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Abstract

Hanni M. Fakhoury, staff attorney with the Electronic Frontier Foundation, has ar-

gued against Supreme Court Justice Samuel Alito’s opinion that society should

accept a decline in personal privacy with modern technology, “Technology doesn’t

involve an ‘inevitable’ tradeoff [of increased convenience] with privacy. The only in-

evitability must be the demand that privacy be a value built into our technology” [40].

Our position resonates with Mr. Fakhoury’s assertion for rethinking information pri-

vacy for the web. In this thesis, we present three artifacts that address the balance

between usability, efficiency, and privacy as we rethink information privacy for the

web.

In the first part of this thesis, we propose the design, implementation and evalua-

tion of Cryptagram, a system designed to enhance online photo privacy. Cryptagram

enables users to convert photos into encrypted images, which the users upload to

Online Social Networks (OSNs). Users directly manage access control to those

photos via shared keys that are independent of OSNs or other third parties. OSNs

apply standard image transformations (JPEG compression) to all uploaded images
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so Cryptagram provides image encoding and encryption protocols that are tolerant

to these transformations. Cryptagram guarantees that the recipient with the right

credentials can completely retrieve the original image from the transformed version

of the uploaded encrypted image while the OSN cannot infer the original image.

Cryptagram’s browser extension integrates seamlessly with preexisting OSNs, in-

cluding Facebook and Google+, and currently has over 400 active users.

In the second part of this thesis, we introduce the design of Lockbox, a system

designed to provide end-to-end private file-sharing with the convenience of Google

Drive or Dropbox. Lockbox uniquely combines two important design points: (1) a

federated system for detecting and recovering from server equivocation and (2) a

hybrid cryptosystem over delta encoded data to balance storage and bandwidth costs

with efficiency for syncing end-user data. To facilitate appropriate use of public keys

in the hybrid cryptosystem, we integrate a service that we call KeyNet, which is a

web service designed to leverage existing authentication media (e.g., OAuth, verified

email addresses) to improve the usability of public key cryptography.

In the third part of this thesis, we propose a new system, Compass, which real-

izes the philosophical privacy framework of contextual integrity (CI) as a full OSN

design. CI), which we believe better captures users privacy expectations in OSNs.

In Compass, three properties hold: (a) users are associated with roles in specific

contexts; (b) every piece of information posted by a user is associated with a spe-

cific context; (c) norms defined on roles and attributes of posts in a context govern

how information is shared across users within that context. Given the definition of

a context and its corresponding norm set, we describe the design of a compiler that

converts the human-readable norm definitions to generate appropriate information

viii



flow verification logic including: (a) a compact binary decision diagram for the norm

set; and (b) access control code that evaluates how a new post to a context will flow.

We have implemented a prototype that shows how the philosophical framework of

contextual integrity can be realized in practice to achieve strong privacy guarantees

with limited additional verification overhead.
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1
Introduction

In his concurrence to the United States v. Jones GPS decision, Supreme Court Jus-

tice Samuel Alito wrote that “New technology may provide increased convenience

or security at the expense of privacy, and many people may find the tradeoff worth-

while. And even if the public does not welcome the diminution of privacy that new

technology entails, they may eventually reconcile themselves to this development

as inevitable” [6]. But Hanni M. Fakhoury, staff attorney with the Electronic Fron-

tier Foundation, responds, “Technology doesn’t involve an ‘inevitable’ tradeoff with

privacy. The only inevitability must be the demand that privacy be a value built into

our technology” [40]. For our thesis, we aim to demonstrate the strength Fakhoury’s

assertion in the modern web.

1



In this thesis, we present three artifacts that address the balance between con-

venience, utility and privacy when considering photo sharing, file sharing, and the

fundamental architecture of online social networks. We demonstrate the feasiblity

of balancing these three values of convenience, utility and privacy when designing

systems for the web.

1 . 1 P H O T O S H A R I N G

While Online Social Networks (OSNs) enable users to share photos easily, they also

expose users to several privacy threats from both the OSNs and external entities. The

current privacy controls on OSNs are far from adequate, resulting in inappropriate

flows of information when users fail to understand their privacy settings or OSNs

fail to implement policies correctly. OSNs may further complicate privacy expecta-

tions when they reserve the right to analyze uploaded photos using automated face

identification techniques.

In Chapter 2, we propose the design, implementation and evaluation of Cryptagram,

a system designed to enhance online photo privacy. Cryptagram enables users to

convert photos into encrypted images, which the users upload to OSNs. Users di-

rectly manage access control to those photos via shared keys that are independent

of OSNs or other third parties. OSNs apply standard image transformations (JPEG

compression) to all uploaded images so Cryptagram provides an image encoding

and encryption mechanism that is tolerant to these transformations. Cryptagram

guarantees that the recipient with the right credentials can completely retrieve the

original image from the transformed version of the uploaded encrypted image while

the OSN cannot infer the original image. The Cryptagram system uses a browser

2



extension to integrate seamlessly with preexisting OSNs, including Facebook and

Google+, and has been installed by over 400 users.

1 . 2 F I L E S H A R I N G

Petabytes of data are replicated and shared through popular cloud storage service

providers such as Dropbox and Google Drive. Nevertheless, end-to-end user privacy

has remained an afterthought in popular services. Chapter 3 introduces the design

of Lockbox, a system designed to provide end-to-end private file-sharing with the

convenience of Google Drive or Dropbox. Lockbox minimizes cost and impact

on the storage provider while maintaining file versioning and privacy through a

transparent hybrid cryptosystem and a delta-to-object storage protocol, which stores

encrypted delta-encoded data at the storage provider while maintaining local object

blobs at the end-user devices. To facilitate appropriate use of private keys in the

hybrid cryptosystem, we integrate a service that we call KeyNet, which is a web

service designed to leverage existing authentication media (e.g., OAuth, verified

email addresses) to improve the usability of public key cryptography.

1 . 3 O N L I N E S O C I A L N E T W O R K D E S I G N

Privacy violations in online social networks (OSNs) have become more the norm

than the exception. In Chapter 4, we argue that the conventional models of privacy in

OSNs are fundamentally flawed and offer no specific privacy guarantees. We propose

a completely new model of private information sharing using a refined abstraction

of circles that embodies the philosophy of contextual integrity (CI). We contend

3



that the CI framework provides a cleaner match between user privacy and sharing

intentions and also enables a verification framework to formally check correctness.

We present the design of a social network that leverages the CI framework.

1 . 4 T H E S I S C O N T R I B U T I O N S

This thesis makes the following contributions:

1. We define q, p-Recoverability and present a systematic exploration of the

design space of protocols for embedding data into the spatial domain of

images through the lens of q, p-Recoverability.

2. We present the design and evaluation of Cryptagram, a usable photo pri-

vacy solution for sharing private data through online social media. Our

preliminary users study includes over 400 active account installation of our

Chrome extension.

3. We describe the design and implementation of Lockbox, a system for lightweight

private file-sharing across federated services. Lockbox demonstrates how

to reduce cloud storage requirements while retaining end-to-end file sharing

privacy.

4. We propose the design of and evaluate an implementation of an online social

network privacy system that embodies contextual integrity. We demon-

strate how to close the gap between the philosophical framework and reality

with the Compass norm compiler.

4



In short, this thesis provides systems that empower end-users to rethink how they

manage their privacy on the web. It shows how to resolve the rumored tension

between convenience, efficiency and privacy in the domains of photo sharing in

online social networks, cloud file sharing, and online social network design. This

work helps to support and encourage future innovation in web privacy.

5



2
Photo Privacy for Online Social Media

Petabytes of imagery data have been posted by users to Online Social Networks

(OSNs) with Facebook alone receiving over 250 million photo uploads per day [99],

storing 10,000 times more photos than the Library of Congress [53]. Users feel the

need internally and externally (peer pressure) to share photos on OSNs given the

convenience of usage and their immense popularity [19, 76, 101, 104, 120]. Users

share personal and potentially sensitive photos on OSNs, thereby exposing users to a

wide range of privacy threats from external entities and the OSN itself [34, 112, 118].

We consider two basic factors that trigger privacy concerns for end-users in OSNs.

6



Figure 2.0.1: Example Cryptagram user experience. On the left, we show a social
network with embedded Cryptagrams, uploaded by a user. A browser extension
decrypts the images in place as shown on the right.

U S E R / S Y S T E M E R R O R S : A user who uploads an image to an OSN may wish

to share it with only a select group of people, which OSNs partially satisfy with

privacy settings. Contextual integrity [94] would state that the user is attempting

to implement her own notion of appropriate information flows. But a recent study

confirmed that Facebook users’ impression of their sharing patterns and their true

privacy settings are often inconsistent [64]. Moreover, an OSN may fail to correctly

enforce their privacy settings, such as the case when Facebook exposed its own

CEO’s private photos in a systemwide glitch [34].

FA C E I D E N T I F I C AT I O N : A passive observer or a hosting OSN could extract

large volumes of online photo uploads, indexing and discovering images within a

corpus that belong to a specific user [118]. Mining of photo corpora can lead to the

7



unexpected disclosure of individuals’ locations or their participation in events. Facial

data mining incidents have resulted in litigation against OSNs and further weakened

the integrity of the relationship between the social network and the individual [112].

In this chapter, we present the design, implementation and evaluation of Cryptagram,

a system designed to address these photo privacy concerns in OSNs. A basic de-

sign goal of Cryptagram is to build a usable solution that can offer strong privacy

guarantees for end-users that remains backwards compatible with existing OSN user

interface designs. To maintain the conventional feel of an OSN, Cryptagram uses

the abstraction of an image interface (RGBA pixels) to manipulate the core image

formats used by OSNs. Cryptagram leverages an end-to-end encryption system to

transport images, which are uploaded to OSNs. Figure 2.0.1 illustrates a specific

example of how Cryptagram represents normal images as encrypted images.1

A challenge in the design of such an end-to-end image encryption/decryption

mechanism is to be resilient to image transformations by the OSN. For instance Face-

book converts all uploaded photos, regardless of original format, to JPEG, choosing

quality settings without user input. The recipient of a Cryptagram image must be

able to retrieve the original image from the OSN-transformed version. In this pa-

per, we describe the notion of q, p-Recoverability (Section 2.2.1) which formalizes

the aforementioned property that enables the assessment of embedding protocol

designs. We describe a class of JPEG embedding protocols that can achieve the

q, p-Recoverability property for different JPEG quality transformation levels. The

1In this example, a user has uploaded a single Cryptagram image per image in this Figure. OSNs
typically recompress and resize images within their backend infrastructure, presenting the most
bandwidth-friendly version (thumbnails) as they deem appropriate. In order to render the decrypted
Cryptagrams for thumbnails, Cryptagram infers from URL of the thumbnail how to fetch the full-size
image, which Cryptagram fetches and decompresses when a user indicates our extension should do
so.
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top-down techniques that we discuss for designing q, p-Recoverable protocols can

also be applied to lossless image compression formats.

Cryptagram addresses a problem that is fundamentally different from conven-

tional image steganography. While steganography aims to hide data in plainsight

and avoid detection [48], Cryptagram makes obvious that it is hiding data with the

added aim of efficiently transporting bits in the image medium while being robust

to image transformations. Despite the differences in problem definition, steganogra-

phy does have the same mechanical use as Cryptagram for transporting bits in an

image. When comparing the effective efficiency of our approach to steganography,

Cryptagram packs many more bits per pixel (Section 2.5).

Cryptagram differs significantly from the recent work on photo privacy, P3 [106].

Unlike P3, Cryptagram operates completely in encrypted bit space and does not

reveal sensitive cleartext data of photos to external entities (Section 5.1). Cryptagram

also does not rely on third-party providers for providing photo privacy.

We present several key results in our evaluation. For JPEG Cryptagram images

uploaded to Facebook, we find that JPEG compression quality for those high entropy

images is in the range of 76 to 86 (for natural images, usually quality is 74). Given

these recompression target ranges, we demonstrate JPEG embedding protocols that,

in tandem with error-correcting codes, achieve an effective efficiency of 3.06 bits

per pixel, which is 2.68× greater than the best related work. We also summarize a

study of recoverability when recompressng already compressed images. We further

illustrate a design point comparison of recoverability versus filesize expansion when

comparing JPEG and webp lossy compression formats.

Our end-to-end Cryptagram system has been deployed to the web. Figure 2.0.2

9



http://www.....

updateContextMenu(){...

handleDecryptRequest(){...

getPassword(){...

Browser ExtensionBrowser

1) Extension injects JavaScript

2) User right-clicks Cryptagram <img>

3) Pixel shades are extracted by JavaScript

4) User is prompted for a key

5) Decryption is attempted. If successful, Cryptagram <img>

    element’s src is replaced with the decrypted data URI.

Password?            ••••••

Save Image As...

Decrypt Image...

...zIGRpc3Rpbmd1aXNoZWQsIG5vdCBvbm

x5IGJ5IGh4sIGJ1dCBieSB0aGlzIHN....

Secret Cat Photos

Figure 2.0.2: An overview of the Cryptagram user experience.

summarizes a user’s experience with the current decoder. Our decoder browser ex-

tensions integrate seamlessly with existing OSNs including Facebook and Google+

while being compatible with their complicated DOM structures. We have nearly

400 active users of our decoder extension and over 300 users have agreed to our

IRB-approved study through which they submit high-level data about their on-going

image encrypting and decrypting habits with Cryptagram.

2 . 1 S Y S T E M M O D E L

2 . 1 . 1 P R O B L E M S TAT E M E N T

The basic problem that Cryptagram aims to address can be stated as follows: Two

users U and V are members in an OSN and have a shared key k (e.g., password),
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independent of the OSN. U wants to use the OSN to share an image I with V but

does not intend to upload I to the OSN since the OSN or other unauthorized users

may also be able to view I . Instead, U needs an encryption mechanism that can

transform I into an encrypted image I ′, which V can retrieve, decrypt and obtain I

(using the shared key k). The key challenge is that when U uploads an encrypted

image I ′, the OSN can apply image transformations and the image V downloads

may significantly differ from I ′. Hence, the sharing mechanism needs to be resilient

to image transformations.

To better understand the transformation-resilient image encryption problem, we

outline the basic image encoding and decoding steps used by Cryptagram and the

property that Cryptagram aims to achieve:

• A user U encrypts a to-be-shared cleartext image, I , using a strong block

cipher with a secret key, k, to produce a byte sequence, E(I, k). This k may

be human-readable (a password) or part of a hybrid cryptosystem in which

the k is generated and shared using public key cryptography.

• An image encoding protocol, C, embeds E(I, k) into the spatial domain of an

image, Im = C(E(I, k)) which the OSN transforms as T (Im). In this chapter,

we restrict T to be the identity transformation (lossless format) or a standard

lossy image compression. We use JPEG for the lossy format in much of the

evaluation since that is a commonly used standard across OSNs.

• An OSN user V who is an authorized recipient of the image needs to be aware

of the block cipher secret key k. Using this key k and an image decoding algo-

rithm, V should be able to successfully decode I from a transformed version
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T (Im). Here, we aim to achieve recoverability (intuitively, data integrity of the

embedded message), which in the case of a lossless format is tautologically

true sans other transformations. For JPEG, we aim for q, p-Recoverability

property: given a minimum quality level q of the transformed image T (Im),

the decoding protocol should enable V to decode the original image I with

high probability, p. We denote this recoverability probability using p, where

the ideal case is when p = 1; however, achieving p = 1 may not always be

feasible.

• Adversary, Eve, who passively observes T (Im) should not learn anything

about I .

2 . 1 . 2 D E S I G N G O A L S

The aforementioned problem statement highlights two key design goals of Crypta-

gram: data confidentiality and probabilistic data integrity for lossy images. For

data confidentiality, Cryptagram leverages trusted algorithms that users may use to

ensure that data has been encoded with a strong proofs of security. For probabilistic

data integrity, since Cryptagram aims to create images for use on OSNs, we can

relax the constraint of traditional information security data integrity [44] for lossy

image formats such as JPEG. This relaxation enables the Cryptagram design to

incorporate features that demonstrate a spectrum of data integrity when a social

network transforms uploaded images.

But given these goals, should U and V use an OSN to share personal images

at all? We accept as a constraint that many users desire the convenience of social

networks [76]. This “convenience” constraint raises the following design goals that
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Cryptagram meets:

• Usable: We aim to offer a system that affords users intuitive privacy on top

of the images that they share on OSNs. While several offline approaches exist

to preserve privacy (e.g., PGP [135]), Cryptagram makes it possible for users

to create and share private photos without disrupting the OSN experience.

• Widely Deployable and Applicable: To gain wide adoption, we have cre-

ated a cross-browser, cross-platform, cross-image format system that enables

Cryptagram to be used as both an encoder and decoder. The reduced friction

to creating and accessing Cryptagram images removes the barrier to broader

use of the technology.

• Efficient: Compared to alternative methods, we present a system that offers

significantly more data storage for a given file size or image dimensions.

2 . 1 . 3 S E C U R I T Y OV E RV I E W

T H R E AT # 1 : FA C I A L D ATA M I N I N G

In this threat, the adversary is the OSN, whose aim is to execute facial data min-

ing algorithms on uploaded images. In recent years, as social networks’ corpi of

images have grown dramatically, this is a serious concern for the privacy-conscious

individual.

A P P R O A C H . We have devised a scheme that reveals no information about the

original image to the OSN. As we discuss in Section 2.3, the use of our embedding
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algorithm by nature thwarts facial data mining by embedding the cleartext (e.g.,

facial) data indirectly as encrypted bits in the spatial domain of the transport image.

S E C U R I T Y G U A R A N T E E S . With the use of a block cipher to transform the

secret message, Cryptagram retains the strength of the underlying security properties

of the chosen algorithm. With the use of public key cryptography users can retain

cryptographic strength while leveraging a trusted, separate channel to bootstrap their

sharing.

T H R E AT # 2 : M I S C O N F I G U R E D P R I VA C Y C O N T R O L S

OSNs may fail to correctly deploy access control policies or users may accidentally

misconfigure confusing access controls. The use of Cryptagram creates a separate

channel of communication to ensure, with cryptographic strength, that only intended

recipients see the cleartext photo. With the correct use of Cryptagram, an OSN could

suffer a full system breach and encrypted images would remain private.

L I M I TAT I O N S

D E T E C T I N G A N D B L O C K I N G C RY P TA G R A M I M A G E S . Cryptagram does

not address the problem of an OSN detecting and inhibiting the upload of all Crypta-

gram images. Steganography may be proposed in this scenario but problem redefini-

tion and the tradeoff in efficiency make steganography an inappropriate application.

U N S U P P O R T E D T R A N S F O R M AT I O N S . Though Cryptagram images are ro-

bust to varying degrees of JPEG compression, they does not support many other
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transformations. For example, cropping or rescaling a Cryptagram will generally

break its encoding.

B R U T E - F O R C E C RY P T O G R A P H I C AT TA C K . Cryptagram users who choose

weak passwords in the symmetric key scheme can be attacked with dictionary or

brute-force techniques. To address this limitation, we encourage users to abide by

strong password creation techniques [87, 105] when using symmetric key creden-

tials. When using public key cryptography, we encourage users to leverage the use

of a public key infrastructure that is coupled with Cryptagram as we follow Key

Continuity Management practices [51].

C O P Y A N D PA S T E . Users who gain access to cleartext images can copy and

paste those images to whomever they choose. We believe this problem will persist

despite any attempts, short of controlling all hardware at the disposal to humans

accessing social networks.

2 . 2 I M A G E F O R M AT S I N O S N S

Several image formats are used across OSNs. While Facebook uses only the JPEG

format to store images (and, moreover, strips uploaded images of EXIF data), Google+

and other networks allow for a variety of lossless (e.g., PNG) and lossy (e.g., webp)

formats. Our goal is to design a generic photo privacy solution that can work across

different image formats. While lossless compression techniques are relatively easier

to handle, determining an image encryption/decryption mechanism in the face of

a lossy transformation is much more challenging. Given the popularity and broad
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use of JPEG, we use JPEG as our primary image format to describe the design

of Cryptagram. We show how Cryptagram can be easily applied for other image

formats including lossy image formats like webp.

Our design primarily focuses on embedding data in the spatial dimensions of

an image. We define an embedding protocol to be an algorithm that describes the

creation of a sequence of bits and how those bits are embedded into the spatial

domain (pixels) of an image. We design embedding algorithms that work in a top-

down fashion; that is, the data to be embedded is written into the spatial domain of

an image on a pixel level rather than in any protocol-specific manner. We believe

that a top-down approach allows us to meet the aim for wide deployablility and

applicability in terms of implementation, testing and future image formats. The top-

down API means that the design of codecs can apply or be tested across multiple

formats with ease. When codec design depends on DCT coefficients, for instance,

there are non-intuitive programming interfaces that would be required to make that

facility addressable to the PNG format and not just JPEG, webp, and other DCT-

coefficient based compression algorithms.

Assuming a passive adversary, this approach is a valid solution to the security

threats that we outlined in the previous section. This is an especially prudent design

choice considering that lossy image transformations will most intuitively aim to

preserve higher order features of an image rather than its bit-wise representation.

The generic interface to the image is thus the four possible color channels red,

green, blue, and alpha as well as their corresponding bit value. For JPEG, this means

up to eight bits per the first three color channels. For PNG, we have up to 16 bits per

channel for all four possible channels.
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2 . 2 . 1 D E F I N I N G q, p- R E C O V E R A B I L I T Y F O R J P E G

JPEG image transformations are inherently lossy in nature. With the aim of prob-

abilistic data integrity, we make concrete the goal of relaxing the constraints of

traditional notions of information security data integrity [44] for embedding data in

JPEG.

We define the q, p-JPEG Recoverability (or, simply q, p-Recoverability) property

of embedding protocols as follows: given a minimum quality level q that an OSN

preserves in a transformation T of an uploaded image, an authorized recipient should

be able to decode the original image with high probability p, where in the ideal case

p = 1. The concept of q, p-Recoverability can also be applied to other lossy image

transformations though the corresponding attainable values of q and p are dependent

on transformation T .

In the context of JPEG images, we define a Cryptagram protocol as a message-

JPEG encoder G and JPEG-message decoder G′. Given an input image2 I , the first

step in Cryptagram encoding is to convert the image into an encrypted sequence of

bits m = E(I, k), for clear-text image I and a block cipher key k. We refer to the

input to the JPEG encoder as a sequence of bitsm. Givenm, the protocol encodesm

in the spatial domain of a JPEG image, Im = G(m). JPEG (denoted by the function

T , its inverse for decompression is T ′) compresses Im at quality q to produce a

sequence of bits, T (Im, q).

The recipient uses a two step decoding mechanism to retrieve an encrypted set

of bits m′: (a) the first step involves using the decompression step T ′ to produce

2We mean that I is a sequence of bits that represent an image format that a browser can render.
Notably, Cryptagram’s embedding can be a used with any arbitrary message I for delivering a
message via the spatial domain of a transport image.
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Im = G(m)

G′(T ′(T (Im, q))) = m′ =p m =⇒

G is q, p-Recoverable

Figure 2.2.1: q, p-Recoverability in a nutshell.

T ′(T (Im, q)); (b) the second step involves using the JPEG-message decoder G′ to

retrieve an encrypted sequence of bits m′ = G′(T ′(T (Im, q))). Ideally, m′ should

match m; if they do, the recipient can use the secret key k to decrypt m′ to retrieve

the original input message. However given the lossy nature of the transformations,

the message-JPEG encoding and JPEG-message decoding steps may not always

succeed. Here, we use the term p to denote the probability that the algorithm suc-

cessfully decodes the input bit sequence m. Mathematically, we denote this as:

m′ =p m. If this constraint holds, then we define the protocol to be q, p-Recoverable.

By considering a large sample set of input messages, we can statistically estimate

the value of p for a given quality threshold q. The aim of Cryptagram is to identify

q, p-Recoverable protocols that attain p close to one for low quality values and a

high bits per pixel ratio. We summarize these ideas in Figure 2.2.1.

2 . 3 S Y S T E M D E S I G N

2 . 3 . 1 L O S S Y I M A G E S

To discuss how to embed data into a lossy image, we focus on the JPEG compression

algorithm, though our design principles apply to other lossy formats.

How should one embed bits into the spatial domain of an image? To approach
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this challenge, we develop a mapping of bits to colors for specific pixels in an image.

Intuitively, when choosing points (coordinates) in the color space to represent bits,

we leverage the observation that the lossy codec may shift an initially embedded

point (pixel’s color) during encoding and decoding an image; however, the sphere in

the color space within which that point may move does not overlap with other point-

centered spheres. This is to say that when choosing what values to embed and how

to coordinate pixel values, protocol designers must be sensitive to the assumption

that the lossy codec will shift values within spheres in a color space. This intuition

guides our JPEG design discussion below but, more importantly, is the generally

applicable principle for Cryptagram protocol design.

The principal unit of embedding in Cryptagram is the Cryptagram pixel block

(CPB). Multiple CPBs must fill or pack a 8 × 8 JPEG pixel block (JPB) for each

channel of JPEG (luminance, chrominance red and chrominance blue), which is the

“atomic unit” of pixels that undergoes JPEG compression [125]. We consider how to

pack bits into the spatial domain of JPEG given two goals: (1) efficient bit packing

(increasing the number of bits per pixel) and (2) q, p-Recoverability.

E M B E D D I N G I N T H E S PAT I A L D O M A I N

C RY P TA G R A M P I X E L B L O C K S For protocol design we examine how to ma-

nipulate 64 pixels to embed bits efficiently. We embed symbols into the 64-pixel

JPBs for each Y CbCr channel with multiple Cryptagram pixel blocks (CPBs) per

JPB. A CPB could be any shape that packs into a JPB. For our discussion, we

consider 1× 1 and 2× 2 CPBs.

The composition of a CPB thus is a shape description, w × h (width, height) and
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a set of rules, R, for translating a symbol, x, or set of bits (x = b0, . . . , b|x|) into red,

green, and blue tuples (r, g, b) that we embed in each pixel of the CPB according to

the appropriate RGB →Y CbCr conversion. For simplicity, we represent the CPB

embeddings for each channel as LRL
w×h, where RL are the rules that correspond to

the channel, L, how to embed x to color values for L.

Because JPEG compression applies different downsampling and quantization

matrices to luminance and chrominance channels (but applies the same compression

to the two chrominance channels), we express the embedding protocol for a CPB as:

(
Y RY
wY ×hY

, CRC
wC×hC

)
where Y corresponds to luminance and C to chrominance channels.

The rule set, R provides a large space for Cryptagram protocol designers. Intu-

itively, the composition of rules becomes a choice of three parameters: (1) how

many bits to embed, (2) the number of discretizations to use (for which the number

of bits to embed determines the lower-bound) in the color space, and (3) the choice

of which discretization values from the color space to use. In short, we determine

how many colors to use, what values they represent, and the resulting bitrate.

The JPEG compression algorithm compresses least the luminance channel of

the three yielded by the RGB → Y ′CbCr transformation. If we choose only to

discretize values in luminance, we have an effective range of [0, 255], which corre-

sponds to “grayscale”. We denote this scenario as
(
Y RY
wY ×hY

, C0
)
, using C0 to denote

that chrominance is not used.
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Figure 2.3.1: Encoding algorithm illustration. We demonstrate how Cryptagram
maps an encrypted message’s sequence of bits (Steps A-C) to color values (Step
D) and how those correspond to embedded pixels (Step E).

O N C H R O M I N A N C E E M B E D D I N G . When considering the use of the chromi-

nance channels in the embedding protocol, there are several complications to ad-

dress in this proposal. As described in the JPEG specification, the two chrominance

channels are stored with significantly less fidelity than luminance. Both chromi-

nance channels are down-sampled (by default in libjpeg, 2:1) and a more aggres-

sive quantization table is used to further reduce the number of bits that need to be

stored [125]. Intuitively, the chrominance channels are less efficient for embedding

data in the spatial domain.

E N C O D I N G A L G O R I T H M We demonstrate the embedding algorithm in Fig-

ure 2.3.1. As we discuss the embedding algorithm at a high-level, we will refer to

the concrete demonstration in that figure.
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The first step of the encoding algorithm transforms the input clear-text image I

into a sequence of encrypted bits m using a shared key k such that m = E(I, k).

Here, we use a standard block cipher algorithm AES in CCM mode (128 bit keys and

64 bit tag size). The encoding algorithm from this point chooses a small collection

of bits at a time and converts these bits into Cryptagram pixel blocks. Figure 2.3.1

Step A shows how our example encrypted output message m is the sequence of

characters, “Security.” Using the base64 representation of the character, we know

that the sequence of bits for each character is shown under Step B. We then show in

Step C how the sequence of bits for the first character (S’s representation as 010010)

can be split into two three-bit sequences, the aforementioned “small collection of

bits.” Using a chunked grayscale color spectrum, we map the three-bits to an index

in the array of values. The index’s group representative (in this case at Step D, it’s

the grayscale value of 72) is what is embedded for the appropriate pixels, as shown

in Step E. In this example, we continue to pluck off three bits at a time, for Steps B

and C, then map those three bits values to grayscale values in Step D. Finally, we

continue to embed the values left-to-right, top-to-bottom in this simple example for

Step E. We have used a 2× 2 CPB for this illustration, which packs perfectly into

a standard 8× 8 JPB. An alternative format could have used 1× 1 CPBs, shading

one pixel instead of four in Step E.

Figure 2.3.2 illustrates at a high-level where data is embedded in a typical Crypta-

gram image format.

We make the above example more concrete in the following formalism. An em-

bedding algorithm, a, assumes that b bits will be embedded per CPB. Given b, a

has a bijective mapping BL : {0, 1, . . . , 2b} → La where La ⊆ [0, 255]. Given a
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Figure 2.3.2: Layout of a Cryptagram. Each box is a sequence of shaded pixels
representing the range of values for a particular protocol.

bit sequence, s, a uses BL to map b-length substrings of s to the corresponding L

channel values that will be embedded at that particular pixel. Given the notation we

have introduced,B is a more specific case of the notion of rule sets RL we presented

earlier. BL mappings underpin the designs we present in this chapter.

We can measure the efficiency of BL based on b and the size of the channel’s

CPB to which the output of BL mapped as b
|CPB| bits per pixel, where |CPB| is the

number of pixels occupied by the CPB: |CPB| = w × h.

From our discussion of the embedding protocol and the notion of q, p-Recoverability,

we have laid the groundwork for how the designer’s choice of protocol parameters

(dw,h, B, etc.) adjust the effective efficiency of the end-to-end protocol.

E X A M P L E E N C O D I N G S F O R R E A S O N I N G A B O U T q, p- R E C O V E R A B I L I T Y .

To demonstrate the tradeoff between efficiency (number of discretizations in B per

CPB size) and q, p-Recoverability that we must consider in protocol design, we

present two examples. The first example uses a
(
Y B
1×1, C

0
)

CPB. As we translate
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Name Notation Luminance-only B Mapping
Bin

(
Y 1
1×1, C

0
)

B : {0, 1} → {0, 255}
Quad

(
Y 2
1×1, C

0
)

B : {0, 1, 2, 3} → {0, 85, 170, 255}
Oct

(
Y 3
1×1, C

0
)

B : {0, 1, ..., 7} → {0, 36, 73, ..., 255}
Hex

(
Y 3
1×1, C

0
)

B : {0, 1, ..., 15} → {0, 17, 34, ..., 255}

Table 2.3.1: We present the B mappings for luminance-only embeddings in order
to introduce the Y n notation as well as illustrate the corresponding luminance
values embedded in a Cryptagram using that mapping for the embedding protocol.

(according to B) bits from m to successive CPBs color values, we fill the JPB from

left-to-right, top-to-bottom, starting in the top-left of the 64 square pixel JPB, cover-

ing each channel independently. We can explore multiple color mappings B in order

to see how q, p-Recoverability is affected by the
(
Y B
1×1, C

0
)

CPB and B interaction.

We consider three mappings for B as shown in Table 2.3.1. The simplified rep-

resentations for luminance will be used through this chapter. The superscript is the

number of bits that can be embedded given the use of equally space values in [0, 255],

including extremal values.

Figure 2.3.3 illustrates the q, p-Recoverability of these choices. In comparing the

best of binary, quadrature, octature, and hexature bits per pixel discretizations for

the
(
Y B
1×1, C

0
)

CPB, we have a sense of how the mapping choices perform relative

to one another. Given a social network quality value (for JPEG recompression), we

want to choose an embedding that allows for p very close to 1. If we choose the

target quality to be 86%, then the values that are actually at p = 1 are the Quad and

Bin mappings. These yield two and one bits per pixel, respectively. Because we are

apt to conservatively choose a quality threshold assuming an OSN may lower their

thresholds slightly (e.g., the OSN finds they save enough disk space without causing
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Figure 2.3.3: The relative performance of
(
Y B
1×1, C

0
)

CPBs. We see that more dis-
cretizations results in weaker q, p-Recoverability as the quality to which we subject
the JPEG to decreases. The tradeoff we must consider is what q, p-Recoverability
we want to achieve (what minimum quality do we want a probabilistic guarantee)
and how efficient we want for our embedding protocol.

user experience to suffer too much), we opt to use the Bin approach:
(
Y 1
1×1, C

0
)
.

Figure 2.3.4 shows the results of our exploration of the chrominance CPB size

and the impact of embedding in luminance and chrominance concurrently. We must

use 2 × 2 CPBs in chrominance channels to embed one bit per channel’s block

(or a cumulative 0.5 bits per pixel gain). We can thus embed in chrominance as

a function of the corresponding luminance values.3 With this approach, we find

that embedding more than two values per chrominance channel suffers low q, p-

Recoverability. Thus while 4 × 4 appears to illustrate good q, p-Recoverability in

the binary embedding case, we think that the efficiency gain is so marginal as to be

negligible. Thus we consider the of use
(
Y 3
1×1, C

1
2×2
)

CPBs to gain an additional 0.5

bits per pixel. This gain with chrominance always requires error correction in order

3Notably, if the luminance values are at the extremes (0 or 255), then we do not embed a chromi-
nance value in that pixel since no valid chrominance value exists.
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Figure 2.3.4: The feasibility of using chrominance to gain additional bits for embed-
ding. All lines correspond to a chrominance B binary mapping. n× n corresponds
to using only chrominance to embed bits using a binary mapping while keeping
luminance set to 128. n × n-Y embeds non-128 chrominance values along with
chrominance. This plot also highlights the tension of using chrominance in tandem
with luminance values. The diminished q, p-Recoverability may appear marginal
when we are embedding binary data in the luminance space, but performance
degrades significantly. As we explore the applicability of higher bit rates, we must
carefully balance the interaction of luminance and chrominance.

to attain q, p-Recoverability that is robust to OSN recompression.

O N D E C O D I N G . To decode values from a Cryptagram JPEG, the decoder exam-

ines pixels in the same order as the encoder. Converting the RGB values to Y CbCr,

the decoding algorithm finds the nearest neighbor for the values in the co-domain of

the B mapping for that protocol. The sequence of corresponding domain values is

the decoded sequence of bits.
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B A L A N C I N G q, p- R E C O V E R A B I L I T Y A N D E F F I C I E N C Y W I T H E R R O R

C O R R E C T I O N

Since the nature of protocols that we investigate are probabilistically recoverable (the

p in q,p-Recoverability), we consider the use of Error Correcting Codes (ECC) in or-

der to improve the q, p-Recoverability of our protocols while maintaining efficiency

of the embedding algorithm. Reed-Solomon codes are of interest to us for their

well-understood ECC properties and space efficiency. In our case and especially in

Section 2.5, we useRS(255, 223) protocol, in which we use the x8+x7+x2+x+1,

or “0x187”, field generator polynomial and 32 bytes for parity in order to recover up

to 16 byte errors for a 255 byte transmission. The input to RS(255, 223) is the en-

crypted output of the block cipher algorithm. With the application of RS(255, 223)

then, the q, p-Recoverable protocol directly embeds the output bit stream from

RS(255, 223).

From Figure 2.3.4, we note how the use of chrominance would always require

ECC in order to recover from OSN recompression-induced errors for the CPB case

we have highlighted:
(
Y 3
1×1, C

1
2×2
)
.

2 . 3 . 2 L O S S L E S S C O M PAT I B I L I T Y

Our effort focuses on the JPEG format given its online prevalence, but it’s worth

noting that our approach is seamlessly compatible with lossless formats such as

PNG [33].

In this lossless scenario, we trivially achieve recoverability. The PNG format has

a maximum per pixel efficiency of 64 bits per pixel. Each of the four channels, red,

green, blue, and alpha, can store 16-bit values. We take 64 bits of sequential data in
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m, split the 64 bits into four 16-bit segments, then write the respective 16-bit values

into each of the four channels of a pixel.

2 . 3 . 3 E A S Y K E Y M A N A G E M E N T A N D C RY P T O G R A P H Y

Users have two options for managing access to their photos in Cryptagram: symmet-

ric key cryptosystem or a hybrid (symmetric key and public key) cryptosystem.

In the case of the symmetric key cryptosystem, Cryptagram makes sharing keys

easy. A single key can be used for an image, set of images, or an album, and shared

amongst a group of friends. This makes key sharing easy and manageable by design,

and our Cryptagram browser extension facilitates the use of a password across mul-

tiple images or an album by allowing users to store the password. Enabling a strong

password to be applied across an entire album of photos means that Cryptagram

makes key dissemination easy.

Employing a hybrid cryptosystem by following the principles of key continuity

management [51] means that the Cryptagram design focuses on guiding the user to

use a hybrid cryptosystem correctly. In particular, by (1) limiting the interface for

the use of public keys for encryption and private keys only for decryption and (2)

using strong defaults for the block cipher and public key cryptography algorithms,

Cryptagram reduces the friction to secure and correct use of a hybrid cryptosystem.

For both schemes, users do not share the sensitive information through the social

network. We advise users to use a separate channel (e.g., text messaging) to share

sensitive credentials (e.g., an album password) so as to conform to the threat model

in which Cryptagram is designed to protect users from a hosting OSN.
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2 . 3 . 4 U S A B L E I M A G E I D E N T I F I E R S

While Cryptagram facilitates the creation of Cryptagram images, the question re-

mains of how to identify and distinguish gray, fuzzy images for friends. We describe

how we enable users to create images that are easier to identify for fellow human

users.

T E X T WAT E R M A R K : One challenge with the current format is that all output

images look virtually identical. This is a problem when, for example, a user asks a

friend for a Cryptagram password. Without a file name or album name, there is no

codified way to refer to images. Using a simple extension to the encoding tool, we

can enable the user to specify a text or image-based watermark to render underneath

the Cryptagram image. A text watermark could specify useful identifiers, such as a

URL or an email address for submitting password requests.

C H R O M I N A N C E WAT E R M A R K : In cases that we do not use the chrominance

channels for data transmission, we can use these channels for identification purposes.

We modify the Cb and Cr channels to add chrominance to output Cryptagrams and

do so without corrupting the luminance payload.

We embed images in these chrominance channels so long as luminance remains

unaffected. This watermark is not suitable for embedding most natural images since,

perceptually, we rely heavily on luminance, but the technique works well with high-

saturation icons or logos.
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(a) Quality 78 (b) Quality 74 (c) Quality 70

Figure 2.3.5: Partial failure-resilient protocol.

2 . 3 . 5 S U RV I V I N G PA R T I A L FA I L U R E S

The current protocol has error correction and can withstand some degree of noise

from JPEG but will fail with a cropping transformation. We can extend the basic

design to provide cropping robustness by dividing a Cryptagram’s payload into

smaller units. We encrypt each block with the same password and decryption will

involve individually decrypting and concatenating all blocks. If one block fails to

decode correctly due to cropping, the integrity of other blocks and their sequence

within the original JPEG remain unharmed. Such an approach, however, does not

apply to storing arbitrary bit streams, but for images one can replace unrecoverable

blocks with zeroes in order to display as much of the original image as possible as

shown in Figure 2.3.5.

2 . 4 I M P L E M E N TAT I O N A N D D E P L O Y M E N T

In this section we describe the current state of the applications deployed under the

Cryptagram name, including several components and continuously evolving inner

protocols. The code is open source and online:

http://github.com/prglab/cryptagram.
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2 . 4 . 1 M I C R O B E N C H M A R K S

Cryptagram has over 400 active users (installed and currently present on the user’s

system) of its Chrome extension, distributed through the Chrome webstore. We

request user-consent for an IRB-approved study to gather non-identifying log reports

and consent has been granted from 373 unique browser installations.

We built the Chrome Extension with the Closure framework [54], requiring ap-

proximately 4000 Source Lines of Code (SLOC) [29, 129], porting the core com-

ponents to a Firefox add-on with some additional code.

Our benchmarking framework consists of an ECC implementation and bench-

marking code, and relies on the Reed-Solomon kernel module code ported to userspace,

libjpeg-turbo codec, and a corresponding image interface ported from the Google

Chromium browser [122]) (3000 SLOC).

The iOS App uses WebKit’s JavaScriptCore to leverage the same cryptographic

library as our JavaScript extension whereas the Android App achieves JavaScript

integration through a WebKitView (2300 SLOC). These applications enable local

Cryptagram encoding and decoding – we do not currently integrate with OSNs.

While we do not have user data for the mobile versions of Cryptagram at this time

to present, we have challenges in engineering and usability to consider. With respect

to engineering we have found that configuring native cryptographic libraries to

be compatible across languages can be a difficult sea to navigate: our wrapping

JavaScript libraries results in a performance penalty but simplifies the assurance

of algorthmic parity across platforms. We also encounter usability challenges with

respect to accessing user’s OSN photos from a third-party application. The current

aim is to seamlessly integrate with a user’s existing social workflow rather than
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require users to use our product to access their OSNs. If Cryptagram were to be

a self-sufficient entity, then we could foresee aiming to encourage user’s to see

Cryptagram as a portal to their OSNs. Of course, then one must balance the terms

of service requirements of OSNs with the information our product reveals or does

not reveal to those OSNs.

2 . 4 . 2 B R O W S E R E X T E N S I O N D E C O D E R

We implemented the first version of the software as a browser extension, a framework

supported by Chrome and Firefox browsers, which allows us to augment the user

experience on any website by JavaScript injection.

For our first deployment of Cryptagram we adopted an embedding protocol with

a
(
Y 3
2×2, C

0
)

CPB. This protocol also embeds a checksum for verifying the integrity

of the decoded encrypted bits. The checksum is not of the cleartext data; it is a

checksum of the encrypted data and embedded adjacent to the encrypted data for

data integrity purposes.

Decoding in place. Extensions can access pixel data of images on a website.

The extensions perform image processing to produce new images to insert into the

original image’s container, as shown in figure 2.0.2. We add a contextual menu item

so a user can right-click any image and attempt to decrypt it as a Cryptagram. With

the correct credentials, the extension decrypts the original image, which pops into

place.
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2 . 4 . 3 W E B - B A S E D E N C O D E R

We wrote the web-based encoder in JavaScript with the Closure Framework, sharing

much of the codebase with the decoder extensions. The encoder allows users to

drag-and-drop cleartext images onto the encoder page. The drag-and-drop triggers

an event to prompt users for a strong password (in the symmetric key case) as well as

desired settings (e.g., the preferred tradeoff of a high-resolution, low-quality image

or low-resolution, high-quality image). The encryption, encoding, and produced

download zip requires no server interaction and thus allows for complete offline

operation by end-users.

2 . 5 E VA L U AT I O N

We now explore the evaluation of the Cryptagram system. We begin with microbench-

marks as well as observations that serve as background for the subsequent evalua-

tions. In particular, we will present the efficiency performance of protocols that we

find to be the most useful for end-users and reason about the utility of the current

deployment.

2 . 5 . 1 E F F I C I E N C Y M I C R O B E N C H M A R K S

With microbenchmarks, we aim to establish a sense of the tangible weight that

Cryptagram adds to the user experience of sharing photos as well as the system

overhead.
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O N B R O W S E R P E R F O R M A N C E . We found that the input file size to the en-

coder and decoder correlated linearly with time to execute. The approximate ratio

of time to complete the operation (milliseconds) to input filesize (KB) was 2.684

for the encoder and 1.989 for the decoder on an iMac with 2 x 2.26 Quad Core

processors in the Chrome browser (one core for the browser process). While the no-

ticeable human visual reaction time is in the range of 190 to 330 milliseconds [68],

the results demonstrate that the overhead of using Cryptagram for viewing OSN

photos is marginal.

O N F I L E S I Z E . Since the high entropy of Cryptagram counteracts the compres-

sive power of JPEG, the output file size depends entirely on the chosen embedding

protocol and constraints imposed by the OSN. For Google+ and Facebook, upload-

ing images have a cap based solely on image dimensions. The authors have found

that the maximum upload dimensions in these OSNs is 2048 × 2048. This means

that for a scheme that attains an efficiency of three bits per pixel, we can store at

most 1.5 MB in the spatial domain of an uploaded JPEG image.

How does the size of the input data relate to the output Cryptagram image size?

The nature of JPEG compression complicates this question. The output Crypta-

gram image may be saved at 100% quality, creating a large filesize footprint. While

this may seem necessary given that we examine q, p-Recoverability with respect to

the compression applied by an OSN, the composition of JPEG compression is nei-

ther idempotent nor cleanly-defined recursively. Instead, as we explore later in this

section, we consider the observed error rates of compressing already-compressed

Cryptagram images (simulating what an OSN would do).
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(Y 3
1×1, C

0) (Y 1
1×1, C

0)

Quality: 90 80 70 90 70 50
Expansion: 2.25 1.75 1.40 7.82 5.29 4.39

Table 2.5.1: We present the tabular data that illustrates the file size expansion
when using various protocol choices in the Cryptagram framework.

Table 5.2.1 shows the expansion ratio from a given input size. For the case of a

(Y 3
1×1, C

0) CPB with an output Cryptagram image with JPEG compression 70, the

filesize on disk inflation is 1.4×.

For the sake of minimizing upload bandwidth, users may opt to export Cryptagram

images with less than 100% quality and Cryptagram will still guarantee q, p-Recoverability

within a certain range.

2 . 5 . 2 C O M P R E S S I N G T H E C O M P R E S S E D

Apropos to the question of file size expansion, we examine the implications of

a recompressed Cryptagram JPEG on q, p-Recoverability. Figure 2.5.1 shows the

effects of exporting a Cryptagram to a JPEG Quality 1 and then (as an OSN would

do) recompressing the image at JPEG Quality 2. The error rate indicates the fraction

of CPBs that were broken through successive recompression. This data indicates

that we can export Cryptagram JPEGs to 82% quality and OSNs’ recompression

still permits recoverability, assuming that we leverage RS(255, 223) ECC.

2 . 5 . 3 O S N P H O T O Q U A L I T Y

As much of our evaluation relates error rates to JPEG quality level, we want to know

the JPEG settings employed by popular OSNs. To estimate these quality levels, we
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Figure 2.5.1: The effects of recompressing a compressed JPEG. The x-axis
shows the quality of the original Cryptagram JPEG. The y-axis shows the recom-
pressed quality of the JPEG. The line separating striped versus unstriped values
is the q, p-Recoverability threshold we encounter with RS(255, 223). Any values to
the right of the 0.06 line show the successive recompressions that Cryptagram can
tolerate for

(
Y 3
1×1, C

0
)
. Error rates were determined by testing approximately 2,400

pseudorandom 8× 8 images at each combination of quality levels.

exported a variety of images as quality 95 JPEGs, uploaded those images to both

Facebook and Google+, then re-downloaded the images for analysis.

On Google+, 30 such test images came back bitwise identical, meaning images

were not recompressed.4

Facebook, on the other hand, applies JPEG compression to save disk space. Af-

ter downloading images from Facebook, we looked for evidence of quality in the

JPEG headers. Out of 30 natural images, 25 came back with a JPEG quantization

matrix exactly equivalent to that of a quality 74 JPEG, the other five having matrices

equivalent to JPEG qualities in the range of 76 to 86.

4Google+ does recompress images for quicker display during album browsing but it is trivial to
convert any such hyperlinks to their full-resolution equivalents.
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Fortunately for Cryptagram, high entropy images all appear similarly to the JPEG

algorithm and are treated predictably when uploaded to Facebook. All test Crypta-

grams uploaded then downloaded came back with the quantization matrix from a

quality 85 or 87 JPEG, which we measured by explicitly examining the quantiza-

tion tables of the downloaded JPEG file. This quality level puts us safely above the

necessary threshold of our deployed embedding protocol.

2 . 5 . 4 E M B E D D I N G S W I T H E C C

In this section, we examine the benefit of using ECC to reconcile the tradeoffs

we must consider between efficiency and q, p-Recoverability. We presented in Sec-

tion 2.3 the performance of the
(
Y B
1×1, C

0
)

CPB for various B mappings. From that

experience, we conclude that a protocol without error correction is limited to using

quad or bin mapping strategies.

We examine the utility of applying our ECC algorithm of choice for embedding

data to measure q, p-Recoverability in lower quality regimes of JPEG compression.

With the use of RS(255, 223) for ECC, we note that we embed 14% extra data for

the recovery so our subsequent evaluation considers the effective efficiency of a

system that adds this data overhead.

Figure 2.5.2 allows us to explore the design space of applying ECC to evaluate

the q, p-Recoverability for given
(
Y B
1×1, C

0
)

luminance-only embedding schemes.

We see that the Bin, Quad and Oct embedding schemes perform above p=94 in the

regime around 85%, thus enabling us to achieve q, p-Recoverability on Facebook.

Figure 2.5.3 illustrates the benefit of using luminance and chrominance embed-

dings in order to achieve 3.5 bits per pixel embedding efficiency for q, p-Recoverability
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Figure 2.5.2: This indicates to us the feasibility of leveraging RS(255, 223) to im-
prove the q, p-Recoverability with various

(
Y B
1×1, C

0
)

embedding protocols.

that satisfies OSN recompression and ECC. In the interest of saving space, we do

not show the q, p-Recoverability curves, but instead summarize the details relevant

to the ECC discussion in Table 2.5.2. Given that ECC with RS(255, 223) recovers

up to 16 bytes (≈ 6.27%) of damaged bytes for every 255 bytes of data, we can

establish our target recoverability probability at ≈ 94%; in other words, if less than

6% of bytes break then applying ECC enables us to use that particular encoding

scheme. We highlight in Table 2.5.2 the q, p-Recoverable protocol that we choose

for Cryptagram.

This efficiency is superior to X-pire! [11], which had a capacity of two bits per

pixel with ECC. We have 1.75× this capacity, significant considering the size and

quality of images this enables users to upload to OSNs.

C O M PA R I S O N W I T H S T E G A N O G R A P H I C E F F I C I E N C Y. Though the goals

of steganography and Cryptagram differ, both embed data in images, so we can com-
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Figure 2.5.3: This indicates the feasibility of leveraging RS(255, 223) to improve
the q, p-Recoverability of a

(
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)

protocol.

Without ECC With ECC (RS(255, 223))
q, 100-Rec Efficiency q, 94-Rec Effective Lum+Chrom Efficiency Effective

lum |B| (quality) (bits/pix) (quality) Efficiency q, 94-Rec (bits/pix) Efficiency

Hex - - 90 3.5 90 4.5 3.94
Oct 90 3 76 2.62 77 3.5 3.06

Quad 80 2 44 1.75 66 2.5 2.19
Bin < 20 1 < 10 0.87 38 1.5 1.31

Table 2.5.2: Summary of the results that inform how to proceed with applying
RS(255, 223) FEC for embedding values in JPEGs that are recompressible.

pare the two in terms of bits/pixel efficiency.

Related work has expounded on the efficiency of steganographic embeddings [27,

128], reducing the approach to one embedding p message bits into 2p − 1 pixels,

yielding a relative payload of α = p/(2p − 1). While steganography choose slightly

higher values of p a low value of p yields 0.42 bits per pixel for p = 3. In the

highlighted row, our effective efficiency is 3.06 bits per pixel. In comparison, our

approach represents a minimum 7.5× improvement.
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Figure 2.5.4: Showing the comparison of JPEG and lossy webp recoverability vs.
filesize ratio. We draw the reader’s attention to the p = 94 threshold as a point of
comparison with the ECC studies in the rest of this chapter. We acknowledge that
JPEG and webp quality settings are not related and cannot be directly compared.
However, this figure shows that for a similar notion of q, p-Recoverability, webp has
a smaller filesize expansion than JPEG to achieve the same probability of recovery.
To note the distinction in the meaning of “quality” between libjpeg and webp, we
highlight the points along the curves where quality is 74 for each codec.

2 . 5 . 5 F I L E F O R M AT E M B E D D I N G C O M PA R I S O N

In Figure 2.5.4, we show the q, p-Recoverability versus filesize ratio of JPEG versus

webp image compression formats. By file ratio, we mean the on-disk size of the

output image format for the same image canvas input. Notably, the embeddings are

always three bits per pixel in the Figure. We see that for the same probability of

recovery, p, webp has a much smaller filesize ratio than JPEG. As OSNs besides

Google+ begin to experiment with webp deployment [113], the opportunity for

lower bandwidth and storage requirements while maintaining q, p-Recoverability

means that Cryptagram can be applied as improved media compression formats are

adopted.
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2 . 5 . 6 D E P L O Y M E N T U S A G E D ATA

At the time of submission, Cryptagram has nearly 400 active installations, with 373

users agreeing to participate in our IRB-approved study. Through this study, we

receive high-level data about the Cryptagram encryption and decryption habits of

our users. The following data does not include the authors’ own tests or images.

We have had more than 3,300 Cryptagram image decryption events with more than

160 unique encrypted images generated. Of the decrypted images, we can confirm

that 102 unique images have been decrypted from Facebook and 217 unique images

from Google+.

2 . 6 D I S C U S S I O N

A P P L I C A B I L I T Y O F q, p- R E C O V E R A B I L I T Y T O L O S S Y F O R M AT S . OSNs

continue to use lossy image formats in order to reduce demands on storage infras-

tructure and reduce delivery latencies to end-users. Recently developed formats

shoud be considered given these goals. We have begun to examine the webp [55]

format for Cryptagram. The tool of q, p-Recoverability applies in the analysis of

these formats given that the spatial domain pixel value is the key component of

Cryptagram communication.

T R A N S F O R M AT I O N S . We aim to handle a variety of transformations with the

development of q, p-Recoverable protocols. In previous sections, we discussed the

design and evaluated our protocols’ q, p-Recoverability with respect to the JPEG

transformation. We have begun prototyping our approach to cropping and noising
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transformations on images produced by Cryptagram as well, leveraging blocking

algorithms coupled with ECC. While we do not address rotation explicitly, we do not

consider such a transformation intractable as we apply techniques from QR Codes

(two dimensional barcodes) by orienting corner features in future iterations.

Scaling transformations are of interest given the pervasiveness of lower resolution

images (e.g., thumbnails) to partially depict images on a social networking website.

We have considered the integration of pyramid representations [20, 28] in the design

of future embedding protocols to meet this transformation request.

T H E E C O N O M I C S O F P R I VA C Y. Our culture values greatly the power of

images to document and record in ways that words simply cannot. We say seeing

is believing. Images convey a range of human experience, and unfortunately, that

includes images that can irrevocably damage a person’s reputation.

OSNs offer privacy features and third parties have even developed commercial

products to address photo privacy. McAfee Social Protection lets users store cleartext

photos on their server while uploading blurred versions to Facebook, then facilitates

access requests [111]. This superficially addresses photo privacy, but in the end,

amounts to an escrow service that redirects trust from one third party to another.

Our optimistic vision for this project is that its adoption could articulate to OSNs

that users desire increased ownership over personal data. We envision a scenario

in which an OSN embraces the philosophy of Cryptagram and provides client-side

tools to make end-to-end encryption feasible. Wide adoption of Cryptagram would

require more storage for the encrypted files and may create less potential for targeted

advertising.
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3
Lightweight Private File Sharing

Across Federated Services

Millions of users share files online with popular file sharing services [5]. The conve-

nience with which users have gained access to the cloud for leveraging the availabil-

ity of their files has been a focus of file sharing designs in recent years. Seamless

integration with the user’s file browsing experience has made the cloud’s potential

available to the masses.

The need for privacy while sharing files remains a crucial topic. MegaUpload

has led the publicity effort in offering a file locker and sharing service that ensures

uploaded files are immediately encrypted before any bits of the original file hit the
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wire. Efforts by Silent Circle have demonstrated a growing need for accessible and

usable privacy enabling technologies [24, 50].

But the widespread adoption of transparent file sharing services such as Google

Drive and Dropbox has followed the trend of popular web-based successes: the

afterthought is privacy [93]. While these services take measures to ensure a compro-

mise of one’s machine does not affect the integrity of access to files, the question

remains of how much to trust cloud storage providers with our data. In essence,

users want an application that retains the convenience of sharing files (a familiar

interface for interacting with files) while also providing end-to-end privacy for their

data without drastically inflating the cost of the service or storage.

This chapter presents Lockbox, a system that explores the design points of provid-

ing usable privacy (data confidentiality) and lightweight impact on untrusted cloud

provider services. In particular, the challenges that we face in Lockbox involve

reconciling the following objectives:

• Cryptographic Privacy Guarantees: Leveraging vetted cryptographic prim-

itives to enforce access controls means that we must design Lockbox to ac-

commodate a difficult balance of convenience and correctness with the chosen

strength and combination of cryptographic primitives in the file sharing sys-

tem. We demonstrate the use of a hybrid cryptosystem in order to provide both

strong privacy guarantees and (with the integrated key distribution network) a

convenient means of handling key distribution and management.

• Lightweight File Footprints and Versioning: Lockbox mechanisms for stor-

age must account for minimizing storage costs both on the server and end-

user devices while retaining the useful features of such approaches in order

44



to achieve these goals. We accomplish this by separating the techniques for

managing versions in the cloud and on end-users’ devices. Is Section 3.2,

we introduce the protocol that enables interoperability between a delta-based

cloud store and a local object blob store when operating over encrypted data.

In the course of providing file backup, modern services have enabled users to

retain versions of their files. This feature allows for users to potentially rectify

mistakes as well as review how ideas have evolved. Nevertheless, previous

work has not explored the use of versioning on encrypted data with the aim

of minimizing the file system footprint in the cloud to the best of the authors’

knowledge. Lockbox also demonstrates an API that allows for programmers to

specify file-specific plugins that implement more efficient versioning schemes

for the files that users edit.

• Detecting and Recovering from Server Equivocation: Malicious server ad-

ministrators may choose to attack the service by forking the view that multi-

ple user have of (supposedly) the same file. SPORC [42], BFT2F [74], and

Frientegrity [43] explore how to design systems that enforce fork and fork*

consistency. These past works assume that users will easily collude in order

to resolve fork inconsistencies in the case of a malicious server. For non-

technical users, peer-to-peer interactions may present too high a barrier to en-

try. Lockbox asserts however that multiple independent servers can satisfy the

security requirements of privacy-conscious users through a two-party model.

Lockbox introduces the use of a two-party model for users to authenticate the

correctness of transactions through an untrusted cloud provider to verify fork

consistency.
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We use a federated system of independent servers to achieve multi-party-

backed security guarantees in the design of Lockbox. We separate the key

management and file storage services into two separate cloud providers. Data

verifying the consistency of one service is sent through the other in order

to detect and prevent malicious server-side behavior. With our multi-party

system and end-user storage design, we illustrate how Lockbox recovers from

fork* consistency attacks.

• Key Access and Revocation: Users should have clear control over who has

access to their shared files through Lockbox. We describe a social network to

facilitate generated key distribution for users of Lockbox. The benefits of the

network are two-fold. The first is that a trusted service for distribution serves

as alternative means of verifying the keys of trusted identities in the network.

We cover the second point with the following objective.

• Usable and Convenient Cloud Storage: We aim to make possible the use of

cloud-backed services for end-users as seamless as possible, even when the

interface is not a web browser but our own frontend. With the key distribution

network integrated with the Lockbox service, Lockbox leverages the security

properties of an underlying hybrid cryptosystem and users encounter fewer

of the details of public key cryptography. In particular this means that a user

of the network is less likely to misuse the system, keys, or network to her

privacy detriment. We have also designed the system such that users may use

different storage services (even dramatically different designs) for the storage

needs, given the same Lockbox client. We demonstrate the porting of our
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backend to use AWS storage services entirely without running a proxy with

Lockbox-specific logic.

Achieving all of these goals simultaneously has been an elusive task. Existing

solutions sacrifice one design point for the assurance of others. By using TrueCrypt

on top of Dropbox [10], users must sacrifice granularity of control (one key for ev-

erything) and store the whole file (no deltas) for every encrypted revision uploaded

to Dropbox. In systems like Eyo [119], a design for transparent storage is presented

but without considering the challenges of sharing with multiple users or ensuring

correct, end-to-end private data backup or sharing. SPORC aims for lightweight

private concurrent access to cloud data for data types in which Operation Transfor-

mations can apply [42], but without considering generic file types, key distribution,

or explicit versioning control by end-users.

To the authors’ best knowledge, Lockbox is the first system to offer lightweight

storage that ensures user privacy with both usability and cryptographic values re-

tained. We have implemented Lockbox primarily in C++ as a desktop client. We

have also engineered reference implementations of the Storage Service Provider. We

demonstrate that while Lockbox’s time performance is an order of magnitude slower

than local git client and server operations, we do outperform Dropbox on our client

machines. With respect to server space requirements, we show that we are within

a competative multiple of on-disk space usage compared to a default git client and

server installation (no encryption/decryption). We have open-sourced our code here:

http://github.com/prglab/lockbox.
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Figure 3.1.1: High-level overview of the components of the Lockbox system as
well as a guide for the threats that affect the design of the Lockbox system.

3 . 1 S E C U R I T Y OV E RV I E W

In this section, we examine the threat model that Lockbox aims to address with its

system design as well as address why a popular solution to the idea of convenient

file sharing is inadequate and misleading with its security properties.

3 . 1 . 1 T H R E AT M O D E L

Figure 3.1.1 shows an overview of Lockbox as well as the threats that we consider

most relevant in the discussion of this system. Lockbox aims to address the following

threats:

T H R E AT # 1 : C L O U D S T O R A G E P R O V I D E R C O M P R O M I S E D .

In this threat, Lockbox guards against a curious database administrator or other

external attacker who has access to the data stored in the databases of the storage

provider. Our goal is data confidentiality, not integrity or secrecy. We assume the
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adversary may cause users to have forked views of what was originally the same

data. Moreover, we assume that the service provider may forge keys for access data

or brute force session key deciphering. With the increasing dependence on cloud

services, this threat is increasingly important.

T H R E AT # 2 : K E Y D I S T R I B U T I O N N E T W O R K C O M P R O M I S E D .

In the case that attackers compromise the key distribution network, users may be

at risk of encrypting data for unintended recipients of their data. With the network

identities compromised, the challenge becomes the discovery of true identities in

the system.

L I M I TAT I O N S .

Obfuscating sensitive or important data access: Data access patterns reveal infor-

mation about the relative importance of documents on a filesystem. While hiding

the existence of sensitive data (e.g., queries in TrackMeNot [61]) concerns some we

believe that this outside the scope of Lockbox.

Copy and Paste: When a trusted user receives shared data through tho Lockbox

service, the user may copy the contents of the data outside of the scope of the

Lockbox service. We call this malicious behavior (from a, therefore, wrongly trusted

user) a “copy and paste” attack. Since Lockbox must be a small piece in the broader

ecosystem of computing devices, the risk of a copy and paste attack is inevitable and

a threat to the expectation of data confidentiality that users have of such a system as

Lockbox.
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Figure 3.2.1: The Lockbox Architecture.

3 . 2 L O C K B O X D E S I G N

Lockbox aims to achieve the following: strong privacy guarantees, lightweight file

footprints, file versioning, key access and revocation, and usable, convenient cloud

storage.

In this section, we discuss how the overarching design of Lockbox meets its end-

user goals and then examine how we achieve the aforementioned design points in

the architectural details of Lockbox.

3 . 2 . 1 C L I E N T- S I D E OV E RV I E W.

Figure 3.2.1 illustrates the architectural overview of the Lockbox end-user system.

To see how Lockbox meets its end-goals, we walk through the steps that illustrate the

actions of the client and its interaction with the server (the numbers in the following

steps correspond to markers in Figure 3.2.1.
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1. The File Watcher within the Top Directory Thread monitors watched di-

rectories for file changes: additions, modifications, and deletions. When an

event triggers an update, the File Watcher posts an update to the Update

Queue Client database. Notably, the Top Directory Thread is instantiated once

per non-overlapping, top-level directory that the user intends to synchronize

through Lockbox.

2. The Update Queue Client is the queue of file events that have been triggered

by file system activity. This queue is ordered based on time.

3. The File Event Queue Handler manages most of the details of the interactions

between the cloud and the local file system. In particular, the File Event Queue

Handler ensures that for a local file update that a renewable, timed lock on that

file has been set through the service provider. Any updates are then pushed to

the cloud (state updates, file uploads, etc.).

4. The Service Handler at the cloud service provider requires a minimal service

interface. The Service Handler primarily manages the ingress and egress of

state and packages.

5. The Service Handler offers a polling interface for updates to end-users. By

mapping a globally-unique identifier (GUID) to the queue of updates for a

device, polls from end-user devices can be returned with the summaries of

updates that that user device needs to synchronize.

6. To ensure the persistence of data, the Update From Server thread persists

lists updates to an unfiltered queue before acknowledging the reception of the
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updates to the cloud. (Once the updates have been acknowledged for reception,

the server is free to delete the entries from storage/memory.) The Queue Filter

thread reads through the Unfiltered Queue and moves those updates to the

Update Queue Server for the appropriate Top Directory thread.

7. The File Event Queue Handler prioritizes reading updates from the server.

When a queue update in the Update Queue Server database has been detected,

the File Event Queue Handler executes the appropriate actions to bring the

local client up to the latest view.

8. Since most of the interfaces for file system monitoring offer limited filtering

capabilities, file update events caused by Lockbox synchronizing from the

cloud are filtered to avoid an infinite loop of file “updates.”

The only components not presented are the exchanges of hash chain digest his-

tories that allow users to detect server equivocation. In the Lockbox model, these

exchanges occur through an entity that does not collude with the server: directly

between clients or through another server. This multi-party model for exchanging

hash chains empowers Lockbox users to minimize the incentive for Lockbox servers

to lie about the messages that can be exchanged through the Lockbox system.

3 . 2 . 2 L I G H T W E I G H T F I L E V E R S I O N S A N D P R I VA C Y

At the core of Lockbox is a system for storing files for versioning and backup

purposes. We discuss how Lockbox monitors files and converts copies of those files

to objects within the Lockbox system.
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enum PackageType {
SNAPSHOT,
DELTA,

}

struct HybridCrypto {
1: required string data,
2: map<string, string> user_enc_session,
3: string data_sha1,

}

struct RemotePackage {
1: required string top_dir,
2: required string rel_path_id,
3: required PackageType type,
4: required HybridCrypto path,
5: required HybridCrypto payload,

# Contains the SHA1 hash of the delta’s
# previous whole file hash; i.e., the
# hash of the file that this delta should
# be applied to.
6: required HybridCrypto delta_prev_hash,

}

Figure 3.2.2: Thrift code that demonstrates the components of a package that is
exchanged between clients and the server in the Lockbox architecture. top dir
and rel path id correspond to the GUIDs that have been assigned for the Top
Directory and the Relative Path within that Top Directory. The human-readable
values that these GUIDs correspond to are only visible to trusted clients.
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Filesystem monitoring in Lockbox occurs at the granularity of a directory. Users

may monitor multiple, non-overlapping directories on their filesystem as well as

apply unique sharing settings to directories even distinct settings to directories in

the same monitored hierarchy (see Section 3.2.5).

Users set watchers on specific directories through the Lockbox frontend. When

Lockbox watches a directory, Lockbox synchronizes the directory with the user’s

storage provider. Lockbox also synchronizes any subdirectories and files with paths

relative to the synchronized parent directory. This means that one cannot separately

sync subdirectories. Users may set different access controls per the directory struc-

ture.

The watcher service generates events based on changes to local files. For the

moment we focus on the case of a new file saved to a monitored directory.

The File Event Queue Handler calls the appropriate handler method to upload

the side effects of the event. That method has the purpose of creating the appropri-

ate RemotePackage to upload to the Server. Whether the upload must be a delta

encoded value or snapshot, the contents are encrypted following a hybrid crypto-

graphic scheme (struct HybridCrypto) consisting of the session-key block

cipher encrypted data (data), hash of the encrypted data (data sha1), and the

public-key encrypted session keys (user enc session).

N E W F I L E S ( “A D D E D ” E V E N T )

When the File Watcher detects a new file in a monitored directory, Lockbox reacts

by first determining if it should prepare the file for upload to the cloud and if so,

do so. The local database maintains a mapping between the local relative path and
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the object. When a user adds a new file, the application must check if another user

sharing the directory has registered the hash of the relative path on the storage

service. For the moment, assume that the file is new (we will discuss the scenario

where the local client detects a file locally and remotely with the same path but not

yet synced across the network) so we find that no hash of the relative path.

Lockbox names the file based on a GUID received from the cloud. For that relative

path within the Top Directory, that Relative Path GUID will represent the file

M O D I F I E D F I L E S

When Lockbox detects a modified file, the client must ensure it can consistently

sync the data with cloud, determine the most efficient way to express the change

through the cloud (delta or snapshot), and then execute the appropriate algorithms.

T H E C L O U D L O C K . To support concurrent writers in Lockbox, we address

how we manage lock state. The client attempts to obtain a lock if the user has a file

modification to upload to the cloud. The client requests the lock through the storage

service provider. The lock returns with a status data, a timestamp, number of seconds

until the client must renew the lock in order to retain the lock, and (optionally, as

this information could be locally cached) the users for which the file should be

encrypted. The contents of the status data indicate whether the user holds the lock.

If the data contains nonce data, then the client signs the value and sends it to the

storage provider in order to lock the data with a signature. The timestamp and expiry

length indicate when the central system locked the path as well as how long the

client has to lock the data for upload.
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If another has already obtained the lock but the user does not renew it or upload the

data in the specified time limit, the local user downloads the updated delta, reconciles

the diff manually with the locally changed version, then goes through the process of

obtaining a lock and sending an update.

D E LTA E N C O D I N G . Assuming that the local client obtains the lock, the client

uploads an object that corresponds to the next revision of the file. Beyond text files,

many delta encoding schemes have been developed to ensure minimal data transfer

for data. Amongst the available protocol implementations, we consider rsync [124],

courgette [56], and bsdiff [100]. Using the Delta Encoder interface, Lockbox com-

putes the difference between the latest change to a file and the corresponding object

in its local object store. It is this delta that is the data that Lockbox encrypts and

uploads to the cloud. The naming convention follows as above with new objects.

3 . 2 . 3 L I G H T W E I G H T S Y N C H R O N I Z AT I O N W I T H O T H E R U S E R S

We elaborate how to synchronize data with other users in the Lockbox system with

the aim of achieving a lightweight file footprint. We assume for the moment that

we have loaded trusted public keys into Lockbox so that when we choose to add or

update data in shared directories, no additional key setup is required. We elaborate

the key setup process in later sections.

L O C A L U P D AT E S

This scenario corresponds to the aforementioned local case described in the pre-

vious subsection. The user agent (client) locks the relative path in the cloud. The
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proxy timestamps the lock and future visitors may find that the lock has expired if a

transaction associated with the lock extends beyond ttimeout seconds. The user agent

renews the lock in case a large file takes beyond ttimeout seconds to upload. Once

the client uploads the object, it releases the lock.

We note that when uploading the pubkeys object, the user references the proxy’s

association with permitted keys for that object so that clients encode updates for the

correct identities.

R E M O T E U P D AT E S

We have discussed how Lockbox monitors local file changes and then uploads up-

dates to the cloud, but we must also find a lightweight mechanism to receive updates

through the cloud from other users in Lockbox.

When the proxy detects that an uploaded modified file, the proxy either sends

an event to the local client or the local client polls for the update, the application

decrypts and decompresses the contents of the previous version of the file, computes

the delta between the current and previous versions, then writes to the user directory

the updated file.

To facilitate quick discovery of new notifications, the service maintains mappings

between the user ID and objects as well as the triple (UID, private key, device ID)

in so that when a triple requests updates, the system returns values corresponding to

the objects that the client should fetch from the proxy to update its corresponding

local file objects.
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C O N F L I C T R E S I S TA N C E A N D R E S O L U T I O N

Two important scenarios emerge when discussing conflict resolution in the Lock-

box scenario: new files or modified files. In the case that two devices created a

relative path file with the same name, then the contents of the file will need to be

synced through the cloud, reconciled by one of the users, and the reconciled version

uploaded.

In general, this means that the first writer gets the lock but that the last writer

has the final word. The clients can detect these concurrent changes and prepare the

documents so that the user will see that the conflict has occurred. The client knows

to upload only when the user has reconciled the documents by merging changes

into the original filepath. If remotely users continue to change the file while the

user is interacting with the document, then the client will present these updates as

further conflicts (copies of the new versions) to the user so that the user can manually

reconcile these conflicts.

3 . 2 . 4 U S A B L E K E Y M A N A G E M E N T

We introduce a service by which we enable users to leverage aspects of public key

management without the encumbering overhead of understanding the underlying

protocols [114, 130]. We call the web service KeyNet. KeyNet allows users to

seamlessly upload and share public keys, reducing the friction to bootstrapping

use of public key cryptography. As a web service, KeyNet accepts uploaded keys

from authenticated identities (OAuth, verified email addresses). Users set privacy

controls for uploaded data. According to the privacy controls, KeyNet makes the

data searchable to facilitate lookup. While KeyNet offers features like many existing
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key servers, its API for tight-integration with an application follows more closely

what has been a design idea from Garfinkel [51].

We couple KeyNet with Lockbox in order to facilitate the use of a public key

infrastructure to ensure the security of files shared through the Lockbox system.

When users generate private and public key pairs is Lockbox, they have the option

of verifying an email account with KeyNet in order to associate their keys with the

email address. This use of a verified identifier allows us to trust the use of the email

address (or, the user ID) in KeyNet with the public key fingerprints that the user

uploads to the service through the client. Optionally, users may also offer a human

readable name to facilitate searching within the service for new friends. Searching

may also be performed on specific public key fingerprints. Users may also choose

to not allow their identifiers to be searchable except by specific user IDs.

The queryability of understood identifiers such as human-readable names and

email addresses allows users to discover friends through KeyNet. Similar to public

key servers, these mechanisms enable users to install keys that they trust to their

application without the overhead of understanding the intricacies of public key cryp-

tography.

Lockbox encourages users to use one private key across a range of devices. To

facilitate private key transfer, we encourage the use of KeyNet to create an sym-

metrically encrypted package given a user-supplied password to transfer and give

access to the file by the new device through encrypted transport channels (e.g., TLS).

Lockbox attaches an expiration date to the package. In this way, users can have

secure, temporary storage of their data.
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AU T H E N T I C AT I N G A C C E S S F O R A L L T R A N S A C T I O N S .

We verify the identity of a valid key for a particular directory by using a crypto-

graphic nonce to authenticate keys used to upload data to an account. This feature

defends the system against replay attacks as well as attempts to upload data from an

unauthenticated source.

In the case that we use a service like Amazon Web Services, we rely on their

access control infrastructure to moderate access to data based on the access and

secret keys configured by users through their Lockbox client.

A L L N E W K E Y S F O R A U S E R .

In the case that a user must invalidate all of her old keys in order to update the system

with new ones, Lockbox requires that other users be involved for the recovery to be

complete. In particular, any user that then has access to the files and is available to

modify files is notified of the request and the client creates new public key encrypted

values to upload for the user. This ensures that up-to-date and correct mappings

of public key access to files. The drawback of this approach, which is at the core

of Lockbox, is that we rely on other users in order to recover data that may not be

accessible to us at a new machine or ID. This ensures however that Lockbox satisfies

the principle of least privilege so that unauthenticated users are not permitted to gain

access to files that they do not have at their disposal.

3 . 2 . 5 A C C E S S A N D R E V O C AT I O N C O N T R O L S

Users use the Lockbox frontend GUI to assign email addresses to access directories

and files synchronized with the Lockbox system.
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A D D I N G U S E R S .

When an owner adds a user to the Lockbox client keyring, the user must attach the

public key for the user (obtained through a trusted channel) or rely on the KeyNet

service in order to share the file. Through the UI, the user can assign a user to

have read or write access to a file or directory. When the user changes the access

permissions, then the client must update the service proxy. For the directory, the user

must upload keys for that user so that the path keys object has the correct mapping

for access control. The mappings maintained at the service proxy govern access

control to the path objects in the Lockbox system.

Users can add new user by searching through KeyNet for the email address with

which they want to share data. Finding a correct match for a friend, a user may

import the friend’s key from the KeyNet. To end-users, this simply appears to “add”

a friend.

R E M O V I N G U S E R S .

When a user must be removed from a path, a manager of the file removes the user’s

ID with the client UI. The client subsequently removes the user’s ID (and corre-

sponding keys) from the pathkey object for the corresponding objects. This removal

ensures that all new versions of the file created by users respect the permissions set

by the latest managerial change.

R E - A D D I N G U S E R S .

When a user is removed from access to an object and then re-added several deltas

later, the question is: should that user be granted access to all of the deltas that he
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was intermittently not granted access to? Lockbox enables both choices but defaults

to the following case: Lockbox only grants access to the most recent delta and not

the intermediate ones that the user was not granted explicit access to.

In that case the use of another user’s client is necessary (and this seems likely to

be possible if the permissions for files has been adjusted through a client). Given

the readmitted user’s key and last accessible object, the client is able to look in its

own history for the object value. The object is then reconstructed from the history

up to that point and then diffed with the most recent version to produce the snapshot

for readmitted user. Access to this object is made available all users but is explicitly

labeled as readmit. This allows the user to find the file and use that for the delta that

affects them.

In the case that a user is granted managerial access to the path in the future,

then the full history a file is revealed the user. While this computation requires

computation at the end of the access granting client, the once readmitted user, now

manager can also provide readmission access to users.

I N VA L I D AT I N G K E Y S A N D T H E I M P L I C AT I O N S O N D ATA H I S T O RY.

Users determine if an invalidated key should have access revoked in the history of

all objects or merely for future encryption. The proxy executes the computation

for the former, if the user deems it necessary, by using the key to object mappings.

When a key has been compromised, we assume that sensitive data associated with

that key must be prevented from being accessed by users other than those that have

the proper access. The cloud storage provider ensures that the compromised private

key is not used to authenticate access to any of the data. In a token sent from the
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struct HashChainDigestHistory {
1: required list<string> history,

}

struct HashChainDigestEntry {
1: required i64 view,
2: required i64 seq_no,
3: required string digest,
4: required string signature,

}

struct VersionInfo {
1: map<string, HashChainDigestEntry> rpid_hcd,
2: map<string, HashChainDigestHistory> history

}

Figure 3.2.3: Thrift structures exchanged for detecting server equivocation using
hash chain digest histories.

client to the reference Lockbox service, the invalidated key that signs the data will

be rejected.

3 . 2 . 6 D E T E C T I N G S E RV E R E Q U I V O C AT I O N

Lockbox clients exchange messages through a remote service to verify operations

of a distinct, non-colluding service. That two-party model for sharing information

ensures that operations that are exchanged through the server are delivered from

the server as expected. For instance, Lockbox clients use the KeyNet service to

exchange hash chain digests, which reflect a fork consistency check on the behavior

of storage server.

Recall that the hash chain digests are computed from the successive hashes of
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concatenating the hash of the current contents with the previous hash:

HCDi+1 = hash (hash(contents) ·HCDi)

Clients exchange hash chains of the packages that are transmitted, which includes

the hash of the stringified packages. Storing these messages and comparing histories

as new files arrive enables the direct detection of the existence of misbehaving

nodes, assuming non-collusion between the parties through which the hash chains

are communicated.

The multi-party allows the exchange of hash chains through multiple parties

(repeated work but redundant checking) to aim for Byzantine Fault Tolerance [74].

This use of hash chain digests exchanged through third parties that do not collude

with the storage provider enable the detection of discrepancies in the behavior of

untrusted cloud storage providers.

When a fork has been detected, users leveraging their current file versions snap-

shot the current file and upload the hash to the new, trusted service provider. They

thus proceed as normal using this new service.

3 . 3 I M P L E M E N TAT I O N

We built the Lockbox client principally as a desktop application. We have included

basic reference implementations for the cloud storage interface as well in order to

minimize costs in our evaluation as well as easily bootstrap any user willing to

host their own Lockbox repository. The source code for Lockbox is available here:

64



Figure 3.3.1: In our aim for seamless convenient integration for end-users, we
show our status menubar item which allows users to see relevant information for
their storage needs in the Lockbox system.

http:://github.com/prglab/lockbox.git.

3 . 3 . 1 C L I E N T I M P L E M E N TAT I O N S

We have implemented two versions of Lockbox, one in C++ and one in Python.

While most of the design of functionally overlap between the two implementations,

the C++ version was developed following the Python one to control better for mem-

ory usage and cryptographic operation interoperability and runtime.

C + + C L I E N T

The C++ codebase consists principally of 5300 lines of C++ code built through au-

totools. The codebase relies heavily on code ported to autotools from the Chromium

project for base library support (100K lines), leveldb (18K), cryptography interfaces

(12K), and binary delta encoding with courgette [56] (7500). We have implemented

the network communications using thrift’s [38] (version 0.9.0) serialization and

non-blocking server implementations. We managed all of databases at the client and

server using leveldb [30] (version 1.10.0), emphasizing the facility to scale both the
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number of server processes as Lockbox scales and for clients that wish to sync many

directories from a single machine.

P Y T H O N C L I E N T

The Python desktop application consists of 5,400 SLOC of Python code. We use

M2Crypto for all cryptographic operations. Additional packages that we rely on for

enabling features of Lockbox include: boto, Mako, nose, PyYAML, simplejson, and

watchdog. Lockbox stores all data that must persist across sessions and transactions

in a SQLite database. For the Mac OS X application, an additional 200 SLOC are

used to bridge the native GUI environment on Mac OS X with the Python core using

PyObjC [97]. Ultimately, we aim to facilitate users sharing files without worrying

about an eye in the sky as easily seeing their data as sharing is encountered today. To

that end of facilitation, Lockbox aims to make the file sharing and backup experience

as seamless for end-users as possible.

At the core of the Lockbox system’s user-side code is the ability to detect file

changes across multiple directories as configured through the Lockbox client. For

Python, the watchdog module has served to provide a cross-platform interface for

detecting file modification events [7].

The web application as been prototyped also in Python leveraging the Tornado

Web Service platform from Facebook [39]. We separate the notion of the reference

storage service implementation from the key distribution network. The key distribu-

tion network assumes, also written with Tornado, ensures that user accounts have

been authenticated with OAuth2 so that identities associated with an email address

can be trusted, assuming that the email account has not been compromised.
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3 . 4 L O C K B O X P R I VA C Y G U A R A N T E E S

In this section, we discuss how Lockbox addresses the threats outlined in Section 3.1

given the design of the system from Section 3.2.

3 . 4 . 1 C L O U D S T O R A G E P R O V I D E R C O M P R O M I S E D .

Lockbox aims to protect data confidentiality against the threat of a compromised

cloud storage provider. We consider two types of cloud storage provider compro-

mises: breach of confidentiality and server equivocation.

In the case of a breach of confidentiality, we consider the case of the curious

database administrator or unauthorized access to users’ data on the storage servers.

Lockbox leverages a hybrid cryptosystem to store encrypted data on the cloud stor-

age provider. End-clients perform the computations for key generation and encryp-

tion. We assume that users trust their end-host devices. In order to encrypt data with

the hybrid cryptosystem, the users must leverage either their own means of ensuring

that they use verified keys in their system or the KeyNet distribution service.

Server equivocation occurs in the threat model of fork consistency: the server

“forks” its users so that different users see different versions histories or sequences of

changes to the “same” file. Lockbox uses hashed chain histories in order to compute

and compare the integrity of the data shared. Moreover, while these histories are

shared in-band, Lockbox also enables users to use the KeyNet service to test for

server equivocation. This separate channel and second party protects users in the

case of fork attacks by the cloud storage provider.
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G U A R A N T E E S . More intuitively, Lockbox ensures that the following property

holds: Sensitive data is never available in plaintext at the storage server. Lockbox

thus thwarts curious database administrators and passive observers.

Finally, we believe that the passive attack model is realistic because malicious

database administrators are more likely to read the data, which may be hard to detect,

than to change the data results, which is more likely to be discovered once users

compare notes. For instance, chaining keys can be used to ensure that the storage

provider cannot insert a malicious change to the data.

3 . 4 . 2 K E Y D I S T R I B U T I O N N E T W O R K C O M P R O M I S E D .

We now describe the second threat where adversaries compromise KeyNet and

address the results of any computation based on the falsified keys. The consequences

of a breech in the key distribution network cannot be solely addressed by relying on

the underlying cryptographic mechanisms since adversaries may use the network to

disseminate false key identity information. In particular, adversaries may mislead

users to encrypt data for an adversary who has swapped the keys with an otherwise

trusted identity.

The use of the trust network existing work to establish trusted relationships en-

sures that users encrypt data for identities that they have already confirmed as trusted

in the network. This is where the traditional notions of a web of trust enter into play.

The use of separate channels to confirm the identity of keys that the user has added

to her trusted keyring for a users Lockbox instance.

The core of the problem stems from the use of compromised keys from the be-

ginning of any transaction. This means that if the users begin to use the KeyNet
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before an adversary attacks, then the users will have trusted keys in their keyrings.

This means that the users of the system can detect unexpected updates in the system

of user keys. When conflicts between key fingerprints emerge, then Lockbox noti-

fies users of this problem and asks them to contact their friend through a separate

channel in order to ensure the correctness of their public keys.
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4
Realizing Contextual Integrity in an

Online Social Network

Privacy and sharing are at odds in online social networks [57, 59, 134]. Privacy

controls and settings on Google+ and Facebook are far from perfect. Johnson et al.

demonstrated the disconnect between Facebook privacy controls and the settings that

users believe they have set for their accounts [64]. While Google+ offers a different

privacy settings mechanism (“circles”), Kairam et al. [65]’s analysis argues that

Google+ users desire privacy controls to encompass factors that are not explicitly

apart of the circles construct; in other words, circles lack expressiveness.

Moreover, many examples of online social network privacy failures pervade the
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modern landscape. Due to poor engineering practices, Facebook deployed flawed

code that resulted in their CEO’s private photos being leaked due to a bug in one of

the “reporting flows” on the site [35]. In several court cases, users expectations of pri-

vacy have been unmet leading to the citation of evidence gathered on Facebook for

a growing number of divorce proceedings [26, 117]. Even in casual settings, users

have been unable to concurrently share their revelry with friends as well as main-

tain the standards expected of them by employers when representing themselves

online [80].

Thus, the current privacy setting models in OSNs have three basic design flaws:

(a) there is often a mismatch between user-specified settings and the user perceived

sharing intents; (b) those models offer inadequate privacy protection to the users;

and (c) the systems upon which they are built do not verify the user’s intentions.

We argue for a completely new model for how to think about privacy in OSNs.

We contend that the right way to think about privacy is through the lens of contextual

integrity (CI) [94], which provides concepts that more precisely describe how people

conceive of privacy in the real world [91, 92] and therefore should guide how we de-

sign OSNs. Rather than focus on control and restriction, CI promotes an overarching

idea of privacy as appropriate flows of information, the details of which have been

applied to environments where privacy settings are well-understood, imperative, and

nuanced [14, 36, 81, 95]. We argue that we can begin to apply CI to less codified

privacy contexts; in particular, we can apply contextual integrity to OSNs.

In this chapter, we propose Compass, a new social network design that is built

with CI as its privacy core. The core idea of Compass is to create a universe of

contexts where each context is reflective of privacy norms and practices in a specific
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real-world context. In Compass, a small collection of users (privacy experts) act as

“administrators” to create new context definitions, which are associated with a set

of roles and norms. New context definitions that are meant to be public need to be

vetted by Compass context creators before being publicly posted; users can create

private context definitions in Compass which are not public. In the common use

case, Compass allows users to search for appropriate context definitions (publicly

defined) and create context instances which they control by assigning roles to users

who subscribe to that context instance.

By decoupling the definition of new contexts from most users, Compass aims to

significantly simplify the actions required of a normal user of a system. A normal

user who joins the system needs to only choose their roles within context instances

of which they are a member. In other words, users join contexts for which norms

are given – users do not modify information flows. Any information posted by a

user is associated with a specific context and the norms of the context govern how

the information can be shared within the context. By definition, information flow is

restricted within each instance of a context. Users may belong to multiple contexts

but, more importantly, information in one context cannot flow to other contexts.

To handle information flow across contexts, Compass supports the idea of “meta-

contexts” with norms that bridge two contexts. If an adversary launches a copy-and-

paste attack, we use simple similarity matching to detect potential norm violations

(or “surprises”) for original posters. A surprise notice enables users to signal to

Compass regarding the appropriateness of the information flow. Thus, the way that

norms are described and used give Compass users well-understood access control

behavior as well as recourse when privacy surprises occur.
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Compass compiles sets of context-sensitive informational norms (written in propo-

sitional logic) to access controls. Compass transforms norms from human-readable

logic [14] to a satisfiability problem for which we can (1) efficiently generate the

binary decision diagram (BDD) for a norm set, (2) check adherence to norms, and

(3) determine how to push a new post to a context in accordance with the norms. We

discuss how the BDD formulation is used to check for potential conflicts as norms

evolve over time. In addition to framing existing OSNs privacy controls as norms,

we present several example contexts to demonstrate how everyday users may make

use of Compass’ design.

To summarize, Compass offers three key ideas:

1. Decouple privacy rules from users. Contexts and norms are given to users. In

Compass, the way that users’ posts flow through the system are governed by well-

understood sets of rules (“norms”) within siloed contexts of individuals. In other

words, users do not tune individuals’ privacy settings when posting to a context,

which is an error-prone process [64, 79]. We have implemented a norm compiler

that translates norms into a satisifiability problem data structure, binary decision

diagram, and code that evaluate with whom a post should be shared. We describe

how privacy rules or norms are written for a context and how they are transformed as

inputs to that compiler in Section 4.3. We evaluate the performance of the compiler

and its generated code in Section 4.7.

2. As norms of sharing evolve, Compass can detect changes in norms that con-

flict with prior expectations of privacy. This allows programmers to alert the users

to changes from previously established norms of sharing. For instance, one can thus

answer the question “Are there individuals who would have access to the data that
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Term Definition
norm Set of rules governing how information flows between roles

within a context.
context The environment within which privacy must be assessed.
role Positions within the context that relate users with respect to a

context.
transmission prin-
ciples

The method for transmitting information and the expectations
on the nature of the relationship between the transmitter and the
receiver(s).

Table 4.1.1: Summary of the important concepts of Contextual Integrity.

did not before the norm change?” (Section 4.3).

3. Auditing and recourse when inappropriate resharing occurs. We implement

means to intentionally enable checking when information may have been inappro-

priately shared in violation of users’ expected norms. Original posters can evaluate

how to handle the resharing and have multiple recourse options at their disposal. We

discuss how our design and extensions to the norm compiler would enable auditing

and recourse (Section 4.4).

4 . 1 C O N T E X T U A L I N T E G R I T Y R E V I E W

Nissenbaum proposed CI as a philosophical framework for understanding privacy [94].

In this section, we review CI in order to highlight the relation between Nissenbaum’s

proposed privacy philosophical framework, Barth, et al.’s work on the formal expres-

sion of CI [14], and their potential applicability to the social network environment.

Important concepts for understanding CI include contexts, actors, roles, norms, and

transmission principles. To illustrate these concepts, we have adapted the work of

Barth, et al. [14] to clarify how the conceptual pieces fit together in the framework

of CI whose key concepts are summarized in Table 4.1.1. In particular, we draw
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from the HIPAA example to guide an understanding of the CI framewor.

4 . 1 . 1 C O N C E P T S

Contexts are “structured social settings” [94] in which all other concepts operate.

Contexts are the social spheres in which the framework of contextual integrity is

applied. Thus, contexts may have vague boundaries or membership within the con-

servative definition of CI. Of course, when establishing context for the purposes of

evaluating privacy, one aims for precision in describing all aspects of the context.

Actors are the entities (usually, people or organizations) that are apart of the

context between which information flows. Actors are thus the individuals for whom

the question of privacy is applied. Each of the actors takes on a role within a context.

The role is simply a label that enables additional concepts in the context to compute

appropriate flows of information. The concept of roles is similar to the concept

of human-readable labeling for privacy purposes. However, within Compass, the

value of roles is not simply to delineate access orderings [90] but to enable security

principles that align with the aim of Compass: least privilege, separation of duties,

and data abstraction, as in the case of Role-Based Access Controls [109].

The set of rules that describe how information flows through the context are the

context-sensitive informational norms (or, simply, norms) of the context. Within CI,

norms are not individually-designed rules or “settings” that determine how infor-

mation should flow. Instead, norms are agreed upon sets of rules that guide how

information ought to flow. This is key to understanding the CI perspective of norms:

norms are given to the context by its designer. Intuitively, these are the norms that

Zuckerberg claimed Facebook changes with respect to privacy online [18]. Through
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the perspective of CI, one would say that Zuckerberg argues that the norms of the

Facebook context differ from norms of pre-Facebook social interaction.

Norms are given to contexts. These given norms govern how information flows

between roles in the context. The CI framework describes how the determination of

norms is a function of the actors (transmitter and, optionally specified, receiver(s)),

roles of the actors, the subject (information to be transmitted), and the transmission

principles.

The transmission principles can be thought of as the expectations placed on the

recipients of the information. For instance, on Facebook, “friends” (the role that

users have with respect to one another) in the default setting post information to

Facebook with the expectation (whether intended or not) of symmetry in the way

information flows between friends in the network. We can juxtapose this symme-

try (or reciprocity in Nissenbaum [94]) with the asymmetric sharing patterns of

Google+, in which follower relationships make for the ability to post to followers

so that followers can read the posters’ posts but the original poster may not be able

read posts by the followers depending on the circle configurations in the followers’

accounts.

Confidentitality is the primary transmission principle that pervades the HIPAA

example and, for the purposes of social network privacy, is one of the most common

transmission principles in the design of Compass.

4 . 1 . 2 H I PA A P R I VA C Y R U L E S C E N A R I O

In Section 5.1 of Barth, et al. [14], the authors discuss how to translate representative

examples of the HIPAA privacy rule [96] into a codified programming language
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semantics that illustrate the concepts of CI. In the HIPAA example, the context is

the hospital in which all of the interplay occurs amongst the concepts described

below. The actors in the HIPAA model include the Dr. Alice, Bob, Charlie, and x-

ray technician Debbie. With respect to roles, Alice is a doctor, Bob and Charlie are

patients, and Debbie in an x-ray technician. The HIPAA examle norms are alluded to

by the parenthetical citations and moreover are the rules that govern the interaction

between the roles and actors in the context depending on the type of information

to be transmitted. We refer the readers to Barth, et al. [14] for the formal grammar

description and the example HIPPA policy description.

4 . 1 . 3 R E T H I N K I N G O S N P R I VA C Y U S I N G C I

To see the shortcomings of existing privacy solutions we use an illustrative example.

Consider the primary actor in our example, Alice, a public high school teacher. We

also consider the students who attend Alice’s school (Stu) and the friends in Alice’s

social life (Fred). Alice knows that Stu constantly searches for her online account.

While Alice does her best to keep sensitive personal information that might lead to

her termination (such as a vacation photo) out of the public social network sphere,

she must be constantly vigilant of other users’ posts that could propagate to people

she does not know. In particular, if Fred were to post a photo of Alice to Facebook,

depending on Fred’s permissions, that photo of Alice may be accessible to Stu,

which may lead to Alice losing her job.

According to the Facebook for Educators guide [102], Alice could follow the

several steps necessary to ensure that information about her online may not propa-

gate to her students. However, users understand poorly how information flows on
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Facebook [64] so we have a healthy skepticism about the utility of such guides.

Arguably, framing the fundamental sharing and therefore privacy design of a

social network differently would improve Alice the educator’s plight. If Fred and

Alice shared information within an isolated context in a CI-based OSN, then Alice

would not need to worry about her vacation photos “escaping” the context and

appearing inadvertently before her students.

The question that Compass must address is how can a user healthily maintain

competing social spheres on a single social network? With Compass, our solution

revolves around the idea that information sharing should be context-centric with

the assumption that the norms of how information propagates in that context are

governed by agreed upon norms that have been vetted and applied to the context as

a whole.

W H Y N O T D I F F E R E N T I AT E ? Many methods can be employed to address the

issue faced by Alice. Even the use of the Facebook for Educators is one of those.

Alice may split her social identity across multiple accounts. Alice may use multiple

services to diversify how she broadcasts aspects of her life to individuals and groups

she knows in differing contexts. Nevertheless, these tricks complicate the online

social experience, encumbering Alice, we argue, unnecessarily.

A social network can be designed to meet the needs of multiple social contexts

and roles in a way that more correctly coheres with the expectations of privacy, with

the appropriate flows of information, for users like Alice.
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4 . 2 D E S I G N I N G A C I - AWA R E O S N

In Section 4.1, we reviewed the philosophical framework of contextual integrity.

To realize CI within a social network requires mapping CI concepts to concrete

structures within a system.

4 . 2 . 1 C O N T E X T S

Within Compass, a context begins as a user-created entity. Context definition creators

have two basic actions for configuring a context: defining roles and choosing a norm

set that governs information flows within roles. Compass has two types of context

definitions: public contexts and private contexts. Compass promotes a small set

of users, who are privacy experts, to articulate context definitions that match with

standard privacy expectations with real-world privacy norms. A good example is the

HIPAA rule book which articulates privacy rules in the context of healthcare and

health records. Individual users can create their own context definitions which are

considered private for their own consumption which they manage. Public context

definitions are searchable by normal users while private context definitions are not

exposed to other users. Private context definitions if more generally applicable can be

vetted by privacy experts in Compass before being made public (if the context creator

wishes to make it public). To define a public context, a privacy expert user (approved

by Compass) articulates a context definition for standard privacy practices in a real-

world setting (similar to HIPAA) such as family settings, school, office etc. While

certain areas like healthcare might have well-defined privacy policies, similar real-

world scenarios (such as an office setting) may promote different context definitions
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for the same setting.

A normal user can search for publicly available context definitions and can create

an instance of a publicly defined context. In the event of multiple context defini-

tions for the same setting, the onus is on the user (creating the context instance) to

choose the appropriate context definition for their setting; for example, two different

enterprises may choose to adopt two completely different privacy norms for their

environment. Any user who creates an instance of a context becomes the “adminis-

trator” for the context instance. Private context definitions automatically come with

a context instance that the creator manages. An administrator of a context instance

has three important actions: adding users, assigning roles to users , and acting on

privacy violations (if a user acts in an adversarial manner and is discovered). Com-

pass aims to provide isolation to each context instance; an information posted in

one context instance cannot be shared to another context instance. For simplicity

of description, due to this isolation principle, we shall use the term context to more

generally mean an instance of a context definition.

Contexts and norms are pre-configured structures within Compass. By avoiding

user-customized settings, we ensure that installed norms can be reasoned about and

understood by users and experts who work on the Compass backend. The administra-

tor invites other users to that context and if so begins to apply the other characteristics

of the context. Users who join the context are assigned roles by the administrator

of the context which defines the flow of information with the context through the

norms.

The actions required from a normal user are made extremely simple in Compass:

they receive invitations to participate with specific roles in different contexts and
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each user can choose to accept or reject such invitations. This is very similar to

joining mailing lists or groups. Once they are part of a collection of contexts with

specific roles, they can post information, receive posts from other users in the context

or repost to users in the context.

C O N T E X T S V S S O C I A L N E T W O R K R E L AT I O N S H I P S : The definition of

contexts is completely orthognal to the definition of friends in a social network.

Compass operates on top of any existing social network where users have their

freedom to make friends and build a social network of friendship relations. The

definition of contexts aims to provide better semantic meaning to any friendship link

in a social network. If two users have a friendship link, we expect in practice that

the two users are part of at least one common context. Any information posted on

a social network will be associated with a context and the information flow will be

determined by the context and not by the friendship network. In a similar vein, not

all users in a context may be direct friends with each other. Hence, if a user receives

a post from a friend in a specific context, he/she can forward to other friends within

the same context (provided the norms allow it). In addition, any post to a specific

context is not automatically shared across all users in the context; information within

a context explicitly traverses link by link in the social network. In essence, Compass

aims to enforce context-specific privacy norms on top of social network information

sharing practices.
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Parameter Definition
transmitter The actor who is sharing the information.
context The social sphere in which the post is initially contained.
receiver The individual(s), role(s), or entire context to which the transmit-

ter to which the transmitter intends to push their post.
attributes Any additional information that the norms may use to compute

(1) to whom the post is pushed, (2) who can search for the post,
and (3) who cannot access the post. Compass post attributes are
either context-sensitive or context-free.

Table 4.2.1: Required elements of a post.

P O S T S

Compass three actions that users may enact on posts: create, reply, and reshare.

A user who creates a post provides the requisite fields (Table 4.2.1) through the

Compass interface.

A user who is a member of a context may post information to that context. De-

pending on the type of the information, the transmitter, and the declared receivers

that information may be pushed to certain individuals in the context, searchable

by individuals in the context, or entirely inaccessible to other individuals directly

through their account in the context.

The user may create a post, indicating who should be the recipient of the informa-

tion (an individual, role(s), or the entire context) as well as any relevant attributes.

The context’s norms evaluate how the information should flow.

We have two classes of attributes: context-free and context-sensitive. Context-

free attrbutes belong to publicly defined privacy classes (e.g., contains personally-

identifiable information, contains objectionable material). For context-free attributes

we have “generic” functions that operate on the message content, regardless of
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context.

These generic rules are independent of the context-specific rules and do not affect

the BDD construction or performance. A context-sensitive attribute is operates on a

post within a specific context.

Compass programmers must translate these attributes to boolean return value

functions given the context and the post as arguments.

Replying to a post results in that reply and the original post only being visible

according to the norms of the context. Resharing a post outside of a context, however,

is governed by the norms of the context as well as inter-context norms (Section 4.5).

N O R M S

One set of norms is chosen when creating a context. The set contains multiple norms

that decribe how information flows between roles in the context.

How these norms have been created is based on mapping human-readable ex-

pectations to propositional logic and codifying the logic in both code that can be

evaluated for real-time use by Compass (to evaluate which actors have access to

posts) as well as for verification during norm update processes.

We discuss how to translate norms following our presentation of example propo-

sitional logic norms is Section 4.3.

In the following subsections, we examine specific examples of OSN usage and

the application of CI concepts. The goal is to provide concrete examples that demon-

strate how to make the connection between human descriptions of norms to formal

logic. This process is very similar to the work by Barth, et al. [14] but focuses on

the application to a social network setting. We adopt the Barth, et al. grammar and
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notation for expressing the relationships between roles when writing contextually-

sensitive norms.

4 . 2 . 2 E X I S T I N G O S N M O D E L S I N T H E C I F R A M E W O R K

FA C E B O O K

Figure 4.2.1 captures the prevailing Facebook social norms. The simplicity of the

norms as they have been written suggest that simplicity does not guarantee flows of

information [64]. Given that the role of friend is applied uniformly across all friends

of an actor in the Facebook network, the permissiveness of this norm (Norm 4.1)

and the Friends of Friends norm (Norm 4.2) are self-evident. That is, the capacity

to overshare or experience inappropriate flows of information is high.

G O O G L E +

Figure 4.2.2 demonstrates how to articulate the sharing norms on the Google+ OSN.

Norm 4.3 illustrates how sharing within a user-generated circle exists. What can be

problematic about sharing and privacy on Google+ is what we see in Norm 4.4. InNorm 4.4 we see that a circle member can easily reshare information to users outside

of a circle. Google+ does not protect the original posters from the inappropriate flows

of information, making the friction to share with users outside of circle context nearly

absent. A message indicating that the post was originally a limited share presented

to the user, but the extent to which the original poster desires the post to remain

within the circle is not clearly indicated by the context: no agreed upon norms

exist to guide the appropriateness of the flow of information. Consequently, the

resharer may inadvertently violate the expectations of the user. This is particularly
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problematic given that the original poster has no direct means of accessing with

whom the reshared post was shared: the post has escaped the isolation of the context.

4 . 2 . 3 E X A M P L E C O N T E X T S I N C O M PA S S

Apart from the contexts formally described in the Barth, et al. paper (HIPAA privacy

rules in the healthcare domain, Children’s Online Privacy Protection Act (COPPA),

and Gramm-Leach-Bliley Act (GLBA)), we could find very few scenarios where

there are publicly available formal norm definitions (or at least sociological descrip-

tions) for specific contexts. Hence, we articulate three specific examples of norms

for three different contexts and use these examples in our evaluation. We review the

assumptions of the context and examine how one could write the associated logic

for the norms.

FA M I LY

Many types of family dynamics exist. For the purposes of our examples we focus on

a small set of norms to discuss how family members interact in a social network con-

text. We introduce assumptions about norms that we do not assume to be universally

applicable; instead, we expect that when the reader will understand the conversion

that we apply from the read norms to the propositional logic.

Consider a family structure where family members (actors) have at least one of

the following roles: elder, generation-0 (think: parent), and generation-1 (child).

Moreover, we have attributes attached to messages that are sent through the context.

We assume that families contain a subset of members who are considered the
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mature, wise elders who make decisions about difficult topics. In Norm 4.5, we

illustrate the use of the elder role to constrain the flow of information amongst users

who have the role of elder when a message contains information about a genetic

disease in the family. In the example family context, communication about a genetic

disease of a parent is constrained to only the elders of family; e.g., information about

Huntington’s disease will only be shared with and amongst elders.

Norms can also be topic specific for a generation. For instance, communication

about finances remains between parents as in Norm 4.6. However, sharing about the

children’s low academic performance (Norm 4.7) or throwing parties (Norm 4.8)

remains within their generation.

Notably, this example is imperfect. It may not be expressive of the family norms

to which some readers are accustomed. The purpose of this subsection has been to

demonstrate the means of expressing norms that convey a family dynamic. Different

families, cultures, etc. will have different norms.

C L A S S R O O M

We consider the case of a classroom with students that are divided into teams and

an instructor. Students thus have both the role of student and as the member of a

specific team, which we generically express as team-member in Figure 4.2.4. We

examine a set of norms that govern the flow of information in various scenarios

that affect the classroom dynamic between these roles and the individuals in the

classroom.

One norm is an instructor broadcasting announcements to the class. We see this

permissive norm as Norm 4.9.

86



Of course, in the instructor has a specific message pertaining to a specific team in

the class, we see that there is a norm to ensure only members of that team receive

that message in Norm 4.10. Undoubtedly, team members will want to be able to

communicate amongst only themselves too (Norm 4.11).

Questions about one’s own grade are only received by the instructor (Norm 4.12).

But gossip about a teacher is only seen by students in the class and not the instructor

(Norm 4.13).

U N I V E R S I T Y D E PA R T M E N T

A university department may have a number of nuanced roles: administrators (se-

niors and aides), professors (tenured, tenure-track, non-tenure-track), students, and

staff. On a sensitive matter regarding a students’ disciplinary matter, an instructor

may send a message that only the administrative board (tenured faculty who hear

cases about students) will see (Norm 4.14).

Communication from the chair about the tenure promotional process can only

accessible to the tenured members of the department and the administrators (the

faculty-tenure-committee).

When prefessors are reporting student grades (Norm 4.16) or students reporting

course ratings (Norm 4.17) only the administrators of the department see those

scores, so as to act as mediators and persistors of initially sensitive information.
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4 . 3 C O M PA S S P R I VA C Y N O R M S

4 . 3 . 1 T R A N S L AT I N G L O G I C T O C O D E

In order to evaluate human-readable norms as access controls, we implement a norm

compiler that translates norms to a satisfiability problem data structure that can be

queried regarding access controls. The norms, written as propositional logic, are

compiled into binary decision diagrams (BDD) with additional generated code to

represent a context. Given a post by a user in a context, a query to the BDD returns

(1) if the message can be transmitted to users or roles in the context and (2) to which

users or roles the message should be sent.

There are two key components to the norm compilation: (1) connecting the gram-

mar symbols to boolean return value functions and (2) generating the BDD.

F R O M G R A M M A R S Y M B O L S T O F U N C T I O N S

From the propositional logic grammar that we adopt from Barth, et al., we must

translate each of the propositional logic variables into functions with boolean return

values.1

inrole() function calls are translated to database queries about the receiver and

whether the message is appropriate for their access. When the post is posted, traversal

of a p2 node checks if the explicitly stated receivers meet the inrole() criteria to

determine if a message push to their feed is appropriate. Alternatively, if a user

requests direct access to a post, traversal of a p2 node checks if the requestor’s

1We frame this discussion from the perspective of having implemented a prototype of the norm
compiler in C++. Languages with more sophisticated “return” type systems (e.g., Haskell’s currying)
are future work.
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inrole() state is true or false for that node.

(t ∈ . . .) functions are translated to attribute (attr()) function calls in our code.

These functions exist as either explicit database checks (see if a post has a particular

flag set for the attribute) or inferred base on the message content (e.g., vulgarity

detection [131]). These functions directly query or operate on the post.

(q = . . .) variables are translated to subject() function calls. These calls check

that the subject of a message is the actor or role specified in the message.

B I N A RY D E C I S I O N D I A G R A M R E V I E W

A Binary Decision Diagram (BDD) is directed, acyclic graph (DAG) representation

of a boolean expression. In our example norm sets, all individual norms are repre-

sented as conjunctions. To determine whether to accept a post to a context and to

whom to post it, we assume that the set of norms is disjunction (“or”-ed together)

accurately represents the intentions for information flows.

B E N E F I T S O F P R O P O S I T I O N A L L O G I C We ensure the correctness and

coherence of the privacy policies in the system is through the use of propositional

logic. To demonstrate this translation for the system we use the example norms

from Barth, et al. [14]. In Figure 2 of that paper, the authors show how to write

the logic corresponding to norms in their linear temporal logic (LTL). Given that

propositional logic offers a subset of the facilities of LTL we cannot perfectly codify

the norms provided by Barth, et al.2

2Of course, the LTL that those authors present is itself incompletely expressive. For instance, the
authors recognize that the norms are used profilactically rather than in reaction to a violation of a
norm; that is, the logic does not have the expressiveness to redirect flows of information contingently
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This means that all variables required are on the order of O(2n) in the number of

fields that must be tested for a single norm. The contents of a single norm remain

small in practice though: in Barth, et al. [14], all norms contained less than 10

boolean expressions, which is a very tractable number of test cases to generate and

execute before deployment of any norm.

For the HIPAA Privacy Rule, the functions that create attributes on actors is

the inrole function, for which there are the following six types: covered-entity, in-

dividual, provider, patient, psychiatrist, and clergy. The attributes of the messages

have the following four types: phi, psychotherapy-notes, condition-and-location, and

directory-information.

As we have shown with the example norms Figures 4.2.3, 4.2.4, and 4.2.5, in

addition to the examples of norms presented in the Barth, et al. paper, the number

of boolean variables are within a tractable range for modern computation. As we

have seen, n < 20 for the O(2n) complexity for the satisfiability formulation of the

norms.

G E N E R AT I N G T H E B D D

Our lexer and parser produce a simple propositional logic AST that maintains the

relationship between propositional logic operators (“and”, “or”, “negation”) as well

as method call state (function name and arguments).

After the norms are parsed by the compiler, the AST is analyzed to translate

every node into a boolean variable, in order to map the function object to a boolean

variable. Notably, we keep track of function signatures so as to not overgenerate

based on the failure of another norm.
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boolean variables in the BDD analysis.

We use BDDs for representing the problem of satisifying norms within the CI

framework. We use a BDD library (in our case, BuDDy [77]) to input variables and

propositional logic as a satisfiability problem. More importantly, we use a BDD

library to heuristically produce a reordered and more-reduced BDD; in particular, a

BDD that has many isomorphisms in its subgraphs merged.

With a DAG representation of the BDD, for a norm set, we maintain a set of

vectors of ordered transitons between nodes that represent the satisfiable paths of

the DAG. (Each vector in the set represents a satisfiable path in the BDD.) We call

this the satisfiability set.

E VA L U AT I N G C O N T E X T N O R M S A N D P O S T S W I T H B D D S

When considering to whom to push new posts, we assume that the traversal of nodes

in a BDD (eventually, to a satisfying node) that contain a receiver (p2) represent the

list of valid receivers for a message. In the case that a receiver is somehow missed

due to a short circuiting of a norm (in other words, at least two norms are satisfied

by the input, but only one triggers a push), users can currently poll for access to data.

Given their state as a receiver, the BDD is traversed querying whether the receiver

inrole() function calls match the requestor’s profile.

H A N D L I N G N O R M U P D AT E S One of the key ideas of Compass is that we

provide a framework so that expert programmers create contexts with norms that can

be checked for coherence over time. This is enabled by comparing the satisfiability

sets of two different norms. Satisfying paths that do not overlap must be checked
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against one another to ensure that no bad informational flow surprises have been

admitted to the norm set. We say that the system has extensible verifiability so that as

the contexts evolve – requiring additional roles, nuanced norms, etc. – the framework

allows the programmers to make clear what past norms may be violated so as to

limit inducing privacy surprises. Any differences, especially in terms of additional

satisfying paths, must be inspected to determine if a conflict has significant social

impact.

4 . 4 S U R P R I S E I N F O R M AT I O N F L O W S

The basic design of Compass is designed around the principle of contextual integrity

and is not designed to handle adversaries whose explicit goal is to violate the privacy

norms. Adversarial users may violate the norms of the original poster by launching a

copy-paste attack where they explicitly “copy” information received in one context

and post it as new information to users in a different context. Compass explicitly

disallows such reposting and adversaries need to perform a copy-paste operation to

achieve this goal. In traditional OSNs, an original poster would not know through

the OSN that such an attack has occurred.

To detect copy-and-paste (C&P) attacks, we rely on similarity measures for

text [16, 86] (we plan to use the library facilities of NLTK [17]), natural images [127],

and video [45, 110]. Whenever a new post of a user to a context is deemed very simi-

lar to a post received by the same user from a different context, we detect a potential

copy-paste attack. We refer to such a case as a surprise information flow. If the infor-

mation appears to be an “exact” copy of the original, then such a post is disallowed

and the original poster is alerted when this norm-contrary surprise occurs. If the in-
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formation appears to be approximately similar, then the user posting the information

is requested to attest the originality of the posting and the original poster is informed

of a potential surprise without revealing the new information posted; in this case, the

original poster in doubt can request the user posting the new information to either

share the posted information or request a similarity report from Compass.

For any surprise information flow, Compass informs the original poster of the

retransmitter as well as the context with which the information was shared. When a

violation occurs, users may find multiple reasons to take issue with the resharing that

occurred. The parameters of a post are extended to include those that the user may

find are appropriate to classify the privacy violation: time, new context, new users,

the content, etc. Ideally, one would require a reputation system on top of Compass

to resolve conflicts across original posters and potential re-posters in the case of

multiple conflicting claims about information originality for similar-looking posts.

For any declared privacy violation, Compass logs the user’s feedback about whether

the surprise was acceptable or not and why. The user may then choose to decrement

the reputation of the individual who inappropriately reshared the information or

the context to which it was reshared. This scoring, relative to the user as well as

globally maintained, enables all users to assess the credibility of individuals within

the Compass ecosystem. Administrators of contexts have the power to remove users

with low reputation (involved in several conflicts) from a context.

Under scenarios where the original poster values sharing the information beyond a

context, the original poster has the option of granting permissions to enable surprises.

Such reposts can either be treated as new posts (if the origin seeks not to reveal

themselves in new contexts) or can be explicitly treated as a repost with a pointer
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to the original post. We explicitly aim to constrain reposting across only one level

and disallow multiple levels of reposting across contexts. Compass can create a

special broad context called “public-posts” which includes all users by default. Posts

intended for public consumption can be labeled under the context “public-posts” can

be reshared across users.

4 . 5 M E R G I N G C O N T E X T S

Up to this point, we have discussed how Compass isolates contexts from one another.

Reposts between contexts are considered potential privacy violations (or, neutrally

stated, “surprises”). Nevertheless, users may find legitimate reasons to share posts

between contexts. The framework of CI acknowledges the existence of metacon-

texts [94]. Two different university departments may want to encourage collabora-

tion and therefore need to share information about students, research, etc. between

roles in each department. Thus, there may be overarching social norms that encour-

age information to flow between multiple contexts.

To codify metacontexts, programmers would create a new context for which the

roles are encapsulated by its subcontexts. More importantly, members of the contexts

must agree on a set of norms that describe how information flows between roles in

both contexts. In the same way that a set of norms would be chosen for a context, so

too with a metacontext.

For instance, the classroom example may have multiple “teaching sections” as

separate contexts, for which “assistants” lead the instruction of several “students”

from the overarching classroom context. These relationships and the norms that

describe how information flows between these contexts also must be described in the
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system. In other words, we use the same propositional logic framework to implement

sharing across contexts. Recall that posts are created within a context, which means

that original posts or reposts are explicitly labeled as being sent through the norms

of a specific context (which could be a metacontext).

In order to avoid a hard-to-reason-about transitive norm relationships between

chains of contexts (think, Facebook friends of friends sharing settings [64]), posts

may not be daisy-chained to disseminate information outside of specified metacon-

text norms. In other words, given three contexts C1, C2, and C3, if there are norms

between C1 and C2 and between C2 and C3 but none between C1 and C2, a message

posted to C1 that flows according to norms to C2 may not flow to C3. Until an ex-

plicit C1 and C3 set of norms has been installed for such a metacontext, posts not

sent to such a context do not flow through such a context. In other words, posts only

flow in the contexts (including metacontexts) to which they have been explicitly

posted.

4 . 6 I M P L E M E N TAT I O N

We have implemented the core functionalities of the Compass design in order to

demonstrate concretely how to realise contextual norms of transmission as code and

evaluate the complexity of the norms constructs in example contexts. The implemen-

tation consists of a compiler that has two features: (1) source-to-source translating

norms to access controls with a leveldb [30] database backend and (2) generating

binary decision diagrams that describe pathways for evaluating norms to determine

whether and how to grant data access.
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The code has been implemented in about 1000 lines3 of C++, flex, and bison as li-

braries that utilize BuDDy [77] for binary decision diagrams (BDDs) [9], thrift [38]

for data structure serialization, leveldb [30] for the key-value stores, as well as bi-

son [31] and flex [72] for the core compiler components. To generate the BDD, the

compiler executes two passes over the norms: once to gather the variables for the

propositional logic and the second to generate the BDD once all variables have been

determined.

Once the code is generated, per context, the programmer must complete the logic

for the boolean variable functions. For instance, explicitly labeled attributes for a

context’s posts involve the programmer extending the post thrift data structure to

include the requisite boolean field and updating the logic of the attribute function

call to return the value of the field.

4 . 7 E VA L U AT I O N

We have implemented the core functionality of the Compass system. In this section,

we evaluate the efficiency of the norm compiler to demonstrate that the feasibility

of using Compass’ design in on OSN. We evaluate Compass based on the example

contexts we described in Section 4.2.3 and formally in Section 4.3. Our evaluation

focuses specifically on answering two questions: (a) How well does our compiler

perform in generating BDDs for different contexts? (b) What is the efficiency of the

verification code generated for verifying information flow for a context based on its

defined norms?
3SLOCCount (http://www.dwheeler.com/sloccount/)
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4 . 7 . 1 G E N E R AT I N G B D D S

To address the performance of the compiler, we examine the runtimes of its primary

components as it operates on example contexts. In particular, we measure the average

runtime of the lexer, parser, and BDD reordering components. We argue that the

number of variables from a typical norm set will generate a computationally tractable

satisifiabilty. We demonstrate this result through the runtime performance of lexer,

parser, and BDD reordering based on our example norms in Figure 4.7.1. The log bar

plot illustrates the relative times for each component. As expected, the more complex

norm sets require more time for lexing and parsing, but in the sub-100µs range.

While the BDD reordering operation can require as much as two orders magnitude

more time to compute, the sub-second completion time implies that this operation

can be employed for generating new access controls. Our results demonstrates that

the time to convert norms into usable code is fast and useful in a OSN environment.

We also present the output of the BDD reordering operation for our example

norms in Figures 4.7.2a (Family), 4.7.2b (Classroom), and 4.7.2c (University De-

partment).

4 . 7 . 2 G E N E R AT E D C O D E E F F I C I E N C Y

Given the relative increase in complexity of the access controls with Compass’ norm

sets versus popular OSN access controls, one question that emerges is how efficient

is checking the BDD for an accepting post and determining to whom a post should

be written.
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In Figure 4.7.3, we show that the number of posts per second that the different

generated BDDs can sustain in memory. These trials involved “random” input: for

input posts, we randomize attributes based on the possible inputs for the BDD to

explore all branches.

More complex norms (Family, University Department, and Classroom) norms can

only sustain an order of magnitude less of in-memory queries per second. Neverthe-

less, we note that the sustain throughput is well-above the system limits that would

be expected with networked systems: the number of queries per second is well above

the C10K network bottleneck threshold [67].
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inrole(p2, friend) (4.1)

inrole(p2, friend-of -friend) (4.2)

Figure 4.2.1: Norms for Facebook as a context.

inrole(p1, circle-creator) ∧ inrole(p2, circle-member) (4.3)

inrole(p1, circle-member) ∧ (t ∈ limited) (4.4)

Figure 4.2.2: Norms for a context as defined by a Google+ circle.

inrole(p1, generation-0) ∧ inrole(p2, elder) ∧ (q = p1) ∧ (t ∈ genetic-disease) (4.5)

inrole(p1, generation-0) ∧ inrole(p2, generation-0) ∧ (t ∈ finances) (4.6)

inrole(p1, generation-1)∧ inrole(p2, generation-1)∧ (t ∈ low-academic-performance) (4.7)

inrole(p1, generation-1) ∧ inrole(p2, generation-1) ∧ (t ∈ parties) (4.8)

Figure 4.2.3: Norms of transmission for a family context.

inrole(p1, instructor) ∧ inrole(p2, student) ∧ (t ∈ announcement) (4.9)

inrole(p1, instructor) ∧ inrole(p2, teamX-member) ∧ (t ∈ teamX) (4.10)

inrole(p1, teamX-member) ∧ inrole(p2, teamX-member) ∧ (t ∈ teamX) (4.11)

inrole(p1, student) ∧ inrole(p2, instructor) ∧ (q = p1) ∧ (t ∈ grade) (4.12)

inrole(p1, student) ∧ inrole(p2, student) ∧ (t ∈ instructor) (4.13)

Figure 4.2.4: Norms of transmission for a classroom context.
inrole(p1, instructor) ∧ inrole(p2, administrative-board) ∧ (q = student) ∧ (t ∈ disciplinary-matter) (4.14)

inrole(p1, chair) ∧ inrole(p2, faculty-tenure-committee) ∧ (q = untenured-faculty) ∧ (t ∈ tenure-case) (4.15)

inrole(p1, instructor) ∧ inrole(p2, admin) ∧ (q = student-grade) ∧ (t ∈ grades) (4.16)

inrole(p1, student) ∧ inrole(p2, admin) ∧ (q = instructor) ∧ (t ∈ course-rating) (4.17)

Figure 4.2.5: Norms of transmission for a university department context.
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const char ∗department_norms=
"(inrole(p1,instructor) && inrole(p2,adboard) && subject(student) && attr(msg, discip)) | |"
"(inrole(p1,chair) && inrole(p2,factencom) && subject(untenfac) && attr(msg, tencase)) | |"
"(inrole(p1,instructor) && inrole(p2,admin) && subject(student) && attr(msg,grades)) | |"
"(inrole(p1,student) && inrole(p2,admin) && subject(instructor) && attr(msg,courserating))";

Figure 4.3.1: Example of the norms translated as strings by a programmer for in-
put to norm compiler. Notably, the (q = . . .) and the (t ∈ . . .) variables in the propo-
sitional logic of Figure 4.2.5 have been translated to subject() and attr()
function calls. Depending on the context, the attr() are customized to either
execute explicit field checks in a database or infer whether an attribute is present
based on the content of the post.
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Figure 4.7.1: Compiler Performance. In this log bar plot, we show the average
times for different stages of the norm compilation process compared to the
norms that we compiled. While the more complicated norm sets require an or-
der magnitude more time, especially for the BDD reordering (we used BuDDy’s
BDD REORDER SIFTITE method which is the most thorough heuristic but also
the slowest), the times are quite reasonable given that norm regeneration and
installation ought to be a rare process: privacy policies do not change at a sub-
second granularity.
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(a) The BDD DAG generated by BuDDy
that corresponds to the Norms in Fig-
ure 4.2.3.

(b) The BDD DAG generated by BuDDy
that corresponds to the Norms in Fig-
ure 4.2.4.

0 1

attr(msg,courserating)

inrole(p1,instructor)

inrole(p1,student)

inrole(p2,factencom)

subject(student)

subject(instructor)

inrole(p1,chair)

attr(msg,discip)

attr(msg,tencase)

subject(untenfac)

attr(msg,grades)

inrole(p2,adboard)

inrole(p2,admin)

inrole(p1,instructor)

subject(student)

attr(msg,discip)

inrole(p2,adboard)

(c) The BDD DAG generated by BuDDy
that corresponds to the Norms in Fig-
ure 4.2.5.

Figure 4.7.2: Generated, reordered BDDs for our example contexts.
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Figure 4.7.3: Context norm performance. In this log bar plot, we illustrate the num-
ber of new posts that have their access control flows evaluated with the generate
Compass code. These measurements involve the traversal of the correspending
norm BDDs. While more complex norm sets incur a performance penalty – for in-
stance, note that for “FB friends” norms we sustain four times as many queries per
second – the naive Compass code generation sustains queries per second well
above the C10K queries per second network bottleneck, which is at 10,000 queries
per second.
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5
Related Work

5 . 1 P R I VAT E P H O T O - S H A R I N G

P3 [106] examined the use of non-colluding services to store minimally-revealing

cleartext images in one service and encrypted versions of DCT coefficients of JPEG

images in another service. Their system experienced a 10-20% file size increase

from the original compressed image when one follows their recommended privacy-

preserving settings by setting the DCT-hiding threshold in the range T ∈ [10, 20].

The authors acknowledged their technique’s vulnerability to face identification when

T ≥ 35. Cryptagram fundamentally differs from P3 in two ways. First, Cryptagram

completely avoids the use of third parties. Secondly, Cryptagram works only in
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the encrypted bit space and does not expose any unencrypted data to the end-user.

Unless users’ keys are compromised, users cannot have their faces detected with any

of our embedding protocols.

Steganography. Cryptagram is superficially reminiscent of various attempts to

embed cryptographic data in JPEG through traditional steganographic techniques [48],

but differs significantly from conventional JPEG steganography. Cryptagram makes

obvious that it is hiding data to attain greater efficiency, and furthermore, does so

in a way that is robust to image compression, which steganography generally is not.

Attempts to achieve lossy compression tolerant steganography are early works with

inefficient results [62].

One recent work attempted to embed data in JPEG DCT coefficients without the

steganographic constraint of being hidden. The non-linearities of DCT quantization

and rounding in standard compression and decompression required very conserva-

tive data embedding that resulted in efficiency significantly lower than what we were

able to achieve [11].

Li et al. [75] address the concern of hiding data within DCT coefficients but

shuffle the DCT coefficients between blocks that then are quantized during the JPEG

compression algorithm. Likewise, Poller et al. demonstrate that DCT coefficient

permutation and spatial domain permutation do provide some security features but

do not address efficiency or prove the correctness of their security mechanism [103].

A formalization for the description of the embeddings that we use in Cryptagram

have been explored by Galand and Kabatiansky [49] but the authors do not explore

how to construct such protocols.

But Cheddad et al. [23] claim that spatial domain techniques are not robust against
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System File Manager
Integration

Versioning Client-Side
Encryption

Server
Equivocation

Provider
Independence

License

Dropbox [5] 3 X 7 7 7 7

TrueCrypt [10]
+ Dropbox 3 X 3 7 7 X

Jungle
Disk [1] 7 X 3 7 7 7

SparkleShare [2]
3 3 7 7 3 3

SpiderOak [3] 7 X 3 7 7 7

Syncany [4] 3 3 3 7 3 3

Ubuntu
One [22] 3 7 7 7 7 X

Wuala [71] 7 3 3 7 7 7

SPORC [42] 7 X ? 3 ? X
Lockbox 3 3 3 3 3 3

Table 5.2.1: Competing projects and features. On the License category, 3 indi-
cates open source, X a mixture of open source and proprietary software, and 7

proprietary software.

noise, only work in bitmap-formatted images, and are not robust against lossy com-

pression and image filters. Cryptagram overcomes all of these drawbacks in spatial

domain embedding and demonstrates the useful privacy and security properties that

can be available for OSN photo sharing. Cryptagram achieves q, p-Recoverability

in the face of the complete recompression of the JPEG image containing sensitive

information.

5 . 2 L I G H T W E I G H T P R I VAT E F I L E - S H A R I N G

Lockbox aims to achieve several goals that either independently or in strict subsets

have been pursued by related projects. We examine these ideas below as well as how

they relate or have influenced the design of Lockbox.

Lockbox seeks to resolve a tension in the landscape of the values design space that

has been discussed by Stark and Tierney [116]. That Lockbox discussion outlined
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the necessity for privacy for user empowerment [25] to be held with at least equal

importance to convenience and usability in the design of storage solutions that

leverage the cloud.

Delta Encoding: The idea of applying rolling checksums for the purposes of delta

encoding has been widely deployed in the utility rsync [124]. Algorithmically,

these ideas relate to Rabin fingerprinting [107].

The Low-Bandwidth File System [89] has demonstrated the utility of rolling

checksums and caching on a file system level. This complicates the matter of mak-

ing it easy for users to adopt our utility. While algorithmically sufficient, requiring

users to configure a new file system arguably defeats the aim of usability and wide

adoption.

Several projects have examined how to reduce web traffic bandwidth consump-

tion by eliminating redundant transmissions [60, 115]; however, delta encoding and

“differencing” techniques that were applied make sense on unencrypted network data

and are therefore orthogonal to our application assumptions.

Deduplication with Encrypted Data: Convergent Encryption [32] is an idea that

can be leveraged in a similar scenario as ours. Any file to be encrypted uses a hash of

its file contents as the key. In this way, only individuals with access to the cleartext

file contents can infer the key without brute-forcing a solution. Of course, this is also

the drawback with the approach is that any duplicated file can be used to confirm the

corresponding encrypted contents. POST [88] demonstrates the use of convergent

encryption in a storage environment where the poster remains unaffiliated with the

posted content. Thus, while an attacker who guesses the cleartext of a message can

verify its existence on the posting service, the original poster evades detection. In
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DOT, the authors argued for the use of convergent encryption in their system to

enable caching and retrieval [123].

(Dis)Trusting the Cloud: Oceanstore [70] showed the design for a secure, dis-

tributed file system. Pond [108] demonstrated an early prototype of the system. Use

of the cloud simplifies many of our design considerations. We believe that these

techniques are still valid and perhaps influenced the internal design of cloud service

providers on which we tested our system.

Bayou [121] presents an evaluation of conflict resolution that occurs at the mobile

device user level. In our system, we actually leverage the consistency models of

existing web service providers (S3 has atomic writes but eventually consistent reads

of raw data while SimpleDB has the option to enable consistent reads of metadata.)

Distrusting the cloud has been a common thread of research for several years.

Cachin, et al. [21] review the methods by which one could come to trust the cloud.

Mazières, et al. [84, 85] discuss the design considerations behind the realization of

a file system that does not have to trust the storage service. Depot [82] summarizes

and introduces the various consistency models. SPORC [42] introduced the question:

What if we don’t trust the cloud to order our messages correctly? Starting with this

question, overhead enters the picture. A point of comparison in our system is whether

such a design consideration presents an unnecessary overhead in designing a cloud-

based user application. SUNDR [73] introduced an earlier notion of SPORC’s fork*-

consistency with fork-consistency in the case that malicious remote file systems

forked or presented divergent views of the storage to different users.

Encryption on top of Dropbox: TrueCrypt [10] enables users to symmetrically

encrypt volumes (or directories) on local filesystems. To achieve a form of encrypted
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file sharing one can then encrypt the Dropbox directories with TrueCrypt. This pro-

vides the expected guarantees of block ciphered volumes but conveniently wrapped

to provide transparent encryption for end-users.

The challenge of course is then how to share the files. While Dropbox enables the

encrypted files to be delivered to other users – Dropbox solely facilitates the sharing

process – the users must then also properly setup TrueCrypt to use the same keys.

The consequence of using the same symmetric keys however is that any granularity

is sharing becomes difficult to manage. Given that TrueCrypt is meant to operate

over a directory and its subdirectories, any nuanced permissions are unable to be

enabled with this system.

5 . 3 C O N T E X T U A L I N T E G R I T Y A N D O N L I N E S O C I A L N E T-

W O R K D E S I G N

New systems have emerged to enable users to think differently about their privacy in

OSNs [15, 98]. Several projects influence, compare, and contrast with the design of

Compass. Recently, Barkhuus examined the application of CI to the considerations

of privacy in HCI works [13]. However, the most closely works is Aegis [66], which

takes a semantic web approach to writing policies for social networks. While the

authors claim to have implemented contextual integrity, their example contexts and

policies reflect basic access controls (user, requested resource, and read/write access)

akin to UNIX access controls, which ignore the underlying principles of contextual

integrity (namely, norms with roles and attributes are completely ignored and there-

fore express extremely limited forms of norms and contexts are presented in Aegis).
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Compass is a step in a new direction as it connects formal methods approaches to

privacy [63] with a tangible implementation.

Social circles [8] was the first proposal for an interface for visualizing clustering

information computed from end-users’ relationships [41].

Lipford, et al. [78] argue from the perspective of contextual integrity for how

social networks ought to be designed for users’ privacy. The authors emphasize

user awareness in the UI of the system, using prototype implementations on top of

existing social networks to suggest how users can be made more aware of how the

information they share propagates in the social network. This is strictly limited to

the one-hop “friends” dynamic of Facebook.

Guha, et al. [57] argue for a system that shares information in plainsight where

users share data through publicly known dictionaries and privately shared seeds for

the substitution cipher in the system. The authors argue that the scattering known

data, making it harder to combine data for reconstruction, embodies aspects of con-

textual integrity to ensure the appropriate flow of information.

Koi [58] demonstrates how to verify the design of a location-privacy platform

for mobile device apps. While Compass can incorporate the use of a verification

platform into its design during the creation of new contexts and policies, we have

focused on simple API designs that better match users’ expectations for describing

information flows.

Anwar, et al. [47] illustrates how to articulate the Facebook access controls in an

access control model. Fong then described the use of such models to articulate how

to mitigate Sybil attacks against a Facebook social network [46].

Fang and LeFevre developed the notion of the “privacy wizard”, which takes
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preferences from users in order to construct the appropriate privacy settings for the

user [41], which is an approach that goes against the grain of Compass. Compass

emphasizes the use of understandable, given norms and roles within a context that

enables explicit reasoning about the flow of information.

Labeling paradigms with data confidentiality guarantees offer a different model

to privacy in social networks [12].

Systems solutions have been presented and suggest methods of applying existing

labeling theories to new domains to achieve security [52, 69, 126, 132, 133].
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6
Conclusion

6 . 1 S U M M A RY O F C O N T R I B U T I O N S

6 . 1 . 1 C RY P TA G R A M

The advent of popular online social networking has resulted in the compromise

of traditional notions of privacy, especially in visual media. In order to facilitate

convenient and principled protection of photo privacy online, we have presented the

design, implementation, and evaluation of Cryptagram, a system that efficiently and

correctly protects users photo privacy across popular OSNs. We have introduced

q, p-Recoverability and demonstrated Cryptagram’s ability to embed cryptographic

primitives correctly to attain q, p-Recoverability through JPEG compression in our
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implementation.

6 . 1 . 2 L O C K B O X

We have presented the design, implementation, and evaluation of Lockbox, a sys-

tem that unites several technologies to provide users with a usable lightweight file

sharing service that affords minimal cost versioning as well as privacy guarantees,

even in the face of relevant threats in the era of cloud data storage. This thesis has

demonstrated the viability of such a system for enabling privacy for everyday users

while maintaining a pricipled foundation for security guarantees.

6 . 1 . 3 C O M PA S S

We introduce a design for a social network that offers a unique set of characteristics

that we believe the systems community would appreciate as well as debate. The

sharing capabilities within Compass promotes an understanding of and adherence

to other users’ norms by assigning reputation values to the way in which users

encourage the dissemination of other users’ data. How we track and ensure the

correctness of flows and calculations of the aforementioned scores occurs within the

implemented formal semantics of the contextual integrity privacy framework. By

focusing on enabling a correct underlying mechanism for promoting the sharing of

data while balancing users’ intentions, we believe that we have presented a design

that most fully embodies and empowers user privacy in an online social network.
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6 . 2 F U T U R E W O R K

6 . 2 . 1 C RY P TA G R A M

The initial user study for Cryptagram has proved promising: users have been inspired

to use this product for photo privacy in OSNs and beyond. Realizing that end-to-

end privacy is possible with the modern web, we intend to evaluate additionally

requested features, more efficient protocols, and integration with the photo sharing

experience that users expect. Usability and privacy are not diametric opposites and

Cryptagram aims to demonstrate that the two can be reconciled while maintaining

efficiency.

6 . 2 . 2 L O C K B O X

As part of the initial vision of Lockbox, we intend to see our product used by every-

day users. Anecdotally and academically, we have witnessed the ever burgeoning de-

mand for secure file sharing while counterbalancing the need to trust remote servers

and employing affordable services. Lockbox’s initial design points to a promising

future that balances usability, affordability, and privacy for everyday users.

O B J E C T S T O R E O F F L O A D T O T H E C L O U D : We note that the use of the

object store in the current design enables fast recovery of old versions of files since

the data is locally available. Nevertheless, we acknowledge that there might be value

in the offloading of non-recent versions to the cloud. We aim to ask the question

how should we balance the storage of some data locally and other data in the cloud?

What are the criteria for the storage choices that we make in the system?
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E VA L U AT I N G S N A P S H O T / D E LTA T R A D E O F F S : When a Lockbox client

spends more time and network bandwidth fetching deltas than would be required

to fetch a snapshot, an opportunity for optimization is apparent in the Lockbox de-

sign. As an optimization, if there are too many deltas, the design enables “garbage

collection” of the deltas (compression of the deltas according to file access permis-

sions) with computation executed on a user’s client. Determining relevant heuristics

that allow clients to decide the correct time to snapshot is important. Currently,

snapshotting is guaranteed to occur when a user joins or leaves a shared directory

group.

A D A P T I V E D E LTA E N C O D I N G : Given the fine grain modifications of Lock-

box enables versioning, the system can leverage known techniques in format changes

to reconcile the changes that we see in the presented documents. In other words, we

may be able to automatically merge conflicts depending on file types. For instance,

a change to plaintext documents could be reconciled manually based on known diff

techniques while for binary files we could use Courgette [56].

A D VA N C E D C O N F L I C T R E S O L U T I O N : Recent work has focused on the use

of Operational Transformations (OT) [37] to encapsulate the modifications that can

be expected on a text document. In the context of ensuring integrity with the model

of fork consistency, SPORC [42] demonstrated how to use chained keys to ensure

that OT transactions could be verified in a cloud text editor environment to detect

malicious database administrators. One can conceivably ensure that all changes to

these types of documents can be leveraged to show that the hybrid cryptosystem

primitives can be leveraged to ensure that the OT documents are encrypted and
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preserved, without having to encrypt all of the document. The integration of OT

with the cloud as the OT conduit is an area of future privacy research.

6 . 2 . 3 C O M PA S S

H O W T O G E N E R A L I Z E T H E A P P L I C A B I L I T Y O F C O N T E X T S ? One of

the pragmatic concerns for Compass is how to make the various contexts (and their

entailed properties) understandable by people? With all of the variety exists in the

social dimensions of online social life, how can the users know what they are getting

themselves into with a choice of norms, roles, etc.? This is one of the usability

challenges that we propose.

G E N E R AT I N G M E C H A N I S M S F R O M P O L I C I E S . Hails [52] examined the

utility in presenting policies for information flow enforcement as the same language

as the implementation of that policy. This simplification for information flow en-

forcement is important: the process of translating more human-readable policies into

the actual enforcement mechanism can be error-prone if the engineering process is

a human-written translation.

Machine checking (as presented in Section 4.6) and ideally machine generation

of the norm policies will result in fewer privacy surprises at runtime.

I N F E R R I N G N O R M S . In the vein of connecting machine learning and pri-

vacy [83], we expect that initially written norms will be “buggy” in that they inac-

curately capture users’ true expectations of privacy. As privacy surprises are logged,

we intend to create a system that learns from these surprises what the norms ought

to be for a context.
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Appendix A
JPEG Review

JPEG is a lossy codec designed to provide reasonable tradeoffs between com-

pression and recoverability of the original image [125]. We chose JPEG because of

its prevalence on the web and the availability of efficient JPEG libraries. Here we

review the core elements of JPEG that affect our protocol design.

A . 1 E N C O D I N G

T R A N S F O R M AT I O N S The first step in compressing an input bitmap image, M

to JPEG is a color space transformation. In particular, JPEG transforms every pixel

in M from the RGB to the Y CbCr color space through a linear transformation that

converts red, green, and blue (RGB) pixel values to luminance (Y ), chrominance
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blue (Cb), and chrominance red (Cr) values.

Y ′ = (0.299 ·R′D) + (0.587 ·G′D) + (0.114 ·B′D)

CB = 128− (0.168736 ·R′D)− (0.331264 ·G′D) + (0.5 ·B′D)

CR = 128 + (0.5 ·R′D)− (0.418688 ·G′D)− (0.081312 ·B′D)

After the color space transformation, the JPEG algorithm transforms the three

color channels of Y CbCr independently.

S U B S A M P L I N G Following the initial color space transformation, JPEG subsam-

ples the color channels. In the default libjpeg codec settings, luminance is not

subsampled while chrominance blue and chrominance red data undergo 2:1 subsam-

pling vertically and horizontally, also known as “4:2:0” subsampling. This results

in one-fourth the number of pixels that represent each of the original chrominance

blue and chrominance red channels.

D I S C R E T E C O S I N E T R A N S F O R M The output matrices of subsampling are

then transformed using the Discrete Cosine Transform. Since the DCT for JPEG

operates only on 8×8 pixel blocks, JPEG breaks each of the subsampled spaces into

non-overlapping 8× 8 pixel blocks. We refer to these units as JPEG Pixel Blocks or

JPBs.

The DCT is a well-understood transformation from the spatial to frequency do-

main. We present the two dimensional DCT here:
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Gu,v =

7∑
x=0

7∑
y=0

α(u)α(v)gx,y cos
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π

8

(
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2

)
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]
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π

8

(
y +

1

2

)
v

]
,

where u ∈ {0, 1, . . . , 7} is the horizontal spatial frequency; v ∈ {0, 1, . . . , 7} is the

vertical spatial frequency;

α(u) =


√

1
8
, if u = 0√

2
8
, otherwise

is a normalizing scale factor to maintain orthonormality; gx,y is the pixel value at

coordinates (x, y); and Gu,v is the DCT coefficient at coordinates (u, v). The two

Figure A.1.1: Visualization of the 64 DCT basis functions.

dimensional DCT, computed on each 8 × 8 block of pixels in an image, results in
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64 coefficients per block; the visual representation of which is in Figure A.1.1.

Q U A N T I Z AT I O N The DCT returns real values but we have to represent them on

disk with limited precision. The JPEG codec stores each of the 64 coefficients not

as a float but as a single 8-bit number that, combined with the quantization matrix,

can approximate a real number.

Here is the standard luminance quantization table in JPEG.



16 11 10 16 24 40 51 61

12 12 14 19 26 58 60 55

14 13 16 24 40 57 69 56

14 17 22 29 51 87 80 62

18 22 37 56 68 109 103 77

24 35 55 64 81 104 113 92

49 64 78 87 103 121 120 101

72 92 95 98 112 100 103 99


And for chrominance:
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17 18 24 47 99 99 99 99

18 21 26 66 99 99 99 99

24 26 56 99 99 99 99 99

47 66 99 99 99 99 99 99

99 99 99 99 99 99 99 99

99 99 99 99 99 99 99 99

99 99 99 99 99 99 99 99

99 99 99 99 99 99 99 99


This means, for example, that to approximate the value 99.0 for the 0th (pure DC)

component, we would write the integer b99.0
16
c = 6. In short, the lower the value in the

quantization matrix, the greater the precision for preservation of that particular DCT

coefficient. By scaling all values in the quantization table, JPEG prioritizes lower

frequencies (which are more obvious to the human eye) while allowing end-users to

achieve a range of qualities.

Chrominance red and chrominance blue use a separate quantization matrix which

is more heavily quantized, since the human eye is less sensitive to variations in

chrominance than luminance [125].

E N T R O P Y C O D I N G Once JPEG computes the quantized values, JPEG loss-

lessly writes these values to disk. This deterministic operation provides the biggest

savings for bytes on disk. In particular, values are zigzag encoded, meaning that the

order of values written to disk follows a zigzag pattern. Any repeated values in the

zigzag ordered list JPEG writes as a compressed value; e.g., the JPEG algorithm
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dictates writing 20 sequential 0’s as 20{0}. The benefits of this process is a reduced

amount of disk space required to represent the values.

A . 2 D E C O D I N G

D E Q U A N T I Z AT I O N Given the original JPEG quantization matrix in the JPEG

file, the decompression algorithm multiplies the values read from disk with the

corresponding quantization matrix entries.

I N V E R S E D C T JPEG applies the inverse DCT function to each set of 64 de-

quantized coefficients to produce the lossy output 8× 8 block of pixels.

S H I F T I N G A N D U P S A M P L I N G C H R O M I N A N C E Values in all of color

spaces are then shifted up by 128 to be within the valid display ranges again. JPEG

upsamples chrominance accordingly.

C O N V E R S I O N F R O M Y CbCr T O RGB Finally, JPEG executes the last linear

transformation between Y CbCr to RGB to present a human comprehensible RGB

image.

R = Y + 1.402 · (CR − 128)

G = Y − 0.34414 · (CB − 128)− 0.71414 · (CR − 128)

B = Y + 1.772 · (CB − 128)
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Appendix B
Creative Commons License

This is the text of Creative Commons Attribution-NonCommercial-NoDerivs Li-

cense, version 3.0.1

B . 1 L I C E N S E

THE WORK (AS DEFINED BELOW) IS PROVIDED UNDER THE TERMS

OF THIS CREATIVE COMMONS PUBLIC LICENSE (”CCPL” OR ”LICENSE”).

THE WORK IS PROTECTED BY COPYRIGHT AND/OR OTHER APPLICABLE

LAW. ANY USE OF THE WORK OTHER THAN AS AUTHORIZED UNDER

THIS LICENSE OR COPYRIGHT LAW IS PROHIBITED.
1See http://creativecommons.org/licenses/by-nc-nd/3.0/us/.
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BY EXERCISING ANY RIGHTS TO THE WORK PROVIDED HERE, YOU

ACCEPT AND AGREE TO BE BOUND BY THE TERMS OF THIS LICENSE.

TO THE EXTENT THIS LICENSE MAY BE CONSIDERED TO BE A CON-

TRACT, THE LICENSOR GRANTS YOU THE RIGHTS CONTAINED HERE IN

CONSIDERATION OF YOUR ACCEPTANCE OF SUCH TERMS AND CONDI-

TIONS.

1. Definitions

(a) “Collective Work” means a work, such as a periodical issue, anthol-

ogy or encyclopedia, in which the Work in its entirety in unmodified

form, along with one or more other contributions, constituting separate

and independent works in themselves, are assembled into a collective

whole. A work that constitutes a Collective Work will not be considered

a Derivative Work (as defined below) for the purposes of this License.

(b) “Derivative Work” means a work based upon the Work or upon the

Work and other pre-existing works, such as a translation, musical ar-

rangement, dramatization, fictionalization, motion picture version, sound

recording, art reproduction, abridgment, condensation, or any other form

in which the Work may be recast, transformed, or adapted, except that a

work that constitutes a Collective Work will not be considered a Deriva-

tive Work for the purpose of this License. For the avoidance of doubt,

where the Work is a musical composition or sound recording, the syn-

chronization of the Work in timed-relation with a moving image (“synch-

ing”) will be considered a Derivative Work for the purpose of this Li-

cense.
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(c) “Licensor” means the individual, individuals, entity or entities that of-

fers the Work under the terms of this License.

(d) “Original Author” means the individual, individuals, entity or entities

who created the Work.

(e) “Work” means the copyrightable work of authorship offered under the

terms of this License.

(f) “You” means an individual or entity exercising rights under this License

who has not previously violated the terms of this License with respect to

the Work, or who has received express permission from the Licensor to

exercise rights under this License despite a previous violation.

2. Fair Use Rights. Nothing in this license is intended to reduce, limit, or restrict

any rights arising from fair use, first sale or other limitations on the exclusive

rights of the copyright owner under copyright law or other applicable laws.

3. License Grant. Subject to the terms and conditions of this License, Licensor

hereby grants You a worldwide, royalty-free, non-exclusive, perpetual (for the

duration of the applicable copyright) license to exercise the rights in the Work

as stated below:

(a) to reproduce the Work, to incorporate the Work into one or more Collec-

tive Works, and to reproduce the Work as incorporated in the Collective

Works; and,

(b) to distribute copies or phonorecords of, display publicly, perform pub-

licly, and perform publicly by means of a digital audio transmission the

Work including as incorporated in Collective Works.
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The above rights may be exercised in all media and formats whether

now known or hereafter devised. The above rights include the right to

make such modifications as are technically necessary to exercise the

rights in other media and formats, but otherwise you have no rights to

make Derivative Works. All rights not expressly granted by Licensor

are hereby reserved, including but not limited to the rights set forth in

Sections 4(d) and 4(e).

4. Restrictions. The license granted in Section 3 above is expressly made subject

to and limited by the following restrictions:

(a) You may distribute, publicly display, publicly perform, or publicly dig-

itally perform the Work only under the terms of this License, and You

must include a copy of, or the Uniform Resource Identifier for, this Li-

cense with every copy or phonorecord of the Work You distribute, pub-

licly display, publicly perform, or publicly digitally perform. You may

not offer or impose any terms on the Work that restrict the terms of this

License or the ability of a recipient of the Work to exercise the rights

granted to that recipient under the terms of the License. You may not

sublicense the Work. You must keep intact all notices that refer to this Li-

cense and to the disclaimer of warranties. When You distribute, publicly

display, publicly perform, or publicly digitally perform the Work, You

may not impose any technological measures on the Work that restrict the

ability of a recipient of the Work from You to exercise the rights granted

to that recipient under the terms of the License. This Section 4(a) applies
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to the Work as incorporated in a Collective Work, but this does not re-

quire the Collective Work apart from the Work itself to be made subject

to the terms of this License. If You create a Collective Work, upon notice

from any Licensor You must, to the extent practicable, remove from the

Collective Work any credit as required by Section 4(c), as requested.

(b) You may not exercise any of the rights granted to You in Section 3

above in any manner that is primarily intended for or directed toward

commercial advantage or private monetary compensation. The exchange

of the Work for other copyrighted works by means of digital file-sharing

or otherwise shall not be considered to be intended for or directed toward

commercial advantage or private monetary compensation, provided there

is no payment of any monetary compensation in connection with the

exchange of copyrighted works.

(c) If You distribute, publicly display, publicly perform, or publicly digitally

perform the Work (as defined in Section 1 above) or Collective Works (as

defined in Section 1 above), You must, unless a request has been made

pursuant to Section 4(a), keep intact all copyright notices for the Work

and provide, reasonable to the medium or means You are utilizing: (i) the

name of the Original Author (or pseudonym, if applicable) if supplied,

and/or (ii) if the Original Author and/or Licensor designate another party

or parties (e.g. a sponsor institute, publishing entity, journal) for attri-

bution (“Attribution Parties”) in Licensor’s copyright notice, terms of

service or by other reasonable means, the name of such party or parties;

the title of the Work if supplied; to the extent reasonably practicable, the
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Uniform Resource Identifier, if any, that Licensor specifies to be asso-

ciated with the Work, unless such URI does not refer to the copyright

notice or licensing information for the Work. The credit required by this

Section 4(c) may be implemented in any reasonable manner; provided,

however, that in the case of a Collective Work, at a minimum such credit

will appear, if a credit for all contributing authors of the Collective Work

appears, then as part of these credits and in a manner at least as promi-

nent as the credits for the other contributing authors. For the avoidance

of doubt, You may only use the credit required by this clause for the

purpose of attribution in the manner set out above and, by exercising

Your rights under this License, You may not implicitly or explicitly as-

sert or imply any connection with, sponsorship or endorsement by the

Original Author, Licensor and/or Attribution Parties, as appropriate, of

You or Your use of the Work, without the separate, express prior written

permission of the Original Author, Licensor and/or Attribution Parties.

(d) For the avoidance of doubt, where the Work is a musical composition:

i. Performance Royalties Under Blanket Licenses. Licensor reserves

the exclusive right to collect whether individually or, in the event

that Licensor is a member of a performance rights society (e.g. AS-

CAP, BMI, SESAC), via that society, royalties for the public perfor-

mance or public digital performance (e.g. webcast) of the Work if

that performance is primarily intended for or directed toward com-

mercial advantage or private monetary compensation.

ii. Mechanical Rights and Statutory Royalties. Licensor reserves
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the exclusive right to collect, whether individually or via a music

rights agency or designated agent (e.g. Harry Fox Agency), royalties

for any phonorecord You create from the Work (“cover version”)

and distribute, subject to the compulsory license created by 17 USC

Section 115 of the US Copyright Act (or the equivalent in other

jurisdictions), if Your distribution of such cover version is primarily

intended for or directed toward commercial advantage or private

monetary compensation.

iii. Webcasting Rights and Statutory Royalties. For the avoidance of

doubt, where the Work is a sound recording, Licensor reserves the

exclusive right to collect, whether individually or via a performance-

rights society (e.g. SoundExchange), royalties for the public digital

performance (e.g. webcast) of the Work, subject to the compulsory

license created by 17 USC Section 114 of the US Copyright Act

(or the equivalent in other jurisdictions), if Your public digital per-

formance is primarily intended for or directed toward commercial

advantage or private monetary compensation.

5. Representations, Warranties and Disclaimer

UNLESS OTHERWISE MUTUALLY AGREED TO BY THE PARTIES

IN WRITING, LICENSOR OFFERS THE WORK AS-IS AND ONLY TO

THE EXTENT OF ANY RIGHTS HELD IN THE LICENSED WORK BY

THE LICENSOR. THE LICENSOR MAKES NO REPRESENTATIONS

OR WARRANTIES OF ANY KIND CONCERNING THE WORK, EX-

PRESS, IMPLIED, STATUTORY OR OTHERWISE, INCLUDING, WITH-
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OUT LIMITATION, WARRANTIES OF TITLE, MARKETABILITY, MER-

CHANTIBILITY, FITNESS FOR A PARTICULAR PURPOSE, NONINFRINGE-

MENT, OR THE ABSENCE OF LATENT OR OTHER DEFECTS, ACCU-

RACY, OR THE PRESENCE OF ABSENCE OF ERRORS, WHETHER OR

NOT DISCOVERABLE. SOME JURISDICTIONS DO NOT ALLOW THE

EXCLUSION OF IMPLIED WARRANTIES, SO SUCH EXCLUSION MAY

NOT APPLY TO YOU.

6. Limitation on Liability. EXCEPT TO THE EXTENT REQUIRED BY AP-

PLICABLE LAW, IN NO EVENT WILL LICENSOR BE LIABLE TO YOU

ON ANY LEGAL THEORY FOR ANY SPECIAL, INCIDENTAL, CON-

SEQUENTIAL, PUNITIVE OR EXEMPLARY DAMAGES ARISING OUT

OF THIS LICENSE OR THE USE OF THE WORK, EVEN IF LICENSOR

HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

7. Termination

(a) This License and the rights granted hereunder will terminate automati-

cally upon any breach by You of the terms of this License. Individuals

or entities who have received Collective Works (as defined in Section

1 above) from You under this License, however, will not have their li-

censes terminated provided such individuals or entities remain in full

compliance with those licenses. Sections 1, 2, 5, 6, 7, and 8 will survive

any termination of this License.

(b) Subject to the above terms and conditions, the license granted here is per-

petual (for the duration of the applicable copyright in the Work). Notwith-
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standing the above, Licensor reserves the right to release the Work under

different license terms or to stop distributing the Work at any time; pro-

vided, however that any such election will not serve to withdraw this

License (or any other license that has been, or is required to be, granted

under the terms of this License), and this License will continue in full

force and effect unless terminated as stated above.

8. Miscellaneous

(a) Each time You distribute or publicly digitally perform the Work (as

defined in Section 1 above) or a Collective Work (as defined in Section

1 above), the Licensor offers to the recipient a license to the Work on

the same terms and conditions as the license granted to You under this

License.

(b) If any provision of this License is invalid or unenforceable under applica-

ble law, it shall not affect the validity or enforceability of the remainder

of the terms of this License, and without further action by the parties to

this agreement, such provision shall be reformed to the minimum extent

necessary to make such provision valid and enforceable.

(c) No term or provision of this License shall be deemed waived and no

breach consented to unless such waiver or consent shall be in writing

and signed by the party to be charged with such waiver or consent.

(d) This License constitutes the entire agreement between the parties with

respect to the Work licensed here. There are no understandings, agree-

ments or representations with respect to the Work not specified here.

130



Licensor shall not be bound by any additional provisions that may ap-

pear in any communication from You. This License may not be modified

without the mutual written agreement of the Licensor and You.

B . 2 C R E AT I V E C O M M O N S N O T I C E

Creative Commons is not a party to this License, and makes no warranty whatso-

ever in connection with the Work. Creative Commons will not be liable to You or any

party on any legal theory for any damages whatsoever, including without limitation

any general, special, incidental or consequential damages arising in connection to

this license. Notwithstanding the foregoing two (2) sentences, if Creative Commons

has expressly identied itself as the Licensor hereunder, it shall have all rights and

obligations of Licensor.

Except for the limited purpose of indicating to the public that the Work is licensed

under the CCPL, Creative Commons does not authorize the use by either party of

the trademark “Creative Commons” or any related trademark or logo of Creative

Commons without the prior written consent of Creative Commons. Any permitted

use will be in compliance with Creative Commons then-current trademark usage

guidelines, as may be published on its website or otherwise made available upon

request from time to time. For the avoidance of doubt, this trademark restriction

does not form part of this License.

Creative Commons may be contacted at http://creativecommons.org/.
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