses the few Sybil identities under its control to boostits own reputation score

without performing actual uploads. Furthermore, several attackers can collude together

with their respective Sybil identities to boost each othersreputation score. Next, we

describe the two key ideas in Credo’s reputation algorithm.

1. Measuring contribution using credit diversity. The set of receipts from all nodes

form the upload graph. Figure 4.2 shows two example graphs where the linkC → B

with weight 2 indicates thatB has uploaded 2 data chunks toC. The naive method

of measuring a node’snet contribution is to calculate the difference between a node’s

weighted incoming links and its outgoing links. For example, in Figure 4.2(a),A’s net
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Figure 4.2:The upload graph formed by receipts, e.g. the link C→B of weight2 denotes that
B has uploaded 2 data chunk toC. The naive method of measuring each node’s net contribution
by the difference between a node’s weighted incoming links and outgoing links is vulnerable to
the Sybil attack. For example, in (b),A instructs its Sybil identityA′ to generate a large number
of upload receipts forA.

contribution is calculated as5. The naive method accurately captures the net contri-

bution ofhonestnodes but is extremely vulnerable to Sybil and collusion attacks. For

example, in Figure 4.2(b), attackerE instructs its Sybil identityE ′ to generate 100 up-

load receipts forE, thereby increasing the net contribution ofE to 90 without having

to perform any actual uploads. How can we measure a node’s netcontribution while

remaining resilient to this type of attack?

Intuitively, nodeA’s upload contribution in Figure 4.2(a) is more “diverse” than that

of E in Figure 4.2(b) because the node (D) thatA has uploaded to has also uploaded to

other nodes while the node (E ′) thatE has uploaded to has made no contribution. We

capture this notion of diversity using the concept of credittransfers. Credo’s reputation

algorithm maintains two quantities for each node: (1) the node’s credit set (C), repre-

sented as a multi-set. (2) the node’s debits (d), represented as a number. For example,

CA = {C : 1, D : 2} indicates thatA’s credit set consists of 1 credit issued byC and

2 credits issued byD. The algorithm processes every link in the upload graph by per-

forming a “credit transfer”. For example, to processA → B, the algorithm removes

one randomly chosen credit fromA’s credit set and adds it toB’s set. The issuer of a
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credit does not change as it is transferred to another creditset. IfA’s credit set is empty,

the algorithm incrementsA’s debits (dA) by 1 and adds a new credit issued byA toB’s

credit set.

The credit-based processing causes nodes with more “diverse” contribution to have

credit sets with more distinct credits. For example,A’s credit set in Figure 4.2(a) may

becomeCA = {C : 1, B : 3, D : 1} while E’s credit set in Figure 4.2(b) is simply

CE = {E ′ : 100}. We measurecredit diversityby the number of distinct issuers in a

credit set. However, since a node might repeatedly upload tothe same node, we count

λ > 1 credits from each distinct issuer. The defaultλ value is 3. For example, forCA =

{C : 1, B : 3, D : 1}, diversity(CA) = 5. ForCE = {E ′ : 100}, diversity(CE) = 3.

A node’s reputation is calculated based on its credit diversity and its debits:

rep = diversity(C)− d (4.1)

Credit diversity limits the maximum reputation gain of Sybil attacks. If an adversar-

ial node has onlys Sybil identities, its maximum reputation score is onlyλ · s without

performing any uploads. Moreover, even if a set ofk adversaries each withs Sybil

identities collude, the reputation score of each adversarial node is bounded byλ · k · s.

Credit diversity may under-estimate the contribution of anhonest node if it repeat-

edly performs many uploads to another node who has done little contribution itself, a

behavior indistinguishable from that of an adversarial node launching Sybil attack. For-

tunately such a scenario is unlikely to occur – honest node preferentially upload to the

downloaders with the highest reputation, and as high reputation nodes have a large and

diverse credit set themselves, an honest seeder will able toincrease its credit diversity by

obtaining upload receipts from them, as our later evaluations demonstrate (Section 4.6).
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Figure 4.3:Two adversarial nodes (E,F ) collude by obtaining from each of their respective
Sybil identities (E′,F ′) 3 upload receipts. AsE downloads from honest nodeA (dotted link
E → A), E can replenish its diminished credit set by obtaining new upload receipts from Sybils
(dotted linksE′ → E, F ′ → F ).

Existing graph-based reputation schemes are based on Eigenvalue [6, 31] or max-

flow computations [21, 9]. However, with Eigenvalue [6, 31] methods, a node’s repu-

tation score doesnot necessarily reflect its net contribution. In particular, a node can

improve its reputation score more by uploading the same amount of data to those nodes

with higher reputations. Credo employs a similar credit transfer mechanism as currency

systems [55, 79, 11, 65], but its use of credits is very different. Currency systems give

the same download service to all node who possess currency tokens and deny service

to “bankrupted” nodes. By contrast, Credo uses each node’s credit set to calculate its

reputation score and gives preferential service to those nodes with higher reputations.

2. Credit filtering based on good behavior. Although using credit diversity limits

the maximum reputation score, each colluding adversarial node can still maintain its

maximum reputation score without any contribution no matter how much data it has

downloaded from others. That is because every Sybil node canissue arbitrarily many

upload receipts to replenish the credit set of an adversarial node. For example, in Fig-

ure 4.3, adversarial nodesE andF collude with their respective Sybils to achieve a

credit set of diversity6. If E downloads 6 units of data from honest nodeA (shown by

the dotted linkE → A), E’s credit set should ideally decrease by 6. However,E could
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easily request more upload receipts from the SybilsE ′ andF ′ (shown by dotted links

E ′ → E, F ′ → E) to maintain a credit diversity of2λ at all times no matter how much

data it downloads from honest nodes.

To mitigate such sustained collusion attacks, Credo’s reputation algorithm explicitly

models the typical behavior of honest nodes. More concretely, the algorithm measures

the distribution of debits of all nodes. The debit distribution as observed in the credit set

of an honest node should not deviate too much from the measured distribution. We use

such knowledge to filter a node’s credit set to obtain a subsetof credits,C′ ⊂ C, such that

the observed debit distribution inC′ conforms to the measured distribution. We augment

Equation 4.1 to use the filtered set (C′) for calculating credit diversity. The filtering step

significantly limits an adversarial node’ ability to carry on sustained attacks.

Summary: The combination of ideas 1 and 2 defends against Sybil and collusion

attacks. Specifically, credit diversity limits the maximumreputation score of an attacker.

Credit filtering ensures that an adversarial node’s reputation score goes down after it has

downloaded a bounded amount of data from honest nodes.

4.3 Credo Design

In this section, we first describe the overall system architecture including how nodes

generate upload receipts and how reputation scores are utilized. Next, we explain how

Credo computes node reputations based on aggregated uploadreceipts.

4.3.1 System Architecture

The Credo system consists of a trusted central server as wellas a large collection

of peer nodes. The central server performs Sybil-resilientnode admission control and
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is responsible for aggregating upload receipts and computing reputation for all peers.

A peer node may act as aseederwho stores a complete file and uploads chunks of

it to others. A peer node may also act as aleecherto download missing file chunks

from other seeders or leechers. Credo focuses on the interaction between seeders and

leechers which constitute the majority (¿80%) of data transfers [44] and lets the normal

BitTorrent protocol handle data exchange among leechers.

Node admission:The central server admits a new node into the system by generat-

ing a public/private key pair for the admitted node. A node can prove its membership in

the system to another node by presenting its public key certificate signed by the central

server. Credo must prevent an attacker from joining the system with an arbitrarily large

number of Sybil identities. The central server employs existing Sybil-resilient admis-

sion control methods such as schemes based on a fairly strongtype of user identity (such

as credit card numbers or cellphone numbers) or algorithms based on the social network

among users [83, 84, 72]. Sybil-resilient admission control cannot prevent an adversar-

ial node from joining the system but limit each adversarial node to a small number (s)

of Sybil identities.

Obtain upload receipts for seeding:A seeder gets an upload receipt after upload-

ing one data chunk (of size up to 1MB) to a leecher. For example, if seederA has

uploaded toB, A obtains the receipt of the form [A ← B, SHA1(data),ts] signed by

B’s private key. SHA1(data) is the hash of the data block beinguploaded fromA to B

andts is the current timestamp according toB.

A leecher might refuse to generate the required upload receipt after downloading

data from a seeder. To deter such behavior, we borrow the fair-exchange protocol from

BAR Gossip [40]. Specifically, to upload data toB, seederA first transfers the encrypted

data chunk toB and then givesB the decryption key only ifA receives a valid upload
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receipt fromB. The symmetric key used byA to encrypt data is uniquely determined by

A’s private key (PrvA) and the content hash of the data chunk (SHA1(data)). In addi-

tion to the encrypted data,A also includes a signed tuple [SHA1(data),SHA1(encrypted

data)] to bind its words that the encrypted data correspond to the data chunk being re-

quested.B can only obtain the decryption key after sending the proper upload receipt to

A. In the case thatB does not receive any valid decryption key fromA after it has sent

the upload receipt,B sends the upload receipt to the central server. Since the central

server knows all nodes’ private key, it can re-generate the decryption key based onA’s

private key and SHA1(data) and give it toB. If seederA uploads garbage data toB,

B will report A’s misbehavior to the central server with a verifiable proof including the

encrypted data chunk and the signed [SHA1(data),SHA1(encrypted data)].

Aggregate upload receipts: Every peer node periodically transfers its newly re-

ceived upload receipts to the central server. Since all honest nodes should verify every

received upload receipt, the central server only samples a small fraction (e.g. 10%) of

aggregated receipts to check their validity. Upon detecting an invalid receipt, the server

can punish the corresponding seeder for presenting the bogus receipt by reducing its

reputation score or suspending its membership.

The central server computes a reputation score for each nodeevery few hours (de-

fault is four). Only upload receipts generated in the lastτ time period are used for

reputation computation. We pickτ to be two weeks, a period short enough so that a

node is motivated to continuously contribute to the system and yet is also long enough

for a node’s past contribution to affect its current reputation score.

Each node can request a signed reputation certificate from the central server indi-

cating its current reputation score. A leecher presents thereputation certificate as part

of it download request to a seeder. Each seeder in Credo designates a small number of
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upload slots to serve a few leechers at a time. When there are more download requests

than upload slots, the seeder picks those leechers with top reputation scores among all

competing requests to serve.

4.3.2 Credit-based reputation computation

The most interesting component of Credo is the algorithm used by the central server

to compute node reputation based on the collection of aggregated upload receipts. As

summarized earlier in Section 4.2, the algorithm processesthe upload graph by per-

forming credit transfers between nodes. The algorithm resists against Sybil and collu-

sion attacks by filtering each node’s credit set according tomodeled honest behavior and

quantifying a node’s upload contribution by its credit diversity.

4.3.2.1 Credit transfer

The set of upload receipts form a directed graph with weighted links. A cycle in the

graph with the same weight on each link represents a fair exchange among those nodes.

Therefore, the algorithm first prunes the graph by removing such cycles. For example,

if there exist linkA → B with weight 5, linkB → C with weight 2, and linkC → A

with weight 2, the pruned graph only contains linkA → B with weight 3. Since all

cycles are removed, the pruned graph becomes a direct acyclic graph (DAG).

The algorithm processes the graph in the topological sort order, i.e. a node is pro-

cessed only if all of its predecessors were processed. For example, nodes in the graph

of Figure 4.2(a) is processed in the order C, B, D, A and the ordering of processing for

Figure 4.2(b) is{E’,C}, E, B. All nodes initially have an empty credit set (C = ∅) and

zero debits (d = 0). Each node is processed by examining all links pointing to it. To

process linkA → B of weightw, the algorithm first checks if the number of credits in
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Figure 4.5:Credo limits sustained collusion
attack using thepi test. In the example, the
grey bars correspond toC of an adversarial
node. The white bars correspond to the result-
ing C′ that fitsZ-distribution (dotted lines).

CA is more thanw. If it is the case, we subtractw randomly chosen credits from (CA)

and adds them toCB. If that is not the case, then we make up for the differencex by

addingx credits issued by A toCB and incrementing A’s debits byx. In Figure 4.2(a),

C ends up with credit setCC = ∅ anddC = 2 and B has credit setCB = ∅ anddB = 1.

In Figure 4.2(b), B ends up with credit setCB = {E ′ : 10, C : 2} anddB = 0. The

algorithm continues until it has processed all links in the DAG.

After processing the graph, to calculate a node’s reputation score, the algorithm first

filters its credit setC to obtain a set of “good” credits,C′ ⊂ C. It then computes the

diversity of C′ to bound the maximum reputation gain of collusion and Sybil attacks.

When calculatingdiversity(C′), we count no more thanλ credits from the same node.

The final reputation score is calculated asdiversity(C′) − d. In the next section, we

explain how the filtering step is performed to mitigate sustained collusion and Sybil

attacks.
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4.3.2.2 Credit filtering

The goal of credit filtering is to choose a subset of creditsC′ such that the distribution

of the debits for the issuers of credits inC′ approximates the overall debit distribution

of honest nodes in the system. Since an adversarial node performing sustained Sybil

and collusion attacks ends up with a credit set that may significantly deviate from the

overall debit distribution, the filtering step will effectively remove many credits from the

adversary’s credit set, leading to a diminished reputationscore.

Computing the overall debit distribution: Let X be the random variable of the debit

of a node chosen randomly among those nodes with positive debits. Since a few Sybil

identities may skew the distribution ofX with extremely large debits, we use a truncated

distribution ofX that excludes a small fraction (δ) of nodes with the most debits. As a

result, as long as the set of colluding Sybil identities do not exceedδ of all nodes, they

cannot affect the measured distributionX.

LetZ be the random variable of the debit of the issuing node for a randomly chosen

credit in the credit sets of all nodes. We model an honest node’s credit set as a collec-

tion of randomly chosen credits in the system. Thus, we expect the debit distribution

corresponding to collection of credits in an honest node’s credit set to approximate the

distribution ofZ.

We can derive the distribution ofZ from that ofX as follows,

Pr(Z = x) =
Pr(X = x)x

E(X)
(4.2)

The algorithm represents theZ-distribution using a set of probability density bounds

that correspond tom bins, as shown in Figure 4.4. Let the range of thei-th bin be

[bi, bi+1). The ranges of the bins are chosen to so that the size of successive bins in-
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creases exponentially, i.e.bi+1

bi
= γ whereγ is a small constant bigger than 1. Our

security bound for Credo’s collusion resilience is dependent on the choice ofγ (Sec-

tion 4.4). The probability density of thei-th bin is calculated asPr(bi ≤ Z < bi+1).

Let pi =
Pr(bi≤X<bi+1)·bi

E(X)
. We can see thatpi is the lower bound ofPr(bi ≤ Z < bi+1),

because:

Pr(bi ≤ Z < bi+1) =

∑

bi≤x<bi+1
Pr(X = x) · x

E(X)

The set of lower boundspi is used to ensure that the observed debit distribution for

credits in the filtered credit set does not deviate too much from the overallZ-distribution.

In particular, letZ ′ be the random variable of the debit of the issuing node for a random

credit in a filtered credit setC′, it must satisfyPr(bi ≤ Z ′ < bi+1) ≥ pi for all i.

Filter credit set using Z-distribution: In order to extract a subset of creditsC′ whose

debit distribution matches the overallZ-distribution, the algorithm chooses credits for

C′ so that the fraction of credits in thei-th bin exceedspi. A credit is classified to the

i-th bin if its issuer has a debit value within[bi, bi+1).

When there is a sustained collusion attack, the credit set ofan adversarial node con-

sists of an “unusually” large number of credits in bins with largei’s because their issuers

(Sybils) have very large debits. This causes the fraction ofcredits in bins with smalli’s

to be lower than the required lower bound. The filtering step will evict credits in the bin

of largei’s in order to increase fraction of credits in bins with smaller i’s. Figure 4.5

gives an example. As can be seen, the original credit setC consists of many credits in

bins corresponding to issuers with large debits. (the high grey bar at the rightmost side).

After filtering, the number of credits accepted in that rangeis significantly reduced (the
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white bar at the rightmost side) according to the expected lower bound for each bin (the

dotted bins).

The filtering process proceeds as follows. Letci be the number of credits classified

to thei-th bin. When filtering the credit set to arrive atC′, the algorithm ensures that:

ci
|C′| · pi

≥ 1 ∀i ∈ [0, m) (4.3)

We use a greedy heuristic for picking a set of credits that pass the test specified by

Equation 4.3. In particular, we start with the original credit set C and check for the

validity of the test. If the test fails with thei-th bin having the highest value ofci
|C′|pi

,

we remove one credit from thei-th bin. We prefer to remove the credit which has the

same issuer with at leastλ other credits in the set. If there is no such credit, we remove

a random one. We repeat this process until the test passes or no more credits are left.

The remaining credits form the filtered setC′.

4.4 Security properties

In this section, we present analysis results to quantify howCredo limits sustained

collusion attacks. Colluding adversarial nodes exchange upload receipts issued by their

Sybil identities (see example in Figure 4.3). We assume thatcolluders are self-interested

individuals: they divide the Sybil-issued receipts among themselves so that each adver-

sarial node is benefitted equally from the collusion. For thesimplicity of discussion, we

only show the analysis for the scenario where adversarial nodes do not contribute any

uploads to the system.

Theorem 4.1. Suppose there arek self-interested colluding adversarial nodes, each
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with s Sybil identities. Credo limits the maximum reputation of anadversarial node to

beλ · k · s. More importantly, the average number of data chunks that anadversarial

node can download with the maximum reputation score is at most s · γ · d̄, whered̄ is the

average debits of an honest node.

Proof. Since an adversarial node has no upload contribution, the credits in its credit

set are belong to Sybil identities in the collusion group. Hence, the maximum credit

diversity ofk colluding adversaries isλ · k · s, resulting in maximum reputation score of

λ · k · s.

Next, we prove the bound on the maximum downloads an adversarial node can per-

form with maximum reputation. LetX ′ be the random variable of the debit of a Sybil

identity and letZ ′ be the random variable of the debit of the issuer (a Sybil identity)

of a randomly chosen credit among the credits of adversarialnodes. We know that

Pr(Z ′ = x) = Pr(X′=x)x
E(X′)

. Since adversarial nodes divide the upload receipts issuedby

Sybils among themselves, the debit distribution for each adversary’s credit set can be

approximated by the overall distributionZ ′.

The filtering process ensures that the filtered credit set of an adversary passes the set

of pi tests, i.e.:

pi < Pr(bi ≤ Z ′ < bi+1)

<
Pr(bi ≤ X ′ < bi+1) · bi+1

E(X ′)
(4.4)

Substitutingpi =
Pr(bi≤X<bi+1)·bi

E(X)
into Inequality 4.4 and re-arranging sides, we ob-
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tain:

E(X ′) ≤ bi+1

bi
E(X)

Pr(bi ≤ X ′ < bi+1)

Pr(bi ≤ X < bi+1)

= γ · E(X) · Pr(bi ≤ X ′ < bi+1)

Pr(bi ≤ X < bi+1)
(4.5)

In Inequality 4.5,γ is determined by the number of chosen bins (m) such that

γ = bi+1

bi
for all i. Moreover, Inequality 4.5 holds true for alli. As the last step of

simplification, we use the property that for any given positive numbersa, b1, c1, b2, c2, if

a ≤ b1
c1

anda ≤ b2
c2

, thena ≤ b1+b2
c1+c2

. Applying this observation to Inequality 4.5 for alli,

we obtain:

E(X ′) ≤ γ · E(X) (4.6)

Because the total number of credits fromk · s Sybil identities isk · s · E(X ′), each

adversarial node has at mosts·E(X ′) ≤ s·γ ·E(X) credits in its credit set. By definition,

E(X) is the expected debits of nodes after excluding thoseδ · n nodes with the most

debits,E(X) ≤ d̄ whered̄ is the expected debits of an honest node with positive debit.

Thus, we deriveE(X ′) ≤ s · γ · d̄.

It is interesting to note that, for a given range[b0, bm] of the distribution ofX,

the system parameter of the number of bins (m) uniquely determinesγ. Specifically,

γ = m

√

bm
b0

. Therefore,γ decreases as we increase the number of bins (m), improving

the bound on sustained collusion attacks. However, whenm is too large, we also risk

filtering out too many credits from a honest node’s credit setunnecessarily.

4.5 Implementation

We have built the central server and the client node implementation using Java.
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Central server: Our server implementation consists of3000+ lines of codes. The

implementation logs upload receipts received from client nodes to disk. Every4 hours,

the server reads all collected receipts from disk and invokes the reputation algorithm to

compute node reputation. The reputation calculation algorithm employs12 concurrent

threads to achieve speedup on multicore machines.

Credo client: Our client implementation is based on the open-source Azureus BitTor-

rent implementation. A Credo client can engage in the original BitTorrent protocol

with other BitTorrent clients. When two Credo clients first meet, they exchangeCre-

doHandshakemessages (a new message type that we added to the existing BitTorrent

protocol). ACredoHandshakeconsists the node public key certificate and its reputation

score signed by the central server.

After finishing handshake, if both peers are leechers, they use the normal BitTorrent

protocol to exchange data blocks among themselves. Otherwise, the seeder chooses the

leecher with the highest reputation to serve. Specifically,we modified the two func-

tions calculateUnchokesandgetImmediateUnchokesin SeedingUnchoker.java to pick

the leecher with the highest reputation to unchoke.

Once a leecher is unchoked, it sends aCredoRequestmessage to request a set of data

blocks. The total size of data blocks requested is less than1MB (the default data size

per upload receipt in Credo). The seeder uploads encrypted data to the leecher. After

finishing downloading, the leecher sends aCredoPaymessage with the required upload

receipt. Finally, the seeder sends back aCredoKeymessage that contains the decryption

key for the data. Every hour, every seeder sends its collection of receipts received in the

last hour to the central server.
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4.6 Evaluation

This section evaluates whether Credo reputation’s reputation scheme gives the right

incentive for nodes to contribute in the face of collusion and Sybil attacks. Our key

results are:

• Nodes with higher net contribution achieves faster downloads in Credo. Thus,

Credo gives nodes an incentive to contribute as seeders.

• Colluders who do not upload any data to the system have bounded maximum

reputation scores. Furthermore, as they download data fromhonest nodes, their

reputation scores decrease.

• The implementation of Credo incurs reasonable traffic and computation overhead

and can potentially scale to handle a large number of peer nodes.

We use a combination of simulations and experiments with ourprototype implemen-

tations to demonstrate these results.

4.6.1 Simulations

4.6.1.1 Simulation setup

We simulate a network of3000 nodes for a 1 month period. We set the upload speed

limit of each node to be200KB per second. A node divides its upload capacity among

4 upload slots of50KB per second each. The download speed of a node is5 times its

upload speed, i.e.1MB per second. We control the upload contribution of a node by the

willingnessparameter. Whenever a seeder has a free upload slot, it decides to upload to

some leecher with a probability proportional to its willingness. We set the willingness

of nodes in our simulation to follow the distribution of upload capacity as measured
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Figure 4.6:Average download time as a function of a node’s net contribution. The average
download time decreases as a node’s net contribution increases

in [56]. Our simulations set the receipt expiration period (τ ) to be 1 day. This is much

smaller than our defaultτ value of 2 weeks because our simulated network is relatively

small (n = 3000 nodes). Thus, we must use a smallerτ so that not many nodes can

reach the maximum reputation score ofn · λ during aτ time period

We inject new files of200MB to the system sequentially: a new file is injected when

all nodes that want a particular file have finished downloading it. Not every node wants

every file: when we inject a new file, we randomly choose300 nodes to download the

file. The probability that a node is chosen to download the fileis proportional to its

demand. We model two types of demand: 1) all nodes have identical demands, 2) the

demand of a node follows the demand distribution observed inthe Maze file sharing

system [80]. We also choose10 random nodes as the initial seeders.

4.6.1.2 Credo incentivizes contribution

More contribution leads to faster download: Figure 4.6 plots the download time as a

function of a node’s net contribution. We measure a node’s net contribution during the

lastτ time period as the number of its uploaded chunks minus the number of its down-
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loaded chunks. We record the net contribution and download time after a node finishes

downloading a file. For the results shown in Figure 4.6, we grouped the net contribution

of different nodes into bins of size50, and computed the average and standard deviation

of the download time in each bin.

Figure 4.6 shows that a node achieves faster download times when it has a higher

net contribution, for both the Maze demand model and the identical demand model.

A node’s reputation reflects its net contribution: A node achieves faster downloads

when it has a higher reputation. Figure 4.7 shows a node’s reputation as a function of its

net contribution. We recorded a node’s reputation score as well as its net contribution

when it finishes downloading a file. We computed the average net contribution and

average reputation for each node and plot the two quantitiesin Figure 4.7. We can see

the reputation increases linearly as a node’s net contribution increases.

To further quantify how Credo’s reputation score accurately captures a node’s net

contribution, we calculate the standardA′ metric, which is defined to be the probability

that the reputation of a nodeA is greater than the reputation of nodeB given thatA has

higher net contribution for two random nodesA andB in the network. In Figure 4.7,

A′ = 0.95 which shows that Credo’s reputation score accurately reflects a node’s net

contribution.

Figure 4.7 is divided into two regions: negative net contribution on the left, and

positive net contribution on the right. We observe that the derivative of the curve on the

left is approximately1. That is because nodes with negative net contribution rarely earn

credits, i.e.|d(C′)| ≈ 0. The reputation of those nodes is essentially the negation of their

debits. Figure 4.8 shows the cumulative distribution of nodes’ net contribution. We can

see that more than70% of nodes have negative net contribution in simulation with both

the Maze and identical demand models.
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Nodes with positive net contribution are rarely associatedwith positive debits. Their

reputation is mainly the diversity of their credit sets. Thederivative of the curve in the

positive contribution region of Figure 4.7 is only slightlysmaller than1. This shows

that filtering credits and measuring credit diversity do notsignificantly under-estimate

the net contribution of honest nodes.

We also take a closer examination on how the reputation scores for nodes with pos-

itive net contributions. Figure 4.9 shows credit diversityas the function of the size of

credit set at end of the simulation. We observe that credit diversity is close to the size

of the credit set when the size is greater than200. This means that credit filtering has

little negative effect on the credit sets of honest nodes with enough upload contribution.

When the credit set size is smaller than200, there are some sets whose credit diversity

is much smaller than their actual size. This is because when the credit set is small,

it is difficult to approximate theZ-distribution. As the result, many credits have been

filtered.

4.6.1.3 Credo’s defense against colluders is robust

We evaluate how Credo performs under the collusion attack bydesignating10 nodes

as adversarial nodes. Each adversarial node controls2 Sybil nodes. They collude with

each other to form a collusion size of30, i.e. 1% of the system. In eachτ interval,

the Sybil nodes issue upload receipts to optimize the amountof credits that can pass

the filtering step and achieve the bound in Observation 4.1 (Section 4.4). The credits

are divided equally to adversarial nodes. Adversaries use those credits to download

files. We also vary the the number of files that adversaries want to download in different

simulations.

In Figure 4.10, we plot the reputation of the adversarial nodes as well as honest nodes
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as a function of their net contributions. Because the adversarial nodes never upload

to other nodes, their net contribution are always negative.Their maximum reputation

score is60 because there are20 colluding Sybil nodes. As their demand of downloading

increases, adversarial nodes require Sybils to issuing more and more upload receipts

which are eventually filtered. As a result, their reputationscores decrease.

We plot the download time as a function of the net contribution for adversarial nodes

as well as honest nodes in the simulations in Figure 4.11. As expected, the down-

load time increases as adversary nodes’ demand increase, i.e. their net contribution

decreases. Even when adversarial nodes have small demand, i.e. their net contribution

is close to0, their download times are still longer than that of honest nodes with net

contribution60. This is due to their reputation scores being bounded by60.

4.6.1.4 Credo vs Eigenvector-based reputation

An alternative way to compute nodes’ reputation at the central server is finding the

eigenvector of the contribution graph induced from upload receipts. This eigenvector-

based reputation such as PageRank was originally designed for web ranking [6] but has

been used to compute node reputations in P2P systems [41]. However, the reputation

score of the eigenvector-based scheme is not designed to capture the net contribution

of a node. We show that when used in a P2P CDN, PageRank scores do not accurately

reflect a node’s net contribution and is also more vulnerableto collusion than Credo.

For real world workload, we use a Maze trace collected in December 2005 which

records two weeks upload and download activities of nodes inthe system. A nodeA that

uploadwMB to nodeB is represented by a directed edge fromB toA in a graphG with

a weightw on it. We compute eigenvector-based reputation using the standard PageRank

method. We vary the probability of resetting a random walkǫ, and find that the value
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of = 0.15 produces the best balance between defending against collusion and capture

net contribution. We refer to this eigenvector-based reputation as PageRank reputation.

To model attack, we choose50 nodes that have uploaded at least 50MB and have the

lowest net contribution as adversaries. Each adversary introduces5 more Sybils to the

graph, i.e. they form a collusion group of300 nodes. They perform collusion by having

the50 adversaries create high weight (1, 000, 000) edges to each other. Each pair of an

adversary and a sybil also create a pair of high weight directed edges. Figure 4.12 shows

PageRank reputation of honest nodes and adversaries using the Maze workload. Each

point in the graph represents a node in the system. As we can see, PageRank reputation

does not reflex net contribution well (A′ = 0.71). Moreover, it has very poor defense

against collusion. The50 adversaries we choose are among the bottom0.2% in term of

net contribution, but they can get in top2% in term of reputation by colluding.

To compute Credo reputation, we feed the central server withreceipts generated

from the Maze trace. The same50 adversaries collude by having the250 sybils issue

credits in an optimal way assume that they know theZ-distribution. Figure 4.13 shows

the reputation of honest nodes and adversaries as a functionof net contribution. As we

can see, Credo reflects net contribution well (A′ = 0.96). We notice that the reputation

of nodes that have net contribution greater than5, 000 are much smaller than the size

of their credit sets. That is because these nodes upload hugeamount of data (5GB) in

5 days, and they upload much more than3MB to other nodes. The diversity technique

penalizes these nodes’ reputation because of their repeat interaction with other nodes.

Nevertheless, these nodes still remain as top reputation nodes. This graph also shows

that Credo’s defense against collusion is better than PageRank. The50 adversaries re-

main in the bottom22% in term of reputation even after colluding.

We also do the same comparison on a synthetic workload from a1000 nodes net-
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work. To generate workload, we create upload receipts in which the downloader is

chosen randomly and the uploader is picked according to the willingness to contribute

of nodes. We set the willingness to increase linearly with nodes’ ID. We chose10

adversaries who uploads at least10 chunks among those which have the worst net con-

tribution. Each adversary bring in2 sybils. The attack strategy is the same as in the

previous experiment. Figure 4.14 shows the reputation of honest nodes and adversaries

in Credo and PageRank reputation. We scale the PageRank reputation so that it can fit

to one graph with Credo reputation. Since the synthetic workload has less repeat in-

teraction and are more uniform, both reputation reflect net contribution better than in

the Maze trace. Still, Credo reputation is still better thaneigenvector-based reputation

(A′ = 0.998 vsA′ = 0.898). Credo also has better defense against collusion. The ad-

versaries remains in bottom30% in Credo reputation, while they can get to top1% in

PageRank reputation.
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4.6.2 Experiments using Credo’s prototype

4.6.2.1 Scalability of the central server

Credo central server needs to receive upload receipts from all nodes, verifies them,

and compute nodes’ reputation. We show that our implementation running on a8-core

machine (2.27GHz CPUs and16GB memory) can easily handle the traffic of260, 000

nodes in Maze network.

Bandwidth: We show that the bandwidth required for the central server toreceive up-

load receipts is modest. The aggregate traffic among Maze nodes in 2 weeks is280TB.

A fraction of this data traffic is between leechers only whichdoes not result in upload

receipts nor receipt upload traffic to the central server. Intypical public and private Bit-

Torrent communities,> 80% the traffic are between seeders and leechers [44]. Even

if all of the traffic are upload from seeders to leechers, the central server receives only

1.4GB of uploaded receipts per day (each receipt is70-byte in size and captures a1MB

chunk transfer). This means the central server only needs a modest download capacity

of 130Kbps to receive upload receipts.

Storage: After verifying an upload receipt, the central server stores it as a triple

〈SHA1(data), uploaderID, downloaderID〉 which requires28 bytes on disk. There-

fore, it requires8GB disk space to store2 weeks upload activities in order to compute

reputation.

CPU: The central server needs to verify a fraction of upload receipts it receives. Our

implementation can verify400 receipts per second using a single thread, i.e.35 millions

receipts per day. This means that a single threaded verifier can handle data traffic that is

17.5 times bigger than observed in the Maze system.

The central server also needs to compute the reputation score for every node. Our
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current implementation takes1 hour for the central server to process the upload receipts

corresponding to 2 weeks traffic in the Maze system. Our default period for updating

reputation is4 hours. Within that amount of time, our central server can compute repu-

tation for a network of1, 000, 000 nodes whose traffic demand is similar to that observed

in the Maze system.

4.6.2.2 Deployment on Planet lab

To examine the real performance benefits when nodes are incentivized to contribute,

we compare between two scenarios:

1. Every node runs the Credo client implementation Nodes areincentivized to stay

online, and serve other nodes in order to gain reputation after downloading a file.

2. Every node runs the original Azureus client implementation. Since there is no

incentive to stay online after downloading a file, nodes go offline immediately

after finishing downloading the file.

We experiment with both scenarios on 210 PlanetLab nodes. Weinject a file to one

seeder at the beginning. We set the file size to25MB to make the experiment finish in

a reasonable time (< 2 hours). Other nodes arrive to download the file once at a time

every15 second. We set the application limit throughput using the distribution in [56].

The download throughput limit is5 times larger than upload throughput limit for every

node, in order to capture the asymmetry of upload and download throughput in wide

area network.

Figure 4.15 plots the cumulative distribution of complete download time for each

node in both scenario. We observe that both the average as well as the median download

time improve significantly when nodes are incentivized to stay online in scenario 1. The
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Figure 4.15:Cumulative distribution of download time two scenario: 1) nodes are incentivized
by Credo protocol to stay online and continue upload to others after downloading a file, 2) nodes
go offline immediately after getting a file. The average and median download time in scenario 1
are significantly smaller than that of scenario 2.

average download time drops from935 seconds (scenario 2) to347 seconds (scenario

1). The median download time also drops from638 seconds to172 seconds.

This result shows that the aggregate capacity of the system improves by a factor of

2.7 when nodes are incentivized to contribute. The reason is that because the download

capacity of nodes is higher than upload capacity, download capacities are always under-

utilized when there is not enough seeders. There is only1 seeder at any instance in

scenario 2. On the other hand, in scenario 2, after some nodesfinish downloading the

file, they contribute to the aggregate seeding capacity of the system. Other nodes can

utilize their high download capacities to get the file faster.
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Chapter 5

Related work

5.1 Sybil-resilient admission control

Traditionally, open systems rely on a central authority whoemploys CAPTCHA or

computational puzzles to mitigate the Sybil attack [76, 55,57]. Unfortunately, these

solutions can only limit therate with which the attacker can introduce Sybil identities

into the system instead of the total number of such identities. Even before the recent

surge of interest in social-network-based Sybil defenses,there have been attempts at

exploiting the trust graph among users to mitigate the Sybilattack: Advogato [37],

Appleseed [87] and SybilProof [9] are the most well-known ofthese early proposals.

However, it is not the goal of these protocols to perform Sybil-resilient node admission.

Rather, they aim to calculate the reputation of each user/node in a way that prevents the

attacker from boosting its reputation using Sybil identities. Below, we discuss recent

work in node admission control and related efforts in Sybil-resilient Distributed Hash

Table (DHT) routing.

SybilGuard [84] has pioneered the use of fast-mixing socialnetworks for Sybil-
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resilient admission control. Using a distributed verification protocol based on random

routes, SybilGuard can limit the number of Sybil nodes admitted per attack edge to

O(
√
n log n). SybilLimit [83] improves this bound to admit no more thanO(logn)

Sybils per attack edge with high probability. Yu et al. claimthat SybilLimit is nearly

optimal in that its security guarantee is only a factor ofO(logn) away from that of any

optimal protocol.

SybilGuard and SybilLimit are both designed to work in a distributed setting where

each node is initially only aware of its neighbors. By contrast, SybilInfer [18] is a cen-

tralized algorithm which assumes complete knowledge of thesocial graph. SybilInfer

uses Bayesian inference to assign each node a probability ofbeing a Sybil. The key

observation is that, if the attacker connects more Sybils toits few attack edges, the con-

ductance of graph including the Sybil region becomes smaller to the point that the entire

graph is not fast-mixing, thereby causing the detection of the Sybil nodes. Unlike Sybil-

Guard, SybilLimit, Gatekeeper and SumUp, SybilInfer does not consisder worst case

attacks and has no analytical bound on the number of Sybil nodes admitted per attack

edge. In [60], Quercia et al. propose a Sybil-defense mechanism for the mobile setting

where a node collects graph information from those nodes that it has previously encoun-

tered and analyzes the partial graphs to determine the likelihood of a node being Sybil.

Like SybilInfer, there is no formal bound for the algorithm in [60].

Viswanath et al. [75] has performed a comparative study of SybilGuard, SybilLimit,

SybilInfer and SumUp. The study reveals two potential limitations of social-network

based admission control. First, manysmall social networks (up to tens of thousands

of nodes) exhibit community structure (i.e. not fast-mixing), thus causing existing pro-

tocols to falsely reject many honest nodes as Sybils. This finding suggests that Sybil-

resilient admission control must be performed on large-scale social networks: the larger
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the graph, the better connected communities are to each other and the faster the mix-

ing time. Thus, our evaluations use real world social graphsthat consist of hundreds

of thousands of nodes. Second, given a known admission controller, the attacker can

strategically acquire attack edges close to the controllerto gain unfair advantage. In

Gatekeeper, we address this limitation by having a controller select a few random van-

tage points for ticket distribution. Viswanath’s work compares all existing schemes in

a centralized setting even though SybilGuard and SybilLimit are originally designed

to work as a distributed protocol. It is worth pointing out that Sybil defense is more

challenging in a distributed setting than in a centralized setting. This is because, in a

centralized setting, the attacker must decide upon the graph structure of the Sybil region

before the admission algorithm starts to execute. On the other hand, in a distributed

setting, the attacker has the freedom to change the Sybil region of the graph arbitrarily

during protocol execution to maximize its gain. More details on the comparision among

different social network based Sybil defenses can be found in a recent survey [82] by

Haifeng Yu.

A Sybil-resilient DHT [36, 17] ensures that DHT lookups succeed with high prob-

ability in the face of an attacker attempting to pollute the routing tables of many nodes

using Sybil attacks. Danezis et al. [17] leverage the bootstrap tree of the DHT to defend

against the Sybil attack. Two nodes in such a tree share an edge if one node introduced

the other one into the DHT. The assumption is that Sybil nodesattach to the tree at a

small number of nodes, similar to the few attack edge assumption in SybilGuard and

SybilLimit. Wh ānau [36] uses social connections between users to build routing tables

in order to perform Sybil-resilient lookups. Existing Sybil-resilient node admissions can

potentially simplify the construction of distributed Sybil-resilient protocols by bounding

the number of Sybil identities admitted in the first place.
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All of the above social network based Sybil defenses [84, 83,73, 72, 18, 36] do not

consider privacy concern when using social network. Revealing all or a portion of the

social graph can help the adversary to deanonymize the real world identity of nodes in

the graph [51]. Recently, Prateek Mittal designed a Sybil-resilient DHT routing proto-

col, called X-Vine [48], which considers privacy concern. Unlike Wh ānau, messages in

X-Vine only pass social links when they travel from the source to the destination. As

a result, each node in the DHT only know its neighbors and a small routing table for

relaying messages to its successors, thereby not being ableto perform deanonymiztion.

5.2 Sybil-resilient online content voting

Ranking content is arguably one of the Web’s most important problems. As users

are the ultimate consumers of content, incorporating theiropinions in the form of either

explicit or implicit votes becomes an essential ingredientin many ranking systems. This

section summarizes related work in vote-based ranking systems. Specifically, we exam-

ine how existing systems cope with Sybil attacks [19] and compare their approaches to

SumUp.

5.2.1 Hyperlink-based ranking

PageRank [6] and HITS [33] are two popular ranking algorithms that exploit the im-

plicit human judgment embedded in the hyperlink structure of web pages. A hyperlink

from page A to page B can be viewed as an implicit endorsement (or vote) of page B

by the creator of page A. In both algorithms, a page has a higher ranking if it is linked

to by more pages with high rankings. Both PageRank and HITS are vulnerable to Sybil

attacks. The attacker can significantly amplify the rankingof a page A by creating many
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web pages that link to each other and also to A. To mitigate this attack, the ranking sys-

tem must probabilistically reset its PageRank computationfrom a small set of trusted

web pages with probabilityǫ [52]. Despite probabilistic resets, Sybil attacks can still

amplify the PageRank of an attacker’s page by a factor of1/ǫ [86], resulting in a big

win for the attacker becauseǫ is small.

5.2.2 User Reputation Systems

A user reputation system computes a reputation value for each identity in order to

distinguish well-behaved identities from misbehaving ones. It is possible to use a user

reputation system for vote aggregation: the voting system can either count votes only

from users whose reputations are above a threshold or weigh each vote using the voter’s

reputation. Like SumUp, existing reputation systems mitigate attacks by exploiting two

resources: the trust network among users and explicit user feedback on others’ behav-

iors. We discuss the strengths and limitations of existing reputation systems in the con-

text of vote aggregation and how SumUp builds upon ideas fromprior work.

Feedback based reputations In EigenTrust [31] and Credence [76], each user inde-

pendently computespersonalizedreputation values for all users based on past transac-

tions or voting histories. In EigenTrust, a user increases (or decreases) another user’s

rating upon a good (or bad) transaction. In Credence [76], a user gives a high (or low)

rating to another user if their voting records on the same setof file objects are similar

(or dissimilar). Because not all pairs of users are known to each other based on di-

rect interaction or votes on overlapping sets of objects, both Credence and EigenTrust

use a PageRank-style algorithm to propagate the reputations of known users in order

to calculate the reputations of unknown users. As such, bothsystems suffer from the
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same vulnerability as PageRank where an attacker can amplify the reputation of a Sybil

identity by a factor of1/ǫ.

Neither EigenTrust nor Credence provide provable guarantees on the damage of

Sybil attacks under arbitrary attack strategies. In contrast, SumUp bounds the voting

power of an attacker on a single object to be no more than the number of attack edges

he possesses irrespective of the attack strategies in use. SumUp uses only negative

feedback as opposed to EigenTrust and Credence that use bothpositive and negative

feedback. Using only negative feedback has the advantage that an attacker cannot boost

his attack capacity easily by casting correct votes on objects that he does not care about.

DSybil [85] is a feedback-based recommendation system thatprovides provable

guarantees on the damages of arbitrary attack strategies. DSybil differs from SumUp

in its goals. SumUp is a vote aggregation system which allowsfor arbitrary ranking

algorithms to incorporate collected votes to rank objects.For example, the ranking al-

gorithm can rank objects by the number of votes collected. Incontrast, DSybil’s recom-

mendation algorithm is fixed: it recommends arandomobject among all objects whose

sum of the weighted vote count exceeds a certain threshold.

Trust network-based reputations A number of proposals from the semantic web

and peer-to-peer literature rely on the trust network between users to compute reputa-

tions [87, 37, 27, 62, 9]. Like SumUp, these proposals exploit the fact that it is difficult

for an attacker to obtain many trust edges from honest users because trust links reflect

offline social relationships. Of the existing work, Advogato [37], Appleseed [87] and

Sybilproof [9] are resilient to Sybil attacks in the sense that an attacker cannot boost his

reputation by creating a large number of Sybil identities “behind” him. Unfortunately,

a Sybil-resilient user reputation scheme does not directlytranslate into a Sybil-resilient
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voting system: Advogato only computes a non-zero reputation for a small set of iden-

tities, disallowing a majority of users from being able to vote. Although an attacker

cannot improve his reputation with Sybil identities in Appleseed and Sybilproof, the

reputation of Sybil identities is almost as good as that of the attacker’s non-Sybil ac-

counts. Together, these reputable Sybil identities can cast many bogus votes.

5.2.3 Sybil Defense using trust networks

Many proposals use trust networks to defend against Sybil attacks in the context of

different applications: SybilGuard [84] and SybilLimit [83] help a node admit another

node in a decentralized system such that the admitted node islikely to be an honest node

instead of a Sybil identity. Ostra [47] limits the rate of unwanted communication that

adversaries can inflict on honest nodes. Sybil-resilient DHTs [17, 35] ensure that DHT

routing is correct in the face of Sybil attacks. Kaleidoscope [66] distributes proxy iden-

tities to honest clients while minimizing the chances of exposing them to the censor with

many Sybil identities. SumUp builds on their insights and addresses a different problem,

namely, aggregating votes for online content rating. Like SybilLimit, SumUp bounds

the power of attackers according to the number of attack edges. In SybilLimit, each at-

tack edge results inO(logn) Sybil identities accepted by honest nodes. In SumUp, each

attack edge leads to at most one vote with high probability. Additionally, SumUp uses

user feedback on bogus votes to further reduce the attack capacity to below the number

of attack edges. The feedback mechanism of SumUp is inspiredby Ostra [47].
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5.3 Incentivizing bandwidth contribution in P2P systems

We survey existing proposals of P2P reputation and currencysystems and discuss

why they do not completely address the seeder promotion problem. We also discuss

existing work on catching misbehaving nodes.

Reputation systems.Reputation systems incentivize peers to upload in order to gain

reputation; peers with high reputation values are promisedbetter download performance

in the future [31, 21, 41, 57]. Most existing reputation systems are graph-based, where

each graph edge is formed between a pair of nodes that have haddirect interactions.

EigenTrust [31] uses the PageRank-style [6] propagation algorithm on the interaction

graph. To reduce the chances of collusion in PageRank calculation [86], OneHop repu-

tation [57] and multi-level tit-for-tat [41] restrict reputation propagation to one hop or a

few hops. Max-flow based calculation [21, 9] can be used to defend against collusion.

Graph-based reputation schemes such as PageRank are not designed to capture a

node’s net contribution in the system. In particular, a nodelinking to another node with

higher reputation achieves higher reputation gain. Thus, astrategic peer can gain unfair

advantage by selectively contributing to certain peers. Asa result, graph-based reputa-

tions do not satisfy the desired fairness property. Moreover, the defense against collusion

of existing graph-based reputation systems is weak. For example, colluders can increase

the net reputation of the collusion group by1/ǫ, whereǫ is the probability of resetting a

random walk, in a PageRank-style reputation computation like EigenTrust [31] or multi-

level tit-for-tat [41]. In max-flow based reputation like [21, 9], each colluders get higher

reputation by recruiting more nodes, which have interaction with node outside collusion

group, into the collusion group. This gives the incentive for honest nodes to collude and

the bigger collusion group the higher reputation they gain.However, graph-based repu-
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tation can particularly advantageous in a live streaming environment where nodes with

different capacities should be incentivized to position themselves in different positions

in the underlying stream distribution graph, as is done in the Contracts system [58].

Currency systems.Currency systems must maintain system liquidity accordingto

the current demand and hoarding levels [32]. Karma [74] scales currencies based on the

number of active nodes and Antfarm [55] adjusts the amount oftokens according to the

number of active nodes and the number of active swarms.

Currency systems such as Dandelion [65], BitStore [61], PACE [11], Antfarm [55]

and others [79, 74] incentivize peers to upload to others in exchange for tokens that enti-

tle them to future downloads. The tokens can be directly transferable among peers [79],

reclaimed by the central party upon each use [55, 79], or theycan completely reside at

the central party link in Dandelion [65]. Credo is not a currency system: although it uses

the concept of credit transfer, it is only using credits to calculate each node’s reputation

score. Existing currency system proposals enforce the strict “download as much as you

upload” policy where a node with no currency is not allowed todownload. Compared to

our notion of fairness, the policy enforced by currency systems is less desirable: since

all peers achieve the same download speed as long as they havenon-zero currency to-

kens, a peer has no incentives to contribute more than what isnecessary to satisfy its

own demand. Moreover, currency systems face the daunting challenge of maintaining

monetary supply according to current demand and hoarding levels at all times [32] to

avoid undesired inflations or the bankruptcy of many nodes.

Some currency proposals such as Antfarm [55] and PACE [11] also have the addi-

tional goal of improving the global efficiency of content distribution. Antfarm achieves

optimal seeding capacity allocation via central management and PACE relies on peers

to set the right download prices in a currency market. Improving content distribution
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efficiency is an orthogonal goal to providing uploading incentives.

Detecting and punishing deviant behaviors.It is not enough to just incentivize

contribution, we also need disincentives to discourage peers from cheating. BAR Gos-

sip [40] and FlightPath [39] introduce the idea of centralized punishments based on

cryptographic proof-of-misbehavior and use it to ensure the fair exchange of data within

a single swarm. In the context of peer-to-peer storage systems, Ngan et al. [53] and

Samsara [15] rely on verifiable records and periodic auditing to check that peers indeed

store data as they claim. SHARP [24] also audits to ensure that an autonomous system

complies with its resource contract.

Credo does not need general purpose auditing because credits are only used to cal-

culate a peer’s reputation instead of serving as resource claims. We borrow the idea

of cryptographic proof-of-misbehavior from BAR Gossip [40] to detect and penalize

misbehaving nodes.
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Chapter 6

Conclusion

This thesis provides robust identity managements which areresilient to Sybil at-

tacks, and illustrates how to use them to provide security and incentive for cooperative

systems in various contexts. The main theme of this work is toleverage the social net-

work among users in designing secure and incentive-compatible cooperative systems.

In particular, we develop a distributed admission control protocol, called Gatekeeper,

that leverages social network to admit most honest user identities and only few Sybil

identities into the systems. Gatekeeper’s defense is optimal for the case ofO(1) attack

edges and admits onlyO(1) Sybil identities (with high probability). In the face ofO(k)

attack edges (for anyk ∈ O(n/ logn)), Gatekeeper admitsO(log k) Sybils per attack

edge. Gatekeeper can be used as a robust identity managementfor both centralized and

decentralized cooperative systems. In the context of content voting, we provide a vote

aggregation system, called SumUp, that leverages unique properties of content voting

systems to provide significantly better Sybil defense compared with applying the gen-

eral Gatekeeper admission control. SumUp can limit the number of bogus votes cast by

adversaries to no more than the number of attack edges (with high probability), which

117



is an order of magnitude better than applying general admission control protocols to the

content voting context. Using user feedback on votes, SumUpfurther restricts the voting

power of adversaries who continuously misbehave to below the number of their attack

edges. We applied SumUp on the voting trace of Digg and have found strong evidence

of attack on many articles marked “popular” by Digg. The defense of both SumUp and

Gatekeeper are currently the state-of-the-art in their respective problems as reported in

a recent survey [82]. Finally, we provide a robust reputation system, called Credo, that

is resilient to both Sybil and collusion attacks, and can be used to incentivize bandwidth

contribution in peer-to-peer content distribution networks.

6.1 Future work

We believe that the work in this thesis is only an early contribution in the research

area of security and privacy for cooperative systems. The importance of cooperative

systems will continue to grow in the future. There are increasingly more attractive

domains for adversaries to exploit. We expect to push the limit of existing designs and

to contribute new techniques in this area. Below are potential future research projects.

Combating information censorship: Recent events during the so-called ”Arab

Spring” have shown the power of the Internet when it comes to organizing large groups

of people for protests. Such events have also shown how willing repressive govern-

ments are to censor the Internet or to disconnect their populace from the Internet en-

tirely such as the incidents in Egypt and Libya in early 2011.We believe that during

these government-imposed communication blackout periods, people should still be able

to exchange information and organize among themselves. Ourgoal is to design and

build a networked system to help the citizens in such countries to disseminate informa-
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tion during such blackouts in the presence of an adversarialgovernment.

One promising solution is that the citizens in these countries form a cooperative

system in which citizens use their mobile devices to exchange messages with nearby de-

vices through WiFi during communication blackout. This opportunistic communication

is promising since it is hard for the adversarial governmentto block it. However, the

adversarial government can still create Sybil identities and use them to flood the sys-

tem with bogus (junk) messages, or confuse the citizens by generating dishonest votes

on authentic messages. The defense provided by SumUp can potentially prevent this

threat. However, SumUp requires each citizen to know the entire social graph in order

to filter out bogus messages. This raises privacy concerns since the government can per-

form deanonymization to ascertain the identity of the protesters, and thus to persecute

them. We are designing a enhanced version of SumUp so that it does not require the

knowledge of the entire social graph, thereby addressing this privacy concern.

Reputation-based routing: Secure routing protocols that do not rely on a public-

key infrastructure are desirable because of the relative ease of deployment. For example,

deploying a PKI for inter-domain routing over the Internet is a serious challenge. In the

BGP setting, we can view the network of autonomous systems (AS) as a cooperative

system in which the ASes are sharing the view of the network through exchanging rout-

ing tables. The relationships among ASes can also be viewed as a trust graph where the

adversary has only a few links with other ASes. However, the adversary can generate

and propagate a large amount of bogus routing information inorder to hijack traffic.

Our goal is to minimize the number of incorrectly computed routes by honest ASes

due to bogus routing information. A promising solution thatwe are investigating right

now is to embed a decentralized reputation mechanism into existing routing protocols

such as path-vector and link state protocols to reduce the risk of choosing routes via the
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adversary.
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Appendix A

Proof for Theorem 2.1

Theorem A.1. Suppose the graphG is a fixed degree sequence random graph con-

structed using the pairing method. For any ticket sourceu, the expected number of

tickets thatu disseminates to reachn/2 nodes isE[A0] = Θ(n).

Instead of directly proving this theorem, we will prove thatwhen a ticket source

disseminaten tickets, the expected number of reachable nodes is at leastα
2·d2·(1+α)

n.

This mean a ticket source needs to distributeΘ(n) tickets to reachΘ(n) nodes.

Proof. Consider a ticket sourceu that disseminatesA0 = n tickets. We compute how

many nodes are reachable by bounding the number of tickets that are dropped at each

level. LetLi be the number of nodes at leveli from u andSi = L0 + L1 + ...+ Li. Let

qi be the fraction of dead-end nodes at level i. A dead-end node is a node that does not

have a neighbor at a distance further away from the ticket source, i.e. after consuming

one ticket, a dead-end nodes will drop all the remaining tickets. Note that bothLi and

qi are random variables. LetCi denote a configuration of all the nodes and edges from

level 0 to i. Similarly, C
′

i+1 is the configuration of all the nodes end edges at levels

greater than or equal toi + 1. Now, consider the case where we fix the configuration
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Ci = c andC ′
i+1 = c′ and only consider different variations in the edge configuration

between leveli and i + 1. In this case,Ai, Si, qi+1, Li+1 are fixed. LetDi+1 be the

number of tickets that are dropped at leveli + 1. We want to boundDi+1. Tickets only

get dropped by dead-end nodes. Letx denote the number of edges from leveli to dead-

end nodes at leveli+ 1 andy denote the number of edges from leveli to non-dead-end

nodes at leveli+ 1. Among thex + y edges from leveli, the dead-end nodes at leveli

can pick randomly anyx edges to connect in a random graph. Therefore, the expected

number of tickets go to the dead-end nodes isAi
x

x+y
. We know thatx ≤ d · qi+1Li+1

andy ≥ (1− qi+1)Li+1. Therefore,

E[Di+1|Ci = c|C ′
i+1 = c′] ≤ Ai

d · qi+1

1 + (d− 1)qi+1

E[Di+1|Ci = c|C ′
i+1 = c′] ≤ Ai(d · qi+1)

By varying the configurationC ′
i+1, we have:

E[Di+1|Ci = c] ≤ Ai · d · E[qi+1|Ci = c] (A.1)

Next we boundE[qi+1|Ci = c]. For a fixed configurationCi = c, we need to

construct a fixed degree random graph forn − Si−1 nodes for levels greater than or

equal toi. Given a random nodev in the set ofn − Si nodes that have distance farther

thani; d(v) is the degree of the nodev. Let p(v) denote the probability of one of the

edges ofv pointing to nodes at leveli. We havep(v) < Lid
n−Si−1

< d·Si

n
. Now we

calculate the conditional probability Pr(all edges of v point to nodes at level i)

Pr(at least one edge of v points to node at level i)
.

This conditional probability can be written as: p(v)d(v)

1−(1−p(v))d(v)
≤ p(v). Hence, we have
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E[qi+1|Ci = c] ≤ dSi

n
.

So, from Equation A.1, we get:

E[Di+1|Ci = c] ≤ Ai · d2
Si

n

E[Di+1|Ci = c] ≤ A0 · d2
Si

n

E[Di+1] ≤ A0 · d2
E[Si]

n

This formula states that the expected number of tickets exponentially decreases when

the distance to the ticket source gets smaller. Letδ denote the level whereE[Sδ] =

α
2·d2·(1+α)

n. The expected number of tickets that are dropped or consumedafter reaching

the levelδ is at most:

< A0
d2

n
(E[S0] + · · ·E[Sδ]) + E[Sδ]

< A0
d2

n

α + 1

α
E[Sδ] + E[Sδ]

< n

Hence, disseminatingn tickets is enough to reach α
2·d2·(1+α)

n in expectation. Based on

this bound, we can change Gatekeeper so that each ticket source scale the number of

tickets by a constant factor to reachn/2 nodes. Hence, in expectation, we can show that

a random source needs to to distribute aΘ(n) tickets to reachn/2 nodes.
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social networks.Physica A Statistical Mechanics and its Applications 371(2006), 851–860.

[69] TORRENTFREAK. Bittorrent still dominates global internet traffic, 2010.

http://torrentfreak.com/bittorrent-still-dominates-global-internet-traffic-101026/.

[70] TRAN, N., CHIANG , F., AND L I , J. Efficient cooperative backup with decentralized trust manage-

ment.To appear in ACM Transaction on Storage (TOS)(2012).

[71] TRAN, N., LI , J., AND SUBRAMANIAN , L. Netecon ’10: Proceedings of the 5th international

workshop on economics of networked systems. ACM.

129



[72] TRAN, N., LI , J., SUBRAMANIAN , L., AND CHOW, S. S. Optimal sybil-resilient node admission

control. InThe 30th IEEE International Conference on Computer Communications (INFOCOM

2011)(Shanghai, P.R. China, 4 2011).

[73] TRAN, N., MIN , B., LI , J., AND SUBRAMANIAN , L. Sybil-resilient online content voting. In

NSDI’09: Proceedings of the 6th USENIX Symposium on Networked Systems Design and Imple-

mentation(2009), USENIX Association, pp. 15–28.

[74] V ISHNUMURTHY, V., CHANDRAKUMAR , S., AND SIRER, E. Karma: A secure economic frame-

work for peer-to-peer resource sharing. InP2P-ECON(2003).

[75] V ISWANATH , B., POST, A., GUMMADI , K., AND M ISLOVE, A. An analysis of social network-

based sybil defenses. InSIGCOMM(2010).

[76] WALSH, K., AND SIRER, E. G. Experience with an object reputation system for peer-to-peer file-

sharing. InNSDI’06: Proceedings of the 3rd conference on 3rd Symposiumon Networked Systems

Design & Implementation(2006), USENIX Association, pp. 1–1.

[77] WILSON, C., BOE, B., SALA , A., PUTTASWAMY, K., AND ZHAO, B. User interactions in social

networks and their implications. InProceedings of ACM EuroSys(2009).

[78] WOLCHOK, S., HOFMANN, O. S., HENINGER, N., FELTEN, E. W., HALDERMAN , J. A., ROSS-

BACH, C. J., WATERS, B., AND WITCHEL, E. Defeating vanish with lowcost sybil attacks against

large dhts. InIn Proc. of NDSS(2010).

[79] YANG, B., AND GARCIA-MOLINA , H. Ppay: micropayments for peer-to-peer systems. InCCS

’03: Proceedings of the 10th ACM conference on Computer and communications security(New

York, NY, USA, 2003), ACM, pp. 300–310.

[80] YANG, M., CHEN, H., ZHAO, B. Y., DAI , Y., AND ZHANG, Z. Deployment of a large-scale

peer-to-peer social network. InUSENIX WORLDS(2004).

[81] YANG, Z., WILSON, C., WANG, X., GAO, T., ZHAO, B. Y., AND DAI , Y. Uncovering social

network sybils in the wild. InProceedings of the 2011 ACM SIGCOMM conference on Internet

measurement conference(New York, NY, USA, 2011), IMC ’11, ACM, pp. 259–268.

[82] YU, H. Sybil defenses via social networks: a tutorial and survey. SIGACT News 42(October 2011),

80–101.

130



[83] YU, H., GIBBONS, P., KAMINSKY, M., AND X IAO , F. SybilLimit: A near-optimal social network

defense against Sybil attacks. InIEEE Symposium on Security and Privacy(2008), IEEE Comoputer

Society, pp. 3–17.

[84] YU, H., KAMINSKY, M., GIBBONS, P. B., AND FLAXMAN , A. Sybilguard: defending against

sybil attacks via social networks. InSIGCOMM ’06: Proceedings of the 2006 conference on Appli-

cations, technologies, architectures, and protocols for computer communications(New York, NY,

USA, 2006), ACM, pp. 267–278.

[85] YU, H., SHI , C., KAMINSKY, M., GIBBONS, P. B., AND X IAO , F. DSybil: Optimal Sybil-

resistance for recommendation systems. InIEEE Security and Privacy(2009).

[86] ZHANG, H., GOEL, A., GOVINDAN , R., AND MASON, K. Making eigenvector-based reputation

systems robust to collusions. InProc. of the Third Workshop on Algorithms and Models for the Web

Graph(2004).

[87] ZIEGLER, C.-N., AND LAUSEN, G. Propagation models for trust and distrust in social networks.

Information Systems Frontiers 7, 4-5 (2005), 337–358.

131


