
Geometric Modeling Using

High-order Derivatives

by

Elif Tosun

A dissertation submitted in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

Department of Computer Science

Courant Institute of Mathematical Sciences

New York University

September, 2008

Denis Zorin

c© Elif Tosun

All Rights Reserved, 2008

To my parents, Nilgün and Yılmaz Tosun

iii

Acknowledgments

It has been a strenuous journey surviving these years of graduate school and putting

this dissertation together. It would have been absolutely impossible to manage, if

not for the help and support of many people.

I am most grateful to my advisor Denis Zorin, for the invaluable support and

guidance he has given me. It was his sense of perfection and scientific ardor that

drove this research to the point it is at now. He has been an indispensable source

of advice not only in the technical sense but also in my professional development,

for which I am greatly indebted.

I am also thankful to my readers Ken Perlin and Olga Sorkine, for reading this

rather long dissertation and giving timely, constructive feedback. I am grateful

for their patience and understanding, especially in the last few weeks before my

defense. I would like to thank Chee Yap and Rob Fergus for being valuable mem-

bers of my defense committee and encouraging and supporting me along the way.

Eitan Grinspun and Demetri Terzopoulos helped me greatly in the starting phase

of my dissertation, for which I am also very grateful.

I am in great debt of my undergraduate advisor Ileana Streinu for her encour-

agement, support and guidance in every single step of the way. I am thankful for

all that she has done for me while I was her student and for her continuing support

and guidance after my graduation.

I would like to thank Marsha Berger, Sana‘ Odeh, Margaret Wright and all

members of WinC for being such avid supporters of women in computer science,

and for supporting me at various times when I needed it. I would also like to thank

Rosemary Amico and Anina Karmen and the rest of the administrative staff for

iv

being such valuable resources for all students.

I could not have survived even one year of graduate school without my friends,

old and new. My thanks go to Robb Bifano, Rebecca Davidson, Ayse Naz Erkan,

Aslı Ertekin, Yotam Gingold, Matthew Grimes, Raia Hadsell, Jeff Han, Meghan

Hartley, Koray Kavukçuoğlu, Başak Kocaman, Denis Kovacz, Harper Langston,

Audrey Lee, Alyssa Lees, Evgueni Parilov, Chris Poultney, Marc‘Aurelio Ranzato,

Jason Reisman, Ilya Rosenberg, Adrian Secord, Ben Wellington, Chris Wu, Lexing

Ying, and Anna Zaks. I cannot thank them enough for keeping me sane.

I am greatly indebted to Kush Sharma, for being with me and bearing with

me throughout this journey. His care and encouragement helped me get through

the toughest times. He has been a much appreciated source of diversion, when I

needed it the most.

Finally, I would like to thank my parents Nilgün and Yılmaz Tosun, and my

brother Umut Tosun, whose loving support and endless encouragement got me

through this endeavor. Despite the distance between us, I have felt them take each

and every step with me, by my side, which gave me the will and the power to go

on. Without them, this would not have been possible.

v

Abstract

Modeling of high quality surfaces is the core of geometric modeling. Such mod-

els are used in many computer-aided design and computer graphics applications.

Irregular behavior of higher-order differential parameters of the surface (e.g. cur-

vature variation) may lead to aesthetic or physical imperfections. In this work, we

consider methods for constructing surfaces with high degree of smoothness.

One direction is based on a manifold-based surface definition which ensures well-

defined high-order derivatives that can be explicitly computed at any point. We

extend previously proposed manifold-based construction to surfaces with piecewise-

smooth boundary. We show that growth of derivative magnitudes with order is

a general property of constructions with locally supported basis functions, derive

a lower-bound for derivative growth and numerically study flexibility of resulting

surfaces at arbitrary points.

An alternative direction to using high-order surfaces is to define an approxima-

tion to high-order quantities for meshes, with high-order surface implicit. These

approximations do not necessarily converge point-wise, but can nevertheless be suc-

cessfully used to solve surface optimization problems. Even though fourth-order

problems are commonly solved to obtain high-quality surfaces, in many cases, these

formulations may lead to reflection line and curvature discontinuities. We consider

two approaches to further increasing control over surface properties.

The first approach is to consider data-dependent functionals leading to fourth-

order problems but with explicit control over desired surface properties. Our fourth-

order functional is based on reflection line behavior. Reflection lines are commonly

used for surface interrogation and high-quality reflection line patterns are well-

vi

correlated with high-quality surface appearance. We demonstrate how these can

be discretized and optimized accurately and efficiently on general meshes.

A more direct approach is to consider a polyharmonic function on a mesh, such

as the fourth-order biharmonic or the sixth-order triharmonic. These equations can

be thought of as linearizations of curvature and curvature variation Euler-Lagrange

equations respectively. We present a novel discretization for both problems based

on the mixed finite element framework and a regularization technique for solving

the resulting, highly ill-conditioned systems. We show that this method, compared

to more ad-hoc discretizations, has higher degree of mesh independence and yields

surfaces of better quality.

vii

Table of Contents

Dedication iii

Acknowledgments iv

Abstract vi

List of Figures xii

List of Tables xix

Introduction 1

1 Background 6

1.1 Surface Interrogation . 7

1.1.1 Dual Representations . 8

1.1.2 On-Surface Representations 13

1.1.3 Summary of Interrogation Methods 20

1.2 Functionals and PDEs for Surface Design 20

1.2.1 Functional Formulation . 21

1.2.2 PDE Surfaces . 34

1.2.3 Surface Fairing and High-order Flows 36

1.3 Discretization and Numerical Methods 45

1.3.1 Design Settings . 45

1.3.2 Curvature Discretization . 54

1.3.3 Finite Elements . 66

1.3.4 Numerical Methods for Energy Minimization 73

viii

2 Manifold Based Smooth Surface Construction 77

2.1 Introduction . 78

2.2 Previous Work . 79

2.3 C∞ Manifold Surfaces from Closed Meshes 82

2.3.1 Charts and Transition Maps 83

2.3.2 Partition of Unity . 85

2.3.3 Defining Geometry . 86

2.3.4 Summary . 87

2.4 Surfaces with Boundaries . 87

2.5 C∞ Surfaces with Boundary . 89

2.5.1 Independent Boundary . 91

2.6 Cd-continuous Surfaces . 94

2.6.1 Cd Construction for Interior Charts 95

2.6.2 Cd Surfaces with Boundary 97

2.7 Optimality of Derivative Behavior 103

2.7.1 Minimizing W d
∞ Norm . 104

2.7.2 Minimizing W d
2 Norm . 113

2.8 Flexibility . 114

2.8.1 Mesh Generation . 116

2.8.2 Flexibility Results . 119

2.9 Results . 120

2.10 Conclusions . 121

3 Shape Optimization Using Reflection Lines 128

3.1 Introduction . 129

3.2 Previous Work . 132

ix

3.2.1 Surface Interrogation as a Design Tool 133

3.3 Reflection Functionals . 135

3.3.1 Reflection Line Function . 135

3.3.2 Coordinate Formulation . 137

3.3.3 Optimization Problems . 138

3.4 Discretization and Numerical Methods 141

3.4.1 Reduction to Parametric Case 141

3.4.2 Discretizing Gradients . 142

3.4.3 Discretizing Hessians . 143

3.4.4 Discretizing Normals . 149

3.4.5 Numerical Implementation 150

3.5 Reflection Line Manipulation Experiments 152

3.6 Conclusions . 156

4 Biharmonic and Triharmonic PDEs on Meshes 161

4.1 Introduction . 162

4.2 Previous Work . 163

4.3 Notation . 165

4.4 Boundary Conditions . 166

4.4.1 Formalization of Boundary Conditions 167

4.4.2 Discretization . 169

4.4.3 Conversion Between Boundary Conditions 170

4.5 Biharmonic Equation . 174

4.5.1 FEM Formulation . 174

4.5.2 Discussion . 178

4.6 Triharmonic Equation . 180

x

4.6.1 FEM Formulation . 181

4.6.2 Discussion . 188

4.7 Regularization . 191

4.8 Results . 200

4.9 Future Directions . 209

4.10 Conclusions . 211

Conclusion 212

Bibliography 215

xi

List of Figures

1.1 The polarity analysis of a curve T [77]. 10

1.2 The orthotomic analysis of a bi-cubic patch [77]. 11

1.3 Focal analysis of four bi-cubic patches with curvature discontinuity

at patch boundaries [78]. 12

1.4 Color coding of Gaussian curvature on a surface [78]. 14

1.5 Circle projections of different normals and a textured torus [160]. . 15

1.6 Isophote and the refined isophote method on a G1 surface [77]. . . . 16

1.7 Reflection line method [77]. 17

1.8 Highlight line method [78]. 18

2.1 Components of the manifold-based surface construction. 84

2.2 Chart map construction. 85

2.3 Defining geometry functions. 86

2.4 The charts for a surface with piecewise smooth boundary. 88

2.5 Left: valance 4 smooth boundary chart. Center: valance 2 convex

corner chart. Right: valance 6 concave corner chart. 88

2.6 12k + 4 sample points for a smooth boundary chart are shown in

red (interior points) and green (boundary points). Blue points are

not included. 90

2.7 A valance 12 vertex chart with a lifted point on the right represented

by polynomial fits of degree 14, 15, and 16 respectively. 90

xii

2.8 Limitation of concave corners with independent boundary. (a) C∞

surface, (b) C5 surface, (c) C3 surface, (d) Catmull-Clark subdivi-

sion surface. 93

2.9 Left: A mesh with a valence 12 vertex fit using polynomials. Right:

Same mesh fit using bi-cubic splines. 94

2.10 Left: A valance 5 boundary vertex chart represented by a bi-cubic

spline surface using 12K+4 data points. Right: Same chart rep-

resented by a bi-cubic spline surface using an extra ring of data

points. 96

2.11 Knot numbering for smooth boundary, convex and concave charts

for g = 3. The last image depicts the case of concave chart for g = 2. 97

2.12 Comparison of different partition of unity functions. (a) Function

plots (b)-(f): First through fifth derivative plots. (g) Fifth derivative

with the plot for the C∞ function omitted for clarity. 115

2.13 Left: Points (xc, yc) of the two ring. Middle: Points connected by

straight lines. Right: After subdivision with faces valid for flexibility

check shaded. 117

2.14 Construction of the second type of base star for valence set {7,5,6,5}. 118

2.15 Left: Determinant distribution on a face f with one valence six

vertex at (0,0). Right: Plot of minimum determinant on a face as a

function of valance. 118

2.16 Left: Comparison of corner behavior in the case of interior-dependent

(left) and independent (right) boundaries. Right: A C3 surface with

corners (above) and a C∞ surface with smooth boundaries (below). 122

xiii

2.17 Mesh dependency of our method. Surfaces on the left are the man-

ifold surfaces as opposed to Catmull-Clark surfaces on the right. . . 123

2.18 Distribution of derivative magnitudes for a C∞ and a C5 closed

surface. 123

2.19 Distribution of derivative magnitudes for a C∞ and a C5 surface

with boundary. 124

2.20 Distribution of derivative magnitudes for a C∞ and a C5 surface

with a convex corner. 124

2.21 Distribution of derivative magnitudes for a C∞ and a C5 surface

with a concave corner. 125

2.22 Top to bottom: Catmull-Clark, C4, C∞ surfaces. Left to Right:

Behavior near valance 3, valance 5, valance 7 boundary vertices. . 125

2.23 C∞ (above) vs C3 (below) surfaces. 126

2.24 A close-up of a concave and convex corner vertices of valance 4. Left

to Right: Catmull-Clark, C2, C∞. 126

2.25 Surface behavior near a twist at the boundary vertex of valance 4.

Left to Right: Catmull-Clark, C2, C∞. Note the sharpness of light

on the Catmull-Clark surface near the twist and its absence on our

surfaces. 127

2.26 Same twist on the boundary as seen from above. Left to Right :

Catmull-Clark, C2, C∞. 127

3.1 An example of reflection line optimization. 130

3.2 Relation of surface interrogation to reflection line optimization. . . 131

3.3 Vectors used in the definition of the reflection line function θ. . . . 136

3.4 Image-plane parameterization. Red point depicts a silhouette point. 138

xiv

3.5 Dirichlet boundary conditions in function based functional versus

Neumann boundary conditions in gradient based functional. Blue

points show the fixed boundary vertices. 140

3.6 Vectors used in the gradient and Hessian definitions; all points are in

the image plane. The vectors tij are perpendicular to corresponding

triangle sides and have the same length as these sides. 142

3.7 Mesh types used in convergence experiments. 145

3.8 Convergence experiments: A spherical surface patch was recovered

from an analytically computed reflection function gradient for differ-

ent mesh connectivities and resolutions. Three discretization types

are shown: triangle-averaged, quadratic fit and hybrid. Quadratic

interpolation cannot be applied to meshes with vertices of valence 3;

optimization also fails on higher resolution irregular meshes because

it contains stencils with all vertices close to a conic. The error is

measured relative to the size of the object along the view direction. 146

3.9 Example layout with six points lying on a conic. 147

3.10 Visual comparison of triangle averaged, quadratic fit and hybrid

discretizations. Leftmost image shows the initial view with the pre-

scribed gradient direction. 149

3.11 Normal estimation procedure based on quadratic fit. 150

3.12 Comparison of the vertex normal quality when the surface is ob-

tained by sampling points from a cylinder. While face averages do

not perform well for this mesh, our quadratic fit procedure yields

results visually indistinguishable from using analytic normals. . . . 151

xv

3.13 Speed-up from approximate Hessian computation, dependence on

the mesh size. Two model problems: creation and elimination of

a bump on a cylinder. Times are given for a Pentium D 3GHz

processor. 153

3.14 Warping stages: initial reflection lines, warped reflection function θ,

target ∇θ∗ computed per triangle, reflection lines on the optimized

surface. 154

3.15 Changing reflection line density. A fixed reflection line direction

is specified with density decreased at the top and increased at the

bottom. 157

3.16 Reflection line untwisting. The reflection function gradient is ro-

tated to get desired appearance. 158

3.17 Reflection line warping on a car hood. An intermediate warp is

shown in the middle. Note that the change in the shape is barely

perceptible but the change in the reflection is substantial. 159

3.18 Prescribing fixed reflection line direction on a car, compared to Lapla-

cian smoothing. Note that Laplacian smoothing retains reflection

line wiggles. 159

3.19 Reflection line smoothing on a faucet; the initial reflection line func-

tion is smoothed and used as the target reflection line function. . . 160

3.20 Reconstructing a surface with predefined reflection line pattern based

on an blurred image. 160

4.1 Notation for domain decomposition used in the rest of the chapter. 166

4.2 Difference in vertex layout for three layers of boundary vertices in

the case of regular versus an irregular mesh. 172

xvi

4.3 Six vertices used in quadratic polynomial fit, with dark edges show-

ing the boundary. 172

4.4 Comparison by error plots of different solutions to the biharmonic

problem. 179

4.5 Mesh types used in tests, displayed in increasing complexity: regu-

lar, irregular with minimum angle 30, with minimum angle 10, and

with minimum angle 1. 180

4.6 Corner singularities on a regular mesh. The red circles display the

vertices where singularity occurs and the darkened edges are those

that cause the singularity. 190

4.7 Plots for some variations of our method, using function-based bound-

ary conditions. 192

4.8 Effect of regularization on the condition number of the mixed FEM

system for irregular meshes. 193

4.9 Some resulting L-curves from our experiments. 195

4.10 Error plots with (below) and without (above) regularization. 197

4.11 Experiments in regularization for flattened systems. Left to right:

degree two polynomial, degree six polynomial and a trigonometric

function. 199

4.12 Convergence plots for the mixed method.(a),(e): quadratic; (b),(f):

sixth-order; (c)(g): high frequency trigonometric function; (d),(h):

degree 6 spline bump. 202

4.13 Error plots of four different functions from degree six polynomial

space. Note that functions from same polynomial space result in

approximately same convergence rates. 203

xvii

4.14 Results of curve blending tests on various meshes using our mixed

FEM method and the one in [18]. 204

4.15 Results of some recovery tests on various meshes using our mixed

FEM method ((b),(d),(f)) and the one in [18]((a),(c),(e)). L2 error

is shown below each case. 205

4.16 Differences between the solutions to the biharmonic and triharmonic

equations when prescribed boundary conditions from different sec-

tions of a torus. 206

4.17 Variety of shapes achieved through different prescribed Neumann

boundary conditions for triharmonic versus biharmonic. 206

4.18 Variety of shapes achieved through different prescribed second-order

boundary conditions. 207

4.19 Example of hole-filling, where the hole results from removing the

half sphere. Above: biharmonic, below: triharmonic. 208

4.20 Curvature maps and reflection lines on blend surfaces between two

curves as described in images. The letters B and T refer to bihar-

monic and triharmonic solutions respectively. 210

xviii

List of Tables

1.1 Commonly used functionals and their approximations [61]. 32

1.2 Euler-Lagrange form of some well-known functionals [61]. 35

1.3 Error analysis results from [119]. 58

4.1 Rate of convergence for the mixed method for various functions and

mesh connectivities, as computed from plots in Figure 4.12. 201

xix

xx

Introduction

High-order PDEs (fourth- and sixth-order in particular) arise in many geometric

modeling operations requiring surface optimization: blending, hole-filling, curve

network interpolation and interactive surface editing.

Blending algorithms construct a smooth surface connecting given surfaces with

prescribed boundary conditions such that the connecting surface blends smoothly

with existing ones. Hole-filling is similar, where given a hole as described by its

boundary, the problem can be formulated as constructing a surface that satisfies

the boundary conditions (See for example, [11,35,189,190]). Curve network inter-

polation computes a surface that interpolates a curve network defining the surface

at a higher level, while satisfying the boundary conditions on the curves. Some

solutions to this problem can be found in [29, 124, 131, 154]. Interactive surface

editing provides tools to control a model by applying or modifying constraints

such as those tools constructed in [18, 108, 157]. In all above cases the order of

the PDE determines the number of derivatives specified on the boundary. This

in turn affects the quality of the joints and the resulting surfaces. For example,

a second-order PDE would lead to G0 boundary conditions, whereas a sixth-order

PDE would result in G2 boundary conditions. This is the main motivation for

using high-order PDEs for high quality surfaces. G1 and G2 boundary conditions

are especially important in design of surfaces of cars, ships and aircraft, since the

aesthetic and physical properties play an important role in these applications.

In many cases, these PDEs are derived from functionals involving second- and

third-order quantities (for example, curvature and curvature variation) in a vari-

ational setting. However, in many other cases geometric PDEs not derived from

1

functional optimization can yield equally good results but with less complex for-

mulation. [18, 157] are two such examples. A more complete picture can be found

in Section 1.2.

Several formulations may be used in the discretization of high-order function-

als. In one direction, sufficiently high-order (C2 or C3) basis functions are used to

represent the surface. In this case, all higher-order derivatives can be computed

point-wise. An advantage of this is the need for fewer discretization points to de-

scribe a smooth surface, similar to the limited number of control points needed to

specify a patch. This way, one can avoid the need for highly refined meshes for

the smooth surface approximation. Another advantage is the straightforward com-

putation of the derivatives of functionals, as there exists a closed form describing

the surface. Furthermore, convergence guarantees are easier to provide and faster

convergence rates can be achieved.

We discuss a general manifold-based construction of this type of basis functions

in Chapter 2 where the few discretization points are taken from the coarse input

mesh. In general, however, these type of representations are relatively expensive

to evaluate and difficult to construct for arbitrary topology and from piecewise-

linear mesh data. Furthermore, locally supported basis functions necessarily lead

to rapid growth of derivative magnitude with order. We derive the estimates for

this derivative growth in Section 2.7.

The second, closely related technique is to use conforming finite elements. In

this case, the quantities of interest are not defined point-wise everywhere but al-

most everywhere (for example, C1 finite elements are sufficient for functionals

involving curvatures, and related fourth-order PDEs). In all commonly used con-

structions of this type, additional degrees of freedom are introduced, typically

2

related to derivatives. C1 continuity requirement leads to the need for higher-

order basis functions (polynomials of order 5) or splitting elements into smaller

pieces.

The third alternative is to use non-conforming elements. In this case, no deriva-

tive (or even C0) continuity is enforced on element boundaries, which allows one

to use simpler basis functions, although higher than linear-order is required. In

this case additional conditions dependent on the PDE being solved (”patch test”

or inf-sup conditions) may require verification for the basis to work correctly. Sec-

tion 1.3.3 provides an overview of finite element methods.

One can also use discrete-geometric constructions (closely related to linear finite

elements) and local polynomial fits to obtain discretizations of high-order problems

without introducing additional degrees of freedom. This type of constructions lacks

theoretical guarantees but experimentally is observed to converge for certain types

of problems. We develop this type of method for a fourth-order reflection-based

functional in Chapter 3.

Finally, one can split the problem into a sequence of second-order problems

by introducing additional variables and therefore can use linear conforming finite

elements for discretization. This type of formulation is widely used for biharmonic

and other fourth-order problems and it is referred to as mixed methods in finite

elements literature. It is particularly appealing for mesh-based modeling, as it

is relatively easy to implement even for complex PDEs. Moreover, it uses small-

support piecewise linear basis functions only, which are particularly natural in an

arbitrary mesh setting. In some approximate versions of this technique, additional

variables can be eliminated to yield a system with the minimal number of degrees

of freedom, closely related to the discrete-geometric approximations. On the down-

3

side, especially in the case of sixth-order system, this formulation leads to badly

conditioned linear systems which require additional effort to solve. We consider

this type of a discretization in Chapter 4 and compare it to discrete-geometric

constructions.

Organization and Contributions

This dissertation is organized as follows: Chapter 1 provides a detailed background

on several aspects of high quality free-form surface design, such as surface quality

assessment methods (Section 1.1) and variational surface design (Section 1.2). This

chapter provides an detailed overview of concepts in each section, as opposed to

the directly relevant previous work covered briefly in the chapters following as

described below. We refer the reader to the beginning of Chapter 1 for putting the

topics covered in context.

The following three chapters contain the core contributions of this work. In

each chapter there exists an introduction specific to the problem and a section on

previous work that reviews the most related previous work in the context of the

problem solved. Moreover, each chapter independently presents the results.

Chapter 2 covers the manifold-based construction of surfaces described by suffi-

ciently high-order basis functions. We extend previously proposed manifold-based

construction to surfaces with piecewise-smooth boundary and explore trade-offs

in some elements of the construction. We show that growth of derivative magni-

tudes with order is a general property of constructions with locally supported basis

functions and derive a lower bound for derivative growth and numerically study

flexibility of resulting surfaces at arbitrary points.

In Chapter 3, we present a discrete-geometric construction of a fourth-order

functional based on reflection line behavior. Reflection lines are commonly used

4

for surface interrogation and high quality reflection line patterns are well-correlated

with high quality surface appearance. We demonstrate how these reflection line

based functionals can be discretized and optimized accurately and efficiently on

general meshes.

The mixed finite element formulation for the sixth-order triharmonic PDE is

presented in Chapter 4. This PDE can be thought of as the linearized Euler-

Lagrange equation for minimizing curvature variation. We present the discretiza-

tion based on mixed finite elements and a regularization technique for solving

resulting highly ill-conditioned systems of equations. We show that this technique,

compared to more ad-hoc discretizations, has higher degree of mesh independence

and yields surfaces of better quality. Finally we conclude with a summary of the

problem we attempted to solve, our results and directions for future work.

5

1
Background

High-quality free-form surface design requires formalizing the notion of surface

quality, choosing equations for surface evolution resulting in the improvement of

numerical quality criteria, and efficient techniques for solving these equations. In

this section we review related work on each of these aspects of free-form surface

design.

Surface quality is typically evaluated using surface interrogation methods (Sec-

tion 1.1). Such methods visualize and quantitatively characterize the quality of

different types of characteristic lines on surfaces: isophotes, principal curvature

lines and reflection lines.

These methods usually are not directly applied to construct or improve surfaces.

Instead, a separate fairness functional or a flow equation is used to obtain an

improved surface. Then interrogation methods are used to evaluate its quality,

and, if necessary, adjust the way the surface is obtained. We review a variety of

functionals in Section 1.2.1 and flow equations in Section 1.2.3 with the focus on

high-order functionals and equations which are most closely related to our work.

A less commonly used technique (due to its relative complexity) is to construct

an optimization functional from an interrogation method directly. We develop one

such formulation in Chapter 3 based on reflection lines, one of the most commonly

used surface interrogation techniques among those discussed in Section 1.1.

A variety of discretizations are used to solve for high-quality surfaces numer-

ically. We discuss some of these in the variational setting in Section 1.2 along

with corresponding functionals. High-order surface representations of the type we

develop in Chapter 2 allow for most straightforward discretization of high-order

6

PDEs and functionals, as all necessary derivatives can be computed explicitly

point-wise. However, in many applications it is essential to be able to deal with

high-resolution meshes directly, both in the context of interrogation and surface

construction and optimization. Related work on different techniques for discretiz-

ing high-order quantities on meshes is discussed in Section 1.3.2, with finite element

techniques for related PDEs surveyed separately in Section 1.3.3. The techniques

for biharmonic and triharmonic equations for surfaces we consider in Chapter 4

build on finite element methods and related discrete geometry techniques we dis-

cuss in these sections.

1.1 Surface Interrogation

Free-form curves and surfaces are used in many fields including computer graphics,

scientific computing, medical imaging and industrial design. In some applications

quality of the curve or surface is of extreme importance. Design of automobiles,

ship hulls and aeronautical vehicles are such examples. An imperfection in curva-

ture properties can cause dents on a car body, problems in flow behavior around

a plane, or issues may arise with the NC-milling machine.

To avoid defects in the production of smooth objects, surfaces generated for

these models should be analyzed for anomalies before being sent for manufacturing.

The process of analyzing a surface for imperfections is called surface interrogation.

In this section we review a number of surface interrogation methods used today.

There have been many survey papers written regarding these methods in early

nineteen-nineties; see [51, 69, 74, 77–79, 86, 123]. We explain the methods given in

these surveys and also report on the state of the art.

We break down the many methods of surface interrogation into two main classes

7

based on the representation of the properties. We call dual representations (see

section 1.1.1) those that describe the surface (curve) quality in terms of another

surface (curve). The other class includes those methods where the properties are

displayed on the given surface which we call on-surface representations (see section

1.1.2). Other than these two classes there are other application-specific surface

interrogation tools which are outside the scope of this work. For example, in car

design there are numerous papers describing physical and computer systems that

help in surface interrogation mostly on the already manufactured parts before

varnishing. See [112] and [97] for some more recent directions. Some surface

interrogation methods are modified versions of curve interrogation methods. In

these cases we mention the basic case on the curve first and then explain the

extension to surfaces.

1.1.1 Dual Representations

Plots

The aesthetic quality of a curve depends mostly on its curvature properties. One

natural way of displaying the behavior of the curvature of a curve is a plot of the

curvature. Such plots have been used for the definition of fair curves as in [48]: “A

curve is fair if its curvature plot is continuous and consist of only a few monotone

pieces”.

The curvature can be plotted against the parameter of the curve or the arc

length [48, 123]. As depicted in [123], the accuracy of curvature versus parameter

plot depends on the uniformity of the parameterization and may result in false

positives. The curvature versus arc length plot shows better results although typ-

ically it is hard to find a closed form expression for an arc-length parameterized

curve. In [123], Moreton goes on to explore other plots such as radius of curvature

8

versus arc length, derivative magnitudes versus curve parameter and so on. Also

in [48] plots of logarithm of curvature are mentioned that highlight the flat areas.

Curvature plots are useful in detecting flat spots (by near-zero curvature values)

and points of inflection (by crossing the zero line). In [50] the authors use curva-

ture plots to detect and fix problems related to the fairness of curves. Despite the

many uses of curvature plots in evaluation of curves (and surfaces) one should pay

attention to the scaling properties of the plot. As in [153], non-uniform scaling

of the plot may also cause sharp corners to appear in these graphs although the

surface is fair. One should follow the guidelines stated in [153] to correctly read

the plots.

To extend this to surfaces, one has to find curves on the surface for plotting.

This is mentioned briefly in [77] and it is noted that this method could be very

efficient if the critical directions of a surface are known a priori so that the section

curvature can be taken in those directions.

Polarity

Polarity is a linear transformation that maps a point onto a line or vice versa.

Given a planar curve C(t) = (x(t), y(t)), for any ti the point on the curve C(ti)

can be mapped to a straight line by the polarity at the unit circle. For the whole

range of t, the envelope of these lines forms a curve which is called the polar curve.

In parametric form, the polar curve P (t) is given by the following, where ẋ stands

for the first derivative:

P (t) = (
−ẏ

xẏ − ẋy
,

ẋ

xẏ − ẋy
)

As given in [77,78,90]: “If the planar curve C(t) has an inflection point at a point

ti then the polar curve P (t) has a singularity at t = ti.”

9

Figure 1.1: The polarity analysis of a curve T [77].

For a surface S(u, v) = (x(u, x), y(u, v), z(u, v)), any point (ui, vi) can be mapped

to a plane by the polarity at the unit sphere. For all points on the surface, the

envelope of these planes forms a surface, called the polar surface. In parametric

form, the polar surface P (u, v) is given by

P (u, v) =
(Sv × Su)

det(S, Su, Sv)
.

As stated in [77, 78, 90] : “If the surface S(u, v) has a root or change of sign in

the Gaussian curvature at (ui, vi) then the polar surface has a singularity there”.

Note that the singularities may appear in the form of cusps, edges or dovetails [69].

Polarity for surface interrogation was introduced by Hoschek in [90]. As well as de-

riving these results he also describes a way of correcting such singularities detected

by polarity by means of moving the control points of the curves (and surfaces).

Orthotomics

Orthotomics were introduced by Hoschek in [91] and are mostly used as a convexity

test as described in [69,74,77,78].

Given a planar curve C(t), pick a point P such that P is not on C(t) or any

10

tangent of it. For all points of C(t), the curve formed by reflecting P over the

tangent at ti is called a 2-orthotomic. In the general case, the k-orthotomic of a

curve is given by

o(t) = P + k((C(t)− P) · n(t)) · n(t)

where n is the normal at t. Given this, o(t) has a singularity at point ti if and only

if C(t) has an inflection point at ti.

Figure 1.2: The orthotomic analysis of a bi-cubic patch [77].

Similarly, for a surface S(u, v) pick a point P such that P is not on the surface

or any tangent plane of it. Then the k-orthotomic of the surface with respect to

P is given by:

o(u, v) = P + k((S(u, v)− P) · n(u, v)) · n(u, v).

Similarly, o(u, v) has a singularity at point (ui, vi) if and only if the Gaussian

curvature vanishes or changes sign at this point.

An increase in the factor k only increases the effect of the orthotomic mapping

such that the singularities appear more clearly [91].

11

Focal Surfaces/Hedgehog Diagrams

A hedgehog diagram for a planar curve shows the normals of the curve propor-

tional to the curvature value at some points on the curve. Although very useful for

planar curves hedgehog diagrams for surfaces and even space curves are difficult

to interpret [78].

Focal curves are generalizations of hedgehog diagrams. Given a curve C(t), the

generalized focal curve is given by

F (t) = C(t) + a · f(κ(t)) · n(t)

where κ(t) is the curvature function, n(t) is the normal and a is a scalar to aid

in clearer visualization [73]. (Note that if a = 1 and f is the identity this is

equivalent to the hedgehog diagram where instead of normals, only the loci of the

points are drawn). These curves can visualize properties of the original curve such

as inflection points, discontinuities, and curvature behavior [71].

Figure 1.3: Focal analysis of four bi-cubic patches with curvature discontinuity at patch bound-

aries [78].

Focal surfaces were first introduced by Hagen and Hahmann [71]. Given a

surface S(u, v), the generalized focal surface is given by

F (u, v) = S(u, v) + a · f(κ1, κ2) · N(u, v).

For different applications, different functions f can be chosen. For example, for

12

convexity test one can use f = κ1κ2, for flat point detection f = κ2
1+κ2

2, and so on.

For examples of different functions and uses see [71] and [78]. For the continuity

test one has to note that if a surface is Cr its generalized focal surface will be

Cr−2, therefore the order of differentiation goes down by 2 [71]. Note also that the

sphere is the only surface for which the focal surface may degenerate into a point

and the Dupin cyclides are the only surfaces whose focal surfaces may degenerate

into curves [74]. For an application of focal surfaces in automobile body design

see [31].

In [180] focal surfaces are used in detection of curvature features on polygo-

nal meshes, as well as in constructing discrete approximations to curvature based

quantities. Similarly in [9] they are used in the detection of skeleton bifurcations

in evolving curves and surfaces.

Discrete focal surfaces, also known as focal meshes, were recently explored. As

well as the description to algorithmically construct such surfaces, a discrete shape

operator based on them is provided in [198]. It was extended to be used as a

geometric modeling tool for smooth surfaces in [199].

1.1.2 On-Surface Representations

Color and Texture Maps

Color maps are used to visualize functions over a surface. For fairness purposes

the function visualized is a function of curvature, which is usually the Gaussian

curvature, although the mean and the principal curvatures may also be used [51].

As in [69], sometimes it is best to inspect all such function plots to get a better idea

of the surface. The usefulness of the map depends highly on the choice of the color

scale, for if the range is too large it may not be sensitive enough to small changes

in the function and if the range is too small it may be hard to interpret. In [161] a

13

method for determining a suitable scale for a given surface is described. If one is

interested in convexity test, a 3-color scale should be used [78]. This method was

introduced in [43] by Dill.

Figure 1.4: Color coding of Gaussian curvature on a surface [78].

In [105] another way of using the color map is introduced. Instead of using the

regular Gaussian curvature or others mentioned above, they introduce two new

measures of curvature and fairness called shape index and curvedness. Shape index

specifies shape independent of size and curvedness specifies the size. Curvedness

is a positive number and shape index varies in [−1, +1]. Due to the predefined

range of this index, it is easier to assign a color scale. In [53], Forrest states that

it is best to use color maps with line drawings such as contours to make the best

out of this method.

Another way of visualizing shape properties of a surface is artificial textur-

ing [160]. Instead of coloring the surface, one adds some kind of texture to the

surface. In [160] the author uses polka dots which act like flattened Hedgehog di-

agrams since one can interpret the direction of the normal on a surface if there

is a circle on it (See Figure 1.5 left). An overlaid Hedgehog diagram may help in

ambiguities one may be faced with.

14

Figure 1.5: Circle projections of different normals and a textured torus [160].

Isophotes

Isophotes are lines of equal light intensity. Given a parameterized surface S(u, v)

and the direction L of parallel lighting then the isophote condition is given by

(N(u, v) · L) = c = const .

Note that when c = 0 the isophotes are the same as silhouettes with respect

to the light source [74]. One needs to check numerous values of c to get a good

understanding of the surface. However, it is impossible to check all such values.

Therefore, one may miss the irregularity on the surface if the correct constant c or

the right light direction L are not used. This method was introduced by Poeschl

in [142]. This initial method required that there be no flat points on the surface and

it was not very reliable due to the choice of c and L. Pottmann in [143] introduced

a modified isophote method which does not depend on the light direction but only

visualizes curvature discontinuities on the patch boundaries. It is based on drawing

at several points of the patch boundaries the maximum tangent discontinuity of

an isophote instead of the entire set of isophotes. Using isophotes for checking

continuity is useful since if a surface is Cr continuous then the isophotes are Cr−1

continuous curves [74,78,142].

15

Figure 1.6: Isophote and the refined isophote method on a G1 surface [77].

A generalization of isophotes called lv-curves are described in [69]. l is the

direction vector to a light source and v is the direction to the viewpoint. If v is

equivalent to the normal and l constant then the lv-curve becomes an isophote.

For more information on lv-curves and their use in generating ir-nets we refer the

reader to [69]. Another generalization of isophotes form a class that also includes

reflection lines called reflection circles. This is explained in detail in [172].

Reflection and Highlight Lines

Reflection lines are a standard tool for surface interrogation in car manufacturing.

It was first considered in academic literature by Klass in 1980 [100]. It visualizes

dents and other imperfections as irregularities in the reflection line pattern of par-

allel light lines on a shiny surface. Klass also describes a way of correcting such

irregularities.

A reflection line is the projection of a line L on a surface S(u, v) which can be

seen from viewpoint A if L is being reflected on S (See Figure 1.7). For a fixed

eye point A, to find a reflection point P = (u, v) the following system of non-linear

equations are solved:

#b + λ#a = 2(N(u, v) ·#b) · N(u, v)

16

Figure 1.7: Reflection line method [77].

where −→a = P − A,
−→
b = L − P and λ = ‖

−→
b ‖

‖−→a ‖ [74, 77, 78]. The existence and

un-ambiguity of a solution to this system depends on the correct choice of the

eye point A [78]. Furthermore, solving such a set of nonlinear equations can get

computationally expensive. For an implementation of reflection lines for car body

design see [31].

A generalized version of reflection lines, where instead of parallel lines, concen-

tric circles are reflected over a surface is called reflection circles [172]. A similar

idea based on circular lines was covered in [116], where it is claimed that this for-

mulation is superior to straight line methods since it can detect discontinuities in

more than one direction. As a different point of view, in [176, 177] reflection lines

are described as contour curves of a certain function in the parameter domain of

the surface.

A different version of reflection lines are called highlight lines. A highlight line

is defined as the loci of all points on the surface, where the distance between the

surface normal and light line is zero. The main difference between the two is that

highlight lines are independent of the viewpoint. A linear light line is given by

L = L0 + Bt, where B is the direction of light and L0 is the source. An extended

surface normal is defined as: E(s) = S(u, v) + s · N(u, v) for some scalar s.

17

Figure 1.8: Highlight line method [78].

Given these two lines, a surface point S(u, v) belongs to a highlight line if the

perpendicular distance between them is zero [78]:

d =
‖[B ×N] · [L0 − S]‖

‖[B ×N]‖ = 0

Highlight lines can be extended to highlight bands if d ≤ r for some fixed r [78]

or equivalently, if a light cylinder with radius r is used instead of a line [69].

Isolines and Characteristic Curves

Contour lines are planar lines on the surface parallel to a fixed reference plane.

Equivalently, they are the intersection lines with a set of equidistant parallel lines

[86]. Closed contour lines indicate maxima and minima and they only cross at

saddle points [78]. [53] states that the contour lines relate directly to the surface

geometry and are very useful especially if used in conjunction with color shading.

Similarly in [86] it is stated that orthogonals to the contour lines are very useful

when used with contour lines resulting in an orthogonal net. The main drawback

of contour lines is that they are expensive to compute. In [77] a few methods are

mentioned to cut down this computational effort. In [127] one can find an example

of a case study which includes the level contours of the z-direction as a surface

interrogation tool. Also in [111], a process used in Saab Aircraft is explained that

18

depends on contour lines used together with intersection with planes.

Curvature contours are curves that have equal values of Gaussian, mean or

principal curvatures. An irregularity in these contours points out an irregularity

on the surface by means of change in the contour spacings and the directions

of the contours. They are especially useful if one needs to catch small shape

defects although they are sensitive to high amplitude defects as well. However,

using only one type of curvature would not be sufficient in detecting all defects

[127]. Parabolic lines are lines of zero Gaussian curvature, therefore are a subset

of Gaussian curvature contours [78]. They divide the surface into parabolic and

hyperbolic regions which may help in the convexity test, although in [127] it is

noted that parabolic lines may return false positives.

Lines of curvature form an orthogonal net on the surface. They are the curves

on the surface whose tangent directions are the principal directions. They indicate

a directional flow for the maximum curvature across a surface [51]. Although they

are useful in detection of surface defects, their computation is cumbersome and

requires a numerical integration method. Also, the net of lines become singular

near an umbilic (κ1 = κ2), since the principal directions are indeterminate and

the integration becomes unstable [78, 86]. A few methods have been proposed

to overcome this problem as described in [78] and references within. Also one

should be careful while integrating lines of curvature over patch boundaries for the

function of surface changes from one patch to the next [51]. A line of curvature

has a continuity Cr−1 if the surface is Cr [69].

Other characteristic lines such as geodesic paths ([51, 78]), equi-gradient lines

([86]) and fields of principal and asymptotic directions ([127]) have also been used

in surface analysis.

19

1.1.3 Summary of Interrogation Methods

To summarize, we state what each method is designed to detect on the surface.

For detection of flat points and inflection points plots, polarity and orthotomics

may be used. Also focal surfaces where the function is defined to be f = κ1
2 + κ2

2

or f = |κ1|+ |κ2| can be used for detection of flat points. For convexity test, color

maps, parabolic lines and focal surfaces with function f = κ1κ2 may be used. For

discontinuities, isophotes (which can also be used for curvature discontinuities),

lines of curvature, reflection and highlight lines may be used. Focal surfaces with

the function f = κ1
2 + κ2

2 may also be used for this test. Reflection lines and

highlight lines are also useful in detecting global shape imperfections whereas cur-

vature contours and plots are better in catching small shape defects. Focal surfaces

may also be used for visualization of technical smoothness of a surface which is

important in the milling process. In this case the function to be used is f = κ1
2+κ2

2

κ1+κ2

. Or one may use f = 1
Rcutter

− κmax if the radius of the cutter (Rcutter) is known.

1.2 Functionals and PDEs for Surface Design

Computation of surfaces that optimize a quality measure while maintaining the

constraints introduced by the designer is called variational design. In this section,

we describe previous work in the field of variational surfaces, with an emphasis on

the functionals. In the first section (Section 1.2.1) we describe the formulation,

reviewing functionals that have been used in literature. We continue with a section

on PDE surfaces (Section 1.2.2), as well as a section on surface fairing with flows

(Section 1.2.3).

20

1.2.1 Functional Formulation

There are two popular directions to formulating functionals for variational design:

1) functionals as geometric invariants,

2) functionals as approximations to geometric invariants.

Functionals derived from geometric invariant measures result in parameteri-

zation independent fairness metrics. The parameterization dependent measures

based on various derivatives of the parametric surface are presented separately as

approximations to geometric invariants.

Geometric Invariants

Low-order Functionals. A set of smoothing measures are presented in [147] by

Rando and Roulier. The three metrics are called flattening, rounding and rolling

metrics respectively:

Flattening Metric K · n

Rounding Metric S + [H/K] · n

Rolling Metric (K + H2) · n

where n is the normal and S is the surface. Fairing with respect to the flattening

metric tends towards developable surfaces whereas, the rounding metric tends the

surface towards a spherical shape and rolling metric leads to a cylindrical or conical

shape.

There are two variations to the the rolling metric introduced later by the same

21

authors [150]:

H · n

(1/(2(2H2 −K)) · n

The first one has a tendency towards planar, cylindrical and conical shapes while

the second one is similar but will not flatten the surface.

Minimization of bending energy leads to minimum energy curves and surfaces.

Minimum energy curves (MEC) are given by (1.1) and minimum energy surfaces

(MES) are given by (1.2), where the integral in (1.1) is taken over arc length and

in (1.2) is taken over area. Bending energy is also referred to as the strain energy

of thin plate, or for short thin plate energy. This was introduced by Moreton and

Séquin in [124].

∫
κ2dL (1.1)

∫
κ2

1 + κ2
2dA (1.2)

The authors extend on MEC in order to make it scale invariant in [126]. Note

that MES surfaces are already scale invariant. The scale invariant MEC, referred

to as SI-MEC is given by:

(

∫
dL)(

∫
κ2dL)

Due to Gauss-Bonnet Theorem for closed surfaces [92] equation (1.2) is equiv-

22

alent to minimizing the mean curvature:
∫ ∫

κ2
1 + κ2

2dA

=

∫ ∫
(κ1 + κ2)

2 − κ1κ2dA

=

∫ ∫
(2H)2 −KdA

=

∫ ∫
4H2 + CdA

where C is some constant, and is not used in the minimization process. Using

H2 as an energy functional is known as Willmore energy [92, 162]. Note that

Willmore energy can also be computed as the area of the image of surface under

the conformal Gauss map [92].

In [185] and [184] numerous fairness criteria have been studied by Westgaard

and co-authors. The functionals are classified by order. For example, following

second-order functionals are used.

Gaussian Curvature K = κ1κ2

Mean Curvature H = (κ1 + κ2)/2

Absolute Curvature A = |κ1| + |κ2|

Total Curvature T = κ2
1 + κ2

2

In [120], a second-order and a third-order smoothness measures are introduced

by Mehlum and Tarrou. The second-order measure is the squared normal curvature

integrated over all directions. These measures can also be used in assessing the

quality of a given surface. This smoothness measure is given as the following,

where κn(φ) = κ1 cos2 φ + κ2 sin2 φ:

λ(u, v) = (
1

π

∫

0

π

κn(φ)2dφ)1/2

23

Evaluation of this integral is straightforward thanks to Euler’s formula for κn(φ).

This results in the following:

λ(u, v)2 =
3

8
κ2

1 +
2

8
κ1κ2 +

3

8
κ2

2 =
3

2
H2 − 1

2
K,

which is easy to compute given the coefficients of the first fundamental form.

In [130] the following quadratic form of the maximal and minimal curvatures is

mentioned: ∫

U

(C(κ2
1 + κ2

2) + 2Dκ1κ2)dA,

which is shown to be equivalent to the functional of the clamped plate (Equation

(1.15)).

High-order Functionals. Higher-order functionals are constructed when varia-

tion of curvature is minimized instead of just the curvature which lead to smoother

curves and surfaces. Minimum variation curves (MVC, Equation 1.3) and surfaces

(MVS, Equation 1.4) are improvements over MEC (Equation 1.1) and MES (Equa-

tion 1.2) and are described by Equations (1.3) and (1.4) respectively where ei are

principal directions.

∫
(
dκ

de
)2dL (1.3)

∫
(
dκ1

de1
)2 + (

dκ2

de2
)2dA (1.4)

Functionals described in equations (1.3) and (1.1) are described in [124] and

are used in order to create minimum energy networks that are G2. Note that

sometimes, instead of κ1 and κ2 in equation (1.4), κn, the normal curvature, is

used in the formulation.

In [126] the scale invariant counterparts of MVC and MVS are introduced, called

24

SI-MVC and SI-MVS respectively. The invariant functionals look like:

(

∫
dL)3(

∫
(
dκ

de
)2dL)

(

∫
dA)(

∫
(
dκ1

de1
)2 + (

dκ2

de2
)2dA)

[185] and [184] studied high-order functionals as well. For third-order measures

the norm of the gradient of the measures above are given.

K3 = ||∇K||

H3 = ||∇H||

A3 = ||∇A||

T3 = ||∇T ||

And as the fourth-order measures variation of the variation, the Laplacians of the

same measures are given.

K4 = (K

H4 = (H

A4 = (A

T4 = (T

In [120], a third-order smoothness measure is introduced. The measure is the

squared variation in normal curvature integrated over all directions. Similar to the

second-order version mentioned before, this measure can also be used in assessing

the quality of a given surface.

Given that κ′n(φd) is the variation of normal curvature described by an Euler-

like equation (See [120], Proposition 2 for the exact formulation), the following

25

expression is the third-order functional used:

(
1

π

∫

0

π

κ′n(φd)
2dφd)

1/2

Once again this functional can be computed directly from the coefficients of the

first and second fundamental forms. Using the description of variation of normal

curvature described in this paper, one can compute the extremal values of the

variation of normal curvature by solving a cubic equation. Also by introducing

weight functions in the measures, one can design surfaces that are smoother in

some directions than others.

The surface fairness measures in [57] are derived based on the fairness of spe-

cific curves that are used to judge the fairness of a surface such as reflection lines

and planar intersection curves. The authors introduce six third-order geometric

invariants for this purpose that are rational functions in the components of the

first and second fundamental forms. Using some combination of H and K and this

set of six invariants one can generate a fairness functional that targets the given

set of curves. Actually, they show that they can re-create some functionals that

were used before using their invariants. Once the fairness measure is computed it

is used in the variational design of the whole surface. They show the derivation

of fairness measures based on plane intersection curves, and present the results of

this applied to ship hull fairing.

Approximating Geometric Invariants

The method of approximating geometric invariants with higher-order derivatives in

order to cut down computation time is a method employed by many, even though

the resulting surfaces are not as fair [156]. It is explained in [13] that the higher the

surface derivatives used in the functional the smoother the surface is. The main

26

problem with these formulations is the need for a local parameterization, since

the second and higher-order functionals work best if a surface has an isometric

parameterization, for then the approximations are exact. In the case of close to

isometric parameterizations these approximations are close. We will present these

functionals in increasing order.

Low-order functionals. The first-order functionals are based on area and min-

imizing this energy leads to minimal area surfaces. Note that the surface that

minimizes this energy without constraints will be a single point. This functional

can be written as:

Earea =

∫ ∫

U

1dA =

∫ ∫

U

||Su × Sv||dudv (1.5)

An upper bound to this functional (equation (1.6)) is given by [61], which can

lead to a linear system of equations when minimized.

∫ ∫

U

∇S ·∇Sdudv =

∫ ∫

U

(∇S)2dudv (1.6)

This approximation can also be formulated as in [185] and [184].

∫ ∫

U

S2
u + S2

vdudv

Greiner et al. also introduced the idea of data-dependent functionals in [62]. In

this case, there is a reference surface G that is close to the desired surface where the

functional formulations depend on this surface, thus the name “data-dependent”.

A concise summary of this method is given in [61]. This area-based energy, given

as a data dependent approximation can be written as:

∫

U

(∇GS ·∇GS)SdAS

27

which is equivalent to the following as given in [183]

∫

U

trace(I−1
G IS)dAS

where I∗ is the first fundamental form at surface ∗.

The second-order functionals are those where the maximum order of derivatives

is two. These functionals are used when an interactive design scheme is sought,

for minimizing them can be reduced to a linear system of equations that can be

solved very efficiently. Such interactive systems include [62,95,182].

In [184] and [185] the following second-order measures have been presented

∫ ∫

U

S2
uududv (1.7)

∫ ∫

U

S2
vvdudv (1.8)

∫ ∫

U

(S2
uu + S2

vv)dudv (1.9)
∫ ∫

U

S2
uu + 2S2

uv + S2
vvdudv (1.10)

Note that any fairing functional that has derivatives in one direction only may

be used for anisotropic fairing which is most useful in elongated shapes such as a

ship hull. For example, the first two functionals above have been used in [94] for

this purpose. However, note that fairing in the wrong direction or sometimes using

an isotropic functional may sometimes alter the original shape of the surface.

Equation (1.10) is the most popular second-order functional, which is the ap-

proximation of the thin plate energy given in Equation (1.2). Minimization of this

functional results in minimum curvature surfaces. In [59] another way of describing

this measure was given by Greiner which uses the Laplace-Beltrami operator:

∫ ∫

U

(S ·(Sdudv (1.11)

28

Greiner introduced a data-dependent approximation of this functional as well,

that involves the Hessian of the surface S computed at the reference surface G:

∫

U

3∑

i=1

trace(HessG(Si))
2dudv

where the components Si of surface are defined as in equation (1.12).

S(u, v) = (S1(u, v), S2(u, v), S3(u, v)) (1.12)

A slightly different version of thin plate energy is derived from the squared

Frobenius norm of the matrix describing the second fundamental form of a surface,

since that is equivalent to κ2
1+κ2

2. In this derivation, the energy functional involves

projections of derivatives onto the normals [181]:

∫

U

((Suu · n)2 + 2(Suv · n)2 + (Svv · n)2)dudv (1.13)

In [13], there is a mention of a series of second-order functionals of the form:
∫ ∫

U

(Suu)
n + (Svv)

ndudv (1.14)

Note that when n = 2, this functional is equal to (1.9).

In [75] the so called “functional of the clamped plate” is explored. This func-

tional is given by:
∫

U

A(Suu + Svv)
2 −B(SuuSvv − S2

uv)dudv (1.15)

Since this is a physical energy, it can be used for physically based modification of

surfaces. The same was also mentioned in [134] in the derivation of the approx-

imation of thin plate energy (Equation (1.10)). The two energies are equivalent

when A = 1 and B = 2. This simplification of the clamped plate to thin plate was

also used later by Fasshauser and Schumaker in [52].

29

In [130] the constants are given as A = E
1−ν2 and B = 2E

1+ν . The constant E is

the modulus of elasticity and ν is Poisson’s ratio and they can be tuned to reflect

different physical materials, such as lead, glass, and steel.

In [182] the objective function is based on first and second fundamental forms

(G and B respectively): ∫

U

(||G||2α + ||B||2β)dudv

which when simplified based on derivatives becomes:

∫

U

α(Su
2 + 2SuSv + Sv

2) + β(Suu
2 + 2Suv

2 + S2
vv)dudv (1.16)

One can also generate functionals based on the deviation from a given surface.

These we call deviation based functionals. Some examples of such functionals can

be found in [184]. Suppose one starts with an initial surface S̄ and would like to

get to the improved surface S. We will provide a second-order example, however

they can be generated to be of any order.

∫ ∫

U

((S̄uu − Suu)
2 + (S̄vv − Svv)

2)dudv

Following this example one can generate a “deviation” version of any of the func-

tionals listed in this section. The same can be done by using Greiner’s equations

(equations (1.6), (1.11), (1.18)) to generate parameterization-independent devia-

tion measures as such. For example, the second-order deviation measure can be

written as [184]:

∫ ∫

U

(2
S̄(S̄ − S)dudv

Another deviation based objective function is the one used in [136] based on

the distance of a point from the center of curvature. Given the center of curvature

30

C(u, v) = S(u, v) + 1√
K(u,v)

N(u, v), the objective function to be maximized (in

order to prevent numeric errors, the functional has been inverted) is:
∫

U

min{ 1

D
, d}×

√
Gdudv

where D is the distance function from the center of curvature, d is just a variable in

order to avoid divergence issues and G is the determinant of the first fundamental

matrix of the surface.

One can also use combinations of all the functionals listed here. For example,

the functional in [95] has two terms. One of them is for smoothing and the other

for deviation. ∫

U

Suu
2 + 2Suv

2 + S2
vv + (S − S0)

2dudv

In [183] the energy to be minimized is the sum of internal and external energies.

The internal energy can be written as:

Eint = αEarea + (1− α)Ebend, (1.17)

where α is some value in [0, 1] and area and bending energies are as covered before.

The exterior energy is based on forces that have an intuitive deformation effect on

the surface. They can be attractors (attract the surface to a point or plane) or

repellers that are usually based in minimizing some norm of differences, i.e. some

deviation measure.

In [29], the deformable model energy (Equation 1.17) is minimized where the

coefficients need not add to one. In this case both coefficients are defined as

second-order tensors such that anisotropic behavior can be generated by varying

the values of these matrices.

In [61], a table that summarizes the most commonly used geometric functionals

and their parametric and data-dependent approximations has been provided, which

31

Name Geometric Parametric Data-dependent

Area
∫

U 1dA 1
2

∫
U [∇S]2 1

2

∫
U (∇GS ·∇GS)SdAS

H 1
4

∫
U (κ1 + κ2)2dA 1

4

∫
U ((S)2 1

4

∫
U ((GS)2dAS

K
∫

U κ1κ2dA 1
4

∫
U (Suu · Svv)− S2

uv

∫
U det(HessG(S))dAS

T
∫

U κ2
1 + κ2

2dA 1
4S2

uu + 2S2
uv + S2

vv

∫
U trace[(HessG(S))2]dAS

∇ H
∫

U [∇S(κ1+κ2
2)]2

∫
U [∇((S)]2

∫
U (∇G((GS) ·∇G((GS))dAS

Table 1.1: Commonly used functionals and their approximations [61].

we will present here as well to provide a big picture.

High-order Functionals. There are several ways of constructing high-order

functionals. In [13] one construction is provided:

∫ ∫

U

||∂
nS(u, v)

∂un
||2 + ||∂

nS(u, v)

∂vn
||2

where the behavior of the functional for different values of n is studied. In [70]

and [72] n = 3 is used in order to approximate curvature variation (Equation (1.4)).

Greiner has another way of describing this functional based on the gradient of the

Laplacian:

∫ ∫

U

∇((S) ·∇((S)dudv (1.18)

In [61] three methods for generating higher-order functionals are provided. We

will list them here:

1. Functionals based on Sobolev norm of order m:

m∑

k=0

|| ∂mS

∂uk∂v(m−k)
||2

These are not invariant under rotation.

32

2. Functionals based on Frobenius norm of the mth derivative:

m∑

k=0

 m

k

 || ∂mS

∂uk∂v(m−k)
||2 (1.19)

3. Iterating gradient and divergence

Applying the gradient and divergence in alternating order to a function allows

generation of derivatives of arbitrary order. For example, a third-order grad-div

functional may be:

(Suuu + Suvv)
2 + (Suuv + Svvv)

2

In [185] and [184], the following third-order,
∫ ∫

U

S2
uuududv

∫ ∫

U

S2
vvvdudv

∫ ∫

U

S2
uuu + S2

vvvdudv
∫ ∫

U

S2
uuu + 3S2

uuv + 3S2
uvv + S2

vvvdudv

and fourth-order measures are provided:
∫ ∫

U

S2
uuuududv

∫ ∫

U

S2
vvvvdudv

∫ ∫

U

S2
uuuu + S2

vvvvdudv
∫ ∫

U

S2
uuuu + 4S2

uuuv + 6S2
uuvv + 4S2

uvvv + S2
vvvvdudv

Note that again, the first two functionals provided in each order can be used for

anisotropic (directional) fairing. Also note that the last functional in each set can

be derived from the second method given above (1.19).

33

Another high-order measure used in [179] is the following:

∫ ∫

U

(c1S
2
uv + c2S

2
uuv + c3S

2
uvv + c4Suuvv)dudv (1.20)

1.2.2 PDE Surfaces

In this section we review work in a direction that is closely related to variational

surfaces, but does not fit into the functional classification. Note that the surfaces

resulting from flows used in fairing are effectively PDE surfaces but those will be

reviewed separately in the next section.

Given a functional in the form of

∫ ∫

U

f(u, v, S, Su, Sv, Suu, ...)dudv,

the solution to the minimization problem can be characterized as an Euler-Lagrange

equation which is a partial differential equation. Solving this partial differential

equation is equivalent to solving the minimization problem. A PDE is character-

ized by its prescribed boundary conditions. There are numerous methods to solve

PDEs based on finite differences or finite elements (See Section 1.3.3 for more de-

tails on the finite element methods). The appealing property of this formulation is

the fact that one does not have to give up geometric invariance in order to reduce

computing time.

Some examples of Euler-Lagrange form of well-known functionals are given in

[61] and replicated in the following table.

A Ck-Dirichlet condition means that the position and derivatives up to order

k need to be specified. The fact that all second and all third-order functionals

are equivalent to the same Euler-Lagrange equation can be explained as follows:

These quantities differ by an integral on the boundary. Then, if the boundaries

34

Order Functional Constraints Euler-Lagrange Equation

1
∫

U (∇S)2dudv C0 Dirichlet (S = 0

2
∫

U ((S)2dudv C1 Dirichlet (((S) = 0

2
∫

U S2
uu + 2S2

uv + S2
vvdudv C1 Dirichlet (((S) = 0

3
∫

U ∇(div(∇S))2dudv C2 Dirichlet (((((S)) = 0

3
∫

U S2
uuu + 3S2

uuv + 3S2
uvv + S2

vvvdudv C2 Dirichlet (((((S)) = 0

Table 1.2: Euler-Lagrange form of some well-known functionals [61].

are fixed, all kth-order functionals return the same surface, and if the boundary

conditions are different then so are the results.

Another PDE-based technique is described in [156]. In this paper the authors

use

κ′′ = 0

for curves. A curve that consists of parts that satisfy this equation is called a

clothoid spline. They extend this idea to space curves and closed surfaces. In the

case of closed surfaces, the functional used is the mean curvature minimization.

Another extension of this to surfaces with regularity constraints, namely for sur-

faces with subdivision connectivity, is given in [155]. In this case the fourth-order

PDE solved is given by:

(H = 0 (1.21)

The authors overcome the regularity constraint in [157] and apply the PDE to

general meshes. The trick here is to use the discretized Laplace-Beltrami operator

as opposed to applying a quadratic local fitting near a vertex in order to compute

differential quantities. They also avoid the noise-free initial mesh constraint by

applying the method described in [158] to the initial mesh to clear noise.

In these works computation of high-order derivatives is avoided by factorizing

35

this PDE into a set of two nested second-order problems. Although this procedure

may seem similar to the mixed method we utilize, it is in fact quite different.

The second-order problems resulting from the factorization here will need to be

solved sequentially: one to compute mean curvature values at vertices, the other to

compute vertex positions given these mean curvature values. The mixed method

leads to a system solving both second-order problems in one system. results in both

second-order problems being solved in one system. Furthermore, the fourth-order

problem we are solving is linear whereas the one considered here is non-linear.

In [45, 46] a finite difference approximation to fourth-order PDEs is applied in

an interactive tool set. Unlike other PDE based methods, this involves changing

constraints not only on the boundary, but in the interior as well in terms of point,

region, normal or curvature modifications.

It is worth pointing out that there is a large amount of literature regarding

PDE Surfaces that is not based on approximations, but rather on derivations of

analytical solutions for the driving PDEs. We will briefly point out few examples

here without going into details. In [11,12,60,174,175,203], fourth-order problems

are considered where closed form solutions are computed. One can observe the

shift to interactive applications. Some work involved sixth-order closed form PDEs

[197, 204, 205]. In [108], the triharmonic equation is presented in an interactive

setting where the boundary conditions are prescribed through a set of modifiable

curves near each boundary.

1.2.3 Surface Fairing and High-order Flows

Algorithms for smoothing a given initial surface smoother are studied under surface

fairing. The idea is to smooth out noise or other artifacts on the given surface while

maintaining geometric features. There are several trends in approaching this, two

36

of which are variational fairing and diffusion flow that are relevant for our purposes.

The variational formulation is very similar to variational design methods given

in the previous section. The most common functionals used in this setting are

the total curvature or the approximations of the area functional or the thin plate

energy([102], [202]). Since these have been covered in detail before, in this section

we will primarily consider flows.

The goal of using diffusion flow is to remove high frequency noise in meshes [157].

Flows force the surface to evolve in the direction of the gradient of a function not

necessarily minimizing it all the way to the limit. This is especially useful if com-

ing close to the minima instead of computing it exactly takes less effort. Once

again flows of order up to two are considered low-order and flows of order three

and higher are considered high-order.

Low-order Flows

Taubin [170] introduced the signal processing technique in 1995 which takes a

combination of area and thin plate energies to provide Gaussian filtering. This

method is linear in the number of vertices in time and space. It involves a discrete

approximation to the Laplacian such that the eigen vectors become the frequencies

of a mesh. This reduces the problem of fairing to low-pass filtering in signal

processing terms. The problem with this is the uniform approximation of the

Laplacian (see equation (1.24)) which results in artifacts in the case of irregular

meshes. Also note that Laplacian smoothing causes shrinkage. In [41], Laplacian

smoothing is reformulated as a time integration of the heat equation which allows

the use of implicit integration schemes that allow large time steps. The authors also

introduce discretizations of the Laplacian that are parameterization-dependent.

37

Furthermore a curvature flow is used instead of the umbrella operator (see equation

(1.24)).

The heat diffusion equation is given by the following, where(X is the Laplacian

of the mesh X:
∂X

∂t
= λ(X. (1.22)

Note that λ in this equation is a weight factor. This factor needs to have the

property that 0 < λ < 1 for stability purposes. This causes small time steps (as

opposed to large ones in [41]). As in [170] and [168] repeated application of such

a diffusion step causes shrinkage. To avoid that Taubin proposed to use two steps

with different weight factors: one positive, one negative. The reader is referred to

the references for details on the choice of these weight factors.

The general approximation to the Laplacian is given by equation (1.23) where

the weights wij have the property :
∑

j wij = 1.

((xi) =
∑

j

wij(xj − xi), j ∈ N(i) (1.23)

The simplest weight scheme for the general Laplacian in the case of a triangular

mesh is the umbrella operator given by the following, where m is the number of

neighbors.

((xi) =
1

m

∑

j

(xj − xi), j ∈ N(i) (1.24)

Another direction is to use the inverse of edge lengths as weights to compensate

for irregular edge lengths, as introduced by Fujiwara [171]. However, this does not

solve the problem of unequal face angles.

((xi) =
2

E

∑

j

xj − xi

|eij|
, E =

∑

j

|eij|, j ∈ N(i),

The discretization of the Laplacian used in [41] that works with both irregular

38

edge lengths and unequal face angles is given by weights of the form cotα + cotβ

where α and β are angles opposite the edge. The equation follows:

((xi) =
1

4A

∑

j

(cot αj + cot βj)(xj − xi) (1.25)

In [113], the umbrella operator is used in conjunction with extra constraints in

order to avoid shrinkage. The constraints force the barycenters of triangles to stay

in place at each iteration.

In [93] a fairing process that uses vertices with increased support is provided.

This allows the fairing to be extended to non-manifolds. The new position of a

new vertex not only depends on its own Laplacian but also the Laplacians of its

neighbors with weights based on properties of the non-manifold mesh. It is claimed

that most discrete Laplacians may be used for this purpose with no modifications

to the framework.

Mean curvature flow, equivalent to heat diffusion as described in [41], is given

by the following.
∂X

∂t
= −Hn

Right hand side is discretized using the discrete Laplacian with cotangent weights

given in equation (1.25), and n is the surface normal. Mean curvature flow smooths

the surface by moving the vertices along the normal with speed equal to the mean

curvature H. This is also called mean curvature motion [36] and is the local surface

area decreasing flow.

In [137], several flow equations are derived in the following form:

∂X

∂t
= Fn + Gt

where F is the speed of flow in normal direction and G is the flow in tangent

direction. The authors suggest different functions for F and G mostly based on

39

principal curvatures to produce better fairing. One can also define some threshold

value in these functions such that only vertices with function values that exceed

these thresholds gets faired, avoiding over-smoothing.

In [36] an anisotropic diffusion is introduced given by the following equation

where D is the diffusion tensor based on the shape operator that acts on the

gradient of X.
∂X

∂t
= div(D∇X)

The use of the shape operator allows an increase or decrease in diffusion in

certain directions, therefore helping in enhancing sharp features. For example, an

edge corresponds to a large eigen value, where the largeness required depends on a

threshold set by the user. Given this, one can reduce diffusion in the direction of

the corresponding principal direction. In [37], this flow is used to fair point-based

surfaces instead of meshes. Another type of anisotropic diffusion is introduced in

[30] where the thresholds for feature detection is computed using Bayesian analysis.

Instead of an anisotropic diffusion tensor, one can introduce an adaptor into the

flow equation to achieve adaptive fairing such that dense parts of the mesh gets

faired less. Such adaptive diffusion was constructed in [7] where the PDE is of the

form:

∂X

∂t
= A(X)div(∇X) = A(X)(X

The adaptive diffusion function A(X) is a smooth positive function that char-

acterizes the density of the surface mesh. In this paper, the choice for A(X) is a

quartic box spline function. Using such a function that is based on density (smaller

function values at denser parts of mesh) allows the parts with high density, there-

fore larger curvature, to be faired less.

40

A homogenization function that is also adaptive to the density helps in avoiding

tiny and collapsed triangles on a mesh. This function P (X) causes tangential

displacement near smaller triangles in order to make them bigger. Using such an

homogenizer in the equation, PDE becomes:

∂X

∂t
= A(X)div(P (X)∇X)

Also one can force approximation or even interpolation of some of the vertices

of the initial mesh throughout the fairing process. All this was done in [187] where

the flow equation becomes:

∂X

∂t
= A(X)div(P (X)∇X) + R(X)

where A(X) is the adaptor, P (X) is the homogenization term that homogenizes the

mesh while smoothing and R(X) represents the approximation (or interpolation)

function.

In [27] a different kind of diffusion, namely spherical diffusion is introduced.

Spherical diffusion is fast and avoids shrinkage and stability problems. However,

this is only applicable to star-shaped meshes where the surface can be described

as a height field on a sphere. The spherical diffusion equation is given by equation

(1.26) where (S2 is the spherical Laplace operator (equation (1.27)).

∂X

∂t
= k (S2 X (1.26)

(S2 =
1

sin(ϑ)

∂

∂ϑ
(sin(ϑ)

∂

∂ϑ
) +

1

sin2(ϑ)

∂2

∂ϑ2
(1.27)

In the recent paper by Bobenko and Schröder [14], flow of Willmore energy is

explored. Willmore energy of surface X is given by:

EW (X) =

∫

X

(H2 −K)dA = 1/4(κ1 − κ2)
2dA

41

The discretization of Willmore energy at a vertex i is given by:

Wi =
∑

eij

βi
j − 2π

where βi
j is the angle between circumcircles of the two adjacent triangles to edge

eij. The global energy is the sum of such terms for all vertices of the mesh. The

geometric flow in the direction of steepest descent of this energy (equation (1.28))

is useful in surface fairing due to the non-shrinking nature of the flow. Since the

energy is scale-invariant the irregularity of the mesh does not effect the quality

of fairing. This is better than the method in [137], since H2 − K is guaranteed

to be greater than or equal to zero in this case. This is important since when

computing principal directions from Gaussian and mean curvatures this is the

term that appears under the square root.

∂X

∂t
= −∇EW (X) (1.28)

In [202], the integral mean curvature (equation (1.40)) is approximated by a sum

of squared distance measures to a set of faces of the mesh and the vertex flow is in

the direction that minimizes this energy. It is referred to as the “MIN-DIST” flow.

The correct choice of faces for distance computation leads to a feature-enhancing

flow.

Another use of diffusion for surface fairing is to apply it on the surface normal

field instead. Then the surface should evolve to match the smoothed normals.

This technique was used by Tasdizen, et al. in [167] where an anisotropic diffusion

flow on level set surfaces is used in the first step and the surface is re-fitted to the

normals via a second-order PDE in the second step. A similar two step procedure

is used in [192] for mesh smoothing. The first step is based on mean or median fil-

tering on the normals in this case. Mean filtering consists of taking the normalized

42

area weighted average of normals of neighboring faces of each triangle of the mesh.

There are two median filters introduced in the paper: One is based on angles, the

other on directional curvatures.

High-order Flows

In [157] the bi-Laplacian for diffusion is used. Equilibrium state of diffusion flow

allows only C0 boundary conditions and therefore is of limited use in surface de-

sign. It follows that using the square of the Laplacian would lead to C1 boundary

conditions and is actually equivalent to minimizing the thin plate energy given by

equation (1.10).

Another type of curvature flow is given in [196] called the gradient descent flow

for the elastica (or the thin-plate energy functional). The same flow is also known

as the bi-Laplacian flow [137] since the right hand side of the equation is equivalent

to the Laplacian squared. It is also the Euler-Lagrange equation for the Willmore

energy. It is different from mean curvature flow in the speed of the flow:

∂X

∂t
= −((H − 2H(H2 −K))n

The authors also propose to add a mesh triangle equalization term to the right

hand side of the equation for numerical stability. This term is basically a tangent

speed component made of the tangent component of an area weighted bi-umbrella

operator. The discretization of the Laplace-Beltrami operator used in this paper

is the following which differs from Desbrun’s approximation by the different area

factor:

(P =
3

A

n∑

i=1

(cot αi + cot βi)(Qi − Pi) (1.29)

43

A is the total area of neighboring triangles of vertex P , vertices Qi are the

neighbors and α and β are the angles opposing the edge between P and Qi. The

discretizations for the Gaussian and the mean curvatures are covered in the fol-

lowing section on Curvature Estimation (X.1.3.2).

Another type of flow is the surface diffusion flow given by the following where

(is the Laplace-Beltrami operator, H is the mean curvature and n is the normal

vector:
∂X

∂t
= (Hn

This flow converges fast to a sphere especially if the initial surface is close to one.

It is area-shrinking and volume-preserving. In [206] this flow is used for smoothing

of quadrilateral and hexahedral meshes accompanied by a discretization of the

Laplace-Beltrami operator for such meshes.

In the technical report by Xu, et al. [188], a higher-order flow has been explored.

The equation for the flow is the following:

∂X

∂t
= (−1)k+1 (k Hn

It is claimed in the paper that this flow is volume preserving for k ≥ 2 but it is

unknown if it s area shrinking or not. The higher-order Laplace-Beltrami operator

is discretized recursively as (k = (((k−1).

A fourth-order flow, namely the flow based on the Laplacian of curvature is

studied in [32]. The difficulties in such a flow arise from the fact that the fourth

derivative involved makes the system very sensitive to perturbations and causes

very small time steps. The algorithms studied here are based on a level set method.

Two second-order, two fourth-order, and two sixth-order nonlinear, and param-

eterization independent flows are explored in [189], for purposes of creating blend

surfaces efficiently. The solution is based on a finite-difference-like method, where

44

differential operators are approximated using quadratic fitting. The boundary

conditions are gathered from the outer mesh.

In [190], an Euler-Lagrange equation is derived from the minimization of mean

curvature gradient and is applied as a sixth-order flow. The solution is similar to

that in [189], based on finite differences. The high-order of the flow allows for G2

boundaries and is demonstrated by applications to surface blending, N-sided hole-

filling and point interpolating. A more general framework for surface modeling

based on any PDE, where differential operators are once again approximated with

quadratic fitting is provided in the follow-up work [191].

1.3 Discretization and Numerical Methods

1.3.1 Design Settings

Variational design can be used on point sets, meshes, subdivision surfaces and

patch based surfaces. For all cases however, the starting point is either a mesh or

a point set.

Points Sets

Given a point set as initial data, one technique generating a variational surface

is to fit the point set to a single patch. In [13], this method is employed with

a functional that consists of two parts, one for a least squares approximation of

the surface and the other using higher-order derivatives for smoothing. The dis-

cretization of surface derivatives is computed using finite differences. The authors

explain that the reason the high order functionals result in smoother surfaces is

because the finite differences involve more points around a given point using a PDE

model. They mention that equations of type (1.14) help in smoothing in diagonal

45

directions due to the respective finite difference discretizations.

In [71] and [72], two single-patch methods are presented: one for B-spline sur-

faces and the other for Bézier surfaces. In both cases the functional consists of a

least-squares part for approximation and a smoothing part. What differs in the

two cases are the approximations of the smoothing functionals. In the case of

B-splines the smoothing term is the curvature variation and the approximation

involves third-order derivatives. In the Bezier case strain energy is used and it is

approximated with a quadrature formula. This method avoids the initial computa-

tion of a smooth network of curves and uses point data only. The same formulation

is also mentioned in [75] with one modification: one can introduce extra conditions

describing the parameterization such that the parameterization can be included in

the variational setting as an extra parameter. This way as the energy is minimized

the parameterization gets closer to isometric.

In Westgaard’s thesis [184] and paper [135], the fairness functionals described

within have been tested to generate a car hood as a single patch surface. It is

better to generate fair boundary curves first, therefore making this a two-step

process. For if the boundary curves are not fair enough, the issues propagate to

the interior of the surface. It is also concluded that second-order measures may

cause flat regions and may cause convex surfaces to become locally concave. Third-

and fourth-order measures perform much better.

Another strategy for dealing with point data is to define a multi-patch surface

given the constraints for patch boundaries. In [147], a composite fair surface is

generated by first defining the design constraints (may that be point or boundary

constraints), and solving an optimization problem that minimizes the free param-

eters with respect to one of the fairness metrics given in the previous section.

46

These metrics have also been used in [88] for local fairing of point sets followed by

a B-spline fit resulting in faired such surfaces.

In [179], the functional (1.20) is minimized on a B-spline surface given by S(u, v) =

BT
u V Bv where Bu and Bv are the vectors of B-spline basis functions. It is reduced

to a set of linear systems where new additional data points are added only where

needed. The author claims that the parts of the surface with lack of enough data

points is where undulations occur, therefore it is important to add data points

where necessary.

In [182], the functional in equation (1.16) is applied to a tensor product B-Spline

surface. This functional is quadratic in degrees of freedom, therefore it can be cast

as a constrained least squares minimization. Only linear geometric constraints are

considered in order to keep efficiency high.

Equation (1.14) with n = 2 is used in [201] in order to fair spline surfaces. Their

algorithm is based on identifying “bad” data points by using highlight line models

and moving them such that the given (strain) energy is minimized. The energy is

computed within a small area near the problem data point and therefore fairing is

local.

In [59], two formulations for fairing are introduced for spline surfaces where

one can use either one of the two functionals given by equations (1.11) and (1.18).

One is a global one-step procedure that involves a numerical quadrature based on

the functional and a linear system to solve. In this case many control points get

modified in one-step. The other formulation is for local fairing and is an iterative

procedure. In this case, one control point at a time is changed and the functional

is re-computed by numerical quadrature at each step. The procedure continues

until convergence.

47

Wesselink [183] worked with surfaces based on patches. He worked with tensor

product B-spline patches and triangular Bézier and B-spline patches. The con-

straints applied to surfaces are divided up into positional, directional and “other”

constraints. Positional constraints can force the surface to interpolate a point, a

point on the surface to interpolate a line or a plane. Directional constraints can

prescribe the direction of the normal. Other constraints may include continuity or

curve interpolation constraints. All constraints are linear and may be expressed in

terms of the concatenation vector which is a vector of all control points. All such

constraints can be gathered into a sparse system. Internal energy can be written

as a quadratic expression in control points, although external energy terms may

be more complicated. Overall, the energy minimization problem is reduced to a

non-linear programming problem.

One can also generate a curve network given scattered point data. For ex-

ample, given a point set of m × n data points one can generate m curves in one

direction and n curves in the orthogonal direction that can lead to a curve net.

Usually the curve net is then filled with patches resulting in a multi-patch surface.

In [94], a three-step method for surface fairing is used that was developed by the

same author in an earlier work. This method proceeds from a faired curve net to a

faired tangent strip net to a net interpolating smooth surface. The tangent strips

ensure the G1 continuity between adjacent patches. When the surface is generated,

each patch is designed to interpolate the four boundary curves and four boundary

tangent strips while minimizing a functional. One can also compute the tangent

strips in the minimization step therefore combining the last two steps. However in

this case, the minimization will be performed across the whole surface instead of

patch by patch.

48

Another technique based on this idea is given in [125]. The surface is a result

of a nonlinear optimization where G1 continuity is maintained with the use of

a penalty function. Given a set of scattered data, first a G2 network of curves

is formed based on MVC. Then patches are blended to form an MVS surface.

The patches may interpolate or approximate the curve network, where the former

results in fairer surfaces though takes longer computation time.

Similarly, Nowacki and Reese [134] first generate a rectangular curve net. As a

first step, this mesh of curves is faired based on optimization techniques followed

by the filling step where the holes between the curves are filled with patches that

minimize the thin plate energy and match the constraints of neighboring patches.

This formulation is used for ship hull design.

In [96], given a rectangular network of curves, only the twist vectors (partial

derivatives at corners of patches) are the free variables. The values assigned to

these twist vectors is such that an energy functional is minimized. The energy

functional is a quadratic in the second partial derivatives of the surface. Another

paper that uses tools from calculus of variation for computing the twist vectors

is [49]. It is noted here that the curviness of the surface is determined by the

normal component of the twist vector (Suv · N) instead of the twist itself. They

minimize total curvature by minimizing the normal component of the twist vector.

Meshes

One way of generating a variational surface based on a mesh is to generate a net-

work of curves based on the edges of the mesh. One example of this is given

in [124]. A quintic Hermite approximation is used in generation of the curve net-

work. The discretization of equation (1.1) in terms of the Hermite curve H(t) is

49

given by:

∫

0

1 (H ′(t)×H ′′(t))2

(H ′(t) · H ′(t))
5
2

dt

The functional is minimized using a nonlinear optimization procedure based on

gradient descent. The starting choice is computed with heuristics, where the initial

curvature at a vertex is computed based on angle defect, and the normal is the

average of the incident faces.

Given a triangular mesh, in [106] a minimum norm network is formed by form-

ing a network of curves from triangle edges that minimize the norm of the second

derivative of the curve. A local parameterization is used that describes the trian-

gulation on the tangent plane at a given vertex. Once the network is obtained,

triangular Bezier patches are used to fill the holes.

Starting with a mesh, one can also replace each face with a spline patch in order

to generate a multi-patch smooth surface. In [185] the problem of fair surface

design is studied where the input is an irregular mesh. In [184] the multi-patch

examples refer to this case. To avoid dealing with n-sided patches, first a step

of midpoint refinement is applied. Then one of the many fairness measures given

plus a deviation measure (if a tentative surface shape is known.) The constraints

are the interpolation and/or approximation of mesh points and C1 joints across

patches. The remaining control points are the variables computed to satisfy the

minimization requirements. This problem is solved as an equality constrained

quadratic programming problem by means of Lagrange necessary conditions. In

[184], a case study on the design of a ship hull based in this method is provided.

In [135], the multi-patch fairing is presented without the midpoint refinement step

on a “Greek fishing vessel”.

50

In [29], finite elements are used in order to solve the energy minimization prob-

lem. In this case triangular finite elements are used. The total energy is the sum

of the contributions of each element, where the contributions include C1 continu-

ity constraints between triangles. The energy integrals are evaluated by Gaussian

Quadrature. For more on finite elements methods see Section 1.3.3.

Similarly in [52], the setup is triangle-based. The parameter domain of the

surface is a triangulation. Each triangle is associated with a polynomial inter-

polating spline patch. The energy per patch is the simplified thin plate energy

(based on second derivatives) computed per coordinate (Si) given the surface S =

[S1(u, v), S2(u, v), S3(u, v)]. The total energy is minimized based on a Lagrange

multiplier method. The results guarantee C1 conditions on the patch boundaries

and it is straightforward to add penalty terms in order to get approximate C2

conditions.

Another way to approach the problem in case of meshes is global refinement,

or subdivision. In [162], an approximate cost functional is computed on the control

mesh of a subdivision surface. Local energies may be vertex- or edge-based and

the total energy of the mesh is the sum of all such local energies. For a bending

energy discretization, an edge-based method is used where the total energy is given

by equation (1.30) where β is the dihedral angle, ||e|| is the length of the edge and

h1 and h2 heights of the two adjacent triangles.

∑ β2||e||
||h1|| + ||h2||

(1.30)

Also, instead of computing a gradient in the process of reaching the minimum,

one can use a vertex-move method that aims an MVS surface. This move depends

on the change in turning angle in the direction of the edge. Once the energy

is minimized at the current resolution, the mesh is subdivided to produce new

51

vertices introducing new parameters for optimization.

A class of interpolatory refinement schemes for curves is given in [101]. In

every step, the newly added points are placed by solving an optimization problem.

Therefore, positions of added points depend on all others, i.e. a global scheme.

The energy per vertex depends on a linear combination of a set of vertices before

and after it. The total energy of the curve is the sum of squares of energies of all

vertices. The energy decreases at each step of refinement. Extension to surfaces is

given in [102].

In [102] variational subdivision surfaces are discussed. Similar to the curve case,

the subdivision schemes are interpolatory, namely positions of only the newly added

points are computed by energy minimization. The main difficulty in variational

subdivision schemes is the computation of the local parameterization per vertex,

since the neighborhoods of each vertex change with the addition of new “refined”

vertices. The solution in [102] and [104] is to use “templates” for edge and face

vertices that blend the parameterizations of vertices that belong to the initial mesh.

Only for extraordinary vertices an arbitrary parameterization is allowed.

The application most relevant for our purposes is mesh smoothing. As in [157]

a mesh should have two types of fairness; outer fairness that depends on the fairness

of the approximated continuous surface and inner fairness that depends on the

distribution of vertices within the surface. Note that inner fairness influences

outer fairness.

In [156] discretization of the clothoid spline (mean curvature minimization) is

achieved by a polygon (triangulation) where the curvature is linearly distributed

on each segment (triangle). The geometric invariants are computed by the first

and second fundamental forms given a local parameterization near a vertex. In

52

the surface case the process starts with a closed triangle mesh. Positions of new

points and the mean curvature are recomputed using two separate formulas at

each iteration thus approximating the PDE. The procedure is iterated until the

properties of the discrete clothoid spline (curvature minimization) is achieved.

Each vertex is moved along the surface normals.

In [157] the connection between inner and outer fairness is achieved by a discrete

solution of an intrinsic PDE. This PDE, given in equation (1.21), can be discretized

at a vertex as in equation (1.29) where the vertex positions Pi and Qi are replaced

by mean curvature discretizations Hi, Hj at those vertices. The inner fairness is

achieved by assigning a discrete Laplacian for each interior vertex such that instead

of moving a point along its normal from each iteration to the next, it is moved

along a line based on the Laplacian. This is an extension of the method mentioned

above with less limitations.

In [92], Willmore energy is discretized as a function of the vertices of a triangular

mesh. A polyhedron has its mean curvature concentrated at the edges which

means that Willmore energy will be infinite on the actual mesh. Therefore an

approximation of mean curvature hv is used that is computed at each vertex (See

equation (1.43) in Curvature Discretization section). Then the approximation to

Willmore energy for the whole surface is given by the following where av is the area

element equivalent to one third of the area of the one ring neighborhood around

vertex v.:

w =
∑

v

wv, wv = hv
2av

In [181], triangulated point sets are used as input. The point-based derivatives

are computed by temporarily fitting a smooth surface to the neighborhood of a

vertex. Instead of a projection-based technique, a procedure mimicking the polar

53

geodesic parameterization is used. They use the total curvature approximation

given in equation (1.13). However, it is stated that they actually minimize a

variation of this where the normals n and the area element (one third the area of

one ring) are taken to be constant. The authors acknowledge that this does not

minimize exact total curvature, yet it still gives good results.

In [103] and [104] triangular meshes are studied. The finite difference approxi-

mation of (1.2) given by

∑

pi

ωi(||Γuu(pj − pi)||2 + 2||Γuv(pj − pi)||2 + ||Γvv(pj − pi)||)2 (1.31)

where weights ωi reflect the local area element, namely the areas of triangles and

Γ∗ are corresponding divided difference operators, is minimized by solving a linear

system. The finite differences are taken with respect to a locally isometric pa-

rameterization. The local parameterization is the best approximating quadratic

polynomial in the least squares sense. A local parameterization, therefore a set of

divided difference coefficients, are computed for each vertex. If the vertex is taken

to be the origin in the local parameterization, the neighboring vertices are assigned

parameters based on “discrete exponential map” that depends on edge lengths and

angles on the projected plane. Note that in this procedure each vertex may have

several parameter values depending on the number of neighborhoods it belongs to,

since the neighborhood of each vertex has a different local parameterization.

1.3.2 Curvature Discretization

From a theoretical point of view, meshes do not have curvature at all since all

faces are flat and curvature is not properly defined along edges since the surface is

not C2 there. However, one can estimate the curvature thinking that the mesh is

54

a piecewise-linear approximation of an unknown underlying smooth surface using

only the information provided by the mesh.

There are two main directions in estimating curvature on a mesh: discrete and

continuous. Discrete approximation is based on computing the differential geome-

try operators that work directly on the discrete representation of the mesh. Con-

tinuous estimation consists of fitting a surface locally then computing the operators

on this continuous surface. Note that these methods may result in unexpected sur-

face behavior between sample points resulting in errors. We will discuss discrete

methods in depth while we will mention only a few continuous approximations.

Gaussian Curvature

The following discretization of Gaussian curvature has been used in many papers

including [124,165,196].

K =
3

A
(2π −

M∑

i=1

ϕi) (1.32)

where A is the area of the one ring neighborhood of the center vertex. The factor

3/A in the formula for K comes from the area of barycentric cells. Note that using

barycentric cells for area is not always very accurate. The correct area that should

be used is the area of Voronoi cells. However, in this case it is possible to encounter

the case where the center of the Voronoi cell (the circumcenter) may lie outside of

the triangle (in the case of obtuse triangles) [148].

Discretization of Gaussian curvature presented in equation (1.32) is also called

the “angle deficit” (or “angle defect”) and is one of the most commonly used

formulas. One good property of this discretization is that it satisfies the Gauss-

Bonnet theorem which is true in the smooth case. However, it has been shown

55

that it is not a correct estimation of the Gaussian of the polyhedral surface or

the underlying smooth surface [16], [1] - although it is justified in the case of a

polyhedron whose edges are the geodesics of an associated surface [117]. One reason

for this problem is the fact that such a discretization does not give information

on the nature of the vertex, namely whether it is a convex, saddle or a “mixed”

vertex. The proposed solution in [1] is to separate the negative and positive parts

of curvature. In which case, positive, negative and absolute curvatures are given

by the following set of equations:

κ+ = 2π − φ+

κ− = κ+ − κ

κabs = κ+ + κ−

where κ is the angle deficit, and φ+ is the total angle in the convex cone of the

vertex. Convex cone is defined by the edges within the one-ring of a vertex that

belong to the boundary of the convex hull. Note that κabs is analogue to |κ1|+ |κ2|

in the continuous case [117]. This method distinguishes between three types of

vertices (for the detection algorithm, see [178]). However, it is stated in [117]

that there are at least six types of vertices: convex, concave, saddle, convex-fan,

concave-fan, saddle-fan. The lack of cases for all these types leads to limitations

on the quality of the approximation.

In [16], the angle deficit technique to curvature estimation is studied further.

They show that the estimation of Gaussian curvature by angle deficit is correct only

for very specific meshes and is wrong in general. It is established that when the

distance between the center point and its neighbors reduces to zero, the angular

defect is equal to a degree two polynomial in principal curvatures. It is shown

that this polynomial can be computed precisely for regular meshes and that it

56

makes sense to use angle deficit only for valances four (with neighbors aligned with

principal directions) and six. It is also shown that in the case of an irregular mesh

error incurred by using the angle deficit is dependent on the principal curvatures.

Another angle deficit based, yet slightly different formula for discrete Gaussian

curvature is given in [117] and is called the “corrected” formula:

K =
(2π −

∑M
i=1 αi)

1
2A− 1

8

∑
i cot αili

2

The concept of normal cycles from differential geometry is introduced by Cohen-

Steiner and Morvan [38]. Their results involve (discrete) curvature measures de-

fined below. These measures are defined by integration of corresponding invariants

on the normal cycles. The discrete Gaussian curvature measure is defined as the

function that associates with every Borel set B the following quantity φK
V (B) , where

g(p) is the angle deficit.

φK
V (B) =

∑

p∈(B∩P)

g(p)

An angle deficit based, but a fairly different method is presented in [40]. Given

a one ring around vertex x with edges of each triangle in the ring labeled ai, bi,

ci, latter one being the edge across from x, the formula for Gaussian curvature is

given by:

K(x) =
2(k δ(x− xk)∑

i Ai
(1.33)

Ai =
√

s(s− ai)(s− bi)(s− ci) (1.34)

s =
ai + bi + ci

2
(1.35)

(k = 2π −
∑

i

φi (1.36)

φi = arccos(
a2

i + b2
i + c2

i

2aibi
) (1.37)

57

In [119] a spherical image based discrete method is introduced for estimating

the Gaussian curvature. In the continuous case, the theorem based on spherical

image is the following: Given a closed path around a point on a surface, if the tails

of the unit normals are placed at the given point, the heads of the normals trace

out a closed curve on the unit sphere. The limit of the area within this closed

curve, divided by the area of the path as the path shrinks to the point is equal to

the Gaussian curvature. In the discrete case, one can use the ratio of the area of

triangles formed by the normals at the center vertex over the area of the one ring

around the vertex as a discretization of the Gaussian curvature.

In the same paper, an asymptotic error analysis is given for several of the

methods for Gaussian curvature and normal estimation on a surface that is a

graph of a function z = f(x, y). The results for the non-uniform case, namely

when the samples (x, y) have no pattern, are summarized in the following table:

Method Error in Normal Error in Curvature

Quadratic Fit O(h2) O(h)

Normal Average O(h) –

Spherical Image,

given O(h2) accurate normals – O(h)

Angle Deficit – O(1)

Table 1.3: Error analysis results from [119].

Mean Curvature

A common discretization of mean curvature at a vertex xi is given in equation

(1.38) [165]. α and β are the angles opposite the shared edge eij between xi and

58

xj.

Hi =
1

2

∑

j

(cot αj + cot βj)(xj − xi) (1.38)

In [41] the same discretization with an area factor is used for mean curvature

normal.

It is claimed in [109] that the cotangent weight approximation for mean cur-

vature is not appropriate for getting point-wise correct values, however they do

approximate normals correctly. They propose a complementary weighting scheme

that guarantees point-wise, linearly convergent mean curvature. Using this new

approximation, they derive formulas for estimating the Gaussian curvature as well

as a curvature tensor.

The following discretization of the mean curvature was used in [196]. The (is

the discretization of the Laplace-Beltrami operator given in equation (1.29) which

is also based on the cotangent formula.

H =
1

2
N ·(P

Most discretizations of mean curvature involve the edge length and the dihedral

angle per edge. The following are examples of such discretizations:

Integral absolute mean curvature is given by the following [47].

H =
1

4

n∑

i=1

||#ei|||βi| (1.39)

where n is the number of neighbors, ei is the edge between central vertex and the

ith neighbor, and βi is the angle between the normals of two adjacent triangles.

Note the similarity with the “mean curvature measure” given by equation (1.41).

Similarly, in [202] the integral mean curvature is used for smoothing. Their

59

formula however, is slightly different:

H =
1

4

n∑

i=1

||#ei||(π − βi)
2 (1.40)

Note that the mean curvature at edge ei is given by (π − βi)2/4.

The discrete mean curvature measure is a similar function, where |β(e)| is the

angle between normals of the triangles incident to the edge e. Sign of β depends

on the convexity of the edge [38].

φH
V (B) =

∑

e∈E

length(e ∩B)β(e) (1.41)

The anisotropic discrete curvature measure is given by:

∑

e∈E

length(e ∩B)β(e)#e⊗ #e

Note that the anisotropic measure generalizes the mean curvature measure. In the

case where the mesh is the restricted Delaunay triangulation of a sampled smooth

surface these measures converge linearly towards those of the smooth surface.

In [121], a technique for extending notions such as curvatures from differen-

tial geometry to the discrete case is presented. The method is based on spatial

averaging. The value computed by spatial averaging converges to the point-wise

definition as sampling increases given that the initial mesh is a good approxima-

tion of the smooth surface. The discretization of the mean curvature normal in

this paper is very similar to that given in equation (1.25). Only thing that differs

is the denominator of the fraction, which in this case becomes 2Amixed. Amixed is

described as the following: For each triangle in the one-ring, if a triangle is not

obtuse, then take the Voronoi area; if it is obtuse, depending on whether the an-

gle at center is obtuse or not take the area halved or area quartered respectively.

This formulation is claimed to be more accurate. They also use Amixed in the

discretization of Gaussian curvature based on angle deficit.

60

In [117], there is a formula for discrete mean curvature attached to an edge

instead of a vertex which is based on the same idea as equation (1.39). Let us

represent this formula as follows:

H(e) =
1

2
l(a)α(a),

where α is the plane angle of the neighboring faces and l(a) is the length of edge

a.

In [207], this discretization is studied in the topic of discrete shell energy. The

approximation can be improved by averaging these quantities over a sufficiently

large area. For example, given a triangle, one can compute the mean curvature on

the triangle as:

H(T) =
1

2At
(l1α1 + l2α2 + l3α3). (1.42)

The same holds true for mean curvature normal computed at a vertex, if the

normals are added into the equation:

H(V)n =
1

2Av

∑

i

liαini,

where li are edges adjacent to vertex V and Av is the area associated with the

vertex. This is equivalent (up to second-order terms) to equation (1.25).

Note that equation (1.42) can be improved if more degrees of freedom are added

in terms of angular variables associated with edges based on normals at edge

midpoints. All extensions to this edge based mean curvature discretization by

Zorin presents work in progress [207].

Discretization of the mean curvature given in [40] has the same structure as

the one for the Gaussian given in equation (1.33). Once again the edges of the

neighboring triangles are labeled ai, bi, ci, where the latter corresponds to the edge

61

across from the central vertex. Ai is same as in equation (1.34). The normals of

associated faces are denoted ni.

H =
1
2

∑
i arccos(ni · ni+1) · bi∑

i Ai

In [92], a Willmore energy based variational method is used for surface design

which requires a discretization of the mean curvature. The discrete mean curvature

hv at a vertex v used here is given by the following where av is the one third of

the area of the one ring around the vertex:

2hv =
−∇vav

av
. (1.43)

Mean curvature at an edge is given by the following in [87]:

He = 2|e|cos(θe/2), (1.44)

where θe is the dihedral angle at e.

Principal Curvatures

In [169] Taubin uses the assignment of a 3×3 quadratic form to each vertex where

a function of its eigen values (vectors) correspond to principal curvatures (direc-

tions). The construction of the quadratic polynomial is linear in the number of

neighbors of a given vertex. This quadratic is defined per vertex vi where vj be-

longs to the set of neighbors of vi, Tij is the unit length, normalized projection of

vi − vj onto tangent plane and κij is the directional curvature in the direction of

Tij (Equation 1.46). Directional curvature is approximated using finite differences,

therefore the surface mesh should be free of noise and may require a pre-smoothing

step.

62

κij =
2ni · (vi − vj)

|vi − vj|2
(1.45)

Mvi =
∑

vj

wijκijTijT
t
ij (1.46)

Note that this may also be generalized to any polyhedral surface. In [166] two

extensions to this method are proposed. One of them is based on changing the

weights wij to be proportional to angles instead of surface areas. The other is

changing κij (equation (1.45)) to reflect the average of directional curvatures in

two consecutive directions. This smooths large variations in directional curvatures.

However, their results show that they are not significantly better than the original

formulation by Taubin.

In [138] another vertex based discretization is introduced. The main difference

here is that instead of the one ring around a given vertex, the triangles inside a

geodesic neighborhood of the vertex are used. Then ”votes” from these faces are

accumulated to compute normal or curvature data. The same method is also used

to detect creases on noisy meshes. Although the results are compared to Taubin’s,

it is stated that they are not solving equivalent problems since Taubin’s method

requires a pre-smoothing step to remove surface noise.

Theisel, et al. [173] describe a different setup where the curvature tensor is

computed on a (triangle) face instead of a vertex, given the normals at each of

the three vertices. This is similar to Phong shading, where two different linear

interpolations are used, one for the surface, and the other for normals. Using

these interpolations one can compute the partials of the surface and the normals

and therefore can construct the curvature tensor. It is shown that this tensor

converges to that of the underlying smooth surface when the mesh is refined.

Another property of this tensor is that it depends on the length of the normals

63

associated with the triangle as well - therefore can be used as extra parameters to

improve the quality of the estimation. If the curvatures or the tensor is required at

a vertex as is the case with other methods, one can average the tensor values of the

neighboring triangles. However, there are problems with this formulation in the

case of irregular triangulations. Namely, the principal curvatures are in general not

perpendicular and the tensor has discontinuities at the triangle junctions. However,

the error is shown to be not much worse than that of other methods.

Another face-based discretization is proposed in [151]. Similar to the method

above, to get the curvature or other differential operators at a vertex, an average

of the operators on the faces is taken. In this case however, finite differences is

used. The main difference between the two methods is that the tensor per face

is constant in this case, whereas it is a continuous function on the face in [173].

This is caused by the fact that the required partial derivatives are computed with

finite differences instead of linear interpolation. A very important feature of this

formulation is that it can be extended to higher-order derivatives, such as a tensor

for the derivative of curvature.

In [81], Hamann uses the fact that a surface can be approximated locally as a

graph of a function, and uses such an approximation to compute principal curva-

tures. Given a vertex, the one-ring around it is used to compute the approximating

graph function which is a quadratic in this case. This method ensures that the

paraboloid passes through the central vertex. Given a quadratic in the following

form:

f(u, v) = (1/2)(au2 + 2buv + cv2),

the principal curvatures are the roots of:

k2 − (a + c)k + ac− b2 = 0.

64

In [56] two second-order approximation methods, namely Taubin’s [169] and

one very similar to Hamann’s [81] are compared against a new third-order approx-

imation. The idea is to fit a cubic surface to adjacent vertex data similar to the

quadratic in [81]. This time however, normals at adjacent vertices are also used

such that each vertex contributes one equation for position and two equations for

the normal. Now that there are 7 unknowns instead of 3 as in the quadratic case,

increase in the number of equations is expected. Note however, that higher-order

terms are not included in the equation for principal curvatures but they improve

the fit for lower-order terms. It is shown that this cubic-order method performs

better than the quadratic methods.

Razdan and Bae [148] recently introduced a method based on approximating

the neighborhood of the vertex by a bi-quadratic Bezier surface. The neighborhood

in this case is the double-ring around the central vertex to assure that the surface

behaves well near the vertex. This does not guarantee the central vertex to lie on

the approximated surface but it adds more flexibility to the surface fit and allows

one to fit higher-order surfaces by just changing the basis functions. This method

is shown to perform better than others in the case of an irregular triangulation.

One can compute the principal curvatures separately using any discretization of

mean (H) and Gaussian (K) curvatures using the formula: κi,j = H ±
√

H2 −K.

In [124], given K based on angle defect they do the following for estimations of

principal curvatures: If K > 0 then κ1 = κ2 =
√

(K). Else κ1 = κ2 = 0.

If one needs the absolute sum of principal curvatures the following formula may

be used [47]:

|κ1| + |κ2| =

2|H|, if K ≥ 0

2
√

|H|2 −K, otherwise

65

In [87], the shape operator at an edge is defined by:

S(e) = He(#e× #Ne)(#e× #Ne)
T (1.47)

where He is given in equation (1.44) and Ne is the edge normal, computed as

the average of the normals of the two adjacent triangles. The vertex-based shape

operator at vertex p is given as the average over adjacent edges:

S(p) =
1

2

∑

e

(#Np · #Ne)S(e) (1.48)

The two largest eigen values of this 3x3 matrix are the principal curvatures.

There is also a recent shape operator construction based on discrete focal surface

in [198].

1.3.3 Finite Elements

Partial differential equations (PDEs) are commonly used to describe rate of change

in time or space of some physical quantity. PDEs appear in computer graphics

research often: physically based simulations, mesh optimization, and smooth sur-

face design are just a few examples. Directly related problems were covered in

Section 1.2.2. One technique for solving a PDE is the Finite Elements Method

(FEM). This method presents a natural choice in graphics, especially in mesh

based problems, due to the readily available discretization of the domain.

Unlike engineering and physics disciplines, in graphics, visual details, speed and

robustness play more important roles than accuracy and convergence. However,

convergence is important in graphics for it leads to mesh independent results. One

of our results is based on finite elements where we provide evidence of convergence

and therefore mesh independent visual results while solving a sixth-order PDE. In

this section, we give a brief overview of the general finite elements methods with

66

references to their use in some related work followed by a review of the mixed

method, the type of finite element formulation we use in our results. In the last

section we review literature where mixed finite elements has been used.

Finite Element Methods

The solution to a PDE modeling some geometric or physical occurrence does not

always exist due to complexities in geometry or boundary conditions. In such cases,

one usually settles for an approximate solution that is close enough to the exact

solution. FEM provides one numerical technique to achieving such an approximate

solution.

The idea is that the problem at hand can be reformulated in a variational form,

where the problem is transformed into finding a function in a certain space of

functions that minimizes a certain expression. To do so, one chooses a finite set

of test functions (also known as shape functions), where the minimizing function

is among their linear combinations, and this approximation has small, convergent

error.

The spaces of functions used in finite element analysis are called Sobolev spaces.

Given a domain Ω, a Sobolev space is a subspace of L2(Ω) where L2(Ω) is the set

of functions which are square integrable over Ω. The notation Hm(Ω) is used to

describe a Sobolev space where the weak derivatives up to order m are also square

integrable. A weak derivative is a derivative taken in the sense of distributions

([23]). The subset of the space Hm(Ω) where all functions satisfy zero boundary

conditions is referred to as Hm
0 (Ω).

FEM solves the continuous problem by first breaking the domain into simple

elements (e.g. triangles) and describe simple functions per element where the

67

unknown weights in the linear combination are placed at nodes on an element

(e.g. vertices of a triangle). The system is formulated as a set of equations that

are gathered from equations written per element and then combined based on

the connectivity of the domain. Once the nodal values are gathered, it is simple

interpolation to compute the solution at any point within an element. The accuracy

can be improved with increased resolution, without the need for more complex

elements and the local nature of the test functions leads to sparse systems.

The choice of elements and function spaces that these test functions lie in depend

on the complexity of the problem at hand. For the problems we are solving, we use

linear Lagrangian elements. As the name suggests these elements support linear

functions. The degrees of freedom associated with each triangle are weights defined

on the vertices. The test functions are defined as hat functions centered at each

vertex of the mesh, i.e. each test function equals one only at the vertex its index

matches, everywhere else the function evaluates to zero.

One important thing to cover here is the distinction between the strong and the

weak formulations of a given PDE, for we will be using it in our work. Suppose

we are solving a boundary value problem of the form :

Du = f , with u ∈ Ω and u|∂Ω = ub, where ub is the boundary condition and D is

some differential operator. This is the differential or the strong form of the problem.

The weak formulation weakens the derivative definition by domain averaging. This

is done by introducing integral terms and is expressed as: (Du, v) = (f, v) where

(·, ·) is a bilinear form defined as (u, v) =
∫

Ω uvdA and v is a test function.

The literature and resources in finite elements methods are immense, and it

would be impossible to cover all the details and variations of the method. We refer

the reader to [21,33,164] and [22] and the references therein.

68

Conforming and Non-Conforming Finite Elements. Finite elements refer

to the finitely many sub-domains of the domain Ω. For two dimensional problems

finite elements can be triangles or quadrilaterals. For three dimensions, which is

not in the scope of this work, they can be tetrahedra or cubes.

Conforming finite elements are those that lie in the Sobolev space the problem

is posed in. For example, for second-order problems, finite elements in H1 are used.

In [21], Theorem 5.2 proves that given k ≥ 1 and Ω bounded, a piecewise infinitely

differentiable function v belongs to Hk, if and only if v ∈ Ck−1. Therefore, for

second-order problems, one can use C0 conforming elements. An example of a

C0 element is the linear triangular element where function values are prescribed

at triangle vertices. Note that, for a fourth-order problem, a conforming method

would require the use of C1 elements which are rather complicated.

In contrast, non-conforming elements are those that do not lie in the same

Sobolev space as the one the problem is posed in. Non-conforming elements are

used in higher-order problems where obtaining conforming finite elements is dif-

ficult. Since there are no inter-element continuity requirements, the elements are

much simpler. However, the convergence results from conforming elements no

longer hold here and a new set of convergence and error analysis results is needed.

Most work in non-conforming finite elements involves constructing these elements

and proving error bounds. An example of a non-conforming element is the quadratic

Morley element with the least number of degrees of freedom used in approxima-

tions in H2. The Morley element has prescribed function values at triangle vertices

and normal derivative values at edge midpoints.

69

Mixed Finite Elements Methods

Mixed finite elements have been studied extensively (See [6,23] for reference and [4]

for a concise overview.)

The idea behind mixed finite elements is to use independent approximations

for both the dependent (primal) variable and variables defined as a function of its

derivatives (auxiliary variables). In order to do so, one may use different finite-

dimensional spaces for each variable and achieve different accuracies. One other

point to note is that the variational formulation for a mixed method finds a saddle

point as opposed to a minimum.

Mixed methods are preferred over others when an auxiliary variable is of more

interest [4]. For other methods this variable would have to be computed applying

differentiation after the problem has been solved, which could lead to less accuracy;

whereas in mixed methods auxiliary variables are computed simultaneously with

primal variables. One needs to be careful, since it is not guaranteed that through

mixed methods auxiliary variables will be computed more accurately. It depends

on spaces used.

Another reason is the fact that mixed methods allow the use of lower-order,

therefore simpler elements while solving a fourth, sixth or a higher-order problem.

In contrast, with non-mixed methods one would have to use the very complicated

C1 or C2 elements respectively in order to solve fourth or sixth-order problems [4].

On the other hand, one should note that using mixed methods increases the

number of variables in the system and leads to larger matrices. Furthermore,

due to the saddle point property mentioned above the resulting system will be

indefinite, whereas basic finite elements matrices are positive definite.

Typically, a mixed finite element discretization would result in a linear algebraic

70

system of the form:

 A BT

B 0

 x

y

 =

 f

g

 (1.49)

with A n × n, and B m × n, where n is the number of primal variables and m is

the number of auxiliary variables.

As covered recently in [17], such sparse linear systems can be solved robustly and

efficiently using sparse direct solvers.

For stability and solvability of a mixed element formulation it is important that

it satisfies the inf-sup condition. The inf-sup condition is given by:

Definition 1.1. ([6], p.12) There exists a positive constant β, independent of the

mesh size h, such that: ∀y ∈ Y , ∃x ∈ X\ {0} such that xtBT y >= β||x||X ||y||Y .

As described in [6], the inf-sup condition implies that the matrix BT is injective;

i.e. n ≥ m. However, note that injectivity is not sufficient to show that the

condition holds. There is an ellipticity condition on the matrix A that is necessary

as well as conditions on the norms associated with the function spaces used.

The stability of these systems may be improved by the use and design of stable

mixed elements. However the use of such elements may require extra constraints

and lead to more complicated systems. See [5] for use of Lagrange multipliers to

impose constraints in a mixed framework which leads to a positive definite system.

Mixed Methods Literature

We can only touch upon the literature on mixed methods. One of the com-

monly used mixed elements method is described in [34] and is referred to as the

Ciarlet-Raviart formulation. This work solves the biharmonic problem with trivial

71

boundary conditions. It involves C0 finite elements with piecewise polynomials of

degree at least two, and a proof for linear convergence. Scholz later proved error

bounds for the same formulation for the biharmonic in L2 and L∞ for C0 elements

associated with linear or higher-order polynomials [159]. He showed O(h) for the

error in the primal variable and O(
√

h) for the auxiliary variable in L2, and O(h) in

L∞. Another extension is by [193] who utilizes quadratic and linear finite elements

for the primal and auxiliary variables respectively. In the more recent work [2], the

same problem is solved with non-trivial boundary conditions, with an optimality

condition achieved through an extra term based on normal derivatives in the for-

mulation. [24] talks about a different mixed formulation to solve the biharmonic

in the context of the plate bending problem. Instead of using ∆x as the auxiliary

variable, all second derivatives of x are used as auxiliary variables.

In [122] the biharmonic equation with two different sets of boundary conditions

are considered. The conditions x|∂Ω = 0 and ∂x
∂n |∂Ω = 0 are referred to as the

clamped plate problem and the other set of conditions lead to the simply supported

plate problem. A formulation similar to that of Ciarlet-Raviart for the simply

supported plate problem is introduced and error estimates are provided.

[55] is commonly referred to in the context of applying mixed methods to

the biharmonic problem. The authors aim at decoupling the mixed system into

two harmonic equations which would require the knowledge of Dirichlet boundary

conditions for the auxiliary variable. A method to reduce the computation of these

Dirichlet conditions to a linear system is studied and it is extended to the Stokes

problem.

In [35], a fourth-order PDE based on the gradient of the Willmore flow is used

for surface restoration. The PDE is solved by providing a weak formulation for the

72

problem and solving it using the proper finite element spaces. They also reduce

the system to two second-order systems which is along the lines of mixed methods.

There are two variants for imposing boundary conditions: one involves prescribing

Neumann boundary conditions on the boundary row and the other one uses an

exterior row of triangles in the formulation to do the same. The theory behind the

mixed formulation used was expanded later in [152].

Finite elements has been utilized to solve a surface diffusion problem in [8]. The

normal velocity of the flow is proportional to the Laplacian of mean curvature. This

leads to a fourth-order nonlinear PDE. In this case, there are four unknowns; cur-

vature, curvature vector, Laplacian of curvature and vector form of the Laplacian

of curvature. This breakdown of unknowns is representative of the mixed method

where the formulation involves only zero and second-order operators. In this work

boundary conditions are either non-existent (closed surfaces) or natural boundary

conditions are employed.

A direct solver is proposed in [25] as opposed to hierarchical multi grid solvers or

iterative solvers for fourth-order mixed finite element problems. This efficient and

parallelizable solver is based on the idea of reducing the system to block diagonal

form and utilizing block Gaussian elimination.

1.3.4 Numerical Methods for Energy Minimization

Here we summarize a few numerical methods used in energy minimization prob-

lems, mostly based on the summary provided in [183].

Linear Systems

Given a linear system Ax = b, where A is a sparse n×n matrix and b an n-vector,

there are two basic procedures for solving for x: direct and iterative.

73

A direct method consists of factorizing the matrix, commonly as an LU fac-

torization with permutations P and Q such that PAQ = LU and the solution

x = Qy where Uy = z and Lz = Pb. This is slow since the factorization al-

gorithms take usually O(n3) time. It should only be used if n is small enough.

However, depending on the properties of the matrix A, this running time can be

improved.

An iterative method is based on computing a sequence of approximations xk

that converges to the solution x. The iteration is terminated when a stopping cri-

teria based on accuracy is reached. To increase convergence rate one may apply a

preconditioner to the matrix A. Two iterative methods for solving linear systems

are conjugate gradient and conjugate residual algorithms. Conjugate gradient al-

gorithm can only be used for positive definite A and conjugate residual algorithm

may be used for symmetric indefinite A.

Unconstrained Minimization

Given a functional f : Rn → R that is continuous and possesses continuous second

partial derivatives, the unconstrained minimization of f can be stated as:

min
x∈Rn

f(x)

If the functional f is nonlinear then usually an iterative method is used. The idea

of generating a sequence of approximations is the same as is in the linear case. In

this case though a descent principle must hold: If the point xk is not a solution

then f(xk+1) < f(xk) and if xk is the solution then f(xk+1) = f(xk). The relation

that describes an iterative method is given by:

xk+1 = xk + tkdk,

where dk is the descending search direction usually based on first and second deriva-

74

tives of f , and tk is determined by line search in the direction dk.

In steepest descent, dk = −∇f(xk)T , the negative of the gradient. One problem

with this is that in two successive steps the search directions end up being perpen-

dicular to each other. In general though, this methods converges linearly. In New-

ton’s method the search direction is given by: dk = −H(xk)−1∇f(xk)T , where H

is the Hessian. Newton’s method converges quadratically, but evaluation, storage

and inversion of Hessian may be time/space consuming. The non-linear conjugate

gradient method lies between these two. The search direction dk is computed from

gradients of all previous points. In [61] quasi-Newton methods are also mentioned.

Nonlinear Programming

Given two functions f : Rn → R and h : Rn → Rm, for constraints, the general

nonlinear programming problem is given by:

min
x∈Rn

f(x), with h(x) = 0

If h(x) is a linear constraint, namely in the form Ax = b, then one can use the

constraints to eliminate variables. Elimination is based on solving for k of the n

unknowns in terms of the n−k unknowns and substituting in the functional. After

this step one is left with an unconstrained problem on n− k variables to solve as

in the previous paragraph.

Quadratic Programming

The general quadratic programming problem with equality constraints can be ex-

pressed as:

min
x∈Rn

f(x) = xT Ax + bT x + c, with D(x) = e

75

One way of solving this problem is by Lagrange necessary conditions which are

linear in Lagrange multipliers λ and the unknowns x. The Lagrange necessary

conditions are given by:

 A + AT DT

D 0

 x

λ

 =

 −b

e

A problem with Lagrange multiplier method is that the system will be large

for large degrees of freedom and constraints and furthermore, the matrix is not

positive definite to allow for more efficient methods. Since the matrix has zero

elements simple iterative methods would fail, but a block iteration method may

be more appropriate [61].

A penalty based way of solving this problem is adding the constraints to the

functional to be minimized as penalty terms, such that as this new energy is

minimized, not satisfying the constraints get penalized. Once again one would be

left with an unconstrained optimization problem although this new functional may

be of any order [61].

A calculus of variation strategy is based on characterizing the solution to the

optimization problem as the Euler equation which is a PDE [61]. In general for a

functional of order m, one obtains PDEs of order 2m. This PDE system can be

solved by common methods such as finite elements or finite differences. However,

since the order is rather high, special care must be given to the numerical issues.

76

2
Manifold Based Smooth Surface

Construction

As discussed before, the problem we are solving is to define high-order quantities

on a discrete setting and use such quantities in surface modeling. By a discrete

setting, we refer to meshes where the mesh is approximating a smooth high-order

surface. These approximations may not converge point-wise but the ease of directly

working on the provided mesh, and the simplicity of some of the mesh operations

make them desirable. We will consider two such approximations in Chapters 3

and 4. However, for these formulations to work well, one needs to use fairly high

resolution meshes.

In the case of a coarse input mesh, one could try subdivision to build a higher

resolution mesh and apply the same discretizations as above, but this may cause

problems near high valance vertices for smoothness decreases near such vertices.

As an alternative, one can use the fewer input vertices and sufficiently high-order

basis functions to build smooth surfaces. Given such a smooth surface, one can

compute differential quantities exactly, and in this setting these approximations are

in fact point-wise convergent. This way one can avoid dealing with discretizations

of curvature as described in Section 1.3.2 and compute this and other differential

quantities directly on the surface.

In this chapter, we use a coarse quadrilateral input mesh and bases of any

order of smoothness ranging from C2 to C∞, in order to represent a surface of

any prescribed order of smoothness. We use a manifold-based construction that

circumvents the problems of lower-order smoothness near extraordinary vertices

77

that subdivision surfaces have. We discuss other desirable properties of manifold

surfaces below.

Having computed such a surface, high-order functionals can now be computed

exactly in the design of a variational surface (Section 1.2.1) or a high-order flow

(Section 1.2.3). In fact the functionals described in Section 1.2 that approximate

geometric invariants, do so by using surface derivatives, which are very straight-

forward to compute in this setting. Furthermore, many settings covered under

Section 1.3.1 also apply directly. Even though we have not experimented with any

of the surface optimization schemes described, it is straightforward to do so given

the construction.

2.1 Introduction

Manifold-based representations of surfaces offer a unique combination of features:

arbitrary topology, arbitrary-order smoothness, explicit analytic expressions for lo-

cal parameterizations, linear dependence on control points, k-flexibility and visual

quality.

In this chapter we present our detailed study of extensions of the manifold

construction of [195], and explore the properties of resulting surfaces. We extend

[195] in the following ways:

• Surfaces with boundaries. Practical applications require modeling surfaces

with boundaries. We extend the manifold construction to surfaces with piece-

wise smooth boundary, describing constructions for three types of local charts:

smooth boundary, convex and concave corners.

• Derivative magnitude control. [195] describes a C∞ construction. However,

the magnitude of derivatives of local parameterizations grows rapidly with

78

derivative number. We show that this is a general property of constructions

with locally supported basis functions and derive a lower bound for deriva-

tive growth. If only a finite number of derivatives is needed, we describe a

construction for Cd-manifolds for any d, with reduced derivative magnitude.

• Flexibility. By construction, manifold surfaces are at least 3-flexible at points

corresponding to mesh vertices. We explore flexibility of resulting surfaces at

arbitrary points, where it is not assured by construction.

This chapter is organized as follows: After a brief section on directly related

previous work (Section 2.2), we present in Section 2.5 our modification of the

method in order to support piecewise smooth boundaries on C∞ surfaces. In

Section 2.6.1 we present the method to generate Cd surfaces with any prescribed

smoothness d followed by Section 2.6.2 providing the necessary modifications to

add support for piecewise smooth boundaries of same smoothness. In Section 2.7,

we explore optimal derivative behavior for these constructions and provide a lower

bound for derivative magnitudes. Section 2.8 is devoted to the demonstration of

the flexibility properties of our surfaces. We conclude with the presentation of our

results.

2.2 Previous Work

A considerable number of Cd, d > 1 surface constructions for arbitrary meshes of

various types were proposed over years, with the important case of d = 2 receiving

most attention. Known constructions can be partitioned into three groups, based

on spline patches, subdivision surfaces and manifolds respectively. We briefly re-

view other high-order smoothness constructions and consider manifold-based con-

structions in more detail.

79

In Hagen and Pottmann [76] C2 interpolants of boundary position, tangent

and curvature data are constructed. Gregory and Hahn [58] describe a C2 hole-

filling algorithm; Bohl and Reif [15] describe C2 conditions on degenerate patches

and how N patches can be joined at a point. C2 spline surfaces on arbitrary

meshes were constructed by Peters [139] and Cd spline surfaces for general d are

described by Prautzsch in [144]. More recently, various types of constructions

based on polynomial patches were proposed in [140], [114] and [98]. C2 subdivision

algorithms based on standard schemes and with zero curvature at extraordinary

vertices were proposed by Umlauf [145] and Biermann, et al. [10]. Flexible C2

modifications of subdivision surfaces are described in [208] and [110].

The idea of manifold-based constructions was introduced in [64] where a man-

ifold surface is built from a polygonal mesh using one chart per mesh element

(vertices, edges and faces). In their construction, all interior vertices are required

to have valance four (which can be achieved by a subdivision-based pre-process),

and faces have to be polygons with no more than six edges. In [63] and [65] this

manifold-based construction is used to generate parameterizations, where mani-

folds are used as parameter domains for surfaces of different topologies.

In [128] another manifold-based method for generating Cd surfaces is described.

This method requires a pre-process of repeated Catmull-Clark subdivision steps in

order to isolate irregularities of the mesh. The number of such steps is O(logn) in

worst case, where n is an input parameter describing the extent of the influence

of control points. Parts of regular and irregular subgraphs of the resulting mesh

are chosen as charts with corresponding transition functions. The shapes and sizes

of charts are dependent on the input parameter n and the regularity. In order to

generalize the B-spline approach with this method, each chart is then mapped to

80

a control point which describes the shape of the resulting surface. In [129], three

realizations of this general scheme is described.

Extensions of these methods for surfaces with smooth boundaries have been

outlined in most constructions mentioned above. In [64] the extension involves

the definition of a different set of charts for boundary edges and vertices similar

to our construction. On the other hand in [128], the extension for boundaries is

achieved by adding auxiliary layers of faces around the mesh boundary such that

all vertices can be treated the same. Compared to previously considered boundary

constructions, our construction has the following distinctive features: boundary

curves can be independent of the interior, and include corner points.

An important recent direction of work [67, 68] is the construction of manifold

splines based on affine atlases. Compared to other manifold constructions, these

constructions use an affine atlas, i.e. an atlas in which all transition maps are

affine. The advantages in this case are considerable: transition maps are greatly

simplified and it is no longer necessary to use a partition of unity to merge local

geometries together; one can use a spline construction on arbitrary triangulations

(e.g. DMS splines or Powell-Sabin splines) to build a purely polynomial surface.

For meshes with boundary in principle, one can construct a purely affine atlas,

and for closed meshes one can construct an affine atlas after a number of points

determined by the genus of the mesh are removed.

One can observe that this type of constructions reduces the task of building

a surface of arbitrary topology to local constructions on arbitrary triangulations.

While methods for these constructions are available, they are relatively complex,

especially for high order smoothness, and while these techniques yield good results

for surface fitting, they are not commonly used for ab initio construction of sur-

81

faces of high-order smoothness from relatively coarse control meshes, which is our

primary goal. One can regard the two constructions as complimentary.

The difference between two classes of constructions can be seen from consid-

ering the simplest example: a simply connected open mesh. In the case of affine

atlas construction, the process proceeds as follows: the mesh is mapped piecewise

linearly to the plane ([68] uses a type of discrete conformal parameterization) and

an arbitrary triangulation spline construction is used to build the surface.

We note that solving a linear system dependent on the control mesh is required,

and the charts are arbitrarily shaped k-gons formed by triangles adjacent to a

vertex. As a result, one needs to be able to construct splines invariant with respect

to affine re-parameterizations on such sets. This task is far from trivial and the

visual shape quality of most resulting surfaces is far from the quality of standard

B-splines or subdivision surfaces of similar order.

This is in contrast to commonly used geometric modeling constructions, such as

subdivision surfaces or surface splines. We note that while all these constructions

in a sense are affine manifold splines, but not on the whole mesh. Instead, they are

affine manifold splines defined on the mesh with all vertices excluded, and with no

chart dependence on the control mesh. In the case of the construction of [64] and

related constructions, there is a finite number of simple charts. In the simplest

case [195], there is a single chart type, and each 1-neighborhood of a vertex is

mapped to this chart without a global parameterization procedure.

2.3 C∞ Manifold Surfaces from Closed Meshes

In this section we briefly describe the manifold-based construction in [195], which

our construction extends.

82

A set M has 2D manifold structure, if a collection of charts (Ci, ϕi) is defined,

where Ci are open domains in the plane and ϕi are one-to-one maps Ci → M , such

that the images ϕi(Ci) cover all of M .

M is a C∞ (or Cd) manifold if the transition maps from chart to chart tji =

ϕ−1
j ◦ ϕi, defined for pairs of charts for which ϕi(Ci) and ϕj(Cj) intersect, are C∞

(or Cd). In [195], functions f loc
i : Ci → R3 are constructed defining the geometry

embedding functions locally on each chart. Then partition of unity functions wi

(i.e. functions with support restricted to individual charts Ci and summing up to

1) are used to combine local geometry embeddings. On M , the complete surface

is defined by
∑

i(wif loc
i) ◦ ϕ−1

i . However, in practice it is evaluated on individual

charts Ci via

fi(x) =
∑

j:ϕi(x)∈ϕj(Cj)

wj(tji(x))f loc
j (tji(x)) (2.1)

Figure 2.1 illustrates the construction (transition maps to a single chart are

not shown for clarity). Note that the complexity of evaluation of this expression

is determined by the complexity of transition maps tij, weights wj and geometry

functions f l
j. All three components are designed to be C∞ to guarantee that the

function fi(x), i.e. the resulting surface is C∞.

2.3.1 Charts and Transition Maps

Chart maps ϕi are defined per vertex. Each chart domain is a curved star shape Ci,

obtained by mapping the ring of faces sharing vertex vi to the plane as described

below. The overlap between the images of two charts in control mesh is two faces

of the mesh. Instead of constructing the maps ϕi, the maps ϕ−1
i are constructed.

The chart construction proceeds in two steps: first, the faces adjacent to a given

vertex are mapped piecewise bilinearly to the plane (maps Li to domains Si). Then

83

C0

C1

C2

C3

1
–1

2
–1

3
–1

0
–1 f0loc

f1loc

f2loc

f3loc

!w0

!w1

!w2

!w3

Figure 2.1: Components of the manifold-based surface construction.

a transformation ci is applied to each wedge of the regular star Si; ci squeezes it

so that it becomes a conformal image of a square. Therefore, the transition maps

are compositions of two functions (Figure 2.3):

ϕ−1
i = ci ◦ Li.

The map ci is a composition of two maps as well, a linear map lki and a conformal

map gki :

ci = gki ◦ lki

where

gki = z(4α/ki), where z = x + iy

lki =

cos(απ/4)
cos(π/ki)

0

0 sin(απ/4)
sin(π/ki)

 .

In these formulas, α = 1 for charts away from the surface boundary. Other values

of α are used for constructing boundary charts as explained below.

84

c1

L1 L2

c2

transition map t21

S1 S2

C1 C2

lk z4/k

linear conformal

Figure 2.2: Chart map construction.

2.3.2 Partition of Unity

The partition of unity is built from identical pieces defined initially on the standard

square [0, 1] as a product of two identical one-dimensional C∞ functions η(u)η(v).

The function η can be chosen in different ways, and the choice has a significant

impact on surface behavior. We discuss possible choices in detail below. [195] uses

η from [26]:

η(t) =

1 : 0 ≤ t ≤ δ

h((t−δ)/a)
h((t−δ)/a)+h(1−(t−δ)/a) : δ < t < 1− δ

0 : 1− δ ≤ t ≤ 1

where δ > 0 (1/8 is used), a = 1− 2δ and h(s) = exp(2 exp(−1/s)/(s− 1)). Once

the function is defined on the square, the weight for the whole chart is obtained as

follows: First, a rotation by π/4 combined with the map g−1
k is applied to remap

85

η(u)η(v) to a single wedge. Then the function is defined by rotational symmetry

on the rest of the chart.

2.3.3 Defining Geometry

In [195] geometry is defined using polynomials. Two steps of Catmull-Clark sub-

division are applied to the mesh to define the coarse shape of the surface and then

polynomials are used to fit the shape to these data points in the least squares

sense. Every vertex of the refined mesh after the subdivision step can be assigned

to points with bilinear coordinates (l/4, n/4) in each sector Si of the star. For each

vertex v, these points in Sk are remapped to the chart domain Ci using the map ci.

There are m = 12k+1 points inside Ci which are denoted x0, ..., xm−1 (Figure 2.3).

The 3D limit positions for these points are denoted as s0, ..., sm−1. The goal is to

define a polynomial geometry function f of total degree ≤ d = 3min(14, k + 2)4

such that differences f(xi)−si are minimized in the least squares sense (the matrix

mapping sample points to polynomial coefficients is precomputed).

Catmull - Clark
subdivision

Dyadic points

fit

Figure 2.3: Defining geometry functions.

86

2.3.4 Summary

For a manifold construction of this type, we need to choose chart maps ϕi, geometry

maps f loc
i and functions η determining partition of unity functions wi. In this

work, we add more types of charts (Ci, ϕi) to handle surfaces with boundaries, and

consider different choices for fi and η.

2.4 Surfaces with Boundaries

One of our goals is to describe the manifold-based construction of surfaces with

boundaries. A more general class of piecewise smooth surfaces can be easily ob-

tained from this class by stitching smooth surfaces with boundaries along boundary

curves. To be able to do this, the boundary curves have to be defined indepen-

dently of the interior, i.e. the shape of the boundary curve should be completely

determined by the control points on the boundary of the control mesh.

Recall that for a closed C1-continuous surface in R3, each point has a neighbor-

hood that can be smoothly deformed (that is, there is a C1 map of maximal rank)

into an open planar disk D. A surface with a smooth boundary can be described

in a similar way, but neighborhoods of boundary points can be smoothly deformed

into a half-disk H, with closed boundary (Figure 2.4). In order to allow piecewise

smooth boundaries, we introduce two additional types of local charts: concave and

convex corner charts, Q3 and Q1. A C1-continuous surface with piecewise smooth

boundary looks locally like one of the domains D, H, Q1, or Q3. Convex and

concave corners, while being equivalent topologically, are not C1-diffeomorphic,

that is, there is no C1 non-degenerate map from Q1 to Q3. One can show that al-

most all C1-continuous surfaces obtained as linear combinations of basis functions

are diffeomorphic. This implies that separate constructions are needed for convex

87

Q3Q1HD

Figure 2.4: The charts for a surface with piecewise smooth boundary.

and concave boundary corners, just as it is the case for subdivision surfaces [10].

Rather than having one type of star-shaped chart domains per valence, as it was

the case for closed surfaces, we need to consider three chart types as shown in the

Figure 2.5.

Figure 2.5: Left: valance 4 smooth boundary chart. Center: valance 2 convex corner chart.

Right: valance 6 concave corner chart.

While the number of chart types one needs to consider increases, the main

elements of the construction remain similar: we can use similarly constructed

chart maps, partition of unity functions, and geometry functions. While geometry

functions can be obtained using essentially the same fitting idea, we note that, just

as it is the case for splines and subdivision surfaces, it is often desirable to have

interior independent boundary curves which depend on boundary control points

only. This property is useful whenever it is desirable to be able to modify the

interior of a surface without changing the boundary or join two surfaces without

88

gaps. In addition, this construction immediately yields a way to create interior

creases, by treating tagged edges as boundary edges. On the other hand, interior-

dependent constructions may yield better surface quality (Figure 2.8).

2.5 C∞ Surfaces with Boundary

In this section, we describe the simplest extension of [195], preserving the con-

struction in the interior in exactly the same form, and reusing most elements on

the boundary. The input to our construction is a quadrilateral mesh, with tags for

convex and concave corners.

The charts and transition maps for boundary vertices are constructed using

a small change to the construction for interior vertices. We choose star-shaped

areas shown in Figure 2.5. These are obtained by joining together k equal sectors

for a vertex of valence k; however, instead of choosing the angular size of each

sector to be 2π/k, we use π/k for smooth boundary vertices, 3π/(2k) for concave

corners and π/(2k) for convex corners. The formulas for the maps are obtained by

choosing α to be 1/2, 3/4 and 1/4 respectively. The partition of unity functions

are constructed per quad, in the same way it is done in the interior vertex case.

The most significant difference is in the geometry definition. As discussed in

Section 2.4, one can either constrain the boundary curves to be dependent only

on the boundary control points, or allow boundary curves to be influenced by

arbitrary points.

In both cases we start with two steps of Catmull-Clark subdivision, as in the

interior case. The number of control points is now m = 12k + 4 instead of m =

12k + 1, as shown in Figure 2.6. We use the modified Catmull-Clark scheme

described in [10] to handle all types of boundary vertices. The flatness parameter

89

of this scheme can be used to control surface behavior near corner points.

The local geometry function is computed exactly as in the interior case using

a polynomial fit with precomputed matrix; the only difference is in the choice

of the maximal polynomial degree. In general we use monomials of total degree

≤ d = 3min(14, k+2)4 as the basis functions, excluding two empirically determined

cases: for a smooth boundary vertex with valance k = 2 (valence for regular meshes

with boundary) we choose d = 6. In addition, for concave corner vertices with

valance k ≥ 6 we choose degree d = max(14, k). The choice of 14 as the maximal

polynomial degree resulted from experiments with high valence vertices; higher

degrees result in low-quality surfaces (see Figure 2.7).

Figure 2.6: 12k +4 sample points for a smooth boundary chart are shown in red (interior points)

and green (boundary points). Blue points are not included.

Figure 2.7: A valance 12 vertex chart with a lifted point on the right represented by polynomial

fits of degree 14, 15, and 16 respectively.

90

2.5.1 Independent Boundary

In this case, we proceed in two steps: first, we compute the matrix for fitting poly-

nomials only to the boundary points obtained by Catmull-Clark subdivision. Next,

we compute a matrix to determine the coefficients of the remaining monomials in

the basis, subject to the prescribed values on the boundary.

The smooth boundary vertices and corner vertices have to be treated slightly

differently on the first step, because in the case of corners the boundary curve

consists of two polynomial pieces. We assume that for a smooth boundary chart,

the boundary is aligned with the u axis, and for the corner chart the two boundary

pieces are aligned with u and v axes respectively, with the corner at zero. The

sample points xi have coordinates (ui, vi), i = 1 . . . m.

For a smooth boundary chart, we define the set of boundary monomials pbnd
i (u, v),

i = 1 . . . nbnd, to be the monomials ui−1 with nbnd = d + 1. For a corner chart (ei-

ther convex or concave), nbnd = 2d + 1, pbnd
i (u, v) = ui−1, i = 1 . . . d + 1, and

pbnd
i (u, v) = vi−d−1, i = d + 2 . . . 2d + 1. The remaining monomials up to total de-

gree d, are denoted qj, j = 1 . . . n− nbnd. We also split the sample points into two

groups: xbnd
i , i = 1 . . . 7, and xint

i , i = 1 . . . m− 7. sbnd
i and sint

i are corresponding

3d points obtained by subdivision.

The complete geometry function has the form

f(u, v) =
nbnd∑

i=1

bbnd
i pbnd

i (u, v) +
n−nbnd∑

i=1

bint
i pint

i (u, v)

Let Vc,d be matrix [pc
i(x

d
j)] of the values of monomials evaluated at sample points,

with c, d being one of bnd and int.

We first obtain the coefficients bbnd
i by minimizing the difference ‖Vbnd,bndb−sbnd‖

between the polynomial boundary curve and sample values sbnd; as the number of

91

polynomials typically exceeds the number of sample points, the solution is not

unique. We use the standard approach to under-constrained optimization and

minimize the sum of the squares of the coefficients to obtain a unique solution.

This solution is given by V +
bnd,bnds

bnd where V +
bnd,bnd is the pseudo-inverse of

Vbnd,bnd. Note that this procedure works in the same way for the smooth and

corner boundary case. In the corner boundary case, it is equivalent to fitting

polynomials in u to the segment of the boundary aligned with the u axis, and

polynomials in v to the segment of the boundary aligned with the v axis.

Note that in all cases, the point samples on the boundary are interpolated,

as the degree of the polynomials we use always exceeds the number of points.

One could entirely eliminate the fitting step, and simply interpolate the points

with sufficiently low degree polynomials, setting the coefficients for higher-order

monomials to zero; however, using all polynomials up to degree d and minimizing

the norm of coefficients appears to produce better results.

We determine the remaining coefficients bint by minimizing
∑m

i=8(f(xi) − si)2,

while keeping the boundary coefficients bbnd
i fixed. The matrix form of this expres-

sion is ‖Vint,intbint + Vint,bndbbnd − sint‖, which leads to the following expression for

bint:

bint = V +
int,int(s

int − Vint,bndb
bnd)

Limitation of the interior-independent construction. For concave corners

and interior-independent boundaries, the construction described above may pro-

duce somewhat undesirable shapes, independently of the parameters of the subdi-

vision scheme used to compute the points xi. Specifically, in cases when a concave

corner is prescribed for a control mesh vertex for which the plane formed by the

boundary edges meeting at the vertex is close to perpendicular to the nearby mesh

92

(a) (b) (c) (d)(d)

Figure 2.8: Limitation of concave corners with independent boundary. (a) C∞ surface, (b) C5

surface, (c) C3 surface, (d) Catmull-Clark subdivision surface.

faces (See Figure 2.8,(a)). In this case, even if the underlying subdivision surface

makes a sharp turn to approach the boundary curve from the outside, as it is nec-

essary for a concave corner, the polynomial approximation deviates significantly

from the surface, and “overshoots” in a significant way.

The reason for this behavior can be understood as follows. Consider the curve on

the local surface corresponding to line u = 0 in the chart. Note that all polynomials

pint
i vanish, so this curve on the surface is completely determined by the expression

∑
i b

bnd
i pbnd

i (0, v); as the coefficients bbnd
i are computed using boundary data only,

the points sint
i have no effect on the curve behavior, even if it passes through

corresponding points sint
i in the interior of the surface. This is in contrast to the

interior-dependent construction, which results in better behavior.

To large extent, this problem can be addressed if instead of C∞ surfaces, we use

Cd for a large d based on splines, as explained in the next section. (See Figure 2.8:

(b), (c))

93

2.6 Cd-continuous Surfaces

While for C∞ surfaces derivatives of parameterizations are formally defined for

all orders, the magnitudes of these derivatives can grow rapidly. There is a lower

bound for this growth: for linear parametric surface constructions with localized

influence of control points makes it impossible to have an upper bound for param-

eterization derivatives uniform in the derivative order (see Section 2.7). However,

C∞ construction yields derivative growth faster than optimal. High-order polyno-

mials used in the C∞ construction may lead to surface quality degradation for high

valence (See Figure 2.9). It turns out that derivative magnitudes can be reduced

and better surface quality can be achieved if we consider Cd-continuous surfaces

for some finite d, constructed using splines instead of polynomials for geometry

and blending functions.

Figure 2.9: Left: A mesh with a valence 12 vertex fit using polynomials. Right: Same mesh fit

using bi-cubic splines.

94

2.6.1 Cd Construction for Interior Charts

The differences between the C∞ construction and Cd, d < ∞, construction for

interior charts are small. For Cd-continuity, we replace the partition of unity

function with the degree (d + 1) B-Spline basis function and we utilize a uniform

bi-degree (d+1) tensor product B-Spline fit for the geometry. Charts and transition

maps remain the same as for C∞ construction.

Similar to the C∞ construction, we start with two steps of modified Catmull-

Clark subdivision to get the data points to fit the surface to. As before, we denote

resulting m points in the domain Dk as x0, ..., xm−1, and corresponding surface

points are s0, ..., sm−1.

We define a grid of knots with associated control points cjk such that all si are

within the limits of this grid. One can choose to have any number of grid patches.

Let g be the number of grid points. If g = 2, we have a single polynomial patch,

and our construction of geometry functions is identical to the C∞ case. We have

observed that increasing the number of patches to more than 4 (i.e. g > 3) does

not lead to any improvement. Therefore, we only utilize two choices of g: We use

g = 2 only when the prescribed degree leads to an undetermined system while

fitting (See last paragraph of this section). Otherwise, we use g = 3.

For (g − 1) × (g − 1) spline patches of degree d + 1 require a grid of control

points of size (g + 2e)× (g + 2e), where e = 3(d/2)4.

f(u, v) =
g+e∑

j=−e

g+e∑

k=−e

cjkNj(u)Nk(v) (2.2)

In the C∞ case (and equivalent g = 2 case) it is sufficient to use only subdivision

points xi in the interior of the chart. For larger values of g (g = 3 in particular), we

found it important to include boundary points. Due to local nature of spline fit, and

95

the star-like shape of the configuration of data points, spline control points near the

boundary have small influence on the shape of the surface inside the star-shaped

domain, and, as a consequence, the least-squares fit is ill-conditioned (a small

change in the data point values can result in a large change in the control point

position) and may lead to poor surface quality (See Figure 2.10). The conditioning

becomes worse with increasing g as the support of each basis function decreases.

Using an extra row of data points decreases ill-conditioning of the fit. In this case,

the number of data points is m = 20K + 1 (or m = 20K + 5 for smooth boundary

and corner vertices), where K is the valence of the vertex.

Figure 2.10: Left: A valance 5 boundary vertex chart represented by a bi-cubic spline surface

using 12K+4 data points. Right: Same chart represented by a bi-cubic spline surface using an

extra ring of data points.

The fit for spline patches proceeds exactly as for C∞ case, with one important

difference: because the degree of the splines d + 1 is not chosen automatically,

but set by the user, if the number of data points m is too small and is less than

the total number of degrees of freedom of the spline (g + 2e)2, the fit may be

under-determined.

In this case, we force g = 2 (i.e. a single polynomial patch) and decrease the

degree d for this patch so that m > (g + 2e)2. As a single polynomial patch is

C∞, the smoothness of the surface does not decrease for lower-degree splines in

this case.

96

2.6.2 Cd Surfaces with Boundary

As with the C∞ construction, we consider two boundary constructions: boundary

curves depending on interior control points, and boundary curves depending on

boundary control points only.

We do not discuss the first case in detail, as in this case the construction is

identical to the interior vertex construction. The only difference is in the placement

of the spline knot grid over the data points. In the smooth boundary case, the

boundary of the chart is matched to the lower side of the grid patch. For a convex

corner, we match the grid’s lower left corner to the convex corner of the chart. The

concave corner is treated like an interior vertex chart (See Figure 2.11).

c-1-1 c0-1 c1-1 c2-1 c3-1

c-10 c20 c30

c-11 c21 c31

c-12 c02 c12 c22 c32

c-13 c-13 c13 c23 c33

c-1-1 c0-1 c1-1 c2-1 c3-1

c-10 c20 c30

c-11 c21 c31

c-12 c02 c12 c22 c32

c-13 c-13 c13 c23 c33

c11 c-11 c-13 c13 c21 c31

c-12 c02 c12 c22 c32

c-13 c-13 c13 c23 c33

c-10 c00 c10 c20 c30

c-1-1 c0-1 c1-1 c2-1 c3-1 c-1-1 c0-1 c1-1 c2-1

c-10 c10 c20

c-11 c01 c11 c21

c-12 c02 c12 c22

Figure 2.11: Knot numbering for smooth boundary, convex and concave charts for g = 3. The

last image depicts the case of concave chart for g = 2.

In the remainder of this section, we focus on the interior-independent construc-

tion. Our construction consists of two steps similar to the C∞ case:

1. compute a boundary curve;

2. fit the interior of the surface to the data points, keeping the boundary curve

fixed.

97

Step 1: The Boundary Computation

We compute the boundary for the chart by fitting a spline curve to the data points

sbnd
i corresponding to boundary points xbnd

i (In the case of corner points, there are

two separate spline curves interpolating the corner). The number of control points

for the boundary curve(s) for high degree d may exceed the number r of available

boundary data points. In this case, we fit a cubic polynomial curve to the data

points (this is always possible) and elevate the degree to d+1. In this section, c̄i is

used to denote control points of spline boundary curves and cjk is used for control

points of spline surfaces.

Smooth Boundary Vertex. For a smooth boundary vertex, the number of

data points r = 9, as it is clear from Figure 2.6. When d + 1 ≤ r, and we have

enough data points on the boundary to define a curve of prescribed degree d, we

use a standard B-Spline curve fit. The vector of control points c̄ of length g + 2e

is obtained as c̄ = M+sbnd, where sbnd is the vector of r = 9 boundary points,

and Mij = Nj(xbnd
i), where Nd are the spline basis functions on the boundary. If

d + 1 > r, that is, the degree is too high for a fit, we use a cubic fit and degree

elevation.

Convex Corner. For a corner vertex, r = 5 for each of the two boundary curves.

When d + 1 ≤ r, we use a least-squares fit for each boundary curve. However,

to ensure interpolation, we use reflection-like constraints on the boundary curve

for the corner point. Specifically, we use only control points cbnd
j , j = 1 . . . g + e

as degrees of freedom. c̄0 is set to sbnd
0 , the data value at the control point. The

remaining e control points are set to be c̄j = 2c̄0 − c̄−j for j = −e . . .− 1, that is,

98

reflection of c̄−j about c̄0.

The expression for the boundary curve in this case is

f(x) = c̄0

(
N0(x) + 2

e∑

j=1

N−j(x)

)
−

e∑

j=1

c̄j (N−j(x) + Nj(x)) +
g+e∑

j=−e+1

c̄jNj(x),

(2.3)

where ·bnd subscript is omitted.

Similar to all previous cases, a 5 × (g + e) matrix M c is constructed, and the

control points c̄i are obtained by applying it to an appropriately modified vector of

data points. M c
ij = (N−j(xi)+Nj(xi)), if i ≤ e and M c

ij = Nj(xi) if (g+e) ≥ i > e.

The right hand side is given by si − c0

(
N0(xi) + 2

∑e
j=1 N−j(xi)

)
.

If we do not have enough data points si for a degree d, we utilize degree eleva-

tion as necessary; we ensure that g = 2 in these cases.

Concave Corner. The concave corner case is identical to the convex corner

case when g = 3: we fit two boundary curves independently, using reflections for

interpolation at the corner point. When g = 2, the control points do not lie on the

boundary as they do for g=3 (See Figure 2.11). Therefore, there does not exist

a center vertex to do reflection over. Moreover, note that there are 5 data points

and 4 control points per boundary curve. A direct least squares would lead to a

curve that is not interpolating the corner. To guarantee that the equation will be

satisfied exactly such that the curve will be interpolating the corner, we solve for

one of the control points, say c−10 in the equation for the corner data point s0.

c̄−1 =
1

N−1(x0)
(s0 − c̄0N0(x0)− c̄1N1(x0)− barc2N2(x0)) (2.4)

99

Then the expression defining the corner interpolating boundary becomes

c̄0(N0(xi)−
N−1(xi)

N−1(x0)
N0(x0)) + c̄1(N1(xi)−

N−1(xi)

N−1(x0)
N1(x0))+

c̄2(N2(xi)−
N−1(xi)

N−1(x0)
N2(x0)) = si − s0

N−1(xi)

N−1(x0)

Step 2: Interior Fit

Once the boundary points are fixed, the rest of the control points are determined

using a least-squares fit with constraints. Given q constraints we solve for q control

points exactly. We call the vector of these points σ2 and the vector of the rest of

the control points is denoted σ1.

We write the constraint as

[B1|B2]σ = c, (2.5)

where B1 is (q) x (n− q) and B2 is (q) x (q), and σ is the vector σ1 appended by

vector σ2. Using this notation, we can write σ2 in terms of σ1:

σ2 = B−1
2 (c−B1σ1) (2.6)

Similarly, we can write the fitting process in block matrix form. Let matrices A1

and A2 be the matrices of basis functions Njk(xi) for control points σ1 and σ2

respectively, evaluated at all m data points. Then the surface fit, in block matrix

form, is the following:

[A1|A2]σ = s (2.7)

By substituting equation (2.6) for σ2 in equation (2.7), we get the following

system of equations:

σ1 = U+t (2.8)

where U = (A1 − A2B
−1
2 B1) and t = s− A2B

−1
2 c. Once we know σ1, we solve for

σ2 using equation (2.6). This concludes the construction.

100

Smooth Boundary Vertex. In the case of a smooth boundary chart, we gener-

ate grid points such that the control points on the zeroth row of the knot grid (i.e.,

cj0) correspond to the boundary, where the indices start at −e (See Figure 2.11).

Then to achieve the match between interior and the boundary the following has

to hold:

g+e∑

j=−e

g+2∑

k=−e

cjkNj(xui)Nk(0) =
g+e∑

j=−e

cjNj(xui)

When simplified we gather that this is equivalent to the following for all j ∈

{−e, ..., g + e}:
g+e∑

k=−e

cjkNk(0)− cj = 0. (2.9)

This is a total of g+2e equations, that relate the control points of the boundary

curve and those of the whole surface. Thus, q = g + 2e. To guarantee that the

boundary is independent we choose a set of g + 2e control points to satisfy these

equations exactly. In the smooth boundary case the control points that lie on the

row corresponding to the boundary (cj0) forms this set. We call the vector of these

points σ2 and the vector of the rest of the control points is denoted σ1. Then we

follow the algorithm explained above.

Convex Corner. Similar to the boundary case, we generate the control grid

such that the u-boundary corresponds to the control points cj0, where the indices

start at −e. (For the v-boundary the control points for the boundary become

c0k.) We also take control point c00 to correspond to the corner data point (See

Figure 2.11). Then to achieve the match between interior and the boundary in u-

direction equation (2.9) has to hold for all j ∈ {−e, ..., g + e}. This gives us g + 2e

101

equations that guarantee match for only the u-boundary. For the v-boundary to

match, the following has to hold:

g+e∑

j=−e

g+2∑

k=−e

cjkNj(0)Nk(xui) =
g+e∑

j=−e

ckNk(xui),

which when simplified is:

g+e∑

j=−e

cjkNj(0)− ck = 0, ∀k ∈ {−e, ..., g + e}. (2.10)

This gives us another set of (g +2e) equations. Then in total we have (2g +4e)

equations. However, since the two boundary curves are not totally independent

due to the fact that they both pass through the corner point, there exists an equa-

tion that is redundant. We remove any one of the two equations involving c0. This

leaves a set of (2g + 4e − 1) independent equations. Thus, q = (2g + 4e − 1).

Similarly we pick a subset of q control points and denote them as σ2. In this case

we choose cj0, ∀j ∈ −e, ..., g + e and c0k, ∀k ∈ −e, ..., g + e. Then we follow the

general algorithm given above.

Concave Corner. Similar to the convex case, once the boundary curves are

computed and are defined using the g + 2e control points, we setup equations

to constrain the interior to match the boundary, where the number of equations

q = 2g + 4e− 1. The equations follow the structure of equations (2.9) and (2.10).

The only difference is replacement of Nj(0) by Nj(.5) for g = 2 and by Nj(1) for

g = 3. Furthermore, what we include in σ2 differ slightly based on g. For g = 3,

since the boundary curves coincide with cj1 and c1k, these naturally form σ2. If

g = 2 however, σ2 is formed by cj,−e and cg+e,k for there is no natural row or

column of control points that correspond to the boundaries and those seem to be

a reasonable set to constrain for the surface-boundary match. Then we follow the

102

general algorithm.

Limitation of Concave Corners. Similar to the C∞ case, the concave cor-

ners do not result in surfaces with sufficiently good visual quality (See Figure 2.8).

Especially if g = 2, i.e., one polynomial patch, it is the exact same problem that

arises with the polynomial fit. This can be avoided by increasing the number

of grid points, therefore increasing the number of patches, such that the control

points for the boundary would affect a limited part of the surface. However, this

would result in under-determined systems for low valances or high degrees. In this

case, we would need more data points, possibly from another step of subdivision.

2.7 Optimality of Derivative Behavior

One of the reasons to consider the Cd construction described in Sections 2.6.1 and

2.6.2 is to obtain better behavior for lower-order derivatives than we get for the

C∞ construction. Numerical estimates show that the magnitude of the derivatives

is primarily determined by the magnitude of the derivatives of partition of unity

functions.

As our functions are tensor-product functions, the magnitude of these deriva-

tives is directly related to the magnitude of the derivatives of single-variable parti-

tion of unity functions used in the tensor-product construction. It turns out that

for a fixed-size support, fixed maximal value and given smoothness, it is possible to

derive an explicit lower bounds on the sup and L2 norms of d-th derivatives (W d
∞

and W d
2 norms respectively). Furthermore, one can explicitly construct partition

of unity functions minimizing these norms.

In this section, we derive these lower bounds and show corresponding partition of

103

unity functions and show that the uniform spline construction is within a constant

from the minimum. While a slight quantitative improvement can be obtained by

switching to the more complex non-uniform functions defined here, it is unlikely

that the extra complexity is justified.

2.7.1 Minimizing W d
∞ Norm

We consider this case most important, as in most cases point-wise derivative mag-

nitude is of primary importance, rather than their average over the domain. The

one-dimensional functions f(t) (e.g., η(t)) defined on [0, 1] that we use to construct

the partition of unity functions should have the following properties:

• f(0) = 0, f(1) = 1;

• f (i)(0) = f (i)(1) = 0, for i = 0 . . . n− 1

• sup f (n) → min

Note that we impose Ci of the function up to order i = n − 1 only. As we will

see, the optimum is attained by a function with piecewise constant n-th derivative,

with discontinuities at the endpoints: the optimal function is not contained in the

set of Cn-continuous functions.

It turns out that the solution of this problem is a specific type of non-uniform

spline of degree n − 1. We give an explicit formula for the optimal value of n-th

derivative, and an explicit construction of the spline. We proceed in several steps:

first, we reduce the problem to an optimal control problem. Next, we convert the

optimal control problem to a moments problem, which is a special case of a mo-

ments problem for which a set of recursive formulas defining the solution is known

([107]). Finally, we derive a remarkably simple formula for the optimal derivative

104

value using properties of Catalan numbers.

Equivalent optimal control problem. We reformulate the problem as an opti-

mal control problem for a system of ODEs, introducing new functions. Let f0 = f

and fi = f (i), ∀i ∈ {1, 2, ..., n− 1}. Then we can rephrase the problem as follows.

Find functions fi(t), i ∈ {1, 2, ..., n − 1} and W (t) such that the following three

conditions are satisfied.

ḟi = fi+1, ∀i ∈ {0, ..., n− 2}. (2.11)

ḟn−1 = W (2.12)

max |W |→ min (2.13)

We call this problem (P1). We now change the variables in this problem to

convert it to an optimal control problem with an upper bound on n-th derivative, for

which an explicit solution can be obtained using Pontryagin’s maximum principle.

Instead of considering fixed support [0, 1], and minimizing the maximum of n-

th derivative, we consider an equivalent problem for which the support size is

minimized while the n-th derivative stays bounded. This problem, in the case of

n = 2, has a natural physical interpretation: minimize the time it takes to traverse

a distance, starting and stopping with zero speed, while keeping the acceleration

bounded by a constant.

To convert the problem to this equivalent form, we introduce a new variable

s = smax · t. We define a new set of functions:

gi(s) = s−i
maxfi(

s

smax
).

105

By the chain rule, the functions gi(s) satisfy ġi = gi+1, where ·̇ now denotes differ-

entiation with respect to s.

Also note that equation (2.12) becomes:

ġn−1(s) = s−n
maxW (

s

smax
).

We now define a new problem which we will refer to as (P2):

g0(0) = 0, g0(smax) = 1

gi(0) = gi(smax) = 0, i = 1, ..., n− 1

ġi = gi+1, i = 1, ..., n− 1

ġn−1 = u

smax → min, subject to |u| ≤ 1

Lemma 2.1. W (t) is a solution of (P1) and u(s) is a solution of (P2) if and only

if these functions are related as u(s) = sn
maxW (s

smax
) where smax = (max |W |)(1/n).

Proof. Suppose W (t) is a solution of (P1). Suppose there is an s̃max < (max |W |)(1/n)

such that there are functions g̃i and ũ that satisfy conditions (P2) with smax = s̃max.

Then define

W̃ (t) = s̃n
maxg̃n(s̃max · t) = s̃n

maxũ(s̃max · t).

Therefore, max |W̃ (t)| ≤ s̃n
max < max |W (t)|. Therefore, W is not a solution of

(P1) and thus, we reach a contradiction.

Conversely, we can show in the same way that if u is a solution of (P2), then

for a solution W of (P1) max |W | = sn
max. We conclude that the problems are

equivalent. !

106

We apply the Pontryagin’s Maximum Principle in order to solve (P2). In general

form, for linear systems it states the following:

Theorem 2.1 (Pontryagin’s Maximum Principle(PMP)). Consider an ODE sys-

tem

ẋ(t) = Mx(t) + Nα(t)

x(0) = x0

where x(t) is the solution trajectory, α(t) is the control, M is an n×n matrix and

N is a length n vector. Consider a payoff function P [α(·)] of the form

P [α(·)] =

∫ T

0

r(x, α)dt + g(x(T))

where T is the terminal time, r(x, α) is the running payoff and g is the terminal

payoff. Let ξ be the adjoint function, satisfying the following system of equations:

ẋ(t) =
∂H

∂ξ

ξ̇(t) = −∂H

∂x

ξ(T) =
∂g

∂x
(x(T))

Then the maximizer of the Hamiltonian H = xξ + r maximizes the functional

P [α(·)], where ξ in the Hamiltonian is the adjoint.

To apply PMP to problem (P2) we let u be our control, and g = [g0, g1, ..., gn−1]

be the state variable x. g(0) = ginit = [0, 0, ..., 0] and g(smax) = gfinal = [1, 0, 0, ..., 0].

The payoff functional is P [u(·)] =
∫ smax

0 ds = smax The Hamiltonian has the

form H = ġξ + 1 =
∑n−2

i=0 (gi+1ξi) + uξn−1 + 1 with ξi satisfying:

ξ̇0 = 0,

ξ̇i = −ξi−1, i = 1, ..., n− 1.

107

We make two important observations: First, as ξ̇n−1 = 0, the adjoint ξn−1(s)

is a polynomial of degree n − 1, and has no more than n − 1 roots. Secondly,

H is maximized with respect to u subject to |u| ≤ 1, if |u| = 1, with sign(u) =

sign(ξn−1).

Thus, our problem is reduced to finding a piecewise constant gn = u, |u| = 1

and smax such that the system of ODEs of problem (P2) has a solution.

The equivalent moments problem. The optimization problem above can be

reduced to the moments problem for the piecewise-constant function u. The func-

tions g, and the actual spline function f can then be obtained by repeated inte-

gration and rescaling.

Observe that for i ≤ n− 2,

0 = gi(smax) =

∫ smax

0

gi+1ds = gi+1s|smax
0 −

∫ smax

0

ġi+1sds = −
∫ smax

0

gi+2sds

By induction, we conclude that the moments of gi have to vanish:

∫ smax

0

gi+m+1s
mds = 0,∀i ∈ 1, ..., n− 2 such that i + m + 1 < n

In particular, if we take i = n− (m + 1), we get:

∫ smax

0

gns
mds =

∫ smax

0

usmds = 0, m = 0, ..., n− 2.

Similarly, if we start with the value g0(smax) = 1, we obtain an extra condition

on the moment of u:

1 = g0(smax) =

∫ smax

0

g1ds = −
∫ smax

0

g2sds = . . . = (−1)n−1

∫ smax

0

usn−1ds

As sign(u)=sign(ξn−1) and ξn−1 is a polynomial of degree n − 1 there can be

no more than n − 1 sign changes for u in the interval [0, smax]. Let 0 = d0 ≤

108

... ≤ dn−1 ≤ dn = smax be the points of sign change of u, possibly coinciding. One

can easily see that with less than n − 1 switching points the moment conditions

cannot be satisfied. To summarize, we obtain the following moments problem for

the function u:

Find n points di, i = 1 . . . n − 1 such that the function u(t) taking values ±1,

changes sign at points di, and first n − 1 moments of u vanish, and the n-th

moment is equal to 1.

All moment integrals of u on each interval can be computed explicitly, so this

formulation immediately leads to an algebraic system of equations.

As a simple example, consider the case n = 3. In this case, we have 2 switching

points d1 and d2. The moment conditions of order 0 and 1 are:

d1 − (d2 − d1) + (d3 − d2) = 0, d2
1 − (d2

1 − d2
2) + (d2

3 − d2
2) = 0.

Solving this system with respect to d1 and d2 yields d1 = d3/4 and d2 = 3d3/4.

The second moment condition takes the form:

1

16
d3

3 = 1;

that is, smax = d3 = (16)1/3 in this case, and the optimal W 3
∞-norm of f is 16.

Corresponding spline solution f(t) is a non-uniform spline of degree 3 with knots

at 0, 1/4, 3/4, 1.

Recursive form of the solution of the moments problem for general n.

For n > 3, the moments problem leads to algebraic equations of high degree, but

of a special form. [107] provides an algorithm for finding dn = smax and switching

times di for a more general problem with f (i)(smax) = xi, i = 0, . . . n− 1.

109

Following [107], let

Gk =
1

2
[sk + (−1)k+1ũkxn−1], k ∈ {1, . . . , n},

where ũ is the control value (+1 or -1) on the last interval [dn−1, dn].

Then the functions γi(s, ũ) are defined recursively as

γ0 = −1

γ1 =
s + ũxn−1

2

γk =
1

k
(Gk −

k−1∑

i=1

γiGk−i), k ∈ {2, . . . , n}

The Hankel determinant for a vector [a0, . . . an] is the determinant of the matrix

[γi+j−q]
p
i,j=1, where p = 5n/26 and q = 2p− n.

[107] proves the following theorem:

Theorem 2.2. Define smax as the maximal real root among the roots of ∆n(γ(s,−1)) =

0 and ∆n(γ(s, 1)) = 0 ũ is +1 if smax is a root of the first equation, −1 if it is the

root of the second equation, and switching points are the roots of

n∑

l=1

tl−1
n∑

k=l

∂∆n

∂γk
(γ(smax, ũ))γk−l(smax, ũ) = 0

Explicit solution of the moments problem. In our case, smax can be found

explicitly and the equation for switching times can be written in a more explicit

form. For our problem, the initial conditions have a simple form x0 = 1, xi = 0,

for i ∈ {1, ..., n− 1}.

110

Setting γ0 = −1, and using explicit expressions for Gk, the formulas for γk

reduce to

γk =
−1

2k

k−1∑

i=0

γis
k−i, for k = 1, ..., n− 1

γn =
1

2n
(−1)n+1ũn!− 1

2n

n−1∑

i=0

γis
n−i

Multiplying the formula for γk−1 by s and subtracting from the expression for

γk we obtain

γk =
2(k − 1)

2k
sγk−1 −

1

2k
sγk−1 =

2k − 3

2k
sγk−1,

which leads to explicit formulas for γk:

γk =
(2k − 3)!!

(2k)!!
sk, for k ∈ 1, ..., n− 1,

γn =
(2n− 3)!!

(2n)!!
sn +

(−1)n+1ũ

2
(n− 1)!

To obtain the equations for smax in explicit form, we eliminate the dependence

on s from Hankel determinants. If we multiply the i-th row by sp−i+1, we obtain

a matrix where all the i-th column entries are of the form Cjisp+1−q+i where Cji

are constants independent of s. As multiplying a row or a column by a number

multiplies the determinant by the same number, we get:

∆n(γ(s, ũ)) = s(p+1−q)p∆n(γ(1, ũ))

In vector form, we can write γ(s, ũ) = γ(s, 0)+[0, 0, ..., 0, ((−1)n+1ũ(n−1)!)/2],

where the non-zero entry is in the nth position. As the determinant is linear with

respect to row addition we obtain:

∆n(γ(s, ũ)) = s(p+1−q)p∆n(γ(1, 0)) + s(p−q)(p−1)∆n−2(γ(1, 0))(
1

2
(−1)n+1ũ(n− 1)!)

111

Discarding 0 and negative roots we get a unique solution when a real (non-zero)

solution exists.

s = (
∆n−2(γ(1, 0))

2∆n(γ(1, 0))
ũ(−1)n(n− 1)!)

1
n

It is clear to see that for the solution to exist, ũ = (−1)n. Therefore, we obtain

the following expression for

s = (
∆n−2

2∆n
(n− 1)!)

1
n .

To make this expression fully explicit, we need to compute ∆n−2. We observe

that

γk(1, 0) =
(2k − 3)!!

(2k)!!
=

(2k − 2)!

2k−1(k − 1)!
· 1

2kk!
=

1

22k−1
· (2k − 2)!

(k − 1)!k!
=

2

22k
Ck−1

where Ck−1 is the (k − 1)th Catalan number.

Using the same approach we used to remove s, we get

∆n = 2−2(p+1−q)p+p det[Ci+j−q−1]
p
i,j=1

This shows that the problem reduces to computing determinants of Hankel

matrices of Catalan numbers with C0 = 1. It is known that these determinants

are all equal to 1 ([146]). Thus

∆n

∆n−2
= 2−2(p+1−q)p+p−(−2(p−q)(p−1)+p−1) = 2−2n+1

and

s = (22n−2(n− 1)!)
1
n

Remember that smax = (max(W))(1/n). Therefore W = sn = (22n−2(n − 1)!).

Given W , the solution of the original problem is obtained by integration of W(t)

over [0, 1] n times and is a spline of degree n, continuity Cn−1.

112

2.7.2 Minimizing W d
2 Norm

In this case, the derivation is simpler, as the problem can be cast in the classical

Euler-Lagrange rather than PMP framework. In this case, we minimize

∫ 1

0

f (n)(t)2dt

subject to zero conditions on derivatives of order up to n − 1, and f(0) = 0 and

f(1) = 1. Applying standard integration-by-parts to the first variation of this

functional, we obtain the Euler-Lagrange equation

f (2n)(t) = 0

that is, the optimal solution is a polynomial of degree 2n− 1. 2n boundary condi-

tions define this polynomial uniquely, and an explicit expression for this polynomial

can be obtained by observing that its derivative g(t) = f ′(t) is a polynomial of de-

gree 2n−2 satisfying 2n−2 homogeneous boundary conditions g(i)(0) = g(i)(1) = 0.

g(t) has 2n − 1 coefficients and is defined by the boundary conditions up to a

constant, and as it is easy to see that tn(1 − t)n satisfies the desired boundary

conditions, and, therefore, all possible g(t) are of the form Ctn(1− t)n.

The function f(t) can be obtained by integrating g(t) over the interval [0 . . . t],

and computing the constant C using the condition f(1) = 1. This leads to the

formula

f̃(t) =
n−1∑

i=0

(−1)i

i + n

 n− 1

i

 ti+n

f(t) =
f̃(t)

f̃(1)

(2.14)

where f̃ satisfies f(t) = C · f̃(t).

113

At this point a comparison of all partition of unity functions are in order. We

call the function that minimizes W d
∞ the optimal partition of unity function for

degree d. We refer to the function computed in this section which minimizes W d
2 ,

the L2-optimal partition of unity function for degree d. Other functions we have

considered are the C∞ partition of unity function from Section 2.3, and the spline

basis function of degree n (smoothness Cn−1) from Section 2.6.1.

In Figure 2.12 we provide a series of plots comparing these functions. In (a)

we plot the partition of unity for optimal, L2 optimal, spline and C∞ blending

functions. For this image, only for illustration purposes, we picked degree 3 as

an example. In (b)-(f) we provide plots of 1st through 5th derivatives of all these

functions,where one can observe clearly the differences in derivative magnitudes.

It is important to note that for the plot of the k-th derivatives, the graphs for

the optimal functions are for functions with optimal k-th derivative (e.g. the L2

optimal is of degree 2k − 1).

2.8 Flexibility

A k-flexible surface is one where one can assign position and derivatives up to

degree k to any point on the surface. [195] claim that their construction yields sur-

faces that are at least 3-flexible at control vertices. We claim that this construction

yields surfaces that are at least 2-flexible at any point on the surface.

The function that describes the local surface on a chart can be expressed as:

fx(u, v) = BT (u, v)Up(2) (2.15)

where p(2) are the set of data points after two steps of subdivision. Including

the subdivision matrix S, we can re-write equation (2.15) in terms of the control

114

0.60 0.4

1

0
0.8

0.6

0.8

z
0.2

0.4

0.2

1

2

0.6

1.5

0

1

0

0.5

0.2 0.8 1
z

0.4

10

0.6

5

0
0

-10

-5

0.2 0.8 1
z

0.4

0.60 0.4

4000

z

-4000

0
0.8

2000

0.2

-2000

1

0.60 0.4

150

100

0.80.2
0

50

-50

-100

1
z

200000

0.60 0.4
z

100000

200000

0

100000

10.80.2

0.6
z

10.8

40000

0

-20000

0.40.20

20000

(a) (b) (c) (d)

(e) (f) (g)

Optimal
L2-Optimal
Spline
C-Infinity

Figure 2.12: Comparison of different partition of unity functions. (a) Function plots (b)-(f): First

through fifth derivative plots. (g) Fifth derivative with the plot for the C∞ function omitted for

clarity.

vertices p.

fx(u, v) = BT (u, v)USp (2.16)

This can be viewed as some basis function times the control vertices near point

(u, v). Note that in the global case a point (u, v) is affected by several charts and

partition of unity functions. This is not an issue if the point (u, v) coincides with

a control vertex since there is only one chart that describes the geometry at that

point, and there is no need to deal with partition of unity functions. This is the

main difference between our flexibility results and that of [195].

To test the 2-flexibility of the surface at a given point we need to solve a linear

system of the type Ax = b, where x is the set of control vertices we solve for, b is

the column vector of position and derivatives that we wish to assign, and A is a

square matrix that has the evaluation of position and derivatives of a set of basis

115

functions blended together with blending functions.

Since we claim 2-flexibility, our matrix A has 6 rows. (One row for position,

two for first derivative and three for second derivative). We show that this matrix

A for any point of a face is non-singular such that the system has a solution. Since

exact computation could be an issue we look for sign changes on the determinants

of A for a given face. The general structure of our algorithm for gathering these

determinants is the following:

1. Generate a set of 10 basis meshes (see Section 2.8.1).

2. Construct a manifold-based surface for each mesh.

3. Given a specific face of a mesh, generate a set of equally spaced samples (i, j)

per face. For each one create a matrix Mij that is 6x10. This is done by evaluating

the position and derivatives of the given point on each one of the ten manifold

surfaces.

4. Compute determinants of all 6x6 submatrices of Mij to find one that does not

cause a sign change.

2.8.1 Mesh Generation

We use a set of meshes as our basis functions. We generate the meshes using the

following algorithm:

1. Create a base star in the plane.

2. Lift the star to 3D.

3. Subdivide.

1. Base Star. Base star is a mesh that has a face f surrounded by all control

vertices that affect that face in the manifold surface. When we test for flexibility

116

at point (u, v) we require that it resides on the face f .

When testing a point on a face with one extraordinary vertex our base star is the

following, although it is not the minimal possible: Take two rings around an ex-

traordinary vertex to form the curved star shape in the plane. Connect the points

forming these rings with straight lines. This forms the “base star” (see Figure

2.13) with point coordinates (xc, yc).

Figure 2.13: Left: Points (xc, yc) of the two ring. Middle: Points connected by straight lines.

Right: After subdivision with faces valid for flexibility check shaded.

For a face surrounded by four extraordinary vertices, we have a different con-

struction for the the base star. We start with a mesh as the one on the left of

Figure 2.14. We then map the vertices of this mesh to the curved star taking

one of the vertices as the main vertex which we colored differently in the figure.

Then we connect these points with straight lines and we get the new base star (See

Figure 2.14 Middle).

2. Lift. In order to generate independent meshes using the same base star,

we lift the star using a polynomial basis up to third-order for the z coordinate,

resulting in 10 meshes. These 10 meshes end up with the following coordinates:

(xc, yc, 1), (xc, yc, xc), (xc, yc, yc), (xc, yc, xc
2), (xc, yc, xcyc), (xc, yc, yc

2), (xc, yc, xc
3),

(xc, yc, xc
2yc), (xc, yc, xcyc

2), (xc, yc, yc
3).

117

Figure 2.14: Construction of the second type of base star for valence set {7,5,6,5}.

3. Subdivide. Face f should have no influence from outside the base star. This

requires f to be at least three faces away from the boundary of the mesh. To

achieve this distance in the presence of one extraordinary vertex we apply one step

of subdivision and choose one of the faces around that as the face f . See Figure

2.13 (right). In the case with four extraordinary vertices, we choose the face shaded

in Figure 2.14 (right).

0
0.2

0.4
0.6

0.8
1

0
0.2

0.4
0.6

0.8
1

0

0.05

0.1

0.15

0.2

x−coordinate on facey−coordinate on face

de
te

rm
in

an
t a

t p
oi

nt
 (x

,y
)

4 5 6 7 80.01

0.015

0.02

0.025

0.03

0.035

0.04

Valance of one vertex on face (rest are assumed 4)

m
in

im
um

 d
et

er
m

in
an

t

Figure 2.15: Left: Determinant distribution on a face f with one valence six vertex at (0,0).

Right: Plot of minimum determinant on a face as a function of valance.

118

2.8.2 Flexibility Results

For any face with only one extraordinary vertex on it, the determinants stay above

zero for valences up to 8 using the first submatrix that uses the first six columns,

i.e. the bases up to degree 2 (Figure 2.15, right). For a face with no extraordinary

vertex (all four vertices around the face have valance four) the resulting surface

of the determinants is actually a plane parallel to and above det(A) = 0. For

all other valances the resulting surface is close to flat with an elevation near the

extraordinary vertex. The magnitude of this spike increases with the valance of

the extraordinary vertex (See Figure 2.15, left). This concludes that for faces with

at most one extraordinary vertex our surface satisfies the 2-flexibility property.

For the more complicated case with four extraordinary vertices we got very

similar results. We tested for 10,000 combinations of valances for the four vertices

surrounding the face f . The plots are close to flat with elevations near the ”main”

extraordinary vertex. Therefore as long as two extraordinary vertices are at least

two faces apart, the effect of one extraordinary vertex diminishes near the other

one, not causing any singularities in the matrix A of the flexibility system, resulting

in a 2-flexible surface. Even if this requirement is not met in the input mesh, it

is easy to correct by applying one step of subdivision. Up to valance 13, the

submatrix that uses the first six columns returned positive determinants. For

valances higher than that a band of negative determinants forms in the plot of the

face near the extraordinary vertex if the first six columns are used. In that case

we check for other submatrices using a different set of six columns. In all cases we

could successfully find other submatrices where the positivity of the determinants

are maintained. This holds true for valances up to 20.

119

2.9 Results

In this section we comment on the results of our implementation of the aforemen-

tioned methods. Figure 2.16 (left) demonstrates the behavior of piecewise smooth

boundaries for convex and concave corners. It also displays the surface behavior

in the presence of boundaries dependent in the interior and independent bound-

aries. Although an independent boundary on the convex case is more likely to be

desirable, in the case of the concave corner it may not be so. Due to the limitation

of concave corners mentioned previously, the deformation of the surface near the

corner may be undesirable. The right side of the same image displays the behavior

of convex and concave corners on a C3 surface as well as a C∞ surface with smooth

boundaries in order to demonstrate the boundary behavior for different orders of

smoothness.

Figure 2.17 displays the dependency of the quality of our surfaces on the under-

lying mesh. The irregularity of the reflection lines shows that the surfaces based on

meshes with faces of high aspect ratios seem to behave not as well as the Catmull-

Clark subdivision surfaces (above). Although close examination shows that our

surfaces look better near extraordinary vertices (on the boundary (Figure 2.22) or

interior), for overall quality one may need to improve the mesh as a preprocessing

step before the application of our algorithm.

In Figures 2.18, 2.19, 2.20 and 2.21 we provide images of derivative magnitudes

up to order five under our parameterization near extraordinary vertices. Figure

2.18 shows the behavior of derivatives near an interior vertex of valance 6 for a

C∞ surface(above) and C5 surface(below). In the following images, we provide

the distribution and magnitude of derivatives for extraordinary vertices on smooth

boundaries (Figure 2.19), convex corners (Figure 2.20) and concave corners (Fig-

120

ure 2.21) for C∞ and C5 surfaces. Although the derivative magnitudes grow as

the order increases in both cases, the magnitudes of C5 boundary vertices are

much less than the values of their counterparts on the C∞ surface. This property

demonstrates one reason for opting for a Ck construction as opposed to a C∞ one.

Figure 2.22 shows the appearance of discontinuities near an extraordinary bound-

ary vertex with increasing valance in the case of a Catmull-Clark surface, as op-

posed to a C4 and a C∞ surface where no discontinuities can be seen. The last

figure shows a side to side comparison of C∞ and C3 surfaces in order to present

that our construction of Ck surfaces results in as visually pleasing results as the

C∞ surfaces.

We also provided a close-up view of boundary behavior near corners in all cases

(Figure 2.24). The distortions are quite clear one the subdivision surface. One can

also see the general shape differences near the concave corners.

In Figures 2.25 and 2.26 we study a surface with an interior twist adjacent to

the boundary (convex surface becomes concave). The subdivision surface displays

a sharp change in lighting at the boundary connection and this change is absent

in both Cd and C∞ surfaces modeled by our construction.

2.10 Conclusions

We have presented methods for constructing surfaces of arbitrary prescribed smooth-

ness with support for piecewise smooth boundaries of same order from meshes. Our

methods are manifold-based where each vertex is associated with a chart. The re-

sulting surfaces follow closely the subdivision surfaces resulting from the same

meshes. Our resulting surfaces have desirable properties such as explicit parame-

terization, flexibility, linear dependence on control points and high visual quality.

121

Having observed that such methods lead to a growth of derivative magnitudes with

order, we derived lower bounds. Each of our methods is fully implemented and

our software is available.

Figure 2.16: Left: Comparison of corner behavior in the case of interior-dependent (left) and

independent (right) boundaries. Right: A C3 surface with corners (above) and a C∞ surface

with smooth boundaries (below).

122

‘

Figure 2.17: Mesh dependency of our method. Surfaces on the left are the manifold surfaces as

opposed to Catmull-Clark surfaces on the right.

 min

max

 0.91 - 1.04 0.16 - 1.42 2.05 - 5.59 2.3 - 110.34 26.76 - 4046.66

 1.06 - 1.25 0.14 - 1.62 1.93 - 6.65 2.52 - 67.8 21.91 - 725.21

Figure 2.18: Distribution of derivative magnitudes for a C∞ and a C5 closed surface.

123

 min

max

 1.70 - 1.97 0.65 - 1.63 2.20 - 10.64 4.98 - 275.33 0.00 - 11017.9

 1.44 - 1.97 0.68 - 1.66 1.93 - 12.52 12.01 - 113.37 34.04 - 1682.73

Figure 2.19: Distribution of derivative magnitudes for a C∞ and a C5 surface with boundary.

 min

max

 1.87 - 2.57 1.53 - 4.52 6.72 - 37.70 51.02 - 1233.3 103.24 - 72139.6

 1.20 - 1.82 0.65 - 3.51 1.82 - 27.91 12.32 - 334.45 43.95 - 6085.17

Figure 2.20: Distribution of derivative magnitudes for a C∞ and a C5 surface with a convex

corner.

124

 min

max

 1.66 - 2.13 0.95 - 4.02 2.05 - 18.25 5.63 - 475.71 23.91 - 27583.6

 1.82 - 2.43 0.67 - 3.96 0.65 - 19.37 3.44 - 205.02 10.62 - 3290.95

Figure 2.21: Distribution of derivative magnitudes for a C∞ and a C5 surface with a concave

corner.

Figure 2.22: Top to bottom: Catmull-Clark, C4, C∞ surfaces. Left to Right: Behavior near

valance 3, valance 5, valance 7 boundary vertices.

125

Figure 2.23: C∞ (above) vs C3 (below) surfaces.

Figure 2.24: A close-up of a concave and convex corner vertices of valance 4. Left to Right:

Catmull-Clark, C2, C∞.

126

Figure 2.25: Surface behavior near a twist at the boundary vertex of valance 4. Left to Right:

Catmull-Clark, C2, C∞. Note the sharpness of light on the Catmull-Clark surface near the twist

and its absence on our surfaces.

Figure 2.26: Same twist on the boundary as seen from above. Left to Right : Catmull-Clark,

C2, C∞.

127

3
Shape Optimization Using Reflection

Lines

An alternative to using high-order surfaces as described in Section 2 is to define an

approximation to high-order quantities for meshes, with high-order surface implicit.

In this and the following chapter we work in the highly refined mesh setting.

As we have seen in Section 1.1 there are numerous methods of surface quality

assessment that have been proposed to make defects on a surface more apparent.

Although the methods proposed look for a variety of imperfections on a surface,

most methods display discontinuities in first and second differential quantities.

Reflection line visualization is one of the most commonly used methods for this

purpose.

Detected surface imperfections can be remedied in a variety of ways. Surface

fairing as covered in Section 1.2.3 is one of the commonly used methods. But this

may require further interrogation steps in order to confirm that enough fairing

has been applied. On the other hand an optimization based technique, more

specifically an energy minimization, would yield a surface that does satisfy the

constraints as required by the functional, therefore will eliminate the need for

further interrogation.

In this chapter we propose a method that is based on the variational principle

reviewed in detail in Section 1.2. As the reader may recall, there is a wide variety

of functionals proposed for use in a variational setting. We utilize a second-order

functional namely one that depends on the gradient of reflection lines. We experi-

mented with a very efficient first-order functional as well but the C1 continuity at

128

joints proved it less useful, as is the case with all such low-order functionals (See

Section 1.2 for examples of low-order functionals).

The minimization of this reflection-based second-order functional is equivalent

to solving a fourth-order PDE. Therefore, by solving this minimization problem

on a mesh we are effectively discretizing and solving a fourth-order PDE. Our con-

struction of this functional falls into the discrete-geometric category of PDEs that

was mentioned in the introduction. In our discretization of the differential quan-

tities we do in fact use linear finite elements as will be explained in the following.

3.1 Introduction

Many man-made surfaces have highly reflective finishes: cars, kitchen appliances,

lamps and jewelry are common examples. The appearance of such objects is pri-

marily defined by the reflections of other objects. Reflections are quite sensitive

to surface shape and depend on local surface quantities (normals and curvatures)

as well as viewer location.

As we have mentioned above and in Section 1.1, reflection lines are a widely

used interrogation tool for surfaces. Another way to think about reflection lines is

to consider them a special type of reflected environment, capturing the distortion

introduced by the curved shape of the surface for a particular direction of features

in the environment. Reflection lines are widely used in the automotive industry,

and were also found to be useful in biomedical engineering as a tool for cornea shape

reconstruction [80]. Advances in graphics hardware made interactive reflection line

rendering widely accessible and easy to implement.

As mentioned before the process of evaluating surface quality is complimentary

to shape design. In most cases, the designer defines the surface by manipulating

129

Figure 3.1: An example of reflection line optimization.

spline or subdivision control points, or other types of shape controls, then evaluates

the quality using interrogation tools and repeats the process until the desired

quality is achieved. The controls of the shape have an indirect effect on the quality

measure and in the case of reflective surfaces, it may be hard to guess how the shape

should be modified to achieve a desired effect. We take the alternative approach

of formulating the surface editing problem as the minimization of a quality-based

functional measuring deviation from desired behavior. Our formulation is along

these lines, and can be thought of as being the opposite of surface interrogation

(See Figure 3.2).

Reflection lines provide a convenient framework for building such functionals for

reflective surfaces. For reasons we discuss in Section 3.3, arbitrary manipulation of

reflections is not possible. Furthermore, recovering the surface from an arbitrarily

chosen distortion of a reflected image is not always possible either. However, in

most cases, it is possible to find a surface producing a given pattern of reflection

lines. By choosing a reflection line direction, the user chooses what feature direction

in the environment can be considered most important. For example, horizontal and

vertical lines are most common in urban and indoor environments, and it makes

sense to use these directions for surface optimization.

130

Reflection Function Surface f Reflection Lines

User Defined Reflection
Function

Surface Interrogation

Shape Optimization

Figure 3.2: Relation of surface interrogation to reflection line optimization.

In this chapter, we present a system for interactive surface modeling based on

reflection line manipulation. We show how to discretize reflection lines on arbi-

trary meshes, and demonstrate that a relatively simple discretization is sufficient

for shape modeling purposes, provided that a suitable normal estimation algorithm

is used. We propose a numerical technique for solving the problem at rates ade-

quate for interactive surface manipulation. Our method is based on two insights.

First, an arbitrary mesh can be locally parameterized over the image plane away

from silhouette edges; this makes it possible to reduce the number of degrees of

freedom used in optimization, and greatly simplifies expressions. Second, we ob-

131

serve that a simple triangle-based discretization of second-order quantities using

only vertex degrees of freedom can be used to compute second-order derivatives of

the surface parameterization, which leads to a fast and efficient matrix assembly.

We demonstrate how reflection line manipulation can be used to smooth and warp

reflection lines, change reflection line density, and create surfaces with a desired

reflection line pattern.

3.2 Previous Work

Reflection lines are extensively studied in the geometric modeling literature. Some

of the earliest work is described in [100], where a differential-geometric description

of reflection lines and an analytic expression for the variation of these lines is

derived. [99] describes a technique for adjusting families of spline curves defining a

surface based on reflection line changes. We have already described how reflections

lines are used as a surface interrogation tool in Section 1.1. Functionals similar to

reflection-line functionals are common in shape-from-shading literature (e.g. [89]);

however, the goal there is to reconstruct an unknown surface entirely from possibly

noisy image data, rather than to modify an existing mesh.

Various types of fairing functionals for surfaces and their discretizations for

spline surfaces, subdivision surfaces, and meshes are considered in [29,104,157,181]

and many other papers. We provided a survey for such functionals and their dis-

cretizations in Section 1.2. Fairing functionals are used increasingly in interactive

surface deformation settings, in particular for general meshes (e.g. [18]; see [20]

for an excellent survey). An efficient, robust and accurate discretization of the

Hessian of the function defined on an arbitrary mesh is central to our work. This

problem is closely related to the problem of defining shape operators on meshes.

132

Discrete geometry approaches (e.g. [38,121,141]) play an important role in making

variational techniques for meshes sufficiently fast for interactive applications. [66]

contains a detailed survey of different techniques; our discretization builds on [54].

Using user-defined reflection fields for surface optimization is similar to gradient

and Laplacian deformation techniques ([163], [200]) in that the optimization func-

tional depends on the initial mesh geometry (in our case, through the reflection

function).

3.2.1 Surface Interrogation as a Design Tool

There is limited background on the use of interrogation methods as design tools.

Since we are proposing to use reflection lines as a design tool we will provide a

short summary of this type of work in literature.

Loos, et al. [115] provide two variational methods of surface design: one based

on isophote approximation errors and the other based on reflection line errors. In

both cases, the surface is assumed to be the graph of a function, namely F (u, v) =

(u, v, f(u, v)). In the case of isophotes, the idea is the following. Given an intensity

function I∗, isolines of the intensity function of a given surface If are as close as

possible to those of I∗. The error function used is :

J(f) =

∫
(∇If −∇I∗)2

=

∫
(If

u − I∗u)
2 + (If

v − I∗v)
2

It is possible to express J(f) as a function of first and second derivatives of f

which is necessary for their solver. In the case of reflection lines instead of an

intensity function a new function called the “height field of reflection (HFR)” is

used to make the fit. The functional J(f) has the same formulation if the HFR

were labeled If . It is the closed formula of this function and its derivatives that

133

are different. In both cases the functional is approximated by a quadratic based

on Taylor expansion and the minimization is set as a linear problem. A different

technique for manipulating reflection line shape directly on a NURBS surface is

described in [42].

In [3] an isophote-based method is given. The surface in this case can be

described by a vector (say, vector of control points for a patch based surface).

The idea is to find a displacement vector h such that the new surface defined by

s + h fits well to the given set of isophotes. It is a linearized system that needs to

be iterated to solve for h with possible addition of other constraints at different

iterations until all constraints are satisfied and the given isophotes fit the new

surface well. There are also some schemes using highlight lines in constructing

fairing functionals [28, 194].

Isophotes has been studied in the context of shape from shading. [118] explores

the relation between the isophotes, the underlying object and the light source and

proposes a variational method for estimating the surface shape from irradiance

information. There is also the description of an unsuccessful attempt to minimize

the geodesic curvature along an isophote.

Another isophote based shape from shading tool is explored recently in [44].

The idea is to compute three dimensional object normals using image isophotes.

It starts by recovering normals in a small area where it is possible to obtain the

estimate from the image. Then the normals are propagated using the isophotes

nearby. The accuracy of the method is dependent on the accuracy of the initial

normal estimation.

Other interrogation methods have also been used in fairing (not in the varia-

tional sense) but those methods do not necessarily result in very smooth surfaces

134

or may require too much effort from the designer. In [100] a reflection line interpo-

lation method based on a PDE is introduced. However, it is almost impossible to

have local control on the surface shape and the linearization of the PDE causes er-

rors. This approach only works well in cases where the surface needs to be changed

very little. Most other such methods are patch based and consists of recognizing

which control points have been problematic and moving them. Note however that

moving control points interactively is a very lengthy process. In [90] the control

points that cause issues in the polar images are moved or removed. In [91] a

method based on based on the Bézout method is introduced for fixing issues that

are made visible by orthotomics. In [50], knot removal and re-insertion is used on

B-spline surfaces coupled with the use of curvature plots.

The formulation we use is closest to [115], which applies reflection line optimiza-

tion to B-spline height fields; we apply a similar formulation to general meshes and

present algorithms that allow us to achieve interactive performance.

3.3 Reflection Functionals

In this section, we present the relevant basic mathematics of reflections and func-

tionals based on reflection lines. The formulations we use are similar to the ones

that were used in [115] for optimization of reflection lines of tensor-product B-spline

height fields.

3.3.1 Reflection Line Function

We consider a somewhat simplified formulation of reflection lines, with both the

viewer and the light sources located at infinity. The reflection line pattern in

our model is created by long line-shaped light sources aligned with a unit length

135

vector a (Figure 3.3). Each light source can be identified by a direction in the plane

perpendicular to a. If we fix a zero direction, each direction corresponds to an angle

θ in the range −π . . . π. For a point p of a surface, let n be the normal, and let v

be the view direction, which we assume to be non-parallel to a (See Figure 3.3). In

this notation, the reflection direction at p is given by r = (2/|n|2) ((n · v)n− v).

(We do not assume the normal to be unit length).

r

a

v

va

a⊥π/2

av

Coordinate system vectors

P

a

va

a⊥

dθ

Reflection function θ

Figure 3.3: Vectors used in the definition of the reflection line function θ.

We define the reflection line function to be a scalar function on the surface

which assigns to each point the angle θ between a zero direction and the direction

d to the linear light source corresponding to reflected direction r. This direction

is obtained by projecting r to the plane P perpendicular to a: d = r − (r · a)a.

Let va be the projection of the viewing direction v to the plane P , and let a⊥ be

perpendicular to va in the plane P ,

va = [v − (v · a)a]norm, a⊥ = a× va

where [·]norm denotes normalization (See Figure 3.3). We use va as the zero direc-

tion; in this case the reflection line function is given by

θ = arctan((r · a⊥), (r · va)) (3.1)

136

where arctan(y, x) produces values in the range−π . . . π. A reflection line is defined

by a constant θ value. As reflection lines are view-dependent, it makes more sense

to consider them as functions on the image plane, rather than the surface itself.

The function is defined everywhere except at the points where r is parallel to the

light direction a. The gradient of θ is of primary importance: the direction of

the reflection lines is perpendicular to ∇θ, and |∇θ| measures the local density of

reflection lines.

3.3.2 Coordinate Formulation

One of the properties distinguishing the reflection line optimization from most

fairing problems is that there are fixed spatial directions a and v which are a part

of the problem formulation. Projections to these directions are natural choices of

variables. We observe that for silhouette points, for which the normal is perpendic-

ular to the view direction (See Figure 3.4), perturbing the surface does not affect

the reflection line function corresponding to these points; i.e. one cannot optimize

the lines near the silhouettes without moving the silhouettes which is best done

by techniques of the type described in [132]. This suggests that projection to the

image plane leads to the natural parameterization for the problem, as in this case

silhouette points will form boundaries for optimization regions.

We choose the coordinate system aligned with the image plane (a⊥, av, v),

where av is the normalized projection of a to the plane perpendicular to v (Fig-

ure 3.3). The coordinates along the three axes are x, y, z: we use the standard

convention for y to be perpendicular to the image, x to be horizontal, and z to

be the view direction. For a vector t, we denote (t · a⊥) = tx, (t · av) = ty, and

(t · v) = tz.

Using this notation we reduce the components of our expression to r1 = (r·a⊥) =

137

2nznx and r2 = (r · va) = −2nzny sin α + (nz2 − nx2 − ny2) cos α, where α is the

angle between v and va.

If we regard the surface as locally parameterized over the image plane, i.e.

given by z = f(x, y), we take the non-unit length normal to be n = (fx, fy, 1),

where fx and fy are derivatives of f in two directions, and the expression for

θ = arctan(r1, r2) further simplifies to

θ(x, y) = arctan
(
2fx,−2fy sin α + (1− f 2

x − f 2
y) cos α

)
. (3.2)

y = a

z = v
x = a!

N

Figure 3.4: Image-plane parameterization. Red point depicts a silhouette point.

3.3.3 Optimization Problems

Given a user-defined reflection function our goal is to determine a surface which

approximates this field as closely as possible. Mathematically, we can formulate the

problem in several ways: exact match of the reflection function, minimization of

the difference between the desired and actual reflection function, and minimization

of the difference in line directions and density captured by the gradient of the

138

reflection function ([115]). We briefly review these options here, with emphasis

on the allowable boundary conditions.

One can observe that if θ(x, y) is given, equation (3.2) is a first-order PDE

which can be solved using the characteristic ODE system ẋ = Fpx , ẏ = Fpy , ṗx =

−Fx, ṗy = −Fy, where F (x, y, px, py) = (1 − f 2
x − f 2

y) tan θ∗(x, y) − 2fx. With

suitable assumptions on the left-hand side and boundary conditions, the solution

exists. However, as the system is first-order, only initial value problems generally

have solutions. In particular one cannot expect the problem to have solutions if

the values are prescribed on the boundary of a patch. We also note that if instead

of specifying θ we had specified the reflection vector r, the resulting system of

two PDEs would not necessarily have a common solution even with no boundary

conditions.

If the boundary of a region is fixed, the best we can do is to minimize the

difference in reflection functions. Instead of fitting the angle values θ(x, y), we

avoid the problems with the discontinuity of θ values by using the functional

∫

S

(cos θ − cos θ∗)2 + (sin θ − sin θ∗)2dxdy, (3.3)

where the integral is over the image plane projection of the region of interest, with

projection assumed to be one-to-one.

The Euler-Lagrange equation for this problem is second-order; therefore one

hopes to be able to solve the problem with Dirichlet data on the boundary, but

not with Neumann data. This implies that one cannot expect the solution to blend

smoothly with the rest of the surface if the optimization is performed only on a

small area (Figure 3.5, left).

Finally, instead of fitting the function values one can fit the gradient of the

139

reflection function to the gradient of the desired function:

Minimize

∫

S

(∇θ −∇θ∗)2dxdy, θ|∂S = θ0,
∂

∂n
θ|∂S = ϕ0, (3.4)

where ∂/∂n is the derivative along the boundary normal. In this case, the cor-

responding Euler-Lagrange equation is fourth-order, similar to the PDE for the

thin-plate energy, and one can prescribe both Dirichlet and Neumann boundary

conditions ensuring smooth transition between the optimized patch and the sur-

face (Figure 3.5, right). In this energy, we need an expression for ∇θ. As r1 = 2fx

and r2 = −2fy sin α + (1− f 2
x − f 2

y) cos α,

∇θ =
r2∇r1 − r1∇r2

r2
1 + r2

2

All problems that we have considered assume that a reflection line function θ(x, y)

is prescribed.

Function Based Functional Gradient Based Functional

Figure 3.5: Dirichlet boundary conditions in function based functional versus Neumann boundary

conditions in gradient based functional. Blue points show the fixed boundary vertices.

140

3.4 Discretization and Numerical Methods

We aim to design a discretization of problem (3.4) which balances accuracy, ro-

bustness and efficiency required by interactive applications.

A C1 finite-element or arbitrary mesh C1 spline discretization would be most

straightforward but is relatively expensive. We use a more efficient and easier to im-

plement alternative which combines a discrete-geometric technique with finite dif-

ferences. We use triangle-centered discretization stencils for both first and second-

order derivatives which leads to simple discretization of Equation 3.4. While there

is no rigorous convergence guarantee by construction, we show excellent behavior

for most mesh types.

3.4.1 Reduction to Parametric Case

As it was discussed in the previous section, our optimization problems can be solved

in a functional setting by using surface parameterization over the image plane.

However, while obtaining such a parameterization is computationally expensive

for high-order surfaces (e.g. subdivision surfaces and splines); for meshes, the

parameterization is easily obtained by a simple linear transformation: we rotate

the coordinate system so that the image plane coincides with the (x, y) plane and

the projection of the light direction a to the image plane is aligned with the y

axis, i.e. use the coordinate system (v, av, a⊥) (Figure 3.3). As one cannot reliably

control reflections near silhouette points, we fix all vertices close to silhouettes, i.e.

fix vertices of all triangles with normals n, for which |n · v| < ε (we use ε = 0.02

in all cases).

For surfaces with no silhouettes (e.g. nearly flat patches) additional boundary

conditions are necessary: typically, we want the modified surface patch to join

141

smoothly with the rest of the surface. After preprocessing, the mesh is decomposed

into disjoint pieces, each of which is a piecewise linear height field over the image

plane.

Our functionals depend on the components of the gradient and Hessian of f ,

which we discretize next. We use triangle-centered discretization, i.e. a single

value of the gradient or Hessian is assigned to each face rather than vertex. This

leads to simple formulas for the gradients and Hessians, and makes it possible

to consider a minimal number of special cases. Each discretization associates a

2 × 6 and 3 × 6 matrix of coefficients G and H with each triangle. if fT =

(f(p1), f(p2), f(p3), f(q1), f(q2), f(q3)) (Figure 3.6) then GfT and HfT yield the

gradient and Hessian respectively.

3.4.2 Discretizing Gradients

To discretize the gradient ∇f = (fx, fy) over the image plane, we use standard

piecewise-linear continuous finite elements.

t13

t31

t12

t33

t21

t11

t32t23

p2

t22

T1

T3
T2

T

q1

p3

q3p1

q2

v1
v3v2

Figure 3.6: Vectors used in the gradient and Hessian definitions; all points are in the image plane.

The vectors tij are perpendicular to corresponding triangle sides and have the same length as

these sides.

142

We observe that the gradient can be found in the form
∑

i citii where ci are

determined by
∑

i ci(tii · vj) = fj − fk, and (i, j, k) is a cyclic permutation of

(1, 2, 3). This yields

∇discrfT =
1

2A

∑

i=1,2,3

f(pi)tii (3.5)

where f(pi) denotes the value of f at vertex pi. The coefficients tii/2A do not

change and need to be computed only when the surface is rotated.

3.4.3 Discretizing Hessians

Discretizing Hessians is considerably more difficult: while for gradients a piece-

wise linear approximation depending only on function values at triangle vertices

is adequate, for second derivatives one needs to use more vertices, or introduce

additional degrees of freedom. As the total number of derivatives of order ≤ 2 is

six, one needs at least six degrees of freedom per stencil to capture local behavior

correctly.

Most discretizations of second-order quantities (typically, curvature) used in

geometric modeling are vertex-centered, which is inconvenient for our purposes. To

be compatible with the gradient discretization, we use a triangle-centered stencil

shown in Figure 3.6. Another possible option is to use a single triangle and add

edge-based degrees of freedom as it was done in [66]. We have experimented

with a linearized version of this discretization. In contrast to the general curvature

discretization (3 coordinates per vertex), addition of edge degrees of freedom in our

setting (one degree of freedom per vertex) adds a significant computational cost.

Furthermore, stability of the nonlinear solve is decreased which further decreases

performance.

143

For triangles without vertices of valence three, it has six degrees of freedom,

exactly the number needed for discretizing the Hessian.

On this stencil, an approximation to the Hessian can be constructed in a num-

ber of different ways. We use a combination of two approximations.

Triangle-averaged Discretization

Cohen-Steiner and Morvan [38] describe a general technique for computing shape

operators on meshes by averaging elementary shape operators corresponding to

edges. While convergence of this technique was only established in the integral

sense, and for a restricted class of meshes, simplified versions of this technique

were shown to work well in practice. The most common example is the well-

known cotangent formula [141], which (for small deformations) is equivalent to

expressions of [38], summed over a single ring of edges around a vertex [87]. Sim-

ilarly, the triangle-averaged discretization on the stencil of Figure 3.6 introduced

in [54] uses averaging over three edges of a triangle. By linearizing this formula,

we obtain the following expression for the Hessian:

1

A

(
∑

i,j,j *=i

1

Aj
f(qj)tii ⊗ tij +

∑

i

1

Ai
f(pi)tii ⊗ tii

)
(3.6)

where tij are side perpendiculars to the triangles of the mesh projected to the

image plane, shown in Figure 3.6. A distinctive feature of this discretization is

its robustness and simplicity: only for triangles with very small area may the

coefficients in the formula be large.

This is a consistent (converging to the correct values) discretization of the Hes-

sian for special types of meshes. Specifically, the Hessian is consistent for meshes

in which vertices qi are reflections of pi with respect to the centers of opposite

144

edges i = 1, 2, 3. This includes regular meshes and any affine transformations of

regular meshes.

For general meshes, the discretization introduces mesh-dependent error in Hes-

sian approximation, as shown in Figure 3.8. For different types of meshes, the

results are mesh-dependent, no matter how fine the mesh is. Importantly for our

application, the errors are low-frequency while high-frequency errors have the most

effect on the visual quality of results.

regular 4-8 polar distort. half 3-12 irregular

Figure 3.7: Mesh types used in convergence experiments.

Quadratic Interpolation Discretization

An alternative is to use a finite-differences: we compute a quadratic function Q

satisfying Q(pi) = f(pi), Q(qi) = f(qi), i = 1 . . . 3, and use its quadratic term

coefficients to estimate the Hessian. The advantage of this method is that by con-

struction it is consistent whenever the quadratic function is defined. This is not

sufficient for convergence of the discrete problem solutions to the continuous so-

lution, (see [66]) but improves independence of the result from mesh connectivity.

Unfortunately, this technique is significantly less robust and the following propo-

sition holds:

For six points wi ∈ R2, i = 1 . . . 6, there is a unique quadratic function satisfying

Q(wi) = zi, for arbitrary choice of zi, if and only if these six points are not on the

same conic.

145

 0.0001

 0.001

 0.01

 0.1

 0 1000 2000 3000 4000

 0.0001

 0.001

 0.01

 0.1

 0 1000 2000 3000 4000

m
ax

im
um

 e
rr

or

vertices

 0.0001

 0.001

 0.01

 0.1

 0 1000 2000 3000 4000

Quadratic Hybrid

Triangle-averaged

irregular
polar

regular
4-8

half 3-12

Figure 3.8: Convergence experiments: A spherical surface patch was recovered from an ana-

lytically computed reflection function gradient for different mesh connectivities and resolutions.

Three discretization types are shown: triangle-averaged, quadratic fit and hybrid. Quadratic

interpolation cannot be applied to meshes with vertices of valence 3; optimization also fails on

higher resolution irregular meshes because it contains stencils with all vertices close to a conic.

The error is measured relative to the size of the object along the view direction.

Whenever six points of the stencil are close to a common conic, the coefficients

of the quadratic interpolant become large and Hessian estimation becomes highly

unreliable (See Figure 3.9).

Quadratic Interpolation on a Six-point Stencil. The quadratic interpolation

problem for a six-point stencil requires solving a linear system, which may be sin-

gular. A simple geometric condition for testing singularities of point configurations

can be derived from geometric considerations, along with an explicit expression for

146

Figure 3.9: Example layout with six points lying on a conic.

the quadratic interpolant, which simplifies implementation.

We denote the six points of the stencil in the image plane by wi, i = 0 . . . 5.

We need to find a quadratic function Q, such that Q(wi) = zi, i = 0 . . . 5. Assume

that all points are given in homogeneous coordinates. Then we can define Q as a

3× 3 matrix: Q(wi) = wT
i Qwi. We observe that by linearity of the problem it is

sufficient to solve it for zi = δij, for j = 0 . . . 5, to obtain six basis matrices Qj.

Assume j = 0, i.e. zi = 0 for i ≥ 1. It well known that any five points in the plane

are on a conic. Note that the problem of finding Q0 is equivalent to the problem

of finding such conic: Q0 vanishes at all points wi, i ≥ 1, i.e. defines a conic

passing through these points, and conversely given a nontrivial conic with matrix

M passing through wi, i ≥ 1, we obtain Q0 as M/(wT
0 Mw0). If wT

0 Mw0 = 0,

either there are multiple conics passing through the points, or the system has no

solution; in either case, the system for Qi is singular.

The conic matrix M can be computed using a matrix form of the Braikenridge-

Maclaurin construction, [39]. Specifically, define li,i+1 = wi×wi+1 (3d cross prod-

uct applied to the homogeneous point representation). Let R(a) be the skew

147

symmetric matrix satisfying Rx = a× x. Then M0 is given by

M0 = R(w1)R(l34)R(r)R(l23)R(w5),

where r = l12 × l45 and Qi are obtained by cyclically permuting wi and applying

the same formula.

Hybrid Discretization

As it can be seen in Figure 3.8, quadratic interpolation yields good estimates in

most cases, but it is not robust. In practice, we observe that we have several tri-

angles per mesh for which the six-point stencil is close to a conic, and quadratic

interpolation produces low-quality results. To solve this problem, we combine two

techniques: the triangle-averaged scheme is used when the quadratic interpolation

is unstable, i.e. if the stencil contains five points or less, or vertices are close to

a conic. We evaluate stability for a specific six-point stencil by comparing the

magnitude of the discrete Hessian coefficients to 1/l2max, where lmax is the maximal

edge length in the stencil. If any coefficient exceeds C/l2max (we use C = 5), we use

triangle-averaged discretization instead of the quadratic interpolation. As it can

be seen from the convergence plots, the resulting scheme retains the accuracy of

the quadratic fit and yet does not suffer from its robustness problems, although it

produces large errors for meshes with many degenerate cases. Such meshes appear

to be unusual. Our stability criterion is motivated by the observation that if the

function value is 0 at all but one vertex of a stencil, and is of the order l2max (i.e.

squared distance to other vertices) at that one vertex, one can expect to get second

derivative magnitudes on the order of 1 (for a mesh close to regular). Coefficients

much larger than 1/l2max lead to instability.

While numerically the discretization is more accurate, we note that we have ob-

148

served few differences in visual quality when using the triangle-averaged discretiza-

tion alone (Figure 3.10). Finally, while we found this discretization adequate for

the functionals considered in this work, its performance for thin-plate or Willmore

energy is not as good ([149]).

selection triangle-average quadratic fit hybrid

Figure 3.10: Visual comparison of triangle averaged, quadratic fit and hybrid discretizations.

Leftmost image shows the initial view with the prescribed gradient direction.

3.4.4 Discretizing Normals

An essential part of an interactive system supporting reflection manipulation is

rendering of reflection lines and environment maps. Hardware environment maps

use vertex normals to compute reflected directions and look up values in the en-

vironment texture. As Figure 3.12 shows, standard vertex normal computation

techniques produce low-quality results for complex meshes. Instead, we use a local

fit to obtain better normals. For every vertex p, we collect a ring N1 of triangles

around it, and all triangles edge-adjacent to N1. The minimal number of vertices in

such a configuration is six, unless the whole mesh has a smaller number of vertices.

We compute an initial normal ninit, and project vertices to the plane perpendicular

to ninit.

Let w be the vector of projected point positions of length K, and let f(w) be

the vector of function values at these points. For each vertex, we precompute a

149

z = ninit

y

x

w

f(w)

 n
final

Figure 3.11: Normal estimation procedure based on quadratic fit.

2×K matrix of coefficients Cnorm mapping the vector f(w) to the linear coefficients

of a best fit quadratic function in the coordinate system with origin at vertex p,

with z axis aligned with the initial normal (when it is not defined uniquely, we

choose the quadratic function with minimal norm of coefficients; the coefficients

are computed using LAPACK function GESDD). These coefficients define a plane

passing through the vertex, and we use the normal to this plane as our final normal.

As long as we do not change the plane we have used for local normal estimation,

the normal approximation can be recomputed rapidly as the surface is modified.

If the motion is large, the quality deteriorates, and ninit needs to be recomputed.

3.4.5 Numerical Implementation

The reflection-based functionals are more complex than most expressions com-

monly used for surface optimization, therefore computing Hessians and gradients

are also more expensive. The energy cannot be replaced by a linearized functional,

150

analytic averaged face quadratic fit

Figure 3.12: Comparison of the vertex normal quality when the surface is obtained by sampling

points from a cylinder. While face averages do not perform well for this mesh, our quadratic fit

procedure yields results visually indistinguishable from using analytic normals.

because then it would not capture the shape of reflection lines in most cases. Either

a full non-linear Newton solve for the energy minimum or a gradient-only method

would be prohibitively expensive, the former due to Hessian computation, and the

latter because of the large number of iterations required.

To improve performance we use an inexact Newton method with line search. In-

stead of a full Hessian computation, we compute the Hessian once for the linearized

problem, and use it instead of the full Hessian optimization at all iterations.

If we assume small values of fx and fy a simple calculation shows that the

equation for the reflection function reduces to

θlin(x, y) = 2fx cos α.

The gradient of θlin remains simple, and is, up to a constant, [fxx, fxy]. For the

151

quadratic energy based on θlin, the Hessian is easy to compute and does not depend

on function values.

As the gradient problem is fourth-order and the condition number of the Hessian

matrices grows as N4, iterative solvers are not efficient; instead, we use a direct

solver (PARDISO). The direct solver performs a sparse LU factorization of the

matrix, and solves the system using back substitution. As the Hessian matrix does

not change, the matrix factorization needs to be performed only once. For each

nonlinear iteration, only gradients need to be recomputed. As shown in Figure 3.13,

while using an approximate Hessian increases the number of nonlinear iterations

required, each iteration becomes much faster, and there is a considerable net win

in performance. This performance improvement depends on the complexity of

the target reflection function gradient ∇θ∗ and varies in the range 2× to 10×.

When the target function is smooth, which is the most common case (forward

optimization in Figure 3.13), the speed-ups are higher, while for less smooth targets

speed-ups are lower.

3.5 Reflection Line Manipulation Experiments

Different types of reflection manipulation using discrete reflection line functionals

follow the same general pattern. First, the user selects an area to modify and

specifies the boundary conditions. Any boundary segment may be free, fixed, or

clamped, the latter means that two layers of vertices are fixed at the boundary to

ensure a smooth match of the surface with the rest of the mesh. Then the target

reflection function gradient is defined using user input and the surface minimizing

the reflection functional is computed. The last two steps may be repeated in the

interaction loop.

152

Forward

Backward

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 15000 10000 5000

So
lv

e
Ti

m
e

(s
ec

s)

Number of Vertices

Solve Times v. Num Vertices

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 15000 10000 5000

Nu
m

be
r o

f I
te

ra
tio

ns

Number of Vertices

Iterations v. Num Vertices

 0

 2

 4

 6

 8

 10

 10 15 20 25 30 35 40

Nu
m

be
r o

f I
te

ra
tio

ns

Perturbation (% of original height)

Iterations v. Perturbations

Forward Hessian always

Forward Hessian once

Backward Hessian always

Backward Hessian once

Figure 3.13: Speed-up from approximate Hessian computation, dependence on the mesh size.

Two model problems: creation and elimination of a bump on a cylinder. Times are given for a

Pentium D 3GHz processor.

Density and direction change. The simplest type of reflection line manipu-

lation is requesting a fixed line direction and density in an area, i.e. specifying a

fixed target ∇discrθ∗ everywhere. The energy minimization in this case attempts

to modify reflection lines as requested, while maintaining a smooth or continuous

join of the selected patch with the rest of the surface. The user can also adjust

a fall-off curve c(t) ≥ 1 which determines how gradual the transition between the

modified area and the rest of the mesh should be. The energy of each triangle is

scaled by c(d) where d is the distance to the center of influence.

153

Examples of this type of manipulation are shown in Figure 3.15, Figure 3.16

and Figure 3.18. In Figure 3.15, one can see how adjusting reflection line density

makes it possible to control the appearance of reflections, in particular the sizes

of reflected objects. Rotating the desired reflection line direction at a point is

shown in Figure 3.16. In this example, a surface imperfection creates a “twist”

in the reflection line field which can be removed by local rotation. Figure 3.18,

demonstrates the difference between conventional smoothing and reflection line

optimization: typically, smoothing algorithms flatten the surface which does not

necessarily improve the reflection line shape.

Smoothing. Isotropic or directional smoothing can be used to transform ini-

tial ∇θ values to the target values. This operation is similar to reflection line

smoothing described in [115]. Directional smoothing is particularly useful, as it

straightens reflection lines without changing the behavior in the orthogonal direc-

tion. An example is shown in Figure 3.19. In this example, the initial reflection

function was smoothed using Laplacian smoothing in the image domain, and then

used as the target reflection function.

initial surface warp target gradients optimized surface

Figure 3.14: Warping stages: initial reflection lines, warped reflection function θ, target ∇θ∗

computed per triangle, reflection lines on the optimized surface.

154

Warping. In the case of warping, the goal is to apply an arbitrary user-specified

transformation to the reflection lines. In our current implementation, the trans-

formation of reflection lines is specified by a two-dimensional spline, however any

other image warping technique can be used. The general formula for the trans-

formed reflection function is

θwarp(s, t) = θinit(w
−1(s, t))

where w(s, t) : R2 → R2 is the warping function.

Observe that the inverse of the warping function needs to be computed, which

can be relatively expensive for smooth deformations. To avoid explicit inversion of

w(s, t), we implement the warp using texture mapping and image-domain opera-

tions. Rather than attempting to transform∇discrθ values needed by the functional

directly, we transform reflection function values, and then compute the gradient.

First, the reflection function θ values are computed, interpolated to vertices, and

used as color values to render the mesh to a texture θinit. A two-dimensional spline

w(s, t) : R2 → R2 is created. Initially, the control points are equispaced so w is

an identity. As the user moves control points, the spline is rendered to a new

texture θwarp, using θinit as a texture map. For image-space mesh vertex positions

we sample ∆θ = θwarp − θinit, and compute its gradient for each triangle using

the gradient formula 3.5, with appropriate corrections applied to values to elimi-

nate the jump between −π and π. We add resulting ∇discr∆θ values to the initial

∇discrθ values. Note that by construction ∆θ = 0 if w is the identity function.

An example of warping is shown in Figure 3.17; where the goal is to improve the

shape of reflections at a part of a car hood.

Finally, one can use our technique to create surfaces approximating an arbitrary

155

reflection line pattern, as shown in Figure 3.20. Any grayscale image can be used

to specify ∇θ∗, as long as it is sufficiently smooth (otherwise, the approximation

is likely to be poor).

3.6 Conclusions

We have described a simple and efficient technique for discretizing reflection line

based functionals on meshes and demonstrated how these functionals can be used

in an interactive system to optimize the shape of reflective surfaces.

One limitation of the proposed approach (which is also responsible for its com-

paratively high efficiency) is that the vertices of the mesh move only in the direc-

tion perpendicular to the image plane. This means that small scale surface details

which make the projection to the image plane not one-to-one cannot be removed,

and creates a disturbance in the surface during optimization. Although it can be

applied to large perturbations, the technique is best suited for smaller adjustments

of surfaces that are already relatively smooth. While we tried to eliminate obvious

inefficiencies in our implementation, our code is far from optimal.

Our discretization can be easily combined with other surface optimization tech-

niques, to be applied simultaneously or as a post-process.

156

de
cr

ea
se

 d
en

si
ty

in
cr

ea
se

 d
en

si
ty

Figure 3.15: Changing reflection line density. A fixed reflection line direction is specified with

density decreased at the top and increased at the bottom.

157

before after

Figure 3.16: Reflection line untwisting. The reflection function gradient is rotated to get desired

appearance.

158

before

after

Figure 3.17: Reflection line warping on a car hood. An intermediate warp is shown in the

middle. Note that the change in the shape is barely perceptible but the change in the reflection

is substantial.

initial Laplacian reflection functional

Figure 3.18: Prescribing fixed reflection line direction on a car, compared to Laplacian smoothing.

Note that Laplacian smoothing retains reflection line wiggles.

159

before after

Figure 3.19: Reflection line smoothing on a faucet; the initial reflection line function is smoothed

and used as the target reflection line function.

original blurred

reflection function reflection lines

environment map

Figure 3.20: Reconstructing a surface with predefined reflection line pattern based on an blurred

image.

160

4
Biharmonic and Triharmonic PDEs on

Meshes

Finite element methods are commonly used to solve high-order PDEs as discussed

in Section 1.3.3. For the solution of a high-order problem, such as the fourth-order

biharmonic and the sixth-order triharmonic problems we discuss in this section,

there are a few directions one can take within the finite element framework. One

option is to use conforming finite elements. Even though this works well for low-

order problems, the smoothness requirements on the elements for high-order prob-

lems makes this formulation rather complicated. While C0 finite elements (the

linear Lagrange element) suffices to solve a second-order problem, one needs C1

elements for a fourth-order, and C2 for a sixth-order problem. These elements have

additional functional or differential degrees of freedom placed on edges or faces in

order to satisfy inter-element continuity and therefore are complex to construct

and use.

An alternative is based on splitting the high-order problem into a system of

second-order problems by introducing extra variables which can be solved by sim-

pler conforming elements such as the C0 piecewise linear element. This elimi-

nates the need to compute discretizations of high-order quantities, such as those

described in Section 1.3.2. However, it leads to highly ill-conditioned systems,

especially for problems of sixth- or higher-order, and requires extra effort to solve.

In this chapter, we present a mixed finite element formulation of biharmonic and

triharmonic problems. We show that discretizations based on discrete Laplacians

can be derived in the mixed element framework. We report on experimental results

161

and discuss trade-offs of this construction.

4.1 Introduction

The polyharmonic equation, ∆kx = f , appears quite often in geometric modeling

applications. The first-order Laplacian, i.e. k = 1 is the basis for most smoothing

operators used extensively in the field. The second- and third-order Laplacians ap-

pear in the linearizations of the Euler-Lagrange equations for minimizing curvature

and variation of curvature on a surface, respectively.

In the discrete setting, these equations are usually solved by applying a Lapla-

cian discretization repeatedly on a mesh, with the cotangent formula being the

most popular and the one used in [18]. Although this formulation is efficient and

particularly useful in interactive applications, it supports only one particular way

of specifying boundary conditions and the results often have significant mesh de-

pendence.

In this chapter, we consider several closely related formulations for biharmonic

and triharmonic PDEs. The results however, are different due to variations in

boundary condition specification. Some applications, for example, hole-filling and

blending, are most naturally formulated by specifying a piece of the surface out-

side the problem domain. This piece is typically approximated by a part of the

mesh neighboring the domain. In other cases, such as curve network interpolation,

the function and its normal derivatives are specified along a curve. Finite element

methods require formulations with boundary conditions of the latter type. How-

ever, the conventional FEM discretization of a high-order PDE, more specifically

the triharmonic equation, may lead to highly ill-conditioned and possibly singular

systems (Section 4.6.2).

162

We introduce a novel finite element discretization, using function and deriva-

tive values outside the domain that does not lead to singular systems and exhibits

consistent behavior of solutions under refinement for a variety of meshes. Fur-

thermore, we present a regularization process to avoid the instability problem that

arises with high-order finite element systems.

4.2 Previous Work

A number of FEM and discrete geometric techniques for solving the biharmonic

problem has been proposed. One non-FEM based method is described in [18]. In

this work the high-order Laplacians are defined recursively as in:

∆̄k(p) := ∆(λk−1(p) · ∆̄k−1(p)) (4.1)

where λk is smoothness parameter that controls smoothness of the blend at bound-

aries and p is a vertex on the mesh. The discrete Laplace operator used in this work

is the cotangent formulation and was given in equation 1.25. Boundary conditions

are prescribed by fixing k + 1 rows of boundary vertices.

Mixed formulations of the biharmonic equation are extensively studied in finite

element literature as covered in Section 1.3.3. However, most results are theoret-

ical, limited to proving error bounds rather than providing a practical point of

view.

The triharmonic problem has been studied in the parametric surface setting

in [108]. Here the boundary conditions are prescribed interactively using a set of

curves on or near the boundary of the surface. The vectors describing the difference

between the boundary and the prescribed curves are used as the first and second

Neumann boundary conditions. In this paper, the problem is solved analytically

on periodic surfaces. A similar analytical solution is provided for a generalized

163

version of the triharmonic equation in [205]. In this case the technique is applied

to constructing multi-patch composite surfaces.

To our knowledge, the only other work in geometric modeling literature solving

the triharmonic problem on a mesh is [18]. The authors formulate the problem as a

discrete geometric PDE (equation 4.1), where the system is solved using discretized

differential quantities (the discrete Laplacian in this case). Unlike [18], our method

is derived using a mixed finite element discretization.On the other hand, we could

derive the same system in [18] from mixed finite elements.

Even though we do not have a proof of convergence for our formulation, we

have strong experimental evidence of convergent behavior not only for the un-

known function, but also its first and second Laplacians which appear as auxiliary

variables in our system. The importance of convergence comes from the fact that

it removes mesh dependency of the discrete problem for high resolution meshes.

It also guarantees that the limit surface is well defined independent of the choice

of refined triangulations subject to constraints such as minimum angle, or aspect

ratio preservation. This gives the user freedom to use any mesh, re-meshing algo-

rithm or adaptive refinement algorithm without the concern for introducing visual

artifacts. The importance of this property has been covered in [66, 207]. More

specifically, convergence and consistency of the Laplace-Beltrami operator is stud-

ied in [186, 187] . It is concluded that the discretization schemes do not converge

point-wise unless there exists a restriction on regularity of the mesh or the scheme

is based on fitting. The convergent discretization studied in [186] is based on a

quadratic fitting scheme, whereas ours is not.

164

4.3 Notation

In the rest of the chapter we use the following notation.

Let Ω be a convex domain in 72 and ∂Ω its boundary. For simplicity we consider

polygonal domains. Hm(Ω) is the Sobolev space defined on Ω, and is also the

completion of C∞(Ω) ∩Hm(Ω), where C∞ is the space of infinitely differentiable

functions. Hm
0 (Ω) is the completion of C∞

0 (Ω), the subspace of infinitely differen-

tiable functions which are nonzero only on a compact subset of Ω. This may be

thought of as a generalization for functions satisfying zero boundary conditions [21].

Th = {T} is a triangulation of Ω with h defined as the maximum edge length

among all triangles T ∈ Th, as in h = maxT∈Th
hT . Each triangle T is described by

a triple of indices < i, j, k >.

We define approximating spaces in the following way:

Xh = {v ∈ C0(Ω) : v|T ∈ P1,∀T ∈ Th},

where P1 is the space of all linear polynomials and C0(Ω) is the space of all con-

tinuous functions defined on Ω. The specific basis functions ϕi defined over the

domain are hat functions; i.e. ϕi(vj) = δij where vj is the vertex with index j.

Also, below we use 〈g, h〉X to refer to
∫

ghdA on 2D domain X, or
∮

ghds for

1D curve X.

We assume the triangulated domain Ω0 contains Ω, and that ∂Ω consists of

triangle edges. Let Nall be the set of vertices of the triangulation. NΩ is the set of

vertices contained in the interior of Ω, N0 are in ∂Ω, N1 is the of vertices in Ω0 \Ω

adjacent to N0, N2 are vertices not in N1, adjacent to N1, and Ne is the rest of the

vertices in Ω0 \ Ω (See Figure 4.1).

165

1
2

3 12
3

Figure 4.1: Notation for domain decomposition used in the rest of the chapter.

4.4 Boundary Conditions

As we have mentioned before, PDEs are used commonly in applications such as

blending, hole-filing, and curve network interpolation.

Blending algorithms construct a smooth surface connecting two or more closed

boundary curves of several given surfaces such that this new surface blends smoothly

with existing ones. Hole-filling is similar to blending: if a part of a surface is miss-

ing (has a hole), the goal is to construct a new surface which joins smoothly with

the boundary of the hole (See for example, [11, 35, 189, 190]). In these cases, the

boundary conditions are typically specified by a piece of the surface, for exam-

ple, a section of the existing surface near the prescribed boundary curves. In this

case, the boundary data is gathered by sampling the function on the existing mesh

vertices. We refer to this kind of boundary conditions as function-based boundary

conditions.

166

In other applications, for example, in curve network interpolation, boundary

conditions are specified in a more conventional form: boundary data for normal

derivatives or other high-order differential quantities are prescribed on the bound-

ary. Typically, the goal in curve network interpolation is to find a surface that

smoothly interpolates a network of curves, possibly satisfying additional constraints

along curves. The shape of the resulting surface is controlled by the boundary

conditions prescribed on the curves and the resulting surface is tangent-plane or

curvature continuous everywhere. Some research in this direction can be found

in [29, 124, 131, 154]. We refer to this form of boundary conditions as differential

boundary conditions.

4.4.1 Formalization of Boundary Conditions

In this chapter, we focus on finding a surface that is the solution of a fourth-

order or a sixth-order polyharmonic equation, referred to as the biharmonic and

the triharmonic respectively, specified by its boundary conditions. In this case,

boundary conditions can be formulated in one of two ways.

The most convenient type of boundary conditions for solving a high-order sys-

tem is to prescribe Laplacian values on the boundary.

x|∂Ω = b0 (4.2)

∆rx|∂Ω = br,∀r ∈ {1, .., k − 1}, (4.3)

Such a set of boundary conditions would allow the system to be broken down

into a series of decoupled second-order equations each with Dirichlet conditions br:

∆ωi−1 = ωi with ωi−1|∂Ω = br, ∀i ∈ [1, ..., k − 1]

where ω0 = x. However, this set of conditions is less desirable in practice since these

boundary conditions of high-order Laplacians are not readily available and this

167

formulation is less intuitive. For example, in the case of the biharmonic equation,

the boundary conditions in this formulation are given by

x|∂Ω = b0 (4.4)

∆x|∂Ω = b1 (4.5)

In this case, while one can control second-order differentials (e.g. curvature), there

is no control on first-order differentials (e.g. tangent behavior), which makes this

formulation less practical.

Instead, the following set of boundary conditions is more typical in applications

x|∂Ω = b0 (4.6)

∂rx

∂nr
|∂Ω = br,∀r ∈ {1, .., k − 1}, (4.7)

where b0 is the Dirichlet boundary condition and br are Neumann boundary con-

ditions of order r and the problem is finding the function x such that ∆kx = f

subject to these boundary conditions.

An alternative formulation of boundary conditions is based on the assumption

that the function x is known outside the domain. In this case, the boundary

conditions are given as values of the unknown function x on Ω0 \ Ω where Ω0 is a

larger domain that contains the problem domain Ω, and x has a certain continuity.

With the alternative form of boundary conditions, the polyharmonic problem can

be stated as follows. Find x satisfying:

∆kx = f, with x ∈ Ck−1(Ω0)

x|Ω0\Ω = b (4.8)

where b is a given function.

168

4.4.2 Discretization

Most methods used in geometry processing are designed to handle boundary con-

ditions that are function-based [7,18,35]. In most cases a set of vertices on or near

the boundary is fixed in order to prescribe these conditions. Even though such

types of boundary conditions appear to work well, these are not commonly con-

sidered in FEM formulations. Differential type boundary conditions are standard

for FEM and theoretical results in the field are all based on this type of boundary

conditions.

While one can switch between these types of boundary conditions (Section 4.4.3),

one can also use either type directly in a problem discretization. In discrete form,

assuming x known on Ω0 leads to fixing several (2 for biharmonic, 3 for trihar-

monic) rows of values on the triangulation of Ω0 outside Ω. Assuming x and ∂x
∂n

known on the boundary (with ∂2x
∂n2 added for triharmonic) coincides with standard

FEM settings and does not require any values outside Ω.

As the triharmonic equation allows for more boundary conditions, a combina-

tion of boundary condition discretizations may be considered. For example, one

can assume x specified on Ω0 \ Ω and, in addition one of ∇x or ∆x on Ω0 \ Ω can

be used directly in the problem formulation. We found it particularly useful to use

values of ∆x outside Ω. Somewhat surprisingly, the conventional FEM discretiza-

tion of triharmonic equation leads to singular systems for many common meshes,

including a mesh with regular connectivity. The discretization using values of x

outside Ω (but not ∇x or ∆x) leads to robust discretization but experimentally

does not converge for a number of mesh types. This discretization is close to the

one introduced in [18] using discrete Laplacians.

Our discretization uses x and ∆x values outside Ω, and leads to non-singular

169

systems and results that give empirical evidence of better convergence.

4.4.3 Conversion Between Boundary Conditions

The problem formulation for a high-order PDE includes differential type boundary

conditions, with the number of such conditions increasing with increasing order.

For example, there are two such conditions (Dirichlet and Neumann) for fourth-

order problems, whereas three are required for sixth-order problems. In order to

apply a method naturally formulated for one type of boundary conditions to a

problem with another type of conditions, we need to be able to convert between

different types. In this section we describe the technique to go from one type of

boundary conditions to another.

Conversion from differential to function-based. Let us consider the differential-

type boundary conditions for the triharmonic problem:

x|∂Ω = b0

∂x

∂n
|∂Ω = b1

∂2x

∂n2
|∂Ω = b2 (4.9)

There are two ways of discretizing function-based boundary conditions for the

triharmonic equation as described in the previous section. One involves prescribing

function values on Ω0\Ω which involve three fixed rows, whereas the other involves

prescribing function values on two rows of Ω0 \Ω as well as prescribing ∆x on one

row.

We first describe the conversion from differential boundary conditions to func-

tion based conditions involving two fixed rows of x and one row of ∆x.

170

In this conversion, Dirichlet conditions transfer over as one would expect: One

row of boundary vertices are fixed as the prescribed function b0. Neumann con-

ditions are more complicated to convert. We transform the differential Neumann

boundary conditions to fixing another row of vertices one edge away from the

boundary by casting it as a least squares fit.

We solve
∑

(ij)

(aT
1 xi + aT

2 xj + aT
3 xk − bT

1)2 → min

where (ij) are boundary edges, aT are coefficients for computing the normal

derivative of a linear function on the triangle T =< i, j, k >, and k is the vertex

opposite the edge (ij) in the corresponding boundary triangle. bT
1 is the Neumann

boundary condition prescribed to edge (i, j) in triangle T. The minimization is

over xk, and can be obtained by solving the normal equation.

Note that one can either compute and prescribe the vertex positions of the

vertices one row inside the boundary, or can extrapolate to a set of vertices added in

the normal direction outside of the given domain boundary. One possible advantage

of the latter could be the control over mesh connectivity for this outside layer,

since for an irregular mesh the vertices one row inside the boundary can be very

irregularly placed (Figure 4.2).

To transform the high-order normal derivative condition, observe that, since

Dirichlet boundary conditions are also enforced, one can always compute the tan-

gential derivative on the boundary from this data. With this information, one can

compute Dirichlet conditions for the Laplacian of x, denoted as ∆x. Let b3 be this

new set of Dirichlet conditions for ∆x.

∆x|∂Ω =
∂2x

∂t2
+

∂2x

∂n2
=

∂2b0

∂t2
+ b2 = b3. (4.10)

As with x, Dirichlet conditions for ∆x transfer over to the function-based for-

171

Figure 4.2: Difference in vertex layout for three layers of boundary vertices in the case of regular

versus an irregular mesh.

mulation exactly.

Now we describe the conversion from differential boundary conditions to the sec-

ond type of function-based conditions which is given by three fixed rows of x on

Ω0 \ Ω.

Given x, ∂x/∂n and ∂2x/∂n2 on ∂Ω, we can estimate the values of x on two ad-

ditional rows outside Ω, again using a least squares polynomial fit. In the simplest

case, we construct a quadratic polynomial using six vertices show in Figure 4.3.

i0 = j(i,1)

j(i,2)

j(i,3)

j(i,4)

j(i,5)

j(i,6)

Figure 4.3: Six vertices used in quadratic polynomial fit, with dark edges showing the boundary.

172

This polynomial is of the form

∑

0≤l+m≤2

(
6∑

r=1

plm
ir xj(i,r))u

lvm = P (x, u, v)

where (u, v) are coordinates in the plane, and j(i, r) is used to denote the index of

the vertex in position r = 1...6 with respect to the boundary vertex i0.

As the dependence on x is linear, it can be written as

6∑

r=1

Pir(u, v)xj(i,r).

Denoting

(
∂

∂n
Pir)(u0, v0) = an

ir

(
∂2

∂n2
Pir)(u0, v0) = ann

ir

where (u0, v0) are the coordinates of vertex i0, we obtain expressions for normal

derivatives at i0 given respectively by :

6∑

r=1

an
irxj(i,r) and

6∑

r=1

ann
ir xj(i,r).

The least squares problem we solve for values in two exterior rows is

∑

i∈N0

(an
irxj(i,r) − bi

1)
2 + (ann

ir xj(i,r) − bi
2)

2

where bi
1 and bi

2 are values of normal derivatives at vertex i as given in (4.9).

Conversion from function-based to differential. As we have explained,

function-based conditions provide function values at vertices. Therefore, given

function values for vertices in the neighborhood of a boundary vertex, the con-

version consists of approximating derivative values at this boundary vertex. In

the biharmonic case, this neighborhood involves two fixed rows in Ω0 \ Ω whereas

173

in the triharmonic it is three fixed rows in Ω0 \ Ω. One common technique for

estimating differential quantities from function data is to use a fitting algorithm.

For our purposes, we fit a polynomial of sufficiently high degree to the function

values specified at fixed vertices in the least squares sense. Once the polynomial

is obtained, boundary values of derivatives are evaluated. In order to compute

normal derivatives, one also needs to compute the boundary normal, which is a

simple cross product of triangle edges at the boundaries.

4.5 Biharmonic Equation

The biharmonic equation with the natural boundary conditions is given by

∆2x = f (4.11)

x|∂Ω = b0 (4.12)

∂x

∂n
|∂Ω = b1 (4.13)

4.5.1 FEM Formulation

The biharmonic equation corresponds to the following variational problem subject

to boundary conditions:

1

2
〈∆x, ∆x〉Ω0 → min, x ∈ H2(Ω0) and x = f on Ω0 \ Ω. (4.14)

where f is a given function. Note that this formulation implies x, ∂x
∂n matching f ,

∂f
∂n on ∂Ω, because x ∈ H2(Ω0) implies x ∈ C1(Ω0). To be able to use low-order

approximation spaces to solve the problem, we reformulate (4.14) using auxiliary

variables. Setting y = ∆x we obtain:

1

2
〈y, y〉Ω0 → min, y = ∆x on Ω0 and x = f on Ω0 \ Ω (4.15)

174

The Lagrangian for this constrained problem has the form:

1

2
〈y, y〉Ω0 + 〈λ, ∆x− y〉Ω0 + 〈µ(1− χ(Ω)), x− f〉Ω0

where λ and µ are Lagrange multipliers and χ is the characteristic function of the

domain Ω. Variation with respect to the variables yields the equations:

〈y, υ〉 − 〈λ, υ〉 = 0 (4.16)

〈λ, ∆υ〉+ 〈µ(1− χ(Ω)), υ〉 = 0 (4.17)

〈∆x− y, υ〉 = 0 (4.18)

〈x− f, (1− χ(Ω))υ〉 = 0, for υ ∈ H1(Ω0) (4.19)

In all equations, after integration by parts, one can take υ ∈ H1(Ω0). We use

piecewise linear approximations for all variables. For an unknown function w (one

of x, y, µ), we use the approximation:

w =
∑

i∈NΩ0

wiϕi

The vector of degrees of freedom w can be split into four components:

[wΩ, w0, w1, we],

referring to the set of vertices NΩ, N0, N1 and Ne as described in Section 4.3.

Similar indexing is used for stiffness and mass submatrices. We obtain the following

equations:

175

∑

j∈Nall

(yj − λj)〈ϕj, ϕi〉 = 0 (4.20)

∑

j∈Nall

λj(〈
∂x

∂n
, ϕj〉Ω0 − 〈∇ϕi,∇ϕj〉) +

∑

j∈Nall

µj〈(1− χ(Ω))ϕj, ϕi〉 = 0 (4.21)

∑

j∈Nall

xj(〈
∂x

∂n
, ϕj〉Ω0 − 〈∇ϕi,∇ϕj〉)−

∑

j∈Nall

yj〈ϕj, ϕi〉 = 0 (4.22)

∑

j∈Nall

(xj − fj)〈(1− χ(Ω))ϕj, ϕi〉 = 0 (4.23)

From (4.20), it follows that yj = λj and λ can be eliminated.

Stiffness and mass matrix entries are defined by the following equations:

Sij = −〈∇ϕi,∇ϕj〉

S̃ij = Sij + 〈ϕj,
∂ϕi

∂n
〉∂Ω0

Mij = 〈ϕi, ϕj〉

Note that one can use lumped mass matrices as a simpler alternative, since

there is no significant advantage to using full mass matrices as discussed later in

the chapter. A lumped mass matrix is a diagonal mass matrix with diagonal entries

given by the sum of all entries in each row. Lumping mass matrices corresponds

to using a single point quadrature to compute matrix entries. Evaluating ϕi and

ϕj at nodes, we obtain Mij = 1
3δij|Vi| where Vi is the union of triangles adjacent

to vertex i, and M̃ij = 1
3δij|V Ω

i |, where V Ω
i is the part of Vi contained in Ω.

176

Then, using the same subscripts Ω, 0, 1 as before, we can write the system in

block matrix form as:

SΩΩyΩ + SΩ0y0 = 0 (4.24)

S0ΩyΩ + S00y0 + S01y1 + M00µ0 = 0 (4.25)

S10y0 + S11y1S1eye + M11µ1 = 0 (4.26)

Se1y1 + Seeye + Meeµe = 0 (4.27)

SΩΩxΩ + SΩ0f0 −MΩΩyΩ = 0 (4.28)

S0ΩxΩ + S00f0 + S01f1 −M00y0 = 0 (4.29)

S10f0 + S11f1 + S1efe −M11y1 = 0 (4.30)

Se1f1 + S̃eefe −Meeye = 0 (4.31)

Above, we use the equation (4.23) which reduces to x0 = f0, x1 = f1, xe = fe to

eliminate x0, x1, and xe.

Equations (4.25)-(4.27) are the only ones containing µ0, µ2, µe, and as these

variables are not of interest to us, they can be eliminated. As (4.24) uses only yΩ.

As (4.24) uses only yΩ and y0, we can also eliminate (4.30), (4.31) as these are the

only remaining equations with y1 and ye. Now the resulting system

SΩΩyΩ + S00y0 = 0

SΩΩxΩ + SΩ0f0 −MΩΩyΩ = 0

S0ΩxΩ + S00f0 + S01f1 −M00y0 = 0

in matrix form can be written as :

177

−MΩΩ 0 SΩΩ

0 −M00 S0Ω

SΩΩ SΩ0 0

·

yΩ

y0

xΩ

=

−SΩ0f0

−S00f0 − S01f1

0

The system has the form

A B

BT 0

typical for saddle problems.

4.5.2 Discussion

In this section we discuss and compare our method with other techniques for solving

the biharmonic problem.

In [2], a similar discretization of biharmonic equation based on Ciarlet-Raviart

formulation is proposed. The boundary conditions in this formulation involve one

row of fixed vertices and Neumann boundary data on boundary vertices. In fact,

Neumann boundary conditions are directly incorporated into the set of equations

corresponding to the discretization of the weak formulation of ∆x = y.

There is a relation between our formulation and that of [18], described briefly

in Section 4.2.

The first observation involves the difference in mass matrices. The method of

[18] is based on a diagonal mass matrix, whereas the mass matrix in our formulation

is banded diagonal. Then the first step is to use lumped mass matrices in our

system. A lumped mass matrix is a diagonal matrix with diagonal entries given

by the sum of all entries in each row.

Unlike [18], we use auxiliary variables in our system. One can remove these

variables by a simple substitution step. It turns out that this new system differs

178

only by a weight factor from the system presented in [18] which can be removed

by diagonal preconditioning.

de
g2

de
g4

de
g6

tr
ig

regular irregular, min 10 irregular, min1

Figure 4.4: Comparison by error plots of different solutions to the biharmonic problem.

In Figure 4.4 we compare error plots for the formulations discussed here. We

present results from our method with full mass matrix (red), our method with

lumped mass matrix (blue), the one in [2] (green) and the one in [18] (blue). We

have experimented with meshes of different connectivities from a regular mesh

to an irregular mesh with minimum angle of degree 1 (See Figure 4.5). We ran

179

recovery tests on four types of functions; a quadratic polynomial (x2 + xy + y2),

a fourth-order polynomial (x4 + x3y + x2y2 + xy3 + y4), a sixth-order polynomial

(x6 + x5y + x4y2 + x3y3 + x2y4 + xy5 + y6) and a trigonometric function (cos(x) +

sin(x)).

Figure 4.5: Mesh types used in tests, displayed in increasing complexity: regular, irregular with

minimum angle 30, with minimum angle 10, and with minimum angle 1.

Even though the boundary conditions between our formulation and the one

in [2] differ on the discretization of Neumann boundary conditions, one can see

that they return very similar error values. One can also observe the convergent

behavior of our method with full mass matrices and the one in [2]. Furthermore, it

is clear to see the overlap of the plots for the method of [18] and ours with lumped

mass matrices except for a few cases. In regular meshes, the visible difference

originates from numerical errors. Note that the errors from both formulations are

very small in magnitude (< 1e−10). The only other difference appears in degree six

polynomial case. In this case, diagonal preconditioning leads to matching system

matrices but it does not eliminate the scaling difference in the right hand sides.

4.6 Triharmonic Equation

Fourth-order problems, however useful, produce surfaces with G1 boundaries. This

low-order of smoothness can lead to dents and kinks on reflection lines and can lead

180

to other physical problems. In Figures 4.16, 4.19 and 4.20 one can see numerous

examples of these defects.

The solution to this problem is to use a higher-order PDE, for example, a sixth-

order one, which would result in a G2 surface. However, using such a high-order

system may be complicated or produce ill-conditioned systems. In this section, we

formulate the triharmonic problem as a mixed finite element system which allows

the use of simple linear finite elements and use a regularization scheme to overcome

the ill-conditioning of the system.

The triharmonic equation can be formulated as:

∆3x = f (4.32)

x|∂Ω = b0 (4.33)

∂x

∂n
|∂Ω = b1 (4.34)

∂2x

∂n2
|∂Ω = b2 (4.35)

4.6.1 FEM Formulation

Triharmonic equation corresponds to minimizing
∫

Ω(∇∆x)2dA subject to bound-

ary conditions. Hole-filling and blending problems have function-based boundary

conditions:

1

2

∫

Ω

(∇∆x)2dA → min, x ∈ H3(Ω0), x|Ω0\Ω = f,

where f is a given function. Note that this formulation implies x, ∂x
∂n , ∂x

∂n2 matching

f , ∂f
∂n , ∂f

∂n2 on ∂Ω, because x ∈ H3(Ω0) implies x ∈ C2(Ω0).

As in the biharmonic case, to be able to use low-order approximation spaces

to solve the problem, we reformulate the problem using auxiliary variables. We

extend the domain of integration of the functional to Ω0 as
∫

Ω0\Ω(∇∆x)2dA is

181

constant:

1

2

∫

Ω0

(∇y)2dA → min, subject to x|Ω0\Ω = f, ∆x = y on Ω0 (P)

The Lagrangian for the constrained problem (P) is

1

2
〈∇y∇y〉Ω0 + 〈λ, ∆x− y〉Ω0 + 〈µ(1− χ(Ω)), x− f〉Ω0

where, as before, λ,µ are Lagrange multipliers and χ is the characteristic function

of the domain Ω. Variation with respect to y, x, λ, µ leads to equations:

〈∇y,∇υ〉Ω0 − 〈λ, υ〉Ω0 = 0 (for y) (4.36)

〈λ, ∆υ〉Ω0 + 〈µ(1− χ(Ω)), υ〉Ω0 = 0 (for x) (4.37)

= 〈λ,
∂υ

∂n
〉∂Ω0 − 〈∇λ,∇υ〉Ω0 + 〈µ(1− χ(Ω)), υ〉Ω0 = 0 (4.38)

〈∆x− y, υ〉∂Ω0 = 〈∂x

∂n
, υ〉∂Ω − 〈∇x∇υ〉Ω0 − 〈y, υ〉Ω0 = 0 (4.39)

〈x− f, (1− χ(Ω))υ〉Ω0 = 0 (for µ) (4.40)

In all equations, after integration by parts one can take υ ∈ H1(Ω0).

Remark. Note that in strong form we get:

from (4.36):

∆y = −λ on Ω0.

from (4.37):

∆λ =

µ on Ω0 \ Ω.

0 on Ω.

from (4.39):

∆x = y on Ω0.

182

from (4.40):

x = f on Ω0 \ Ω.

Setting −λ = z, we get ∆x = y, ∆y = z, ∆z = 0 on Ω, and x = f on Ω0 \ Ω.

Setting y = ∆f , z = ∆2f = µ on Ω0\Ω satisfies (4.39), (4.37), and (4.36) on Ω0\Ω.

We observe that the triharmonic equation is recovered as expected; in addition x is

required to be C2 to satisfy (4.39) on Ω0, in particular satisfy ∂x
∂n = ∂f

∂n , ∂2x
∂n2 = ∂2f

∂n2

on ∂Ω.

Returning to the weak-form equations (4.36) - (4.40), we choose piecewise linear

elements for x, y, z, λ, µ and test functions υ.

For an unknown function w (one of x, y, z, µ); we use the approximation:

w =
∑

i∈NΩ0

wiϕi

The vector of degrees of freedom w can be split into five components : [wΩ,

w0, w1, w2, we]. Similar indexing is used for stiffness and mass submatrices. We

obtain the following equations:

∑

j∈Nall

yj〈∇ϕj,∇ϕi〉+
∑

j∈Nall

zj〈ϕj, ϕi〉 = 0 (4.41)

∑

j∈Nall

zj(〈ϕj,
∂ϕi

∂n
〉Ω0 + 〈∇ϕj,∇ϕi〉Ω0)−

∑

j∈Nall

µj〈(1− χ(Ω))ϕj, ϕi〉 = 0 (4.42)

∑

j∈Nall

xj(〈
∂ϕj

∂n
, ϕi〉∂Ω0 − 〈∇ϕj,∇ϕi〉Ω)−

∑

j∈Nall

yj〈ϕj, ϕi〉 = 0 (4.43)

∑

j∈Nall

(xi − fi)〈ϕj, (1− χ(Ω))ϕi〉 = 0 (4.44)

Furthermore, we assume that ∂Ω is at least 2 rows removed from ∂Ω0. In matrix

183

form we have:

−Sy + Mz = 0

−S̃T z − M̃µ = 0

S̃T x−My = 0

M̃T (x− f) = 0

where

Sij = −〈∇ϕi,∇ϕj〉

S̃ij = Sij + 〈ϕj,
∂ϕi

∂n
〉∂Ω0

Mij = 〈ϕi, ϕj〉

M̃ij = 〈(1− χ(Ω))ϕj, ϕi〉

We further simplify this discretization by using lumped mass matrices (See

Section 4.5.1). Clearly M̃ij = 0 for all vertices in the interior of Ω. From (4.44) we

conclude that

xi = fi, ∀i ∈ N0 ∪N1 ∪N2 ∪N2 (4.45)

From (4.42) we observe that µi, i ∈ Nint are not a part of any equation and can

be eliminated. µi, i ∈ Nall \ Nint each appear in only one of the equations (4.42).

As the values of µ are not of interest to us, these equations can be eliminated and

no equations depend on µi any longer.

184

The remaining equations in matrix form can be written as:

SΩΩyΩ + SΩ0y0 −MΩzΩ = 0 (4.46)

S0ΩyΩ + S00y0 + S01y1 −M0z0 = 0 (4.47)

S10y0 + S11y1 + S12y2 −M1z1 = 0 (4.48)

S21y1 + S22y2 + S2eye −M2z2 = 0 (4.49)

Se2y2 + S̃T
eeye −Meze = 0 (4.50)

SΩΩzΩ + Se0z0 = 0 (4.51)

SΩΩxΩ + SΩ0f0 −MΩyΩ = 0 (4.52)

S0ΩxΩ + S00f0 + S01f1 −M0y0 = 0 (4.53)

S10f0 + S11f1 + S12f2 −M1y1 = 0 (4.54)

S21f1 + S22f2 + S2efe −M2y2 = 0 (4.55)

Se2f2 + S̃T
eefe −Meye = 0 (4.56)

where we have already used the condition (4.45).

Observe that the system can be split into independent systems for xΩ, yΩ, y0,

y1, zΩ, z0 consisting of (4.46), (4.47), (4.51),(4.52), (4.53), (4.54), with the last set

of equations containing only one unknown each.

One can easily see that the resulting reduced system, up to scaling factors is

identical to the system in [18] obtained using discrete geometry point of view if

applied to the mesh with vertices NΩ ∪N0 ∪N1 ∪N2 with three rows of x fixed.

Further reducing the system by eliminating y1 using (4.54), we can write the

system matrix as

185

SΩΩ SΩ0 0 −MΩ 0

S0Ω S00 0 0 -M0

0 0 0 SΩΩ SΩ0

−MΩ 0 SΩΩ 0 0

0 −M0 S0Ω 0 0

with columns corresponding to yΩ, y0, xΩ, zΩ, z0 and rows to discretization of ∆y =

z on Ω, ∆y = z on ∂Ω, ∆z = 0 on Ω, ∆x = y on Ω and ∆x = y on ∂Ω. The right

hand side has the form :

[0, −S01y1, 0, −SΩ0f0, −S00f0 − S01f1],

with

y1 = −S10f0 − S11f1 − S12f2.

That is, the system has the form

A B

BT 0

for which the inf-sup condition can be studied. Experimental observations show

that whether theoretically the discretization yields a convergent result or not, the

convergence may be slow for some types of meshes.

A modification of discretization of problem (P) makes it possible to use more

accurate approximation of boundary data. We start with the same variational

formulation but use the constraint x = f on Ω0 \ Ω to change the form of 〈∆x −

y, υ〉 = 0.

We write this equation in different equivalent forms depending on υ. If supp(υ)∩

Ω = ∅, then we substitute x = f and change the equation to 〈∆f − y, υ〉 = 0. If

supp(υ) ∩ Ω ;= ∅, we keep it in the same form.

186

For the new discretization we additionally assume that g = ∆f can be either

evaluated directly on Ω0 \Ω or approximated to a sufficiently high-order using e.g.

local polynomial fits.

The system (4.41)-(4.44) is modified by replacing (4.43) with

∑

j∈Nall

xj(〈
∂ϕj

∂n
, ϕi〉∂Ω−〈∇ϕj,∇ϕi〉Ω0)−

∑

j∈Nall

yj〈ϕi, ϕj〉 = 0, ∀i ∈ NΩ∪N0. (4.57)

As we assume that ∂Ω0 is at least two edges away from ∂Ω in any triangulation,

〈∂ϕj

∂n , ϕi〉 can be dropped.

∑

j∈Nall

gj〈ϕi, ϕj〉Ω0 −
∑

j∈Nall

yj〈ϕi, ϕj〉Ω0 = 0, ∀i ∈ Nall \ (NΩ ∪N0). (4.58)

After this change in the equations, the matrix equations (4.52)-(4.56) are re-

placed with:

Seexe + Se0f0 −MΩyΩ = 0 (4.59)

S0ΩxΩ + S00f0 + S01f1 −M0y0 = 0 (4.60)

M1(g1 − y1) = 0 (4.61)

M2(g2 − y2) = 0 (4.62)

M2(ge − ye) = 0 (4.63)

Observe that f2, fe are no longer used in the system and equation (4.61) leads

to y1 = g1. Resulting complete system:

187

SΩΩyΩ + SΩ0y0 −MΩzΩ = 0

S0ΩyΩ + S00y0 + S01g1 −M0z0 = 0

SΩΩzΩ + SΩ0z0 = 0

SΩΩxΩ + SΩ0f0 −MΩyΩ = 0

S0ΩxΩ + S00f0 + S01f1 −M0y0 = 0 (4.64)

has the same matrix but a different right hand side. Effectively, an approximation

to y, of the form M−1
1 (S11f0S11f1 + S12f2) is replaced with gi, i.e. exact or more

accurate approximate values of ∆f .

As discussed in Section 4.8, this leads to substantial improvements for a number

of meshes. It is natural to ask if the need for explicit use of f1 (i.e. values of x

one row outside Ω can be eliminated by similar means. This may be possible by

substitution of ∆x = ∆f everywhere outside Ω even for υ with supp(υ) ∩ Ω ;= ∅

and integration by parts, but we did not explore this direction further.

4.6.2 Discussion

We observed that the differential-type boundary conditions prescribed for the bi-

harmonic as described in [2] and reviewed in Section 4.5.2 cannot be used for the

triharmonic problem.

Consider the system of equations resulting from the discretization of ∆x = y.

When written in the mixed formulation of [2], one would get:

∑

i∈NΩ

xi

∫
∇ϕi∇ϕjdA +

∑

i∈NΩ

yi

∫
ϕiϕjdA = −

∑

i∈N0

bi
0

∫
∇ϕi∇ϕjdA−

∑

i∈N0

bi
3

∫
ϕiϕjdA−

∫

∂Ω

b1ϕ
jdL, ∀j ∈ (NΩ) ∪ (N0). (4.65)

188

Besides the additional fixed row of vertices in our formulation, this formulation

differs in the number of equations. In this system there are n0 more equations of

this type, where n0 is the cardinality of the set N0. Given the Dirichlet boundary

conditions for x and y in the triharmonic formulation, this set of equations lead

to a system with n1 x variables for the row of vertices one edge away from the

boundary. This n0 × n1 system is generally over- or under-determined.

Geometrically, this issue arises when more than one edge on the boundary is

incident to an interior vertex. All equations written for the endpoints of these

edges will involve one unknown, namely x for the interior vertex. In the case with

multiple incident boundary edges, this leads to linearly dependent rows resulting

in a singular matrix.

Such connectivity is common on meshes; even a regular mesh has a null space.

On a rectangular domain this singularity occurs near corners. In Figure 4.6 we

show two lower corners of a regular n × n mesh. The red circles display the

interior vertices where singularity occurs and no solution exists. The darkened

edges display the edges that are incident to the interior vertex and cause the

singularity.

In this case, the resulting system matrix has eight eigen values that are zero: two

per corner. The eigen vectors for these are such that the entry for the corner vertex

(e.g, p0,0 in figure) is 1, and the rest are zeros, or the two orthogonal neighbors of

the corner vertex (e.g., p1,0 and p0,1 in figure) are 1 and −1 respectively, and the

rest are zeros.

This phenomenon is a result of the small support of basis functions used and

cannot be avoided in this formulation. This shows that our formulation with

two fixed rows of x and one fixed row of y works better than extending to the

189

p
0,0

p
1,0 p

n-1,0
p
n,0

p
0,1

p
n,1

p
1,1

p
n-1,1

Figure 4.6: Corner singularities on a regular mesh. The red circles display the vertices where

singularity occurs and the darkened edges are those that cause the singularity.

triharmonic the mixed FEM formulations proposed for solving the biharmonic

equation.

Now we consider function-based boundary conditions. We have mentioned the

function-based formulation described in [18], where three rows of boundary ver-

tices are fixed. Similar to our discussion in the biharmonic case, one can show a

connection between the two methods. As explained earlier in this chapter, replac-

ing the mass matrix with the lumped mass matrix and flattening the system by

removing auxiliary variables reduces our system to the one in [18], different by a

scale factor.

We remove the auxiliary variables by writing the variables yΩ, y0, zΩ and z0 in

terms of x only, and then substituting into the equations. When applied to the

system in (4.64), we get:

190

(SΩΩM−1
Ω (SΩΩM−1

Ω SΩΩ + SΩ0M
−1
0 S0Ω)+

S00M
−1
0 (S0ΩM−1

Ω SΩΩ + S00M
−1
0 S0Ω))xΩ =

r1(−SΩΩM−1
Ω) + r2(−S00M

−1
0) + r3

r4(SΩΩM−1
Ω SΩΩM−1

Ω + S00M
−1
0 S0ΩM−1

Ω)+

r5(SΩΩM−1
Ω SΩ0M

−1
0 + S00M

−1
0 S00M

−1
0) (4.66)

where [r1, r2, r3, r4, r5] is the right hand side of the full system; i.e. r1 = 0, r2 =

−S01g1, r3 = 0, r4 = −SΩ0f0 and r5 = −S00f0 − S01f1 in system (4.64) .

Figure 4.7 shows error plots for several formulations spanning the gap between

our methods. We show plots for recovery errors in four different formulations. Our

method with fixing two rows of x and one row of y (in red), same formulation

but with lumped mass matrices (blue), lumped matrix setup with three rows of x

(black) fixed and finally the method from [18] which also has three rows of x fixed

(green). One can see that our system with lumped mass matrices produces results

very similar to our unmodified system with converging error but the error magni-

tudes are slightly larger. Note that the increase in error in the degree two recovery

on a regular mesh is a result of numerical errors and is negligible considering the

magnitudes (≈ 1e− 14). When we fix three rows however, convergence is lost and

the system is equivalent to that presented in [18].

4.7 Regularization

The problem with the instability of mixed finite element systems is well studied

in literature [4, 6, 23]. As we also observed, the condition numbers increase very

quickly to very large values as one increases the resolution of the input mesh,

191

regular irregular, min ang= 10 irregular, min ang =1

de
g2

de
g4

de
g6

tr
ig

Figure 4.7: Plots for some variations of our method, using function-based boundary conditions.

192

especially in cases of irregular connectivity (See Figure 4.8).

10−2 10−1 100
105

1010

1015

1020

h

co
nd

 n
rs

irregular, no regularization
regular, no regularization
irregular, regularized

Figure 4.8: Effect of regularization on the condition number of the mixed FEM system for

irregular meshes.

To avoid this instability problem, we present a regularization scheme based

on Tikhonov regularization, also known as ridge regression in statistics. Reg-

ularization maintains that the regularized solution is not too sensitive to per-

turbations. The simplest version of Tikhonov regularization involves modifying

the ill conditioned system matrix by adding an identity matrix (I), scaled by

some parameter(α) commonly referred to as the regularization parameter (Equa-

tion 4.67).

x = (A + λI)−1b (4.67)

Another similar technique is to replace the identity with a different matrix, for

example, the gradient matrix. The rationale behind this additional matrix is the

conversion of the linear system to a minimization problem. Instead of solving the

system directly, we find an x that minimizes the following weighted combination

193

of the norms of the residual and the solution.

x = argmin{||Ax− b||2 + λ2||Lx||2} (4.68)

In this formulation the added term is referred to as a side constraint([83]), and

maintains that the solution or a linear function of the solution stays small. The

regularization parameter then affects the importance of this side constraint.

The main difficulty of regularization is the accurate selection of regularization

parameters, since there is no reliable way to determine regularization parameters

when there is no information available on residuals and smoothness [133]. Many

methods for finding a good regularization parameter were proposed in literature.

However, all methods strongly depend on the problem being solved [84].

One of the most commonly used methods for determining the regularization

parameter is the L-curve method described in [82]. This method utilizes the plot

for norm of the solution versus the norm of the residual, and locates the ”corner”

of this graph to compute the regularization parameter.

Given the singular value decomposition of the matrix A = USV T , Tikhonov

regularization replaces the matrix A with

Ā = (AT A + λ2I)−1AT

which has the singular value decomposition

Ā = V ((S2 + λ2I)−1S)U.

The singular values of this new matrix is then given by

σ̄i = σi/(σ
2
i + λ2).

The idea behind the method described in [82] is to replace the original singular

values with these in order to get a better conditioned system. One can compute

194

values for ||Ax − b|| and ||Lx|| using these new singular values coupled with the

orthonormal matrices from the singular value decomposition in order to plot the

L-curve. The corner is the point of highest curvature of the L-curve.

We have experimented with regularization tools from [83,85] which implement

this method. We have observed that using this technique in our setting leads

to non-converging or slowly converging solutions. In fact, in some cases the L-

curve did not even have the characteristic L-shape for the optimal parameter to be

defined correctly. In Figure 4.9 we show examples of L-curves we have observed in

our experiments. One can see that while in some cases the shape has a well-defined

corner (leftmost example, using an irregular mesh with minimum angle 30), in some

others there are multiple corners (middle two examples, using irregular meshes with

minimum angles 10 and 1 respectively), or no corners or an L-shaped curve at all

(rightmost example, using a regular mesh). The red dashed line points to the

”corner” as selected by the algorithm. Furthermore, since this method requires a

full SVD decomposition of the system matrix it is space and time inefficient.

10−3 10−2 10−1 100 101 102
10−1

100

101

102

103

104

105

residual norm || A x − b ||2

so
lu

tio
n

no
rm

 ||
 x

 ||
2

L−curve, Tikh. corner at 0.0010283

10−2 10−1 100 101 102 103 104
101

102

103

104

105

106

107

108

residual norm || A x − b ||2

so
lu

tio
n

no
rm

 ||
 x

 ||
2

L−curve, Tikh. corner at 1.5889e−08

10−4 10−3 10−2 10−1 100 101 102 103 104
101

102

103

104

105

106

107

residual norm || A x − b ||2

so
lu

tio
n

no
rm

 ||
 x

 ||
2

L−curve, Tikh. corner at 4.663e−10

10−6 10−5 10−4 10−3 10−2 10−1 100 101 102
10−1

100

101

102

residual norm || A x − b ||2

so
lu

tio
n

no
rm

 ||
 x

 ||
2

L−curve, Tikh. corner at 0.0051378

Figure 4.9: Some resulting L-curves from our experiments.

Instead, we utilize a similar but faster setup for our purposes. We compute a

regularization parameter for a given problem by prescribing a condition number

to each mesh resolution. Specifically, we pick a condition number for the coarsest

mesh and the rate of increase with mesh resolution.

195

In our experiments, using a condition number of about 1e+6 for a given value of

a coarse mesh resolution (.1) and a rate of h−6 or h−8 worked best. Mesh resolution

is computed as h/L, with h shortest edge length and L total mesh size. Given this

starting condition number κ∗0, the maximum edge length h0 of the coarsest mesh

and the maximum edge length hi for a given mesh, we can compute the new

prescribed condition number κi as:

κ∗i = κ∗0(hi/h0)
(−s)

where s is the prescribed rate of divergence.

Now that we have prescribed condition number κ∗, we base our formulation on

the following expression relating the regularization parameter and the condition

number of the regularized matrix.

λ =
σmax

κ∗
− σmin

Note that this equation is satisfied exactly when no regularization is used (λ = 0

and κ∗ = κ = σmax
σmin

). We observe that in the case of an ill-conditioned problem,

σmin is very close to zero. Then we can omit this term and compute an approximate

regularization parameter given by:

λ =
σmax

κ∗

This simple modification increases the efficiency of our scheme greatly, since now

the regularization parameter λ depends on the largest singular value only. Given

that we start with a sparse matrix, we can use an algorithm that computes the

largest singular value only, such as svds in MATLAB, instead of a full singular

value decomposition. If computing the largest singular value is still prohibitively

expensive, it can be estimated analytically on regular grids, and used for arbitrary

grids with similar mesh resolution (h/L) values.

196

Figure 4.10: Error plots with (below) and without (above) regularization.

In Figure 4.10 we show a series of error plots without regularization (above) and

with regularization(below). We observe that without regularization, errors do not

converge, especially for auxiliary variables. The error plots are for an irregular mesh

with minimum angle 10, and shows errors in recovery of a quadratic polynomial, a

sixth-order polynomial, a trigonometric and a sixth degree spline bump from left

to right. The exact functions used and more error plots showing our convergent

scheme are provided in Section 4.8.

We have mentioned the relation between our mixed formulation with auxiliary

variables and the flattened system with no auxiliary variables in [18]. Having ob-

served that regularization works well with our formulation, we experimented with

applying regularization to the flattened system. There are two choices for applying

regularization when dealing with the system with no auxiliary variables. One can

choose to remove the auxiliary variables first, and then apply regularization or one

can apply regularization to the full matrix and then remove the auxiliary variables.

In order to use the former formulation we regularize the flattened system given in

equation (4.66). For the latter formulation, we need to reorganize the matrix so

that the mass matrices lie on the diagonal. Doing so circumvents introducing ex-

197

tra dependencies among the variables which guarantees that the system can be

flattened. For our implementation we used the following re-organized system:

MΩ 0 0 0 SΩΩ

0 M0 0 0 S0Ω

SΩΩ SΩ0 MΩ 0 0

S0Ω S00 0 M0 0

0 0 SΩΩ SΩ0 0

yΩ

y0

zΩ

z0

xΩ

=

−SΩ0f0

−S00f0 − S01f1

0

−S01y1

0

When regularized, the matrix of this system gets updated on the diagonal only,

i.e. only the mass matrices get updated, and the last zero diagonal block entry

becomes non-zero. Let us denote the regularized mass matrices by M̃∗, and let Ĩ

be an identity matrix scaled by the regularization parameter. Then the regularized

system of equations becomes:

M̃ΩyΩ + SΩΩxΩ = −SΩ0f0

M̃0y0 + S0ΩxΩ = −S00f0 − S01f1

SΩΩyΩ + SΩ0y0 + M̃ΩzΩ = 0

S0ΩyΩ + S00y0 + M̃0z0 = −S01y1

SΩΩzΩ + S00z0 + ĨxΩ = 0

Let the right hand side be the vector [r1, r2, r3, r4, r5]. We then flatten this system

198

to get the following equation and then solve.

(SΩΩM̃−1
Ω(SΩΩM̃−1

Ω SΩΩ + SΩ0M̃
−1
0 S0Ω)+

S00M̃
−1
0 (S0ΩM̃−1

Ω SΩΩ + S00M̃
−1
0 S0Ω) + Ĩ)xΩ =

r1(SΩΩM̃−1
Ω SΩΩM̃−1

Ω + S00M
−1
0 S0ΩM̃−1

Ω)+

r2(SΩΩM̃−1
Ω SΩ0M̃

−1
0 + S00M̃

−1
0 S00M̃

−1
0)

r3(−SΩΩM̃−1
Ω) + r4(−S00M̃

−1
0) + r5

We have observed that regularization does not have the same effect on flattened

systems regardless of when one applies it, resulting in non-convergent results in

both cases. In Figure 4.11 we show error plots from recovery experiments of three

different functions on an irregular mesh.

Figure 4.11: Experiments in regularization for flattened systems. Left to right: degree two

polynomial, degree six polynomial and a trigonometric function.

We used a degree two polynomial, a degree six polynomial and a high frequency

trigonometric function for these experiments (exact functions used can be found in

Section 4.8). One can see that applying regularization before (blue curve) or after

(black curve) the flattening step does not lead to any substantial improvement:

although error is less in magnitude when regularization is applied to the flattened

199

system, in both cases error magnitudes diverge, as they do in the non-regularized

case.

4.8 Results

We start with experiments exploring the convergence of our method. The error

plots in Figure 4.12 show the change in L2 error magnitudes in logarithmic scale

when our mixed method and the method in [18] are used. The results are gathered

from recovery tests, where the boundary conditions and non-homogeneous right

hand sides (when the polyharmonic equation does not equal zero) are sampled

from a known function and the error is computed as the difference between exact

and computed results. We ran tests on several types of functions; a quadratic

polynomial (x2 + xy + y2), a sixth-order polynomial (x6 + x5y + x4y2 + x3y3 +

x2y4 +xy5 +y6), a high frequency trigonometric function (cos(5x)+sin(10y)), and

degree 6 spline tensor product patch. The spline patch is a sixth degree bump of

height 1 and with span [-2.5,2 .5] × [-3.5 1.5].

For each function we ran tests on four different sets of meshes with increasing

resolution. We used regular meshes, irregular meshes with minimum angle 30,

with minimum angle 10, and with minimum angle 1 as shown in Figure 4.5. We

increase the resolution by generating a denser set of points and triangulating where

the only constraint was the bound on minimum angle. For our method we show

error plots for both primal and auxiliary variables. Error in the primal variable x

is displayed with color blue, first auxiliary variable y is displayed in red, and the

second auxiliary variable z is displayed in green. For the method in [18] error plots

are for x only.

One can observe that our method converges consistently for all functions and

200

mesh connectivities. The only visible divergence happens in the quadratic function-

regular mesh pair (Figure 4.12, but in this case the function was fully recovered

(note the error magnitudes), and the increasing error is due to numerical error.

On the other hand, the error magnitudes for the method in [18] stays low, however

converges for only one function (Figure 4.12, (g)).

We compute the rate of convergence k, as in O(hk), of error magnitudes for x,

y and z in each of our test cases. This is documented in Table 4.1. Three entries

per cell refer to the errors in x, y and z respectively. One can observe that while

we can almost always achieve faster than linear convergence for x, but the rate of

convergence goes down for y and z.

regular min ang=30 min ang=10 min ang = 1

degree 2 rec rec rec 1.6 1.4 1.3 1.3 1.1 1.3 1.4 1.0 0.6

degree 6 1.7 1.7 0.9 1.5 1.3 0.3 1.4 1.1 0.3 1.4 1.2 0.4

trigonometric 2.0 1.9 1.5 2.4 2.0 1.1 2.2 2.4 1.0 2.6 1.3 0.9

spline (deg 6) 0.7 1.9 1.1 1.4 1.6 0.5 1.5 1.6 0.5 1.8 0.8 0.6

Table 4.1: Rate of convergence for the mixed method for various functions and mesh connectiv-

ities, as computed from plots in Figure 4.12.

We have also observed that using different functions within the same polynomial

space does not effect convergence rates. For example, in Figure 4.13 we present

error plots for four different sixth degree polynomials. From left to right we have:

x6+x5y+x4+y2+x3y3+x2y4+xy5+y6 (same as above), x6+y6, −10x6+10x4y2−

10x2y4 + 10y6, and 1000x6 + y, all computed on an irregular mesh with minimum

angle 10. One can see that although error magnitudes are different, the rate of

convergence as displayed by the slopes of curves is approximately the same for all

functions. We have experimented with test polynomials with both positive and

201

(b)

(a)

regular irregular, min ang=30 irregular, min ang=10 irregular, min ang=1

(g)

(h)

(f)

(e)

(b)

(a)

(c)

(d)

Figure 4.12: Convergence plots for the mixed method.(a),(e): quadratic; (b),(f): sixth-order;

(c)(g): high frequency trigonometric function; (d),(h): degree 6 spline bump.

202

negative coefficients, with different local behaviors (convex, concave,and saddle)

and obtained similar results.

Figure 4.13: Error plots of four different functions from degree six polynomial space. Note that

functions from same polynomial space result in approximately same convergence rates.

One advantage of having a convergent method is that for sufficiently fine meshes,

the solution is nearly independent of mesh connectivity. As seen in Figure 4.14,

our method produces almost identical results for any mesh whereas the one in [18]

produces different results depending on the type of mesh used. In Figure 4.14, rows

a-b show the results of the recovery of a quadratic; rows c-d show the recovery

of a degree 6 spline bump, and rows e-f show the recovery of a high frequency

trigonometric function; same as those explicitly stated in the beginning of this

section. One can also see that magnitudes of the L2 error under each image.

Another set of examples for which our method demonstrates a high degree of

mesh independence is shown in Figure 4.15. In this set of examples, we compute

a surface interpolating between two curves.

The importance of G2 boundaries resulting from sixth-order systems as opposed

to G1 boundaries resulting from a fourth-order system has been mentioned in

Section 4.6. Here we motivate this using visual examples. In Figure 4.16 we present

results from prescribing boundary conditions as sampled from a torus, comparing

the results of the biharmonic (first column) and the triharmonic (second column)

203

(a)

(b)

random
mixedhalf 3-12half 4-8

Figure 4.14: Results of curve blending tests on various meshes using our mixed FEM method

and the one in [18].

equations. One can observe that for the quarter torus the difference is barely

visible. However, as we increase the size of the blend surface by taking cross

sections for larger sections of a torus, such as a half torus and a three quarters

torus, the difference becomes clear. This is a result of the additional boundary

conditions for the second normal derivatives. The existence of such conditions for

the triharmonic helps the resulting surface to approximate the torus more closely,

and avoid possible self intersections.

In Figure 4.17 we present a variety of shapes one can build using different

boundary conditions for the first normal derivative. In the triharmonic tests second

normal derivatives on the boundary are sampled from the torus. In all cases the

first Neumann boundary conditions are sampled from the torus but then scaled by

a scale factor k as noted on the images.

A more interesting set of examples is shown in Figure 4.18. One can see a larger

variety of shapes that can be designed using different second normal boundary

conditions. In all these experiments the first Neumann boundary conditions are

sampled from the torus and not changed. All visible effects are due to the scale

204

1.398 0.1015 2.526 0.001209 4.614E-10

 0.0211 0.0758 0.07969 0.005996 2.233E-06

0.2186 0.00787 0.3225 0.00145 0.000159

0.001737 0.004205 0.01622 0.006034 0.0004382

3.884 0.2928 83.46 0.4216 0.07047

0.285 0.4111 1.028 0.8879 0.04501

(a)

(b)

(c)

(d)

(e)

(f)

Figure 4.15: Results of some recovery tests on various meshes using our mixed FEM method

((b),(d),(f)) and the one in [18]((a),(c),(e)). L2 error is shown below each case.

205

BIHARMONIC TRIHARMONIC 50% OPAQUE OVERLAP

Figure 4.16: Differences between the solutions to the biharmonic and triharmonic equations when

prescribed boundary conditions from different sections of a torus.

k=0 k=0.5 k=1 k=1.5 k=2

k=0 k=0.5 k=1 k=1.5 k=2

k = scaling factor used on (first) normal derivatives from the torus. (i.e. k=1 is the quarter torus)

BI
H

A
RM

O
N

IC
TR

IH
A

RM
O

N
IC

Figure 4.17: Variety of shapes achieved through different prescribed Neumann boundary condi-

tions for triharmonic versus biharmonic.

206

factor on the second normal derivatives prescribed on the boundary. One can view

this as an effect on thickness. This is the extra control a sixth-order formulation

provides.

k=-5 k=-1 k=0 k=1 k=5

k = scaling factor used on second normal derivatives from the torus. (i.e. k=1 is the quarter torus)

Figure 4.18: Variety of shapes achieved through different prescribed second-order boundary

conditions.

The next set of examples shows our method applied to a model hole-filling prob-

lem. A half of a sphere is removed, and a replacement surface is reconstructed from

boundary data only. The difference between the triharmonic and the biharmonic

solutions to the hole-filling problem are clearly visible. While there is a visible

difference in the overall shape, we also show reflection lines to emphasize the local

defects in the solution to the fourth-order problem. One can clearly see the kinks

in reflection lines at the junction curve on the top row (biharmonic, G1 boundaries)

where no such distortion appears on the bottom row (triharmonic, G2 boundaries)

We have experimented with a variety of blending settings. In Figure 4.20 we

provide numerous examples.

In the first row of images, we show blend surfaces interpolating between a torus

with square cross-section and a cylinder. The first two columns show curvature

maps of the blend surfaces where the region blend surface connects with the square

torus is clearly visible as a sharp change in hue. The last two columns show

207

Figure 4.19: Example of hole-filling, where the hole results from removing the half sphere. Above:

biharmonic, below: triharmonic.

the blend surface in red, and displays the reflection lines to highlight the local

irregularities. One can see an abrupt change in the density of reflection lines going

from the blend surface to the square torus.

In the second row, we compute a blend surface between a torus with the cross

section of a high frequency trigonometric curve and a cylinder. There is also a

phase difference that results in a twist-like effect. Once again curvature maps

show the change in curvature values at the junction curve for the fourth-order

solution. The reflection lines also display a similar change in density.

The third row shows blend surfaces interpolating two coaxial closed curves lying

on parallel planes. One curve is a square and the other a cross section of a cylinder

with larger radius. The curvature maps as well as the reflection lines show clearly

the problem at the transition area in the biharmonic solution. We provide reflection

208

lines as viewed from several other directions. The blend surface is shaded in red

as before.

We present a more complicated setting in the last row, where the two coaxial

curves on parallel planes are a square and a high frequency closed curve. The

shape, reflection lines and the curvature maps display the differences between the

fourth-order biharmonic and the sixth-order triharmonic solution.

4.9 Future Directions

We propose that a similar mixed formulation can be used to solve non-linear prob-

lems of high-order in a flow setting as well. For example, the sixth-order flow

described in [190] would be a suitable candidate.

Below we sketch the starting point the mixed finite element formulation for

solving another, simpler sixth-order flow: ∆2H = 0, where H is the mean curva-

ture.

The flow we are interested in is formulated as:

∂#x

∂t
= −(2H · #n (4.69)

where #x is a 3-dimensional vector describing the surface over the domain Ω, H

is the mean curvature and #n is the normal. We also prescribe a set of boundary

conditions and an initial condition.

#x|∂Ω = #b0 (4.70)

∂#x

∂n
|∂Ω = #b1 (4.71)

∂2#x

∂n2
|∂Ω = #b2 (4.72)

#x|τ=0 = #x0 (4.73)

209

Square+Cylinder

High Freq + Cylinder w/ Twist

Coaxial - cylinder+square

Coaxial square+ high freq

B

T

B

T

B T

B

T

Coaxial - high frequency+square

B

T
B T

B T

Figure 4.20: Curvature maps and reflection lines on blend surfaces between two curves as de-

scribed in images. The letters B and T refer to biharmonic and triharmonic solutions respectively.

210

Then to solve for #x using a mixed FEM formulation as described in this chapter,

one can introduce a set of auxiliary variables and write the system as the following.

H = y = (#x · #n (4.74)

z = (y (4.75)

∂#x

∂t
= −(z · #n (4.76)

Similar treatment of boundary conditions should be used here as discussed in

Section 4.4.3. Writing the above equations in weak form and incorporating the

boundary conditions will lead to a similar linear system to the ones discussed in

this chapter to be solved at each time step τ of the non-linear optimization.

4.10 Conclusions

We have presented a method to solving a high-order PDE without using high-order

conforming finite elements. Using mixed finite elements, we split a high-order prob-

lem into a set of lower-order systems that can be solved my simpler elements. We

use this technique to solve the fourth-order biharmonic problem and the sixth-order

triharmonic problem. In both cases we reduce the system to a series of second-order

problems solvable by simple, linear finite elements. Furthermore, we proposed a

regularization scheme to solve the ill-conditioned systems that high-order PDEs

lead to. We have presented empirical results showing the better convergence be-

havior of our method as compared to existing methods. We presented comparison

based results for using a fourth and a sixth-order system in surface blending and

hole-filling applications. We have outlined how mixed elements can be used for a

nonlinear sixth-order flow.

211

Conclusion

Modeling of high quality surfaces is the core of geometric modeling. Such mod-

els are used in many computer-aided design and computer graphics applications.

Irregular behavior of higher-order differential parameters of the surface (e.g. cur-

vature variation) may lead to aesthetic or physical imperfections. In this work, we

presented three techniques for constructing surfaces with high degree of smooth-

ness.

In one formulation, we constructed a manifold based surface with support for

piecewise smooth boundaries of same order. We use a coarse quadrilateral input

mesh and bases of any order of smoothness ranging from C2 to C∞, in order to

represent a surface of any prescribed order of smoothness. While our resulting

surfaces follow closely a subdivision approximation, they also support properties

such as flexibility, explicit parameterization and local control. Having observed

that such methods lead to a growth of derivative magnitudes with order, we derived

lower bounds.

As an alternative, we described a discrete-geometric construction for a simple

and efficient method for discretizing reflection line based functionals on meshes

and demonstrated how these functionals can be used in an interactive system to

optimize the shape of reflective surfaces. The functional we use is fourth order and

provides explicit control over the surface. We describe an efficient and accurate

discretization. We implemented tools to change direction and densities of reflection

lines, as well as smoothing and warping them. One can also approximate any given

pattern by reflection lines on a surface using this tool.

Lastly, we presented a mixed finite element method for solving two polyhar-

212

monic systems: the biharmonic and the triharmonic. We described a method

to split the high order problem into lower order problems that can be solved by

simpler elements, such as the linear conforming element used in our construction.

While such high order problems lead to ill-conditioned systems, we provided a

regularization scheme to overcome this difficulty. We showed that our formulation

exhibits convergent behavior which in turn results in mesh independent solutions.

213

214

Bibliography

[1] L. Alboul, G. Echeverria, and M. Rodrigues. Discrete curvatures and gauss

maps for polyhedral surfaces. In European Workshop on Computational Ge-

ometry(EWCG), pages 69–72, Eindhoven, the Netherlands, 2005.

[2] M. Amara and F. Dabaghi. An optimal C0 finite element algorithm for the

2D biharmonic problem: theoretical analysis and numerical results. Numer.

Math., 90(1):19–46, 2001.

[3] R. K. E. Andersson and B. E. J. Dahlberg. Interactive techniques for visual

design. In Topics in surface modeling, pages 95–113. Society for Industrial

and Applied Mathematics, Philadelphia, PA, USA, 1992.

[4] D. N. Arnold. Mixed finite element methods for elliptic problems. Comput.

Methods Appl. Mech. Eng., 82(1-3):281–300, 1990.

[5] D. N. Arnold and F. Brezzi. Mixed and nonconforming finite element meth-

ods: implementation, postprocessing and error estimates. RAIRO Modél.

Math. Anal. Numér., 19(1):7–32, 1985.

[6] F. Auricchio, F. Brezzi, and C. Lovadina. Encyclopedia of Computational

Mechanics, volume 1, chapter 9. Wiley, 2004.

[7] C. Bajaj and G. Xu. Adaptive fairing of surface meshes by geometric diffu-

sion. In IV ’01: Proceedings of the Fifth International Conference on Infor-

mation Visualisation, page 731, Washington, DC, USA, 2001. IEEE Com-

puter Society.

215

[8] E. Bänsch, P. Morin, and R. H. Nochetto. A finite element method for surface

diffusion: the parametric case. J. Comput. Phys., 203(1):321–343, 2005.

[9] A. Belyaev and S. Yoshizawa. On evolute cusps and skeleton bifurcations.

Shape Modeling and Applications, SMI 2001 International Conference on.,

pages 134–140, May 2001.

[10] H. Biermann, A. Levin, and D. Zorin. Piecewise smooth subdivision surfaces

with normal control. In Kurt Akeley, editor, Siggraph 2000, Computer Graph-

ics Proceedings, pages 113–120. ACM Press / ACM SIGGRAPH / Addison

Wesley Longman, 2000.

[11] M. I. G. Bloor and M. J. Wilson. Generating blend surfaces using partial

differential equations. Computer Aided Design, 21(3):165–171, 1989.

[12] M. I. G. Bloor and M. J. Wilson. Using partial differential equations to

generate free-form surfaces. Computer Aided Design, 22(4):202–212, 1990.

[13] M. I. G. Bloor, M. J. Wilson, and H. Hagen. The smoothing properties of

variational schemes for surface design. Computer Aided Geometric Design,

12(4):381–394, 1995.

[14] A. I. Bobenko and P. Schröder. Discrete willmore flow. In Eurographics

Symposium on Geometry Processing, pages 101–110, 2005.

[15] H. Bohl and U. Reif. Degenerate bézier patches with continuous curvature.

Comput. Aided Geom. Des., 14(8):749–761, 1997.

[16] V. Borrelli, F. Cazals, and J.-M. Morvan. On the angular defect of triangula-

tions and the pointwise approximation of curvatures. Comput. Aided Geom.

Des., 20(6):319–341, 2003.

216

[17] M. Botsch, D. Bommes, and L. Kobbelt. Efficient linear system solvers for

mesh processing. pages 62–83. 2005.

[18] M. Botsch and L. Kobbelt. An intuitive framework for real-time freeform

modeling. In SIGGRAPH ’04: ACM SIGGRAPH 2004 Papers, pages 630–

634, New York, NY, USA, 2004. ACM.

[19] M. Botsch and O. Sorkine. On linear variational surface deformation meth-

ods. IEEE Transactions on Visualization and Computer Graphics, 14(1):213–

230, 2008.

[20] M. Botsch and O. Sorkine. On linear variational surface deformation meth-

ods. IEEE Transactions on Visualization and Computer Graphics, 14(1):213–

230, 2008.

[21] D. Braess. Finite Elements: Theory, fast solvers and applications in solid

mechanics, 2nd edn, volume 13. 2002.

[22] S.C. Brenner and C.Carstensen. Encyclopedia of Computational Mechanics,

volume 1, chapter 4. Wiley, 2004.

[23] F. Brezzi and M. Fortin. Mixed and hybrid finite element methods, volume 15

of Springer Series in Computational Mathematics. Springer-Verlag, New

York, 1991.

[24] F. Brezzi and P.-A. Raviart. Mixed finite element methods for 4th order

elliptic equations. In Topics in numerical analysis, III (Proc. Roy. Irish Acad.

Conf., Trinity Coll., Dublin, 1976), pages 33–56. Academic Press, London,

1977.

217

[25] B. M. Brown, P. K. Jimack, and M. D. Mihajlović. An efficient direct solver

for a class of mixed finite element problems. Appl. Numer. Math., 38(1-2):1–

20, 2001.

[26] O. P. Bruno and L. A. Kunyansky. A fast, high-order algorithm for the

solution of surface scattering problems: basic implementation, tests, and

applications. J. Comput. Phys., 169(1):80–110, 2001.

[27] T. Bülow. Spherical diffusion for 3d surface smoothing. IEEE Transactions

on Pattern Analysis and Machine Intelligence, 26:1650–1654, December 2004.

[28] Z. Caiming and C. Fuhua. Removing local irregularities of nurbs surfaces by

modifying highlight lines. Computer Aided Design, 30(12):923–930, 1998.

[29] G. Celniker and D. Gossard. Deformable curve and surface finite-elements for

free-form shape design. In SIGGRAPH ’91: Proceedings of the 18th annual

conference on Computer graphics and interactive techniques, pages 257–266,

New York, NY, USA, 1991. ACM Press.

[30] C. Chen, K. Cheng, and H. M. Liao. Fairing of polygon meshes via bayesian

discriminant analysis. In WSCG: Int. Conf. in Central Europe on Comp.

Graph., Vis. and Comp. Vis., pages 175–182, 2004.

[31] I. Choi and K. Lee. Evaluation of surfaces for automobile body styling. In

Computer Graphics International, pages 202–, 1996.

[32] D. L. Chopp and J. A. Sethian. Motion by intrinsic Laplacian of curvature.

Interfaces Free Bound., 1(1):107–123, 1999.

218

[33] P. G. Ciarlet. The finite element method for elliptic problems. North-Holland

Publishing Co., Amsterdam, 1978. Studies in Mathematics and its Applica-

tions, Vol. 4.

[34] P. G. Ciarlet and P.-A. Raviart. A mixed finite element method for the

biharmonic equation. In Mathematical aspects of finite elements in partial

differential equations (Proc. Sympos., Math. Res. Center, Univ. Wisconsin,

Madison, Wis., 1974), pages 125–145. Publication No. 33. Math. Res. Center,

Univ. of Wisconsin-Madison, Academic Press, New York, 1974.

[35] U. Clarenz, U. Diewald, G. Dziuk, M. Rumpf, and R. Rusu. A finite element

method for surface restoration with smooth boundary conditions. Computer

Aided Geometric Design, pages 427–445, 2004.

[36] U. Clarenz, U. Diewald, and M. Rumpf. Anisotropic geometric diffusion in

surface processing. In VIS ’00: Proceedings of the conference on Visualization

’00, pages 397–405, Los Alamitos, CA, USA, 2000. IEEE Computer Society

Press.

[37] U. Clarenz, M. Rumpf, and A. Telea. Fairing of point based surfaces. In

Computer Graphics International, pages 600–603, 2004.

[38] D. Cohen-Steiner and J. Morvan. Restricted delaunay triangulations and

normal cycles. Proc. 19th Annu. ACM Sympos. Comput. Geom., pages 237–

246, 2003.

[39] H. S. M. Coxeter and S. L. Greitzer. Geometry Revisited. Math. Assoc.

Amer., 1967.

219

[40] P. Csákany and A. M. Wallace. Computation of local differential parame-

ters on irregular meshes. In Proceedings of the 9th IMA Conference on the

Mathematics of Surfaces, pages 19–33, London, UK, 2000. Springer-Verlag.

[41] M. Desbrun, M. Meyer, P. Schröder, and A. H. Barr. Implicit fairing of

irregular meshes using diffusion and curvature flow. SIGGRAPH Computer

Graphics, 33(Annual Conference Series):317–324, 1999.

[42] A. Deslandes and D. L. Bonner. Reflection line control. U.S. Patent 6717579,

2004.

[43] J. C. Dill. An application of color graphics to the display of surface curvature.

SIGGRAPH Comput. Graph., 15(3):153–161, 1981.

[44] V. Dragnea and E. Angelopoulou. Direct shape from isophotes. In Ben-

COS05, pages 45–50, 2005.

[45] H. Du and H. Qin. Dynamic pde-based surface design using geometric and

physical constraints. Graph. Models, 67(1):43–71, 2005.

[46] H. Du and H. Qin. Direct manipulation and interactive sculpting of pde

surfaces. Computer Graphics Forum, 19:261–270(10), September 2000.

[47] N. Dyn, K. Hormann, S. Kim, and D. Levin. Optimizing 3d triangulations

using discrete curvature analysis. In Mathematical Methods for Curves and

Surfaces: Oslo 2000, pages 135–146, Nashville, TN, USA, 2001. Vanderbilt

University.

[48] G. Farin. Curves and surfaces for CAGD: a practical guide. Morgan Kauf-

mann Publishers Inc., San Francisco, CA, USA, 2002.

220

[49] G. Farin and H. Hagen. A local twist estimator. In Topics in surface modeling,

pages 79–84. Society for Industrial and Applied Mathematics, Philadelphia,

PA, USA, 1992.

[50] G. Farin and N. Sapidis. Curvature and the fairness of curves and surfaces.

IEEE Comput. Graph. Appl., 9(2):52–57, 1989.

[51] R. T. Farouki. Graphical methods for surface differential geometry. In Pro-

ceedings on Mathematics of surfaces II, pages 363–385, New York, NY, USA,

1988. Clarendon Press.

[52] G. E. Fasshauer and L. L. Schumaker. Minimal energy surfaces using para-

metric splines. Comput. Aided Geom. Des., 13(1):45–79, 1996.

[53] A. R. Forrest. On the rendering of surfaces. In SIGGRAPH ’79: Pro-

ceedings of the 6th annual conference on Computer graphics and interactive

techniques, pages 253–259, New York, NY, USA, 1979. ACM Press.

[54] Y. Gingold, A. Secord, J. Y. Han, E. Grinspun, and D. Zorin. A Discrete

Model for Inelastic Deformation of Thin Shells. Technical report, Aug 2004.

[55] R. Glowinski and O. Pironneau. Numerical methods for the first biharmonic

equation and the two-dimensional Stokes problem. SIAM Rev., 21(2):167–

212, 1979.

[56] J. Goldfeather and V. Interrante. A novel cubic-order algorithm for approx-

imating principal direction vectors. ACM Trans. Graph., 23(1):45–63, 2004.

[57] J. Gravesen and M. Ungstrup. Constructing invariant fairness measures for

surfaces. Adv. Comput. Math., 17(1-2):67–88, 2002. Advances in geometrical

algorithms and representations.

221

[58] J. A. Gregory and J. M. Hahn. A C2 polygonal surface patch. Comput. Aided

Geom. Design, 6(1):69–75, 1989.

[59] G. Greiner. Variational design and fairing of spline surfaces. Comput. Graph.

Forum, 13(3):143–154, 1994.

[60] G. Greiner. Blending surfaces with minimal curvature. In Graphics and

Robotics, pages 163–174, London, UK, 1995. Springer-Verlag.

[61] G. Greiner. Modeling of curves and surfaces based on optimization tech-

niques. In H. Nowacki and P.D.Kaklis, editors, Creating Fair and Shape-

Preserving Curves and Surfaces, pages 11–27. BG Teubner, 1998.

[62] G. Greiner, J. Loos, and W. Wesselink. Surface modeling with data depen-

dent energy functionals. Comput. Graph. Forum, 15:175–186, 1996.

[63] C. M. Grimm. Simple manifolds for surface modeling and parameterization.

In Shape Modeling International, 2002.

[64] C. M. Grimm and J. F. Hughes. Modeling surfaces of arbitrary topology

using manifolds. In Proceedings of SIGGRAPH 95, Computer Graphics Pro-

ceedings, Annual Conference Series, pages 359–368, August 1995.

[65] C. M. Grimm and J. F. Hughes. Parameterizating n-holed tori. In The

Mathematics of Surfaces IX, 2003.

[66] E. Grinspun, Y. Gingold, J. Reisman, and D. Zorin. Computing discrete

shape operators on general meshes. Eurographics (Computer Graphics Fo-

rum), 25(3), 2006.

[67] X. Gu, Y. He, M. Jin, F. Luo, H. Qin, and S.-T. Yau. Manifold splines

with single extraordinary point. In SPM ’07: Proceedings of the 2007 ACM

222

symposium on Solid and physical modeling, pages 61–72, New York, NY,

USA, 2007. ACM.

[68] X. Gu, Y. He, and H. Qin. Manifold splines. In SPM ’05: Proceedings of

the 2005 ACM symposium on Solid and physical modeling, pages 27–38, New

York, NY, USA, 2005. ACM Press.

[69] N. Guid, C. Oblonsek, and B. Zalik. Surface interrogation methods. Com-

puters and Graphics, 19(4):557–574, 1995.

[70] H. Hagen. Variational principles in curve and surface design. In IMA Con-

ference on the Mathematics of Surfaces, pages 169–190, 1992.

[71] H. Hagen and S. Hahmann. Generalized focal surfaces: A new method for

surface interrogation. In IEEE Visualization, pages 70–76, 1992.

[72] H. Hagen, S. Hahmann, and G.-P. Bonneau. Variational surface design and

surface interrogation. Comput. Graph. Forum, 12(3):447–459, 1993.

[73] H. Hagen, S. Hahmann, and T. Schreiber. Visualization and computation of

curvature behaviour of freeform curves and surfaces. Computer-Aided Design,

27(7):545–552, 1995.

[74] H. Hagen, S. Hahmann, T. Schreiber, Y. Nakajima, B. Wordenweber, and

P. Hollemann-Grundstedt. Surface interrogation algorithms. IEEE Computer

Graphics and Applications, 12(5):53–60, September 1992.

[75] H. Hagen and A. Nawotki. Variational design and parameter optimized sur-

face fitting. In Geometric Modelling, pages 121–134, 1996.

223

[76] H. Hagen and H. Pottmann. Curvature continuous triangular interpolants.

In Mathematical methods in computer aided geometric design (Oslo, 1988),

pages 373–384. Academic Press, Boston, MA, 1989.

[77] H. Hagen, T. Schreiber, and E. Gschwind. Methods for surface interrogation.

In IEEE Visualization, pages 187–193, 1990.

[78] S. Hahmann. Visualization techniques for surface analysis. In Data Visual-

ization Techniques (Trends in Software, 6). John Wiley and Son Ltd, 1999.

[79] S. Hahmann, A. Belyaev, L. Buse, G. Elber, B. Mourrain, and C. Rössl.

Shape interrogation. In L. de Floriani and M. Spagnuolo, editors, Shape

Analysis and Structuring, Mathematics and Visualization, chapter 1, pages

1–52. Springer, Berlin, Germany, 2008.

[80] M. A. Halstead, B. A. Barsky, S. A. Klein, and R. B. Mandell. Reconstructing

curved surfaces from specular reflection patterns using spline surface fitting

of normals. In SIGGRAPH ’96: Proceedings of the 23rd annual conference

on Computer graphics and interactive techniques, pages 335–342, New York,

NY, USA, 1996. ACM Press.

[81] B. Hamann. Curvature approximation for triangulated surfaces. In Geomet-

ric modelling, pages 139–153, London, UK, 1993. Springer-Verlag.

[82] P. C. Hansen. Analysis of discrete ill-posed problems by means of the l-curve.

SIAM Rev., 34(4):561–580, 1992.

[83] P. C. Hansen. Regularization tools: a Matlab package for analysis and solu-

tion of discrete ill-posed problems. Numer. Algorithms, 6(1-2):1–35, 1994.

224

[84] P. C. Hansen. Rank-deficient and discrete ill-posed problems. SIAM Mono-

graphs on Mathematical Modeling and Computation. Society for Industrial

and Applied Mathematics (SIAM), Philadelphia, PA, 1998. Numerical as-

pects of linear inversion.

[85] P.C. Hansen. Regularization Tools version 4.0 for Matlab 7.3. Numer. Algo-

rithms, 46(2):189–194, 2007.

[86] M. Higashi, K. Kohji, and M. Hosaka. On formulation and display for vi-

sualizing features and evaluating quality of free-form surfaces. In EURO-

GRAPHICS ’90, pages 299–309, 1990.

[87] K. Hildebandt, K. Polthier, and M. Wardetzky. Smooth feature lines on sur-

face meshes. In Eurographics Symposium on Geometry Processing: SGP’05,

pages 85–90, 2005.

[88] S.-Y. Hong, C.-S. Hong, H.-C. Lee, and K. Park. Discrete local fairing of b-

spline surfaces. In ICCS ’01: Proceedings of the International Conference on

Computational Sciences-Part I, pages 693–697, London, UK, 2001. Springer-

Verlag.

[89] B. K. P. Horn. Robot Vision. The MIT Press, 1986.

[90] J. Hoschek. Detecting regions with undesirable curvature. Computer Aided

Geometric Design, 1(2):183–192, 1984.

[91] J. Hoschek. Smoothing of curves and surfaces. Computer Aided Geometric

Design, 2(1-3):97–105, 1985.

[92] L. Hsu, R. Kusner, and J. Sullivan. Minimizing the squared mean curvature

integral for surfaces in space forms. Experiment. Math., 1(3):191–207, 1992.

225

[93] A. Hubeli and M. Gross. Fairing of non-manifolds for visualization. In VIS

’00: Proceedings of the conference on Visualization ’00, pages 407–414, Los

Alamitos, CA, USA, 2000. IEEE Computer Society Press.

[94] F. Jin. Directional surface fairing of elongated shapes. In H. Nowacki and

P.D.Kaklis, editors, Creating Fair and Shape-Preserving Curves and Surfaces,

pages 164–178. BG Teubner, 1998.

[95] M. Kallay. Constrained optimization in surface design. In B. Falcidieno and

T.L. Kunii, editors, Modelling in Computer Graphics, pages 85–93. Springer,

1993.

[96] M. Kallay and B. Ravani. Optimal twist vectors as a tool for interpolat-

ing a network of curves with a minimum energy surface. Computer Aided

Geometric Design, 7(6):465–473, 1990.

[97] S. Karbacher, J. Babst, G. Husler, and X. Laboureux. Visualization and

detection of small defects on car-bodies. In B. Girod, G. Greiner, H. Niemann,

and H.-P. Seidel, editors, Vision, Modeling, and Visualization 1999, pages 1–

8, August 1999.

[98] K. Karčiauskas and J. Peters. Polynomial C2 spline surfaces guided by ra-

tional multisided patches. In Computational methods for algebraic spline

surfaces, pages 119–134. Springer, Berlin, 2005.

[99] E. Kaufmann and R. Klass. Smoothing surfaces using reflection lines for

families of splines. Computer Aided Design, 20(6):312–316, 1988.

[100] R. Klass. Correction of local surface irregularities using reflection lines.

Computer-Aided Design, 12(2):73–77, March 1980.

226

[101] L. Kobbelt. A variational approach to subdivision. Computer Aided Geo-

metric Design, 13(8):743–761, 1996.

[102] L. Kobbelt. Discrete fairing. In 7th IMA Conf. on the Mathematics of

Surfaces, pages 101–130, 1997.

[103] L. Kobbelt. Variational design with parametric meshes of arbitrary topology.

In H. Nowacki and P.D.Kaklis, editors, Creating Fair and Shape-Preserving

Curves and Surfaces, pages 189–198. BG Teubner, 1998.

[104] L. Kobbelt. Discrete fairing and variational subdivision for freeform surface

design. The Visual Computer, 16(3-4):142–158, 2000.

[105] J. J. Koenderink and A. J. van Doorn. Surface shape and curvature scales.

Image Vision Comput., 10(8):557–564, 1992.

[106] A. Kolb, H. Pottmann, and H. P. Seidel. Surface reconstruction based upon

minimum norm networks. In M. Daehlen, T. Lyche, and L. L. Schumaker,

editors, Mathematical Methods for Curves and Surfaces, pages 293–304. Van-

derbilt University Press, Nashville, TN, 1995.

[107] V.I. Korobov, G.M. Sklyar, and V.V. Florinskii. A Minimal Polynomial for

Finding the Switching Instants and the Support Vector of the Controllability

Domain. Differential Equations, 38(1):15–18, 2002.

[108] S. Kubiesa, H. Ugail, and M. Wilson. Interactive design using higher order

pdes. The Visual Computer, 20:682–693(12), December 2004.

[109] T. Langer, A. Belyaev, and H.-P. Seidel. Exact and approximate quadratures

for curvature tensor estimation. In Günther Greiner, Joachim Hornegger,

Heinrich Niemann, and Marc Stamminger, editors, Vision, Modeling, and

227

Visualization 2005 (VMV’05), pages 421–428, Erlangen, Germany, Novem-

ber 2005. Aka.

[110] A. Levin. Modified subdivision surfaces with continuous curvature. In SIG-

GRAPH ’06: ACM SIGGRAPH 2006 Papers, pages 1035–1040, New York,

NY, USA, 2006. ACM.

[111] G. Liden and A. A. Ball. Intersection techniques for assessing surface quality.

In Proceedings of the 5th IMA Conference on the Mathematics of Surfaces,

pages 191–202, New York, NY, USA, 1994. Clarendon Press.

[112] T. Lilienblum, B. Michaelis, P. Albrecht, and R. Calow. Dent detection in

car bodies. In ICPR, pages 4775–4778, 2000.

[113] X. Liu, H. Bao, Q. Peng, P.-A. Heng, and T.-T. Wong. Constrained fairing

for meshes. Comput. Graph. Forum, 20(2):115–123, 2001.

[114] C. Loop. Second order smoothness over extraordinary vertices. In SGP

’04: Proceedings of the 2004 Eurographics/ACM SIGGRAPH symposium on

Geometry processing, pages 165–174, New York, NY, USA, 2004. ACM Press.

[115] J. Loos, G. Greiner, and H.-P. Seidel. Modeling of surfaces with fair reflection

line pattern. In Shape Modeling International, pages 256–, 1999.

[116] T. Maekawa, Y. Nishimura, and T. Sasaki. Circular highlight/reflection lines.

Computer-Aided Design & Applications, 2(1-4):291–300, 2005.

[117] J.-L. Maltret and M. Daniel. Discrete curvatures and applications : a sur-

vey. Rapport de recherche LSIS.RR.2002.002, Laboratoire des Sciences de

l’Information et des Systèmes, 2002.

228

[118] P. Mamassian. Isophotes on a smooth surface related to scene geometry. In

B. C. Vemuri, editor, Proc. SPIE Vol. 2031, p. 124-133, Geometric Methods

in Computer Vision II, Baba C. Vemuri; Ed., volume 2031 of Presented at

the Society of Photo-Optical Instrumentation Engineers (SPIE) Conference,

pages 124–133, June 1993.

[119] D. S. Meek and D. J. Walton. On surface normal and gaussian curvature

approximations given data sampled from a smooth surface. Comput. Aided

Geom. Des., 17(6):521–543, 2000.

[120] E. Mehlum and C. Tarrou. Invariant smoothness measures for surfaces. Adv.

Comput. Math., 8(1-2):49–63, 1998.

[121] M. Meyer, M. Desbrun, P. Schröder, and A. H. Barr. Discrete differential-

geometry operators for triangulated 2-manifolds. In Hans-Christian Hege

and Konrad Polthier, editors, Visualization and Mathematics III, pages 35–

57. Springer-Verlag, Heidelberg, 2003.

[122] P. Monk. A mixed finite element method for the biharmonic equation. SIAM

J. Numer. Anal., 24(4):737–749, 1987.

[123] H. P. Moreton. Simplified curve and surface interrogation via mathemati-

cal packages and graphics libraries and hardware. Computer-Aided Design,

27(7):523–543, 1995.

[124] H. P. Moreton and C. H. Séquin. Surface design with minimum energy

networks. In Symposium on Solid Modeling and Applications, pages 291–

301, 1991.

[125] H. P. Moreton and C. H. Sé;quin. Functional optimization for fair surface

design. In SIGGRAPH ’92: Proceedings of the 19th annual conference on

229

Computer graphics and interactive techniques, pages 167–176, New York,

NY, USA, 1992. ACM Press.

[126] H. P. Moreton and C. H. Séquin. Scale-invariant minimum-cost curves: Fair

and robust design implements. Comput. Graph. Forum, 12(3):473–484, 1993.

[127] F. Munchmeyer. On surface imperfections. In Proceedings on Mathematics

of surfaces II, pages 459–474, New York, NY, USA, 1988. Clarendon Press.

[128] J. C. Navau and N. P. Garcia. Modeling surfaces from meshes of arbitrary

topology. Computer Aided Geometric Design, 17(7):643–671, 2000.

[129] J. C. Navau, N. P. Garcia, and M. V. Anglada. A generic approach to free

form surface generation. J. Comput. Inf. Sci. Eng., 2(4):294–301, 2002.

[130] A. Nawotki and H. Hagen. Physically based modeling. In H. Nowacki and

P.D.Kaklis, editors, Creating Fair and Shape-Preserving Curves and Surfaces,

pages 133–139. BG Teubner, 1998.

[131] A. Nealen, T. Igarashi, O. Sorkine, and M. Alexa. Fibermesh: designing

freeform surfaces with 3d curves. ACM Trans. Graph., 26(3):41, 2007.

[132] A. Nealen, O. Sorkine, M. Alexa, and D. Cohen-Or. A sketch-based interface

for detail-preserving mesh editing. International Conference on Computer

Graphics and Interactive Techniques, pages 1142–1147, 2005.

[133] A. Neumaier. Solving ill-conditioned and singular linear systems: a tutorial

on regularization. SIAM Rev., 40(3):636–666 (electronic), 1998.

[134] H. Nowacki and D.Reese. Design and fairing of ship surfaces. In Surfaces in

Computer Aided Geometric Design, pages 121–134. North-Holland Publish-

ing Company, Amsterdam, 1983.

230

[135] H. Nowacki, G. Westgaard, and J. Heimann. Creation of fair surfaces

based on higher order fairness measures with interpolation constraints. In

H. Nowacki and P.D.Kaklis, editors, Creating Fair and Shape-Preserving

Curves and Surfaces, pages 141–161. BG Teubner, 1998.

[136] M. Ohsaki, T. Ogawa, and R. Tateishi. Shape optimization of curves and

surfaces considering fairness metrics and elastic stiffness. Structural and Mul-

tidisciplinary Optimization, 27(4):250–258, June 2004.

[137] Y. Ohtake, A. G. Belyaev, and I. A. Bogaevski. Polyhedral surface smoothing

with simultaneous mesh regularization. In GMP ’00: Proceedings of the

Geometric Modeling and Processing 2000, page 229, Washington, DC, USA,

2000. IEEE Computer Society.

[138] D. L. Page, Y. Sun, A. Koschan, J. Paik, and M. Abidi. Normal vector

voting: Crease detection and curvature estimation on large, noisy meshes.

Journal of Graphical Models, 64:1–31, 2003.

[139] J. Peters. Curvature continuous spline surfaces over irregular meshes.

Computer-Aided Geometric Design, 13(2):101–131, Feb 1996.

[140] J. Peters. C2 free-form surfaces of degree (3, 5). Comput. Aided Geom.

Design, 19(2):113–126, 2002.

[141] U. Pinkall and K. Polthier. Computing discrete minimal surfaces and their

conjugates. Experiment. Math., 2(1):15–36, 1993. 1058-6458.

[142] T. Poeschl. Detecting surface irregularities using isophotes. Computer Aided

Geometric Design, 1(2):163–168, 1984.

231

[143] H. Pottmann. Visualizing curvature discontinuities of free-form surfaces. In

EUROGRAPHICS ’89, pages 529–536, 1989.

[144] H. Prautzsch. Freeform splines. Comput. Aided Geom. Design, 14(3):201–

206, 1997.

[145] H. Prautzsch and G. Umlauf. A G2-subdivision algorithm. In G. Farin,

H. Bieri, G. Brunnet, and T. DeRose, editors, Geometric Modelling, Com-

puting Suppl. 13, pages 217–224. Springer-Verlag, 1998.

[146] C. Radoux. Addition formulas for polynomials built on classical combinato-

rial sequences. Journal of Computational and Applied Mathematics, 115(1-

2):471–477, 2000.

[147] T. Rando and J. A. Roulier. Designing faired parametric surfaces. Computer-

Aided Design, 23(7):492–497, 1991.

[148] A. Razdan and M. Bae. Curvature estimation scheme for triangle meshes

using biquadratic bezier patches. Computer Aided Design, 37:1481–1491,

December 2005.

[149] J. Reisman, E. Grinspun, and D. Zorin. A note on the triangle-centered

quadratic interpolation discretization of the shape operator. Technical report,

New York University, 2007.

[150] J. Roulier and T. Rando. Measures of Fairness for Curves and Surfaces,

pages 75–123. In Designing Fair Curves and Surfaces: Shape Quality in

Geometric Modeling and Computer-Aided Design.

232

[151] S. Rusinkiewicz. Estimating curvatures and their derivatives on triangle

meshes. In Symposium on 3D Data Processing, Visualization, and Transmis-

sion, pages 486–493, Sept 2004.

[152] R. E. Rusu. An algorithm for the elastic flow of surfaces. Interfaces and Free

Boundaries, 7:229–239, 2005.

[153] N. S. Sapidis and G. D. Koras. Visualization of curvature plots and evaluation

of fairness: an analysis of the effect of ‘scaling’. Computer Aided Geometric

Design, 14(4):299–311, 1997.

[154] S. Schaefer, J. Warren, and D. Zorin. Lofting curve networks using sub-

division surfaces. In SGP ’04: Proceedings of the 2004 Eurographics/ACM

SIGGRAPH symposium on Geometry processing, pages 103–114, New York,

NY, USA, 2004. ACM.

[155] R. Schneider and L. Kobbelt. Mesh fairing based on an intrinsic pde ap-

proach. Computer-Aided Design, 33:767–777(11), 14 September 2001.

[156] R. Schneider and L. Kobbelt. Discrete fairing of curves and surfaces based

on linear curvature distribution. In Pierre-Jean Laurent, Paul Sablonniere,

and Larry Schumaker, editors, Curve and Surface Design, Saint-Malo 1999,

Innovations in Applied Mathematics, pages 371–380, Saint-Malo, France,

2000. Vanderbilt University Press.

[157] R. Schneider and L. Kobbelt. Geometric fairing of irregular meshes for free-

form surface design. Computer Aided Geometric Design, 18(4):359–379, 2001.

[158] R. Schneider, L. Kobbelt, and H.-P. Seidel. Improved bi-laplacian mesh fair-

ing. In Tom Lyche and Larry L. Schumaker, editors, Mathematical Methods

233

for Curves and Surfaces: Oslo 2000, Innovations in Applied Mathematics,

pages 445–454, Oslo, Norway, 2001. Vanderbilt University.

[159] R. Scholz. A mixed method for 4th order problems using linear finite ele-

ments. RAIRO Anal. Numér., 12(1):85–90, iii, 1978.

[160] D. Schweitzer. Artificial texturing: An aid to surface visualization. In SIG-

GRAPH ’83: Proceedings of the 10th annual conference on Computer graph-

ics and interactive techniques, pages 23–29, New York, NY, USA, 1983. ACM

Press.

[161] L. R. Seidenberg, R. B. Jerard, and J. Magewick. Surface curvature analysis

using color. In VIS ’92: Proceedings of the 3rd conference on Visualization

’92, pages 260–267, Los Alamitos, CA, USA, 1992. IEEE Computer Society

Press.

[162] C. H. Sequin. Cad tools for aesthetic engineering. Computer Aided Design,

37(7):737–750, June 2005.

[163] O. Sorkine, Y. Lipman, D. Cohen-Or, M. Alexa, C. Rössl, and H.-P. Seidel.

Laplacian surface editing. In Proceedings of the Eurographics/ACM SIG-

GRAPH Symposium on Geometry Processing, pages 179–188. ACM Press,

2004.

[164] G. Strang and G. J. Fix. An analysis of the finite element method. Prentice-

Hall Inc., Englewood Cliffs, N. J., 1973. Prentice-Hall Series in Automatic

Computation.

[165] J. M. Sullivan. Curvature measures for discrete surfaces. Preprint, 2002.

234

[166] T. Surazhsky, E. Magid, O. Soldea, G. Elber, and E. Rivlin. A comparison of

gaussian and mean curvatures estimation methods on triangular meshes. In

ICRA: International Conference on Robotics and Automation, pages 1021–

1026, 2003.

[167] T. Tasdizen, R. Whitaker, P. Burchard, and S. Osher. Geometric surface

smoothing via anisotropic diffusion of normals. In VIS ’02: Proceedings of

the conference on Visualization ’02, pages 125–132, Washington, DC, USA,

2002. IEEE Computer Society.

[168] G. Taubin. Curve and surface smoothing without shrinkage. In ICCV ’95:

Proceedings of the Fifth International Conference on Computer Vision, page

852, Washington, DC, USA, 1995. IEEE Computer Society.

[169] G. Taubin. Estimating the tensor of curvature of a surface from a polyhedral

approximation. In ICCV ’95: Proceedings of the Fifth International Con-

ference on Computer Vision, page 902, Washington, DC, USA, 1995. IEEE

Computer Society.

[170] G. Taubin. A signal processing approach to fair surface design. In SIG-

GRAPH ’95: Proceedings of the 22nd annual conference on Computer graph-

ics and interactive techniques, pages 351–358, New York, NY, USA, 1995.

ACM Press.

[171] G. Taubin. Geometric signal processing on polygonal meshes. In EURO-

GRAPHICS 2000 - STARs, 2000.

[172] H. Theisel. Are isophotes and reflection lines the same? Computer Aided

Geometric Design, 18(7):711–722, 2001.

235

[173] H. Theisel, C. Rössl, R. Zayer, and H.-P. Seidel. Normal based estimation of

the curvature tensor for triangular meshes. In Pacific Conference on Com-

puter Graphics and Applications, pages 288–297, 2004.

[174] H. Ugail, M. I. G. Bloor, and M. J. Wilson. Techniques for interactive design

using the pde method. ACM Trans. Graph., 18(2):195–212, 1999.

[175] H. Ugail, M.I.G. Bloor, and M.J. Wilson. Manipulation of pde surfaces using

an interactively defined parameterisation. Computers and Graphics, 23:525–

534(10), August 1999.

[176] D.-E. Ulmet. Reflection curves-new computation and rendering techniques.

International Journal of Mathematics and Mathematical Sciences, 21:1121–

1132, 2004.

[177] D.-E. Ulmet. Customized reflection lines for surface interrogation in car body

design. In SYNASC ’07: Proceedings of the Ninth International Symposium

on Symbolic and Numeric Algorithms for Scientific Computing, pages 124–

129, Washington, DC, USA, 2007. IEEE Computer Society.

[178] R.M.J. van Damme and L. Alboul. Tight triangulations. In T. Lyche

M. Daehlen and L. Schumaker, editors, Mathematical Methods for Curves

and Surfaces, pages 517–526, 1995.

[179] T. I. Vassilev. Fair interpolation and approximation of b-splines by energy

minimization and points insertion. Computer-Aided Design, 28(9):753–760,

1996.

[180] K. Watanabe and A. G. Belyaev. Detection of salient curvature features on

polygonal surfaces. Computer Graphics Forum, 20(3), 2001.

236

[181] W. Welch and A. Witkin. Free-form shape design using triangulated surfaces.

Computer Graphics, 28(Annual Conference Series):247–256, 1994.

[182] W. Welch and A. P. Witkin. Variational surface modeling. In SIGGRAPH,

pages 157–166, 1992.

[183] J. W. Wesselink. Variational Modeling of Curves and Surfaces. PhD thesis,

Technische Universiteit Eindhoven, 1996.

[184] G. Westgaard. Construction of Fair Curves and Surfaces. PhD thesis, Tech-

nische Universitat Berlin, Germany, 2000.

[185] G. Westgaard and H. Nowacki. Construction of fair surfaces over irregular

meshes. In Symposium on Solid Modeling and Applications, pages 88–98,

2001.

[186] G. Xu. Consistent approximations of some geometric differential operators.

Technical Report ICM-06-001, Institute of Computational Mathematics and

Scientific/Engineering Computing, Chinese Academy of Sciences, 2000.

[187] G. Xu. Surface fairing and featuring by mean curvature motions. J. Comput.

Appl. Math., 163(1):295–309, 2004.

[188] G. Xu, Q. Pan, and C. L. Bajaj. Discrete surface modeling using geometric

flows. ICES Technical Report 03-38, University of Texas at Austin, 2003.

[189] G. Xu, Q. Pan, and C. L. Bajaj. Discrete surface modelling using partial

differential equations. Comput. Aided Geom. Design, 23(2):125–145, 2006.

[190] G. Xu and Q. Zhang. G2 surface modeling using minimal mean-curvature-

variation flow. Computer-Aided Design, 39:342–351, 2007.

237

[191] G. Xu and Q. Zhang. A general framework for surface modeling using geomet-

ric partial differential equations. Comput. Aided Geom. Design, 25(3):181–

202, 2008.

[192] H. Yagou, Y. Ohtake, and A. G. Belyaev. Mesh smoothing via mean and me-

dian filtering applied to face normals. In Geometric Modeling and Processing,

Theory and Applications, pages 124–131, 2002.

[193] Y.D. Yang and J.B. Gao. Remarks on the ciarlet-raviart mixed finite element.

Electronic Transactions on Numerical Analysis, 4:158–164, 1996.

[194] C. Yifan, K. P. Beier, and D. Papageorgiou. Direct highlight line modification

on nurbs surfaces. Computer-Aided Geometric Design, 14(6):583–601, 1997.

[195] L. Ying and D. Zorin. A simple manifold-based construction of surfaces of

arbitrary smoothness. ACM Trans. Graph., 23(3):271–275, 2004.

[196] S. Yoshizawa and A. G. Belyaev. Fair triangle mesh generation with discrete

elastica. In GMP ’02: Proceedings of the Geometric Modeling and Processing

Theory and Applications (GMP’02), page 119, Washington, DC, USA, 2002.

IEEE Computer Society.

[197] L. You, P. Comninos, and J. J. Zhang. Pde blending surfaces with c2 conti-

nuity. Computers and Graphics, 28(6):895–906, 2004.

[198] J. Yu, X. Yin, X. Gu, L. McMillan, and S. Gortler. Focal surfaces of discrete

geometry. In SGP ’07: Proceedings of the fifth Eurographics symposium on

Geometry processing, pages 23–32, Aire-la-Ville, Switzerland, Switzerland,

2007. Eurographics Association.

238

[199] J. Yu, X. Yin, X. Gu, L. McMillan, and S. Gortler. Geometric modeling

using focal surfaces. In SIGGRAPH ’07: ACM SIGGRAPH 2007 sketches,

page 70, New York, NY, USA, 2007. ACM.

[200] Y. Yu, K. Zhou, D. Xu, X. Shi, H. Bao, B. Guo, and Heung-Yeung Shum.

Mesh editing with poisson-based gradient field manipulation. ACM Trans-

actions on Graphics, 23(3):644–651, August 2004.

[201] C. Zhang, P. Zhang, and F. Cheng. Fairing spline curves and surfaces by

minimizing energy. Computer-Aided Design, 33(13):913–923, 2001.

[202] H. Zhang and E. Fiume. Mesh smoothing with shape or feature preserva-

tion. In Advances in Modeling, Animation and Rendering, pages 167–182.

Springer, 2002.

[203] J. J. Zhang and L. You. Surface representation using second, fourth and

mixed order partial differential equations. In Shape Modeling International,

pages 250–256. IEEE Computer Society, 2001.

[204] J. J. Zhang and L. You. Rapid generation of c2 continuous blending surfaces.

In ICCS ’02: Proceedings of the International Conference on Computational

Science-Part II, pages 92–101, London, UK, 2002. Springer-Verlag.

[205] J. J. Zhang and L.H. You. Fast surface modelling using a 6th order pde.

Computer Graphics Forum, 23:311–320(10), September 2004.

[206] Y. Zhang, C. Bajaj, and G. Xu. Surface smoothing and quality improvement

of quadrilateral/hexahedral meshes with geometric flow. In Communications

in Numerical Methods in Engineering. 2007.

239

[207] D. Zorin. Curvature-based energy for simulation and variational modeling. In

Int. Conf. on Shape Modeling and Applications(SMI), pages 198–206, 2005.

[208] D. Zorin. Constructing curvature-continuous surfaces by blending. Proceed-

ings of the fourth Eurographics symposium on Geometry processing, pages

31–40, 2006.

240

