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Abstract

The historic focus of Automatic Parallelization efforts has been limited in two ways.

First, parallelization has generally been attempted only on codes which can be proven

to be parallelizeable. Unfortunately, the requisite dependence analysis is undecidable,

and today’s applications demonstrate that this restriction is more than just theoreti-

cal. Second, parallel program generation has generally been geared to custom multi-

processing hardware. Although a network of workstations (NOW) could in principle

be harnessed to serve as a multiprocessing platform, the NOW has characteristics

which are at odds with effective utilization.

This thesis shows that by restricting our attention to the important domain of

“embarrassingly parallel” applications, leveraging existing scalable and efficient net-

work services, and carefully orchestrating a synergy between compile-time transfor-

mations and a small runtime system, we can achieve a parallelization that not only

works in the face of inconclusive program analysis, but is also efficient for the NOW.

We optimistically parallelize loops whose memory access behavior is unknown, rely-

ing on the runtime system to provide efficient detection and recovery in the case of

an overly optimistic transformation. Unlike previous work in speculative paralleliza-

tion, we provide a methodology which is not tied to the Fortran language, making it

feasible as a generally useful approach. Our runtime system implements Two-Phase

Idempotent Eager Scheduling (TIES) for efficient network execution, providing an

Automatic Parallelization platform with performance scalability for the NOW.

Our transformation divides the original program into a server and zero or more

clients. The server program is a specialization of the original application with each

parallel loop replaced with a scheduling call to the client which comprises the body



vii

of that parallel loop. The scheduler remotely executes the appropriate instances of

this client on available machines.

We describe the transformation and runtime system in detail, and report on the

automatic transformation achieved by our implementation prototype in two case

studies. In each of these cases, we were able to automatically locate the important

loops, construct a shared-memory layout, and generate appropriate server and client

code. Furthermore, we show that our generated parallel programs achieve near-linear

speedups for sufficiently large problem sizes.
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CHAPTER 1. INTRODUCTION 1

Chapter 1

Introduction

Parallel programming is not currently a matter for the uninitiated or faint of heart.

Application design, tuning, debugging and execution in the parallel world are today

orders of magnitude more painful and costly than their sequential counterparts, even

in application domains which are known to be “easy.” This chapter reviews current

practice, challenges it, and introduces a cheap, flexible, practical and fully automatic

method for extracting parallelism from “embarrassingly parallel” applications.

1.1 Parallel Programming Today

There have been a great many attempts to create languages and tools which facilitate

the ease with which parallelism in programs can be detected and expressed. Some

have ambitiously sought to build parallelizing compilers for automatic detection and

exploitation of parallelism in “dusty deck” Fortran programs. Although the best

of these efforts have borne some fruit, the techniques developed for this controlled

environment have often been found not to generalize to more modern languages.

Others, finding this vision wildly optimistic, have instead opted to design lan-

guages and interfaces which help programmers communicate the parallelism in their

applications to the compiler. These take the form of parallel looping constructs,

shared data annotations, data distribution annotations, assertions, partial evalua-

tion, and even very elaborate environments which enable a dialog of sorts to take
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place between the user and the compiler. The inherent problem with this approach

is that it depends more or less on the user to have a deep understanding of both

the general principles of parallelization (such as Data Dependence) and the specific

characteristics of his application in this regard.

In either case, the target platform for the parallelized program is not often within

the budget of the average consumer. The generated parallel program is usually tar-

geted to specialty multiprocessing computers, as these are held to be the only choice

which can offer significant speedups on automatically parallelized applications.

What is truly unfortunate about all of this is that we know that many of the

programs we want to parallelize are inherently parallel. That is to say, we know that

the algorithms which these programs implement lend themselves to straightforward

parallel implementation. For example, a ray tracing program computes the value

of each pixel independently of the value of any other pixel. In this and similar

cases, the specialty multiprocessor internode communication hardware becomes so

much baggage because processors do not stall waiting for data from other processors.

Therefore, even the modest communications infrastructure of the lowly NOW should

prove adequate to this domain. A more flexible solution using the NOW, then, while

not necessarily straightforward, is both practical and desirable.

1.2 A Different Set of Rules

Parallelization should be approached somewhat differently today than it has been in

the past. Traditionally, the goal of parallelization has been the optimal utilization

of multiprocessor resources acquired at great expense. More recently, it has become

possible to dynamically construct parallel platforms out of collections of machines

with idle cycles[ACP95]. This kind of platform can potentially provide vast computing

power at essentially no cost. The difficulty is in harnessing this power, which requires

special programming techniques for overcoming the special challenges which the NOW

presents.

In this context, optimality is no longer the main issue. If we could easily harness

NOW power at even suboptimal efficiency, this would be a significant improvement.
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Effective parallelization under these new assumptions entails the exploitation of highly

complex coarse-grained loops which are not in general amenable to static analysis.

This requires moving beyond traditional analyses to runtime parallelism verification,

where even a potentially expensive runtime technique can be justified under the new

rules.

1.3 Challenges of the NOW

The difficulty of parallelizing programs for the NOW is threefold: communication is

not cheap, faults and slowdowns are the norm and machines may join and leave the

computation at any time. Two-Phase Idempotent Eager Scheduling (TIES)[KPS90]

has laid the foundation for a program transformation methodology which enables

efficient utilization of the NOW despite these handicaps.

1.3.1 Distributed Shared Memory

The coordination of a parallel program running on a collection of processors requires

the communication of data values among the processors. It is generally agreed that

this communication takes place most straightforwardly through the use of shared

memory. This is easy to arrange on a multiprocessor because every memory location

has a unique id in the global address space.

On a NOW, however, a software layer called a Distributed Shared Memory (DSM)

must create the illusion of a physical global address space. This involves keeping track

of which pages are dirty, which processors hold a writable copy, and various other

details. Unfortunately, the high cost of communications on a NOW keeps the perfor-

mance low as compared with that obtained on a dedicated multiprocessor[JSS97].

1.3.2 Two Phase Idempotent Eager Scheduling

Traditionally, program parallelization begins with the division of a sequential ap-

plication into a series of alternating serial and parallel steps. Each parallel step is
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composed of a number of independent threads of control which can be executed simul-

taneously; for simplicity, we assume these are individual iterations of a parallelizeable

loop. While serial steps are executed locally, individual threads of parallel steps are

scheduled on available processors. When the last of these threads terminates, the

parallel step is itself finished.

This naive but popular approach is sufficient for dedicated multiprocessors where

individual processors are uniform and reliable. However, the widely disparate power

and load of different nodes on a network coupled with unpredictable slowdowns and

failures make this impractical for the NOW, as the running time for a parallel step

would always be dictated by the slowest processor. Worse, this might be a machine

which has completely failed, in which case the computation would have to time out

and be restarted.

The Two Phase Idempotent Eager Scheduling [KPS90] technique was created

to address these issues. Instead of assigning each thread to a unique machine, the

Eager Scheduling approach simultaneously assigns several copies of individual threads

to several machines to guarantee termination as long as at least one continues to

progress. The first of these to successfully complete the job has the results committed,

while the other machines running the same job are immediately freed up for other

work. However, running a job several times can produce incorrect results unless the

starting memory state is identical for each copy. To keep the execution of each copy

idempotent, or repeatable, this original memory state is preserved until the parallel

step successfully concludes.

Therefore, a parallel step is divided into two phases. The first phase involves the

division and scheduling of individual threads of the parallel step on the network. All

threads receive an identical starting memory image. Only after all threads have run

to completion is the global memory state updated in the second phase of the parallel

step. This scheme also minimizes communications within individual parallel steps

because the complete memory image for each thread is available at the start of a

parallel step.
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1.3.3 Embarrassingly Parallel Programs

Embarrassingly parallel programs are programs whose execution time is dominated by

a small number of coarse-grained parallel loops. Such applications arise in virtually

every domain of science, particularly in the context of simulations[Zom96].

It is critical to note that the lack of internode communication requirements within

the main loops of these programs is perfectly matched to the execution style of the

TIES methodology, in which no inter-iteration communication is offered. Although

this loop property is strictly speaking undecidable[Rep99], high-level information

about the application may still lead us to suspect that certain loops are both coarse-

grained and parallel. We will see that an optimistic approach can help us to extract

effective parallelism from these loops.

1.3.4 Calypso

Calypso[Bar99] is a language and a runtime system which implements the TIES

methodology. It extends C++ to include keywords which the programmer can use

to specify parallel program steps and annotate shared memory. The Calypso prepro-

cessor then transforms the program into valid C++ with library calls for shared data

handling and remote execution.

Although the Calypso system goes a long way in easing the development of par-

allel programs for the NOW, it is not a parallelizing compiler, and as such requires

significant effort on the part of the user. It is easy enough to insert annotating key-

words, but understanding which parts of an application lend themselves to parallel

execution frequently requires a deep understanding of the application as well as an

appreciation of the general principles of parallel programming. A loop should not be

parallelized unless it represents a coarse grain of the computation, but a misunder-

standing in this case merely causes system inefficiency. More critical is the need to

understand which loops are legal to parallelize, for a misapplied parallel directive can

cause unpredictable failures. Even after a correct parallelization has been chosen, it

can be quite difficult to track down every variable which must consequently reside in
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the shared data segment. Leaving out a needed shared annotation can also cause fail-

ure. Similar onerous programmer responsibilities have traditionally kept debugging

costs high and public interest low[CPW94].

Moreover, even if a programmer understands precisely which annotations must be

made, the mechanics of the transformation process may still prove quite challenging.

Since the Calypso system requires that all shared data declarations be contiguous,

some declarations will clearly need to be moved around. But arbitrary shuffling of

data declarations among source files introduces a host of problems, including:

• Data declarations may depend on type declarations which are scattered through-

out header files and/or recursively dependent on other declarations. It can be

difficult to localize a complete type definition for a variable, and, having done

this, transplant it to a different source file.

• Data initializations that depend on a particular order of variable definitions

within a source file may need significant recoding if variable definitions need to

be transferred to alternative source files.

• Name clashes may prevent the arbitrary moving of variables between different

scopes.

Therefore, although this option can produce efficient programs for widely available

multiprocessing platforms, such as the Network of Workstations (NOW), it is not an

easy road to travel. Furthermore, the work is never done, as updates to the serial

version will have to be periodically reflected in the parallel version. Because this

too is time consuming, it is not performed very often except for perhaps the most

important and popular of parallel programs. Consequently, it is common to find the

parallel version of an application drifting slowly into obsolescence.

1.4 Automatic Parallelization

Since we seek to apply the techniques of Automatic Parallelization to the domain of

Distributed Systems, we first discuss the general transformational issues which have
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been found to arise in the more traditional domain of dedicated multiprocessors.

1.4.1 Parallelizing Compilers

Some of the important automatic parallelizing compiler prototypes which have been

built include: McCAT[HDE+93], Panorama[NGL96], Parafrase[Leu90], PFC[AK87],

PIPS[CI95], Polaris[PEH+93], PTRAN[ABC+87] and SUIF[TWL+91]. In identifying

and exploiting parallelism, these systems generally rely almost exclusively on the

static analysis of data dependence relationships present in the original programs.

1.4.2 Data Dependence

Allen et al.[ACK87] describe the general conditions under which particular loops can

be automatically transformed to execute individual iterations in parallel. They show

that the memory access patterns of individual loop iterations must satisfy certain

conditions to admit a parallelization. In particular, if two iterations access the same

memory location and at least one of these accesses is a write, we say that a data

dependence exists, and some synchronization must be performed.

Data dependences fall into three categories, depending on the chronological rela-

tionship of the write access:

Flow Dependence An earlier iteration writes a value which is read by a later iter-

ation.

Anti Dependence An earlier iteration reads a value which is written by a later

iteration.

Output Dependence An earlier iteration writes a value which is also written by a

later iteration.

In fact, only flow dependence represents a real transfer of values between iterations

and it is for this reason sometimes referred to as a true dependence. The other

two dependences are classified as “memory related,” and can be satisfied through

a technique called privatization. This involves allocating individual copies of each
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int i, sum = 0;

for ( i = 0; i < 5; i++ )

if ( P() )

sum++;

Figure 1.1: Induction/Reduction Variables

variable which exhibits this dependence behavior to each loop iteration (or to each

processor if a single processor may execute several iterations). Tu and Padua[TP93]

describe a technique for automating this transformation.

A Dependence can be further classified as either loop-independent or loop-carried,

depending on whether it exists independently of any loop inside of which it is nested.

A loop-independent flow dependence does not inhibit any parallelization of the outer

loops because it will still be satisfied. Loop-carried dependences may inhibit paral-

lelization because the simultaneous execution of different iterations may leave them

unsatisfied.

1.4.3 Special Case Dependences

There are certain cases of dependence which arise even within nominally parallelize-

able loops. An induction variable is updated by a predictable amount on each loop

iteration. In this case, a closed form expression for the value on each loop iteration

can often be generated. A reduction variable, on the other hand, is updated by an

unpredictable value on every loop iteration; these variables are generally used for

statistical activity summaries. We can transform the way in which this statistic is

accumulated to prevent this from inducing a serial semantics on the loop.

Figure 1.1 shows examples of these two dependences. In the figure, i is an in-

duction variable because it depends only on the loop iteration number. In contrast,

sum is a reduction variable because it depends as well on the value of an (unanalyz-

able) predicate. In general, for reductions we must implement some kind of non-serial

combining strategy of the results computed at each iteration. The precise details will

depend on the nature of the combining operator and the stability of intermediate
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results. For example, it may be unwise to arbitrarily reorder reductions to a floating

point variable.

1.4.4 Dependence Analysis

Dependences which involve only scalar variables are trivial to detect simply by ob-

serving whether a loop contains one or more writes to any scalar. More complicated

are dependences which involve array subscripts. The traditional way of detecting

these dependences has been to compare each possibly overlapping array reference

with every other, within the context of the loop bounds and their respective sub-

script expressions[GKT91].

This approach has been problematic for a number of reasons:

• The number of references to each array tends to increase with application size,

and the quadratic asymptotic complexity of comparing every pair of references

scales poorly.

• Non-affine subscripts cannot be easily compared.

• Procedure boundaries can make reference pairs difficult to relate, sometimes

requiring elaborate value propagation techniques[Mas95].

To cope with these and other problems, array summarization techniques which

can represent the aggregate activity for a set of accesses have been proposed. To find

potential dependences, these summary sets can be much more quickly intersected

with one another than the corresponding individual dependence tests between each

pair of references can be performed. The following summarization techniques have

been proposed:

Bounded Regular Sections[CK87] Represent only rectangular, triangular and di-

agonal array sections precisely, but support efficient intersections.

Data Access Descriptors[Bal90] Represent only convex polyhedra whose bound-

aries are either parallel to a coordinate axis or at a 45o angle to a pair of axes.
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While this is a crude approximation to convex polyhedra, it does support an

efficient intersection.

Convex Polyhedra[AI91] Represent any affine constraints, but intersection oper-

ation (integer programming) is expensive.

Presburger Formulae[Pug94] Represent some non-affine constraints. Intersection

(Omega Test) can usually be done efficiently.

Lists of Polyhedra[CI97] Represent unions of convex polyhedra without introduc-

ing approximations. Intersection operation is even less efficient than for indi-

vidual polyhedra.

Guarded Array Regions[GLL97] Represent high-level constraints on accesses ex-

plicitly to ensure as little approximation as possible. Efficient intersection is

promoted through aggressive simplification of the high level representation.

Access Region Descriptors[PHP98] Represent extremely precise array region in-

formation through specification of strides and spans. Efficient intersection is

promoted through aggressive simplification of the high level representation; loop

analysis is kept efficient through the avoidance of dataflow iteration.

Thus we have steadily progressed to extremely effective array summarization tech-

niques based on ever more elaborate symbolic analysis. However, there are theoretical

and practical limits to the utility of symbolic analysis. The general flow-dependence

problem has been shown to be undecidable[Rep99], and in fact real-world programs

often fail to yield to our best symbolic analysis efforts. This is especially true of ap-

plications written in modern computer languages such as C and C++ where pointer

usage greatly complicates the analysis.

1.4.5 Insufficiency of Static Techniques

Static analysis, however useful, cannot completely address the analysis issues which

arise in complex, real-world applications. The brief program in Figure 1.2 demon-

strates why this is so. The main loop of this program may contain several different
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main( int argc, char *argv )

{

extern int *A;

for ( int i = 0; i < 5; i += argc )

A[i] = A[i+atoi(argv[1])];

}

Figure 1.2: Necessity of Runtime Analysis

types of dependences depending on the value of the runtime value of argv[1]:

• If it is between −5 and −1, there is a loop-carried flow dependence.

• If it is between 1 and 5, there is a loop-carried anti dependence.

• If it is 0, there is a loop-independent flow dependence.

Otherwise, there is no dependence. It is clear from this example that the sole

use of static analysis may not be able to provide sufficient information to permit

parallelization in all cases.

1.4.6 Runtime Parallelization

There are several different approaches to runtime parallelization. The most popular

is to derive conditions from the original program under which loop parallelization can

be proven legal. For example, in Figure 1.2 this would involve a runtime test on the

value of argv[1]. A serial or parallel version of the loop is then selected based on

the outcome of this runtime test.

However, it is not always easy to derive sufficient conditions on loop paralleliza-

tion from the source program. Therefore, some have used the strategy of deriving

“inspector loops” from the original program. These are just side-effect-free skeletons

of the original loop in which only address calculations are performed. If the inspec-

tor loop is considerably faster to execute than the original, it can be executed first,

and the pattern of memory accesses computed can then be used to allow or disallow

parallelization of the original loop.
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Unfortunately, this technique has its own drawbacks. For one thing, it may not

be possible to extract the necessary inspector loop in cases where a cycle exists in the

dependence graph for the loop[KM90]. Furthermore, even if no cycle exists, inspector

extraction for loops spread over multiple procedures can be impractical.

1.4.7 Speculative Parallelization

In still another approach, Rauchwerger and Padua[RP94] suggest that we go ahead

and parallelize loops with possible dependences and check for actual existence of these

dependences at runtime. Their technique, which they call “speculative paralleliza-

tion,” calls for the allocation of a shadow array for every array which might contain

a flow dependence. As elements in the original array are accessed, the shadow array

records the access type. When the parallel step is over, the access patterns of all

iterations can be compared to determine the existence of an actual flow dependence.

If the parallel execution turns out to be illegal, a backup copy of all shared memory

is used to re-execute the loop sequentially.

To prevent slowdown in the case where serial execution is necessitated, they further

suggest that a serial version of the loop be run simultaneously whose results can be

used in the case that the parallelization is found to be illegal; the remaining processors

are to be used for the parallel version.

However, this technique is formulated in a Fortran setting, where expressions

which access memory are relatively rigid. In C and C++, however, memory expres-

sions may be arbitrarily complicated and include autoincrement and autodecrement

side effects. The use of shadow arrays in this environment would cause significant

mangling of the code, potentially requiring the breaking up of expressions and the

introduction of temporaries. This reduces programmer recognition of and confidence

in the generated code[Ram98].

Also, because the technique is intended to apply to fine grained parallel loops

running on multiprocessors, it is realistic to perform the speculation on every program

run—after all, the cost of speculation is low. However, we target coarse-grained loops

for the NOW, where the high overhead of a parallel step is only justifiable when we
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are “reasonably certain” that there are in fact no unsatisfied dependences.

1.5 Introducing Practical Parallelization

This thesis presents a scalable, automated, network friendly technique, which provides

a practical approach to building parallel applications from embarrassingly parallel

serial programs. We avoid substantial overheads in the requisite DSM subsystem by

harnessing the efficiency and scalability of the Network File System (NFS)[PJS+94]

as our DSM subsystem. We sidestep the more stringent consistency requirements

which NFS does not fulfill by supporting only inherently parallel programs.

1.5.1 Incremental, Optimistic Approach

We first identify the application loops with significant potential parallelism. Out of

these, we disqualify loops which we can show statically not to be parallel. We then

transform the program into a parallel form in which the other loops are optimistically

parallelized. Simple source code transformations segregate variables that need to be

shared into a particular section of memory, from which they are easily communi-

cated to all participating computers through the facilities of a small runtime system.

Our transformation is robust because it preserves substantially all original program

structure, introducing only additional initializations and pointer indirections.

We have constructed a complex (10,000 lines) prototype parallelizing compiler and

a corresponding simple (100 lines) runtime system. The compiler performs the above

analysis and inserts calls to the runtime system for scheduling and shared memory

allocation and setup. We have used this system to fully automatically parallelize

two real-world embarrassingly parallel applications. Furthermore, we demonstrate

the scalability of our approach by showing that machine utilization improves with

increasing problem size.

Because our approach is optimistic, we may generate incorrect parallel code if the

semantics of the original program were not truly parallel. The current implementation

requires awareness of this possible misuse on the part of the user. However, we
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describe extensions to our technique which, with some additional runtime overhead,

will allow the system to detect at runtime whether a parallel model violation has

in fact occurred. Although the extent of this overhead has not been ascertained

through actual implementation, we argue that it should be minimal for our domain

of coarse-grained loops.

Although the actual occurrence of a violation will depend both on the input data

and on the configuration of the NOW on which the application is running, a partic-

ular parallelization may be “tested” over a number of varying inputs and machine

configurations, the size and breadth of which can ensure that the possibility of future

failures is minimized. Our transformation utilizes the underlying protection mecha-

nisms of the operating system rather than relying on particular language features to

detect runtime parallel model violations, ensuring language independence.

This incremental and optimistic approach is unique in that it respects the fact

that different users may use the same application in substantially differing ways,

and that the identical parallelization may not be optimal for all users. It views

parallelism as a simple application customization, done for particular users upon

demand and in the context of their particular needs. It supports fully automatic

parallel program generation which can proceed independently in several directions,

because all parallelizations are generated from the identical sequential source code,

merely respecting different constraints.

1.5.2 Client/Server Architecture

A sequential application is divided up into a server application, which contains all

the code outside of any parallel loop, and some number of client applications, which

contain the respective loop bodies of the parallelized loops. Calls to the scheduling

subsystem are inserted into the server application to replace each parallelized loop

to execute the appropriate iteration space of the relevant client application. Each

client application is constructed to accept a consecutive range of the iteration space

as well as the iteration step as input parameters. The comparison operator of the

loop termination condition need not be a parameter, as it is statically known from
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the structure of the original loop.

1.5.3 Shared Memory Segregation

Once the parallel loops have been chosen, a conservative estimate of all program vari-

ables which must be shared, including dynamic memory allocation sites, is generated.

All declarations and uses of these variables are modified to include an additional level

of indirection, and each declaration is initialized to point into the appropriate loca-

tion within the shared memory segment. This gives us complete freedom in shared

memory placement while at the same time respects the variable scoping of the original

program.

At runtime, this shared memory segment is mapped both to the server and all

clients through OS-level file-mapping primitives and NFS. At the server, the mapping

is with MAP SHARED, so that changes are immediately reflected in the global copy. At

each client, the mapping is MAP PRIVATE so that none of the changes to shared memory

are reflected in the master copy until the client concludes and explicitly returns its

changes to shared memory to the server.

1.5.4 A Small Example

Consider the program in Figure 1.3. The first order of business is locating the coarsest-

grained program loops. In our example, there is only one loop, so we consider this

for parallelization. We note that the loop body, line 8, references 3 variables. There

is obviously no flow dependence in the loop because the only variable written to, a,

has a different array element accessed on each iteration. Although g is referenced on

every iteration, the reference is only a read, which by itself does not create a flow

dependence. Also, note that the induction variable i is incremented linearly and is

not modified in the body of the loop. Therefore, this loop is parallelizeable in our

model. This program would be transformed to the version in Figure 1.4.

Figure 1.4 (a) shows the generated server program. We see on lines 1s-2s that both

g and a have been transformed to shared variables. They both have one additional

level of indirection and will both be initialized to point into the shared data segment,
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1: int g = 10;

2: int a[5];

3:

4: int main()

4: {

5: int i;

6: for ( i = 1; i < 4; i++ )

7: {

8: a[i] = g * i;

9: }

10: printf( "Series sum is %d.\n", a[1]+a[2]+a[3]+a[4] );

11: }

Figure 1.3: Input Program.

although at different offsets. (The parameters to the call to shcreate are the offset

and total size of the shared segment, respectively.) An additional complication in

the case of g is that it already had an initialization. Therefore, a dummy variable

1 is created to provide a slot where an initialization expression can be inserted into

the code immediately following the allocation of the shared memory for g, exactly as

would have taken place in the original sequential application.

On line 6s, the original loop has been replaced by a scheduling call which includes

the loop bounds, test, step and client application as parameters. Because i is an

induction variable, is is not treated as shared, but is specially handled within the

client.

Now we turn to the client1 code in Figure 1.4 (b). As in the server, the variables

g and a are initialized with a call to allocate shared memory, but since this shared

memory already exists at the server, it is not actually created, but the proper offset is

merely returned. This is why unlike in the case of the server, no shared data segment

size is given as an argument. Notice also that the original initialization of g, while

reconstructed for the server, is left out of the client. This is because the value of the

shared memory has already been initialized by the server.

The client program consists of a main function with initializations of the loop
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1s: int (*g) = (int *)shcreate( 0, 36 ), __1 = (*g) = 10;

2s: int (*a)[5] = (int (*)[5])shcreate( 16, 36 );

3s: int main()

4s: {

5s: int i;

6s: i = remotely_spawn( 1, "<", 4, 1, "client1" );

7s: }

(a) Server Code

1c: int (*g) = (int *)shopen( 0 );

2c: int (*a)[5] = (int (*)[5])shopen( 16 );

3c: int main( int argc, char *argv[] )

4c: {

5c: int i = atoi( argv[1] );

6c: int __limit = atoi( argv[2] );

7c: int __step = atoi( argv[3] );

8c: for ( ; i < __limit; i += __step )

9c: {

10c: (*a)[i] = (*g) * i;

11c: }

12c: write_pagediffs( argv[4] );

13c: }

(b) Client Code

Figure 1.4: Output Client/Server Program.
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bounds and step (lines 5c–7c), a loop header (line 8c), the transformed original loop

body (line 10c), and a concluding memory update operation (line 12c). The actual

arguments to the client are determined by the runtime system, depending on the

overall number of jobs and the number of available machines. At the conclusion of the

assigned iterations, the program determines which memory locations have changed,

and sends this information back to the server, which can then update the master

memory image for those iterations.

1.6 Achievements

Using a wide variety of techniques we have created a practical approach to the effective

utilization of the NOW as a general parallel programming platform:

• We devise a technique for quickly zeroing in on likely coarse grain loops.

• We develop an automatable transformation methodology for the co-location of

shared variables which preserves original declaration scope.

• We show that the DSM needs of our model are fully supported by the popular

and scalable NFS.

• We show how to generate customized server and client applications for the par-

allelization. This should scale better than the popular monolithic approach

of using the same program for the server and all clients, as used, e.g., in

Treadmarks[KDCZ94].

• We construct an implementation of our transformation and show that it provides

speedups of two real-world applications on the NOW, fully automatically.

• We devise a language-independent technique for the runtime verification of par-

allelization correctness which is efficient within our domain of coarse-grain par-

allel loops.
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• We show that this potentially sequential verification step can be done efficiently

through the appropriate division of the loop iteration space among available

machines.

• We propose a strategy for successive parallel program refinement to any arbi-

trary confidence level in lieu of perfect data dependence information.

• We advocate parallelism as a simple program customization which is informed

by the manner in which an application is actually used.

Although our transformed applications are targeted towards the low cost and

flexibility of the NOW platform, the parallelism we expose could equally as well be

exploited on more sophisticated hardware, for those who have it. Custom versions

of the server and client operations could even be developed to take advantage of the

specific features offered by particular platforms.

1.7 Outline of the Thesis

In Chapter 2 we explain the special significance of coarse-grained loops for paralleliza-

tion on the NOW. We then show how to quickly locate coarse grain parallel loops

through the construction of the Interprocedural Loop Level Graph, which makes the

interprocedural looping structure explicit. By examining this graph, we can easily

discover the outermost program loops, which are the most likely loops to provide

a coarse parallel grain. These loops are then cheerfully parallelized unless there is

obvious indication that this is illegal. Finally, Chapter 2 shows how the set of shared

variables can be conservatively estimated.

Chapter 3 describes our automatable methodology for the transformation of shared

variables. It shows how the runtime initialization feature of C++ makes the dynamic

allocation and initialization of shared memory possible.

Chapter 4 describes how we customize the generated program for NOW execution.

Unlike other parallelization systems which depend on various Distributed Shared

Memory or Message Passing libraries, we use only popular and scalable network
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services of NFS. We discuss the relevant runtime issues and explain the benefits of

our approach.

In Chapter 5, we report on performance improvements achieved in two actual

case studies of the use of our techniques. The first of these applications is a junction

detector, which is used to locate sharp features such as corners in images. The second

is a ray tracer, used to generate high quality graphical images. Both of these applica-

tions are inherently parallel because the information computed at one pixel does not

use the information computed at any other pixel. We benchmark the automatically

generated parallel versions of these applications on a variety of input data sets and

interpret the range of performance levels achieved.

The following Chapter 6 develops the final ingredient for a fully automatable par-

allelization. We show how speculative parallelization can be performed in a language-

independent manner based on the MultiView[IS99] fine-grain variable access protec-

tion technique. Because we need to audit data accesses at the element level, we

propose a more elaborate variable transformation which exposes every element to

access protection. We further show that while this technique may induce secondary

effects on the transformed program, it will terminate. Although this sophisticated

protection scheme engenders additional overhead, the cost of this overhead recedes

with increasing grain size. Moreover, we show how the complexity our final verifi-

cation step is a function of the number of machines rather than the number of loop

iterations, avoiding a potentially devastating sequential bottleneck.

Chapter 7 compares our work to that of others, gives direction for the future, and

summarizes our contributions.
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Chapter 2

Interprocedural Loop Analysis

The most fundamental issue in parallelizing a program is deciding what to parallelize.

We begin with a discussion of the special properties of coarse-grained loops which

makes their parallelization of critical importance for the NOW, and go on to examine

why exploiting this parallelism has traditionally been found to be difficult.

2.1 Significance of Coarse-Grained Loops

In general, parallelization of a sequential program is not possible without the intro-

duction of at least some overhead. In particular, the overhead in the setup of a parallel

step implies that the sum of the execution times of all processors participating in a

parallel execution will exceed the time spent in an equivalent sequential execution,

ignoring performance gains from memory hierarchy effects. The advantage of using a

specialty hardware multiprocessor is the minimization of this overhead through resort

to hardware communication functions optimized for speed. In this context, although

real execution time savings are possible even for individual executions of fine-grained

loops, coarse-grained loops are still preferred because they ensure a high ratio of work

to overhead.

On the NOW, however, this overhead is greatly pronounced, and completely over-

whelms the benefit of parallelizing a fine-grained loop. Therefore, the identification

and exploitation of coarse-grained loops is the only way of actually achieving real
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speedups.

2.2 Difficulty of Coarse-Grained Loop Identifica-

tion

Unfortunately, analysis difficulty increases with loop size. There are two reasons for

this: the analysis must cope with more information and therefore demands careful

optimization, and the analysis is likely to cross procedure bounds, which brings a host

of new issues into the analysis such as aliasing of parameters, recursive functions, and

more.

Although there has been significant success in intraprocedural analysis[Kuc96],

the field of interprocedural analysis is still in progress, with mixed results reported

across a wide variety of academic prototype efforts.

Therefore, our approach recognizes that some guesswork is inevitable in any practi-

cal parallelization scheme, and we focus our efforts on what we can do well: identifying

potentially parallel coarse-grained loops. Locating “correct” parallel loop candidates

requires an analysis which can assign some measure of computational cost to each

loop. We assume for simplicity that the entire program is available for analysis and

no recursive cycles are present in the Program Call Graph (PCG); Section 3.1 will

reveal the justification for the second of these assumptions.

2.3 Global Recursion Level Analysis

Constant Propagation[ASU86] increases program efficiency by replacing the runtime

evaluation of constant variables and expressions with the values of the constants

themselves. It is a useful and well-understood technique, but limited to the optimiza-

tion of expressions whose value never changes. Some program variables, while not

completely constant, tend to change very slowly, and updating the program text each

time the value changes can be more efficient than repeatedly fetching the value from

memory.
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Glacial Variable Analysis[AW97] is a staging analysis for computing the glacial-

ness, or infrequency of modification, of each variable. It begins with Global Recursion

Level Analysis (GRLA), which is an interprocedural analysis using the PCG and the

CFG (Control Flow Graph) of each procedure. The goal of GRLA is to assign stag-

ing levels which indicate relative frequency of execution to each block of code. Once

these levels are known, Glacial Variable Propagation uses the Static Single Assign-

ment graph to determine how frequently each variable changes.

GRLA uses the loop and procedure structure of the program to assign staging

levels. Reducible CFGs give rise to natural loops[ASU86], which are by definition

either disjoint or nested. Call graph analysis[CCHK87] reveals which procedures are

called from each loop; for programs that use function pointers, call graph construction

may proceed in tandem with alias analysis[BCCH97]. For simplicity, we assume that

this analysis succeeds in generating an unambiguous PCG.

We define the Loop Tree of a procedure as a root node plus one node for each

loop, with edges connecting each node to all loops which it directly contains. We also

define the Program Loop Graph as the graph obtained by adding a connecting edge

from each Loop Tree node to the root of the Loop Tree for each function called from

that node.

We construct a monotone dataflow analysis framework as a tuple D = < G, L, F >

of our Program Loop Graph G, lattice L whose elements are drawn from the set of

nonnegative integers with MAX meet, and monotone function space F ⊆ f : L → L

which increments the lattice value. GRLA begins the staging level assignment by

assigning zero at the root of the Loop Tree of the main procedure. The entire Program

Loop Graph is then traversed with every loop assigned a staging level one greater than

the loop in which it is nested, and with individual Loop Tree roots assigned the meet

of each of the loops from which it is called. The loops which are assigned the highest

lattice values are the most likely places in which the Value Specific Optimization will

be helpful.
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2.3.1 Inverse GRLA

We modify the above formulation of GRLA by starting the assignment of staging

levels at the leaves of the Program Loop Graph, which are each assigned level 0. The

stage level of each inner loop is one more than the meet of each of its constituent

loops; in the case of a root Loop Tree node, it is precisely the meet of the staging

levels of all inner loops. When the staging levels have been assigned, the coarsest

grained loops will be the ones with the highest lattice values.

In general, this analysis will discover a number of “main” functions if there are

several unused functions included in the program, which is usually the case. Although

it is possible to distinguish the real one by matching to the main identifier, this would

prevent application of the system to the parallelization of libraries. A truly general

solution simply takes the highest-labeled function as the main function. This works

as long as the loop depth of the unused code is lower than the loop depth of the main

program—probably a safe assumption.

The structure of the chosen main function is then examined. In general, it will

consist of a sequence of statements, function calls and loops. Individual statements

and low-numbered function calls and loops (below a parallel-practical threshold) are

ignored. Loops with high level are considered for parallelization, and functions with

high level are recursively examined. In this manner the main function is (recursively)

divided up into an alternating sequence of sequential code and parallelizeable loops.

2.4 Program Loop Level Graph

The Program Loop Level Graph is a graphical representation supporting visualization

of the preceding dataflow analysis. It extends the Program Call Graph to make loop

nesting explicit. By traversing this graph we can efficiently assign a loop-nesting

level to each loop of each function, and we assume that the highest of these are the

coarsest grain loops. Although this is merely a heuristic, experience has shown that

this technique works well in practice.

Finding the most expensive program loops involves two major steps: assigning
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SetNests( Loop loop, bool nest )

{

int funcs = 0, nests = 0;

for ( i in loop.calls )

funcs = max( i.loop.nesting, funcs );

for ( i in loop.inner )

{

SetNests( i, true );

nests = max( i.nesting, nests );

}

loop.nesting = max( funcs, nests ) + nest;

}

Figure 2.1: Nesting Level Algorithm.

loop levels to each loop, and finding the maximum of these over the entire program.

The following subsections explore the algorithms for each of these tasks in detail.

2.4.1 Assigning Nesting Levels

Figure 2.1 shows the interprocedural nesting level algorithm. It assumes that each

loop is initialized with the following data elements:

• A list of inner loops, generated using perhaps the dominator-based techniques

of [ASU86].

• A list of defined functions called from within the loop (but not subloops). (We

assume that undefined library functions do not contribute significant loop nest-

ing to the program. If this is not the case, a dummy function of the same name

can be defined to mimic the expected loop nesting of the library call.)

Every function contains a nominal “outer loop” with nesting level of 0, which

does not imply looping semantics, but is just a container for the function body.

The algorithm begins by taking the maximum loop nesting level of all functions

called within the loop. Then for each inner loop, it calls itself recursively to find the
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FindCostly( Loop loop, int threshold, Loops costly )

{

for ( i in loop.lcalls )

if ( i not a recursive call )

FindCostly( i.loop, threshold, costly );

for ( i in loop.inner )

if ( i.nesting > threshold )

costly += i;

}

Figure 2.2: Costly Loop Identification Algorithm.

maximum loop nesting level over all inner loops. Finally it assigns the loop nesting

level as the maximum of the function nesting level and the inner loop nesting level,

with one added if this is a recursive call (signifying an actual inner loop as opposed to

a “nominal” outer function loop). The SetNests function is applied to each function

separately in reverse topological order based on the call graph, with leaves done first.

2.4.2 Locating the Costliest Loops

The costliest loops will naturally be called from the main function—the function with

the highest nesting level for its nominal “outer loop.” Finding the costliest loops,

then, requires merely locating all top-level loops called from this main function, with

perhaps some selection of the “better,” more deeply nested ones. The algorithm is

given in Figure 2.2.

The algorithm checks for recursive cycles in the call graph and does not follow

them. This is fine because our model does not consider loops in recursive functions for

parallelization, as mentioned above. For every other loop call, it calls itself recursively

on the function’s outer loop. At the bottom level of the recursion, all 0-level outer

function loops have been explored, and the algorithm simply checks every inner loop

of every function loop and returns the ones which exceed some nesting threshold; a

good heuristic based on empirical evidence seems to be to consider all outer loops

with nesting level within 2 units of the maximum level found at the outer loop of the
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main function.

It is easy to see that each of these algorithms visits each program loop and function

call no more than once, and therefore are both linear in the size of the program.

2.5 Nominal Parallelizeability Test

Each coarse grained loop is then analyzed for parallelizeability. This involves minimal

testing for this non-exhaustive list of disqualifying conditions:

• Input operations or other operating system calls

• Termination conditions which are inherently sequential (often true of while

loops)

• Premature loop exit conditions

• Non-local transfers of control such as longjmp or C++ exceptions

• Obvious loop-carried flow-dependence, using perhaps the scheme of [GKT91]

• Obvious allocation of memory without corresponding deallocation

Notice that loop-carried output- and anti-dependences do not disqualify a loop,

because these are memory-related and each iteration will use a private copy of the

shared memory. Notice also that as special cases of reductions, file appends are

permitted within a parallel loop.

Loop-carried flow dependence can not in the general case be checked statically, but

in Chapter 6 we devise a technique for performing this check efficiently at runtime.

Non-matching allocation/deallocation pairs are easily checked by keeping records of

each of these operations at the client and making sure they match up at client termi-

nation.

If the program depends on library functions only available in object format, we

must find an alternative method of communicating pertinent details of their operation

to the parallelizer. This is done through the compilation of lists of standard library
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functions and noting whether or not they maintain state. If so, then their presence

in a loop may invalidate any parallelization.

As an aid to the user, we can also indicate which loop was a desirable parallelism

candidate and why it had to be disqualified. This is a very effective strategy because

it quickly focuses attention to the most important loops in the program and their

problems, instead of making the user decide without any guidance which loops should

be parallelized. It should then be a fairly easy task for the user to remove or modify

the offending code.

At the end, we arrive at the maximal set of parallelizeable coarse-grained loops

present in the input program. We accomplish this in a simple two-phase algorithm:

first bottom up, assigning labels to loops and functions, and then top-down, finding

the largest-grain parallelizeable loops. This procedure is very efficient, and focuses

attention quickly on the loops of interest.

2.6 An Example

Consider the standard matrix multiplication program in Figure 2.3. This program

contains several loops, the most important of which is contained in mmult(). Our

Interprocedural Loop Level Analysis applied to this program yields the Loop Level

Graph displayed in Figure 2.4.

The nodes srand48, drand48 and printf represent undefined library functions,

and as such are not assigned a level or considered in the analysis. For all the other

nodes, the number in parenthesis represents the loop level. The nodes main, mmult,

print and randomFill represent the nominal “outer loops” of their respective func-

tions. All other nodes represent actual loops, and the reader will observe that every

additional loop nesting raises the level by one. Each of the functions mmult, print

and randomFill are assigned the same level as the (single) loop they contain; main

is assigned the maximum level of all loop levels which it encloses.

Now that we have shown how to identify the loops of special interest for paral-

lelization, we turn to finding a conservative estimate of the set of shared variables

which are associated with the parallelization of individual loops.
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void randomFill( float M[SIZE][SIZE] )
{

for ( int i = 0; i < SIZE; i++ )
for ( int j = 0; j < SIZE; j++ )

M[i][j] = (drand48() - 0.5) * 1000.;
}
void print( float M[SIZE][SIZE] )
{

for ( int i = 0; i < SIZE; i++ )
{

for ( int j = 0; j < SIZE; j++ )
printf( "%f\t", M[i][j] );

printf( "\n" );
}

}
void mmult( float A[SIZE][SIZE], float B[SIZE][SIZE], float C[SIZE][SIZE] )
{

for ( int i = 0; i < SIZE; i++ )
for ( int j = 0; j < SIZE; j++ )
{

C[i][j] = 0.;
for ( int k = 0; k < SIZE; k++ )

C[i][j] += (A[i][k] * B[k][j]);
}

}
void main( int argc, char *argv[] )
{

float A[SIZE][SIZE], B[SIZE][SIZE], C[SIZE][SIZE];
srand48( 0 );
randomFill( A );
randomFill( B );
mmult( A, B, C );
printf( "Matrix A:\n" );
print( A );
printf( "Matrix B:\n" );
print( B );
printf( "Matrix AxB:\n" );
print( C );

}

Figure 2.3: Matrix Multiplication Program.
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mm.c:21:  (1): j < SIZE

drand48

mm.c:20:  (2): i < SIZE

mm.c:17:  (2): randomFill

mm.c:28:  (1): j < SIZE

printf

mm.c:27:  (2): i < SIZE

mm.c:25:  (2): print

mm.c:37:  (2): j < SIZE

mm.c:39:  (1): k < SIZE

mm.c:36:  (3): i < SIZE

mm.c:34:  (3): mmult

mm.c:45:  (3): main

srand48

Figure 2.4: Interprocedural Loop Level Graph.
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LoopRefs( Loop loop, Set refs )

{

refs += loop.lrefs;

for ( i in loop.inner )

LoopRefs( i, refs );

for ( i in loop.lcalls )

LoopRefs( i.loop, refs );

}

Figure 2.5: Finding Variables Referenced in a Loop.

2.7 Interprocedural Shared Variable Identification

Once the parallelizeable loops have been nominally identified, it may or may not be

simple to identify the variables which must be shared. In particular, variables which

are found to occur textually both within a parallel loop body (and its callees) and

elsewhere are obviously shared. More subtle are the cases of addressed variables and

heap memory, which could be accessed in ways which the source code does not clearly

reveal. A simple, conservative approach is to label all instances of these memory

genres as shared memory, unless proven otherwise.

The algorithm in Figure 2.5 shows how to find the nominal set of variables refer-

enced within a parallel loop candidate. It assumes the loop-level analog of classical

REF sets for functions—the set of variables referenced within particular loops. It also

assumes precomputation of the set of functions called from within each loop.

This algorithm is called on each parallel loop candidate. For each of these loops,

it adds locally referenced variables, plus the results of calling itself recursively on each

of its inner loops and the nominal “outer loop” of each of the functions which it calls.

Where recursion is present, the algorithm does not follow the backedge of the cycle,

although this detail is omitted from the figure for simplicity.

To the set of all variables which are explicitly mentioned inside parallel loops we

can add all variables which are addressed anywhere in the program, unless it can be

proven that the address never crosses a parallel loop boundary.

Of these variables, we select only the ones which are live outside of the loop body.
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This includes variables from global scope, variables which are static (even though

they may be local to a function called only inside of the loop), and stack variables

which are declared in the same function as the loop, but lexically scoped externally

to it. All of these shared data elements are collected and placed in a single shared

memory area.

The running time for this algorithm is at most linear in the size of the program,

because each program loop is visited at most once.

With a conservative estimate of the set of potentially shared variables in hand, we

turn in Chapter 3 to a demonstration of how we can use this information to transform

these variables in a uniformly automatable manner, providing the semantic means to

implement shared memory efficiently on the NOW.
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Chapter 3

Shared Memory Segregation

Because it is difficult to keep a DSM system simple and efficient if it must manage

an unlimited number of tiny shared memory segments, it is customary to aggregate

all shared data into a single place. Unless a programmer has designed his application

from the ground up with parallelism in mind, this shared memory segment will be

composed of shared variables which are arbitrarily scattered across the application.

There are three important memory categories:

1. Application Local This memory is not accessed within any parallel step.

2. Shared This memory is accessed both within and outside of one or more parallel

steps.

3. Thread Local This memory is accessed only within a single thread of a parallel

step.

The second category, shared, represents the memory state which must be preserved

to support idempotence of individual jobs.

These shared variables are of several general classifications:

• Global to all source files.

• Local to a particular file.
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• Local to a particular function (to use C terminology, these are generally static,

but may be auto if they appear within the text of a parallelizeable loop, but

are declared outside of the loop).

To comply with DSM semantics, then, it is necessary to collect all of these variables

into a single contiguous shared data segment. There are generally two ways in which

this segment is assembled.

The first scheme, typical of most DSM systems, is to have the program request

allocations from a shared memory segment at runtime. These can naturally come

from whatever address the DSM finds convenient. Unfortunately, this is problematic

in that it calls for the programmer to use shared memory in ways which are unnatural.

In particular, the memory may not be able to be initialized in file scope together with

ordinary program variables because the program must first make a call to initialize

the DSM subsystem. Furthermore, gratuitous indirection syntax may be necessary

at every variable usage. However, this method does give the programmer complete

control over where and when the shared allocations are made.

The second scheme is to force the programmer to manually relocate all shared

variables to a single defining block in the source program. In Chapter 1 we pointed

out some drawbacks of this approach.

This chapter describes a technique that combines the advantages of both of these

schemes. We devise a program transformation which adds an extra level of indirection

to each shared variable declaration and usage, and in this manner is able to maintain

the scoping semantics of the original program while providing freedom for the DSM

to place the shared variables all together in a single memory segment.

3.1 Shared Memory Layout Scheme

A completely general scheme for shared memory layout cannot entail any variable

reshuffling at the source code level. A simple way of avoiding this reshuffling is to

add one level of indirection to each shared variable declaration. Consider, for example,

the declarations in Figure 3.1(a). Suppose the program analysis finds that the array
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int i;

int A[3]; // shared var

int j;

Local

i
A[0]
A[1]
A[2]

j

(a) Original Program

int i;

int (*A)[3];

int j;

Local

i
A
j

(b) Indirection Transformation

int i;

int (*A)[3] = (int(*)[3])shcreate();

int j;

Local
Shared

i
A
j

A[0]
A[1]
A[2]

(c) Initialization to Shared Memory

Figure 3.1: Shared Variable Transformation
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A needs to be shared. In order to keep the variable in its original scope while at the

same time maintain the freedom to position the memory somewhere else, we simply

add one level of indirection to the declaration, as shown in Figure 3.1(b).

However, there are several issues which must be addressed for this to be a general

solution. For one thing, how is this variable-cum-pointer initialized? And what if

the variable already had its own initialization, how is the ultimate target in shared

memory initialized?

We handle the first of these problems by turning to an especially opportune feature

of the C++ language, runtime initialization. Classical C places restrictions on the

content of variable initialization expressions for all global (or static) data. Specifi-

cally, initialization expressions must be compile-time constants. This is presumably

because in classical C these initializations were actually performed on the executable

file image of initialized memory at compile time.

C++, on the other hand, provides a great deal more flexibility by deferring these

initializations until runtime, and thereby being able to support arbitrary expressions

as initializers. Capitalizing on this, we immediately initialize all shared variables at

declaration to point to the area of shared memory which is returned by our static

shared memory allocation function, shcreate(), as shown in Figure 3.1(c). (The

inner workings of shcreate() are explored below.)

At this point, we know how shared memory is allocated and initialized. Now we

turn to variable initializations. Consider the initialized variable y in Figure 3.2(a).

Notice that the declaration of z uses the initialized value of y, so if we are to completely

follow the original program semantics, we must provide a way of initializing this

variable at declaration, just as in the untransformed code.

We do this by introducing dummy variables, such as 1 in Figure 3.2(b). Because

the initialization syntax supports arbitrarily complex expressions, we can chain the

shared memory location (*y) in a series of assignments which terminates with the

dummy variable. Although this does introduce extra baggage into the source pro-

gram, in practice most compilers will probably notice the uselessness of the garbage

declaration and ignore it, other than to perform the visible side effects we intend.

This initialization trick works just as well for aggregates, as shown in Figure 3.3.
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int x; // shared var

int y = 5; // shared var

int z = y * 2;

Local

x
y = 5

z = y * 2

(a) Initialized Shared Scalar

int (*x) = (int*)shcreate();

int (*y) = (int*)shcreate(),

1 = (*y) = 5;

int z = (*y) * 2;

Local Shared

x
y

__1 = 5
z = (*y) * 2

(*x)
(*y) = 5

(b) Initialization after Sharing Transformation

Figure 3.2: Scalar Initializations

Even C++ classes with constructors can be supported under this scheme, with judi-

cious use of the placement new operator, which is designed exactly for this purpose:

to direct the allocation to a particular shared arena[Str97].

Every shared variable can be initialized consistently in this manner except for

procedure parameters. Since there is no parameter initialization, shared parameters

must be augmented with an additional indirect declaration within the function body,

which can then be initialized normally and assigned the actual parameter value. The

indirect version is then substituted for all uses of the parameter.

Stack variables may be shared, but the only stack variables for which this this is

possible are the ones in functions which contain parallel loops. By replacing these

shared stack variables with indirect references to a particular address in shared mem-

ory, we are implicitly changing the semantics to static. This will not affect program

correctness unless the containing function is called recursively. For this reason, loops

which are contained in a function which participates in a call graph cycle are not

considered for parallelization, and call graph cycles were ignored in the loop level
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struct agg { int i; char c; };
struct agg y = { 1, ’d’ }; // shared aggregate

Local

y.i = 1
y.c = ’d’

(a) Initialized Shared Aggregate

struct agg { int i; char c; };
struct agg (*y) = (agg*)shcreate(),

1 = { (*y).i = 1, (*y).c = ’d’ };

Local Shared

y
__1.i = 1

__1.c = ’d’

(*y).i = 1
(*y).c = ’d’

(b) Initialization after Sharing Transformation

Figure 3.3: Aggregate Initializations

analysis of Chapter 2.

As shown in the initialization examples, an indirection operator is inserted into

every use of a shared variable. This scheme even works when shared variables are

addressed as the address operator and dereference operator simply cancel each other

out, and the pointer value itself is returned.

We now have the tools we need to develop an automated transformation method-

ology for shared variables, unburdening the programmer from one of the headaches

which must otherwise be endured before a parallel program can be generated. The

next section shows an allocation scheme for the shared memory which is network-

friendly.

3.2 Shared Memory Management

We capitalize on widely available network services by modeling the capabilities of our

system on available system services, instead of the other way round. NFS is a widely

available protocol for file sharing which, due to its popularity, is likely to be among

the best tuned and most scalable network services available (although in Chapter 5



CHAPTER 3. SHARED MEMORY SEGREGATION 39

we will point out a notable exception to this premise). Likewise, file-mapping kernel

primitives are likely to be fast. We combine these two technologies to obtain a runtime

system which is a good fit for our application domain and our chosen platform, and

which capitalizes on the shared variable transformation we have developed above.

As described more fully in Chapter 4, we are developing a client/server model

of parallelism where the server is the transformed application program, and each

parallelizeable loop has been encapsulated within a client “mini-app.” As this mini-

app is parameterized by loop iteration count, as many independent copies of it as is

desirable may be spawned at runtime on all available machines. To provide a common

shared memory image between the server and all clients within a given parallel step,

we encapsulate all shared data into an NFS-mounted file and map it at both the

server and all clients. Through this simple technique, we obtain a highly efficient and

extremely portable implementation of Distributed Shared Memory.

3.3 Static Shared Memory

We have seen that given a set of parallelizeable loops, we can compute a conservative

upper bound of which variables may actually be used within the loop. Knowing this,

we can precompute a shared memory layout, and use it to determine the precise offset

in the shared memory segment where each shared variable will ultimately reside.

In all of our examples of shared memory initialization above, we have omitted for

simplicity the parameters to the shcreate() call. We supply an offset parameter

as argument to each of these allocations. The first time this functions is called, it

allocates the entire segment; subsequent calls simply dole out the various pieces of it

to initialize the appropriate variables.

Since the first call must know the size of the entire shared memory segment, we

must include this as a parameter to the first call. Unfortunately, we cannot in general

know which is the first call, because there may be global initializations in separate

source files for which no platform-independent initialization order exists. Therefore,

we simply tack on the data segment size to every call to shcreate().

On the client side, the corresponding shopen() function performs a similar task,
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returning the appropriate offset into the same shared memory file (through the magic

of NFS and memory-mapped files) for each shared variable.

If memory allocations are present which cannot be proven not to allocate memory

which must be shared, these will be redirected to call shmalloc(), which returns

available space from a preallocated heap area in the shared data segment. Only

programs which actually use this feature will pay the (slight) overhead which the

reservation of large amounts of shared memory space implies. Furthermore, because

of the simplicity and efficiency of the runtime system, “over-engineering” and us-

ing shared memory where not absolutely necessary should produce only a negligible

performance hit.

Calls in the server application that free memory are replaced with calls to shfree(),

which can perform the appropriate action within the shared memory segment if the

argument is determined to refer to the shared data segment, else to pass the call right

on to free().

On the client side, there is no special processing required for dynamic memory

management, other than to ensure that there is no attempt to retain pointers to

memory allocated inside a client on return to the server. This entails disqualifying

the loop from further parallelization attempts if some mismatch is found between the

malloc and free call records at client termination.

3.4 Memory Mapping

On the server side, the shared memory file is mapped using MAP SHARED, because

all clients initialize their shared memory segments by mapping in the same memory

file and need to be able to see all updates to the shared memory which precede the

parallelized loop invocation.

In order to perform the identical mapping on the client side as on the server side,

the client must know the name of the shared memory file and the address to which it

was mapped. Moreover, these pieces of information cannot be passed as arguments

to the client application, because data definitions may be global—indeed may occur

in an entirely different source file than the client’s main().



CHAPTER 3. SHARED MEMORY SEGREGATION 41

Therefore, we use the two environment variables $MEM FILE and $MEM ADDRESS to

communicate these values. On the first call to shopen() the filename contained in

$MEM FILE is mapped to the address in $MEM ADDRESS. Since this address was available

for mapping on the server side, it is likely to be available to the client as well, and

our experience has borne this out.

At the client, the shared memory is mapped using MAP PRIVATE, because, as we

will explain in Chapter 4, client execution must remain idempotent and can therefore

not be allowed to write directly into the shared memory space. Furthermore, the

memory is write-protected, and a handler unprotects the particular pages which are

written to, while storing the page addresses in a dirty page list.

3.5 Static Sizing of Shared Memory

Our approach to shared memory services is simple, automatic and potentially widely

applicable. While there are many obvious benefits to this approach, here we mention

one which is more subtle.

As shared memory is requested, the size of the shared data segment increases.

When the sizes of all requests are unknown in advance, there is a need for dynamic

resizing of the entire segment, which involves unmapping and remapping to the larger

size. One source of difficulty is that the operating system may choose to remap

the memory at a different address than before, which would invalidate all current

references to it. This problem has driven many DSM systems to preallocate a large,

fixed size data segment in spite of the attendant loss of flexibility. This is why users

of CVM[Kel95], for example, find 40 megabytes of swap space consumed by each

application, regardless of size.

Because we can determine the size of static shared data at compile time, however,

we can cap the size of the shared data segment when no calls to shmalloc() are

necessary, and preallocate a segment of only that size. This cannot be done in systems

such as CVM in which all allocations to shared memory, whether static or dynamic,

are treated identically.

The next chapter will present a runtime system that uses these techniques on the
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NOW.
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Chapter 4

Runtime Support

As we mentioned briefly in Chapter 1, we generate one server program and one or

more client programs. The server contains all application code except for parallelized

loops, for each of which one client application is constructed.

In place of each parallel loop, the server has a call to a scheduling module with the

loop bounds, step and client application name as arguments. The scheduler eagerly

schedules some number of instances of the client on available machines, updates the

memory with the computation results, and returns control to the main application.

4.1 NFS as DSM Server

Interestingly enough, we have found that native NFS facilities in conjunction with

kernel-level memory-mapped files can supply all our shared data handling needs. This

departs from some earlier studies of the suitability of NFS as a DSM server. In fact,

Minnich has even developed his own souped up version of NFS, Mether-NFS[Min93a],

which fills the gaps in NFS to make it a powerful communication and synchronization

subsystem. Minnich points out that NFS was not designed to support shared memory,

and presents several compelling arguments for the necessity of a more powerful drop-in

replacement:

• NFS client code does not differentiate between read and write faults.
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Figure 4.1: Splitting the Iteration Space

• NFS server code does not ensure that only one process is writing a page at a

time.

• No coherence is available.

• More than one page size is needed.

• A mechanism for delivering a writable copy of a page to holders of read-only

copies is needed.

• A mechanism for direct application-to-application synchronization is needed.

While these points cannot be denied, they come from an application-centric mind-

set: This is what my program needs. How can we provide it?

DSM subsystems are constructed for the purpose of bringing shared memory mul-

tiprocessor semantics into the network setting, whatever the cost. The NFS protocol

was, naturally enough, designed to do precisely what can be done well on a network.

To get the best performance out of network parallelization, we have taken this lesson

to heart and said instead: This is the style of parallel programming the NOW can

support efficiently. How can we use it?

4.2 Iteration Space Partitioning

We partition the iteration space to ensure a number of different grain sizes are present,

and that the larger grains cover earlier iterations than the later grains. This scheme

is graphically depicted in Figure 4.1. A range of grain sizes ensures a proper balance

between the conflicting goals of minimizing overhead and achieving a proper load bal-

ancing. Minimizing overhead calls for large grains, while a smaller grain size supports

better load balancing. Henceforth, a computational grain will also be referred to as

a job.
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We start every machine with a good sized chunk of work which is estimated to

keep it busy for some fraction of the ultimate duration of the parallel step. Some

machines will finish faster, and can be given the remaining smaller chunks in the

remaining time of the parallel step. Others will remain occupied, and perhaps be

overtaken once all of the smaller jobs have been finished.

We specify that the larger grains be comprised of earlier iterations in the iteration

space so that we can subsequently overlap the incorporation of the results of these

iterations with the computation of later iterations. This is particularly important in

circumstances in which the updates to global state must be performed in a particular

order, such as when the standard output of each iteration must be collected into an

overall output stream for the loop.

To support file appends within a parallelizeable loop, we store these appends in

temporary files until one of the client copies successfully completes, and then only

after all earlier grains of the loop have also been completed and the corresponding file

appends performed can we perform the file append of the most recently completed

grain. Task copies are prevented from interfering with the files of other copies by

including the copy number in all temporary file names.

4.3 Page Diffs

The write pagediffs function is called at the client right before exit. It loops

through the list of dirty pages populated by the write-protect handler and compares

the values byte by byte with the values in the corresponding shared memory file pages.

The new values, along with corresponding addresses, are written to a temporary diff

file, which is specified to each client on the command line. This file, of course, is

also named by job and copy number, so that different copies of the same job do not

interfere with each other.
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4.4 Job Flushing

We have seen that larger chunks of work must be scheduled before smaller ones. We

further insist that larger chunks be associated with earlier iterations. This lends

efficiency to the system by allowing us to commit successful jobs concurrent with

scheduling, rather than delaying all updates until the successful completion of the

last loop job.

Upon successful completion of each job, then, we loop through the entire job list.

Jobs may be classified as “done” and “flushed.” All jobs which have already been

flushed are skipped over. Jobs which are not done break the loop. All other jobs

encountered in job list are marked flushed and the corresponding commitments are

performed. This entails concatenating temporary output files to the appropriate out-

put stream, updating a second copy of the shared memory with the changes recorded

in the client-side diff, and deleting the corresponding temporary files.

Besides the efficiency advantages, this scheme has the practical benefit of pre-

serving file system space by not requiring simultaneous storage of all intermediate

results. This is important for programs whose output cannot fit into available file

system space, such as those writing to a pipe.

We have constructed a prototypical implementation of the system as we have de-

scribed it here, and tested it on two example programs. The next chapter, Chapter 5,

describes these case studies in detail, reports on performance achieved, and interprets

the results.
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Chapter 5

Case Studies

The previous chapters of this thesis have described an integrated system for the trans-

formation, scheduling and execution of embarrassingly parallel programs on networks

of workstations. In this chapter we present two applications which have been trans-

formed using these techniques, and report on observed performance. Only optimistic

parallelization has been implemented, so for this study we have chosen applications

whose main, coarse-grained loops are known to be parallel.

The first application is Kona[PGH97], an image-processing application written

by Laxmi Parida which detects junctions. The second is Gk, a ray-tracing applica-

tion written by George Kyriazis. Each of these presented particular challenges, as

described below.

5.1 Methodology

Tests were run on a 17 machine network of 200 Mhz Pentium Pros running Linux

2.0.3, interconnected with a 100 Mbps Ethernet through a non-switched hub. The

network was isolated to eliminate outside effects.

One of the machines was reserved for execution of the server application, while

from 1 to 16 machines were used for the “mini-apps” of each parallel loop. All our

performance timings represent the average value of five identical runs. The server

machine is not considered in the graphs of our performance results.
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For each application, we show the effects of problem size on utilization by using

a range of different problem sizes. Because our applications read or write pixels, we

accomplish this by varying the number of pixels read or written.

5.2 Case 1: Kona

Kona processes a given rectangular portion of an image, dividing the local neighbor-

hood of each pixel into a particular number of pie slices, or spokes. It computes the

average intensity of each spoke, and finds a best-fit set of line segments to match to

these intensity levels. These lines are then matched to precomputed junction tem-

plates to locate image features.

The Kona application consists of 5 source files:

main.c, 7 lines This file contains the main function, but all it does is call a workhorse

driver function.

read raster.c, 141 lines This file contains image raster reading and allocation

functions.

save raster.c, 57 lines This file contains image raster saving and freeing functions.

permute.c, 120 lines This file contains functions which are used within the main

program loop.

Y.c, 1136 lines This file contains the coarsest-grain program loop.

This program is particularly difficult to analyze manually because it uses macros

heavily, and does not uphold the elements of data-hiding and encapsulation which are

the hallmark of good programming style. Indeed, the present author invested over a

month in the original hand-parallelization of this application for the Calypso[Bar99]

system.
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5.2.1 Preliminary Analysis

The main loop called the following library functions: fabs, free, malloc, printf,

sprintf. Of these, fabs and sprintf present no special difficulties, and printf is

allowed under general file append support. free and malloc were nominally permit-

ted, but the calls were checked to ensure they are complementary. The program call

graph contained one recursive cycle called from the main loop.

5.2.2 Program Transformation

The first step in transforming the program involved determining precisely which

source files needed be changed to generate the server application. The file which

contained the admissible loop nest, Y.c, clearly did. Figure 5.1 lists all static vari-

ables which were determined to be shared with respect to the parallelizeable loop,

along with their places of definition and use. Each of the files which use or define

any of these also needed to be rewritten. The figure also lists the locations in which

memory was allocated which could have been used in the parallel step. Since the

allocation function for these calls needed to be changed to shmalloc(), these files

needed to be rewritten as well.

The first 13 variables in Figure 5.1 are scalars which are Read-Only within the

parallel loop; they are initialized once (or twice if set through the command line) at

the start of the program. The image itself, stored in dynamic memory pointed to by

image, is also Read-Only within the parallel loop. The other variables in the figure

are written as well as read within the loop.

Each generated file is written in C++ and therefore has the .cc extension. Three

new source files were created for the server:

• Y.rewrite.cc, 2545 lines

• permute.rewrite.cc, 1378 lines

• read raster.rewrite.cc, 783 lines

Note that these files are generally larger than the files from which they were

generated because they include all header file declarations. However, they generally
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shared variables:
Y.c:9: static double RAD_threshold
accessed in: Y.c
Y.c:10: static int odd_dim
accessed in: Y.c
Y.c:11: static double rad_hole_fraction
accessed in: Y.c
Y.c:12: static int no_of_spokes
accessed in: Y.c
Y.c:13: static double homogen
accessed in: Y.c
Y.c:18: static int XMIN
accessed in: Y.c
Y.c:19: static int XMAX
accessed in: Y.c
Y.c:20: static int YMIN
accessed in: Y.c
Y.c:21: static int YMAX
accessed in: Y.c
Y.c:22: static int no_of_linefits
accessed in: Y.c
Y.c:23: static double alpha1
accessed in: Y.c
Y.c:24: static double alpha2
accessed in: Y.c
Y.c:25: static double cornerity
accessed in: Y.c
Y.c:1042: static double theta[361]
accessed in: Y.c
Y.c:1043: static int gl_no[100]
accessed in: Y.c
Y.c:1044: static int gl_ptr[100]
accessed in: Y.c
Y.c:1045: static radial_line_type gl_rad[100 * 100]
accessed in: Y.c
Y.c:1050: unsigned char **image
accessed in: Y.c
permute.c:64: static double lasterr1
accessed in: permute.c
permute.c:64: static double lasterr2
accessed in: permute.c

shared heap:
read_raster.c:17: 1
read_raster.c:18: 1
permute.c:111: 1

Figure 5.1: Kona Shared Variables.
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compile to smaller sized object files than the original files because these declarations

do not take up space in the program image, and only relevant code is included in the

generated files.

Special attention in the rewriting was required to change certain identifiers, par-

ticularly this and new, to prevent conflicts with reserved C++ keywords. These files

were then compiled and linked with the other application files and the server library

to form the parallel server application.

For the client, Y.c, which contains the client loop body and functions it calls, and

permute.c which contains other functions called from the loop body needed to be

generated. Note that these functions would have needed to be custom-written for the

client in any case because they contain definitions of static shared data.

The following client files were generated:

• client1.cc, 1350 lines

• client1.permute.cc, 918 lines

Each of these included all data type and function prototype declarations, but only

the relevant data and function definitions, with the shared variables declared using,

as usual, the specially initialized indirect syntax. These files were compiled and linked

with the client library.

5.2.3 Performance Results

In Figure 5.2(a) we show the execution time for each of the runs. The column la-

beled “S” represents sequential application timing. The figure reveals a steady speed

improvement except at 6 and 16 machines. Figure 5.2(b) graphs this speedup, where

each point is calculated as the ratio of the sequential running time to the running

time for each number of machines. We leave out the server from our graphs because

the load on the server will be minimal for small numbers of machines.

Figure 5.2 shows that as the problem size increases from 10K to 50K pixels, the

network utilization becomes more consistent and predictable. At 10K pixels, this

speedup increases almost linearly with the number of client machines until it levels
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(a) Execution Time

(b) Sequential versus Parallel Time

Figure 5.2: Kona Performance Results
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off at 13 machines, where additional machines do not improve the running time; at

50K pixels this limitation is not observed.

5.3 Case 2: Gk

Gk is a ray-tracing program. It reads a scene definition file and writes an output image

at a user-supplied resolution. To make the analysis and transformation easier, file

writes were replaced by writes to standard output (although the underlying techniques

apply straightforwardly to either). Furthermore, several reduction variables in the

form of operation counts were discovered. Although we shall describe ways of handling

them, they were removed in our experiments for simplicity.

5.3.1 Preliminary Analysis

Gk consists of 8 files:

vector.c, 82 lines This file contains various vector operations.

readfile.c, 154 lines This file contains file operations.

main.c, 52 lines This file contains the main program function, which calls a workhorse

function raytrace after performing some initializations.

trace.c, 237 lines This file contains the raytrace function. This is the function

which contains the coarsest-grain program loop.

intersect.c, 182 lines This file contains ray intersection facilities.

initialize.c, 21 lines This file contains code to initialize various counters, which

we disabled to break dependences.

shade.c, 175 lines This file contains shading functions.

bg.c, 44 lines This file contains some color functions.
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The program contains one recursive cycle, composed of the functions trace a ray,

trace and shade. One deeply nested loop was discovered in the file trace.c in

function raytrace. It calls the library functions pow, printf, random and sqrt.

None of these present a problem except for random pseudo-random number generator.

The random numbers generated within the parallelized iterations would obviously not

be the same as would occur in a sequential execution, depending, as random numbers

do, on an initial seed and all subsequent random numbers.

Whether or not this is problematic is really up to the application developer; we

proceeded assuming that this was acceptable. (If this had been determined to be

insufficient the techniques set forth in [Bre98] could be used to ensure better random-

ness.)

5.3.2 Program Transformation

The largest shared data structure is the list of scene objects, pointed to by obj. This

memory is both read and written within the parallel step. Instead of being written

to a section of memory, generated pixel color values are simply written sequentially

to standard output. All of the variables in Figures 5.3-5.4 are read-only within the

parallel step with the exception of Time, col, color, ray, r2, r, g, b and i.

The shared variable reference and use statistics listed in Figures 5.3-5.4 indicated

that the following source files needed to be created for the server:

• trace.rewrite.cc, 1210 lines

• readfile.rewrite.cc, 1169 lines

• main.rewrite.cc, 428 lines

• intersect.rewrite.cc, 936 lines

• shade.rewrite.cc, 926 lines

• bg.rewrite.cc, 148 lines

The following client files were generated:



CHAPTER 5. CASE STUDIES 55

shared variables:
main.c:30: struct light_t light
accessed in: readfile.c, shade.c
main.c:33: int noo
accessed in: readfile.c, intersect.c
main.c:36: int tries
accessed in: trace.c, readfile.c
main.c:39: struct vector hor
accessed in: trace.c
main.c:39: struct vector ver
accessed in: trace.c
main.c:39: struct vector eye_dir
accessed in: trace.c, readfile.c
main.c:40: double fov
accessed in: trace.c, readfile.c
main.c:43: double time1
accessed in: trace.c, readfile.c
main.c:43: double time2
accessed in: trace.c, readfile.c
main.c:44: double Time
accessed in: trace.c, intersect.c
main.c:46: int bgflag
accessed in: readfile.c, bg.c
main.c:49: struct obj_t *obj
accessed in: readfile.c, intersect.c
main.c:52: int xres
accessed in: trace.c, main.c
main.c:52: int yres
accessed in: trace.c, main.c
trace.c:165: int x
accessed in: trace.c
trace.c:166: struct color_t col
accessed in: trace.c
trace.c:166: struct color_t color
accessed in: trace.c
trace.c:167: struct ray_t ray
accessed in: trace.c
trace.c:167: struct ray_t r2
accessed in: trace.c
trace.c:168: int r
accessed in: trace.c

Figure 5.3: Gk Shared Variables.
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trace.c:168: int g
accessed in: trace.c
trace.c:168: int b
accessed in: trace.c
trace.c:171: int i
accessed in: trace.c
trace.c:172: double p_w
accessed in: trace.c

Figure 5.4: Gk Shared Variables (cont).

• client1.cc, 890 lines

• client1.intersect.cc, 619 lines

• client1.bg.cc, 141 lines

• client1.main.cc, 355 lines

• client1.shade.cc, 609 lines

• client1.vector.cc, 525 lines

Each of these included all data type and function prototype declarations, but only

relevant functions. Notice that some files, such as main.c needed to be regenerated for

the client not because they contained code relevant to the parallel step, but because

of the relevant data declarations they included.

The initially generated program refused to compile because of multiple definitions

of several of the shared variables. It turned out that one of the header files which

was included in several of the program units contained several uninitialized data

definitions (as opposed to simple declarations). This is a C anachronism which was

permitted as long as no more than one initialization was present; it is not permitted

in C++. To remedy this, we simply removed these definitions to one of the program

source files, replacing them by extern declarations.
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(a) Execution Time

(b) Sequential versus Parallel Time

Figure 5.5: Gk Performance Results
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5.3.3 Performance Results

In Figure 5.5(a) we show the execution times for each of the runs. The column

labeled “S” represents sequential execution time. The figure reveals a steady speed

improvement except at 4 and 5 machines. Figure 5.5(b) graphs this speedup, where

each point is calculated as the ratio of the sequential running time to the running

time for each number of machines.

Figure 5.5 shows that as the problem size increases from 160K to 640K pixels, the

network utilization becomes more consistent and predictable. At 160K pixels, this

speedup increases almost linearly with the number of client machines until it levels

off at 14 machines, where additional machines do not improve the running time; at

640K pixels this limitation is not observed.

5.4 Interpretation of Results

Notice that the overhead in Gk is consistently less than that for Kona. This is

attributable to the fact that Gk performs relatively little I/O, which is associated

with significant cost, during the parallel step.

The speedup discontinuities observed within both applications (6 and 16 machines

for Kona; 4 and 5 machines for Gk) indicate a scheduling/granularity bug. It should

be observed that this aberration is not only independent of the problem size, but of

the structure of the input as well. This is revealed by the consistency of the dips

in the graph of Figure 5.2(b), for which the different input sizes are associated with

different input sets as well. We may surmise that this performance discontinuity is

associated with the manner in which the problem structure interacts with our choice

of granularities. In particular, decreasing the number of large grains would easily fix

this, but perhaps at the price of slightly more overhead everywhere else.

This situation leads us to conclude that an optimal scheduling policy should in-

clude a granularity selection which is truly dynamic and can respond to the needs of

a particular parallel loop on the fly, as has been done in the Calypso[Bar99] system.
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5.5 A Note on Performance

While our performance has not been stellar, it is competitive with the performance of

other vastly more complex DSM subsystems[JSS97]. Moreover, our chosen platform

was a set of Linux machines, whose NFS service is known to be suboptimal. There

are two reasons for this: the daemon runs entirely in user space, and does not yet im-

plement proper caching. As our system stresses NFS quite heavily, these inefficiencies

have obviously been expressed by our system in turn. In particular, our experiments

have revealed significant delays between the startup times of concurrently spawned

processes. It would be interesting to see how much performance improvement can be

offered by a more competitive implementation.

Another optimization which may be significant is the use of Minnich’s Vector eX-

ecute (VX)[Min93b] remote process starter tool. He reports that starting identical

processes on multiple machines can be done orders of magnitude faster as compared

with the identical operations under more popular systems such as PVM[AB95]. As

most of our overhead is in process startup, this could provide a substantial perfor-

mance boost.

5.6 Conclusions

This chapter has reported on two case studies of the step by step transformation of

two real-world application programs into client/server form. These applications are

typical of many others and demonstrate the power of our technique. We conclude that

this technique has important applications to some of the most pressing parallelization

problems facing our community today.

Although we present powerful techniques to support a variety of application char-

acteristics, we have demonstrated that this power is paid for only where it is used, and

simple parallelizations can still achieve a large percentage of sequential performance.

The next chapter, Chapter 6, describes a planned extension of our system which

can efficiently determine if the optimistic parallelization we have devised has violated

any of the assumptions on which the parallelization is based.
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Chapter 6

Speculation Extension

In Chapters 2, 3 and 4 we developed a methodology for automatic program transfor-

mation based on educated guesses of the most profitable loops to parallelize. Because

we cannot guarantee that this transformation is legal, every time we run the pro-

gram on a new input set we must check that the execution does not use memory in

ways which violate the parallel model. This chapter describes a current approach to

performing this check dynamically and then presents our solution.

6.1 The Polaris Approach

Rauchwerger and Padua[RP94] solve the speculative parallelization problem by al-

locating special shadow arrays for each array in question. Every access to an array

element is reflected in the shadow array, and the order and manner of accesses to the

shadow determine whether the parallelization was legal.

Although appropriate to fine-grain Fortran loops, there are a number of difficul-

ties with directly using this approach on the coarse-grained loops of C and C++

programs. One problem is that in the case of dynamic memory, it may be difficult

to create an appropriate shadow array. Furthermore, because of the rich complex-

ity of C operators, it may be necessary to pepper the generated code with compiler

temporaries when dealing with complicated expressions. Besides the reduction in pro-

grammer recognition of and confidence in the generated code which we pointed out
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in Chapter 1 this entails, it also makes the transformation process itself less robust

because of the added complexity. We propose an alternative scheme which operates

not at the language level, but at the operating system level.

6.2 Testing Execution Legitimacy

As we saw in Chapter 1, the basic violation which is exhibited through the paral-

lelization of an unparallelizeable loop is the non-satisfaction of a flow dependence,

where one iteration reads a value which has been written by an earlier iteration.

This can be checked with memory profiling, keeping statistics for every iteration

of which locations were read only, read first, and written before being read. In fact,

we do not need to perform this test for every pair of iterations if we use a granularity

that includes several consecutive iterations in each grain, because within a particular

grain, dependences will automatically be satisfied. Therefore, we can collect the

information we need to perform this test on a per-grain basis.

Adapting Hoeflinger’s[Hoe98] Region Analysis methodology to our setting, we as-

sociate three bits with each memory element: Read-Only, Write-First and Read/Write.

For each read access, if no bits are set, we mark the target Read-Only. For each write

access, if no bits are set, we mark the target Write-First. Otherwise if the Read-Only

bit is set, we mark it Read/Write. This provides all the information we need to detect

inadmissible flow dependences.

For example, if we find that one of the memory locations within a particular grain

was read before being written, the legitimacy of the execution will depend on the

access patterns to this location in all earlier grains. If no earlier grain wrote to the

memory, then we know that the proper value for this memory location was indeed the

value with which the memory for that grain was initialized—the value at the start of

the parallel step. On the other hand, if some earlier grain wrote the memory, then

the value which the present grain was using will have turned out to be an obsolete

value, and the computation will be invalid.

But suppose a particular memory location was written before being read within a

particular grain. In this case, the value at that location cannot depend on the value
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assigned within any other grain. Also, memory locations not accessed at all obviously

cannot be the sources of dependences with other grains of the computation.

Notice that variable privatization happens completely implicitly according to our

arrangement of the shared memory. Because the file mapping is private, no interfer-

ence between the writes of two different grains is possible. Also, because we update

the master copy of shared memory according to the order of writes within each grain,

writes to the same location will correctly favor the later write.

6.3 Avoiding Sequential Validation Overhead

As Rauchwerger[Rau95] points out, it is very important that the validation test for

the parallel execution be performed in parallel, or else we are simply replacing one

sequential bottleneck with another.

We saw in Chapter 1 that the aggregation of iterations into a single grain of

execution is important in the coarse grain parallelism appropriate to the NOW envi-

ronment. Because we divide the iteration space initially according to the number of

available machines, and the check we need to make is between grains and not between

iterations, the number of tests we need to perform is proportional to the number of

machines participating in the computation, far fewer than the number of iterations.

Furthermore, the runtime system can overlap earlier checks with later computations

if earlier sections of the iteration space generally finish before later ones.

An interesting aspect of this scheme is that even if a flow dependence exists within

a parallel loop, whether or not it causes a parallel model violation will depend on the

precise division of the iteration space among the available machines. Therefore, a

validated program run does not necessarily imply the absence of dependences, only

that this particular execution did not reveal any.
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Figure 6.1: Example of MultiView.

6.4 Efficient Memory Profiling

In order to provide an efficient, language-independent, platform-independent method-

ology for the required element-by-element memory profiling, we turn to recent devel-

opments in the Distributed Shared Memory arena.

Itzkovitz and Schuster[IS99] pioneered a methodology called MultiView for fine-

grained memory access control of DSM using the standard OS page fault mechanism.

MultiView can support access faults at the variable level, even for variables which

share pages with other variables.

The way in which this is done is through the construction of separate and inde-

pendent mappings which map to identical memory areas. For example, Figure 6.1

shows how three variables which reside in the physical page on the right side of the

figure are mapped through the three different virtual pages on the left side of the

figure. Variables which point to the variable x are initialized to point to the version

of x which appears in the first page, and similarly for y and z.

We can adapt this technique to provide access statistics for each memory element

at every client processor. Instead of simply handing out pointers to the original

mapping space of the shared memory, we create a separate mapping for each variable,

and return the appropriate offset into it. We begin the grain’s execution with no

read/write permissions set on any of these mappings, and as page faults are generated,



CHAPTER 6. SPECULATION EXTENSION 64

we turn on the appropriate access and set the appropriate bit. Locations which are

only read or written before being read will generate only a single page fault, providing,

respectively, read access and read/write access. Those that are read before being

written will generate two faults: the first turns on read access and the second turns

on write access.

While taking 1 or 2 page fault performance hits for each memory location may

seem costly, this cost will be amortized over the number of memory accesses to the

location. Therefore, as parallel grain size goes up it will have a waning impact and

could be an ideal profiling scheme.

However, our solution is not yet complete, because a variable partition such as that

supported by MultiView is not the same as an element-level partition, in particular,

when the variables in question are aggregates (structures or arrays).

Aggregate values are addressed by a pointer and an offset. If an application can

access an arbitrary aggregate member with the same pointer value simply by changing

the offset, then access statistics can only be generated for the variable as a whole, or

at best, at as fine a granularity as the number of pages it spans.

6.5 Protecting Aggregates at the Element Level

We saw in Chapter 4 that all shared memory accesses are transformed to indirect

accesses. The reason for this is that we need the shared memory to be contiguous,

and we do not have the freedom to rearrange data declarations within source files.

So for example, consider the program fragments and corresponding memory layouts

in Figure 6.2(a)–(c). Figure 6.2(a) shows the original; Figure 6.2(b) shows the results

of the customary sharing transformation.

In order to arrange the memory such that MultiView can be applied at the element

level, we have to alter the manner in which we set up the indirection. The idea is

to maintain the structure offset access semantics, but to transform each element into

a pointer-to-element. Using the memory layout of Figure 6.2(c), we can directly

apply the MultiView technique to the targets *(*A)[0], *(*A)[1] and *(*A)[2],

and efficiently determine the legality of our parallelization. Although not shown, the
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int A[3];

for ( int i = 0; i < 3; i++ )

A[i] = i;

Local

A[0]
A[1]
A[2]

(a) Original Program

Server:
int (*A)[3] =

(int (*)[3])shcreate();

Client:
(*A)[i] = i;

Local Shared

A (*A)[0]
(*A)[1]
(*A)[2]

(b) Transformed Program

Server:
int *(*A)[3] =

(int *(*)[3])shcreate();

Client:
*(*A)[i] = i;

Local Indirect Shared

A (*A)[0]
(*A)[1]
(*A)[2]

*(*A)[0]
*(*A)[1]
*(*A)[2]

(c) Access Control at Element Level

Figure 6.2: Progression of Transformations
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int A[3]; // shared aggregate

int *i;

A[0] = 2;

i = &A[1];

i[0] = 3;

i[1] = 4;

Local

A[0] = 2
A[1] = 3
A[2] = 4

i

(a) Original Program

int *(*A)[3] = ...

int **i;

*(*A)[0] = 2;

i = &A[1];

*i[0] = 3;

*i[1] = 4;

Local Indirect Shared

A
i

(*A)[0]
(*A)[1]
(*A)[2]

*(*A)[0] = 2
*(*A)[1] = 3
*(*A)[2] = 4

(b) Transformed Program

Figure 6.3: Aggregate Access Types.

calls to shcreate() will also need to specify the datatype so that the correct unit of

actual data will be allocated for each pointer element to point to.

Using this technique, however, requires considerably more sophistication at the

transformation level. For the simple sharing transformation described in Chapter 3,

we were able to perform a uniform transformation, replacing every variable with a

single dereference. For this new transformation, the context of the variable is critical

in deciding how the transformation is to proceed.

There are two basic contexts in which an aggregate variable may appear: a value

context, where one of its elements is being referenced, and an address context, where

the address of some offset inside the aggregate is being taken. For example, consider
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the code in Figure 6.3(a). The first statement assigns to an element of A. The second

statement assigns the address of A[i] to the variable i, through which the other

elements of A are assigned. The sequence of statements results in the memory layout

on the right side of the figure.

In the transformed code of Figure 6.3(b), observe that while the first reference

to the array A had to be transformed, as it represents an element access, the other

reference to A needed to be preserved because it is used as an address of a particular

subelement.

Notice also that performing this sophisticated transformation for the array A, does

not merely affect the places where A is mentioned. In fact, the transformation must

ripple through the code to change every variable which is used to hold an offset of

A. These ripple sites include assignments and function call sites. For the former, the

declaration and all uses of the receiver of the address would have to be changed; for

the latter, the function declaration (and all of its prototypes) as well as all uses of

the corresponding parameter would have to be changed.

This can get complicated when the variable or function is used in other contexts

as well such as being assigned the address of a different aggregate which is not shared.

As demonstrated by the transformed code in Figure 6.3(b), in this case we can simply

“upgrade” this second aggregate to shared status, and apply the entire transformation

once again for this new variable. The same would apply to functions which are called

both on shared aggregates and non-shared aggregates.

Viewing the transformation as a dataflow analysis on the two-element lattice of

sharing-transformed vs. non-sharing-transformed, we can guarantee that this process

terminates because the lattice values are monotonically increasing and bounded.

6.6 Structure Aggregates

So far we have seen that the speculative transformation for array aggregates involves

the inclusion of one additional indirection at the element level, over and above the

indirection at the variable level.

The analogous transformation for structure aggregates is somewhat more complex,
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struct agg { int i; char c; };
struct agg y; // shared aggregate

Local

y.i = 1
y.c = ’d’

(a) Original Program

struct agg { int i; char c; };
struct agg p { int *i; char *c; };
struct agg p (*y) = (agg p*)shcreate( ... );

Local Indirect Shared

y (*y).i
(*y).c

*(*y).i
*(*y).c

(a) Transformed Program

Figure 6.4: Transforming Structure Aggregates.

because adding indirections at the element level fundamentally changes the data type.

Therefore, the original structure declaration would need to be modified to include an

additional indirection for each member.

In Figure 6.4(a) we recall our structure example from Chapter 3. Transforming

this code to implement speculative sharing for y involves actually generating a new

datatype agg p from agg where each member is given an indirection, as shown in

Figure 6.4(b).

The reader will note that this scheme relies on the consistent declaration and use

of datatypes, so that when casting is used in unsafe ways, the scheme will fail and

loop parallelization will have to be abandoned. Also, the size of each datatype pointer

target will need to be communicated to the runtime system so that the appropriate

space for each element can be allocated.

Of course, not every aggregate will need such elaborate protection. Some will
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unsigned char **make_2d_charr( int rows, int cols )

{

register i;

unsigned char *arr_ptr;

unsigned char **arr;

arr = (unsigned char **)malloc( rows * sizeof(unsigned char *) );

arr_ptr = (unsigned char*)malloc(rows*cols*sizeof(unsigned char));

for ( i = 0; i < rows; i++ )

arr[i] = &arr_ptr[i * cols];

return arr;

}

Figure 6.5: Dynamic Shared Memory Example

clearly cause flow dependences and immediately disqualify the loop from paralleliza-

tion. Others can be proven not to present any problem. Our method provides a flexi-

ble means of dealing with all of the “in-between” cases which would generally inhibit

parallelizing compilers from attempting any parallelizing transformation. Moreover,

in analogy with ordinary compilers, our system provides application performance com-

mensurate with program analysis effort—a more elaborate analysis achieves better

overall application performance by reducing parallel model verification effort at run-

time, and reducing the likelihood of parallelization of unparallelizeable loops. Other

systems may require a very high initial analysis effort for any parallelization benefit.

6.7 Dynamic Memory

While the transformation for data element-level protection is straightforward for stat-

ically declared data, it can be more subtle for dynamically allocated data. It will

depend, for example, on the consistent use of allocated memory, and the ability of

the translation system to derive a datatype from the manner in which the memory is

used.

Consider the example in Figure 6.5, which is taken from one of our case studies,
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Kona (see Chapter 5). It shows a fairly common method for allocating a multidimen-

sional array in C. First the entire array space is allocated, then a separate array is

allocated which holds the address of each row. If these allocations cannot be proven

not to be referenced within a parallel step, we must make the allocations from shared

memory. As in the static case, the allocation call will need to specify the datatype of

the aggregate and initialize all pointers at the element level to point to elements of

this size.

In our example, the implied datatype of the memory is clear from the manner in

which it is used, so that we know that each of arr ptr and arr must be declared and

used with an extra indirection at the element level. In the general case, pointer anal-

yses of various complexities, such as [And93], [Ste96], [SH97], [BCCH97], [AFF97],

could be employed for memory disambiguation.

6.8 Nominal Sharing Upgrades

When we must update a variable to shared status because of the manner in which it

interacts with an actual shared variable, we should not actually include this variable

in the shared memory. Besides the additional inefficiency this would engender, it also

would be a source of inflexibility: recall, for example, that stack variables of functions

which participate in recursive cycles cannot have shared semantics.

As a clever alternative, we can instead use only local declarations in the transfor-

mation of these nominally shared variables, as shown in Figure 6.6. In Figure 6.6(a),

because aggregate A is shared and its address is stored into i, i must be redeclared to

use double indirect syntax, and this ripples to the aggregate B, which now must also

be redefined because its address is also stored into i. In Figure 6.6(b), we demon-

strate how we have declared a shadow aggregate B sh for the original B and initialized

each pointer element of the B to point to the corresponding element of B sh. Thus

even if there is a domino effect and we are forced to upgrade a great many aggregates,

we lose no flexibility and incur negligible overhead because we do not have to involve

the runtime system with these nominally shared variables at all.

In the next and final chapter of this thesis, we sum up related work, suggest other



CHAPTER 6. SPECULATION EXTENSION 71

int A[5]; // shared aggregate

int B[5];

int *i;

i = &A[2];

i[2] = 5;

i = &B[2];

i[2] = 5;

(a) Original Code

int *(*A)[5] = (int *(*)[5])shcreate( ... );

int B_sh[5], *B[5] = { &B_sh[0],&B_sh[1],&B_sh[2],&B_sh[3],&B_sh[4] };

int **i;

i = &(*A)[2];

(*i)[2] = 5;

i = &B[2];

(*i)[2] = 5;

(b) Transformed Code

Figure 6.6: Transforming Nominally Shared Aggregates.
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helpful extensions, and give some direction for the future.
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Chapter 7

Conclusions

This thesis has described a framework for automatic incremental parallelization of

“embarrassingly parallel” applications using the popular Network of Workstations as

the target platform. Despite the theoretical ease with which these programs can be

parallelized and their characteristic suitability to execution on Networks of Worksta-

tions, no effective automated solution to this problem has yet been offered.

While a good number of parallelizing compiler prototypes have been built, these

were meant to cater a broader range of parallelization problems on more sophisti-

cated architectures The unique challenges of efficiently running more banal parallel

programs written in banal languages on banal parallel platforms should merit special

attention.

7.1 Related Work

The strands of related work are numerous, and span a broad range of fields.

7.1.1 Two-Phase Idempotent Eager Scheduling

This technique for extracting the highest efficiency from a diverse array of sometimes

faulty machines[KPS90] has recently found expression in the Calypso[Bar99] system.

Although Calypso has proven the general usefulness of the technique, it is mainly a
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runtime system, leaving the identification of parallelism and shared memory up to the

user. The more recent Chime[SD] system brings an interesting twist to this scheme,

in that it requires the user to identify only the parallelism; shared data identification

is avoided by declaring all global data shared. This still leaves some complications

for shared stack variables, for which a cactus-stack scheme was devised.

7.1.2 Finding Coarse Grain Parallelism

Hall et al.[HAM+95] report on the effectiveness of their SUIF compiler system at

locating coarse grain parallel loops. Since they do not describe how this is done, it is

difficult to comment on how their approach differs from ours.

7.1.3 Execution Cost Prediction

Zhou[Zho94] describes a program execution cost estimator. In his model, every in-

struction is associated with a cost, and these costs are summed up over the expected

execution paths for the overall application. Although we also perform a sort of cost

estimation, we do not collect information at this level of detail, but assume (correctly,

in our experience) that the interprocedural loop nesting depth will be the most impor-

tant estimator of execution cost. This would not have been sufficient for Zhou, whose

goal was to be able to decide which of two applications would perform better on a

particular problem—if the loop nesting of each is identical, our technique provides no

insight into this problem.

7.1.4 Using NFS as a Scalable DSM Subsystem

Minnich[Min93a] decided not to use standard NFS as a DSM subsystem, opting in-

stead to create his own souped-up Mether-NFS drop-in replacement. By proposing a

model of network parallel programming which is well served by NFS, we have shown

that the NOW may not have been a target whose properties are best suited to his

application domain.
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7.1.5 Program Instrumentation

This facility was provided by the PTOPP[EM93] toolset. The point was to zero in

on the most time-intensive loops by comparing the profile data of all program loops.

This approach is obviously not intended to discover top-level loops in particular, but

it could benefit from our Interprocedural Loop Level Analysis to discover which loops

might actually be useful to profile.

7.1.6 Partial Evaluation

Goff[Gof97] reports on the benefits of compiling a program together with its input,

among other dependence-breaking techniques. She concludes: “of these ... techniques,

partial evaluation is the one which should be employed with the most discretion.”

After all, this partial evaluation would need to be redone for every different set of

input data. Goff considers the benefit of program input data only as a boost to the

constant propagation subsystem, and the specific constant values read will inevitably

change with different inputs.

We, on the other hand, have embraced this technique, although in quite a different

form. We have devised a scheme for optimistic parallelization which uses memory

profiling information generated from the application at runtime, a form of partial

evaluation which can be performed efficiently during every program execution.

7.1.7 Speculative Parallelization

Rauchwerger and Padua[RP94] pioneered speculative loop parallelization for the Po-

laris parallelizing compiler. In their scheme, loop code is instrumented with shadow

arrays which accumulate memory access information at the array-element level. Our

scheme not only brings language independence and platform independence to this

technique, but adapts it to the specific requirements of coarse-grained parallel loops.
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7.1.8 Dynamic Sharing Granularity

Itzkovitz and Schuster[IS99] present a technique for achieving fine-grain page pro-

tection under operating systems which nominally provide only a coarser grain of

protection. By mapping every variable to a different virtual memory address, they

eliminate the classical false sharing problem for page-based Distributed Shared Mem-

ory Systems. Our work capitalizes on this concept to apply fine-grain protection at

the machine-datatype level so that memory access profiles can be efficiently computed

on a per-element basis at runtime.

7.1.9 Automatic Parallelization for the NOW

Using the PIPS parallelizing compiler framework, Coelho[Coe94] experimented with

the applicability of automatically compiled HPF programs to the NOW platform.

What he found was that the performance obtainable on multiprocessors was not

portable to workstation networks, as the network quickly emerged as the bottleneck.

We have seen that within our application domain significant speedups are possible

provided careful attention is given to the special challenges of parallel computing on

the NOW.

7.1.10 Restructuring for Performance Portability

Jiang et al.[JSS97] report on the various restructuring techniques which are helpful

in obtaining parallel performance which is portable across a range of hardware and

software multiprocessing platforms. They find that the restructuring for the lowest

common denominator (NOW) is generally also somewhat beneficial for the higher-

end systems, but not significantly. Because they address a range of applications,

including irregular ones which exhibit data dependences between loop iterations, their

work is more widely applicable than ours. However, for our limited problem domain,

automatic techniques provide benefits with respect to essentially manual techniques.
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7.1.11 Distributed Parameterized Simulation

The idea of running an identical application with differing parameters across a NOW

was exploited in the Nimrod system[ASGH95], which can be used where the goal is

to run an identical scientific simulation on a number of different input sets. However,

because this approach may involve significant application rewriting to produce the

parameterized form, it can prove costly. Although we use this idea, we automatically

generate the required parameterization within our client “mini-apps”.

7.2 Future Work

Here we describe several additional features which could improve our system. First

we discuss reductions, which we saw in Chapter 5 were manually removed from our

case studies; we now describe a scheme to support them.

7.2.1 Reductions

To support reduction variables, we can inform the runtime of the reductive nature

of particular variables, giving the appropriate reductive operator. For example, Fig-

ure 7.1 shows a how a loop with a reduction might be transformed. (We show only the

server code in the figure because the client need not be aware of any details of a reduc-

tion.) We have added a special “reduction operation” parameter to the shcreate()

call, which causes the runtime not to disqualify the loop for finding a parallel model

violation at this location, but to simply perform the appropriate reductive operation

between the values found in the corresponding locations at each conflicting client.

To do this, however, it is also necessary to include the appropriate datatype as

an operand to the shcreate() call, so that the appropriate arithmetic operator can

be applied between the two reductive values. This is indicated in the figure with the

final argument to shcreate(), "i".
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int main()

{

int i;

int sum = 0;

for ( i = 1; i < 4; i++ )

{

sum += i;

}

printf( "Series sum is %d.\n", sum );

}

(a) Original Code

int main()

{

int i;

int (*sum) = (int *)shcreate( 0, 4, ’+’, "i" ),

__1 = (*sum) = 0;

i = remotely_spawn( 1, "<", 4, 1, "client1" );

}

(b) Server Code

Figure 7.1: Reduction Transformation.
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7.2.2 Heterogeneous Networks

Throughout this thesis we have implicitly assumed a network of workstations with

homogeneous architectures. We depend on this feature when we use the kernel mem-

ory mapping facilities to map the shared address space created on the server into

the address space of each client. Although this simplistic scheme cannot be used

across different architectures, an extension to the technique might be for the server

to transform the contents of the address space on the fly into a format which can be

used at the client side. This translation would only have to be done once per foreign

architecture per parallel step; thus if there are a number of machines of the same

type, the cost of this translation could be amortized over all of them.

One source of difficulty in this context is the translation of pointer values across

architectures and operating systems. This requires detailed information about the

locations in memory of all pointer values. This will certainly not be possible to obtain

in general, but a sophisticated analysis may be able to generate this information

for some applications. Having this information will also ameliorate a problem we

encountered in Section 3.5, where we noted that we sometimes have to allocate a

huge section of memory at program initialization in order not to have to relocate the

shared memory segment. If the precise locations of all pointers in memory are known,

every value can simply be updated on relocation.

7.2.3 Finer Grain Parallelism

Another direction for future research is the examination of loops at lower nesting levels

for parallelization in the event that parallelism at the higher level fails. This research

direction is particularly exciting because it holds out the possibility of extending our

techniques even to the realm of nominally non-embarrassingly-parallel applications.

An irregular molecular dynamics application, for example, may include data depen-

dences between loop iterations, but each iteration may be expensive enough to be

profitably parallelized using our techniques, if not on the NOW platform, then at

least on some higher-end platform.



CHAPTER 7. CONCLUSIONS 80

7.2.4 Reporting a Violation

Because we can determine at precisely which memory location a parallel model vio-

lation was detected, we can easily inform the user of which variable and even which

aggregate offset caused the violation. To present this information in a form which is

helpful to the user, we can also include the variable name, file name and line number

of the original declaration from which the shared variable was generated as additional

arguments to the shcreate() call.

This is a helpful alternative to the all-or-nothing loop parallelization scheme pre-

sented earlier in this thesis, and may prove useful for loops whose non-parallelizeability

can be easily corrected.

7.3 Conclusion

We have explored a collection of techniques which form a unified framework for incre-

mental, optimistic and above all, practical automatic parallelization. While almost all

of these have seen some prior application in various settings, they have never before

been brought together. We expect this work to have wide applicability because:

• It does not depend on a specific language or programming style. (While we do

capitalize on the variable initialization semantics of C++, this would be more

properly seen as an implementation detail.)

• It does not depend on a particular parallel platform. In particular, it has been

demonstrated[JSS97] that optimizing a program for the NOW will not adversely

affect its performance on more sophisticated platforms.

• It does not depend on any kind of user awareness of either the general principles

of parallelism or the specific properties of his application, but gradually builds a

“parallelism profile” as a local customization of the application through succes-

sive application to different inputs on various configurations of virtual machines.

What’s more, the framework we describe can be implemented to any desired degree

of sophistication. A more elaborate implementation which includes a more advanced
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dependence or pointer analysis will be less prone to illegal loop parallelization, while

generating a parallel program which exhibits greater efficiency through less data shar-

ing and less expended effort in runtime model verification. But even if these capabili-

ties are not present, the generated program will still be safe, parallel, and ever “more

correct” and reliable through the “data mining” of parallelism constraints using all

future program input as a training set.
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