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Abstract

Web applications increasingly require a storage system that is both scalable and can replicate

data across many distant data centers or sites. Most existing storage solutions fall into one of

two categories: Traditional databases offer strict consistency guarantees and programming ease,

but are difficult to scale in a geo-replicated setting. NoSQL stores are scalable and efficient, but

have weak consistency guarantees, placing the burden of ensuring consistency on programmers. In

this dissertation, we describe two systems that help bridge the two extremes, providing scalable,

geo-replicated storage for web applications, while also easy to program for.

Walter is a key-value store that supports transactions and replicating data across distant sites.

A key feature underlying Walter is a new isolation property: Parallel Snapshot Isolation (PSI). PSI

allows Walter to replicate data asynchronously, while providing strong guarantees within each site.

PSI does not allow write-write conflicts, alleviating the burden of writing conflict resolution logic.

To prevent write-write conflicts and implement PSI, Walter uses two new and simple techniques:

preferred sites and counting sets.

Lynx is a distributed database backend for scaling latency-sensitive web applications. Lynx

supports optimizing queries via data denormalization, distributed secondary indexes, and materi-

alized join views. To preserve data constraints across denormalized tables and secondary indexes,

Lynx relies on a novel primitive: Distributed Transaction Chain (DTC). A DTC groups a sequence

of transactions to be executed on different nodes while providing two guarantees. First, all transac-

tions in a DTC execute exactly once despite failures. Second, transactions from concurrent DTCs

are interleaved consistently on common nodes.

We built several web applications on top of Walter and Lynx: an auction service, a microblog-

ging service, and a social networking website. We have found that building web applications

using Walter and Lynx is quick and easy. Our experiments show that the resulting applications are

capable of providing scalable, low latency operation across multiple geo-replicated sites.
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Chapter 1

Introduction

Web applications are everywhere. The astounding growth of the World Wide Web, along with

advances in Internet technology, have paved the way for for Internet applications that provide an

increasing variety of services. These online activities include, among others, sending and reading

email, blogging, editing documents collaboratively, and connecting with people on social net-

works. The trend towards web-based applications is only getting stronger.

There are two major concerns when building a popular web application. First, it must be able

to scale up quickly to handle a rapidly growing user base. For example, the popular photo sharing

application Instagram saw a nearly exponential growth to over 30 million users in less than two

years [58]. Another popular application—the microblogging site Twitter—has grown, in under six

years, to serving over 140 million users who post on average 340 million messages (or Tweets) a

day [16].

Second, a well-designed web application should remain available in the face of different types

of failures. As these applications run in the “cloud”, the most damaging type of failure is the outage

of an entire data center. To tolerate a data center failure, applications must geo-replicate, that is,

they must replicate their data across data centers in different geographical regions. The need for

geo-replication becomes evident after every major data center outage. For example, errors in a
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single infrastructure component in Amazon’s EC2 service triggered a snowball effect, on April

2011, that caused a disruption of service for Amazon’s entire US East region [12]. Since the EC2

service does not, by default, replicate data across regions on behalf of its users, applications that

did not implement their own geo-replication functionality experienced a disrupted service for up

to 47 hours.

Achieving scalability and geo-replication is not an easy task. Web applications are commonly

constructed using a multi-tiered design, where application servers use a storage tier to store and

share data. Scaling the application tier is easily achieved by running application severs on many

machines across multiple data centers, but it is much harder to scale the storage tier and have it

support geo-replication. To be scalable, a storage system must divide data into a large number of

partitions spread across many machines. As applications often need to access data belonging to

multiple partitions, the storage system must coordinate access across different partitions, which

comes at a performance cost. The cost of such coordination increases substantially when data

is replicated across geographically distant data centers with tens or hundreds of milliseconds of

communication delays.

There are no satisfactory storage solutions for building scalable and geo-replicated web appli-

cations. Small web-sites often use traditional databases as their storage tier. Traditional databases

provide strong consistency guarantees, and are easy to program for, but they face issues when scal-

ability and geo-replication are required. For example, faced with the inability of their PostgreSQL

database backend to scale, the engineers at Instagram resorted to using manually-partitioned Post-

greSQL tables, result caching via memcached, and duplication of photo timelines in a Redis key-

value store [58]. The resulting system has no consistency guarantees: data kept in different sys-

tems (e.g., memcached, Redis, PostgreSQL) can become arbitrarily out of sync [58, 73]. This

greatly complicates application development and can lead to a bad user experience. For replica-

tion, traditional databases commonly rely on master-slave schemes. These schemes are limited as

a geo-replication solution in that backup sites are either read-only, or they provide no consistency
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guarantees across partitions.

The goal of this dissertation is to develop scalable, geo-replicated storage backends for web

applications that are also easy to program for. Our backends support transactions, which we view

as an essential programming primitive for simplifying application development. Both systems in

this work explore the tradeoffs of relaxing typical ACID (Atomicity Consistency Isolation Dura-

bility) consistency for the benefit of scalable high performance in a geo-replicated setting. We

show through examples and experiments that in the context of web applications, as long as the

consistency level is strong enough to hide most anomalies from users, these tradeoffs make sense:

They make it easy to quickly write applications that can achieve scalable high-performance, in a

geo-replicated setting. This thesis develops two storage systems along this theme: One is called

Walter, and the other is called Lynx.

The first system presented in this work is Walter, a geo-replicated key-value store. The focus of

our work on Walter was to develop the strongest possible weak consistency model that can be effi-

ciently implemented in a geo-replicated setting. For this goal we developed a novel isolation prop-

erty called Parallel Snapshot Isolation (PSI). PSI allows Walter to replicate data asynchronously,

while providing strong guarantees within each site. We demonstrate how Walter utilizes PSI to

provide efficient transactional access to geo-replicated data.

The second system we propose is Lynx, a scalable geo-replicated database. The emphasis of

our work on Lynx is on scalability and a user-friendly programming interface. Lynx retains many

of the desirable programming features of a relational database, such as a flexible query interface.

Lynx achieves scalable performance in a geo-replicated setting by providing a relaxed consistency

model where the state of distributed secondary indexes, materialized join views, and denormalized

data is permitted to temporarily lag behind the state of main tables, but eventually reflects the same

state. Lynxes uses a novel primitive called Distributed Transaction Chain (DTC) to achieve its

consistency guarantee with good performance.
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The rest of this chapter is organized as follows: Section 1.1 and 1.2 discuss Walter and Lynx

in more detail. We summarize our contributions in section 1.3. The chapter concludes with a

description of the organization of the rest of the dissertation.

1.1 Walter: A geo-replicated transactional key-value store

In the first part of this thesis, we investigate a relaxed consistency model called Parallel

Snapshot Isolation (PSI). This model is proposed for supporting efficient transactions over geo-

replicated data. We build a key-value store called Walter, as well as several web applications, to

demonstrate the performance and usefulness of PSI.

Existing geo-distributed key-value stores provide no transactions or only restricted transactions

(see Section 10). Without transactions, an application must carefully coordinate access to data to

avoid race conditions, partial writes, overwrites, and other hard problems that cause erratic be-

havior. Developers must address these same problems for many applications. With transactions,

developers are relieved from concerns of atomicity, consistency, isolation, durability, and coordi-

nation. For example, in a social networking application, one may want to remove user A from B’s

friends list and vice versa. Without transactions, developers must write code carefully to prevent

one removal from happening without the other. With transactions, developers simply bundle those

updates in a transaction.

To realize strong consistency, transactions must synchronously replicate data across geograph-

ically distant data centers, resulting in significantly increased operation latency. Our new isolation

property PSI provides a better balance between consistency and latency [48, 94], as appropriate

for web applications. In such applications, a user might log into the site closest to her, where she

accesses application servers, ad servers, authentication servers, etc. These hosts should observe

a consistent storage state. For example, in a social network, a user expects to see her own posts

immediately and in order. For that reason, the storage system should provide a strong level of
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consistency among hosts in her site. Across sites, weaker consistency is acceptable, because users

can tolerate a small delay for their actions to be seen by other users. A weaker consistency is also

desirable, so that transactions can be replicated across sites asynchronously (lazy replication).

Eventual consistency [79, 86] is often the property provided by asynchronous replication.

When different sites update the same data concurrently, there is a conflict that must be resolved by

application logic. This logic can be complex, and we want to avoid forcing it upon developers.

With PSI, hosts within a site observe transactions according to a consistent snapshot and a

common ordering of transactions. Across sites, PSI enforces only causal ordering, not a global

ordering of transactions, allowing the system to replicate transactions asynchronously across sites.

With causal ordering, if Alice posts a message that is seen by Bob, and Bob posts a response, no

user can see Bob’s response without also seeing Alice’s original post. Besides providing causal

ordering, PSI precludes write-write conflicts (two transactions concurrently writing to the same

object) so that developers need not write conflict resolution logic.

To prevent write-write conflicts and implement PSI, Walter relies on two techniques: preferred

sites and counting sets. In web applications, writes to an object are often made by the user who

owns the object, at the site where this user logs into. Therefore, we assign each object to a preferred

site, where objects can be written more efficiently. For example, the preferred site for the wall posts

of a user is the site closest to the user. Preferred sites are less restrictive than primary sites, as we

discuss in Section 2.

Preferred sites may not always suffice. For example, a friends list can be updated by users in

many sites. The second technique in Walter to avoid conflicts is to use a new simple data type

called a counting set (cset), inspired by commutative data types [60]. A cset is like a set, except

that each element has an integer count. Unlike sets, csets operations are commutative, and so

they never conflict [52]. Therefore, transactions with csets can commit without having to check

for conflicts across sites. When developing applications for Walter, we used csets extensively to

store friend lists, message walls, photo albums, and message timelines. We found that csets were
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versatile and easy to use.

Walter uses multi-version concurrency control within each site, and it can quickly commit

transactions that write objects at their preferred sites or that use csets. For other transactions, Walter

resorts to two-phase commit to check for conflicts. We found that the latter type of transaction can

be avoided in the applications we built.

Using Walter as the storage system, we build WaltSocial, a Facebook-like social networking

application, and we port a third-party Twitter-clone called ReTwis [13]. We find that the trans-

actions provided by Walter are effective and efficient. Experiments on four geographic locations

on Amazon EC2 show that transactions have low latency and high throughput. For example, the

operation to post a message on a wall in WaltSocial has a throughput of 16500 ops/s and the

99.9-percentile latency is less than 50 ms.

1.2 Lynx: A scalable, eventually consistent database

The second part of this thesis develops Lynx, a scalable, geo-replicated database designed for

achieving low-latency queries.

One of the lessons we have learned from writing applications for Walter is that a key-value

store, though simple to program with, lacks desirable features for issuing efficient queries, such

as secondary index queries and joins. As a result, we chose to design Lynx on top of a relational

database, and provide these added features to applications.

In Lynx, each table is split into partitions which are spread across many machines. For better

fault-tolerance, Lynx can also optionally replicate data across several geographically distributed

data centers. As web applications demand low latency operation, Lynx allows for three common

query optimization patterns: denormalization [64], distributed secondary indexes, and materialized

join views. These optimizations essentially pre-compute results so that a query can be satisfied by

contacting just one machine, minimizing the latency and overhead for common read operations.
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Lynx uses a new primitive, called the distributed transaction chain (DTC), to update secondary

indexes and join tables. It also exposes the DTC primitive to the application programmer to update

denormalized data in related tables.

Denormalization and index/view generation impose consistency constraints among data parti-

tions managed by different machines. One way of enforcing these constraints is to use distributed

ACID transactions. But this is a heavy hammer, and comes at a high price [17, 48]. Distributed

ACID transactions require tight coordination among machines that manage different data parti-

tions, lengthening the tail latency of operations. When data is replicated across data centers, such

coordination requires communication between data centers, further increasing operation latency.

Instead of ACID, Lynx offers the weaker guarantee that denormalized data, indexes and join

views are eventually consistent with the main data. We show that for a variety of applications this

guarantee is sufficient for correct operation.

Achieving Lynx’s consistency guarantee without distributed transactions is a challenge. When

a logical operation is broken up into a series of independent steps, both failure and concurrency

can result in permanent inconsistency between related tables and indexes. Lynx addresses these

challenges through its new DTC primitive. A DTC bundles a group of local transactions and

executes them in order, providing two guarantees. First, either all transactions in a chain finish

successfully or, if any transaction aborts, each of the previously executed transactions is un-done

with a compensating action. Second, if desired, transactions from different chains can be ordered:

if two chains X and Y start in the same partition and X executes before Y in that partition, then X

executes before Y in any partition where they both execute.

DTC is more powerful than a persistent message queue, a popular technique for modifying

data on different machines—examples of this include Amazon’s Simple Queue Service [3] and

eBay’s message queue [74] among others. Compared to DTC, the queue interface is low-level and

transfers the burden of handling the difficult cases onto the programmers: programmers must not

only design applications to explicitly enqueue and dequeue transactions, they must also ensure that
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no transaction is executed more than once after failure recovery and that the arbitrary interleaving

of transactions of different logical operations does not lead to inconsistencies.

Lynx is easy to use: programmers define table schemas using a SQL-like syntax and use a

Python client library to access distributed tables. To help programmers optimize application per-

formance, Lynx provides mechanisms to (a) control how various database tables should be par-

titioned and replicated across data centers, (b) specify which secondary indexes and join view

tables to generate, and (c) let programmers write user-defined DTCs to update denormalized data

in related tables.

Using Lynx, we have built three applications: an auction service, which we have ported from

the RUBiS benchmark [1, 22]; a Twitter-like microblogging service; and a Facebook-like social

networking site. All three applications are quick to build, demonstrating the ease-of-use of the

Lynx API. They use DTCs to maintain the consistency of denormalized tables and rely heavily on

secondary indexes and join views to optimize read operations. Experiments have shown that these

applications have scalable performance and low latency operations. When scaling the number of

Lynx servers used from 1 to 15, our Twitter-like application achieves 8x throughput increase in

a mixed workload of read and write operations. Furthermore, all operations finish with a median

latency of 10 ms and a maximum of less than 60 ms.
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1.3 Contributions

The contributions of this dissertation are:

• We define Parallel Snapshot Isolation, an isolation property well-suited for geo-replicated

web applications. PSI provides a strong guarantee within a site; across sites, PSI provides

causal ordering and precludes write-write conflicts.

• We describe the design and implementation of Walter, a geo-replicated transactional key-

value store that provides PSI. Walter can avoid common write-write conflicts without cross-

site communication using two simple techniques: preferred sites and csets. We give distrib-

uted protocols to execute and commit transactions in Walter.

• We describe the design and implementation of Lynx, a scalable, geo-replicated database that

provides an efficient query interface for large-scale, latency-sensitive web applications.

• We propose Distributed Transaction Chains and demonstrate how they can be used to im-

plement efficient queries in a distributed database.

• We build five web applications: two on top of Walter, and three on top of Lynx. We show

that these application are easy to build and optimize using the chosen storage backend, and

that they work well under its consistency guarantees, while achieving high performance in a

geo-replicated setting.

1.4 Dissertation organization

This dissertation is organized as follows: Chapter 2 gives an overview of Walter. Chapter 3

introduces Parallel Snapshot Isolation in the context of Snapshot Isolation. Chapter 4 describes

Walter’s operation in detail: Its programming interface, design, algorithms, and its implementa-

tion. Chapter 5 is an evaluation of Walter that consists of a description of our experience writing

applications for it; and an experimental evaluation of the Walter prototype and the applications
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running on top of it. Chapter 6 switches to discuss Lynx and contains an overview of the sys-

tem. Chapters 7 describe Lynx’s programming interface and its design, and presents proofs of the

correctness of Lynx’s derived tables’ operations. Chapter 9 evaluates Lynx’s usability and perfor-

mance. Chapter 10 discusses related work, and Chapter 11 concludes.
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Chapter 2

Overview of Walter

Setting. A geo-replicated storage system replicates objects across multiple sites. The system is

managed by a single administrative entity. Machines can fail by crashing; addressing Byzantine

failures is future work. Network partitions between sites are rare: sites are connected by highly-

available links (e.g., private leased lines or MPLS VPNs) and there are redundant links to ensure

connectivity during planned periods of link maintenance (e.g., using a ring topology across sites).

We wish to provide a useful back-end storage system for web applications, such as social networks,

web email, social games, and online stores. The storage system should provide reliability, a simple

interface and semantics, and low latency.

Why transactions? We illustrate the benefit of transactions in a social networking application,

where users post photos and status updates, befriend other users, and write on friends’ walls. Each

site has one or more application servers that access shared user data. When Alice adds a new

photo album, the application creates an object for the new album, posts a news update on Alice’s

wall, and updates her album set. With transactions, the application groups these writes into an

atomic unit so that failures do not leave behind partial writes (atomicity) and concurrent access by

other servers are not intermingled (isolation). Without transactions, the application risks exposing

undesirable inconsistent state to end users. For example, Bob may see the wall post that Alice
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has a new album but not find the album. Developers can sometimes alleviate these inconsistencies

manually, by finding and ensuring proper ordering of writes. For example, the application can

create the new album and wait for it to be replicated before posting on the wall. Then, concurrent

access by Bob is not a problem, but a failure may leave behind an orphan album not linked to any

user. The developer can deal with this problem by logging and replaying actions—which amounts

to implementing rudimentary transactions—or garbage collecting dangling structures. This non-

transactional approach places significant burden on developers.

We are not the first to point out the benefits of transactions to data center applications. Sinfonia

uses transactions for infrastructure services [18, 19], while Percolator [71] uses them for search

indexing. Both systems target applications on a single site, whereas we target geo-replicated ap-

plications that span many sites.

One way to provide transactions in a geo-replicated setting is to partition the data across sev-

eral databases, where each database has its primary at a different site. The databases are replicated

asynchronously across all sites, but each site is the primary for only one of the partitions. Un-

fortunately, with this solution, transactions cannot span multiple partitions, limiting their utility to

applications.

Key features. Walter provides a unique combination of features to support geo-replicated web

applications:

• Asynchronous replication across sites. Transactions are replicated lazily in the background,

to reduce latency.

• Efficient update-anywhere for certain objects. Counting sets can be updated efficiently any-

where, while other objects can be updated efficiently at their preferred site.

• Freedom from conflict-resolution logic, which is complex and burdensome to developers.

• Strong isolation within each site. This is provided by the PSI property, which we cover

below.
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Existing systems do not provide some of the above features. For instance, eventually consistent

systems such as [79, 86] require conflict-resolution logic; primary-copy database systems do not

support any form of update-anywhere. We discuss related work in more detail in Chapter 10.

Overview of PSI. Snapshot isolation [25] is a popular isolation condition provided by commercial

database systems such as Oracle and SQLServer. Snapshot isolation ensures that (a) transactions

read from a snapshot that reflects a single commit ordering of transactions, and (b) if two concur-

rent transactions have a write-write conflict, one must be aborted. By imposing a single commit

ordering, snapshot isolation forces implementations to coordinate transactions on commit, even

when there are no conflicts (Section 3.1).

Parallel snapshot isolation extends snapshot isolation by allowing different sites to have differ-

ent commit orderings. For example, suppose siteA executes transactions T1, T2 and siteB executes

transactions T3, T4. PSI allows site A to first incorporate just T1, T2 and later T3, T4, while site B

first incorporates T3, T4 and later T1, T2. This flexibility is needed for asynchronous replication:

site A (or site B) can commit transactions T1, T2 (or T3, T4) without coordinating with the other

site and later propagate the updates.

Although PSI allows different commit orderings at different sites, it still preserves the property

of snapshot isolation that committed transactions have no write-write conflicts, thereby avoiding

the need for conflict resolution. Furthermore, PSI preserves causal ordering: if a transaction T2

reads from T1 then T1 is ordered before T2 at every site. We give a precise specification of PSI in

Chapter 3.

We believe PSI provides strong guarantees that are well-suited for web applications. Intuitively,

PSI provides snapshot isolation for all transactions executed within a single site. PSI’s relaxation

over snapshot isolation is acceptable for web applications where each user communicates with

one site at a time and there is no need for a global ordering of all actions across all users. In

a social networking application, Alice in site A may post a message at the same time as Bob in
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site B. Under PSI, Alice may see her message first before seeing Bob’s message, and Bob sees

the opposite ordering, which is reasonable since Alice and Bob post concurrently. As another

example, in an auction application, PSI allows bids on different objects to be committed in different

orders at different sites. (In contrast, snapshot isolation requires the same ordering at all sites.)

Such relaxation is acceptable since the auction application requires bid ordering on each object

separately, not across all objects.

Avoiding conflicts efficiently. To avoid write-write conflicts across sites, and implement PSI,

Walter uses two techniques.

• Preferred sites. Each object is assigned a preferred site, which is the site where writes to

the object can be committed without checking other sites for write conflicts. Walter executes

and commits a transaction quickly if all the objects that it modifies have a preferred site

where the transaction executes. Objects can be updated at any site, not just the preferred

site. In contrast, some database systems have the notion of a primary site, which is the only

site that can update the data. This notion is more limiting than the notion of a preferred

site. For instance, suppose objects O1 and O2 are both replicated at sites 1 and 2, but the

primary of O1 is site 1 while the primary of O2 is site 2. A transaction executing on site

1 can read both objects (since they are both replicated at site 1), but because the primary

of O2 is not site 1, the transaction can write only O1—which is limiting to applications. In

practice, this limitation is even more severe because database systems assign primary sites at

the granularity of the whole database, and therefore non-primary sites are entirely read-only.

• Conflict-free counting set objects. Sometimes an object is modified frequently from many

sites and hence does not have a natural choice for a preferred site. We address this prob-

lem with counting set (cset) objects. Transactions in Walter support not just read and write

operations, but also operations on csets. Csets have the desirable property that transactions

concurrently accessing the cset object never generate write-write conflicts. A cset is similar
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to a multiset in that it keeps a count for each element. But, unlike a multiset, the count could

be negative [52]. A cset supports an operation add(x) to add element x, which increments

the counter of x in the cset; and an operation rem(x) to remove x, which decrements the

counter of x. Because increment and decrement commute, add and rem also commute, and

so operations never conflict.

For example, a group of concurrent cset operations can be ordered as add(x), add(y), rem(x)

at one site, and ordered as rem(x), add(x), add(y) at another site. Both reach the final state

containing just y with count 1. Note that removing element x from an empty cset results in

-1 copies of element x, which is an anti-element: later addition of x to the cset results in the

empty cset.
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Chapter 3

Parallel snapshot isolation

In this chapter, we precisely specify PSI—the guarantee provided by Walter—and we discuss

its properties and implications. We start by reviewing snapshot isolation and explaining the frame-

work that we use to specify properties (Section 3.1). Then, we give the exact specification of PSI

and discuss its properties (Section 3.2.1). We next explain how to extend PSI to include set op-

erations (Section 3.2.2). We then explain how developers can use PSI (Section 3.2.3) and csets

(Section 3.2.4) to build their applications.

3.1 Snapshot isolation

We specify snapshot isolation by giving an abstract specification code that an implementation

must emulate. The specification code is centralized to make it as simple as possible, whereas an

implementation can be distributed, complex, and more efficient. An implementation code satisfies

the specification code if both codes produce the same output given the same input (e.g., [63]). The

input is given by calls to operations to start a transaction, read or write data, commit a transaction,

etc. The output is the return value of these operations. Many clients may call the operations of the

specification concurrently, resulting possibly in many outstanding calls; however, the body of each
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operation startTx(x)
x.startTs← new monotonic timestamp

return OK

operation write(x, oid, data)

append 〈oid, DATA(data)〉 to x.updates

return OK

operation read(x, oid)

return state of oid from x.updates and Log up to timestamp x.startTs

operation commitTx(x)
x.commitTs← new monotonic timestamp

x.status← chooseOutcome(x)

if x.status = COMMITTED

then append x.updates to Log with timestamp x.commitTs

return x.status

Figure 3.1: Specification of snapshot isolation.

function chooseOutcome(x)

if some write-conflicting transaction has committed after x started

then return ABORTED

else if some write-conflicting transaction has aborted after x started

or is currently executing

then return (either ABORTED or COMMITTED) // non-deterministic choice

else return COMMITTED

Figure 3.2: Transaction outcome in snapshot isolation.

operation is executed one at a time, using a single thread.

The specification is given in Figures 3.1 and 3.2 and depicted in Figure 3.3. It is assumed that

clients start a transaction x with x initially ⊥, then perform a sequence of reads and/or writes,

and then try to commit the transaction. The behavior is unspecified if any client fails to follow

this discipline, say by writing to a transaction that was never started. To start transaction x, the

code obtains a new monotonically increasing timestamp, called the start timestamp of x. The

timestamp is stored as an attribute of x; in the code, x is passed by reference. To write an object

in transaction x, the code stores the object id and data in a temporary update buffer. To read an

object, the code uses the update buffer—to check for any updates to the object written by the

transaction itself—as well as a snapshot of the state when the transaction began. To determine the

snapshot, the code maintains a Log variable with a sequence of object ids, data, and timestamps

for the writes of previously-committed transactions. Only committed transactions are in the log,

not outstanding ones. A read of an object reflects the updates in Log up to the transaction’s start

timestamp. To commit transaction x, the code obtains a new monotonically increasing timestamp,
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Figure 3.3: Depiction of snapshot isolation. The writes of T1 are seen by T3 but not T2 as T2 reads from a
snapshot prior to T1’s commit.

called the commit timestamp of x. It then determines the outcome of a transaction according to

the function in Figure 3.2. This function indicates the cases when the outcome is abort, commit,

or either one chosen nondeterministically.1 The code considers what happens after x started: if

some write-conflicting transaction committed then the outcome is abort, where a write-conflicting

transaction is one that writes an object that x also writes. Otherwise if some write-conflicting

transaction has aborted or is currently executing—meaning it has started but its outcome has not

been chosen—then the outcome is either abort or commit, chosen nondeterministically. Otherwise,

the outcome is commit. If the outcome is commit, the writes of x are appended to Log with x’s

commit timestamp.

Note that the specification keeps internal variables—such as the log, timestamps, and other at-

tributes of a transaction—but an implementation need not have these variables. It needs to emulate

only the return values of each operation.

The above specification of snapshot isolation implies that any implementation must satisfy two

key properties [91, Page 362]:

SI property 1. (Snapshot Read) All operations read the most recent committed version as of the

time when the transaction began.

SI property 2. (No Write-Write Conflicts) The write sets of each pair of committed concurrent

transactions must be disjoint.

Here, we say that two committed transactions are concurrent if one of them has a commit time-

stamp between the start and commit timestamp of the other.

1Nondeterminism in specifications allows implementations to have either behavior.
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operation startTx(x)
x.startTs← new monotonic timestamp

return OK

operation write(x, oid, data)

append 〈oid, DATA(data)〉 to x.updates

return OK

operation read(x, oid)

return state of oid from x.updates and Log[site(x)] up to timestamp x.startTs

operation commitTx(x)
x.commitTs[site(x)]← new monotonic timestamp

x.status← chooseOutcome(x)

if x.outcome = COMMITTED

append x.updates to Log[site(x)] with timestamp x.commitTs[site(x)]

return x.status

upon [∃x, s: x.status = COMMITTED and x.commitTs[s] = ⊥ and

∀y such that y.commitTs[site(x)] < x.startTs : y.commitTs[s] 6= ⊥]

x.commitTs[s]← new monotonic timestamp

append x.updates to Log[s] with timestamp x.commitTs[s]

Figure 3.4: Specification of PSI.

Snapshot isolation is inadequate for a system replicated at many sites, due to two issues. First,

to define snapshots, snapshot isolation imposes a total ordering of the commit time of all transac-

tions, even those that do not conflict2. Establishing such an ordering when transactions execute at

different sites is inefficient. Second, the writes of a committed transaction must be immediately

visible to later transactions. Therefore a transaction can commit only after its writes have been

propagated to all remote replicas, thereby precluding asynchronous propagation of its updates.3

We define PSI to address these problems.

3.2 Parallel Snapshot Isolation

3.2.1 Specification of PSI

We define PSI as a relaxation of snapshot isolation so that transactions can propagate asyn-

chronously and be ordered differently across sites. Note that the PSI specification does not refer to

2For example, suppose A=B=0 initially and transaction T1 writes A←1, transaction T2 writes B←1, and both

commit concurrently. Then T1 and T2 do not conflict and can be ordered arbitrarily, so either (A=1, B=0) or

(A=0, B=1) are valid snapshots for transactions to read. However, it is illegal for both snapshots to occur, because

snapshot isolation either orders T1 before T2 or vice versa.
3A variant called weak snapshot isolation [36] allows a transaction to remain invisible to others even after it

commits, but that does not address the first issue above.
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function chooseOutcome(x)
if some write-conflicting transaction has committed at site(x) after x started

or is currently propagating to site(x) // text has definition of “propagating”

then return ABORTED

else if some write-conflicting transaction has aborted after x started

or is currently executing

then return (either ABORTED or COMMITTED)
else return COMMITTED

Figure 3.5: Transaction outcome in PSI.

site A state

site B state
T2

T1

T1 T2

T2 T1

Figure 3.6: PSI allows a transaction to have different commit times at different sites. At site A, committed
transactions are ordered as T1, T2. Site B orders them differently as T2, T1.

preferred sites, since they are relevant only to the implementation of PSI. The specification code is

given in Figures 3.4 and 3.5 and depicted in Figure 3.6. As before, the specification is abstract and

centralized—there is a single thread that executes the code without interleaving—but we expect

that implementations will be distributed. Each transaction x has a site attribute denoted site(x).

There is a log per site, kept in a vector Log indexed by sites. A transaction has one commit time-

stamp per site. A transaction first commits locally, by writing its updates to the log at its site;

subsequently, the transaction propagates to and commits at the remote sites. This propagation is

performed by the upon statement which, at some non-deterministic time, picks a committed trans-

action x and a site s to which x has not been propagated yet, and then writes the updates of x

to the log at s. (For the moment, we ignore the second line of the upon statement in the code.)

As Figure 3.5 shows, a transaction is aborted if there is some write-conflicting transaction that

has committed at site(x) after x started or that is currently propagating to site(x); a transaction

y is propagating to a site s if its status is committed but it has not yet committed at site s—that

is, y.status=COMMITTED and y.commitTs[s]=⊥. Otherwise, if there is some concurrent write-

conflicting transaction that has not committed, the outcome can be abort or commit. Otherwise,

the outcome is commit. The outcome of a transaction is decided only once: if it commits at its site,

the transaction is not aborted at the other sites. In Section 4.2.7, we discuss what to do when a site
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fails.

The above specification contains code that may be expensive to implement directly, such as

monotonic timestamps and checks for write conflicts of transactions in different sites. We later

give a distributed implementation that can avoid these inefficiencies.

From the specification, it can be seen that PSI replaces property 1 of snapshot isolation with

the following:

PSI property 1. (Site Snapshot Read) All operations read the most recent committed version at

the transaction’s site as of the time when the transaction began.

Intuitively, a transaction reads from a snapshot established at its site. In addition, PSI essentially

preserves property 2 of snapshot isolation. To state the exact property, we say two transactions T1

and T2 are concurrent at site s if one of them has a commit timestamp at s between the start and

commit timestamp of the other at s. We say the transactions are somewhere-concurrent if they are

concurrent at site(T1) or at site(T2).

PSI property 2. (No Write-Write Conflicts) The write sets of each pair of committed somewhere-

concurrent transactions must be disjoint.

This property prevents the lost update anomaly (Section 3.2.3). The specification of PSI also

ensures causal ordering:

PSI property 3. (Commit Causality Across Sites) If a transaction T1 commits at a site A before a

transaction T2 starts at site A, then T1 cannot commit after T2 at any site.

This property is ensured by the second line of the upon statement in Figure 3.4: x can propagate to a

site s only if all transactions that committed at x’s site before x started have already propagated to

s. The property prevents a transaction x from committing before y at a remote site when x has ob-

served the updates of y. The property also implies that write-conflicting transactions are committed

in the same order at all sites, to prevent the state at different sites from diverging permanently.
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3.2.2 PSI with cset objects

In the specification of PSI in Section 3.2.1, transactions operate on objects via read and write

operations, but it is possible to extend the specification to support objects with other operations.

We give the extension for cset objects, but this extension should apply to any object with commu-

tative operations. To add an element to a cset, the code appends an entry 〈setid, ADD, id〉 to the

transaction’s update buffer (x.updates) and, on commit, appends this entry to the log. Similarly, to

remove an element from a cset, the code appends entry 〈setid, DEL, id〉. To read a cset, the code

computes the state of the cset: for each element, it sums the number of ADD minus the number of

DEL in the log and the update buffer, thus obtaining a count for each element. Only elements with

a non-zero count are returned by the read operation. Because the operations to add and remove

elements in a cset commute, these operations do not cause a write conflict. Note that a cset object

does not support a write operation since it does not commute with ADD. Figure 3.7 shows the code

of the specification.

A cset may have many elements, and reading the entire cset could return large amounts of data.

It is easy to extend the specification with an operation setReadId to return the count of a chosen

element on a cset, by simply computing the state of the cset (using the log) to extract the count of

that element.
operation setAdd(x, setid, id)
append 〈setid, ADD(id)〉 to x.updates

return OK

operation setDel(x, setid, id)

append 〈setid, DEL(id)〉 to x.updates

return OK

operation setRead(x, setid)

return state of setid from x.updates and Log[site(x)] up to timestamp x.startTs

Figure 3.7: Set operations in PSI specification.
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3.2.3 Using PSI

One way to understand an isolation property is to understand what type of anomalous behavior

it allows, so that developers know what to expect. In this section, we consider PSI from that

standpoint, and we compare it against snapshot isolation and serializability. It is well-known that

the weaker a property is, the more anomalous behaviors it has, but at the same time, the more

efficiently it can be implemented. The anomalies allowed by PSI can be seen as the price to pay

for allowing asynchronous replication.

Figure 3.8 shows various anomalies and whether each isolation property has those anomalies.

Eventual consistency is very weak and allows all anomalies. The first three anomalies are well-

known (e.g., [50]). Snapshot isolation and PSI prevent dirty and non-repeatable reads, because a

transaction reads from a snapshot, and they prevent lost updates because there are no write-write

conflicts. Snapshot isolation allows the state to fork, because two or more transactions may read

from the same snapshot and make concurrent updates to different objects. We call this a short fork,

also known as write skew, because the state merges after transactions commit. With PSI, the state

may remain forked after transactions commit (when they execute in different sites), but the state is

later merged when the transactions propagate across sites. Due to its longer duration, we call this

a long fork. A conflicting fork occurs when the states diverges due to conflicting updates, which is

not allowed by PSI.

Long forks are acceptable in web applications when users in a site do not expect their updates

to be instantly visible across all sites. If the user wants to know that her updates are visible ev-

erywhere, she can wait for her transaction to commit at all sites. In some cases, the fork may

be noticeable to users: say, Alice posts a message on her social network wall saying that she is

the first to flag a new promotion; she then confirms her statement by reading her friend’s walls

and seeing nothing there. With a long fork, Bob could be simultaneously doing the same thing

from a different site, so that both Alice and Bob believe they posted their message first. One way
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Anomaly Serializability Snapshot PSI Eventual
Isolation Consis-

tency

Dirty read No No No Yes

Non-repeatable read No No No Yes

Lost update No No No Yes

Short fork No Yes Yes Yes

Long fork No No Yes Yes

Conflicting fork No No No Yes

Dirty read. A transaction reads the update made by another transaction that has not yet committed; the other transaction may later abort or rewrite the

object, making the data read by the first transaction invalid. Example. Initially A=0. T1 writes A←1 and A←2 and commits; concurrently, T2 reads

A=1.

Non-repeatable read. A transaction reads the same object twice—once before and once after another transaction commits an update to it—obtaining

different results. Example. Initially A=0. T1 writes A←1 and commits; concurrently T2 reads A=0 and then reads A=1.

Lost update. Transactions make concurrent updates to some common object, causing one transaction to lose its updates. Example. Initially A=0.

T1 reads A=0, writes A←1, and commits. Concurrently, T2 reads A=0, writes A←2, and commits.

Short fork. Transactions make concurrent disjoint updates causing the state to fork. After committing,

the state is merged back. Example. Initially A=B=0. T1 reads A=B=0, writes A←1, and commits.

Concurrently, T2 reads A=B=0, writes B←1, and commits. Subsequently, T3 reads A=B=1.

T
1

T
2

T
3

reads here

Long fork. Transactions make concurrent disjoint updates causing the state to fork. After they commit,

the state may remain forked but it is later merged back. Example. Initially A=B=0. T1 reads A=B=0,

writes A←1, and commits; then T2 reads A=1, B=0. T3 and T4 execute concurrently with T1 and

T2, as follows. T3 reads A=B=0, writes B←1, and commits; then T4 reads A=0, B=1. Finally, after

T1, . . . , T4 finish, T5 reads A=B=1.

T
1

T
3

T
2

reads here

T
4

reads here

T
5

reads here

Conflicting fork. Transactions make concurrent conflicting updates causing the state to fork in a way that requires application-specific or ad-hoc rules

to merge back. Example. Initially A=0. T1 writes A←1 and commits. Concurrently, T2 writes A←2 and commits. Some external logic determines that

the value of A should be 3, and subsequently T3 reads A=3.

Figure 3.8: Anomalies allowed by each isolation property.
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to avoid possible confusion among users is for the application to show an “in-flight” mark on a

freshly posted message; this mark is removed only when the message has been committed at all

sites. Then, when Alice sees the mark, she can understand that her in-flight message may not yet

be visible to all her friends.

Having discussed the anomalies of PSI, we now discuss ways that an application can use and

benefit from PSI.

Multi-object atomic updates. With PSI, updates of a transaction occur together, so an application

can use a transaction to modify many objects without exposing partial updates on each object.

Snapshots. With PSI, a transaction reads from a fixed consistent snapshot, so an application can

use a transaction to ensure that it is reading consistent versions of different objects.

Read-modify-write operations. Because PSI disallows write-write conflicts, a transaction can

implement any atomic read-modify-write operation, which reads an object and writes a new value

based on the value read. Such operations include atomic increment and decrement of counters,

atomic appends, and atomic edits.

Conditional writes. A particularly useful type of read-modify-write operation is a conditional

write, which writes an object only if its content or version matches a value provided by the ap-

plication. With PSI, this is performed by reading the object, evaluating the condition and, if it is

satisfied, writing the object. This scheme can be extended to check and write many objects at once.

3.2.4 Using cset operations

A cset is a mapping from ids to counts, possibly negative. The mapping indicates how many

times the element with a given id appears in the cset. There are two ways to use csets. First, when

the count is useful to the application, a cset can be used as is. For example, a cset can keep the

number of items in a shopping cart or inventory, the number of accesses to a data item, or the

number of references to an object.
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The second way to use a cset is as a conventional set, by hiding the counts from the user. For

example, a cset can keep a list of friends, messages, active users, or photo albums. In these cases,

the count has no meaning to the user. The application should be designed to keep the counts of

elements at zero or one: the application should not add an element to a cset when the element is

already present, or remove an element from a cset when the element is not there. In some cases,

however, concurrent updates may cause the count to raise above one or drop below zero. For

example, a user may add the same friend to her friends list, and do so concurrently at two different

sites: the application sees a count of zero in both sites, and so it adds the friend once at each site.

This situation is rare, because there must be updates to the same element in the same cset, and

those updates must be concurrent, but it may happen. This is addressed by treating a count of one

or more as present in the set, and count of zero or less as absent from the set. For example, when

showing the list to the user, friends with negative counts are excluded. When the user adds a friend,

if the count is negative, the application adds the friend enough times for the count to be one. When

removing a friend, the application removes her enough times for the count to be zero. This is done

by the application, transparently to the user.
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Chapter 4

System design and implementation of

Walter

This chapter provides an in-depth description of the design and implementation of Walter.

Section 4.1 describes how clients view and use Walter. Section 4.2 explains the operation of

Walter by reviewing its design and protocols. Section 4.3 discusses Walter’s implementation.

4.1 Service

Each site contains a Walter server and one or more application clients. Walter stores key-

value object pairs grouped in containers (Section 4.1.1), where each container is replicated across

multiple sites. The Walter client interface is exposed as a user-level library with functions to start

transactions, read and write data, and commit transactions (Section 4.1.2). Walter provides fault

tolerance by replicating data across sites (Section 4.1.3), and it allows users to trade-off durability

for availability (Section 4.1.4).
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4.1.1 Objects and containers

Walter stores objects, where an object has a key and a value. There are two types of objects:

regular and cset. In a regular object, the value is an uninterpreted byte sequence, while in cset

object, the value is a cset.

Each object is stored in a container, a logical organization unit that groups objects with some

common purpose. For example, in a Web application, each user could have a container that holds

all of her objects. To reduce space overhead, all objects in a container have the same preferred

site, and Walter stores this information only once, as an attribute of the container. Administrators

choose the preferred site to be the site most likely to modify the objects. For example, each user

may have a designated site where she logs into the system (if she tries to log into a different site,

she is redirected), and this would be the preferred site of her objects.

Object ids consist of a container id and a local id. The container id indicates to which container

the object belongs, and the local id differentiates objects within a container. Since the container id

is part of the object id, the container of an object cannot be changed.

4.1.2 Interface

Walter provides a client library for starting a transaction, manipulating objects, and committing

a transaction, with the PSI semantics and operations explained in Sections 3.2.1 and 3.2.2. For

regular objects, the available operations are read and write; for cset objects, the available operations

are read, add element, and delete element.

Walter replicates transactions asynchronously, and the interface allows a client to receive a

callback when (a) the transaction is disaster-safe durable (Section 4.1.4), and (b) the transaction is

globally visible, meaning it has been committed at all sites.
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4.1.3 Replication

Walter provides both durability and availability by replicating data within a single site and

across multiple sites. Replication is transparent to clients: all the replicas of an object have the

same object id, and the system accesses the replica closest to the client. An object need not be

replicated at all sites and clients can read objects even if they are not replicated at the local site, in

which case Walter fetches the data from a remote site.1 A transaction commits at every site, even

where it is not replicated, following the semantics of PSI in Section 3.2.1: once a transaction is

committed at a site, reads from that site see the effects of the transaction. Administrators choose

how many replicas and where they are. These settings are stored as attributes of a container, so all

objects of a container are replicated similarly.

4.1.4 Durability and availability

Walter provides two levels of durability:

(Normal Durability) When a transaction commits at its site, writes have been logged to a replicated

cluster storage system [47, 59, 75, 87], so writes are not lost due to power failures. Data may be

lost if an entire data center is wiped out by a disaster.

(Disaster-safe Durability) A transaction is considered disaster-safe durable if its writes have been

logged at f+1 sites, where parameter f determines the desired fault tolerance level: up to f sites

may fail without causing data loss. The default value of f is 1.

If an entire site s fails temporarily or is unreachable due to cross-site network issues, it may

have transactions that were locally committed but not yet propagated to other sites. In that case,

the application has two choices:

(Conservative) Wait for the site s to come back online, so that it can propagate the missing trans-

1In the PSI specification, data is replicated at every site, but an implementation need not do that, as long as it

behaves identically in terms of responses to operations.
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actions. But then clients cannot write to objects whose preferred site is s until s comes back

online—a loss of availability for some writes.

(Aggressive) Sacrifice the durability of a few committed transactions at site s for better availabil-

ity, by replacing site s and abandoning its non-propagated transactions. Technically, this choice

violates PSI, but one could extend the PSI definition to allow for lost committed transactions when

a site fails or disconnects. Applications can wait for important transactions to be marked disaster-

safe durable before confirming them to users.

Availability within a site comes from the availability of the cluster storage system: if the Walter

server at a site fails, the system starts a new server, which can access the same cluster storage

system. Availability under network partitions or disasters comes from cross-site replication. If a

site fails, an application can warn users before they are redirected to another site, because users

may see a different system state at the new site due to the semantics of PSI. In practice, the state at

different sites diverges by only a few seconds.
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4.2 Design and algorithms

This section describes Walter’s design, emphasizing the protocols for executing and commit-

ting transactions. We first give an overview of the basic architecture (Section 4.2.1) and object

versioning (Section 4.2.2). We then explain how to execute transactions (Section 4.2.3) and how

to commit certain common transactions quickly (Section 4.2.4). Next, we explain how to com-

mit other transactions (Section 4.2.5) and how transactions are replicated asynchronously (Sec-

tion 4.2.6). Lastly, we consider failure recovery (Section 4.2.7) and scalability (Section 4.2.8).

4.2.1 Basic architecture

There are multiple sites numbered 1, 2, . . . Each site contains a local Walter server and a set of

clients. A client communicates with the server via remote procedure calls implemented by the API

library. The server executes the actual operations to start and commit transactions, and to access

objects.

Walter employs a separate configuration service to keep track of the currently active sites,

and the preferred site and replica set for each object container. The configuration service tolerates

failures by running as a Paxos-based state machine replicated across multiple sites. A Walter server

confirms its role in the system by obtaining a lease from the configuration service, similar to what

is done in [32, 85]. The lease assigns a set of containers to a preferred site, and it is held by the

Walter server at that site. A Walter server caches the mapping from a container to its replica sites

to avoid contacting the configuration service at each access. Incorrect cache entries do not affect

correctness because a server rejects requests for which it does not hold the corresponding preferred

site lease.
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At Serveri: // i denotes the site number

CurrSeqNoi: integer with last assigned local sequence number

CommittedVTSi: vector indicating for each site how many transactions of

that site have been committed at site i

Historyi[oid]: a sequence of updates of the form 〈data, version〉 to oid,

where version = 〈j:n〉 for some j, n

GotVTSi: vector indicating for each site how many transactions of

that site have been received by site i

Figure 4.1: Variables at server on each site.

4.2.2 Versions and vector timestamps

The PSI specification is centralized and uses a monotonic timestamp when a transaction starts

and commits. But monotonic timestamps are expensive to produce across multiple sites. Thus,

to implement PSI, Walter replaces them with version numbers and vector timestamps. A version

number (or simply version) is a pair 〈site, seqno〉 assigned to a transaction when it commits; it has

the site where the transaction executed, and a sequence number local to that site. The sequence

number orders all transactions within a site. A vector timestamp represents a snapshot; it contains

a sequence number for each site, indicating how many transactions of that site are reflected in the

snapshot. A transaction is assigned a vector timestamp startVTS when it starts. For example, if

startVTS = 〈2, 4, 5〉 then the transaction reads from the snapshot containing 2 transactions from

site 1, 4 from site 2, and 5 from site 3.

Given a version v=〈site, seqno〉 and a vector timestamp startVTS, we say that v is visible to

startVTS if seqno 6 startVTS[site]. Intuitively, the snapshot of startVTS has enough transactions

from site to incorporate version v.

Figure 4.1 shows the variables at the server at site i. Variable CurrSeqNoi has the last se-

quence number assigned by the server, and CommittedVTSi[j] has the sequence number of the last

transaction from each site j that was committed at site i. We discuss Historyi and GotVTSi in

Sections 4.2.3 and 4.2.6.
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At Serveri: // i denotes the site number

operation startTx(x)

x.tid← unique transaction id

x.startVTS← CommittedVTSi

return OK

operation write(x, oid, data): add 〈oid, DATA(data)〉 to x.updates; return OK

operation setAdd(x, setid, id): add 〈setid, ADD(id)〉 to x.updates; return OK

operation setDel(x, setid, id): add 〈setid, DEL(id)〉 to x.updates; return OK

operation read(x, oid)

if oid is locally replicated

then return state of oid reflecting x.updates and

all versions in Historyi[oid] visible to x.startVTS

else return state of oid reflecting x.updates,

the versions in Historysite(oid)[oid] visible to x.startVTS, and

the versions in Historyi[oid] visible to x.startVTS

operation setRead(x, setid): same as read(x, oid)

Figure 4.2: Executing transactions.

4.2.3 Executing transactions

To execute transactions, the server at each site i maintains a history denoted Historyi[oid] with

a sequence of writes/updates for each object oid, where each update is tagged with the version of

the responsible transaction. This history variable is similar to variable Log in the PSI specification,

except that it keeps a list per object, and it has versions not timestamps. When a transaction x

starts, Walter obtains a new start vector timestamp startVTS containing the sequence number of

the latest transactions from each site that were committed at the local site. To write an object, add

to a cset, or remove from a cset, Walter stores this update in a temporary buffer x.updates. To read

an object, Walter retrieves its state from the snapshot determined by startVTS and any updates in

x.updates. Specifically, for a regular object, Walter returns the last update in x.updates or, if none,

the last update in the history visible to startVTS. For a cset object, Walter computes its state by

applying the updates in the history visible to startVTS and the updates in x.updates.

The above explanation assumes an object is replicated locally. If not, its local history Historyi[oid]

will not have all of the object’s updates (but it may have some recent updates). Therefore, to read

such an object, Walter retrieves the data from the object’s preferred site and merges it with any

updates in the local history and in x.updates. To write, Walter buffers the write in x.updates and,

upon commit, stores the update in the local history while it is being replicated to other sites; after
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At Serveri: // i denotes the site number

function unmodified(oid,VTS): true if oid unmodified since VTS

function update(updates, version)
for each 〈oid, X〉 ∈ updates do add 〈X, version〉 to Historyi[oid]

operation commitTx(x)

x.writeset← {oid : 〈oid, DATA(∗)〉 ∈ x.updates } // ∗ is a wildcard

if ∀oid ∈ x.writeset : site(oid) = i then return fastCommit(x)
else return slowCommit(x)

function fastCommit(x)

if ∀oid ∈ x.writeset : unmodified(oid, startVTS) and oid not locked then
x.seqno← ++CurrSeqNoi // vertical bar indicates atomic region

update(x.updates, 〈i, x.seqno〉)

wait until CommittedVTSi[i] = x.seqno−1
CommittedVTSi[i]← x.seqno

x.outcome← COMMITTED

fork propagate(x)
else x.outcome← ABORTED

return x.outcome

Figure 4.3: Fast commit.

that, the local history can be garbage collected. Figure 4.2 shows the detailed pseudocode executed

by a server. Recall that clients invoke the operations at the local server using a remote procedure

call (not shown). The code is multi-threaded and we assume that each line is executed atomically.

4.2.4 Fast commit

For transactions whose write-set has only objects with a local preferred site, Walter uses a fast

commit protocol. The write-set of a transaction consists of all oids to which the transaction writes;

it excludes updates to set objects. To fast commit a transaction x, Walter first determines if x

can really commit. This involves two checks for conflicts. The first check is whether all objects

in the write-set are unmodified since the transaction started. To perform this check, Walter uses

the start vector timestamp: specifically, we say that an object oid is unmodified since x.startVTS

if all versions of oid in the history of the local site are visible to x.startVTS. The second check

is whether all objects in the write-set of x are unlocked; intuitively, a locked object is one being

committed by the slow commit protocol (Section 4.2.5). If either check fails, then x is aborted.

Otherwise, Walter proceeds to commit x, as follows. It assigns a new local sequence number to

x, and then applies x’s updates to the histories of the modified objects. Walter then waits until

the local transaction with preceding sequence number has been committed. This typically happens
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At Serveri: // i denotes the site number

function slowCommit(x)

// run 2pc among preferred sites of updated objects

sites← {site(oid) : oid ∈ x.writeset}

pfor each s ∈ sites do // pfor is a parallel for

vote[s]← remote call prepare(x.tid,
{oid ∈ x.writeset : site(oid) = s}, x.startVTS)

if ∀s ∈ sites : vote[s] = YES then
x.seqno← ++CurrSeqNoi // vertical bar indicates atomic region

update(x.updates, 〈i, x.seqno〉)

wait until CommittedVTSi[i] = x.seqno − 1

CommittedVTSi[i]← x.seqno

release locks (at this server) with owner x.tid

x.outcome← COMMITTED

fork propagate(x)

else
pfor each s ∈ sites such that vote[s] = YES do remote call abort(x.tid)
x.outcome← ABORTED

return x.outcome

function prepare(tid, localWriteset, startVTS)

if ∀oid ∈ localWriteset : oid not locked and unmodified(oid, startVTS) then
for each oid ∈ localWriteset do lock oid with owner tid

return YES

else return NO

function abort(tid)

release locks (at this server) with owner tid

Figure 4.4: Slow commit.

quickly, since sequence numbers are assigned in commit order. Finally, transaction x is marked as

committed and Walter propagates x to remote sites asynchronously as described in Section 4.2.6.

Figure 4.3 shows the detailed pseudocode. The notation site(oid) denotes the preferred site of oid.

As before, we assume that each line is executed atomically. A vertical bar indicates a block of code

with multiple lines that is executed atomically.

4.2.5 Slow commit

Transactions that write a regular object whose preferred site is not local must be committed

using the slow commit protocol, which employs a type of two-phase commit among the preferred

sites of the written objects (not across all replicas of the objects). The purpose of two-phase

commit is to avoid conflicts with instances of fast commit and other instances of slow commit. To

commit a transaction x, the server at the site of the transaction acts as the coordinator in the two-

phase protocol. In the first phase, the coordinator asks the (servers at the) preferred sites of each

written object to vote based on whether those objects are unmodified and unlocked. If an object
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At Serveri: // i denotes the site number

function propagate(x)

send 〈PROPAGATE , x〉 to all servers

wait until ∀oid∈x.writeset: received 〈PROPAGATE-ACK , x.tid〉

from f+1 sites replicating oid including site(oid)

mark x as disaster-safe durable

send 〈DS-DURABLE , x〉 to all servers

wait until received 〈VISIBLE , x.tid〉 from all sites

mark x as globally visible

when received 〈PROPAGATE , x〉 from Serverj and

GotVTSi > x.startVTS and GotVTSi[j] = x.seqno−1 do
if i 6= j then update(items in x.updates replicated in this site, 〈j : x.seqno〉)
// when i = j, update has been applied already when transaction committed

GotVTSi[j] = x.seqno

send 〈PROPAGATE-ACK , x.tid〉 to Serverj

when received 〈DS-DURABLE , x〉 and 〈PROPAGATE , x〉 from Serverj and

CommittedVTSi > x.startVTS and CommittedVTSi[j] = x.seqno−1 do
CommittedVTSi[j] ← x.seqno

release all locks with owner x.tid

send 〈VISIBLE , x.tid〉 to Serverj

Figure 4.5: Transaction replication.

is modified at the preferred site, then an instance of fast commit conflicts with x; if the object is

locked at the preferred site, then another instance of slow commit conflicts with x. If either case

occurs, the site votes “no”, otherwise the site locks the objects and votes “yes”. If any vote is “no”,

the coordinator tells the sites to release the previously acquired locks. Otherwise, the coordinator

proceeds to commit x as in the fast commit protocol: it assigns a sequence number to x, applies

x’s updates to the object histories, marks x as committed, and propagates x asynchronously. When

x commits, a site releases the acquired locks when x is propagated to it. Figure 4.4 shows the

detailed pseudocode.

4.2.6 Asynchronous propagation

After a transaction commits, it is propagated asynchronously to other sites. The propagation

protocol is simple: the site of a transaction x first copies the objects modified by x to the sites where

they are replicated. The site then waits until sufficiently many sites indicate that they received

(a) transaction x, (b) all transactions that causally precede x according to x.startVTS, and (c) all

transactions of x’s site with a smaller sequence number. “Sufficiently many sites” means at least

f+1 sites replicating each object including the object’s preferred site, where f is the disaster-safe
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tolerance parameter (Section 4.1.4). At this point, x is marked as disaster-safe durable and all sites

are notified. Transaction x commits at a remote site j when (a) site j learns that x is disaster-safe

durable, (b) all transactions that causally precede x are committed at site j, and (c) all transactions

of x’s site with a smaller sequence number are committed at site j. When x has committed at all

sites, it is marked as globally visible. The pseudocode is shown in Figure 4.5. Vector GotVTSi

keeps track of how many transactions site i has received from each other site. Note that when a

site i receives a remote transaction and updates the history of its objects, the transaction is not yet

committed at i: it commits only when CommittedVTSi[j] is incremented. The code omits simple

but important optimizations: when server i propagates transaction x to a remote server, it should

not send all the updates of x, just those updates replicated at the remote server. Similarly, when it

sends a DS-DURABLE message, a server need not include the updates of x again.

4.2.7 Handling failures

Recovering from client or server failure. If a client crashes, its outstanding transactions are

aborted and any state kept for those transactions at the server is garbage collected. Each server at a

site stores its transaction log in a replicated cluster storage system. When a Walter server fails, the

replacement server resumes propagation for those committed transactions that have not yet been

fully propagated.

Handling a site failure. An entire site s may fail due to a disaster or a power outage. Such failure

is problematic because there may be committed transactions at s that were not yet replicated at

other sites. As explained in Section 4.1.4, Walter offers two site recovery options: conservative

and aggressive. Recall that the conservative option is to wait for s to come back online, while the

aggressive option is to remove s and reassign the preferred site of its containers to another site.

To remove a failed site, Walter uses the configuration service (Section 4.2.1). Each configuration

indicates what sites are active. Before switching to a new configuration that excludes site s, the
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configuration service must find out the transactions committed by s that will survive across the

configuration change. Transaction x of site s survives if x and all transactions that causally precede

x and all transactions of s with a smaller sequence number have been copied to a site in the new

configuration. The configuration service queries the sites in the new configuration to discover

what transactions survive. Then, it asks each site to discard the replicated data of non-surviving

transactions and, in the background, it completes the propagation of surviving transactions that are

not yet fully replicated. Finally, the configuration service reassigns the preferred site of containers

of s to another site, by having another site take over the appropriate leases. While reconfiguration

is in progress, sites that are still active continue to commit transactions, except transactions that

write to objects whose preferred site was s, which are postponed until those objects get a new

preferred site.

Re-integrating a previously failed site. When a previously removed site s recovers, it must be re-

integrated into the system. The configuration service starts a new reconfiguration that includes s.

To switch to the new configuration, s must first synchronize with its replacement site s′ to integrate

modifications committed by s′. Once synchronization is finished, s takes over the lease for being

the preferred site for the relevant containers, and the new configuration takes effect.

4.2.8 Scalability

Walter relies on a single server per site to execute and commit transactions, which can become

a scalability bottleneck. A simple way to scale the system is to divide a data center into several

“local sites”, each with its own server, and then partition the objects across the local sites in the

data center. This is possible because Walter supports partial replication and allows transactions to

operate on an object not replicated at the site—in which case, the transaction accesses the object

at another site within the same data center. We should note that PSI allows sites to diverge; to

avoid exposing this divergence to users, applications can be designed so that a user always log into
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Method Description

void start() start transaction

int commit() try to commit

int abort() abort

int read(Oid o, char **buf) read object

int write(Oid o, char *buf, int len) write object

Oid newid(ContainerId cid, OType otype) get new oid

int setAdd(Oid cset, Id id) add id to cset

int setDel(Oid cset, Id id) delete id from cset

int setRead(Oid cset, IdSetIterator **iter) read cset

int setReadId(Oid cset, Id id, int *answer) read id in cset

C++ Example:

Tx x;

x.start();

len = x.read(o1, &buf);

err = x.write(o2, buf, len);

...

res = x.commit();

PHP Example:

$x = waStartTx();

$buf = waRead($x, $o1);

$err = waWrite($x, $o2, $buf);

...

$res = waCommit($x);

Figure 4.6: Basic C++ API for Walter and C++ and PHP examples.

the same local site in the data center. Another approach to scalability, which we do not explore

in this dissertation, is to employ several servers per site and replace the fast commit protocol of

Section 4.2.4 with distributed commit.

4.3 Implementation

The Walter implementation has a client-side library and a server, written in C++, with a total

of 30K lines of code. There is also a PHP interface for web development with 600 lines of code.

The implementation differs from the design as follows. First, each Walter server uses direct-

attached storage devices, instead of a cluster storage system. Second, we have not implemented the

scheme to reintegrate a failed site (Section 4.2.7): currently, the administrator must invoke a script

manually to do that. Third, the client interface, shown in Figure 4.6, differs cosmetically from the

specification in Section 3.2.1, due to the specifics of C++ and PHP. In C++, there is a Transaction

class and operations are methods of this class. Functions read, setRead, and setReadId return the data via

a parameter (the C++ return value is a success indication). setRead provides an iterator for the ids in

a cset. setReadId indicates the count of an identifier in a cset. commit can optionally inform the client via
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supplied callbacks—not shown—when the transaction is disaster-safe durable and globally visible

(i.e., committed at all sites). There is a function newid to return a fresh oid, explained below.

There are no specialized functions to create or destroy objects. Conceptually, all objects always

exist and are initialized to nil, without any space allocated to them. If a client reads a never-written

object, it obtains nil. Function newid returns a unique oid of a never-written object of a chosen

type (regular or cset) in a chosen container. Destroying a regular object corresponds to writing

nil to it, while destroying a cset object corresponds to updating its elements so that they have

zero count. There are some additional functions (not shown), including (a) management functions

for initialization, shutdown, creating containers, and destroying containers; and (b) functions that

combine multiple operations in a single RPC to the server, to gain performance; these include

functions for reading or writing many objects, and for reading all objects whose ids are in a cset.

The functions to create and destroy containers run outside a transaction; we expect them to be used

relatively rarely. Identifiers for containers and objects are currently restricted to a fixed length, but

it would be easy to make them variable-length.

The server stores object histories in a persistent log and maintains an in-memory cache of

recently-used objects. The persistent log is periodically garbage collected to remove old entries.

The entries in the in-memory cache are evicted on an LRU basis. Since it is expensive to reconstruct

csets from the log, the eviction policy prefers to evict regular objects rather than csets. There is

an in-memory index that keeps, for each object, a list of updates to the object, ordered from most

to least recent, where each update includes a pointer to the data in the persistent log and a flag

of whether the data is in the cache. To speed up system startup and recovery, Walter periodically

checkpoints the index to persistent storage; the checkpoint also describes transactions that are being

replicated. Checkpointing is done in the background, so it does not block transaction processing.

When the server starts, it reconstructs the index from the checkpointed state and the data in the log

after the checkpoint.

To improve disk efficiency, Walter employs group commit to flush many commit records to
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disk at the same time. To reduce the number of threads, the implementation makes extensive use

of asynchronous calls and callbacks when it invokes blocking and slow operations. To enhance

network efficiency, Walter propagates transactions in periodic batches, where each batch remotely

copies all transactions that committed since the last batch.

The protocol for slow commit may starve because of repeated conflicting instances of fast

commit. A simple solution to this problem is to mark objects that caused the abort of slow commit

and briefly delay access to them in subsequent fast commits: this delay would allow the next

attempt of slow commit to succeed. We have not implemented this mechanism since none of our

applications use slow commit.
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Chapter 5

Evaluation of Walter

In this chapter we present an evaluation of Walter. We first demonstrate the usability of Walter

by describing our experience with writing applications on top of it. We then proceed to experimen-

tally evaluate the performance of Walter and the applications it runs.

5.1 Usability: Applications on top of Walter

Using Walter, we built a social networking web site (WaltSocial) and ported a third-party

Twitter-like application called ReTwis [13]. Our experience suggests that it is easy to develop

applications using Walter and run them across multiple data centers.

WaltSocial. WaltSocial is a complete implementation of a simple social networking service, sup-

porting the common operations found in a system such as Facebook. These include befriend,

status-update, post-message, read-info as well as others. In WaltSocial, each user has a profile

object for storing personal information (e.g., name, email, hobbies) and several cset objects: a

Tx x;

x.start();

x.read(oidA, &profileA);

x.read(oidB, &profileB);

(* continues in next column *)

x.setAdd(profileA.friendlist, oidB);

x.setAdd(profileB.friendlist, oidA);

success = x.commit();

Figure 5.1: Transaction for befriend operation in WaltSocial.
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friend-list has oids of the profile objects of friends, a message-list has oids of received messages,

an event-list has oids of events in the user’s activity history, and an album-list has oids of photo

albums, where each photo album is itself a cset with the oids of photo objects.

WaltSocial uses transactions to access objects and maintain data integrity. For example, when

users A and B befriend each other, a transaction adds A’s profile oid to B’s friend-list and vice versa

(Figure 5.1). To post-message from A to B, a transaction writes an object m with the message

contents and adds its oid to B’s message-list and to A’s event-list.

Each user has a container that stores her objects. The container is replicated at all sites to

optimize for reads. The system directs a user to log into the preferred site of her container. User

actions are confirmed when transactions commit locally.

ReTwis. ReTwis is a Twitter-clone written in PHP using the Redis key-value store [10]. Apart

from simple get/put operations, this application makes extensive use of Redis’s native support for

certain atomic operations, such as adding to or removing from a list, and adding or subtracting

from an integer. In Redis, cross-site replication is based on a master-slave scheme. For our port of

ReTwis, we replace Redis with Walter, so that ReTwis can update data on multiple sites. We use

Walter transactions and csets to provide the equivalent atomic integer and list operation in Redis.

For each user, ReTwis has a timeline that tracks messages posted by the users that the user

is following. In the original implementation, a user’s timeline is stored in a Redis list. When a

user posts a message, ReTwis performs an atomic increment on a sequence number to generate

a postID, stores the message under the postID, and appends the postID to each of her followers’

timelines. When a user checks postings, ReTwis displays the 10 most recent messages from her

timeline. To port ReTwis to use Walter, we make several changes: we use a cset object to represent

each user’s timeline so that different sites can add posts to a user’s timeline without conflicts. To

post a message, we use a transaction that writes a message under a unique postID, and adds the

postID to the timeline of every follower of the user.
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We found the process of porting ReTwis to Walter to be quite simple and straightforward: a

good programmer without previous Walter experience wrote the port in less than a day. Transac-

tions allow the data structure manipulations built into Redis to be implemented by the application,

while providing competitive performance (Section 5.2.7).

5.2 Performance evaluation

We evaluate the performance of Walter and its applications (WaltSocial, ReTwis) using Ama-

zon’s EC2. The highlights of our results are the following:

• Transactions that modify objects at their preferred sites commit quickly, with a 99.9-percentile

latency of 27ms on EC2. Committed transactions are asynchronously replicated to remote

sites within twice the network round-trip latency.

• Transactions that modify csets outside of their preferred sites also commit quickly without

cross-site coordination. WaltSocial uses csets extensively and processes user requests with a

99.9-percentile latency under 50ms.

• The overhead for supporting transactions in Walter is reasonable. ReTwis running on Walter

has a throughput 25% smaller than running on Redis in a single site, but Walter allows

ReTwis to scale to multiple sites.

5.2.1 Experimental setup

Unless stated otherwise, experiments run on Amazon’s EC2 cloud platform. We use machines

in four EC2 sites: Virginia (VA), California (CA), Ireland (IE), and Singapore (SG), with the

following average round-trip latencies within and across sites (in ms):
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VA CA IE SG

VA 0.5 82 87 261

CA 0.3 153 190

IE 0.5 277

SG 0.3

Within a site, the bandwidth between two hosts is over 600 Mbps; across sites, we found a

bandwidth limit of 22 Mbps.

We use extra-large EC2 virtual machine instances, with 7 GB of RAM and 8 virtual cores, each

equivalent to a 2.5 GHz Intel Xeon processor. Walter uses write-ahead logging, where commit logs

are flushed to disk at commit time. Since one cannot disable write-caching at the disk on EC2,

where indicated we run experiments on a private cluster outside of EC2, with machines with two

quad core Intel Xeon E5520 2.27 GHz processors and 8 GB of RAM.

Each EC2 site has a Walter server, and we run experiments with different numbers of sites and

replication levels, as shown below:

Experiment name Sites Replication level

1-site VA none

2-sites VA, CA 2

3-sites VA, CA, IE 3

4-sites VA, CA, IE, SG 4

Our microbenchmark workload (Sections 5.2.2–5.2.5) consists of transactions that read or write

a few randomly chosen 100-byte objects. (Changing the object size from 100 bytes to 1 KB yields

similar results.) We choose to evaluate small transactions because our applications, WaltSocial

and ReTwis, only access a few small objects in each transaction. We consider a transaction to be

disaster-safe durable when it is committed at all sites in the experiment.
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5.2.2 Base performance

We first evaluate the base performance of Walter, and compare it against Berkeley DB 11gR2

(BDB), a commercial open-source developer database library. The goal is to understand if Walter

provides a usable base performance.

Benchmark setup. We configure BDB to use B-trees with default pagesize and snapshot isolation;

parameters are chosen for the best performance. We configure BDB to have two replicas with

asynchronous replication. Since BDB allows updates at only one replica (the primary), we set up

the Walter experiment to also update at one site. To achieve good throughput in BDB, we must

use many threads at the primary to achieve high concurrency. However, with many threads, EC2

machines perform noticeably worse than private machines. Therefore, we run the primary BDB

replica in our private cluster (with write-caching at the disk enabled), and the other replica at the

CA site of EC2. We do the same for Walter. Clients and the server run on separate hosts. For

BDB, we use an RPC server to receive and execute client requests.

The workload consists of either read or write transactions each accessing one 100-byte object.

We populate BDB and Walter with 50,000 keys, which fits in the 1 GB cache of both systems.

Walter includes an optimization to reduce the number of RPCs, where the start and commit of each

transaction are piggybacked onto the first and last access, respectively. Thus, transactions with one

access require just one RPC in Walter and in BDB.

Results. Figure 5.2 shows that throughput of read and write transactions of Walter is comparable

to that of BDB. Read throughput is CPU-bound and mainly limited by the performance of our RPC

library in both systems. Walter’s read throughput is slightly lower because it does more work than

Name Read Tx throughput Write Tx throughput

Walter 72 Ktps 33.5 Ktps
Berkeley DB 80 Ktps 32 Ktps

Figure 5.2: Base read and write transaction throughput.
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BDB by acquiring a local lock and assigning a start timestamp vector when a transaction starts.

The commit and replication latency of BDB and Walter are also similar and not shown here (see

Section 5.2.3 for Walter’s latency).

5.2.3 Fast commit on regular objects

This microbenchmark evaluates the performance of transactions on regular objects, using fast

commit.

Benchmark setup. The experiments involve one to four sites. Objects are replicated at all sites,

and their preferred sites are assigned evenly across sites. At each site, we run multiple clients on

different hosts to issue transactions as fast as possible to its local Walter server. There are several

workloads: read-only, write-only, and mixed. Read-only or write-only transactions access one

or five 100-byte objects. The mixed workload consists of 90% read-only transactions and 10%

write-only transactions.

Result: throughput. Figure 5.3 shows Walter’s aggregate throughput across sites as the number

of sites varies. Read throughput is bounded by the RPC performance and scales linearly with the

number of sites, reaching 157 Ktps (thousands of transactions per second) with 4 sites. Write

throughput is lower than read throughput due to lock contention within a Walter server. Specifi-

cally, when a transaction commits, a thread needs to acquire a highly contended lock to check for

transaction conflicts. Moreover, write throughput does not scale as well as read throughput as the

number of sites increases. This is because data is replicated at all sites, so the amount of work

per write transaction grows with the number of sites. Yet, the cost of replication is lower than that

of committing because replication is done in batches. Thus, the write throughput still grows with

the number of sites, but not linearly. Note that the read and write throughput for transactions of

size 1 in Figure 5.3 is only 50–60% of that in Figure 5.2 as a result of running this experiment

on EC2 instead of the private cluster. In the mixed workload, performance is mostly determined
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Figure 5.3: Aggregate transaction throughput on EC2.
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Figure 5.5: Replication latency for disaster-safe durability.

by how many operations a transaction issues on average. For example, when there are 90% read-

only transactions each reading one object and 10% write-only transactions each writing 5 objects, a

transaction issues on average only 1.4 requests to the server. As a result, a relatively high aggregate

throughput of 80 Ktps is reached across 4 sites.

Result: latency. We measure the fast commit latency for write-only transactions accessing 5

objects. We record the time elapsed between issuing a commit and having the server acknowledge

the commit completion. Figure 5.4 shows the latency distribution measured on EC2, and in our

private cluster with and without write caching at the disk. The measurements were taken for a

moderate workload in which clients issued enough requests to achieve 70% of maximal throughput.

The points at the lower-end of the distributions in Figure 5.4 show latencies that we observe in a

lightly loaded system.
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Because there is no cross-site coordination, fast commit is quick: On EC2 the 99-percentile

latency is 20 ms and the 99.9-percentile is 27 ms. Since the network latency within a site is low

at 0.5 ms, the commit latency is dominated by the effects of queuing inside the Walter server and

of flushing the commit log to disk when committing transactions at a high throughput. Figure 5.4

also shows the effect of disabling write-caching at the disk, measured on our private cluster. Even

in that case, the 99.9-percentile latency of a fast commit is under 90 ms.

The latency for a committed transaction to become disaster-safe durable is dominated by the

network latency across sites. As shown in Figure 5.5, the latency is distributed approximately

uniformly between [RTTmax, 2∗RTTmax] where RTTmax is the maximum round-trip latency between

VA and the other three sites. This is because Walter propagates transactions in batches to maximize

throughput, so a transaction must wait for the previous batch to finish.

The latency for a committed transaction to become globally visible is an additional RTTmax

after it has become disaster-safe durable (not shown).

5.2.4 Fast commit on cset objects

We now evaluate transactions that modify csets.

Benchmark setup. We run the 4-site experiment in which each transaction modifies two 100-byte

objects at the preferred site and adds an id to a cset with a remote preferred site.

Results. The latency distribution curve for committing transactions (not shown) is similar to the

curve corresponding to EC2 in Figure 5.4. This is because transactions modifying csets commit

via the same fast commit protocol as transactions modifying regular objects at their preferred

site. Across 4 sites, the aggregate throughput is 26 Ktps, which is lower than the single-write

transaction throughput of 52 Ktps shown in Figure 5.3. This is because the cset transactions issue

4 RPCs (instead of 1 RPC for the transactions in Figure 5.3), to write two objects, modify a cset,

and commit.
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5.2.5 Slow commit

We now evaluate the slow commit protocol for transactions modifying objects with different

preferred sites. Unlike fast commit, slow commit requires cross-site coordination.

Benchmark setup. We run the 4-site experiments and have clients issue write-only transactions

at the VA site. We vary the size of a transaction from 2 to 4 objects. Each object written has a

different preferred site: the first, second, third, and fourth object’s preferred sites are VA, CA, IE,

and SG respectively.

Results. Figure 5.6 shows the commit latency (left-most three lines) and the latency for achieving

disaster-safe durability (right-most three lines). The commit latency is determined by the round-

trip time between VA and the farthest preferred site of objects in the writeset. This is because

slow commit runs a two-phase protocol among the preferred sites of the objects in the writeset.

For example, for transactions of size 3, the commit latency is 87 ms, which is the round-trip time

from VA to IE. The latency for disaster-safe durability is the commit latency plus the replication

latency. The replication latency is the same as for fast commit: it is uniformly distributed between

[RTTmax, 2 ∗ RTTmax], where RTTmax is the round-trip time between VA and SG.

To optimize performance, applications should minimize the use of slow commits. Both Walt-

Social and ReTwis avoid slow commits by using csets.
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5.2.6 WaltSocial performance

Transactions make it easy to develop WaltSocial. Our experiments also show that WaltSocial

achieves good performance.

Workload setup. The WaltSocial experiments involve 4 sites in EC2. We populate Walter with

400, 000 users, each with 10 status updates and 10 wall postings from other users. We run many

application clients at each site, where each client issues WaltSocial operations. An operation corre-

sponds to a user action, and it is implemented by executing and committing a transaction that reads

and/or writes several data objects (Section 5.1). We measure the latency and aggregate through-

put for each operation. We also evaluate two mixed workloads: mix1 consists of 90% read-info

operations and 10% update operations including status-update, post-message and befriend; mix2

contains 80% read-info operations and 20% update operations.

Operation throughput. Figure 5.7 shows the throughput in thousands operations per second

(Kops/s) for each WaltSocial operation and for the mixed workloads. The read-info operation

issues read-only transactions; it has the highest aggregate throughput at 40 Kops/s. The other oper-

ations issue transactions that update objects; their throughput varies from 16.5 Kops/s to 20 Kops/s,

depending on the number of objects read and written in the transactions. The mixed workloads are

dominated by read-info operations, hence their throughput values are closer to that of read-info.

The achieved throughput is likely sufficient for small or medium social networks. To handle larger

deployments, one might deploy several sites per data center to scale the system (Section 4.2.8) .

Operation latency. Figure 5.8 shows the latency of WaltSocial operations when the system has a

moderate load. Operations finish quickly because the underlying transactions involve no cross-site

communication: transactions always read a local replica for any object and transactions that update

data use cset objects. The 99.9-percentile latency of all operations in Figure 5.8 is below 50 ms.

As each WaltSocial operation issues read/write requests to Walter in series, the latency is affected

by the number of objects accessed by different WaltSocial operations. The read-info operation
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Operation # objs+csets # objs # of csets Throughput
read written written (1000 ops/s)

read-info 3 0 0 40
befriend 2 0 2 20
status-update 1 2 2 18
post-message 2 2 2 16.5
mix1 2.9 0.5 0.3 34
mix2 2.8 0.7 0.5 32

Figure 5.7: Transaction size and throughput for Waltsocial operations.

involves fewest objects and hence is faster than other operations.

5.2.7 ReTwis performance

We compare the performance of ReTwis using Walter and Redis as the storage system, to assess

the cost of Walter.

Workload setup. The Walter experiments involve one or two sites. Redis does not allow updates

from multiple sites, so the Redis experiments involve one site. Since Redis is a semi-persistent key-

value store optimized for in-memory operations, we configure both Walter and Redis to commit

writes to memory. We run multiple front-end web servers (Apache 2.2.14 with PHP 5.3.2) and

client emulators at each site. We emulate 500, 000 users who issue requests to post a message

(post), follow another user (follow), or read postings in their own timeline (status). The mixed

workload consists of 85% status, 7.5% post and 7.5% follow operations.

Throughput comparison. Figure 5.9 shows the aggregate throughput (Kops/s) for different work-
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Figure 5.9: Throughput of ReTwis using Redis and Walter.

loads when running ReTwis with Walter and Redis. As can be seen, with one site, ReTwis with

Walter has similar performance as ReTwis with Redis: the slowdown is no more than 25%. For

example, the throughput of the post operation for Walter (1 site) is 4713 ops/s, compared to 5740

ops/s for Redis. But ReTwis with Walter can use multiple sites to scale the throughput. For ex-

ample, the throughput of post using ReTwis with Walter on two sites is 9527 ops/s—twice the

throughput of one site.
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Chapter 6

Overview of Lynx

In this chapter we proceed to describe Lynx. Although the main challenges that Lynx sets to

solve are similar to those motivating Walter’s design, Lynx focuses more on intra-site scalabil-

ity, and on efficiently implementing a rich query interface. We begin by discussing the specific

application challenges that Lynx addresses.

6.1 Application Challenges

The design of Lynx is motivated by the performance and consistency challenges facing web

applications running atop a distributed database backend. To make the discussion concrete, we

illustrate these challenges with an example application, a simplified online auction service modeled

on the RuBIS benchmark [1].

Our example auction service stores its persistent state in three tables, shown in Figure 6.1.

The table schemas are the same as those in RuBIS. The Users table maintains information about

each user including a user ID, username etc. The Items table stores information about each item

on sale, such as the item ID, a description of the item, the current highest bid on the item, and

the corresponding high bidder. The Bids table stores information about each bid including the
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123    alice    CA             

575        Cute puppy    123         --            --

Users Items

uid   name    location    

549     bob     NY

345        Nikon N50      666       123      $200

item_id    descrip-      seller   high       high
                    tion                     bidder    price

Bids

2              123             345          $200         

1              549             345          $100

bid_id      bidder      item          bid_price

666     eve     NJ

Figure 6.1: A simple auction service example consisting of three tables, Users, Items, and Bids

monetary amount, the user who placed the bid, and the item for which the bid was placed. All

three tables are horizontally partitioned, i.e., split into multiple pieces based on their respective

primary keys and spread across multiple machines.

When building a latency-sensitive web service, the application developer must optimize for

frequently occurring read workloads. Three techniques are commonly used for this:

Denormalized schemas In a normalized schema all data is stored once. Denormalized schemas

store redundant information to speed read access for certain queries. For example, in the

schema of Figure 6.1, the two columns high bidder and high price have been denormalized:

the highest bidder/price of an item could be calculated by selecting all bids with a given

item-id in the bids and computing the maximum. With the denormalized schema, obtaining

the current high-bidder of an item is much faster as it requires only a single row lookup.

Secondary indexes To speed up queries that enumerate the bids placed on an item or submitted by

a user, it is desirable to have secondary indexes on the item and bidder columns for the Bids

table. These secondary indexes need to scale as well as the main Bids table itself, hence,

they should also be partitioned (based on item or bidder).

Materialized joins Join operations across tables are particularly expensive in a distributed setting.

Suppose a common query in the auction service is to list the names of all users who have

placed a bid on a given item. This query requires doing a distributed join of the Bids table

with Users. But because these tables are partitioned differently, this requires the database to
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query all partitions of the Bids table to return a result. Materialized join views reduce the cost

of these queries by pre-computing the join result, and maintaining duplicated information

from the Users and Bids tables.

All above techniques impose consistency constraints (i.e. correctness invariants) between par-

titions managed by different machines. For example, the denormalized high bidder and high price

columns should match the actual highest bid recorded in the Bids. Similarly, secondary indexes

and join tables must correctly reflect changes to the main tables.

We can maintain these consistency constraints with ACID transactions, however, doing so

comes at a performance cost. Distributed protocols for achieving serializability require tight co-

ordination among machines [26], increasing the tail latency of both reads and writes. The latency

increase is especially pronounced when data is replicated across multiple data centers, mandating

cross data-center coordination.

Our example application can actually be satisfied with a weaker guarantee: that the consistency

constraints among different table partitions are eventually satisfied.1 For our auction service it is

acceptable to read a high bid price from Items that is lower than the true high price according

to the Bids table when there are concurrent bidding operations. Similarly, it is okay for updates

to secondary and join tables to “lag” behind that of the main tables. By contrast, our auction

service will be incorrect if the high price in Items does not eventually reflect that of Bids, or if

secondary and join tables permanently diverge from the corresponding main tables. Many other

web applications share this property of requiring only eventual consistency across partitions.

Two challenges make it difficult to enforce consistency constraints across partitions when using

only local transactions: failure handling and concurrency.

Machine failures may result in a permanently inconsistent state if not handled properly. As a

write operation needs to update denormalized data or secondary/join tables in different partitions,

1This is a different notion of eventual consistency than the simple property that all replicas of a data item eventually

converge to the same value. Here, eventual consistency also refers to the property that the consistency constraints

among different data items are eventually satisfied.
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the failure of a server might cause some but not all of the updates to complete, preventing the

eventual consistency across partitions.

In the absence of serialized operations, concurrent operations may be ordered differently on

different partitions. For updates that commute with each other, such arbitrary interleaving does

not matter. For example, for concurrent chains placing bids on the same item, the execution order

of different chains inserting to Bids does not need to match that of them modifying Items because

computing the maximum bid price is commutative. However, not all updates commute. Suppose

operation O1 changes the username of uid 123 to “Alice 123” and O2 changes the name of uid

123 to “Alice abc” concurrently. If O1’s modification is ordered before that of O2 for Users, but

vice-versa for the join table uniting Users and Bids, the join table and Users will permanently

diverge.

6.2 Overview

We designed Lynx to address the challenges outlined above, and to make it easy to write scal-

able, high-performance web applications.

Scaling. Lynx achieves scalability by partitioning each database table into a large number of

logical data partitions according to its primary key. Each data partition may be stored by a different

machine which handles all read/write requests to that partition. The number of partitions is static,

but this is not a problem because users can choose a large number of partitions and assign many

partitions to the same server. As the system grows, the user can reassign the partitions to be in

separate servers.

Geo-replication. Lynx works both with and without geo-replication. When geo-replication

is enabled, Lynx performs full replication of data across all data centers, a mode of operation

common to many geo-replicated systems [62, 80]. All read operations are handled by the local

data center. Inspired by the design of Walter, Lynx associates each data partition with a “home”
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data center (site). The server responsible for the partition at its home site orders all the writes to

that partition and synchronously replicates them to other data centers.

Support for derived tables. Lynx supports optimizing queries via secondary indexes and

materialized joins. A programmer may specify indexes and materialized joins as part of their table

schema. These are provided by Lynx by what we call derived tables. A derived table is, as its

name implies, a table whose contents are derived from one or more tables. There are two types

of derived tables: index and join. An index derived table stores a secondary index for the table;

the key for the derived table is the index column. A join derived table stores the pre-computed

join of two tables; the key for the derived table is the join column. For both types of derived

tables, rows are partitioned by the derived table’s key. When the underlying table(s) changes, Lynx

automatically updates derived tables, but this is not done in an atomic way, since we want to avoid

distributed transactions. For that reason, programmers must structure an application so that the

freshness difference between derived and main tables does not result in correctness problems. To

force programmers to be aware of this difference, Lynx exposes derived tables as a set of read-only

tables that are queried independently.

When a main table is modified, Lynx automatically updates related derived tables. Lynx helps

the programmer reason about the relative freshness of related tables by enforcing a specific order-

ing of updates to different derived tables. Specifically, a main table T is more up to date than its

secondary index table, and a secondary table of T is more up to date than any join table of T .

Consistency guarantee and mechanism. Lynx provides strong consistency and ACID trans-

actions within each data partition. For consistency constraints across partitions, Lynx provides the

weaker guarantee that all derived tables and denormalized data are eventually consistent with the

main tables.

Lynx addresses the challenges of enforcing consistency constraints across partitions via its new

primitive, Distributed Transaction Chain (DTC). A DTC groups together a series of transactions,

each modifying a single data partition, and guarantees that all of them will be eventually executed
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despite failures. If any transaction in the chain incurs a user-initiated abort, DTC ensures that all

the previously executed transactions are undone by corresponding compensating transactions. To

address concurrent ordering issues, a DTC can provide an ordering constraint, which ensures that

hops from different chains maintain their relative order of execution across partitions. Specifically,

if two chains X and Y start in the same partition and X executes before Y in that partition, then X

executes before Y in any partition where they both execute. This ordering constraint is essential

to preserve consistency across partitions when chains do not commute with each other. As an

example, suppose we have two DTCs, where one adds a sales order, and the other deletes the

order. These chains modify a sales table and then insert an event log into a log table. Without the

ordering constraint the log table might indicate the sales order exists (delete occurs before add),

but no such sale exists in the sales table (delete occurs after add).

Lynx uses DTCs extensively internally to update secondary indexes and join tables as their

corresponding main tables are modified. By leveraging the fault-tolerance and ordering behavior

of DTCs, Lynx can maintain the consistency between derived tables and main tables in the face of

failures and concurrency. Furthermore, Lynx exposes DTCs to application programmers to allow

them to maintain consistency properties across their own denormalized data.
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Chapter 7

Lynx’s programming interface

Lynx’s programming interface consists of a client-side library in Python and a set of table

schema specifications. Our Python client library is inspired by model-view-controller style web

frameworks. Like Django, Lynx mediates application access to Lynx via a set of Python classes

for each table.

We design Lynx’s API to give programmers sufficient control so that they can best optimize

application performance while also benefiting from the consistency guarantees provided by Lynx.

Specifically, Lynx gives programmers control in three areas: (i) how to partition each table and

what home site to associate with each partition (§7.1), (ii) which secondary indexes and join tables

are created and which derived table are used for specific queries (§7.2), and (iii) creating their own

DTCs to modify denormalized data consistently (§7.3).

7.1 Creating and accessing tables

Creating partitioned tables. Programmers define partitioned tables using a SQL-like syntax.

Figure 7.1 shows the schema of the Users and Items table for our auction service example. The

programmer first defines the set of logical partitions that tables are split into. In this example, there
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USE_PARTITIONS SIZE=1000, SHARD_BY=mod, NODES=db_config

CREATE TABLE Users

{PRIMARY=uid} (

uid integer,

username varchar(16),

location varchar(16)

);

CREATE TABLE Items

{PRIMARY=item_id COLOCATE=seller} (

item_id integer,

description varchar(100),

seller integer,

high_bidder integer,

high_price float

);

Figure 7.1: Schema of the partitioned Users and Items table.

import linked_dbc

# auto-generated class definitions for table schemas

import auction_schema

def get_user_name(uid):

ctx = get_db_context()

user = Users().lookup(context=ctx, id=uid)

return user.name

def add_user(name, location):

ctx = get_db_context()

Users().insert(

context=ctx, uid=new_local_id(),

name=name, location=location)

Figure 7.2: Accessing the Users table.

are 1000 partitions and they are spread across a group of servers determined by the configuration

named db config. Each main table is always partitioned by its primary key.

Accessing main tables. Figure 7.2 gives an example of querying and modifying the Users table.

The programmer accesses Lynx within a given context, obtained using get db context. The

context maintains the client’s network connections to servers and keeps cached information map-

ping logical partitions to servers. Table operations lookup, insert, update are all performed

using the primary key for the table. Lynx only supports table modification based on the primary

key. By default, operations return as soon as the main table is modified but before the correspond-

ing derived tables are updated. The programmer can instead request to block until all derived tables

have been updated.
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CREATE TABLE Bids { PRIMARY=bid_id

COLOCATE=bidder

SECONDARY=bidder,item } (

bid_id integer,

bidder integer,

item integer,

bid_price float

);

CREATE JOINTABLE Bids-Users { SECONDARY=Bids.item} AS

SELECT Bids.bid, Bids.item, Bids.bidder, Users.name

FROM Bids JOIN Users

ON (Bids.bidder = Users.uid);

Figure 7.3: Specifying secondary indexes and join tables. Bids has two secondary keys bidder and item.
Bids-Users is a join table uniting Bids and Users with join key Bids.bidder.

Controlling home sites. When Lynx is used with geo-replication, it uses the notion of home sites

(a site is a data center) to avoid conflicting updates at different sites efficiently [81]. Each logical

partition has a home site, which is where the rows associated with the partition can be modified.

Other sites must forward updates to the partition’s home site.

Programmers may wish to control the home site of newly created data items, so it matches the

site where the application is running. To do so, the programmer uses the new local id function,

which returns a new primary key in a local partition served by the current site. Lynx also allows

users to specify that two tables share the same partitioning. In Figure 7.1, we specify that each row

of the Items table should co-locate with its seller column. Any new entry to the Items table will be

assigned a primary key that maps to the same partition as the seller column. As a result, an auction

item may be modified by its seller at his home site.

By default, insert and update return as soon as the replica of the main table is modified

at its home site. The programmer can change this behavior to block until all replicas have been

written.

7.2 Creating and accessing derived tables

Creating derived tables Figure 7.3 gives the schema for the Bids table with secondary keys on

bidder and item and the join table Bids-Users. We define Bids-Users by specifying the join

63



def get_bidders_names(itemid):

ctx = get_db_context()

results = Bids-Users().query(

context=ctx, Bids_item=itemid)

return [ r.Users_name for r in results ]

Figure 7.4: Querying join table Bids-Users with secondary key.

def submit_bid(bidder, itemid, price):

a1 = dtc.action(

procedure=_insert_bid,

arguments=[bidder, itemid, price]

return_point=True)

a2 = dtc.action(

procedure=_update_item,

arguments=[bidder, itemid, price])

chain = dtc.new_chain(a1,a2)

ctx = get_db_context()

chain.execute(ctx, order=False)

@dtc.partition(Bids, bidder)

def _insert_bid(ctx, bidder, itemid, price):

Bids().insert(

context=ctx, bidder=bidder, item=itemid, price=price)

@dtc.partition(Items, itemid)

def _update_item(ctx, bidder, itemid, price):

item = Items().lookup(context=ctx, item=itemid)

if item.high_price < price:

Items().update(

context=ctx, item=itemid,

high_bidder=bidder, high_price=price)

Figure 7.5: Specifying a user-defined DTC.

key (Bids.bidder=Users.uid). Secondary tables always duplicate all columns of the main

table, but Lynx lets programmers choose the set of columns to be duplicated in the join table. One

can also specify secondary keys for the join table, e.g., in Figure 7.3, Bids-Users has Bids.item

as its secondary key. We can use this secondary table to quickly display the names of bidders on

an item.

Accessing derived tables. Derived tables are exposed to the programmer in the same manner

as main tables. All derived tables are read-only and do not accept the insert, update or delete

methods. Figure 7.4 gives an example of querying the join table Bids-Users based on its secondary

key.

64



7.3 User-defined DTCs

Lynx lets programmers specify user-defined DTCs to maintain the consistency of denormalized

data in different tables. A user-defined DTC consists of a sequence of hops, where each hop is

expressed as a Python procedure. A hop can read or write data in a single partition and its database

accesses are performed in a local transaction. The programmer may write hops that abort the chain

in the middle; in the case, the programmer must also write a corresponding compensating action

for each previous hop in the chain.

Figure 7.5 gives an example of a user-defined DTC. Our auction example invokes the

submit bid function when a user places a bid. This function constructs a DTC out of two

procedures, insert bid and update item. insert bid inserts the bid into Bids and

update item updates the maximum bid on the item if the new bid contains a higher bid price.

Lynx requires programmers to specify the partition accessed by each hop. This allows Lynx to

transfer a DTC to the server responsible for each hop. The partition hint is specified as a Python

function annotation, as seen in Figure 7.5 and the hint typically consists of the name of the table

to be accessed and an index key value. For example, update item will execute on the partition

containing the row identified by item in Items table.

Because updates to the max bid in Items always commute, the relative ordering of concurrent

submit bid operations in different partitions does not matter. We therefore set order=False

when starting the chain to allow the system to execute concurrent chain hops in any order.

The programmer can also decide whether to block waiting for the completion of the chain. In

Figure 7.5, we set return point=True in insert bid, allowing the client library to return

as soon as the first hop completes. Returning to the user as soon as his bid is recorded reduces the

latency of submit bid, but users might notice a small delay between when a bid is submitted and

when it shows up as an item’s top price. For an auction service, this is likely to be an acceptable

trade-off. If this is not the case, the programmer can also choose to block until update item
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completes at the cost of increased latency.
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Chapter 8

System design and implementation of Lynx

This chapter begins with a tour of Lynx’s design (Section 8.1). We then discuss Lynx’s imple-

mentation (Section 8.2), and conclude the chapter by providing formal proofs of the correctness of

Lynx’s derived tables’ operations (Section 8.3).

8.1 Design

8.1.1 Architecture overview

A Lynx deployment consists of many server machines running in one or more data centers,

a large collection of clients linked into application servers, as well as a separate configuration

service.

The configuration service keeps track of the mapping from every logical data partition to its

responsible server in each data center and the partition’s home site. The configuration service runs

as a Paxos-based state machine replicated across multiple sites to tolerate faults. Each Lynx server

obtains a lease from each of its responsible data partitions from the configuration service, similar

to the design in [32, 85].

Figure 8.1 shows the interaction between Lynx clients and servers. Each Lynx client fetches
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Figure 8.1: An overview of different components in Lynx and their interactions.

the mapping of partitions to servers from the configuration service and caches the information

locally so that it can directly contact the responsible server for accessing the database. Stale cache

information does not affect correctness since each server will only handle requests for partitions it

is currently responsible for.

Each Lynx server runs a database system locally to store partition data. A client contacts the

Lynx server process for all its write requests but may connect directly to the underlying database

for better read performance. Upon receiving a write request, the Lynx server generates the required

DTC for updating secondary or join tables if necessary. When running in a geo-replicated setting,

a server in the home site also replicates any local writes to the remote servers.

8.1.2 Executing DTCs

When transferring and executing DTCs from server to server, we must ensure that each hop

in a chain is executed exactly once and that the required ordering constraint is preserved for each

chain.

We employ two mechanisms to guarantee exactly-once execution. First, a Lynx server imple-

ments a queue module to reliably store DTCs received from other servers or clients. Second, a

Lynx server inserts an execution record (consisting of a chain id and its hop number) into a history

table maintained by the local database as part of the local transaction for executing a hop in the
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chain.

The naive design to avoid duplicate execution makes the server check the history table before

running each hop to ensure that it has not been previously executed. This is inefficient because it

requires an additional lookup in the database’s history table for every operation. We use a more

efficient design that leverages the local queue module to avoid duplicates. Specifically, the queue

module offers three APIs, push to enqueue a DTC, borrow to temporarily dequeue a DTC for

execution (or transfer to another server), release to remove a DTC from the queue. The queue

module logs the push and release events synchronously to an on-disk log file in batches. During

normal operation, each worker thread in the server borrows a DTC to execute against the local

database and releases the DTC upon completion. Whenever a server restarts after a failure, the

queue log files are read to determine the set of operations that have been pushed, but not yet

released. The server replays these actions by consulting the history table kept in the local database:

if a queue item X is not present in the history table then it must be applied to the database. If the

item is found in the history table then it can be safely discarded. The queue module also avoids

duplicates that might arise during the transfer of DTCs from one server to another in the face of

network and server failures; we do not discuss the details here.

We enforce the ordering constraint of chains using pair-wise sequencers among n logical data

partitions. In particular, for each partition i that a server is responsible for, the server maintains

n counters, ctri→1, ctri→2, ..., ctri→n, which it increments and assigns as sequence numbers to a

DTC. The server also keep tracks of the latest sequence number that it has processed on partition i

from other partitions, done1→i, done2→i,...,donen→1.

All chains obeying the ordering constraint are required to have a pre-determined trajectory,

i.e., the set of partitions to be accessed are known at the start of the chain’s execution. Suppose

a chain of length m is to execute at partitions 1,2,...,m. The Lynx server executing the chain at

partition 1 generates m-1 sequence numbers, one for each of the remaining hops, by incrementing

one on the corresponding ctr counters. These sequence numbers are attached to the chain as
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seq1→2, seq1→3, ..., seq1→m and are used to order execution on the chain’s subsequent hops. The

server responsible for partition i compares the chain’s sequence number, seq1→i with its local

value done1→i. If the chain’s sequence number is the next in line, i.e., seq1→i = done1→i + 1,

then the server executes the chain immediately and increments done1→i accordingly. Otherwise,

it blocks the chain until those “holes” in the sequence 1 → i have been filled up by the arrival

and execution of other chains. Should a chain incurs a user-initiated abort at a server, the server

sends empty actions to the chain’s subsequent hops to “release” its sequence numbers. Lynx’s

sequencing mechanism is very efficient as it does not incur any additional communication between

servers during chains’ execution.

When working in a geo-replicated setting, each hop of the chain executes in the home site of

the partition. Specifically, the responsible server in the partition’s home site first executes the hop

locally and then synchronously replicates it to remote data centers1. Once replication completes,

the server proceeds to transfer the DTC to its next hop server.

8.1.3 Maintain derived tables

Secondary indexes. Whenever a server receives a client request to modify a main table, it creates

a DTC to update both the main table and its derived tables2. We explain this process using an

example main table T with primary key (K0) and two secondary indexes (K1, K2). As illustrated

in Figure 8.2, the DTC to insert a new row in T consists of three hops that insert the row into the

appropriate partitions for tables T, T K1, T K2, respectively. The DTCs for deleting an existing

row and for updating a column that is not a secondary key are similar to that of the insert.

Lynx handles updating a secondary key of an existing row in T differently. Suppose one updates

1Databases like PostgreSQL and MySQL have built-in master-slave replication. Unfortunately, they do not allow

separate replica groups for different partitions managed by the same database instance. Thus, we choose to implement

synchronous replication ourselves in Lynx.
2Note that these are DTCs generated automatically by the system, not the user-generated DTCs. They both use the

same machinery to execute.
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insert t to T
insert t to  

T_K1
insert t to  

T_K2

read t=(k0,k1,k2)
update t to t' in T

delete t 
from  T_K1

insert t' to 
T_K1

update t to t' 
in T_K2

 insert t=(k0,k1,k2)
primary=k0

second=k1,k2

update t'=(k0,k1')
primary=k0

changed=k1'

partition(k0) partition(k1) partition(k2)

partition(k0) partition(k1) partition(k1') partition(k2)

Figure 8.2: The DTCs for inserting a new row and updating an existing row’s secondary key value in table
T which has two secondary tables T K1, T K2.

insert t to LT
- insert t to  LT_Kjoin 

- read tuples Y from RT_Kjoin

- insert tuples t*Y into LT_RT

read t=(x,k)
update to t' in LT

 insert t in LT
primary=x,
joinkey=k 

partition(x) partition(k)

partition(x)

 update t' in LT
primary=x 
joinkey=k'  

- delete t in LT_Kjoin 

- read tuples Y from RT_Kjoin

- delete tuples t*Y in LT_RT

partition(k)

- insert t' to  LT_Kjoin 

- read tuples Y from RT_Kjoin

- insert tuples t' *Y into LT_RT

partition(k' ) 

Figure 8.3: The DTCs for inserting a new row and updating an existing row’s join key value. To create join
table LT-RT, both main tables LT and RT have a secondary table, LT Kjoin, RT Kjoin, corresponding to the
join key Kjoin.

a row with the primary key value k0 to have a new secondary key value k′1. The resulting DTC

consists of four hops, as shown in Figure 8.2. First, the chain reads the old secondary key value

k1 from the main table and updates the value to k′1. Second, the chain deletes the old row from

secondary table T K1 with key k1. Third, the chain inserts the new row into T K1 with key k′1.

Lastly, the chain updates the other secondary table T K2.

The use of DTC guarantees that all hops for updating secondary tables will be executed in the

event of failure. Furthermore, since insert/delete/update operations to the same main table row do

not commute with each other, the ordering constraint of the DTCs is crucial for maintaining the

correctness of secondary tables in the face of concurrent operations.

Join tables. In the most general case, Lynx needs to maintain the join table LT-RT where the join

key Kjoin is a secondary key for both the left main table (LT) and the right main table (RT).

We explain the join process for modifying LT. The top chain in Figure 8.3 handles the insertion
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of a new row into LT with the join key value k. The first hop of the chain inserts the row in LT. The

chain’s second hop is destined for the partition determined by the join key value k. Because Lynx

requires that both LT and RT be spread across the same set of logical partitions, all three table

splits (LT Kjoin, RT Kjoin, LT-RT) for k reside in the same logical partition. Therefore, at the

second hop, the chain is able to insert the new row into the secondary table LT Kjoin, read the set

of tuples Y matching the join key value kj from RT Kjoin, and insert the set of tuples joining the

new row and set Y into LT-RT, all in one local transaction. The DTC to delete an existing row first

deletes the row from LT and then deletes the row in LT Kjoin and the set of rows in LT-RT Kjoin

on partition k in one local transaction. Updating an existing row’s join key value is like performing

an insert following a delete, as illustrated in Figure 8.3.

LT may have secondary indexes other than the join key. If so, the DTC to modify LT contains

additional hops to update those secondary tables before accessing the join key partition containing

LT Kjoin, RT Kjoin, and LT-RT. Additionally, the join table LT-RT itself may have secondary

indexes. Lynx updates these secondary tables by spawning new DTCs at the last hop of the join

chain. In principle, for every row modified in LT-RT, a DTC is created to update the corresponding

secondary table partitions. These DTCs execute in parallel. As an optimization, Lynx batches

those updates that traverse the same sequence of partitions into a single DTC.

The correctness of the join process is assured by two features in the system. First, the ordering

constraint of the underlying DTCs enables concurrent modifications on the same row of LT to

interleave correctly. Second, the local transaction for accessing the affected rows in LT Kjoin,

RT Kjoin, and LT-RT enable concurrent modifications from LT and RT that affect the same set of

rows in LT-RT to interleave correctly. Section 8.3 formally proves these claims.
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8.2 Implementation

Both the client and server implementation of Lynx are written in Python. Each server uses

PostgreSQL as its local database backend. Our prototype provides a parser that translates a Lynx

schema into a collection of native SQL schema files used by PostgreSQL. The parser also generates

Python classes that serve as the data access interface in the client library. These auto-generated

classes hide from programmers the complexity of Lynx’s internal data layout and the partitioned

nature of the underlying storage. The construction of DTCs for updating secondary and join tables

is part of the server implementation. For user-defined chains, the client library marshals the DTC

(including its procedure definition, partition hint and arguments) and transfers it to the server for

storage and execution.

Two details in the implementation are worth mentioning. First, we impose a “soft” limit on

the capacity of each server’s DTC queue. If the queue exceeds its limit, the push operation is

delayed by a time period proportional to the current queue length, slowing down clients’ requests.

Doing so ensures that those DTCs already admitted into the system finish in a bounded amount of

time. Second, we built our own custom full-featured RPC library for transferring DTCs. Our RPC

library achieves much better performance than several existing RPC implementations for Python

(including the standard xmlrpc library).

8.3 Correctness of Lynx’s operations

8.3.1 Model

Database model. For simplicity, we restrict our discussion to two table R and S. All proofs

extend naturally to a larger number of tables. Let a table row be represented by a tuple r. Tuple

columns in Lynx do not all have the same semantics. In a row r = (k0, . . . , kn, c1, . . . , cm) the

columns k0, . . . , kn are index columns referred to as partition keys (or just keys). k0 serves as a
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row’s primary key and has the additional constraint that it is unique across a table R. We denote

the attribute values of tables (ρ0, ρ1, . . . , ρw) where w = m + n + 1. For brevity, we use several

shorthand notations: We substitute the values c1, . . . , cm with a single notation data, as a stand-in

for all columns which are not partition keys. Also, we use r to denote both a single row r and the

set containing r as its only member ({r}). A table R is a set containing all rows r: R =
⋃

i

ri. A

tableR may have several copies denotedR0, . . . , Rn corresponding to partition keys. The tableR0

is a main table, whereas Rj, j = 1, . . . , n are secondary tables. Each table Rj may be partitioned

according to the key kj intoPj disjoint partitions: Rj =

Pj
⋃

p=1

Rj
p such that ∀l, p : l 6= p, Rj

p∩R
j
l = ∅.

Basic Data Operations. We consider three basic database write operations on tables: insert, delete

and update. It is illegal to update k0 for any r in a table. An insert to a table is an addition of a

row r to R. A deletion of a row is the removal of r from R. An update simply updates a row r

in place. In addition, we support two other operators. A selection operator and a join operator. A

selection operator σϕ(R) selects all rows from R that satisfy the selection predicate ϕ. We only

allow predicates of the form {kj = x}, where kj is a partition key and x is an attribute value. The

join operator is discussed below.

Partitioning. Lynx requires that each key kj, j = 0, . . . , n has a corresponding partitioning pure

function partj(x), K
j

partj
−→ 1, . . . , P j , where Kj is the key-space of kj and P j is the number of

partitions of Rj .

Joins. We use the symbol ⊲⊳ϕ to denote an operator that joins two tables R and S (R ⊲⊳ϕ S) ac-

cording to a join predicate ϕ. Lynx joins have the following constraints: They are inner equi-joins

whose join predicates may only use partition keys. In addition, Lynx requires that join predicate

columns kr and ks from two tables R and S have the same partitioning function (partr = parts).

For simplifying the notation, we assume that the joined tables Rj and Sl have the same set of par-

titioning keys k0, . . . , kn, hence we can denote the join of Rj and Sj as R ⊲⊳kj S. (Note however,

that Lynx does not perform natural joins and that it support joins of different partitioning keys, as
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long as they have the same partitioning function.) The extension of all proofs to the general case

are trivial using the required notation.

Execution. The state of the database, as modelled above, can be changed by issuing the supported

update operations. We assume all requests are valid, as defined by each algorithm. In the case

of the centralized algorithms, a single thread of execution processes requests serially, as they ar-

rive. In this case, we do not model a user issuing the requests. Instead, we view users’ requests

as a predefined sequence of operations H . In the distributed version of the algorithms, each node

is assigned a single partition domain. A partition domain node, denoted N j
p has a single thread

of execution and can only access data that resides on partition T j
p , for any table T . Both in the

centralized version of the algorithms and in the distributed one, we add a transaction primitive.

Transactions are started with a BEGIN TRANSACTION call and end with a COMMIT call (we do

not need to consider abort cases). The consistency level provided by these transactions in serial-

izability, with the existing restriction that only access to local data is allowed. (In the centralized

case, this is the entire database.) A thread of execution can delay any part of an operation until

some condition c holds. In that case the thread switches to service other requests (without violating

transactional guarantees). The thread returns to the blocked execution automatically and immedi-

ately when the condition becomes true. We use the notation WaitUntil(c) for this waiting behavior.

Nodes communicate using a reliable asynchronous message passing framework. Messages are al-

ways eventually delivered (the use of DTCs in Lynx, guarantees this property). We do not assume

a FIFO communication channel. Instead, when FIFO is needed it is handled by the logic of the

protocol. Finally, we use in the definitions the notion of termination of execution. This time is

well-defined for a centralized algorithm. For a distributed algorithm, we say that the algorithm

has terminated when all nodes have finished to process any outstanding requests and there are no

messages in transit. We say that the last node to terminate is the node that, in terms of real time,

finishes its execution last when there are no messages in transit.
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8.3.2 Correctness of secondary tables operations

We prove the correctness of Lynx’s secondary tables operations by first formally defining our

correctness criteria (definition 8.1). We then proceed to prove that Lynx’s operations satisfy this

definition by first specifying a centralized version of the secondary tables operations (algorithm 1).

We prove the correctness of the centralized algorithm. We then give a partitioned version of the

algorithm (algorithm 2), and show that it is equivalent to the centralized one. This conceptual

step is needed for clearly defining what it means for a centralized version and a distributed one

to operate on the same input of users’ requests. We then give Lynx’s full distributed algorithm

(algorithm 1). We prove that it is equivalent to the centralized version, thus showing that it is

correct.

The following definition states what it means for secondary tables’ state to converge to the state

of main tables. Additionally, it requires that each row ends up in the right partition, thus guaran-

teeing that subsequent queries by a secondary key will be both efficient, and, after convergence,

complete.

Definition 8.1 (Secondary keys integrity). We say that an algorithm preserves secondary keys

integrity if at the end of any execution of valid update operations H , the following holds:

1. (Replication Integrity) For j = 1, . . . , n:

(a)

Pj
⋃

p=1

Rj
p =

P0
⋃

p=1

R0
p

(b) ∀l, p, l 6= p : Rj
p ∩ R

j
l = ∅

2. (Partitioning Integrity) ∀(ρ0, ρ1, . . . , ρn, data) ∈

P0
⋃

p=1

R0
p, and for j = 1, . . . , n

(ρ0, ρ1, . . . , ρn, data) ∈ R
j

partj(ρj)

The first property of definition 8.1 requires that all rows of the main tables exist in secondary

tables and that there are no other rows in secondary tables. It also states that a row r cannot be
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present in two different partitions. The second property requires that each row r ends up in the

right partition of each secondary table in accordance with its partitioning key and the partitioning

function.

Algorithm 1 gives a centralized specification of Lynx’s update logic.

Proposition 4. Algorithm 1 preserves secondary keys integrity.

Proof. The complete proof follows an induction on the number of operations in H . We only dis-

cuss the non-trivial cases: From the logic of ExecuteRowOperation it can be seen that the cases of

INSERT and DELETE trivially satisfy definition 8.1. In the case of an UPDATE, immediately after

line 1.15 is executed, property 1 of definition 8.1 does not hold anymore, and possibly, property 2

too. If condition 1.17 if true, line 1.18 satisfies property 1 again, which is the only one that was

temporarily false. Otherwise, lines 1.20 and 1.21 make conditions 1 and 2 hold again. In all cases

when procedure ExecuteRowOperation terminates, the prefix of operations from H that have been

executed to that point leave the database in a state that satisfies definition 8.1.

The input to algorithm 1 is a sequence H of user operations with their arguments, which is a

total ordering of these operations. The real input to the distributed version of the algorithm, which

follows the real execution of Lynx, is a set of operations that users issue to different nodes. The

ordering of this input is only a partial order, which is defined according to the order in which these

operations are received on each node. To translate an input to the distributed version to an input to

the centralized version, we allow a partial order of user requests H to be extended to a total order

H ′ in any arbitrary way (e.g. by the real time in which operations were received on nodes). To

justify this translation, we give algorithm 2 and prove proposition 5.

Definition 8.2. We say that two algorithms are end-state equivalent if once they terminate they

leave the database in the exact same state (as expressed by the the equivalence of all the sets

Rj
p(j > 0) at the end of all executions of both algorithms).
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Algorithm 1 Derived operations (centralized)

Require: if Op = UPDATE ∨ Op = DELETE then (ρ0, ρ1, . . . , ρn, data) ∈

P0
⋃

p=1

R0
p

Require: if Op = INSERT then (ρ0, ρ1, . . . , ρn, data) 6∈

P0
⋃

p=1

R0
p

1: procedure EXECUTEROWOPERATION(Op, ρ0 , ρ1, . . . , ρn, data)

2: BEGIN TRANSACTION

3: if Op = INSERT then

4: Add (ρ0, ρ1, . . . , ρn, data) to R0
part0(ρ0)

5: for j ← 1, n do

6: Add (ρ0, ρ1, . . . , ρn, data) to Rj
partj(ρj)

7: end for

8: else if Op = DELETE then

9: Remove (ρ0, ρ1, . . . , ρn, data) from R0
part0(ρ0)

10: for j ← 1, n do

11: Remove (ρ0, ρ1, . . . , ρn, data) from Rj
partj(ρj )

12: end for

13: else if Op = UPDATE then

14: (ρ0, ρ̂1, . . . , ρ̂n, ˆdata) = σ{k0=ρ0}(R
0
part0(ρ0)

)

15: Update: σ{k0=ρ0}(R
0
part0(ρ0)

)← (ρ0, ρ1, . . . , ρn, data)
16: for j ← 1, n do

17: if kj = k̂j then

18: Update: σ{k0=ρ0}(R
j

partj(ρj)
)← (ρ0, ρ1, . . . , ρn, data)

19: else

20: Remove (ρ0, ρ̂1, . . . , ρ̂n, ˆdata) from Rj
partj(ρ̂j)

21: Add (ρ0, ρ1, . . . , ρn, data) to Rj
partj(ρj)

22: end if

23: end for

24: end if

25: COMMIT

26: end procedure

27: procedure EXECUTION(H)

28: for (Op, ρ0, ρ1, . . . , ρn, data) in H do

29: EXECUTEROWOPERATION(Op, ρ0 , ρ1, . . . , ρn, data)

30: end for

31: end procedure
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Algorithm 2 Derived operations (partitioned)

Require: ψ is a permutation of H that preserves all sub-sequences H |k0=x

1: procedure PARTITIONEDEXECUTION(H,ψ)

2: H ‘← ψ(H)
3: EXECUTION(H ′)

4: end procedure

Proposition 5. Algorithms Execution and PartitionedExecution are end-state equivalent (for any

input H and any valid ψ).

Proof. When procedure ExecuteRowOperation gets a row (ρ0, ρ1, . . . , ρn, data) as input, regard-

less on the execution path that is taken, all update operations (INSERT, DELETE, UPDATE) op-

erate on rows with the same primary key ρ0. Any two rows that don’t share the same primary key

are different set elements. In general, set operations on the same set with different set-members

as arguments commute. Consider each set R
p
j and the sequence of operations that are applied to

it in algorithms 1 and 2. Each of these sets goes through the exact set of update operations in

algorithm 2 as it does in algorithm 1. The operations applied to sets in algorithm 2 either commute

with one another or, the ones that don’t commute, are applied in the exact same order in which

they are applied in algorithm 1. This implies that all sets will have the exact same final state once

all operations complete.

We proceed to give the final algorithm which formally captures Lynx’s distributed execution.

Algorithm 3 uses two new state variables kept on each node. Both are arrays indexed by all other

nodes. sequences is used by nodes storing main partitions to issue pair-wise sequence numbers

that accompany update messages, and are used to order secondary operations on their target node

(which isn’t always the direct recipient of the message). The array lastSeen is kept on nodes

responsible for secondary partitions It is used to verify that operations are executed in the exact

same order in which they were on main partitions.

Proposition 6. Algorithms PartitionedExecution and DistributedExecution are end-state equiva-

lent, for any sequence of operations that is input to both algorithms in the same order, in terms of
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Algorithm 3 Derived operations (distributed)

1: procedure DISRIBUTEDEXECUTION(H)

2: for (Op, ρ0, ρ1, . . . , ρn, data) in H do

3: SENDTO(N0
part0 (ρo)

, DistributedExecuteRowOperation, Op, ρ0, ρ1, . . . , ρn, data)

4: end for

5: end procedure

real time.

Proof. Any two update operations on a set that have different items as arguments - commute. We

show that for each secondary partitionN j
p , all non-commutative operations are applied on that par-

tition, in any an execution of algorithm 3, in the same order they are applied on the same partition

in algorithm 1. For every row, every operation on a primary partition N0
part0(ρo)

produces the exact

same operations on each secondary partition N
j

partj(ρj)
in algorithm 1 and in algorithm 3. Hence,

the exact same operations are applied on each partitionN j
p in both algorithms. Assume for the sake

of contradiction that there are two non-commutative operations Opi and Opj that execute in the

order Opi before Opj on a secondary partition N j
p in algorithm 1, but their equivalent operations

Ôpi and Ôpj execute in algorithm 3 in the order: Ôpj before Ôpi, on the same partition. Now, in

algorithm 1 no single execution of procedure ExecuteRowOperation modifies the same secondary

partition N j
p more than once, so Opi had to execute in an earlier invocation of ExecuteRowOp-

eration. Since Opi and Opj do not commute in the particular case, they must both have, as an

argument, a row with the same primary key ρ0. This implies that there are two corresponding

triggering user operations in algorithm 3, both with row arguments containing ρ0, such that the

one resulting in Ôpi was received and processed by procedure DistributedExecuteRowOperation

before the one resulting in Ôpj . Since both Ôpi and Ôpj are eventually applied on the same par-

tition, the messages containing them, must have been issued a sequence number from the same

index in sequences in N0
part0(ρ0)

- either as nextSeq or as srcSeq (call these sequences seqi and

seqj). It must be then that seqi < seqj . However, by assumption, Ôpj was applied before Ôpi on

N j
p . But this is impossible since both operations share the same source N0

part0(ρ0)
, so the assumed
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Require: On node N0
p , upon receiving DistributedExecuteRowOperation from user

6: procedure DISTRIBUTEDEXECUTEROWOPERATION(Op, ρ0 , ρ1, . . . , ρn, data)

7: BEGIN TRANSACTION

8: if Op = INSERT then

9: Add (ρ0, ρ1, . . . , ρn, data) to R0
part0(ρ0)

10: for j ← 1, n do

11: nextSeq = sequences[N j

partj(ρj)
]

12: sequences[N j

partj(ρj)
]← sequences[N j

partj(ρj)
] + 1

13: SENDTO(N
j

partj (ρj )
, SecondaryInsert, nextSeq, (ρ0, ρ1, . . . , ρn, data))

14: end for

15: else if Op = DELETE then

16: Remove (ρ0, ρ1, . . . , ρn, data) from R0
part0(ρ0)

17: for j ← 1, n do

18: nextSeq = sequences[N j

partj(ρj)
]

19: sequences[N j

partj(ρj)
]← sequences[N j

partj(ρj)
] + 1

20: SENDTO(N
j

partj (ρj )
, SecondaryDelete, nextSeq, (ρ0, ρ1, . . . , ρn, data))

21: end for

22: else if Op = UPDATE then

23: (ρ0, ρ̂1, . . . , ρ̂n, ˆdata) = σ{k0=ρ0}(R
0
part0(ρ0)

)

24: Update: σ{k0=ρ0}(R
0
part0(ρ0)

)← (ρ0, ρ1, . . . , ρn, data)
25: for j ← 1, n do

26: srcSeq = sequences[N j

partj(ρj )
]

27: sequences[N j

partj(ρj)
]← sequences[N j

partj(ρj)
] + 1

28: if kj = k̂j then

29: SENDTO(N
j

partj (ρj)
, SecondaryUpdate, srcSeq, (ρ0, ρ1, . . . , ρn, data))

30: else

31: nextSeq = sequences[N j

partj( ˆρj )
]

32: sequences[N j

partj(ρ̂j)
]← sequences[N j

partj(ρ̂j)
] + 1

33: src← N0
part0(ρ0)

34: r ← (ρ0, ρ1, . . . , ρn, data)
35: SENDTO(N

j

partj (ρ̂j)
, UpdateDelete, nextSeq, ρ̂j , r, src, srcSeq)

36: end if

37: end for

38: end if

39: COMMIT

40: end procedure
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Require: On Node N j
p , upon receiving SecondaryInsert from node N l

q

41: procedure SECONDARYINSERT(nextSeq, (ρ0 , ρ1, . . . , ρn, data))
42: WAITUNTIL(lastSeen[N l

q ] = nextSeq − 1)

43: BEGIN TRANSACTION

44: Add (ρ0, ρ1, . . . , ρn, data) to Rj
partj(ρj)

45: lastSeen[N l
q]← nextSeq

46: COMMIT

47: end procedure

Require: On Node N j
p , upon receiving SecondaryDelete from node N l

q

48: procedure SECONDARYDELETE(nextSeq, (ρ0 , ρ1, . . . , ρn, data))
49: WAITUNTIL(lastSeen[N l

q ] = nextSeq − 1)

50: BEGIN TRANSACTION

51: Delete (ρ0, ρ1, . . . , ρn, data) from Rj
partj(ρj)

52: lastSeen[N l
q]← nextSeq

53: COMMIT

54: end procedure

Require: On Node N j
p , upon receiving SecondaryUpdate from node N l

q

55: procedure SECONDARYUPDATE(nextSeq, (ρ0 , ρ1, . . . , ρn, data))
56: WAITUNTIL(lastSeen[N l

q ] = nextSeq − 1)

57: BEGIN TRANSACTION

58: Update: σ{k0=ρ0}(R
j

partj(ρj)
)← (ρ0, ρ1, . . . , ρn, data)

59: lastSeen[N l
q]← nextSeq

60: COMMIT

61: end procedure
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Require: On Node N j
p , upon receiving UpdateDelete from node N l

q

62: procedure UPDATEDELETE(nextSeq, ρ̂j (ρ0, ρ1, . . . , ρn, data), source, srcSeq)

63: WAITUNTIL(lastSeen[N l
q ] = nextSeq − 1)

64: BEGIN TRANSACTION

65: delete from N
j

partj(ρ̂j)
using σ(k0=ρ0)

66: nextSeq2 = sequences[N j

partj(ρj)
]

67: sequences[N j

partj(ρj)
]← sequences[N j

partj(ρj)
] + 1

68: SENDTO(N
j

partj (ρj)
, UpdateInsert, nextSeq2, (ρ0, ρ1, . . . , ρn, data), source, srcSeq)

69: lastSeen[N l
q]← nextSeq

70: COMMIT

71: end procedure

Require: On Node N j
p , upon receiving UpdateInsert from node N l

q

72: procedure SECONDARYMOVE(nextSeq, ρ̂j (ρ0, ρ1, . . . , ρn, data), source, srcSeq)

73: WAITUNTIL(lastSeen[N l
q ] = nextSeq − 1)

74: WAITUNTIL(lastSeen[source] = srcSeq − 1)

75: BEGIN TRANSACTION

76: Add (ρ0, ρ1, . . . , ρn, data) to Rj
partj(ρj)

77: lastSeen[N l
q]← nextSeq

78: lastSeen[source]← srcSeq

79: COMMIT

80: end procedure

83



execution order implies a violation of the blocking condition of one of the lines: 42, 49, 56, 63,

73, or 74, in algorithm 3. The above contradiction implies that all non-commutative operations are

applied to all partitions in the same order in both algorithms. Combined with fact that the same set

of operations is applied to all partitions in both algorithms, they must end up in the same state.

Corollary 7. Algorithm DistributedExecution preserves secondary keys integrity.

8.3.3 Correctness of join operations

As described in section 8.1.3, Lynx maintains materialized joins tables that are updated to

reflect the effect of database write operations on the desired join. For brevity, we provide a proof

to the correctness of the join process triggered after an INSERT row operation on a main table. The

proof for the DELETE row operation follows the exact same lines. An UPDATE operation has the

exact same eventual effect as a DELETE followed by an INSERT of the updated row, hence, can

be replaced by these two operations.

Whenever a row r with partition key kj is inserted to a partitionR
j

partj(ρj)
, a check is performed

to see if there is a join specification R ⊲⊳kj S. If so, all rows from S
j

partj(ρj)
with kj = ρj are se-

lected. The Cartesian product of r and these rows is inserted to
(

R ⊲⊳kj S
)

part(ρj )
. The exact same

procedure follows for an insertion of a row s (replace R with S above). Formally, the insertion of

row ri adds to the materialized join table the following rows: ri × σ{kj=ρj}(S
j

partj(ρj)
). Since by

construction of Sj , all rows with kj = x (for any attribute value x) reside on the same partition,

and due to the semantics of the selection operation, the above set is equal to ri×σ{kj=ρj}(S
j). The

following proposition states that this process is correct and yields the desired join.

Proposition 8 (Correctness of the join process). For two tables Rj =
⋃

ri∈Rj

ri and Sj =
⋃

sl∈Sj

sl, If

a materialized join table T is constructed by adding the rows ri×σ{kj=ρj}(S
j) (ri×σ{kj=ρj}(S

j))

whenever a row ri (sj) is inserted to Rj (Sj), then after all operations complete T = Rj ⊲⊳kj S
j ,

which is also equal to R ⊲⊳kj S.
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Lemma 3 (Join decomposition). For two tables Rj =
⋃

ri∈Rj

ri and Sj , the following holds:

Rj ⊲⊳kj S
j =

⋃

ri∈Rj

(

ri × σ{kj=ρij}(S
j

partj(ρj)
)
)

Proof of lemma 3.

r ⊲⊳kj S
j = σ{kj=ρj}(r × S

j) = r × σ{kj=ρj}(S
j)

In addition:

Rj ⊲⊳kj S
j =





⋃

ri∈Rj

ri



 ⊲⊳kj S
j =

⋃

ri∈Rj

(

ri ⊲⊳kj S
j
)

Combining the above two lines and using σ{kj=ρj}(S
j

partj(ρj)
) = σ{kj=ρj}(S

j) we get:

Rj ⊲⊳kj S
j =

⋃

ri∈Rj

(

ri × σ{kj=ρij}(S
j

partj(ρj)
)
)

Proof of proposition 8. We prove by an induction on the total number of rows added to both tables

Rj and Sj . The induction holds trivially for empty tables. Adding a single row r or s is an

application of of lemma 3 with Rj = r or Sj = s. We prove the induction step: Assume that

a total of n − 1 rows were added to both Rj and Sj and that the materialized join table T is the

result of running the Lynx join protocol after these n − 1 insertions such that T = Rj ⊲⊳kj S
j .

Consider the nth row inserted. With out loss of generality, assume that the insertion is to table Rj .

Denote Rj ′ as the table Rj excluding the last row to be added. Let m be the number of rows that

Rj contains after the addition of the new row, which we denote as rm (m 6 n). This implies that

Rj ′ has m− 1 rows. We denotes these rows as ri, where i is the order in which a row was added,
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as determined by real time. By lemma 3:

Rj ′ ⊲⊳kj S
j =

m−1
⋃

i=1

(

ri × σ{kj=ρij}(S
j)
)

The addition of rm will add to Rj ′ ⊲⊳kj S
j the rows rm × σ{kj=ρmj}(S

j). The combined set is:

{

m−1
⋃

i=1

(

ri × σ{kj=ρij}(S
j)
)

} ∪ {rm × σ{kj=ρmj}(S
j)} =

m
⋃

i=1

(

ri × σ{kj=ρij}(S
j)
)

= Rj ⊲⊳kj S
j

where the last equation is another application of lemma 3.

The combination of propositions 8 and 6 yields the correctness of Lynx’s join operations,

in terms of end-state convergence. Proposition 8 guarantees that Lynx’s materialized join table

construction correctly reflects Rj ⊲⊳kj S
j , for every j. Proposition 6 guarantees that eventually

T j = T 0 for every table T and all j. Hence, the materialized join table reflects R ⊲⊳kj S, which is

the property we require,

We have proved that once all update operations terminate, derived tables reflect the same data

stored in main tables. This does not specify what is the intermediate state that is visible to queries

issued to secondary tables while there are still update operations being processed. In fact, we can

specify a somewhat stronger property regarding the state of derived tables (secondary and joins)

than just eventual convergence. Recall that in Lynx, main tables represent the authoritative state of

the database and derived tables expose a read-only interface to users. Replies to the user queries on

secondary tables capture a state that we may call single-query historical snapshot. That is, every

single secondary index query or join query always returns a snapshot of the state of the main tables.

This may be a recent snapshot or one that captures an historical snapshot of main tables. Note that

this does not imply that the union of secondary tables’ partitions always reflects an historical state

of the union of main tables partitions. Formally,

Pj
⋃

p=1

Rj
p is not always an historical state of the
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set

P0
⋃

p=1

R0
p. The reason for this anomaly is that updates of a secondary key on a main table are

translated to a removal of a row and an insertion of a new row in two different partitions. However,

since Lynx queries are always answered by a single partition, this anomaly cannot be observed via

a single query.
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Chapter 9

Evaluation of Lynx

In this chapter we present an evaluation of Lynx. As before, we first describe our experience

with developing applications for Lynx, and then proceed to give an experimental evaluation of

Lynx’s base performance and the performance of its applications.

9.1 Usability: Applications on top of Lynx

We have implemented three applications using Lynx: an auction service (L-RUBiS), a mi-

croblogging service (L-Twitter), and a social network website (L-Social). All three applications

work correctly under the consistency guarantees of Lynx and are easy to build and optimize.

Auction service. L-RUBiS is a port of the auction website in the RUBiS benchmark [1, 22].

The original RUBiS implementation is based on PHP using a local MySQL database. We ported

RUBiS’ schema for Lynx and re-wrote its PHP functions in Python to use Lynx’s API for accessing

the database.

L-RUBiS consists of ten partitioned tables (the example of Chapter 7 uses a subset of them.)

We specify a total of 13 secondary indexes across tables and the maximum secondary indexes used

per table is 3. We use one join table uniting the User and the Comments table which records users’
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comments. This join table allows L-RUBiS to quickly list those usernames who have commented

on a given user. With the help of secondary and join tables, the majority of queries in L-RUBiS

can be satisfied by querying one server machine.

Two user-defined DTCs in L-RUBiS are worth mentioning, one to process bidding requests

(as seen in Chapter 7), and the other to handle user registration which must guarantee that users

choose unique usernames. The original RUBiS imposes a uniqueness constraint on the username

column in Users. Because Lynx does not guarantee the uniqueness of non-primary keys, L-RUBiS

employs an additional table, called Usernames, containing all usernames that have ever been used,

with username as its primary key. To register a user “alice”, L-RUBiS uses a DTC to first check

if “alice” already exists in Usernames and then add the user to the Users table. Because this DTC

can abort only in the first hop, no compensating action is necessary. L-RUBiS waits for the entire

chain to complete before returning from a user’s registration request.

Microblogging. L-Twitter is a simplified clone of Twitter. The schema of L-Twitter is modeled

after those used by Twitter [56] with three tables, Users, Tweets, and Follow. Tweets contains

information about each tweet including its identifier, the creator, the 140-character content etc.

Follow contains the uid of follower and followee for each link in the follower graph.

The real Twitter relies on manually partitioned MySQL with no support of secondary indexes

and join tables and hence lacks a principled way to optimize queries. For example, to enumerate all

tweets created by a given uid, the underlying query needs to contact every partition of the tweets

table which it optimizes by stopping the query early after contacting a few recent partitions [56].

By contrast, L-Twitter performs the equivalent query efficiently by generating a secondary index

on the Tweets table based on uid. Likewise, L-Twitter creates indexes based on both the follower

and followee columns in Follow in order to query the follower graph efficiently.

A common operation in Twitter is to display a user’s “timeline”, the collection of tweets posted

by those that the user follows. Twitter’s original implementation on a single-node MySQL back-
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end performs a join query between the Follow and Tweets [56]. In Twitter’s current distributed

implementation, joins are no longer supported and it resorts to maintaining the “timeline” of each

user in memcached. L-Twitter sticks to the original implementation by creating a distributed join

table Tweets-Follow based on the join key Tweets.creator = Follow.followee. By querying

the secondary index Follow.follower on the Tweets-Follow table, L-Twitter can display a user’s

timeline by querying only one server.

Social networking. L-Social is a social networking application which implements many oper-

ations commonly found in a website like Facebook, such as be-friending users, updating one’s

status, posting to walls etc. L-Social consists of 6 tables, Users, Friends, Friendrequests, Status,

Wall and Events, as well as two join tables, Friends-Status and Friends-Events.

Friendship is similar to the Follow table in L-Twitter except all friendship links are symmetric.

To be-friend X, user Y must first inserts his request into Friendrequests. When X approves the

request from Y, L-Social uses a DTC to delete Y’s request from Friendrequest, add two links

(X→Y, Y→X) to Friends table, and add two events (one for X, one for Y) in the Events table

announcing the newly formed friendship. By using a DTC instead of a distributed transaction,

users browsing the friendship graph may observe asymmetric links temporarily. We think this is

acceptable behavior for L-Social.

When user X posts a status message, L-Social uses a DTC to insert the new status into Status

and to add an event “X has changed her status” in Events. Similarly, when user X posts on Y’s

wall, L-Social uses a DTC to insert the post into Wall and to add an event “X has posted on Y’s

wall” in Events.
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9.2 Performance evaluation

We tested the performance of Lynx and the applications described above. The highlights are:

• Lynx scales well. The throughput increase for executing DTCs and updating derived tables

is ∼6× when scaling from 2 to 15 servers.

• Applications achieve scalable and low-latency operation. The maximum latency for L-

Twitter and L-RUBiS is <60 ms and the median is <10 ms.

• Lynx enables L-Twitter to replicate its data in geographically distant sites while maintaining

its low latency operation.

9.2.1 Experimental setup

We ran experiments on a local cluster of 18 machines with heterogeneous hardware config-

uration: 6 machines have two 16-core AMD Opteron 6272 processors with 32GB memory, 6

machines have two quad-core Intel Xeon E5520 processors with 8GB memory, and the remaining

6 machines have a single quad-core Intel Xeon X3360 processor with 4GB memory. All machines

are equipped with either a 60GB OCZ Vertex-3 SSD or a 120GB Sandisk Extreme SSD. They are

connected with each other via a commodity gigabit Ethernet switch.

On each server machine, we ran a single PostgreSQL instance (version 9.1) and a Lynx server.

We configured PostgreSQL to use the local SSD for storage. The Lynx server also stores its log

file on the SSD. In all experiments, we ran a large number of client processes to issue requests over

the network to Lynx.

9.2.2 Microbenchmark

We evaluated Lynx using a set of microbenchmarks to help understand its baseline performance

and scaling behavior.
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Figure 9.1: DTC execution throughput for several workloads.
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Figure 9.2: Distribution of DTC completion latency.
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DTC throughput. Figure 9.1 shows Lynx’s attainable throughput measured as DTCs per second,

as the number of Lynx servers increases. We evaluated three types of DTCs. In the simple exper-

iments, clients issued user-defined DTCs whose actions insert rows into main tables that have no

derived tables. We controlled the length of a user-defined DTC by varying the number of single-

insert actions that comprise the simple chain. In the secondary key and join experiments, clients

issue requests to insert a row into a table with a secondary index and an additional join table,

respectively.

As seen in Figure 9.1, Lynx achieves good but not perfect scaling. This is in part due to the

heterogeneous nature of our cluster configuration. Because Python’s multithreading support does

not take full advantage of multiple cores, the throughput achievable by a Lynx server is limited

by its single-core performance. Therefore, we see much better scaling from 2 to 10 servers (than

scaling from 10 to 15 servers) because the experiments with fewer servers use only Intel machines

which have better per-core performance than our AMD machines.

The aggregate chain throughput is largely dependent on the number of hops in the chain. A

chain of lengthm results in m times the number of actions processed by Lynx, thus should achieve

1/m the throughput of DTCs with length 1. This can be seen in the 10-server experiments, where

for example, the throughput for simple DTCs of length 2 is 10,000 chains/sec, which is about half

of that for DTCs of length 1 with similar actions. The DTCs for the join experiments have 2 hops

(see top chain in Figure 8.3). The performance for this workload is less than that of the simple

chain of length 2 as the second action in the join chain is more complicated and requires more

processing by the server.

DTC latency. Figure 9.2 shows the CDF of the latency for completing a DTC in experiments

involving 10 servers. As the figure shows, the completion time of a chain is largely a function

of its length. The median latency for finishing the first hop is 8 ms. The time to complete the

second and fourth hop is roughly double or quadruple that of the first hop respectively. The vast
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majority of write operations in our applications can return to the user immediately after finishing

the first action of the chain, thus the observed latency for those write operations can be low as the

completion latency seen for DTCs of length 1 in Figure 9.2.

Read throughput. In our prototype implementation, clients directly contact a server’s PostgreSQL

instance for processing read requests. As a result, the aggregate read throughput of the system is

determined by PostgreSQL, which achieves 20,000 queries per second for a single server and

58,000 QPS for three servers (we did not have enough physical machines to run enough client

processes to saturate the performance of more than three servers).

In contrast to the read-only workload, our Python-based server implementation cannot saturate

write performance of PostgreSQL. PostgreSQL can service ∼12, 000 local insertions per second,

while a single Lynx server processes 4000 chain actions per second due to both Python’s high

CPU overhead and its poor handling of multiple threads. Since most websites handle far more

reads than writes (a typical ratio is 8:1 [2]), we think incurring Python’s overhead on the write path

is acceptable.

9.2.3 Application performance

Lynx makes it easy to develop scalable web applications. Our example implementations of

L-Twitter and L-RUBiS both achieved good performance using Lynx.

L-Twitter. We populated the database with 100000 users, each with 10 existing tweets and 10

random followers. We evaluated the performance of three common L-Twitter operations: view-

timeline for displaying the timeline of tweets that a user follows, follow for adding a follow rela-

tionship, and tweet for posting a tweet. We also evaluated a mixed workload consisting of 90%

view-timeline operations, 5% follow and 5% tweet operations.

Figure 9.3 shows the throughput of the above workloads for a varying number of servers. The

follow operation inserts a row into the Follow table which causes updates to two secondary tables,
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Figure 9.5: L-RUBiS throughput for different workloads.

the join table Tweet-Follow, as well as the secondary table of Tweet-Follow. The resulting DTC

has 4 hops. The Tweets table has one secondary index. The underlying DTC for tweet consists of

a modification to the main table, the secondary and join table (in one step), and an additional step

(executed in parallel) to update the secondary table of Tweet-Follow. The throughput for tweet

and follow scales with the number of servers, achieving 7000 and 5000 ops/sec respectively in

experiments involving 15 servers. The cost of updating join and secondary tables for tweet and

follow pays off by allowing for fast view-timeline operations that require only a simple lookup in

the secondary table of Tweet-Follow. As a result, the mixed workload can achieve much higher

throughput (90% view-timeline), up to 35,000 ops/sec for 15 servers.

Lynx helps L-Twitter achieve very low operation latency. The read operation view-timeline

contacts only one server. The write operations tweet and follow return as soon as the underlying

DTC finishes executing its first hop. Figure 9.4 shows the operation latency distribution in exper-
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Figure 9.6: L-RUBiS operation latency.

iments with 15 servers. All operations finish in less than 60 ms with the median latency less than

10 ms.

L-RUBiS. We evaluated the five most common RUBiS operations, three of which are writes (add-

item, add-comment, and submit-bid) and the remaining two are reads (view-item and view-

comments).

Figure 9.5 shows the throughput of different operations as well as a mixed workload with 90%

reads and 10% writes. add-item inserts a row into the Items table, resulting in a DTC of length 2.

add-comment inserts a row into the Comments table, resulting in a DTC of length 5. The submit-

bid operation involves a user-defined DTC of two actions each modifying a table with secondary

tables, resulting in a total chain length of 5. All three operations scale as the number of servers

increases, reaching 7500, 6000, and 4800 ops/sec for add-item, add-comment, and submit-bid

in 15-server experiments. Compared to writes, the read operations are inexpensive; view-item

performs one lookup in the Items table and view-comments looks up using the secondary key of

the join table Comments-Users. Thus, L-RUBiS achieves high throughput in the mixed workload

with 37, 000 ops/sec for 15 servers.

All five common operations of L-RUBiS can return to the user after executing at the first server.
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Figure 9.7: The aggregate throughput of L-Twitter running on one and two geographically separate sites.
Each site consists of 4 Lynx servers.

Therefore, as shown in Figure 9.6, the operation latency is very low with the maximum latency

being less than 60 ms and the median less than 10 ms, similar to that of L-Twitter.

9.2.4 Geo-replication performance

We also evaluated L-Twitter in a geo-replicated setting. To prepare L-Twitter for geo-replication,

we assigned each user with a home site where all logins of the user are re-directed to. In addition,

we specify that entries in the Tweets and Follow are co-located with the creating user. As a result of

this organization, the tweet operation inserts to a Tweet table partition located at the user’s home

site and can return to the user without blocking for remote replication. Similarly, follow can also

return quickly. Once replication to remote sites completes, the underlying DTC for tweet or follow

proceeds to update the secondary table of Tweet or Follow, the join table Tweet-Follow as well as

the join table’s secondary index. Once the secondary table of Tweet-Follow has been updated, the

follower’s view-timeline operation will see the new tweet.

We evaluated the latency of L-Twitter by simulating two geographically distant sites on our

local cluster. Specifically, we artificially imposed a delay of 100 ms between two groups of servers,
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each with 4 machines. As expected, all operations return with low latency (with a median of 10

ms) because they do not need to wait for the remote site. It takes ∼400 ms for a tweet to show

up in followees’ timelines, as the underlying DTC requires three roundtrip times between the two

sites to replicate data for each of its three updates. Figure 9.7 shows the aggregate throughput of

different operations. Since all tables are replicated twice, scaling from one to two sites does not

yield better throughput for write operations. By contrast, since each view-time reads from a local

replica of the join table, its throughput roughly doubles with two sites.
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Chapter 10

Related Work

10.1 Walter

Transactions in data centers. Early transactional storage for data centers include Bigtable [32],

Sinfonia [19], Percolator [71], and distributed B-trees [18]. Unlike Walter, these systems were

designed for a single data center only.

Storage systems that span many data centers often do not provide transactions (e.g., Dy-

namo [39]), or support only restricted transactional semantics. For example, PNUTS [35] supports

only one-record transactions. COPS [62] provides only read-only transactions. Megastore [24]

partitions data and provides the ACID properties within a partition but, unlike Walter, it fails to

provide full transactional semantics for reads across partitions.

Transactions in disconnected or wide-area systems. Perdis [45] is an object store with a check-

out/check-in model for wide-area operations: it creates a local copy of remote data (check-out) and

later reconciles local changes (check-in), relying on manual repair when necessary. For systems

with mobile nodes, tentative update transactions [49] can commit at a disconnected node. Tentative

commits may be aborted later due to conflicts when the hosts re-connect to servers, which requires
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reconciliation by an external user. In contrast to the above systems, Walter does not require burden-

some operations for manual repair or reconciliation. Mariposa [83] is a wide-area system whose

main focus is on incentivizing a site to run third-party read-only queries.

Database replication. There is much work on database replication, both commercially and aca-

demically. Commercial database systems support master-slave replication across sites: one site is

the primary, the others are mirrors that are often read-only and updated asynchronously. When

asynchronous mirrors are writable, applications must provide logic to resolve conflicts. On the

academic side, the database replication literature is extensive; here we summarize relevant recent

work. Replication schemes are classified on two axes [49]: (1) who initiates updates (primary-

copy vs update-anywhere), and (2) when updates propagate (eager vs lazy). With primary-copy,

objects have a master host and only the master initiates updates; with update-anywhere, any host

may initiate updates. With eager replication, updates propagate to the replicas before commit;

with lazy replication, replicas receive updates asynchronously after commit. All four combina-

tions of these two dimensions are possible. Eager replication is implemented using distributed

two-phase commit [27]. Later work considers primary-copy lazy replication and provides serial-

izability by restricting the placement of each object’s primary [33], or controlling when secondary

nodes are updated [29, 69]. Update-anywhere lazy replication is problematic because conflicting

transactions can commit concurrently at different replicas. Thus, recent work considers hybrids

between eager and lazy replication: updates propagate after commit (lazy), but replicas also co-

ordinate during transaction execution or commit to deal with conflicts (eager). This coordination

may involve a global graph to control conflicts [23, 31], or atomic broadcast to order transactions

[57, 70]. Later work considers snapshot isolation as a more efficient alternative to serializabil-

ity [36, 42, 43, 61, 72, 92]. Walter differs from the above works because they ensure a stronger

isolation property—serializability or snapshot isolation—which inherently requires coordination

across sites to commit, whereas Walter commits common transactions without such coordination.
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Federated transaction management considers techniques to execute transactions that span mul-

tiple database systems [76]. This work differs from Walter because it does not consider issues

involving multiple sites and its main concern is to minimize changes to database systems, rather

than avoiding coordination across sites.

Relaxed consistency. Some systems provide weaker consistency, where concurrent updates cause

diverging versions that must be reconciled later by application-specific mechanisms [39, 67, 86].

Eventual consistency permits replicas to diverge but, if updates stop, replicas eventually converge

again. Weak consistency may be tolerable [88], but it can lead to complex application logic.

Inconsistency can also be quantified and bounded [20, 53, 94], to improve the user experience.

Fork consistency [65] allows the observed operation history to fork and not converge again; it is

intended for honest clients to detect the misbehavior of malicious servers rather than to provide

efficient replication across sites.

Commutative data types. Prior work has shown how to exploit the semantics of data types to

improve concurrency. In [89], abstract data types (such as sets, FIFO queues, and a bank account)

are characterized using a table of commutativity relations where two operations conflict when they

do not commute. In [46, 77], a lock compatibility table is used to serialize access to abstract data

types, such as directory, set or FIFO queue, by exploiting the commutativity of their operations.

Because these works aim to achieve serializability, not all operations on a set object are conflict-

free (e.g., testing the membership of element a conflicts with the insertion of a in the set). As

a result, operating on sets require coordination to check for potential conflicts. In contrast, since

we aim to achieve the weaker PSI property, operations on Walter’s cset objects are always free of

conflicts, allowing each data center to read and modify these csets without any remote coordination.

Letia et al. [60] have proposed the use of commutative replicated data types to avoid con-

currency control and conflict resolution in replicated systems. Their work has inspired our use

of csets. Subsequent recent work [78] provides a theoretical treatment for such data types and
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others—which are together called conflict-free replicated data types or CRDTs—proposing suffi-

cient conditions for replica convergence under a newly-defined strong eventual consistency model.

While that work concerns replication of single operations/objects at a time, not transactions, one

could imagine using general CRDTs with PSI and our protocols to replicate transactions efficiently.

U-sets [78, 93] are a type of set in which commutativity is achieved by preventing a removed el-

ement from being added again. In contrast, csets achieve commutativity by augmenting elements

with counts. Csets are similar to Z-relations [52], which are mappings from tuples to integers, used

to allow for decidability of equivalence of queries in the context of query optimization.

Escrow transactions [68] update numeric data, such as account balances, by holding some

amount in escrow to allow concurrent commutative updates. By exploiting commutativity, such

transactions resemble transactions with csets, but they differ in two ways. First, escrow transactions

operate on numeric data. Second, escrow transactions must coordinate among themselves to check

the amounts in escrow, which does not serve our goal of avoiding coordination across distant sites.

10.2 Lynx

Distributed database. Pioneering work in distributed database, such as Gamma [41], Bubba [28],

R* [66], Teradata and Tandem [40], aim to the provide the same transactional update and query

interface that were well established in centralized database systems. Specifically, they support

distributed transactions through two phase commit [28, 41, 66] and employ a distributed dataflow

graph to execute a complex relational query across many machines [28, 40, 41].

Most modern day distributed databases position themselves as either data warehouses (an al-

ternative name is big data analytics engine) or OLTP (online transaction processing) systems [82].

Greenplum [6], Vertica [14], Aster Data [5] and ParAccel [9] fall in the first category and they opti-

mize for executing batched complex analytics queries, using techniques similar to those in MapRe-

duce [38], Dryad [54] or DryadLINQ [95]. LazyBase [34] optimizes data analytics by batching
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writes and updating materialized secondary indexes in epochs. H-store [55, 84] and VoltDB [15] (a

commercial variant of H-Store) are designed for OLTP workload. H-store is a main-memory dis-

tributed database supporting distributed transactions via two-phase commits [55]. Lynx targets at

web applications which share the same low latency requirement as OLTP workload. Unlike tradi-

tional OLTP systems, Lynx focuses on helping programmers optimize online read queries through

the use of denormalization, secondary keys, and materialized joins. Most web applications do

not need ACID guarantees to work correctly, thereby providing opportunity for Lynx to efficiently

update derived tables via DTCs.

Distributed NoSQL stores. Many recent systems achieve scalable performance by providing

a much simpler data model and query interface than relational databases, e.g. BigTable [32],

H-Base [7], MongoDB [8], Megastore [24], Dynamo [39], DynamoDB [21], PNUTS [35], Re-

dis [10], Cassandra [4], and COPS [62]. These systems have limited support for online queries.

None of them supports materialized joins or queries using pre-computed secondary indexes. For

some [8, 11], querying via a secondary key often involves contacting every server in the system.

The recent HyperDex store [44] offers efficient range queries over multiple attributes. By contrast,

Lynx does not support range queries across multiple partitions. Only a few NoSQL systems offer

more than local transactions: Sinfonia [19] provides mini-transactions and Percolator [71] pro-

vides distributed transactions with snapshot isolation. Neither systems are targeted at low latency

web applications.

Workflow Management [90]. The DTC primitive bears resemblance to workflow systems for

managing application workflows like travel planning or insurance claim processing. An application

workflow naturally consists of multiple activities, each of which executes as a transaction. Like

DTC, workflow systems guarantee that the series of activities are executed completely and exactly

once. Although DTC shares some similarity with workflow systems, its usage is quite different.

While workflow systems are meant to manage sophisticated application workflows, Lynx uses
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DTC to decompose a single logical operation for writing to a table and updating its derived tables

and denormalized data. Consequently, DTCs must also provide the ordering constraint in addition

to eventual execution in order to guarantee consistency.

Alternatives to ACID. The database community has done much work to explore weaker notions of

correctness than global serializability in distributed multidatabase systems [30]. The most related

piece of work is [46] by Garcia-Molina. He proposes dividing operations into a series of smaller

steps and uses compensating transactions to undo the effects of committed earlier steps. The

goal of his work is to allow users to exploit their semantic knowledge in an organized fashion

to enable more concurrency in the system. DTC is inspired by Molina’s work and pushes his

idea further: apart from compensating actions, DTC also provides the ordering constraint so that

non-commutative actions from different chains interleave correctly in the face of concurrency, an

important property for updating derived tables correctly. The idea of compensating transactions

also appears in [37, 51] as Spheres of Control (SoC) where problematic computations can be

automatically invalidated.
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Chapter 11

Conclusion

This dissertation presented two storage systems that were specifically designed and built to

address the requirements of large-scale web applications. Both systems, Walter and Lynx are geo-

replicated and employ a relaxed, yet relatively strong consistency model. The chosen consistency

guarantees of both systems allow the implementations to achieve high performance at large scale,

and make the development of web application on top the systems simple and rapid.

Walter is a transactional geo-replicated key-value store. A key feature behind Walter is Parallel

Snapshot Isolation (PSI), a precisely-stated isolation property that permits asynchronous replica-

tion across sites without the need for conflict resolution. Walter relies on techniques to avoid

conflicts across sites, thereby allowing transactions to commit locally in a site. PSI thus permits an

efficient implementation, while also providing strong guarantees to applications. We have demon-

strated the usefulness of Walter by building a Facebook-like social networking application and

porting a third-party Twitter clone. Both applications were simple to implement and achieved

reasonable performance.

Lynx targets intra-site scalability, in addition to geo-replication. It is a distributed database for

building scalable web applications. Lynx supports distributed secondary indexes and materialized

joins which help programmers optimize queries for low latency operation. Lynx maintains its de-
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rived tables using DTC, which executes a series of transactions at different nodes while guarantee-

ing fault-tolerance and correct interleaving. Lynx also exposes the DTC primitive to programmers

for maintaining other types of denormalized data in the application. Lynx provides the consistency

guarantee that denormalized data and derived tables are eventually consistent with each other. We

have demonstrated the usefulness of Lynx by building an auction service, a microblogging and a

social networking website.
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