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Abstract

Cryptographic primitives, such as hash functions and block ciphers, are

integral components in several practical cryptographic schemes. In order to

prove security of these schemes, a variety of security assumptions are made

on the underlying hash function or block cipher, such as collision-resistance,

pseudorandomness etc. In fact, such assumptions are often made without

much regard for the actual constructions of these primitives. In this thesis,

we address this problem and suggest new, and possibly better, design criteria

for hash functions and block ciphers.

We start by analyzing the design criteria underlying hash functions. The

usual design principle here involves a two-step procedure: First, come up with

a heuristically-designed and “hopefully strong” fixed-length input construc-

tion (i.e. the compression function), then use a standard domain extension

technique, usually the cascade construction (see figure 3.2), to get a con-

struction that works for variable-length inputs. We investigate this design

principle from two perspectives:

(a) To instantiate the Random Oracle. We suggest modifications to ex-

isting constructions that make the resulting construction secure as a

random oracle, with appropriate assumptions on the underlying com-

pression function.

(b) In general, we look for “black-box” fixes to existing hash functions
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to get secure constructions for each of the common security notions

required of hash functions. We also give suggestions for appropriate

modes for using existing hash functions along these lines.

We next move on to discuss the Feistel network, which is used in the

design of several popular block ciphers such as DES, Triple-DES, Blowfish etc.

Currently, the celebrated result of Luby-Rackoff [47] (and further extensions)

is regarded as the theoretical basis for using this construction in block cipher

design, where it was shown that a four-round Feistel network is a (strong)

pseudorandom permutation (PRP) if the round functions are independent

pseudorandom functions (PRFs). We study the Feistel network from two

different perspectives:

(a) Is there a weaker security notion for round functions, than pseudoran-

domness, that suffices to prove security of the Feistel network?

(b) Can the Feistel network satisfy a much stronger security notion, i.e.

security as an ideal cipher, under appropriate assumptions on the round

functions?

We give a positive answer to the first question and a partial positive answer

to the second question. In the process, we undertake a combinatorial study

of the Feistel network, that might be useful in other scenarios as well. We

provide several practical applications of our results for the Feistel network.
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Chapter 1

Introduction

Cryptographic primitives, such as hash functions and block ciphers, are in-

tegral components in the design of practical cryptographic schemes. Often

the use of such primitives makes the task of coming up with secure and ef-

ficient cryptosystems much easier, as compared to designing such systems

from scratch based on complexity-theoretic assumptions. The usual design

procedure involves coming up with a proposed construction that uses an ab-

stract function/permutation family. The construction is then proven secure

by making an appropriate assumption on the function/permutation family.

For instance, assuming the function family to be collision-resistant or assum-

ing the permutations to be pseudorandom permutations. In practice, these

functions (resp. permutation) families are instantiated with actual hash func-

tions (resp. block ciphers), in the hope that these constructions will satisfy

the required security notion.
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Hence, depending on the requirements of cryptographic schemes these

primitives may need to satisfy a variety of security notions. For this reason,

the notion of a “secure” hash function or a “secure” block cipher is a little

fuzzy, at best. In this thesis, we attempt to come up with new and possibly

better design criteria for these primitives.

1.1 Hash Functions

The most common way of constructing a hash functions consists of two steps.

First, one constructs a compression function f : {0, 1}m → {0, 1}n from

scratch, or using a block cipher. Then one uses an iterative technique such

as the Cascade construction (see figure 3.2) to extend the domain of the

function to variable-length inputs. The basic motivation behind using the

cascade construction for domain extension was provided by the results of

Merkle and Damg̊ard [22, 54], who showed that the cascade construction

applied to a suffix-free encoding1 of the input is collision resistant if the

underlying compression function is collision resistant.

Thus, the main security notion that has served as a guideline for the

design of cryptographic hash functions, such as SHA [32], MD5 [34] etc., has

been Collision Resistance. Indeed, these hash functions have been used to

instantiate collision resistant functions in a variety of cryptographic schemes.

The applications of Collision resistant hash functions (CRHFs) range from

1In particular, they suggest using the Merkle-Damg̊ard strengthening, which involves
appending the input length to the input
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signature schemes (the classic “Hash-then-Sign” paradigm), to more recent

applications such as those relying on the non-black-box techniques of [2].

However, the problem with using a particular security property as the

guideline for hash function design is that now the requirements from hash

functions extend to a large number of different security notions. Indeed, hash

functions are used as pseudorandom functions, for message authentication,

as Universal One-Way Hash Functions (UOWHFs)2 [60], for Key Derivation

or even as a Random Oracle [8].

In spite of this large variety of applications, a large fraction of the existing

literature related to design and implementation of cryptographic hash func-

tions has concentrated on collision resistance [22, 54, 15]. Apart from this,

there have also been results related to pseudorandomness [5], MACs [6, 53],

target collision-resistance [11, 70] and key derivation [25].

1.1.1 Hash Functions as Random Oracles

In this thesis, we start by discussing one of the most important applications

of hash functions. That is, when hash functions are used to instantiate a

random oracle. The random oracle methodology was introduced by Bellare

and Rogaway as a “paradigm for designing efficient protocols” [8]. In this

paradigm, one designs a cryptographic protocol under the assumption that

there exists a ideal random function oracle (RO), which can be accessed by all

parties in the protocol (including the adversary). Then one provides a formal

2also called target collision resistant functions
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proof of security for the protocol under this assumption. In practice, the

random oracle is instantiated using an actual cryptographic hash function,

such as one of the hash functions from the SHA family [32].

It is clear that security in the ROM does not guarantee security of the

scheme when instantiated with an actual hash functions. Indeed, this was

shown in several “separation” results [18, 61, 4, 19, 26] which gave instances

of un-instantiable “artificial” cryptographic schemes that are secure in the

ROM. However, none of these results gave any attacks on actual schemes

that were proven secure in the ROM (such as OAEP [9] or PSS [10]). Thus,

the random oracle methodology is still a useful tool for designing efficient

cryptographic schemes with “reasonable security guarantee”.

In chapter 3, we study the design principles for cryptographic hash func-

tions when used to instantiate the Random Oracle. As we discussed, an

actual hash function H : {0, 1}∗ → {0, 1}n is designed to work on variable

length inputs. Thus, one would assume that if this hash function H is “ran-

dom and unstructured” enough, then there should not be any issues with

using H for instantiating the random oracle (RO). However, in reality, this

thinking is erroneous.

As we noted above, practical hash functions are designed by applying

a domain extension technique to a fixed-length input compression function

f : {0, 1}m → {0, 1}n. While most of the ad-hoc design effort goes into the

compression function h, the domain extension technique used in almost all

hash functions is the plain Merkle-Damg̊ard construction (figure 3.2). Thus,

4



it would be unreasonable to expect such a structured construction to behave

like a monolithic random oracle. On the other hand, it is a much more diffi-

cult task to design a monolithic “unstructured” hash function from scratch.

Hence, we approach this problem from a perspective of designing a vari-

able length input random oracle (VIL-RO) from a fixed-length input primitive

(for eg., a FIL-RO), so that all the design effort can then be concentrated

on coming up with a construction for the fixed-length primitive (in practice,

the compression function).

We start by noting that none of the previous “domain-extension” results

for hash functions (collision-resistance, pseudo-randomness etc.) imply a

similar domain extension result for random function oracle. The main reason

being that an RO construction must replicate all the properties of the random

oracle, such as pseudorandomness, extractability, programmability etc. Since

none of the previous definitions guarantee all these properties, it is not even

clear how to approach this problem.

Indifferentiability

We start by discussing what it means to implement an variable-length input

random oracle H from a fixed-length building block, such as a FIL-RO f .

We show that the notion of indifferentiability introduced by Maurer et al

[52] is the right definition in this context. In particular, if we show that

the construction H using a fixed-length building block f is indifferentiable

from a random oracle under the assumption that f is ideal, then we can use

5



the construction H to instantiate the random oracle in any scheme provably

secure in the ROM. And the resulting scheme will be secure in the idealized

model corresponding to the primitive f .

In order to illustrate this security notion, consider a proposed RO con-

struction Cf
H in the f -ideal model. This is an indifferentiable RO construc-

tion if there is a simulator SH that can simulate the role of the fixed-length

primitive f in the random oracle model. That is, for any attacker A(·,·) that

expects access to two oracles, the following two scenarios are indistinguish-

able: first, where it has oracle access to the RO H and the simulator SH

and second, where it has oracle access to the RO construction Cf
H and the

fixed-length primitive oracle f . Thus, SH should essentially simulate the role

played by the fixed-length primitive f with respect to the RO construction.

More details on this definition are given in chapter 2, section 2.2.

Domain Extension for Random Oracle

Equipped with a suitable definition, we attempt to find an indifferentiable

construction of a variable-length random oracle H from a fixed-length random

function oracle f 3. We start by discussing some existing, and seemingly

secure domain extension techniques under this definition.

In particular, we show that the popular hash-then-sign paradigm is not

secure in this context. Moreover, even the plain Merkle-Damg̊ard construc-

tion, used in almost all existing hash functions, is not an indifferentiable

3This is a fixed-length random function that is accessible to all the parties in the
protocol.
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construction of a VIL-RO (even with Merkle-Damg̊ard strengthening). Thus,

the existing design principle behind hash functions such as SHA-1 or MD5

is not secure for our goal.

Therefore, instead of giving new and practically unmotivated construc-

tions, we come up with minimal changes to the plain Merkle-Damg̊ard con-

struction that are easily implementable in practice, and satisfy our security

definition. In particular, we propose the following modifications to the plain

MD construction:

1. Prefix-free encoding: we show that if the inputs to the plain MD con-

struction are guaranteed to be prefix-free, then the resulting construc-

tion is secure.

2. Dropping some output bits: we show that by dropping a non-trivial

number of output bits from the output of the plain MD construction,

we get an indifferentiable construction of a VIL-RO.

3. The NMAC construction (see figure 3.3a): we show that by applying

an independent hash function g to the output of the plain MD con-

struction using f (as in the NMAC construction [5]), then we get an

indifferentiable VIL-RO construction in the random oracle model for f

and g.

4. The HMAC construction (see figure 3.3b): we show a slight variant

of the NMAC construction allows us to build the second function g

from f itself (as in [5], in going from NMAC to HMAC)! In this latter

7



variant, one implements a secure hash function H by making two black-

box calls to the plain MD construction (with the same IV and a given

compression function f).

Ideal Cipher to Random Oracle

In practice, most hash functions are block-cipher based, either explicitly as

in [15] or implicitly as in SHA-1. Therefore, we consider the question of

constructing a VIL-RO H from an ideal block cipher E : {0, 1}κ× {0, 1}n →

{0, 1}n. An ideal block cipher is an ideal primitive that takes a κ-bit key, and

defines an independent random permutation for each key.

We concentrate on using the Merkle-Damg̊ard construction with the Davies-

Meyer compression function f(x, y) = Ey(x)⊕x, since this is the most prac-

tically relevant construction. One could hope to first show that the Davies-

Meyer compression function is an indifferentiable construction of a FIL-RO

in the ideal cipher model for E and then use one of the secure constructions

of a VIL-RO from a FIL-RO. However, as we show, this first attempt fails

and the Davies-Meyer construction fails to give a FIL-RO from an ideal ci-

pher. Fortunately, we show, via direct proofs, that all four fixes proposed for

FIL-RO to VIL-RO construction also work when used with the Davies-Meyer

compression function in the ideal cipher model.

8



1.1.2 Getting the Best out of Existing Hash Functions

Having discussed the use of hash functions for instantiating the random ora-

cle, we then analyze security of hash functions in a more general perspective.

As we mentioned above, hash functions are required to satisfy a variety of

different security requirements in cryptographic schemes. In fact, in the past,

hash functions were viewed by practitioners as black-boxes with magic prop-

erties.

However, this perception has changed since the recent attacks on exist-

ing hash functions, including the SHA-1 and MD5. Most notable of these

were the new and improved collision-finding attacks proposed by Wang et

al [72, 73]. Along with other results demonstrating weaknesses of existing

hash function constructions, such as [43, 45], these attacks showed that the

collision-resistance of these hash functions is much worse than what was

anticipated earlier. Moreover, these results have also cast a doubt on the

security of these hash functions with respect to other notions.

These results have prompted NIST into organizing a series of workshops

[62] for coming up with constructions for the “next generation” hash func-

tions, and rightly so. However, this new standard is not expected to be

decided any time soon. Meanwhile, practitioners are stuck with either using

existing, known to be “insecure”, hash functions or using an ad-hoc imple-

mentation that has not undergone the thorough analysis that standardized

hash functions go through. In either case, the resulting application will be

prone to possible weaknesses that are avoidable.

9



In chapter 4, we address this problem by looking for fixes that would

allow practitioners to use standardized hash functions while side-stepping

several of the weaknesses of existing constructions. As we have discussed,

almost all existing hash functions are based on the plain MD construction

(with Merkle-Damg̊ard strengthening). Thus, we look for black-box fixes

that can be implemented on top of the plain MD construction for several of

the applications that hash functions are often used for.

Efficient Black-Box Fixes to Existing Hash Functions

Most of the prior work for hash functions has been aimed at finding iter-

ative techniques (usually, some variants of the plain MD construction) for

extending the domain of fixed length primitive to get an arbitrary length

primitive satisfying the same security property, which are also often called

property-preserving transforms. For instance, the results from chapter 3 for

constructing a VIL-RO from a FIL-RO fall under this category. However,

we note that it is not always the case that these variants of the plain MD

construction can be implemented on top of a plain MD based hash function.

An example in this context is the PRF domain extension technique in [5].

In fact, most often the reason for such “non-black-box variants” of the plain

MD construction is that no black-box variants are known that preserve the

required security property.

In chapter 4, our focus will be slightly different in the sense that we will

emphasize this alternative goal for domain extension techniques more than

10



property preservation. In particular, we are willing to make slightly stronger

assumptions on the fixed-length primitive in order to get a variable-length

primitive with a desired security property. We will look for efficient variants

of the plain MD construction that satisfy the following axioms:

1. It should consist of one or two “black-box” calls to plain MD construc-

tion.

2. The construction must support variable-length inputs.

3. Compared to a single evaluation of the plain MD construction, its eval-

uation should make at most a fixed (small constant) number of extra

calls to the underlying compression function.

Such a variant of the plain MD construction will allow a practitioner, who

understands the security property he/she needs from the hash functions, to

use an existing standardized implementation without having to tinker with

the, often rather involved, internals of the implementation. We also refer to

such a variant of the plain MD construction as an efficient black-box hash

function mode of operation.

Security Properties vs. Modes of Operation

The axioms that we require our hash function modes of operation to satisfy

leave very little choice for the domain extension techniques that one can use.

We discuss most of the popular hash function modes of operation that satisfy

our axioms:

11



1. Plain MD Construction: This captures the notion that the application

uses the hash function as it is.

2. Encode-then-MD Construction: In this case, the user encodes the hash

function input before applying the plain MD construction. Examples of

popular encoding schemes used are suffix-free encoding and prefix-free

encoding.

3. MD-then-Chop Construction: Here the user applies the plain MD mode

and only uses part of the output while discarding the remaining bits. In

particular, existing hash functions SHA-224 and SHA-384 are obtained

this way from SHA-256 and SHA-512, respectively.

4. NMAC/HMAC Construction: The version of the NMAC construction

that we consider simply composes two applications of the plain MD

mode with possibly different initialization vectors IV1 and IV2. While

not obeying the first axiom, the NMAC construction serves as a nice ab-

straction for the HMAC construction which does satisfy all our axioms

(but is slightly harder to formally analyze in some cases). Essentially,

the HMAC construction simulates the two black-box calls of the NMAC

construction with different IV s, by adding prefixes to the input in each

call.

We analyze each of these hash function modes of operation for most of the

security properties that are usually desired of hash functions. The hash func-

tion properties that we analyze include: (1) Collision-resistance, (2) Pseu-
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dorandomness, (3) Message Authentication, (4) Random Oracle, (5) Target

Collision Resistance (UOWHFs), (6) Second Preimage Resistance, (7) Ran-

domness Extraction, and (8) One-Wayness.

In each case, we find the minimal assumptions that one needs to make on

the compression function in order to achieve the required security property

from the resulting hash function mode of operation. In many cases, it turns

out that we need to make stronger assumptions on the compression function

than the desired security property. Some of these results follow directly from

previous work, while for other results we provide separate proofs in chapter

4.

We provide a detailed “security property vs. hash function mode of op-

eration guide” that gives the minimal assumptions one needs to make on the

compression function for each of an efficient black-box mode of operation

to satisfy each of the security property (see figure 4.1). This will serve as

a useful guide for practitioners on how to use existing hash functions when

they desire a certain security property from them.

1.2 Block Ciphers

In the second part of this thesis, we discuss another important cryptographic

primitive, a block cipher. A block cipher E : {0, 1}κ×{0, 1}n → {0, 1}n takes

a κ-bit key, and gives a permutation on n-bit strings for each key. Examples

of actual block ciphers include Data Encryption Standard (DES), Advanced
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Encryption Standard (AES) etc. The initial use of block ciphers was for

symmetric key encryption.

Though the uses for block ciphers are not as wide-ranging as in the case of

hash functions, these primitives are also used in several scenarios other than

for privacy. For instance, these are used in the popular message authentica-

tion mode, CBC-MAC, or in instantiating schemes in the ideal cipher model

[15, 23, 30, 42, 46].

1.2.1 Feistel Networks and Luby-Rackoff’s Result

Feistel networks form the basis of several block cipher constructions, such

as DES, Triple DES, Blowfish etc. A Feistel network consists of multiple

iterative applications of the Feistel transform. The Feistel transform provides

a construction of a permutation on 2n-bit strings using a length-preserving

function f : {0, 1}n → {0, 1}n. It is defined as follows: Ψf(x)
def
= xR ‖

(xL⊕f(xR)). The different iterative applications of the Feistel transform are

known as the rounds of the Feistel network, and the corresponding functions

are called round functions.

Initially, there was no theoretical justification for the usage of the Feistel

networks in the design of block ciphers. This theoretical justification was

provided by the result of Luby and Rackoff [47], who showed that 4 rounds

of the Feistel network with independent pseudorandom functions in each

round gives a (strong) pseudorandom permutation 4. Since the paper of Luby-

4A strong pseudorandom permutation is indistinguishable from a truly random permu-
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Rackoff, several improvements were made to their result (see [58, 51, 69, 64]).

All these results showed essentially argued the pseudorandomness of a

multiple round Feistel network with pseudorandom round functions (with

improving exact security of the reductions or under slightly different attack

scenarios). These results provided enough justification for the use of the

Feistel network based block ciphers for symmetric key encryption. Indeed,

pseudorandomness of ciphertexts is the security property that one desires

from a symmetric key encryption scheme.

1.2.2 Looking Beyond Pseudorandomness?

However, there are several reasons to look for other security properties from

block ciphers.

(a) As we mentioned above, block ciphers are utilized for a much wider

range of applications than for symmetric key encryption alone. These

applications often require security properties that may be different from

pseudorandomness.

(b) The round functions (or S-Boxes in actual constructions) in Feistel

network based block ciphers are designed based on heuristics, and may

not be (possibly even close to) pseudorandom functions. In this case,

all of the previous results for the Feistel network become inapplicable.

(c) Moreover, the round functions in actual constructions may leak a lot of

tation for any attacker that can make both forward or inverse permutation queries

15



information about the intermediate round values of the Feistel network.

Again, all of the prior results for Feistel networks assume the secrecy

of all (or at least some) of the round values.

In part II of this thesis, we analyze the Feistel networks from this perspective.

In particular, we analyze the Feistel network under both weaker as well as

stronger security notions than pseudorandomness.

Firstly, we analyze the situation when the round functions of a Feistel

network are not pseudorandom functions. In particular, we analyze the sit-

uation when the round functions satisfy some weaker security property than

pseudorandomness, or if the intermediate round values of the Feistel network

are somehow (possibly thorough weakness of round functions) leaked to the

attacker. We give positive results in such a situation in chapter 6.

Secondly, we ask if the Feistel network could be used to design a much

stronger primitive than a pseudorandom permutation. That is, we analyze

if, under some (ideal) security assumption on the round functions, the Feistel

network is an indifferentiable construction of an ideal block cipher. Note that

this is also the other direction of one of the questions addressed in chapter

3. We give a partial positive answer to this question in chapter 7.

1.2.3 An Abstraction for Feistel Networks

As we discussed, most of the previous results become inapplicable if either

the round functions are not pseudorandom, or (at least some of) the round
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values are not hidden from the attacker. In order to handle this problem, we

start out by discussing a combinatorial abstraction for the multiple round

Feistel network that is applicable to scenarios where one or both of these

assumptions do not hold. In particular, we do not make any assumptions on

the round functions when stating this result.

Consider a k-round Feistel network that defines a permutation on 2n bits

based on k length-preserving functions on n-bits. We will refer to the inputs

to each of these round functions as the round values of the Feistel network.

We study a game between this k-round Feistel network and an attacker that

makes 2n-bit forward/inverse permutation queries to this Feistel network and

gets the result as well as all the intermediate round values. The attacker wins

the game if it makes two queries such that the middle ((k/2)th) round values

in these queries collide.

We show that if the attacker wins after making q queries to the k-round

Feistel network in this game, then:

(a) Either the number of queries, q, made by it is exponential in k.

(b) Or a new round function output can be represented as an XOR of upto

5 other round values that already existed before this round function

output. We refer to this as the 5-XOR condition (see section 5.1).

The second condition essentially implies that for some query made by the

attacker, a round function, say fi(Ri), where output can be represented as

an XOR of upto 5 round values that were defined before this round function
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output. This includes round values from earlier queries, or round values from

this query that were defined before this round function output.

This property essentially proves a property of an interaction between

an attacker and the Feistel network that does not depend on the round

functions used in the construction. We use this property for our problem

by showing that if the round functions of the Feistel network are chosen such

that the 5-XOR condition is not satisfied for any efficient attacker, then the

number of queries made by a “winning” attacker must be exponential in the

number of rounds k (which is super-polynomial in the security parameter λ

for k = ω(log λ).

Moreover, we show that this result is tight in the sense that for a Feistel

network with upto logarithmic number of rounds k = O(log λ), there is an

attacker that can find the input corresponding to any permutation output by

making only forward queries. This is sufficient to see that the combinatorial

property above does not hold for such a Feistel network. In fact, as we show

in chapter 6, this implies that such a Feistel network is not useful for most

applications where the round values are revealed to the attacker.

1.2.4 New and Improved Primitives

In chapter 6, we show new (or improved) constructions of some cryptographic

primitives using the combinatorial property above. First, prove a stronger

result than Luby-Rackoff (and subsequent results) for PRPs, that with a

super-logarithmic number of rounds, the Feistel network, with independent
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PRFs as round functions, is a (strong) pseudorandom permutation even if

the PRP attacker can observe the intermediate computations of the Feistel

network. This gives a more resilient PRP construction.

Coming back to our first question, we ask if there is a weaker property of

the round functions than pseudorandomness, that guarantees some security

property for the Feistel network. We show that even if the round functions

of a super-logarithmic round Feistel network are only unpredictable functions

(UFs) then it is an unpredictable permutation (UP) 5. In fact, we show that

this result is tight, in the sense that for upto a logarithmic number of rounds,

there is a set of UFs that do not give a UP via the Feistel network (see lemma

23).

Next, we show that our result is also useful in a scenario where the appli-

cation may need to explicitly reveal all the intermediate round values to an

attacker. For instance, this comes up when one tries to add verifiability to the

PRP or UP constructions above. The notion of verifiable (pseudo)random

functions (VRFs) was introduced by Micali et al. [55]. These are essentially

verifiable analogs of PRFs, with a public key PK and secret key SK. Given

both the public and secret keys, one can compute the output y of the VRF

on an input x, as well as construct a short proof that y is indeed the output

of the VRF on input x and not some “garbage value” (which could easily be

done for a normal PRF). On the other hand, given only the public key PK,

5Roughly speaking, an unpredictable function guarantees that no attacker can predict
the output of the function on an unqueried input (similarly for unpredictable permutations
with both forward/inverse queries).
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one can verify this proof to learn whether y is indeed the correctly computed

output (see formal defns. in section 6.1).

We introduce the notion of verifiable (pseudo)random permutations (VRPs)

that are similar verifiable analogues of PRPs (or permutation analogues of

VRFs). For VRPs, one can compute (and provide proofs for) both the for-

ward and inverse permutation given the public and secret keys. We show that

a super-logarithmic round Feistel network with independent VRFs as round

functions, is a secure VRP. Note that in this case, the VRP proof will sim-

ply consist of intermediate round function input/output pairs along with the

corresponding VRF proofs. Thus the round values need to be revealed to the

attacker, which makes all of the previous techniques for the Feistel network

inapplicable. Moreover, this also implies that super-logarithmic number of

rounds are both necessary and sufficient.

Finally, we consider the case of verifiable unpredictable permutations (VUPs).

These are verifiable analogs of unpredictable permutations. The correspond-

ing notion of verifiable unpredictable functions (VUFs) was also introduced

by Micali et al. [55]. These are also known as unique signatures (see [38, 49]).

Micali et al. used VUFs as an intermediate step for constructing VRPs.

Note that in this case, if one uses the Feistel network with VUFs as

round functions to construct VUPs, then neither are the round functions

pseudorandom, nor are the round values hidden from the attacker (and are

revealed as part of the VUP proof). However, we show that even in this case,

a super-logarithmic round Feistel network is both necessary and sufficient to

20



construct VUPs from VUFs.

Applications

We then provide various examples of natural scenarios where our technique

(and the constructions we derive from it) are useful. These applications are

described in section 6.3 (chapter 6).

• We show how our results provide a “closer-to-reality” justification for

the number of Feistel rounds heuristically used in practical block cipher

constructions.

• Using our results, we provide the most efficient domain extension tech-

nique for length-preserving MACs without introducing any new as-

sumptions.

• We show that VRPs immediately yield non-interactive, setup-free, perfectly-

binding commitment schemes.

• VRPs can be used to fix a subtle security flaw in the non-interactive

lottery system of Micali-Rivest [56].

• We show that these primitives can also be used to implement so called

“invariant signatures” needed by Goldwasser and Ostrovsky [38].

• Other applications of VRPs, such as verifiable CBC encryption/decryption,

verifiable huge (pseudo)random objects [36] or a “proof-transferable”
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implementation of the Ideal Cipher Model using a semi-trusted third

party.

1.2.5 The Ideal Cipher Model

In chapter 7, we analyze if the Feistel network can be used to achieve a

stronger security notion than pseudorandomness. That is, we analyze if the

Feistel network can be used to get an indifferentiable construction of the ideal

cipher (IC) from a random oracle (RO). This is essentially the converse of a

question we studied in chapter 3. There we gave indifferentiable constructions

of the random oracle from the ideal cipher oracle. If the converse result also

holds, then it will also imply that the ideal cipher model (ICM) is equivalent

to the random oracle model (ROM). Although, the ideal cipher model has

not been as widely applicable as the random oracle model, there have been

some results that utilize this model (see [15, 23, 30, 42, 46]).

We give a “partial positive” answer to this question, by showing that with

sufficient number of rounds a Feistel network based construction using RO

is indifferentiable from the ideal cipher in the “honest-but-curious” model.

This is a weaker security notion than general indifferentiability, that is still

stronger than classical indistinguishability (that is used in the case of PRPs).

Indifferentiability in the Honest-but-Curious Model

We start out by introducing the notion of indifferentiability in the honest-

but-curious model in section 7.1. In order to illustrate this security notion,
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consider a construction CH
E of the IC E using the RO H. Under the general

notion of indifferentiability this construction is a secure ideal cipher construc-

tion, if there is an efficient simulator that can simulate the role of the RO H

in the ideal cipher model. In this weaker notion, the task of the simulator is

simply to simulate the interaction between the RO H and the construction

CH
E in the ideal cipher model. That is, for any attacker A that has expects

access to the ideal cipher construction oracle CH
E and can make queries to

this construction where it observes the queries that CH
E , in turn, makes to

the random oracle H, the following two scenarios are indistinguishable: first,

where it has oracle access to CH
E and can observe the actual interaction be-

tween CE and H or second, where it has oracle access to the ideal cipher E

and the simulator S generates a fake interaction for the attacker.

We show that if an ideal cipher construction is indifferentiable in the

honest-but-curious model, then any cryptographic protocol that is secure

against honest-but-curious attackers in the ideal cipher model can also be

instantiated in the random oracle model using this construction.

Next, we define the notion of a transparent construction, which are con-

structions for which general indifferentiability is equivalent to indifferentia-

bility in the honest-but-curious model. Roughly speaking, for a transparent

ideal cipher construction using RO, an attacker can query the RO indirectly

by making queries to the construction and observing its interaction with the

RO.
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An HBC Indifferentiable construction and going beyond. . .

Next, we analyze the Feistel network to find out if it can give us an indiffer-

entiable IC construction using RO. We first show that for upto a logarithmic

number of rounds k = O(log λ), the k-round Feistel network is a transparent

construction. That is, if one can prove the honest-but-curious indifferentia-

bility of this construction, then it will also imply general indifferentiability.

This implies that if such a k-round Feistel network is an HBC indifferentiable

ideal cipher construction, then the random oracle model and the ideal cipher

model are equivalent! We conjecture that this is the case and that in fact,

even a 6-round Feistel network might be an indifferentiable ideal cipher con-

struction. However, we have not been able to come up with a formal proof

of this conjecture.

However, we show that with super-logarithmic number of rounds k =

ω(log λ), the k-round Feistel network is HBC indifferentiable from the ideal

cipher. This result uses the combinatorial property that we prove in chapter

5. This would indicate that one might be able to show that such a con-

struction is indifferentiable from the ideal cipher in general, by showing that

this is a transparent construction. Unfortunately, we prove that this cannot

be the case by showing that for super-logarithmic number of rounds, the

Feistel network cannot be a transparent construction. Thus, in this case,

honest-but-curious indifferentiability is a strictly weaker notion than general

indifferentiability.

Finally, we state a result of Coron [20] who shows that for upto 5 rounds,
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the Feistel network does not even give an HBC indifferentiable ideal cipher

construction. We give a proof of this fact for a 4-round Feistel network in

section 7.2.4. This result also implies that the notion of indifferentiability

in the honest-but-curious model is strictly stronger than classical indistin-

guishability, since 4 rounds are sufficient in the latter case [47].
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Chapter 2

Preliminaries

2.1 Pseudorandomness and Indistinguishabil-

ity

Let λ ∈ N denote the security parameter. Let {Aλ, Bλ}λ∈N be a sequence of

pairs of sets. For the purposes of this thesis, Aλ and Bλ will be of the form

{0, 1}n(λ) and {0, 1}m(λ), respectively. Here n(·) and m(·) are polynomial

functions N 7→ N. When no ambiguity can arise, we will simply represent

these sets as {0, 1}n and {0, 1}m.

Let Fλ be the set of all functions Aλ 7→ Bλ, and let Pλ be the set of all

permutations on Aλ. A function ensemble H = {Hλ}λ∈N is a sequence such

that each Hλ is distributed on Fλ. Here H is the uniform function ensemble

if Hλ is uniformly distributed on Fλ. A permutation ensemble H = {Hλ}λ∈N

is a sequence such that each Hλ is distributed on Pλ, and H is the uniform
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permutation ensemble is Hλ is uniformly distributed on Pλ.

A function ensemble is efficiently computable if the distribution Hλ is

efficiently samplable and the functions in Hλ can be computed efficiently.

That is, there exist probabilistic polynomial time Turing machines, I and V ,

and a mapping from strings to functions, φ, such that (1) φ(I(1λ)) and Hλ

are identically distributed and (2) V (i, x) = (φ(i))(x) so that V (I(1n), ·) is

essentially Hλ(·). We denote by fi the function assigned to i (i.e. fi
def
= φ(i)).

We refer to i as the key of fi and to I as the key generating function of F .

Throughout this thesis, when we consider function (or permutation en-

sembles), the sequence of sets {Aλ, Bλ}λ∈N will be of the form
{

{0, 1}n(λ) ,

{0, 1}m(λ)
}

, where n, m are functions on N 7→ N. The usual key generation

function I will simply output a uniformly sampled random bit string from a

set {0, 1}k(λ), i.e. I(1λ) is uniformly distributed over {0, 1}k(λ).

We start by describing the notion of indistinguishability of two function

(or permutation) ensembles. In this notion, the distinguisher is an oracle

machine that is given oracle access to a function in Fλ or a permutation in Pλ.

On input 1λ, the distinguisher makes queries to the function or permutation

that it has oracle access to, and outputs a single bit. We assume that on

input 1λ, the distinguisher only makes queries in Aλ. For the purpose of this

thesis, the oracle machine can be thought to be an oracle Turing machine.

Let D be an oracle machine, let f be a function in Fλ and let Hλ be dis-

tributed over Fλ. We denote by Df(1λ), the output distribution of D when

its oracle queries are answered by f , and denote by DHλ(1λ), the output dis-
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tribution of D when its oracle queries are answered by a function distributed

according to Hλ. We will also consider oracle machines that take oracle ac-

cess to a permutation in Pλ and its inverse. Let π be a permutation in Pλ

and let Hλ be a distribution over Pλ. We denote by Dπ,π−1

(1λ), the output

distribution of D when it is given oracle access to the permutation π, and

denote by DHλ,H−1

λ (1λ), the output distribution of D when it is given oracle

access to a permutation distributed according to Hλ.

Definition 1 ((t, q, ε)-indistinguishability). Let H = {Hλ}λ∈N and H̃ =

{H̃λ}λ∈N be two function ensembles. We say that H and H̃ are (t, q, ε)-

indistinguishable function ensembles if for any probabilistic oracle machine

D running in time t and making at most q oracle queries,

∣

∣

∣
Pr

[

DHλ(1λ) = 1
]

− Pr
[

DH̃λ(1λ) = 1
]∣

∣

∣
≤ ε

Here t, q and ε are all functions of the security parameter λ. The same

definition can also be used for (t, q, ε)-indistinguishability of two permutation

ensembles 〈H, H−1〉 and 〈H̃, H̃−1〉.

Definition 2 (negligible function). A function h : N→ N is negligible if

for every constant c > 0 and all sufficiently large n,

h(n) <
1

nc

We will say that two function (or permutation) ensembles are (computa-
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tionally) indistinguishable if they are (t, q, ε)-indistinguishable with ε negli-

gible for every polynomial t and q.

Next, we will use this notion of indistinguishability to introduce the no-

tions of pseudorandom functions and permutations.

Definition 3 ((t, q, ε)-PRF). Let H = {Hλ}λ∈N be an efficiently computable

function ensemble and let R = {Rλ}λ∈N be the uniform function ensemble.

H is a (t, q, ε)-pseudorandom function ensemble if for any probabilistic oracle

distinguisher D that runs in time t and makes at most q oracle queries,

∣

∣Pr
[

DHλ(1λ) = 1
]

− Pr
[

DRλ(1λ) = 1
]∣

∣ ≤ ε

Definition 4 ((t, q, ε)-PRP). Let H = {Hλ}λ∈N be an efficiently computable

permutation ensemble and let R = {Rλ}λ∈N the the uniform permutation

ensemble. H is a (t, q, ε-pseudorandom permutation ensemble if for any

probabilistic oracle distinguisher D that runs in time t and makes at most q

oracle queries,

∣

∣Pr
[

DHλ(1λ) = 1
]

− Pr
[

DRλ(1λ) = 1
]∣

∣ ≤ ε

Definition 5 ((t, q, ε)-SPRP). Let H = {Hλ}λ∈N be an efficiently com-

putable permutation ensemble and let R = {Rλ}λ∈N the the uniform permu-

tation ensemble. H is a (t, q, ε-strong pseudorandom permutation ensemble

if for any probabilistic oracle distinguisher D that runs in time t and makes
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at most q oracle queries,

∣

∣

∣
Pr

[

DHλ,H−1

λ (1λ) = 1
]

− Pr
[

DRλ,R−1

λ (1λ) = 1
]∣

∣

∣
≤ ε

2.2 Ideal Primitives and Indifferentiability

In this section, we introduce the notion of ideal primitives and indifferentia-

bility that will be used in parts I and II. We define an ideal primitive as an

algorithmic entity which receives inputs from one of the parties and delivers

its output immediately to the querying party. Moreover, the input/output

pairs of an ideal primitive satisfy an ideal property, which can only be ap-

proximated in practice.

In this thesis, we will concentrate on two popular ideal primitives, random

oracles and ideal ciphers. A random oracle (RO) [8] is an ideal primitive

H : {0, 1}∗ → {0, 1}n which provides a random output to each new query.

Identical input queries are given the same answer. An ideal cipher is an ideal

primitive that models an ideal block cipher E : {0, 1}κ × {0, 1}n → {0, 1}n.

For such a block cipher, each key k ∈ {0, 1}κ defines an independent random

permutation Ek = E(k, ·) on {0, 1}n. The ideal primitive provides oracle

access to E and E−1; that is, on query (0, k, m) the primitives answers c =

Ek(m), and on query (1, k, c) the primitive answers m such that c = Ek(m).

Another notion related to ideal primitives, is that of ideal assumption

models. In such models, one simplifies the task of constructing cryptographic
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protocols by assuming the existence of some publicly accessible ideal primitive

oracle. The security of a protocol in such a model is also proven under this

assumption, which does not formally imply its security in general but still

provides a reasonable security guarantee (as discussed in the introduction).

The most popular ideal assumption models are the random oracle model

(ROM) and the ideal cipher model (ICM), where one assumes the existence

of a random oracle and an ideal cipher oracle respectively.

As discussed in the introduction, the notion of indistinguishability does

not suffice to discuss the security of constructions of one ideal primitive using

another. The main reason is that in such a situation, one or more of oracles

are publicly available. For such a situation, the notion of indifferentiability

of random systems, introduced by Maurer et al in [52], turns out to be the

right one. Indifferentiability is essentially an extension of indistinguishability,

based on ideas from the Universal Composability framework [17] and the

model of Pfitzmann and Waidner [66]. Instead of discussing the notion of

indifferentiability in the context of random systems that provide interfaces

to each other (as is done in [52]), we shall use this notion in the framework

of Interactive Turing Machines (as in [17]).

Definition 6 (Indifferentiability). A Turing machine C with oracle access

to an ideal primitive G is said to be (tD, tS, q, ε) indifferentiable from an ideal

primitive F if there exists a simulator S, such that for any distinguisher D
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it holds that :

∣

∣Pr
[

DC,G(1λ) = 1
]

− Pr
[

DF ,S(1λ) = 1
]∣

∣ ≤ ε

The simulator has oracle access to F and runs in time at most tS. The

distinguisher runs in time at most tD and makes at most q queries. Here

tD, tS, q and ε are all functions of the security parameter λ. Similarly, CG

is said to be (computationally) indifferentiable from F is ε is a negligible

function of λ (for polynomially bounded tD and tS).

As illustrated in figure 2.1, the role of the simulator is to simulator the

ideal primitive G so that no distinguisher can tell whether it is interacting

with C and G, or with F and S; in other words, the output of S should look

“consistent” with what the distinguisher can obtain from F . Note that the

simulator does not see the queries made by the distinguisher to F ; however,

it can call F directly when needed for the simulation.

In part I, the ideal primitive F that we try to construct will be a random

oracle, while G will be either a fixed-length input random function or an ideal

block cipher. Thus the construction C will use primitive G to emulate the

random oracle F . On the other hand, in part II the ideal primitive F will

be the ideal cipher E, while the G will be a random oracle H.

It is shown in [52] that if CG is indifferentiable from F , then CG can

replace F in any cryptosystem, and the resulting cryptosystem is at least as

secure in the G model as in the F model. For instance, if a block cipher based
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C G F S

D

Figure 2.1: The indifferentiability notion: the distinguisher D either inter-
acts with algorithm C and ideal primitive G, or with ideal primitive F and
simulator S. Algorithm C has oracle access to G, while simulator S has
oracle access to F .

iterative hash function is indifferentiable from a random oracle H in the ideal

cipher model, then the iterative hash function can replace the random oracle

in any cryptosystem, and the resulting cryptosystem remains secure in the

ideal cipher model if the original scheme was secure in the random oracle

model.

C G F

P A P A'

ε ε

Figure 2.2: The environment E interacts with cryptosystem P and attacker
A. In the G model (left), P has oracle access to C whereas A has oracle
access to G. In the F model, both P and A′ have oracle access to F
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We use the definition of [52] to specify what it means for a cryptosystem

to be at least as secure in the G model as in the F model. A cryptosystem is

modelled as an Interactive Turing Machine with an interface to an adversary

A and to a public oracle. The cryptosystem is run by an environment E

which provides a binary output and also runs the adversary. In the G model,

cryptosystem P has oracle access to C whereas attacker A has oracle access

to G. In the F model, both P and A have oracle access to F . The definition

is illustrated in Figure 2.2.

Definition 7. A cryptosystem is said to be at least as secure in the G model

with algorithm C as in the F model, if for any environment E and any

attacker A in the G model, there exists an attacker A′ in the F model, such

that
∣

∣

∣
Pr

[

EP
C,AG

(1λ) = 1
]

− Pr
[

EP
F ,A′F

(1λ) = 1
]∣

∣

∣

is a negligible function of the security parameter λ. Similarly, a cryptosystem

is said to be computationally at least as secure, etc., if E , A and A′ are

polynomial-time in λ.

The following theorem from [52] shows that security is preserved when

replacing an ideal primitive by an indifferentiable one:

Theorem 1. Let P be a cryptosystem with oracle access to an ideal primitive

F . Let C be an algorithm such that CG is indifferentiable from F . Then

cryptosystem P is at least as secure in the G model with algorithm C as in

the F model.
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Proof: We only provide a proof sketch; see [52] for a full proof. Let P be

any cryptosystem, modelled as an Interactive Turing Machine. Let E be any

environment, and A be any attacker in the G model. In the G model, P has

oracle access to C whereas A has oracle access to ideal primitive G; moreover

environment E interacts with both P and A. This is illustrated in Figure 2.3

(left part).

C G F S

P A P A

ε ε
D D

A'

Figure 2.3: Construction of attacker A′ from attacker A and simulator S.

Since CG is indifferentiable from F (see Figure 2.1), one can replace (C,G)

by (F , S) with only a negligible modification of the environment’s output dis-

tribution. As illustrated in Figure 2.3, by merging attacker A and simulator

S, one obtains an attacker A′ in the F model, and the difference in E ’s output

distribution is negligible.

Hence if one can find an indifferentiable construction of the ideal primitive

F using another primitive G, then any secure cryptographic protocol in the

ideal assumption model corresponding to F has an equivalent secure protocol
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in the ideal assumption model with primitive G.

2.3 Other Cryptographic Primitives

In this section, we will give formal definitions for some of the cryptographic

primitives that we will use in this thesis.

2.3.1 Message Authentication Codes

We start by defining the notion of a Message Authentication Code. This is

a symmetric key primitive that allows a sender A to send a message m to a

receiver B along with a tag t, such that the receiver B can verify whether the

message was indeed sent by the sender A.

A Message Authentication Code, MAC, is defined over a sequence of

message and tag spaces {Mλ, Tλ}λ∈N. It consists of a triple (Gen, Tag, V er)

of probabilistic polynomial time (PPT) algorithms:

1. The key generating algorithm Gen outputs the shared secret key: s←

Gen(1λ).

2. The tagging algorithm Tag produces a tag t ← Tags(m) (such that

t ∈ Tλ), for any message m ∈ Mλ.

3. The (deterministic) verification algorithm V er produces a value V ers(m, t) ∈

{accept, reject} indicating whether the tag t is a valid tag for message

m or not.
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We will define the security of MACs in the exact security framework as well.

Definition 8 ((t, q, ε)-secure MAC). A Message Authentication Code, (Gen, Tag, V er),

is a (t, q, ε)-secure MAC, if for any oracle machine A that runs in time at

most t, makes at most q queries to its oracles and outputs a “forgery” (m, t)

such that m has never been queried to the oracle Tags(·):

Pr
[

V ers(m, t) = accept
∣

∣s← Gen(1λ); (m, t)← ATags,V ers(1λ)
]

≤ ε

Here t, q and ε are all functions of the security parameter λ.

2.3.2 Collision Resistance

A Collision Resistant function ensemble is defined over a sequence of sets

{Aλ, Bλ}λ∈N. It consists of a pair (Gen, Eval) of PPT algorithms:

1. The key generating algorithm Gen outputs the function key: s ←

Gen(1λ).

2. The function evaluation algorithm Eval takes a function key s and an

input x ∈ Aλ, and maps it to an output y ← Eval(s, x) such that

y ∈ Bλ. We will also denote this as y = hs(x).

The task of an attacker in the collision resistance attack game is to find a

pair of inputs for which the given function has the same output.

Definition 9 ((t, ε)-collision resistant function). A efficiently computable

function ensemble Hλ if a (t, e, ε)-collision resistant function ensemble if for
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any oracle machine A that runs in time at most t and outputs a pair of inputs

x1, x2 ∈ Aλ:

Pr
[

hs(x1) = hs(x2)
∣

∣s← Gen(1λ); (x1, x2)← A(1λ, s)
]

≤ ε

Here t and ε are functions of the security parameter λ.
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Part I

Hash Functions
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Chapter 3

Hash Functions as Random

Oracles

Random Oracle Methodology. The random oracle model was intro-

duced by Bellare and Rogaway as a “paradigm for designing efficient pro-

tocols” [8]. It assumes that all parties, including the adversary, have access

to a public, truly random function H. This model has proved extremely

useful for designing simple, efficient and highly practical solutions for many

problems. From a theoretical perspective, it is clear that a security proof in

the random oracle model is only a heuristic indication of the security of the

system when instantiated with a particular hash function, such as SHA-1 [32]

or MD5 [34]. In fact, many recent “separation” results [18, 61, 39, 4, 19, 26]

illustrated various cryptographic systems secure in the random oracle model

but completely insecure for any concrete instantiation of the random oracle
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(even by a family of hash functions). Nevertheless, these important separa-

tion results do not seem to directly attack any of the concrete, widely used

cryptosystems (such as OAEP [9] and PSS [10] as used in the PKCS #1

v2.1 standard [65]) which rely on “secure hash functions”. Moreover, we

hope that such particular systems are in fact secure when instantiated with

a “good” hash function. In the random oracle model, instead of making a

highly non-standard (and possibly unsubstantiated) assumption that “my

system is secure with this H” (e.g., H being SHA-1), one proves that the

system is at least secure with an “ideal” hash function H (under standard

assumptions). Such formal proof in the random oracle model is believed to

indicate that there are no structural flaws in the design of the system, and

thus one can heuristically hope that no such flaws will suddenly appear with

a particular, “well designed” function H. But can we say anything about the

lack of structural flaws in the design of H itself?

Building Random Oracles. From a purely theoretical view, we know

that a concrete function H is not a random oracle, so to prove that a given

H is “good” we need to directly argue the security of our system with this

H. However, the latter task is usually unmanageable given our current tools

(e.g., “realizable” properties of H such as collision-resistance, pseudoran-

domness or one-wayness are usually not enough to prove the security of the

system). However, we argue that there is a significant gap in this reason-

ing. Indeed, most systems abstractly model H as a function from {0, 1}∗ to

{0, 1}n (where n is proportional to the security parameter), so that H can be
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used on some arbitrary input domain. On the other hand, in practice such

arbitrary-length hash functions are built by first heuristically constructing a

fixed-length building block, such as a fixed-length compression function or a

block cipher, and then iterating this building block in some manner to extend

the input domain arbitrarily. For example, SHA-1, MD5, as well as all the

other hash function we know of, are constructed by applying some variant

of the Merkle-Damg̊ard construction to an underlying compression function

f : {0, 1}n+κ → {0, 1}n (see Figure 3.2):

Function H(m1, . . . , m`) :

let y0 = 0n (more generally, some fixed IV value can be used)

for i = 1 to ` do yi ← f(yi−1, mi)

return y`

When the number of κ-bit message blocks ` is not fixed, one essentially

appends an extra block m`+1 containing the binary representation 〈|m|〉 of

the length of the message (prepended by 1 and a string of 0’s in order to

make everything a multiple of κ; the exact details will not matter for our dis-

cussion). This procedure is known as Merkle-Damg̊ard strengthening. The

fixed-length compression function f can either be constructed from scratch

or made out of a block-cipher E via the Davies-Meyer construction (see [74]

and Figure 3.4): f(x, y) = Ey(x) ⊕ x. For example, the SHA-1 compres-

sion function was designed specifically for hashing, but a block-cipher can

nevertheless be derived from it, as illustrated in [41].
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Our Main Question. Given such particular and “structured” design of

our hash function H,— which is actually the design used in practice,— we

argue that there exists a missing link in the claim that no structural flaws

exist in the design of our system. Indeed, we only know that no such flaws

exist when H was modeled as a “monolithic” random oracle, and not as

an iterated hash function built from some smaller building block. As since

the real implementation of H as an iterated hash function has much more

structure than a random monolithic hash function would have, maybe this

structure could somehow invalidate the security proof in the random oracle

model? To put this into a different perspective, all the ad-hoc (and hopefully

“secure”) design effort for widely used hash functions, such as SHA-1 and

MD5, has been placed into the design of the fixed-length building block f

(or E). On the other hand, even if f (or E) were assumed to be ideal, the

current proofs in the random oracle model do not guarantee the security of

the resulting system when such iterated hash function H is used!

Let us illustrate our point on a well known example. A common sugges-

tion to construct a MAC algorithm is to simply include a secret key k as

part of the input of the hash function, and take for example MAC(k, m) =

H(k‖m). It is easy to see that this construction is secure when H is mod-

eled as a random oracle [8], as no adversary can output a MAC forgery

except with negligible probability. However, this MAC scheme is completely

insecure for any Merkle-Damg̊ard construction considered so far (including

Merkle-Damg̊ard strengthening used in current hash functions such as SHA-
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1, and any of the 64 block-cipher based variants of iterative hash-functions

considered in [68, 15]), no matter which (ideal) compression function f (or

a block cipher E) is used. Namely, given MAC(k, m) = H(k‖m), one

can extend the message m with any single arbitrary block y and deduce

MAC(k, m‖y) = H(k‖m‖y) without knowing the secret key k (even with

Merkle-Damg̊ard strengthening, one could still forge the MAC by more or

less setting y = 〈|m|〉, where the actual block depends on the exact details of

the strengthening). This (well known) example illustrates that the construc-

tion of a MAC from an iterated hash function requires a specific analysis,

and cannot be derived from the security of this MAC with a monolithic

hash function H. On the other hand, while the Merkle-Damg̊ard transfor-

mation and its variants have been intensively studied for many “realizable”

properties such as collision-resistance [22, 54, 68, 15], pseudorandomness [5],

unforgeability [1, 53] and randomness extraction [25], it is clear that these

analyses are insufficient to argue its applicability for the purposes of building

a hash function which can be modeled as a random oracle, since the latter is

a considerably stronger security notion (in fact unrealizable in the standard

model). For a simple concrete example, the Merkle-Damg̊ard strengthen-

ing is easily seen to preserve collision-resistance when instantiated with a

collision-resistant compression function, while we just saw that it does not

work to yield a random oracle or even just a variable-length MAC, and this

holds even if the underlying compression function is modeled as a random

oracle.
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Our Goals. From the above discussion, it is clear that we need a formal

definition of what it means to implement an arbitrary-length random oracle

H from a fixed-length building block f or E. We have already seen that

the notion of “indifferentiability” proposed in [52] is the suitable definition

in this case. In particular, if we show that the construction H using fixed-

length building blocks f (or E) is indifferentiable from an arbitrary length

random oracle then under the assumption that f (or E) is ideal, we can use

H to instantiate the random oracle in any cryptosystem proven secure in the

ROM.

In this chapter, our goal will be to find an indifferentiable construction

of a random oracle. However, while the notion of indifferentiability is not

specific to some variant of the Merkle-Damg̊ard transformation, we would

like to give secure constructions which resemble what is done in practice as

much as possible. Unfortunately, we already argued that the current design

principle behind hash functions such as SHA-1 and MD5 – the (strengthened)

Merkle-Damg̊ard transformation – will not be secure for our ambitious goal.

Therefore, instead of giving new and practically unmotivated constructions,

our secondary goal is to come up with minimal and easily implementable

in practice changes to the plain Merkle-Damg̊ard construction, which would

satisfy our security definition.

Our results. Based on the notion on indifferentiability, we provide several

provably secure constructions. We start by giving three modifications to the

(insecure) plain Merkle-Damg̊ard construction which yield a secure random
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oracle H taking arbitrary-length input, from a compression function viewed

as a random oracle taking fixed-length input. This result can be viewed

as a secure domain extender for the random oracle, which is an interesting

result of independent interest. We remark that domain extenders are well

studied for such primitives as collision-resistant hash functions [22, 54], pseu-

dorandom functions [5], MACs [1, 53] and universal one-way hash functions

[11, 70]. Although the above works also showed that some variants of Merkle-

Damg̊ard yield secure domain extenders for the corresponding primitive in

question, these results are not sufficient to claim a domain extender for the

random oracle.

Our secure modifications to the plain Merkle-Damg̊ard construction are

the following.

1. Prefix-Free Encoding : we show that if the inputs to the plain MD

construction are guaranteed to be prefix-free, then the plain MD con-

struction is secure.

2. Dropping Some Output Bits : we show that by dropping a non-trivial

number of output bits from the plain MD chaining, we get a secure

random oracle H even if the input is not encoded in the prefix-free

manner.

3. Using NMAC construction (see Figure 3.3a): we show that by applying

an independent hash function g to the output of the plain MD chaining

(as in the NMAC construction [5]), then once again we get a secure
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construction of an arbitrary-length random oracle H, in the random

oracle model for f and g.

4. Using HMAC Construction (see Figure 3.3b): we show a slightly mod-

ified variant of the NMAC construction allowing us to conveniently

build the function g from the compression function f itself (as in [5]

when going from NMAC to HMAC)! In this latter variant, one im-

plements a secure hash function H by making two black-box calls to

the plain Merkle-Damg̊ard construction (with the same fixed IV and a

given compression function f): first on (`+1)-block input 0κm1 . . .m`,

getting an n-bit output y, and then on one-block κ-bit input y′ (ob-

tained by either truncating or padding y depending on whether or not

κ > n), getting the final output.

Note that we could also define the HMAC construction by using a different

initialization vector in each part of the construction, instead of using the

same IV but prepending 0κ to the input. However, our purpose here is to

present these constructions as black-box extensions of existing hash functions

such as SHA-1 which have only one fixed IV , in which case our proposed

construction can be viewed as making two black-box calls to SHA-1 to get

SHA− 1(SHA− 1(0κ ‖ m1 . . .m`).

However, in practice most hash-function constructions are block-cipher

based, either explicitly as in [68] or implicitly as for SHA-1. Therefore,

we consider the question of designing an arbitrary-length random oracle H
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from an ideal block cipher E, specifically concentrating on using the Merkle-

Damg̊ard construction with the Davies-Meyer compression function f(x, y) =

Ey(x)⊕ x, since this is the most practically relevant construction. We show

that all of the four fixes to the plain MD chaining which worked when f

was a fixed-length random oracle, are still secure (in the ideal cipher model)

when we plug in f(x, y) = Ey(x)⊕ x instead. Specifically, we can either use

a prefix-free encoding, or drop a non-trivial number of output bits (when

possible), or apply an independent random oracle g to the output of plain

MD chaining, or use the optimized HMAC construction which allows us to

build this function g from the ideal cipher itself.

3.1 Domain Extension for Random Oracles

In this section, we show how to construct an iterative hash-function indif-

ferentiable from a random oracle, from a compression function viewed as a

random oracle. We start with two simple and intuitive constructions that do

not work.

3.1.1 H(x) = f(h(x)) for Random Oracle f and Collision-

Resistant One-way Hash-function h

One could hope to emulate a random oracle (with arbitrary-length input) by

taking :

Cf (x) = f(h(x))
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f H Sh
f

C(m)    =    f(h(m)) 

C

H(m)    =   S(h(m))

Figure 3.1: The simulator cannot output H(m) since it only receives h(m)
and cannot recover m from h(m).

where f : {0, 1}n → {0, 1}n is modelled as a random oracle and h : {0, 1}∗ →

{0, 1}n is any collision-resistant one-way hash-function (not modelled as a

random oracle). However, we show that such Cf is not indifferentiable from

a random oracle; namely, we construct a distinguisher that can fool any

simulator.

As illustrated in Figure 3.1, the distinguisher first generates an arbitrary

m and computes u = h(m). Then it queries v = f(u) to random oracle f

and queries z = Cf(m) to Cf . It then checks that z = v and outputs 1 in

this case, and 0 otherwise. It is easy to see that the distinguisher always

output 1 when interacting with Cf and f , but outputs 0 with overwhelming

probability when interacting with H and any simulator S. Namely, when the

distinguisher interacts with H and S, the simulator only receives u = h(m);

therefore, in order to output v such that v = H(m), the simulator must

either recover m from h(m) (and then query H(m)) or guess the value of

H(m), which can be done with only negligible probability.
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3.1.2 Plain Merkle-Damg̊ard Construction

We show that the plain Merkle-Damg̊ard construction (see Figure 3.2) fails

to emulate a random oracle (taking arbitrary-length input) when the com-

pression function f is viewed as a random oracle (taking fixed-length input).

For simplicity, we only consider the usual Merkle-Damg̊ard variant, although

the discussion easily extends to the strengthened variant which appends the

message length 〈|m|〉 at the last block :

Function MDf(m1, . . . , m`) :

let y0 = 0n (more generally, some fixed IV value can be used)

for i = 1 to ` do yi ← f(yi−1, mi)

return y` ∈ {0, 1}
n.

where for all i, |mi| = κ and f : {0, 1}n+κ → {0, 1}n.

IV

m1 m2

ff f
y1 y2

y`

m`

Figure 3.2: The plain Merkle-Damg̊ard Construction

We have already mentioned in introduction a counter-example based on

MAC. Namely, we showed that MAC(k, m) = H(k‖m) provides a secure

MAC in the random oracle model for H, but is completely insecure when H

is replaced by the previous Merkle-Damg̊ard construction MDf , because of
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the message extension attack. In the following, we give a more direct refu-

tation based on the definition of indifferentiability, using again the message

extension attack.

We consider only one-block messages or two-block messages. For such

messages, we have that MDf(m1) = f(0, m1) and MDf (m1, m2) = f(f(0, m1)

, m2). We build a distinguisher that can fool any simulator as follows. The

distinguisher first makes a MDf -query for m1 and receives u = MDf(m1).

Then it makes a query for v = f(u, m2) to random oracle f . The distin-

guisher then makes a MDf -query for (m1, m2) and eventually checks that

v = MDf(m1, m2); in this case it outputs 1, and 0 otherwise. It is easy to see

that the distinguisher always outputs 1 when interacting with MDf and f .

However, when the distinguisher interacts with H and S (who must simulate

f), we observe that S has no information about m1 (because S does not

see the distinguisher’s H-queries). Therefore, the simulator cannot answer v

such that v = H(m1, m2), except with negligible probability.

3.1.3 Prefix-free Merkle-Damg̊ard

In this section, we show that if the inputs to the plain MD construction

are guaranteed to be prefix-free, then the plain MD construction is secure.

Namely, prefix-free encoding enables to eliminate the message expansion

attack described previously. This “fix” is similar to the fix for the CBC-

MAC [7], which is also insecure in its plain form. Thus, the plain MD con-

struction can be safely used for any application of the random oracle H where

51



the length of the inputs is fixed or where one uses domain separation (e.g.,

prepending 0, 1, . . . to differentiate between inputs from different domains).

For other applications, one must specifically ensure that prefix-freeness is

satisfied.

A prefix-free code over the alphabet {0, 1}κ is an efficiently computable

injective function g : {0, 1}∗ → ({0, 1}κ)∗ such that for all x 6= y, g(x) is

not a prefix of g(y). Moreover, it must be easy to recover x given only g(x).

We provide two examples of prefix-free encodings. The first one consists in

prepending the message size in bits as the first block. The last block is then

padded with the bit one followed by zeroes.

Function g1(m) :

let N be the message length of m in bits.

write m as (m1, . . . , m`) where for all i, |mi| = κ

and with the last block m` padded with 10r.

let g1(m) = (〈N〉, m1, . . . , m`) where 〈N〉 is a κ-bit binary encoding of N .

An important drawback of this encoding is that the message length must

be known in advance; this can be a problem for streaming applications in

which a large message must be processed on the fly. Our second encoding g2

does not suffer from this drawback, but requires to waste one bit per block

of the message :
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Function g2(m) :

write m as (m1, . . . , m`) where for all i, |mi| = κ− 1

and with the last block m` padded with 10r.

let g2(m) = (0|m1, . . . , 0|m`−1, 1|m`).

Given any prefix-free encoding g, we consider the following construction

of the iterative hash-function pf-MDf
g : {0, 1}∗ → {0, 1}n, using the Merkle-

Damg̊ard hash-function MDf : ({0, 1}κ)∗ → {0, 1}n defined previously.

Function pf-MDf
g(m) :

let g(m) = (m1, . . . , m`)

y ← MDf (m1, . . . , m`)

return y

Theorem 2. The construction pf-MDf
g (m), described above, is (tD, tS, q, ε)-

indifferentiable from a random oracle, in the fixed-length random oracle model

for the compression function, for any tD, with tS = ` · O(q2) and ε = 2−n ·

`2 · O(q2), where ` is the maximum number of κ-bit blocks in the prefix-free

encoding of a query made by the distinguisher D.

3.1.4 The Chop Solution

In this section, we show that by removing a fraction of the output of the

plain Merkle-Damg̊ard construction MDf , one obtains a construction indif-

ferentiable from a random oracle. This “fix” is similar to the method used by
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Dodis et al. [25] to overcome the problem of using plain MD chaining for ran-

domness extraction from high-entropy distributions, and to the suggestion of

Lucks [48] to increase the resilience of plain MD chaining to multi-collision

attacks. It is also already used in practice in the design of hash functions

SHA-348 and SHA-224 [33] (both obtained by dropping some output bits

from SHA-512 and SHA-256). Here we show that by dropping a non-trivial

number of output bits from the plain MD chaining, one gets a secure ran-

dom oracle H even if the input is not encoded in the prefix-free manner.

For example, such dropping prevents the “extension” attacks we saw in the

MAC application, since the attacker cannot guess the value of the dropped

bits, and cannot extend the output of the MAC to a valid MAC of a longer

message.

Formally, given a compression function f : {0, 1}n+κ → {0, 1}n, the new

construction chop-MDf
s is defined as follows :

Function chop-MDf
s (m) :

let m = (m1, . . . , m`)

y ← MDf (m1, . . . , m`)

return the first n− s bits of y.

Theorem 3. The construction chop-MDf
s (m), described above, is (tD, tS, q, ε)-

indifferentiable from a random oracle, in the fixed-length random oracle model

for the compression function f , for any tD, with tS = ` · O(q2) and ε =

2−s · `2 · O(q2). Here ` is the maximum number of κ-bit blocks in a query

made by the distinguisher D.
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While really simple, the drawback of this method is that its exact security

is proportional to q22−s, where s is the number of chopped bits and q is the

number of oracle queries. Thus, to achieve adequate security level the value

of s has to be relatively high, which means that short-output hash functions

such as SHA-1 and MD5 cannot be fixed using this method. However, func-

tions such as SHA-512 can naturally be fixed (say, by setting s = 256). A

formal proof of theorem 3 is given in the next section.

3.1.5 The NMAC and HMAC constructions

The NMAC construction [5], which is the basis of the popular HMAC con-

struction, applies an independent hash function g to the output of the plain

MD chaining. It has been shown very valuable in the design of MACs [5],

and recently also randomness extractors [25]. Here we show that if g is mod-

elled as another fixed-length random oracle independent from the random

oracle f (used for the compression function), then once again one gets a se-

cure construction of an arbitrary-length random oracle H, even if plain MD

chaining is applied without prefix-free encoding. Intuitively, applying g gives

another way to hide the output of the plain MD chaining, and thus prevent

the “extension” attack described earlier.

Formally, given f : {0, 1}n+κ → {0, 1}n and g : {0, 1}n → {0, 1}n
′

, the

function NMACf,g is defined as (see Figure 3.3a):
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Function NMACf,g(m) :

let m = (m1, . . . , m`)

y ←MDf (m1, . . . , m`)

Y ← g(y)

return Y

Theorem 4. The construction NMACf,g is (tD, tS, q, ε) indifferentiable from

a random oracle for any tD, tS = ` · O(q2) and ε = 2−min(n,n′)`2O(q2), in

the fixed-length random oracle model for the functions f and g (modelled as

independent random oracles), where ` is the maximum number of κ-bit blocks

in a query made by the distinguisher.

To practically instantiate this suggestion, we would like to implement

f and g from a single compression function. This problem is analogous to

the problem in going from NMAC to HMAC in [5], although our solution

is slightly different. One simple way for achieving this is to use domain

separation: e.g., by prepending 0 for calls to f and 1 — for calls to g.

However, with this modeling we are effectively using the prefix-free encoding

mapping m1m2 . . . m` to 0m10m2 . . . 0m`10κ, which appears slightly wasteful.

Additionally, this also forces us to go into the lower-level implementation

details for the compression function, which we would like to avoid. Instead,

our solution consists in applying two black-box calls to the plain Merkle-

Damg̊ard construction MDf (with the same f and IV ) : first to the input

0κm1 . . .m`, getting an n-bit output y, and again to κ-bit y′, where y′ is
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defined from y as follows (see Figure 3.3b):

Function HMACf(m) :

let m = (m1, . . . , m`)

let m0 = 0κ

y ← MDf (m0, m1, . . . , m`)

if n < κ then y′ ← y ‖ 0κ−n

else y′ ← y|κ

Y ← MDf(y′)

return Y

Intuitively, we are almost using the NMAC construction with g(y) =

f(IV, y′) (where y′ is obtained from y as above), except we prepend a fixed

block m0 = 0κ to our message. This latter tweak is done to ensure that

there are no inter-dependencies between using the same IV on y ′ and the

first message block (which would have been under adversarial control had we

not prepended m0). Indeed, it is very unlikely that “high-entropy” y′ will

ever be equal to m0 = 0κ, so the analysis for NMAC can be easily extended

for this optimization.

Theorem 5. The construction HMACf , described above, is (tD, tS, q, ε) in-

differentiable from a random oracle, in the fixed length random oracle model

for the compression function f , for any tD, tS = ` · O(q2) and ε = 2min(n,κ) ·

`2 ·O(q2). Here ` is the maximum number of κ bit blocks in a query made by

the distinguisher D.

The formal proofs for both theorems 4 and 5 are given in the next section.
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Figure 3.3: The NMAC and HMAC constructions

3.2 Constructions using Ideal Cipher

In practice, most hash-function constructions are block-cipher based, either

explicitly as in [68] or implicitly as for SHA-1. Therefore, we consider the

question of designing an arbitrary-length random oracle H from an ideal

block cipher E : {0, 1}κ × {0, 1}n → {0, 1}n, specifically concentrating on

using the Merkle-Damg̊ard construction with the Davies-Meyer compression

function f(x, y) = Ey(x) ⊕ x (see Figure 3.4), since this is the most prac-

tically relevant construction. We notice that the question of designing a

collision-resistant hash function H from an ideal block cipher was explicitly

considered by Preneel, Govaerts and Vandewalle in [68], and latter formal-

ized and extended by Black, Rogaway and Shrimpton [15]. Specifically, the

authors of [15] actually considered 64 block-cipher variants of the Merkle-
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Damg̊ard transform (which included the Davies-Meyer variant among them),

and formally showed that exactly 20 of these variations (including the Davies-

Meyer variant) are collision-resistant when the block cipher E is modeled as

an ideal cipher. However, while our work will also model E as an ideal ci-

pher, our security goal is considerably stronger than mere collision-resistance.

Indeed, we already pointed out that none of the 64 variants above can with-

stand the “extension” attack on the MAC application, even with the Merkle-

Damg̊ard strengthening. And even when restricting to a fixed number of

blocks ` (which invalidates the “extension” attack), collision-resistance is

completely insufficient for our purposes. For example, the authors of [15]

show the collision-resistance when using the plain MD chaining with fixed

IV and compression function f(x, y) = Ey(x). On the other hand, it is easy

to see that this method does not provide a secure random oracle H according

to our definition.

f
x

y

x

y

E

Figure 3.4: The Davies-Meyer Compression function

From a different direction, if we could show that the Davies-Meyer com-

pression function f(x, y) = Ey(x) ⊕ x is a secure random oracle when E is

an ideal block-cipher, then we could directly apply any of the three fixes
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discussed above. Unfortunately, this is again not the case: intuitively, the

above construction allows anybody to compute x from f(x, y) ⊕ x and y

(since x = E−1
y (f(x, y) ⊕ x)), which should not be the case if f was a true

random oracle. Thus, we need a direct proof to argue the security of the

Davies-Meyer construction. Luckily, using such direct proofs we indeed ar-

gue that all of the fixes to the plain MD chaining which worked when f was

a fixed-length random oracle, are still secure when f(x, y) = Ey(x) ⊕ x is

used instead. Namely, we can either use a prefix-free encoding, or drop a

non-trivial number of output bits, or apply an independent random oracle g

to the output of plain MD chaining. With respect to this latter fix, we also

show that we can implement this independent g using the ideal cipher itself,

similarly to the case with an ideal compression function f .

Formally, given a block-cipher E : {0, 1}κ × {0, 1}n → {0, 1}n, the plain

Merkle-Damg̊ard hash-function with Davies-Meyer’s compression function is

defined as :

Function MDE(m1, . . . , m`) :

let y0 = 0n (more generally, some fixed IV value can be used)

for i = 1 to ` do yi ← Emi
(yi−1)⊕ yi−1

return y` ∈ {0, 1}
n.

where for all i, |mi| = κ. The block-cipher based iterative hash-functions

pf-MDE
g , chop-MDE

s , NMACE
g and HMACE are then defined as in section

3.1, using MDE instead of MDf .
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Theorem 6. The block-cipher based constructions pf-MDE
g , chop-MDE

s ,

NMACE
g and HMACE are (tD, tS, q, ε)-indifferentiable from a random ora-

cle, in the ideal cipher model for E, for any tD and tS = ` · O(q2), with

ε = 2−n · `2 · O(q2) for pf-MDE
g , ε = 2−s · `2 · O(q2) for chop-MDE

s , ε =

2−min(n,n′) · `2 · O(q2) for NMACE
g and ε = 2−min(κ,n) · `2 · O(q2) for HMACE.

Here ` is the maximum message length queried by the distinguisher.

Proof: We will prove that the Merkle-Damg̊ard (MD) based constructions

are indifferentiable constructions of a random oracle (RO), when applied to

the Davies-Meyer (DM) compression function using an ideal block cipher

(IC). The four constructions that we prove to be secure are:

1. Prefix-free Merkle-Damg̊ard construction pf-MDE
g : In this con-

struction, we apply the Davies-Meyer Merkle-Damg̊ard (DMMD) con-

struction to a prefix-free encoding of the input (using the prefix-free

encoding scheme g).

2. Merkle-Damg̊ard with chopped output chop-MDE
s : This is the

plain DMMD construction applied directly to the input, with a non-

trivial number, s, of the output bits chopped.

3. NMAC construction NMACE1,E2: This construction uses two in-

dependent ideal block ciphers E1 : {0, 1}κ × {0, 1}n → {0, 1}n and

E2 : {0, 1}κ
′

×{0, 1}n
′

→ {0, 1}n
′

. It first applies the DMMD construc-

tion using E1 to the input, getting a n bit output Y . Then it applies
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the Davies-Meyer compression function using E2 to Y to get the final

output.

4. HMAC construction HMACE: This is an instantiation of the

NMAC construction using the same ideal cipher for both parts, but us-

ing different initialization vectors in each part (implemented by prepend-

ing 0κ to the input).

The proof of indifferentiability in each of these cases essentially involves two

steps. First, we propose a simulator that simulates the task of the ideal

cipher in the random oracle model (ROM). Secondly, we show that the view

of any distinguisher in the ROM, with oracle access to the actual random

oracle and the ideal cipher simulator, does not differ from its view in the

ideal cipher model (ICM), with oracle access to the RO construction and the

ideal cipher, by more than a negligible amount. We start by providing an

intuitive idea of the basic paradigm used in each of the proofs, followed by

the formal proofs for each case.

The Simulator. The task of the simulator in each of the cases is to

simulate the ideal cipher in the ROM, in such a way that its relation with

the random oracle is consistent with the relation between that actual ideal

cipher and the RO construction in the ICM. Thus, in each case, the simulator

essentially gives random responses to all forward block cipher queries except

those that form the last application of the ideal cipher for some random

oracle input (when processed using the RO construction). For example, in
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the Chop construction this will be the last block cipher call in the Davies-

Meyer Merkle-Damg̊ard computation.

If the query corresponds to a last block cipher call, then the simulator

consults the random oracle and adjusts its response so as to remain consistent

with the ICM scenario.

In the case of an inverse block cipher query, the simulator always gives

random responses. In addition, the simulator also maintains a table T in

which it records all previous query-response pairs (so as to maintain consis-

tency among its responses).

Proof of Indifferentiability. Each of the proofs of indifferen-

tiability consist of a hybrid argument that presents a sequence of mutually

indistinguishable games starting in the random oracle model, with the RO F

and the ideal cipher simulator S, leading up to the ideal cipher model, with

the RO construction (which we call CE) and the ideal cipher E. The over-

all structure of the hybrid argument is similar for each of the constructions,

though the formal proof differs. We will describe the overall structure of the

proof here.

Game 1. This is the random oracle model, where the distinguisher is given

oracle access to the random oracle F and the ideal cipher simulator S.

Game 2. In this game, we introduce a relay algorithm R0 that is sim-

ply a dummy algorithm between the distinguisher and the random oracle F .

This relay algorithm simply relays the queries of the distinguisher to the RO
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and relays back the output of F .

Game 3. In this game, we modify the simulator by defining a few failure

conditions for its query-response pairs. If any of these failure conditions is

true, then the new simulator S0 explicitly fails. These failure conditions cap-

ture certain collision conditions which, if they happen, could be exploited by

the distinguisher to decide the scenario it is in. The failure conditions are

different for each constructions and are described in the formal proof. Thus

the distinguisher has oracle access to the new simulator SF
0 and the relay

algorithm RF
0 in this game.

Game 4. Now we modify the relay algorithm so as to make its responses

directly dependent on the simulator, instead of the RO F . The new relay al-

gorithm R1 essentially evaluates the construction CE using the simulator S0

instead of the ideal cipher E. The main idea here is to prove that unless one

of the failure conditions described in game 3 is true for the query-response

pairs of the simulator S0 (in which case it would fail), the responses of R1

are still consistent with the random oracle. Thus, games 3 and 4 form the

heart of the proof in each case. In this game, the distinguisher has oracle

access to the relay algorithm R
SF

0

1 and the simulator SF
0 .

Game 5. In this game, we modify the simulator so that it chooses its
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responses independent of the random oracle (i.e. uniformly random by it-

self). In addition, the new simulator S1 does not check for any of the failure

conditions described above. This does not introduce any changes in the view

of the distinguisher since the relay algorithm R1 uses the simulator S1 to

construct its responses (which still look random). Thus, in this game the

distinguisher has oracle access to the relay algorithm RS1

1 and the simulator

S1.

Game 6. Finally, we replace the simulator S1 by the ideal block cipher E.

Thus the relay algorithm R1 now becomes identical to the RO construction

CE. Thus in this game the distinguisher has oracle access to the RO con-

struction CE and the ideal cipher E.

Now that we have the overall structure of the indifferentiability proofs, we

will give the formal proofs for each of the four RO constructions. The proof

of this theorem is a consequence of lemmas 1, 2, 3 and 4.

3.2.1 Prefix-free Merkle-Damg̊ard Construction

In this section, we will give the proof of indifferentiability for the prefix-free

Merkle-Damg̊ard construction pf-MDE
g .

Lemma 1. The prefix-free Merkle-Damg̊ard construction pf-MDE
g using an
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ideal cipher E : {0, 1}κ × {0, 1}n → {0, 1}n is (tD, tS, q, ε)-indifferentiable

from a random oracle in the ideal cipher model for E, for any tD and tS =

O(q ·Rg(q ·κ)) (where Rg(q ·κ) is the running time of the decoding algorithm

of g on an input of length q · κ), with ε = 2−n · `2 · O(q2).

Proof:

The Simulator. The simulator SE accepts either forward ideal cipher

queries, (+, x, y), or inverse ideal cipher queries, (−, x, z), such that x ∈

{0, 1}κ and y, z ∈ {0, 1}n. In either case, the simulator S responds with a

n-bit string that is interpreted as Ex(y) in case of a forward query (+, x, y)

and as E−1
x (z) in case of an inverse query. The simulator maintains a table T

of triples (x, y, z) ∈ {0, 1}κ× {0, 1}n× {0, 1}n, such that it either responded

with z to a forward query (+, x, y) or with y to an inverse query (−, x, z).

On getting a forward query (+, x, y), the simulator searches its table T for

a triple (x, y, z) for any z. If there exists such a triple, then it responds with

z otherwise it needs to choose a new response to this query. It then searches

its table T for a sequence of triples (x1, y1, z1) . . . (xi, yi, zi) such that:

• The bit string x1 ‖ . . . ‖ xi ‖ x decodes to a valid RO input under the

prefix-free encoding g.

• It is the case that y1 = IV , where IV denotes the initialization vector

used in the construction pf-MDE
g .

• For each j = 2 . . . i, it is the case that yj = zj−1 ⊕ yj−1.
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• It is the case that y = zi ⊕ yi, where y is the input message in the

current forward query.

Note that for an empty sequence of triples, i.e. when just considering the

κ-bit block x from the current query, only the first requirement makes sense.

We additionally also require that y = IV in this case.

If the simulator S finds such a sequence of triples, then it needs to give

a response that is consistent with the random oracle output on g−1(x1 ‖

. . . ‖ xi ‖ x). Thus, the simulator makes this RO query to get the output

Y = F (g−1(x1 ‖ . . . ‖ xi ‖ x)), and responds with z = Y ⊕y. If the simulator

does not find such a sequence of triples, it outputs a random response z. In

either case, it stores the triple (x, y, z) in its table T .

On receiving an inverse query (−, x, z), the simulator S searches its table

T for a triple (x, y, z) for any y. If it finds such a triple, then it outputs y

as its response. If it does not find such a triple, it chooses a random n-bit

string y and responds with y. It then stores the triple (x, y, z) into its table T .

Proof of Indifferentiability. We need to prove that the distin-

guisher cannot tell apart the two scenarios, one where it has oracle access to

the random oracle F and the simulator S and the other where it has access

to the RO construction pf-MDE
g and the ideal block cipher E. As we men-

tioned above, the proof involves a hybrid argument starting in the random

oracle scenario, and ending in the ideal cipher scenario through a sequence

of mutually indistinguishable hybrid games.
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Game 1. This is the random oracle model, where the distinguisher D

has oracle access to the random oracle F and the simulator S described

above. Let G1 denote the event that D outputs 1 after interacting with F

and S. Thus,

Pr[G1] = Pr
[

DF,SF

(1λ) = 1
]

Game 2. In this game, we give the distinguisher oracle access to a dummy

relay algorithm R0 instead of direct oracle access to the random oracle F .

This relay algorithm R0 is given oracle access to the random oracle F , and

on getting a random oracle query from the distinguisher, it simply makes the

same query to the RO F and forwards the RO output to the distinguisher

as its response. Let G2 denote the event that the distinguisher outputs 1 in

this game. Since we have left the view of the distinguisher unchanged in this

game, the distribution of its outputs also remains the same.

Pr[G2] = Pr
[

DRF
0

,SF

(1λ) = 1
]

= Pr[G1]

Game 3. In this game, we modify the simulator S. In particular, we restrict

the responses of the simulator such that they never satisfy certain specific

failure conditions. If the simulator comes up with a response that results in

its responses satisfying one of these conditions, then it fails explicitly instead
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of sending this response.

The failure conditions that the new simulator S0 avoids essentially de-

scribe certain dependencies that could arise among its responses that could

be exploited by the distinguisher. In response to a forward query (+, x, y),

the new simulator chooses a response z ∈ {0, 1}n similar to the original

simulator S and it checks for the following conditions:

1. Condition B1: It is the case that z ⊕ y = IV , where IV is the n-bit

initialization vector used in the RO construction pf-MDE
g .

2. Condition B2: There is a triple (x′, y′, z′) ∈ T , with (x′, y′) 6= (x, y),

such that y′ ⊕ z′ = y ⊕ z.

3. Condition B3: There is a triple (x′, y′, z′) ∈ T , with (x′, y′) 6= (x, y),

such that y ⊕ z = y′.

If the response z is chosen by the simulator S0 at random then the simula-

tor S0 checks for these conditions and explicitly fails if any of them holds.

However, if the simulator is forced to choose a response in order to maintain

consistency with the random oracle F , then it only checks for the conditions

B1 and B2.

Let us briefly describe how the distinguisher can exploit each of these

conditions to its advantage. If the condition B1 holds then the distinguisher

could possibly force two different RO query sequences to end in the same

block, where one input is the suffix of the other. Hence the simulator can be

consistent with at most one of these two RO inputs. If condition B2 holds,
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then the distinguisher can again force two query sequences to end in the same

block. However, in this case the two RO inputs have a common suffix and

the simulator can be consistent with at most one of these inputs. If condition

B3 holds, then distinguisher can make a RO query sequence to the simulator

such that the simulator is not consistent with the RO output because the

query corresponding to the last block of the (encoding of the) RO input is

not the last one that it makes.

Now we will estimate the occurrence probability for each of the above

failure conditions. Let the number of random oracle queries made by the

distinguisher be qF , and let the number of ideal cipher queries be qE. To

start with, it is easy to see that the occurrence probability of condition B1

is at most the probability that one of q(= qE + qF ) random n-bit strings are

equal to IV .

To bound the occurrence probability of failure condition B2, we will an-

alyze three situations separately.

• Query (+, x, y) does not correspond to the last block of (the prefix-free

encoding of) a random oracle query. In this case, condition B2 occurs

only if the uniformly random n-bit string y ⊕ z (with z chosen by the

simulator), collides with one of qE n-bit strings corresponding to other

queries.

• Both (x, y, z) and (x′, y′, z′) form last blocks of random oracle queries.

In this case, condition B2 is exactly the event that two random oracle
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outputs collide.

• The triple (x, y, z) forms the last block of a random oracle query, but

(x′, y′, z′) does not. In this case, y′⊕ z′ is a random n-bit string chosen

by the simulator. Hence, condition B2 corresponds to the random

oracle output y ⊕ z collides with a random n-bit string chosen by the

simulator.

Hence, we can bound the occurrence probability of condition B2 by the birth-

day bound over (qE + qF ) uniformly random n-bit strings.

The simulator checks for condition B3 only if it chooses the response in-

dependently. In this case, the occurrence probability of this failure condition

can be bounded by the (qE2/2n). We do not force the simulator to check

for condition B3 when it is forced to be consistent with the random oracle.

This is because the distinguisher can force this condition using RO queries,

but this does not help since we use a prefix-free encoding before applying the

Merkle-Damg̊ard construction.

If an inverse query (−, x, z) is made to the simulator S0, the it chooses

a response y ∈ {0, 1}n to this query similar to the original simulator S and

checks for the following failure conditions:

1. Condition C1. It is the case that y = IV or y ⊕ z = IV , where IV is

the n-bit initialization vector.

2. Condition C2. There is a triple (x′, y′, z′) ∈ T , with (x′, z′) 6= (x, z),

such that y′ ⊕ z′ = y ⊕ z.
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3. Condition C3. There is a triple (x′, y′, z′) ∈ T , with (x′, z′) 6= (x, z),

such that y ⊕ z = y′ or y′ ⊕ z′ = y.

In the case of inverse queries, the simulator always independently chooses

random responses to any new queries and fails if any of the conditions C1, C2

or C3 holds, and hence estimating the occurrence probability of these failure

conditions is straightforward. The reasons for avoiding the conditions C1, C2

and C3 are similar to those given above for B1, B2 and B3.

Let G3 denote the event that the distinguisher outputs 1 in game 3, i.e.

Pr[G3] = Pr
[

DRF
0

,SF
0 (1λ) = 1

]

. The responses of the distinguisher in games

2 and 3 differ only in situations where the new simulator S0 explicitly fails

and the original simulator S does not. This event is identical with the event

that any of the failure conditions hold for the responses of either simulator

(both of which are identically distributed).

|Pr[G3]− Pr[G2]| ≤ 2 · Pr[B1 ∪ B2 ∪ B3 ∪ C1 ∪ C2 ∪ C3 hold for a

corresponding query.]

≤
2 · (q

E
+ q

F
) · (2 · (q

E
+ q

F
) + 1)

2n

= O

(

q2

2n

)
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Game 4. In this game, we modify the relay algorithm and leave the ideal

cipher simulator unchanged. The underlying idea is to make the responses

of the relay algorithm directly dependent on the simulator. Thus, instead of

giving the new relay algorithm R1 an oracle access to the random oracle F ,

here it is given oracle access to the simulator S0.

On a random oracle query X, the relay algorithm R1 computes the prefix-

free encoding of X, i.e. g(X). It then applies the Davies-Meyer Merkle-

Damg̊ard construction to g(X) by querying the simulator S0. Thus the re-

lay algorithm R1 is essentially the same as the random oracle construction

pf-MDE
g , except that it is based on the simulator S0 instead of the ideal

cipher E.

Let G4 denote the event that the distinguisher D outputs 1 when given

oracle access to S0 and R1 in this game. Thus, we know that

Pr[G4] = Pr[DR
S0

1
,SF

0 (1λ) = 1]

Now we will show that the view of the distinguisher D remains unchanged

(upto a negligible additive factor) in the transformation from game 3 to game

4. We will assume that that maximum length of the prefix-free encoding g(X)

of a random oracle input X queried upon by the distinguisher is `κ. This

claim is formally stated below:

Claim 7. Let G3 and G4 denote the events that the distinguisher D outputs

1 in games 3 and 4, respectively. If qE and qF denote the number of ideal
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cipher and random oracle queries made by the distinguisher (respectively),

then it is the case that

|Pr[G4]− Pr[G3]| = O

(

(q
E

+ ` · q
F
)2

2n

)

proof of claim 7: From the view of the distinguisher, the games 3 and 4

differ only if it detects any difference in the responses of the relay algorithm

or the simulator in these two games. We will prove that such a difference in

the responses is impossible unless the simulator S0 fails in either game 3 or

4. We start by demonstrating a few useful properties of the responses of the

simulator S0.

Claim 8. If the simulator S0 does not explicitly fail, then there are no two

different sequences of κ-bit blocks x1 . . . xm and x′
1 . . . x′

p with corresponding

triples (x1, y1, z1) . . . (xm, ym, zm) and (x′
1, y

′
1, z

′
1) . . . (x′

p, y
′
p, z

′
p) in table T such

that:

• Both x1 ‖ . . . ‖ xm and x′
1 ‖ . . . ‖ x′

p constitute valid prefix-free encod-

ings of random oracle inputs.

• It is the case that y1 = y′
1 = IV , and for each s = 1 . . .m and s′ =

1 . . . p, ys = ys−1 ⊕ zs−1 and y′
s′ = y′

s′−1 ⊕ z′s′−1.

• There is a s ∈ {1, m} such that (xs, ys, zs) = (x′
p, y

′
p, z

′
p).

proof of claim 8: We will prove this claim by performing an induction

on the number of queries made to the simulator S0, and show that unless
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the simulator explicitly fails, such sequence of triples cannot exist in the

table T maintained by it. When no queries have been made, then the claim

is vacuously true. Assume that it holds when q queries have already been

made to the simulator S0.

Say there are two sequences of κ-bit blocks x1 . . . xm and x′
1 . . . x′

p that

satisfy the properties mentioned in the statement of the claim after the (q +

1)th query. We can deduce that there are two subsequences of κ-bit blocks

xj−r . . . xj and x′
p−r . . . x′

p such that:

∀s ∈ {0, r} : (xj−s, yj−s, zj−s) = (x′
p−s, y

′
p−s, z

′
p−s)

If r < j − 1 and r < p − 1, then consider the triples (xj−r−1, yj−r−1, zj−r−1)

and (x′
p−r−1, y

′
p−r−1, z

′
p−r−1). Since yj−r = y′

p−r, we can deduce that yj−r−1 ⊕

zj−r−1) = y′
p−r−1⊕ z′p−r−1. Without loss of generality, assume that the query

corresponding to the triple (xj−r−1, yj−r−1, zj−r−1) was made after the one

corresponding to (x′
p−r−1, y

′
p−r−1, z

′
p−r−1). If this query was a forward query

then the simulator S0 would have explicitly failed because of failure condition

B2. If this was an inverse query then the simulator would have failed because

of failure condition C2.

Now consider the case that r = p − 1 but r < j − 1. In this case, if the

triple (xj−r−1, yj−r−1, zj−r−1) was generated as a result of a forward query,

then the simulator S0 would have explicitly failed because of failure condition

B1 since zj−r−1 ⊕ yj−r−1 = yj−r = y′
1 = IV . If this triple was generated due
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to an inverse query then the simulator will fail because of failure condition

C1. The case when r = j − 1, but r < p− 1 is similar.

Lastly, if r = p− 1 = j − 1 then we have that ∀s ∈ {1, p} : (xs, ys, zs) =

(x′
s, y

′
s, z

′
s). But this implies that x′

1 ‖ . . . ‖ x′
p is a prefix of x1 ‖ . . . ‖ xm,

which is not possible since they are encodings of two different inputs using

the prefix-free encoding g.

Hence, we can conclude that there can be no such sequence of κ-bit blocks

x1 ‖ . . . ‖ xm and x′
1 ‖ . . . ‖ x′

p if the simulator S0 does not explicitly fail.

Next we show that if the distinguisher wishes to find the random oracle

output for an input X ∈ {0, 1}∗, such that g(X) = x1 ‖ . . . ‖ xs, by making

queries to the simulator S0 to compute the Davies-Meyer Merkle-Damg̊ard

construction applied to x1 ‖ . . . ‖ xs, then the only way it can do so is by

making the ordered sequence of forward queries (+, x1, y1) . . . (+, xs, ys).

Claim 9. Consider any sequence of κ-bit blocks x1 . . . xs, with corresponding

triples (x1, y1, z1) . . . (xs, ys, zs) in the table T maintained by the simulator

S0, such that:

• x1 ‖ . . . ‖ xs is a valid encoding of a random oracle input X under the

prefix-free encoding g.

• y1 = IV , and for all j ∈ {2, s} it is the case that yj = yj−1 ⊕ zj−1.

If the simulator S0 does not explicitly fail then it must be the case that the

76



triples (x1, y1, z1) . . . (xs, ys, zs) were stored as a result of the ordered sequence

of queries (+, x1, y1) . . . (+, xs, ys).

proof of claim 9: To the contrary, assume that the sequence of queries

that resulted in the triples (x1, y1, z1) . . . (xs, ys, zs) was not the sequence of

forward queries given in the claim statement. We can then deduce that at

least one of the following must be true regarding this sequence of queries:

1. For j ∈ {1, s−1}, a forward query (+, xj, yj) was made when the triple

(xj+1, yj+1, zj+1) already existed in the table T .

2. For j ∈ {2, s}, an inverse query was made (−, xj, zj) when the triple

(xj−1, yj−1, zj−1) already existed in the table T .

3. The triple (x1, y1, z1) was generated as a result of an inverse query

(−, x1, z1).

In the first case, we know from claim 8 that the triple (xj, yj, zj) cannot be

the last block of the prefix-free encoding of another query if the simulator

S0 does not fail. Hence it must be the case that the response to the corre-

sponding query was randomly chosen by the simulator itself (independent of

the random oracle). But since the triple (xj+1, yj+1, zj+1) already exists in

table T , the simulator will explicitly fail from condition B3 since the equality

yj⊕ zj = yj+1 holds. In the second case, the simulator will explicitly fail due

to failure condition C3 since the equality yj = zj−1 ⊕ yj−1 holds. In the last

case the simulator fails due to failure condition C1.
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Thus the simulator S0 explicitly fails in either of the above situations, and

the only sequence of queries possible is the one mentioned in the statement

of the claim.

Next, we wish to show that the responses of the relay algorithm R0 and

the simulator S0 are always consistent in game 3. Note that in game 4, the

relay algorithm R1 responds to all queries by computing the RO construction

pf-MDS0

g , with the ideal cipher E replaced by the simulator S0. On the other

hand, the responses of the relay algorithm R0 could be inconsistent with the

simulator S0 (i.e. the distinguisher may get a different output to a random

oracle input depending on whether it uses the construction pf-MDS0

g itself, or

queries the relay algorithm R0). We show that such a situation is impossible

unless the simulator S0 fails.

Claim 10. In game 3, if the simulator S0 never fails then there is no sequence

of κ-bit blocks x1 . . . xj, with corresponding triples (x1, y1, z1) . . . (xj, yj, zj)

such that:

• The bit string x1 ‖ . . . ‖ xj is a valid prefix-free encoding of a random

oracle input.

• y1 = IV and for l = 2 . . . j it is the case that yl = yl−1 ⊕ zl−1.

• To the random oracle query g−1(x1 ‖ . . . ‖ xj), the response of the relay

algorithm R0 is different from yj ⊕ zj.
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proof of claim 10: To any random oracle query X, the relay algorithm R0

always responds with the random oracle output F (X). Thus the situation

described in the statement of the claim occurs if and only if the simulator

responds to its queries (corresponding to the κ-bit blocks in g(X) = x1 ‖

. . . ‖ xj) in such a way that yj ⊕ zj 6= F (X).

From claim 9, we can deduce that if the distinguisher is to compute the

Davies-Meyer Merkle Damg̊ard output on g(X) = x1 ‖ . . . ‖ xj, then the

only way to do this is to make the ordered sequence of queries (+, x1, y1), . . . ,

(+, xj, yj) unless the simulator S0 fails. Here y1 = IV and for each i = 2 . . . j

we have yi = yi−1 ⊕ zi−1. Hence the simulator S0 already has the triples

(x1, y1, z1) . . . (xj−1, yj−1, zj−1) in its table T when the query (+, xj, yj) is

made.

If the response of the simulator S0 to the query (+, xj, yj) is different

from F (X) ⊕ yj, then it must be the case that the simulator is unable to

give this response because of some other constraint. But from claim 8, we

can deduce that the block xj cannot be part of any other valid Davies-Meyer

Merkle-Damg̊ard computation sequence unless the simulator S0 fails. Thus

there can be no other constraint of the response of S0 if it has not explicitly

failed.

Thus the responses of S0 are always consistent with the relay algorithm

R0 in game 3, if it does not fail.
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In fact, we can use the same argument as in proof of claim 10 to show that

the responses of S0 are consistent with the random oracle F in game 4 as well

(that is, the result of applying Davies-Meyer Merkle-Damg̊ard construction

using S0 to g(X) is the same as F (X)).

From the above, we can deduce that if the simulator S0 does not fail in

game 4, then the responses of the relay algorithm R1 are identical to the

responses of the relay algorithm R0. And since we are using the same simu-

lator S0 in both games, and have shown that the responses of the simulator

and the two relay algorithms are consistent in the two games, we can also

deduce that the view of the distinguisher D remains unchanged from game

3 to game 4 if the simulator S0 does not fail in either of the two games.

Hence, we can finally complete the proof of claim 7 by observing that if

the maximum length of the prefix-free encoding of a random oracle query

made by D is ` · κ then,

|Pr[G4]− Pr[G3]| ≤ Pr [S0 fails in game 3] + Pr [S0 fails in game 4]

= O

(

(qE + qF `)2

2n

)

= O

(

(q`)2

2n

)

Game 5. In this game, we modify the simulator S0 so as to make its
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responses independent of the random oracle F . For this purpose, we remove

the random oracle F from this game entirely and the new simulator S1 always

chooses a random n-bit response, even in situations where S0 would have

consulted the RO F . We also remove all the failure conditions from the new

simulator S1.

Thus on a forward query (+, x, y), the new simulator S1 checks if there is

a triple (x, y, z) in its table T . If it finds such a triple then it responds with

the n-bit string z. Otherwise it chooses a uniformly random n-bit string z

and sends this as its response, while storing the triple (x, y, z) in T . On an

inverse query (−, x, z), it similarly checks to see if there is a triple (x, y, z)

in its table T . If it finds such a triple, it responds with y, else it chooses a

uniformly random n-bit response y.

Now we will show that the view of the distinguisher D does not change

by a non-negligible amount from game 4 to game 5. In fact, if we can show

that the responses of the simulators S0 and S1 seem almost identical to

the distinguisher D, then we will be done. But the responses of these two

simulators are identical apart from the failure conditions which are used by S0

and not by S1 (even when S0 consults the random oracle, its response is still

uniformly distributed). Thus, the distinguisher does not notice a difference

between these games if:

• In game 4, the simulator S0 does not fail.

• In game 5, the simulator S1 does not respond to its queries in such
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a manner that its satisfy one of the failure conditions specified in the

definition of S0.

In fact, these two events are identical in terms of their probability of occur-

rence since the distribution of the responses of the two simulators is identical.

Let G5 denote the event that the distinguisher D outputs 1 in game 5, so

that Pr[G5] = Pr[DR
S1

1
,S1(1λ) = 1]. Then we can deduce that,

|Pr[G5]− Pr[G4]| ≤ Pr [S0 fails in game 4]

+ Pr [S1 should have failed in game 5]

= O

(

q2`2

2n

)

Game 6. This is the final game of our argument. Here we finally replace

the simulator S1 with the ideal cipher E. Since the relay algorithm R1

simply implemented the construction pf-MDS1

g , it will be the same as the RO

construction pf-MDE
g in this game. Hence this game is same as the view of

the distinguisher in the ideal cipher model.

The outputs of the ideal cipher E are not distributed uniformly like the

responses of S1. Hence the distinguisher may be able to differentiate between

games 5 and 6 if it can detect this. However, this happens only if S1 outputs

an input/output collision for the same ideal cipher key. The probability of

this event is easily seen to be at most the birthday bound. Let G6 denote

the probability that the distinguisher outputs 1 in game 6, so that Pr[G6] =
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Pr[Dpf-MDE

g
,E(1λ) = 1]. Then we can deduce that

|Pr[G6]− Pr[G5]| = O

(

q2`2

2n

)

Now we can complete the proof of lemma 1 by combining games 1 to 6,

and observing that game 1 is same as the random oracle model while game

6 is same as the ideal cipher model. Hence we can deduce that

∣

∣

∣

∣

Pr
[

DF,SF

(1λ) = 1
]

− Pr

[

Dpf-MDE

g
,E(1λ) = 1

]∣

∣

∣

∣

= O

(

q2`2

2n

)

3.2.2 MD-then-Chop Construction

Now we will prove the indifferentiability of the second random oracle con-

struction chop-MDE
s . Recall that this construction essentially applies the

plain Davies-Meyer Merkle-Damg̊ard construction (using the ideal cipher E)

to the input and then removes a non-trivial number s of the output bits.

Lemma 2. The Merkle-Damg̊ard construction with truncated output chop-MDE
s

based on the Davies-Meyer construction applied to an ideal cipher E : {0, 1}κ×

{0, 1}n → {0, 1}n is (tD, tS, q, ε)-indifferentiable from a random oracle F :

{0, 1}∗ → {0, 1}n−s in the ideal cipher model for E, for any tD and tS =

O(q2 · κ)), with ε = 2−n · `2 · O(q2).
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Proof:

We will assume that the random oracle inputs provided to the construction

chop-MDE
s are all of length, that is a multiple of the block length κ. In actual

implementation, this can be achieved by applying an appropriate encoding

scheme to the input, such as appending a 1 followed by a sufficient number

of 0s to the input.

The Simulator. The simulator S accepts either forward ideal cipher

queries, (+, x, y), or inverse ideal cipher queries, (−, x, z), such that x ∈

{0, 1}κ and y, z ∈ {0, 1}n. In either case, the simulator responds with a n-bit

string that is interpreted as Ex(y) in case of a forward query (+, x, y), and

as E−1
x (z) in case of an inverse query (−, x, z). The simulator maintains a

table T consisting of triples (x, y, z) ∈ {0, 1}κ×{0, 1}n×{0, 1}n, such that it

either responded with z to a forward query (+, x, y) or with y to an inverse

query (−, x, z).

On getting a forward query (+, x, y), the simulator searches its table T

for a triple of the form (x, y, z). If it finds such a triple then it responds

with the n-bit string z otherwise it needs to choose a fresh response to

this query. It proceeds by searching its table T for a sequence of triples

(x1, y1, z1) . . . (xi, yi, zi) such that:

• It is the case that y1 = IV , where IV denotes the initialization vector

used in the construction chop-MDE
s .
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• For each j = 2 . . . i, it holds that yj = yj−1 ⊕ zj−1.

• It is the case that y = yi ⊕ zi, where y is the ideal cipher input from

the current forward query.

Note that for an empty sequence of triples, i.e. when just considering the

κ-bit block x from the current query, we only need to check if y = IV and

none of the above conditions make sense.

If the simulator finds such a sequence of triples, then it needs to give a

response that is consistent with the random oracle output on x1 ‖ . . . ‖ xi ‖ x.

Thus, the simulator makes this RO query to get the output Y = F (x1 ‖ . . . ‖

xi ‖ x). It then samples a uniformly random s-bit string Y ′ and outputs

the n-bit string z = (Y ‖ Y ′) ⊕ y. If the simulator does not find any such

sequence of triples in its table T , then it samples a uniformly distributed

random n-bit string z and sends z as its response. In either case, it inserts

the triple (x, y, z) in its table T .

On an inverse query (−, x, z), the simulator S searches its table T for a

triple (x, y, z) with arbitrary y. If it finds such a triple, then it responds with

y. Otherwise, the simulator S chooses a uniformly distributed random n-bit

string y and responds with y. It then inserts the triple (x, y, z) in its table T .

Proof of Indifferentiability. We need to prove that the distin-

guisher cannot tell apart the two scenarios, one where it has oracle access to

the random oracle F and the simulator S, and the other where it has ora-
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cle access to the RO construction chop-MDE
s and the ideal cipher E. As in

the case of the prefix-free Merkle-Damg̊ard construction, the proof involves

a hybrid argument.

Game 1. This is the random oracle model, and the distinguisher D is

given oracle access to the random oracle F and the ideal cipher simulator S

described above. Let G1 denote the event that the distinguisher D outputs

1 in this game.

Pr[G1] = Pr[DF,SF

(1λ) = 1]

Game 2. In this game, the distinguisher is given oracle access to a relay

algorithm R0 instead of direct oracle access to F . The relay algorithm, in

turn, has oracle access to the random oracle F . On a random oracle query

X, the relay algorithm simply makes the same query to F and responds with

the RO output F (X). Let G2 denote the event that D outputs 1 in game 2.

Since the view of the distinguisher remains unchanged in this game, we can

deduce that

Pr[G2] = Pr[DRF
0

,SF

(1λ) = 1] = Pr[G1]

Game 3. In this game, we modify the simulator S. In particular, we

restrict the responses of the simulator such that they never satisfy certain

specific failure conditions. If the simulator comes up with a response that

results in its responses satisfying one of these conditions, then it explicitly

fails instead of sending this response.

86



These failure conditions, that the new simulator S0 checks for, describe

certain dependencies among its responses that could be exploited by a distin-

guisher. In response to a forward query (+, x, y), the new simulator S0 starts

by choosing a n-bit response z ∈ {0, 1}n in the same way as the original

simulator S. It then checks if one of the following conditions is satisfied:

1. Condition B1: It is the case that z ⊕ y = IV , where IV is the initial-

ization vector used in the RO construction chop-MDE
s .

2. Condition B2: There is a triple (x′, y′, z′) ∈ T , with (x′, y′) 6= (x, y),

such that y′ ⊕ z′ = y ⊕ z.

3. Condition B3: There is a triple (x′, y′, z′) ∈ T , with (x′, y′) 6= (x, y),

such that y ⊕ z = y′.

If the response z, whether S0 chooses a uniformly random z or z is chosen

to be consistent with the RO F on some query, is such that one of these

conditions is satisfied, then the simulator S0 explicitly fails.

On a new inverse query (−, x, z), the simulator S0 again chooses its re-

sponse y ∈ {0, 1}n in the same way as S. It then checks if the following

conditions, and fails if any one of them is satisfied:

1. Condition C1: It is the case that y = IV or y ⊕ z = IV , where IV is

the initialization vector used in the RO construction chop-MDE
s .

2. Condition C2: There is a triple (x′, y′, z′) ∈ T , with (x′, z′) 6= (x, z),

such that y′ ⊕ z′ = y ⊕ z.
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3. Condition C3: There is a triple (x′, y′, z′) ∈ T , with (x′, z′) 6= (x, z),

such that either y ⊕ z = y′ or y′ ⊕ z′ = y.

Next we will estimate the occurrence probability for each of the above failure

conditions. We start by noting that the probability that one of the conditions

C1, C2 and C3 holds can be readily estimated, since the simulator always

chooses uniformly random responses to inverse queries.

In the case of a forward query, the simulator might be forced to choose its

response so as to maintain consistency with the random oracle F . Hence the

distinguisher could find out (n− s) bits of the response of the simulator by

making a random oracle query. Thus, it is not as straightforward to estimate

the occurrence probabilities for the failure conditions B1, B2 and B3. Let the

number of random oracle queries made by D be qF , and let the number of

ideal cipher queries be qE (hence the total number of queries q = qE + qF )

We can bound the occurrence probability of event B1 easily, since it is

the probability that at least one of (qE + qF ) uniformly random n-bit strings

is IV . In order to estimate the occurrence probability of failure condition

B2, we will analyze three situations separately.

• Query (+, x, y) does not correspond to the last block of a random oracle

input. In this case, condition B2 holds only if the uniformly random

n-bit string y⊕ z is equal to one of upto qE n-bit strings corresponding

to previous queries.

• Both (x, y, z) and (x′, y′, z′) correspond to last blocks of random or-
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acle inputs, and the simulator adjusted its response according to the

RO output in each case. In this case, condition B2 implies a collision

among the two random oracle outputs as well as a collision among the

remaining s uniformly random bits chosen by the simulator in each

case.

• The triple (x, y, z) forms the last block of a random oracle input and

the simulator adjusts its response z accordingly, but (x′, y′, z′) does not.

In this case, y′ ⊕ z′ is a random n-bit string chosen by the simulator.

Here, the condition B2 corresponds to a random oracle output along

with the extra s random bits chosen by the simulator colliding with

another randomly and independently chosen n-bit string chosen by the

simulator.

From the above, we can deduce that the occurrence probability of failure

condition B2 can be bounded by the birthday bound over (qE + qF ) random

n-bit strings.

In order to bound the occurrence probability of failure condition B3, we

note that the simulator S0 chooses at least s random and independent bits in

its response (even if it is forced to make the remaining (n− s) bits consistent

with the random oracle). Thus the occurrence probability of condition B3 can

be bounded by the birthday bound over (qE + qF ) independent and random

s-bit random strings.

Let G3 denote the event that the distinguisher D outputs 1 in this game,
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i.e. Pr[G3] = Pr
[

DRF
0

,SF
0 (1λ) = 1

]

. The responses of the distinguisher in

games 2 and 3 differ only if the simulator S0 exits because of one of the

failure conditions in game 3. This event is identical with the event that at

least one of the failure conditions hold for the responses of either simulators

(in which case S0 exits while S does not).

|Pr[G3]− Pr[G2]| ≤ Pr[B1 ∪ B2 ∪B3 ∪ C1 ∪ C2 ∪ C3 hold for a query.]

= O

(

q2

2s

)

Game 4. In this game, we modify the relay algorithm but leave the ideal

cipher simulator S0 unchanged. The underlying idea is to make the responses

of the relay algorithm directly dependent on the simulator. Thus, instead of

giving the new relay algorithm R1 oracle access to the random oracle F , here

it is given oracle access to the simulator S0. It responds to a random oracle

query X by computing the Davies-Meyer Merkle-Damg̊ard construction using

input X and then chops the same s bits from the output as in the case of

the RO construction chop-MDE
s .

Let G4 denote the event that the distinguisher D outputs 1 in game 4.

Thus we know that

Pr[G4] = Pr
[

DR
S0

1
,SF

0 (1λ) = 1
]
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We will assume that the maximum length of a random oracle query made by

the adversary is ` · κ. Now we will show that the view of the distinguisher

changes by at most a negligible amount in the transition from game 3 to

game 4. This claim is formally stated below.

Claim 11. Let G3 and G4 denote the events that the distinguisher outputs

1 in game 3 and game 4, respectively. Let qE and qF denote the number of

ideal cipher and random oracle queries made by the distinguisher, then it is

the case that

|Pr[G4]− Pr[G3]| = O

(

(qE + qF · `)
2

2s

)

proof of claim 11: The view of the distinguisher differs in games 3 and

4 only if it finds a difference in responses of either the relay algorithm or

the simulator among the two games. We will show that such a difference is

impossible, unless the simulator S0 fails in at least one of the two games. Let

us start by proving a few important properties of the simulator S0 that are

valid in both games 3 and 4.

Claim 12. If the simulator S0 does not explicitly fail, then there are no two

different sequences of κ-bit blocks x1 . . . xm and x′
1 . . . x′

p with corresponding

triples (x1, y1, z1) . . . (xm, ym, zm) and (x′
1, y

′
1, z

′
1) . . . (x′

p, y
′
p, z

′
p) in the table T

such that:

• It is the case that y1 = y′
1 = IV , and for each b = 2 . . .m and b′ =

2 . . . p, it holds that yb = yb−1 ⊕ zb−1 and y′
b′ = y′

b′−1 ⊕ z′b′−1.

• It is the case that (xm, ym, zm) = (x′
p, y

′
p, z

′
p).
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proof of claim 12: We will prove this claim by performing an induction

on the number of queries made to the simulator and show that unless the

simulator S0 fails, such sequences of triples cannot exist. When no queries

have been made as yet, this claim is vacuously true. Let us assume that the

claim is also true when q queries have been made to the simulator S0.

Now say there exist two sequences of triples be (x1, y1, z1) . . . (xm, ym, zm)

and (x′
1, y

′
1, z

′
1) . . . (x′

p, y
′
p, z

′
p), that satisfy the properties stated in the claim,

after the (q + 1)th query. Since we know that (xm, ym, zm) = (x′
p, y

′
p, z

′
p), we

can deduce that there are two subsequences of κ-bit blocks xm−r . . . xm and

xp−r . . . xp such that

∀b ∈ {0, r} : (xm−b, ym−b, zm−b) = (x′
p−b, y

′
p−b, z

′
p−b)

If r < m−1 and r < p−1, then consider the triples (xm−r−1, ym−r−1, zm−r−1)

and (x′
p−r−1, y

′
p−r−1, z

′
p−r−1). Since ym−r = y′

p−r, we can deduce that ym−r−1⊕

zm−r−1 = y′
p−r−1⊕ z′p−r−1. Without loss of generality, assume that the query

corresponding to the triple (xm−r−1, ym−r−1, zm−r−1) was made earlier than

the one corresponding to (x′
p−r−1, y

′
p−r−1, z

′
p−r−1). If this query is a forward

query, then the simulator S0 would fail because of failure condition B2. On

the other hand, if this were an inverse query, then the simulator would have

failed due to failure condition C2.

Now consider the case that r = p − 1 but r < m − 1. In this case, if

the triple (xm−r−1, ym−r−1, zm−r−1) was generated as a result of a forward
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query then the simulator S0 would have failed due to failure condition B1

because ym−r−1 ⊕ zm−r−1 = ym−r = y′
1 = IV . If this triple were generated as

a result of an inverse query then the simulator would have failed as a result

of failure condition C1 being true. The case when r = m − 1 but r < p − 1

is symmetrical

Lastly, it cannot be the case that r = p − 1 as well as r = m − 1, since

the two bit strings x′
1 ‖ . . . ‖ x′

p and x1 ‖ . . . ‖ xm are different.

Hence we can conclude that there can be no such sequences of κ-bit blocks

x1, . . . , xm and x1, . . . , x
′
p if the simulator does not explicitly fail.

Next we show that if the distinguisher wishes to find the random oracle

output for an input X = x1 ‖ . . . ‖ xs by making queries to the simulator

S0 and computing the Davies-Meyer Merkle-Damg̊ard construction, then the

only way it can do so is by making the ordered sequence of forward queries

(+, x1, y1) . . . (+, xs, ys).

Claim 13. Consider any sequence of κ-bit blocks x1 . . . xs, with corresponding

triples (x1, y1, z1) . . . (xs, ys, zs) in the table T maintained by the simulator S0,

such that y1 = IV and for each j = 2 . . . s it holds that yj = yj−1⊕zj−1. If the

simulator S0 does not explicitly fail then it must be the case that the triples

(x1, y1, z1) . . . (xs, ys, zs) are generated as a result of the ordered sequence of

forward queries (+, x1, y1) . . . (+, xs, ys).

proof of claim 13: To the contrary, assume that the triples (x1, y1, z1) . . .
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(xs, ys, zs) were not generated as a result of the sequence of forward queries

mentioned in the claim. We can then deduce that one of the following must

be true regarding the actual sequence of queries that resulted in these triples:

1. For j = 1 . . . (s − 1), a forward query (+, xj, yj) was made when the

triple (xj+1, yj+1, zj+1) already existed in the table T .

2. For j = 2 . . . s, an inverse query (−, xj, zj) was made when the triple

(xj−1, yj−1, zj−1) already existed in the table T .

3. The triple (x1, y1, z1) was generated as a result of an inverse query

(−, x1, y1).

In the first case, the simulator S0 would fail since the failure condition B3

holds. Indeed, we can deduce that yj ⊕ zj = yj+1. In the second case, the

simulator explicitly fails because of failure condition C3 since we know that

yj = yj−1 ⊕ zj−1. In the third and final case, the simulator would explicitly

fail since the failure condition C1 holds. Thus the only possible sequence of

queries that could result in these triples is the one mentioned in the claim.

Now we will show that the responses of the relay algorithm R0 in game

3 are consistent with those of the simulator S0. Note that in game 4, the

relay algorithm R1 is designed in such a way that its responses are always

consistent with S0 while the relay algorithm R0 is given oracle access to the
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random oracle F and may not be consistent with S0. We show that such

inconsistency is impossible unless the simulator S0 explicitly fails.

Claim 14. In game 3, if the simulator S0 never fails then there is no sequence

of κ-bit blocks x1 . . . xj, with corresponding triples (x1, y1, z1) . . . (xj, yj, zj)

such that:

• y1 = IV and for l = 2 . . . j it is the case that yl = yl−1 ⊕ zl−1.

• To the random oracle query X = x1 ‖ . . . ‖ xj, the response of the relay

algorithm R0 is different from the (n − s) bits of yj ⊕ zj that are not

chopped in the construction chop-MDE
s .

proof of claim 14: To any random oracle query X, the relay algorithm R0

always responds with the random oracle output F (X). Thus the situation

described in the statement of the claim occurs if and only if the simulator

responds to its queries (corresponding to the κ-bit blocks in X = x1 ‖ . . . ‖

xj) in such a way that yj ⊕ zj 6= F (X).

From claim 13, we can deduce that if the distinguisher is to compute the

RO output on X = x1 ‖ . . . xj by querying the simulator, then the only way to

do this is to make the ordered sequence of queries (+, x1, y1), . . . , (+, xj, yj)

unless the simulator S0 fails. Here y1 = IV and for each i = 2 . . . j we

have yi = yi−1 ⊕ zi−1. Hence the simulator S0 already has the triples

(x1, y1, z1) . . . (xj−1, yj−1, zj−1) in its table T when the query (+, xj, yj) is

made.
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If the response of the simulator S0 to the query (+, xj, yj) is different from

F (X)⊕ yj, then it must be the case that the simulator is unable to give this

response because of some other constraint. But from claim 12, we can deduce

that the block xj cannot be the last block of any other valid Davies-Meyer

Merkle-Damg̊ard computation sequence unless the simulator S0 fails. Thus

there can be no other constraint of the response of S0 if it has not explicitly

failed.

Thus we have shown that, even though the relay algorithm R0 simply for-

wards the random oracle outputs in game 3, its responses are still consistent

with the responses of simulator S0 in that game. Another way to look at

this claim would be to note that the responses of the simulator S0 are always

consistent with the random oracle outputs, unless it explicitly fails.

Hence, it is easy to see that if the simulator S0 does not fail in either

of the games 3 or 4, the view of the distinguisher does not change in going

from one game to the other. Now we can complete the proof of claim 11 by

observing that if the longest RO query made by the distinguisher D consists

consists of at most ` κ-bit blocks then

|Pr[G4]− Pr[G3]| ≤ Pr[S0 fails in game 3] + Pr[S0 fails in game 4]

= O

(

(qE + qF · `)
2

2s

)

= O

(

(q · `)2

2s

)
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Game 5. In this game, we modify the simulator S0 so as to make the view of

the distinguisher independent of the random oracle F . For this purpose, we

introduce a new simulator S1 that does not have oracle access to the random

oracle F , and always outputs a n-bit random response to all new forward

as well as inverse queries even in cases where S0 would have maintained

consistency with F . We also remove all failure conditions from the simulator

S1.

On a forward query (+, x, y), the new simulator S1 checks if there already

exists a triple (x, y, z) in its table T . If it finds such a triple, then it responds

with the n-bit string z. If not, then it chooses a uniformly random n-bit

string z and sends this as its response, while storing the triple (x, y, z) in T .

On an inverse query (−, x, z), it similarly checks to see if there is a triple

(x, y, z) in its table T . If it finds such a triple, it responds with y otherwise

it chooses a uniformly random n-bit response y.

Now we will show that the view of the distinguisher does not change by a

non-negligible amount in going from game 4 to game 5. Note that if we can

show that the responses of the simulators S0 and S1 are indistinguishable,

then we will be done. But in the view of the distinguisher, these two simu-

lators are identical apart from the failure conditions used by S0 but not by

S1. Thus, we can deduce that the distinguisher does not notice a difference

between games 4 and 5 unless:
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• In game 4, simulator S0 explicitly fails.

• In game 5, simulator S1 responds with an output such that it satisfies

one of the failure conditions (for which S0 would have failed).

Since the simulator S1 always chooses a uniformly random n-bit response

to every query, we can easily bound the occurrence probability of any of the

failure conditions using the birthday bound. Let G5 denote the event that the

distinguisher D outputs 1 in game 5, so that Pr[G5] = Pr[DR
S1

1
,S1(1λ) = 1].

Thus we can deduce that

|Pr[G5]− Pr[G4]| ≤ Pr[S0 fails in game 4]

+ Pr[S1 satisfies a failure condition in game 5]

= O

(

(q · `)2

2s
+

(q · `)2

2n

)

= O

(

q2`2

2s

)

Game 6. This is the final game of our proof. In this game, we replace the

simulator S1 with the ideal cipher E. Since the relay algorithm R1 essentially

implements the RO construction chop-MDE
s , the view of the distinguisher in

this game is essentially its view in the ideal cipher model.

The outputs of the ideal cipher E are not uniformly distributed as are the

responses of S1. However, the distinguisher can differentiate between the two

only if the simulator S1 outputs a collision for the same ideal cipher key. The

occurrence probability of this event can be easily bounded using the birthday
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bound. Thus let G6 be the event that the distinguisher D outputs 1 in this

game, so that Pr[G6] = Pr[Dchop-MDE

s
,E(1λ) = 1] and we can deduce that

|Pr[G5]− Pr[G4]| ≤ O

(

q2`2

2n

)

Now we can complete the proof of lemma 2 by combining games 1 to 6,

and observing that game 1 is same as the random oracle model while game

6 is the same as the ideal cipher model. Hence we can deduce that

∣

∣

∣
Pr

[

DF,SF

(1λ) = 1
]

− Pr
[

Dchop-MDE

s
,E(1λ) = 1

]∣

∣

∣
= O

(

q2`2

2n

)

3.2.3 NMAC and HMAC Constructions

Here we will prove the indifferentiability of the NMAC and HMAC construc-

tion with the Davies-Meyer compression function.

Lemma 3. The NMAC construction NMACE1,E2 that uses two independent

ideal block ciphers E1 : {0, 1}κ × {0, 1}n → {0, 1}n and E2 : {0, 1}κ
′

×

{0, 1}n
′

→ {0, 1}n
′

is (tD, tS, q, ε)-indifferentiable from a random oracle F :

{0, 1}∗ → {0, 1}n
′

in the ideal block cipher model for E1 and E2, for any tD

and tS = O(q2), with ε = 2−min(n,n′) · `2 · O(q2) (`κ is the maximum length of

an RO query made by the distinguisher).
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Proof: Recall that the construction NMACE1,E2 essentially applies the

Davies-Meyer Merkle-Damg̊ard construction using the block cipher E1 to

the input x1 ‖ . . . ‖ x` to get the final output Y . It then applies the Davies-

Meyer compression function using E2 to this output Y . We will assume for

simplicity that the output length n of E1 is the same as the key length κ′ of

E21. We will use the initialization vector IV for the Davies-Meyer Merkle-

Damg̊ard construction applied to E1, and use initialization vector IV ′ for

the Davies-Meyer construction with E2.

The Simulator. Let us start by describing the simulator for the ideal

block ciphers E1 and E2 in the random oracle model with an actual random

oracle F . The simulator gets forward/inverse queries for either of the block

ciphers E1 and E2. Thus the queries that simulator S responds to are as

follows:

1. (1, +, x, y) : A forward E1 query, where (x, y) ∈ {0, 1}κ×{0, 1}n. The

expected response is E1x(y).

2. (1,−, x, z) : An inverse E1 query, where (x, z) ∈ {0, 1}κ×{0, 1}n. The

expected response is E1−1
x (z).

3. (2, +, x, y) : A forward E2 query, where (x, y) ∈ {0, 1}κ
′

×{0, 1}n
′

. The

expected response is E2x(y).

1one can use suitable padding techniques to expand Y from n bits to κ′ bits
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4. (2,−, x, z) : An inverse E2 query, where (x, z) ∈ {0, 1}κ
′

× {0, 1}n
′

.

The expected response is E2−1
x (z).

The simulator S also maintains a table T in which it records all previous

queries that were made to it, along with the responses it gave to each. Thus,

it records an entry (1, x, y, z) in T for every forward (resp. inverse) query of

the form (1, +, x, y) (resp. (1,−, x, z)) to which it responded with z (resp.

y). On the other hand, it records an entry (2, x, y, z) in T for every forward

(resp. inverse) query of the form (2, +, x, y) (resp. (2,−, x, z)) to which it

responded with z (resp. y).

On getting a forward query (1, +, x, y), the simulator first checks if there

is a tuple (1, x, y, z) in its table T . If this is the case, then the simulator S

responds with z, otherwise it chooses a uniformly random n-bit string z and

sends this as its response. It then records (1, x, y, z) in its table T .

Similarly, on getting an inverse query (1,−, x, z), it first searches its table

T for a tuple (1, x, y, z). If it finds such a tuple, then it responds with z,

otherwise it sends a uniformly random n-bit string y as its response and

stores (1, x, y, z) in its table T .

On a query (2, +, x, y), the simulator S again checks if there is a tuple

(2, x, y, z) ∈ T . If this is the case then it responds with z. If it cannot find

such a tuple, then the simulator checks if y = IV ′, where IV ′ is the ini-

tialization vector used in the second part of the construction NMACE1,E2. If

y 6= IV ′, then the simulator simply sends back a random response z ∈ {0, 1}n
′

and stores (2, x, y, z) in T . On the other hand, if y = IV ′, then the simulator
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S searches its table T for a sequence of tuples (1, x1, y1, z1), . . . , (1, xi, yi, zi)

such that the following conditions hold:

• It is the case that y1 = IV , where IV denotes the initialization vector

used in NMACE1,E2.

• For each j = 2 . . . i, it holds that yj = yj−1 ⊕ zj−1.

• It is the case that yi⊕zi = x, where x is the key provided in the current

query (2, +, x, y) (here we assume that κ′ = n).

If the simulator S finds such a sequence of tuples, then it needs to send a

response that is consistent with the random oracle F . Thus, it queries the

random oracle F on the input x1 ‖ . . . ‖ x` to get the output Y = F (x1

parallel . . . ‖ x`). It then chooses its response as z = Y ⊕ y = Y ⊕ IV ′ (since

we know that y = IV ′). It then sends this n′-bit string z as its response and

store (2, x, y, z) in its table T . If S does not find such a tuple, then it sends

a random response z ∈ {0, 1}n
′

and stores (2, x, y, z) in T .

On getting an inverse query (2,−, x, z), the simulator searches its table

T for a tuple (2, x, y, z) and responds with y if it finds such a tuple. If it

does not find such a tuple, then it sends a uniformly random n′-bit response

y and stores (2, x, y, z) in its table T .

Proof of Indifferentiability. We need to show that the distinguisher

cannot tell apart the two scenarios, one where it has oracle access to the ac-

tual random oracle F and the simulator S described above, and the other
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where it has oracle access to RO construction NMACE1,E2 and the ideal block

ciphers E1 and E2. We will use a hybrid argument to prove this result start-

ing in the random oracle scenario, and ending in the ideal cipher scenario

through a sequence of indistinguishable games.

Game 1. This is the random oracle model, where the distinguisher D has

oracle access to the random oracle F and the simulator S. Let G1 denote

the event that D outputs 1 after interacting with F and S. Thus,

Pr[G1] = Pr
[

DF,SF

(1λ) = 1
]

Game 2. In this game, we give the distinguisher oracle access to a dummy

relay algorithm R0 instead of direct oracle access to the RO F . This relay

algorithm, in turn, has oracle access to the RO F , and on getting a random

oracle query from the distinguisher, it simply makes the same query to F

and forwards the RO output to the distinguisher D as its response. The

simulator S still has direct oracle access to F . Let G2 denote the event that

the distinguisher D outputs 1 in this game. Since the view of the distinguisher

remains unchanged in this game, we can deduce that

Pr[G2] = Pr
[

DRF
0

,SF

(1λ) = 1
]

= Pr[G1]

Game 3. In this game, we will modify the simulator S by restricting its

responses. In particular, the new simulator S0 chooses its responses in the
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same fashion as the original simulator S, but after making its choice the

simulator S0 checks if it responses so far satisfy one of a few conditions that

could aid the distinguisher in getting to know that it is in the random oracle

scenario.

On a forward query (1, +, x, y), the new simulator S0 checks if there is a

tuple (1, x, y, z) in its table T , and chooses its response z in the same way as

the original simulator S. However, if the response chosen is a new one then

it checks if the tuple (x, y, z) satisfies one of the following conditions before

sending z.

1. Condition B1: It is the case that z ⊕ y = IV , where IV is the n-

bit initialization vector used in the first Merkle-Damg̊ard construction

using E1.

2. Condition B2: There is a tuple (1, x′, y′, z′) ∈ T , with (x′, y′) 6= (x, y),

such that y′ ⊕ z′ = y ⊕ z.

3. Condition B3: There is a tuple (1, x′, y′, z′) ∈ T such that z ⊕ y = y′.

4. Condition B4: There is a tuple (2, x′, y′, z′) ∈ T such that y ⊕ z = x′.

If the response z chosen by the simulator S0 is such that at least one of

these conditions is satisfied, then the simulator explicitly fails. Essentially,

the idea is that conditions B1 and B2 could be used by the distinguisher to

make two random oracle inputs collide after the Merkle-Damg̊ard part using

E1. On the other hand, conditions B3 and B4 could be used by the distin-

guisher to generate a random oracle input such that the simulator cannot
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adjust its output to match that of the random oracle. Since the simulator

S0 always chooses the response to any E1 query at random, we can bound

the occurrence probabilities of each of these events using simple probability

calculations.

On an inverse query (1,−, x, z), the new simulator S0 chooses its response

y in the same fashion as the original simulator S. However, if the response

is not chosen from the table T , then S0 checks if the tuple (x, y, z) satisfies

any of the following conditions.

1. Condition C1: It is the case that y = IV or y ⊕ z = IV , where IV

is the initialization vector used in the Merkle-Damg̊ard construction

using E1.

2. Condition C2: There is a tuple (1, x′, y′, z′) ∈ T , with (x′, z′) 6= (x, z),

such that y′ ⊕ z′ = y ⊕ z.

3. Condition C3: There is a tuple (1, x′, y′, z′) ∈ T such that y ⊕ z = y′

or y′ ⊕ z′ = y.

4. Condition C4: There is a tuple (2, x′, y′, z′) ∈ T such that y ⊕ z = x′.

If the response y is such that at least one of these conditions is satisfied, then

the simulator S0 explicitly fails. We can estimate the occurrence probabilities

for these failure condition similar to the case of a forward query (1, +, x, y).

For queries made to the block cipher E2, we need to check for different

failure conditions. In particular, the Merkle-Damg̊ard construction using E2
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will only be applied to one block inputs in the RO construction NMACE1,E2.

For forward queries (2, +, x, y), the new simulator S0 chooses z ∈ {0, 1}n
′

in

the same way as the original simulator S and sends z as its response without

checking for any failure conditions. On the other hand, for inverse queries

(2,−, x, z), the simulator S0 chooses y ∈ {0, 1}n
′

similar to S, but then checks

to see if the tuple (x, y, z) satisfies the following condition:

1. Condition C ′
1: It is the case that y = IV ′.

If the tuple (x, y, z) satisfies this condition and the response y was freshly

chosen at random, then the simulator S0 explicitly fails. The probability

of occurrence of the failure condition C ′
1 is a straightforward probability

computation.

Let G3 denote the event that the distinguisher D outputs 1 in game

3, i.e. Pr[G3] = Pr
[

DRF
0

,SF
0 (1λ) = 1

]

. The response distribution of the

distinguisher differs in games 2 and 3 if and only if the simulator S0 fails in

game 3. This event is identical to one of the failure conditions holding for

the responses of the simulator S0.

|Pr[G3]− Pr[G2]| = Pr[B1 ∨B2 ∨ B3 ∨ B4 ∨ C1 ∨ C2 ∨ C3 ∨ C4 ∨ C ′
1]

≤
q2

2min(n.n′)

Game 4. In this game, we modify the relay algorithm, but leave the ideal

cipher simulator S0 unchanged. In particular, the new relay algorithm R1

does not simply relay the outputs of the random oracle F . Instead, R1 is
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given oracle access to the simulator S0, and it responds to any random oracle

queries made to it by honestly evaluating the RO construction NMACE1,E2

by using the simulator S0 in place of the ideal ciphers E1 and E2.

Let G4 denote the event that the distinguisher D outputs 1 in game 4, so

that

Pr[G4] = Pr

[

DR
SF
0

1
,SF

0 (1λ) = 1

]

We assume that the maximum length of a random oracle query made by the

distinguisher is ` · κ. Now we will show that the view of the distinguisher D

does not change by a non-negligible amount when we make this change to

the relay algorithm. This is formally stated below.

Claim 15. Let G3 and G4 denote the events that the distinguisher outputs

1 in game 3 and 4, respectively. Let qE and qF denote the number of ideal

cipher (including both E1 and E2 queries) and random oracle queries made

by the distinguisher, then it is the case that

|Pr[G4]− Pr[G3]| = O

(

(qE + qF · `)
2

2min(n,n′)

)

proof of claim 15: The view of the distinguisher changes in the transition

from game 3 to 4 only if there is a change in the response distributions of

either the relay algorithm or the simulator between the two games. We will

show that if the simulator S0 does not fail in either of the two games, then

such a change in the response distributions is impossible.

Let us start by analyzing the way the two relay algorithms, R0 and R1,
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choose their responses. The relay algorithm from game 3, R0, simply forwards

the random oracle output to any RO query X (i.e. responds with F (X)).

On the other hand, the relay algorithm from game 4 uses the block ciphers

simulated by S0 to implement the RO construction NMACE1,E2, and responds

with the output of this “simulated construction”. If the distinguisher detects

a difference in the responses of the two relay algorithms, then it must be

the case that the simulator S0 did not adjust its responses consistently with

the RO F in game 4, which resulted in the response of the relay algorithm

R1 not matching the RO output. We will show that unless the simulator S0

explicitly fails, it is always able to adjust its responses consistent with the

random oracle F .

The simulator S0 is the same in both games 3 and 4. However, the

simulator receives extra queries from the relay algorithm R1 in game 4. Thus

it may be the case that the simulator S0 chooses its response to the same

query differently, depending on whether it is in game 3 or game 4. This is

the case only if the simulator chooses its response consistent with the RO

F in one game, while independently at random in the other game. We will

show that such a difference is impossible, unless the simulator S0 explicitly

fails in one of the games.

Below, for simplicity, we will denote by NMACS0(X) the output of the

“simulated RO construction” NMACE1,E2 using the block ciphers simulated

by S0, while F (X) is the actual random oracle output on X. We will start

by proving a couple of useful properties of the responses of the simulator S0
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that hold in both games 3 and 4. The first property essentially says that

if the simulator S0 does not fail then it is not possible for the input to the

Davies-Meyer function based on E2 to collide for two different RO inputs.

Claim 16. If the simulator S0 does not explicitly fail, then there are no two

different sequences of κ-bit blocks x1 . . . xm and x′
1 . . . xp with corresponding

tuples (1, x1, y1, z1) . . . (1, xm, ym, zm) and (1, x′
1, y

′
1, z

′
1) . . . (1, x′

p, y
′
p, z

′
p) in the

table T of S0 such that:

• It is the case that y1 = y′
1 = IV . Moreover, for each b = 2 . . .m and

b′ = 2 . . . p, it holds that yb = yb−1 ⊕ zb−1 and y′
b′ = y′

b′−1 ⊕ z′b′−1.

• It is the case that ym ⊕ zm = y′
p ⊕ z′p.

proof of claim 16: This is easy to see since there is r ∈ {0 . . . (min(m, p)−

1)} such that,

∀s ∈ {0, (r + 1)} : (xm−s, ym−s, zm−s) = (x′
p−s, y

′
p−s, z

′
p−s)

and (xm−r, ym−r, zm−r) 6= (x′
p−r, y

′
p−r, z

′
p−r)

Of the two tuples (1, xm−r, ym−r, zm−r) and (1, x′
p−r, y

′
p−r, z

′
p−r), we consider

the one whose corresponding query was made later. Without loss of gener-

ality, let this be (1, xm−r, ym−r, zm−r). If this was a result of a forward query

(1, +, xm−r, ym−r), then the simulator S0 would have failed due to failure con-

dition B2. On the other hand if this were an inverse query, then S0 would
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have failed as a result of the failure condition C2.

Next, we show that if the distinguisher wishes to find out the output

NMACS0(X) for a random oracle query X = x1 ‖ . . . ‖ xm, then the only

way it can do so is by computing the RO construction honestly.

Claim 17. Consider any sequence of entries (1, x1, y1, z1) . . . (1, xm, ym, zm)

, (2, x′, y′, z′) in the table T maintained by the simulator S0 that satisfy the

following properties:

• It is the case that y1 = IV and y′ = IV ′.

• For all i = 2 . . .m, it is the case that yi = yi−1 ⊕ zi−1.

• It also holds that x′ = ym ⊕ zm.

If the simulator S0 does not explicitly fail, then it is necessarily the case that

these entries were generated as a result of the ordered sequence of queries

(1, +, x1, y1), . . . , (1, +, xm, ym), (2, +, x′, y′).

proof of claim 17: To the contrary, assume that the tuples (1, x1, y1, z1) . . .

(1, xm, ym, zm), (2, x′, y′, z′) were not generated as a result of the ordered

sequence of forward queries (1, +, x1, y1), . . . , (1, +, xm, ym), (2, +, x′, y′). In

this case, one of the following must hold:

1. The tuple (1, xm, ym, zm) was stored in the table T after the tuple

(2, x′, y′, z′), as a result of a forward/inverse query.
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2. For some j ∈ {1 . . . (m − 1)}, a new forward query (1, +, xj, yj) was

made when the tuple (1, xj+1, yj+1, zj+1) already existed in the table

T .

3. For some j ∈ {2 . . .m}, a new inverse query (1,−, xj, zj) was made

when the tuple (1, xj−1, yj−1, zj−1) already existed in the table T .

4. The tuple (1, x1, y1, z1) was stored in T as a result of an inverse query

(1,−, x1, z1).

5. The tuple (2, x′, y′, z′) was stored in T as a result of the inverse query

(2,−, x′, z′).

We will show how any of these situations would have resulted in the simulator

S0 explicitly failing. In each of these cases, we can deduce that at least one

of the failure conditions would have held.

• Case 1 : In this case, the failure condition B4 (resp. C4) would have

been true for the query (1, +, xm, ym) (resp. (1,−, xm, zm)).

• Case 2 : Failure condition B3 would have been true for the query

(1, +, xj, yj).

• Case 3 : Failure condition C3 would have been true for the query

(1,−, xj, zj).

• Case 4 : Failure condition C1 would have been true for the query

(1,−, x1, z1).
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• Case 5 : Failure condition C ′
1 would have been true for the query

(2,−, x′, z′).

Thus if the simulator never fails, then the sequence of tuples (1, x1, y1, z1) . . .

(1, xm, ym, zm), (2, x′, y′, z′) could have been stored only as a result of the se-

quence of forward queries (1, +, x1, y1), . . . , (1, +, xm, ym), (2, +, x′, y′).

As a consequence of claims 16 and 17, we can deduce that in both games

3 and 4 the simulator is always able to adjust its responses to be consistent

with random oracle F if it does not explicitly fail. Thus the responses of

the relay algorithm R0 and R1 are identical in the view of the distinguisher.

Moreover, as a result of claim 17, we can also deduce that the distinguisher

D can only find the output NMACS0(X) by making the sequence of forward

queries given in claim 17. In this case, the simulator adjusts its response

accordingly so that NMACS0(X) = F (X) for any X. Thus the view of the

distinguisher D does not change in the transition between games 3 and 4

if the simulator S0 does not explicitly fail in either game. Hence, we can

deduce that

|Pr[G4]− Pr[G3]| ≤ Pr[S0 fails in either game]

= O

(

(qE + qF · `)
2

2min(n,n′)

)
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Game 5. In this game, we modify the simulator so that it always selects

its responses independent of the random oracle F . This does not induce any

inconsistencies in the view of the distinguisher since the relay algorithm R1

also uses the new simulator S1 instead of directly using the random oracle

F .

The new simulator S1 always chooses a uniformly random response to any

query made to it, including any forward query (2, +, x, IV ′). Moreover, after

it chooses a response it does not check for any of the failure conditions that

the old simulator S0 checked for in game 4. The view of the distinguisher does

not change by more than a negligible amount in the transition from game

4 to 5. This is because the distinguisher only notices a difference between

the two games if S0 fails in game 4 (or equivalently, the new simulator S1

responds with a z that satisfies one of the failure conditions checked by S0).

Since the new simulator S1 always chooses a uniformly random response to

any query, we can easily bound this difference.

|Pr[G5]− Pr[G4]| ≤ Pr[S0 fails in game 4]

+ Pr[S1 satisfies one of the failure conditions]

= O

(

(q · `)2

2min(n,n′)

)

Game 6. This is the final game of our proof. Here we replace the simu-
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lator S1 by actual ideal block ciphers E1 : {0, 1}κ × {0, 1}n → {0, 1}n and

E2 : {0, 1}κ
′

× {0, 1}n
′

→ {0, 1}n
′

. Since the relay algorithm R1 essentially

implements the RO construction NMACE1,E2, the view of the distinguisher

in this game is identical to its view in the ideal cipher model.

Let G6 denote the event that the distinguisher D outputs 1 in this game.

We can deduce that the view of the distinguisher does not change in the

transition from game 5 to 6, unless the simulator S1 outputs a collision in

block cipher outputs for the same key. The probability of this event can be

bounded by simply using the birthday paradox.

|Pr[G6]− Pr[G5]| ≤ Pr[S1 outputs a collision.]

= O

(

(q · `)2

2min(n,n′)

)

Now we can complete the proof of lemma 3 by combining the above games.

Hence, we deduce that

∣

∣

∣
Pr

[

DNMACE1,E2

,E1,E2(1λ) = 1
]

− Pr
[

DF,S(1λ) = 1
]

∣

∣

∣
= O

(

q2`2

2min(n,n′)

)

Lemma 4. The HMAC construction HMACE using an ideal block cipher

E : {0, 1}κ×{0, 1}n → {0, 1}n is (tD, tS, q, ε)-indifferentiable from a random
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oracle F : {0, 1}∗ → {0, 1}n in the ideal block cipher model for E, for any tD

and tS = O(q2), with ε = 2−n · `2 · O(q2) (`κ is the maximum length of an

RO query made by the distinguisher).

Proof: The proof of this lemma is almost identical to the proof of indiffer-

entiability for the NMAC construction given in lemma 3. This is because the

HMAC construction essentially implements the NMAC using a single block

cipher, by using different initialization vectors in each part of the construc-

tion. With slight modifications, the simulator described in lemma 3 works in

this case as well.

The proof of indifferentiability is also almost identical to that in lemma

3. We do add a few extra “failure conditions” to handle the fact that we are

using the same ideal cipher E in place of both E1 and E2.

3.2.4 Implications for the RO Domain Extenders

We saw above that the four modifications of the Merkle-Damg̊ard construc-

tion, i.e. the prefix-free, chop, NMAC and HMAC constructions, applied to

the Davies-Meyer compression function are indifferentiable from a variable-

length input random oracle (VIL-RO) in the ideal cipher model. This fact

was formally stated and proved in theorem 6. Now we will show that this

result is stronger than the indifferentiability of domain extenders for the ran-

dom oracle described in section 3.1. In particular, we show that theorems 2,
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3, 4 and 5 from section 3.1 can be derived as a direct consequence of theorem

6.

To this purpose, say we are given a fixed-length input random function

oracle (FIL-RO) f : {0, 1}κ+n → {0, 1}n. Consider the following construction

based on f :

T f : {0, 1}κ × {0, 1}n → {0, 1}n

(x, y) 7→ f(x ‖ y)⊕ y

Note that the construction T f is essentially the same as the Davies-Meyer

construction except that the latter is defined for an ideal block cipher E :

{0, 1}κ×{0, 1}n → {0, 1}n. If we are able to show that T f is indifferentiable

from the ideal block cipher E, then it will complete the proof of all theo-

rems from section 3.1 as an implication of theorem 6 and the composability

property of indifferentiable constructions. This is because the Davies-Meyer

construction applied to T f is identical to the FIL-RO f . However, it is easily

seen that T f cannot be proven indifferentiable from the ideal cipher E2.

To overcome this, we introduce a weaker ideal primitive than the ideal

cipher, which we will call the weak ideal block cipher. A weak ideal block cipher

E is essentially the same as an ideal cipher, except that it only responds to

forward block cipher queries. In this case, we do not run into the problem of

responding to inverse queries made to the construction T f . Unfortunately, we

2In particular, the construction T f cannot answer inverse ideal cipher queries.
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cannot use theorem 6 in a “black-box manner” to get indifferentiable VIL-RO

construction using a weak ideal cipher. However, none of the constructions

proposed in theorem 6 make use of inverse queries to the underlying block

cipher.

Corollary 1. The block-cipher based constructions pf-MDE
g , chop-MDE

s ,

NMACE
g and HMACE are (tD, tS, q, ε)-indifferentiable from a random oracle,

in the weak ideal cipher model for E, for any tD and tS = ` · O(q2), with

ε = 2−n · `2 · O(q2) for pf-MDE
g , ε = 2−s · `2 · O(q2) for chop-MDE

s , ε =

2−min(n,n′) · `2 · O(q2) for NMACE
g and ε = 2−min(κ,n) · `2 · O(q2) for HMACE.

Here ` is the maximum message length queried by the distinguisher.

In fact, the proof of this theorem is simpler than that for theorem 6 since

the simulator need not respond to inverse ideal cipher queries. We now show

that the construction T f is an indifferentiable construction of a weak ideal

cipher E : {0, 1}κ × {0, 1}n → {0, 1}n using the FIL-RO f .

Lemma 5. The construction T f (described above) is (tD, tS, q, ε) indifferen-

tiable from a weak ideal cipher E : {0, 1}κ × {0, 1}n → {0, 1}n for any tD,

tS = O(q2) and ε = 2−n · q2, in the random oracle model for f .

Proof: In order to prove this theorem, we need to describe a random ora-

cle simulator S such that no distinguisher can tell apart the random oracle

model, where it has oracle access to the random function oracle f and the

construction Tf , from the weak ideal cipher model, where it has oracle ac-

cess to the simulator S and the weak ideal block cipher E. We will start by

117



describing the simulator.

The Simulator. The simulator S gets random oracle queries of the

form x ‖ y ∈ {0, 1}κ+n. The simulator makes the forward query (x, y) to

block cipher E to get Ex(y). Then S responds with z = Ex(y) ⊕ y. In ad-

dition, the simulator S also maintains a table T of previous query-response

pairs (x ‖ y, z) which it checks each time to see if the current query matches

a previous one.

Proof of Indifferentiability. The proof of indifferentiability involves

a hybrid argument that starts in the ideal cipher model, where the distin-

guisher D has oracle access to E and S, which is game 1.

Game 1. This is essentially the weak ideal cipher model, where the distin-

guisher D is given oracle access to the random oracle simulator S and the

weak ideal cipher E. Let G1 denote the event that D outputs 1 in this game.

Thus, if λ denote the security parameter,

Pr[G1] = Pr
[

DSE ,E(1λ) = 1
]

Game 2. In this game, we give the distinguisher D oracle access to a

relay algorithm R0, instead of the weak ideal cipher E. This relay algorithm

R0 has oracle access to the simulator SE. On a forward block cipher query

(x, y) ∈ {0, 1}κ×{0, 1}n, the relay algorithm R0 simply queries the simulator
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SE on x ‖ y to get its response z. Then R0 responds to the block cipher query

with y ⊕ z.

Let G2 denote the event that D outputs 1 in this game. Since the view

of the distinguisher does not change in this game, we can deduce that

Pr[G1] = Pr
[

DSE ,RSE

(1λ) = 1
]

= Pr[G1]

Game 3. In this game, we modify the simulator so that it does not consult

the ideal block cipher for any of the queries made to it. Instead, the new

simulator S0 always chooses a uniformly random n-bit response z to every

new query x ‖ y, and records it in its table T before sending over the response.

Let G3 denote the event that the distinguisher D outputs 1 in this game.

Since the relay algorithm only consults S0 for any query, so that the view

of the distinguisher in this game is entirely independent of the weak ideal

cipher E. Thus the distinguisher D detects a difference between this game

and game 2 only if the relay algorithm R0 outputs a collision for two block

cipher queries with the same key, and the probability of this event can be

easily bounded using the birthday paradox. Thus, we can deduce that

|Pr[G3]− Pr[G2]| ≤
q2

2n

Note that the simulator S0 is essentially the same as the fixed-length in-

put RO f , while the relay algorithm R0 is defined in the same way as the
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construction T f . Hence, we can also deduce that

∣

∣

∣
Pr

[

Df,T f

(1λ) = 1
]

Pr
[

DSE ,E(1λ) = 1
]∣

∣

∣
= |Pr[G3]− Pr[G1]|

≤
q2

2n

3.3 Other Extensions

Increasing Output Length. All the random oracle constructions that we

have discussed, permit really efficient output expansion. Given a random

oracle H : {0, 1}∗ → {0, 1}n, output expansion by a factor L can be achieved

by appending an extra log(L)-bit block to the input X and outputting the

concatenation of the following blocks:

H(X ‖ 〈1〉), H(X ‖ 〈2〉), . . . , H(X ‖ 〈L〉)

It can be easily seen that this construction is generically secure, including

any of the indifferentiable constructions of VIL-RO that we have proposed.

However, one would imagine that evaluating this construction would involve

L evaluations of the VIL-RO H.

As it turns out, for the Prefix-free, Chop, NMAC and HMAC construc-

tions of a VIL-RO using a FIL-RO or an ideal cipher, this procedure can be
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completed extremely efficiently using only one (or two) extra evaluation of

the underlying fixed-length input primitive for each extra block of output. 3

This can be done by first computing the Merkle-Damg̊ard construction on

the input X, and evaluating only one last part of the construction for each

of the output blocks. This reduces the running time for the procedure from

L · (|X|/κ) to L + (|X|/k) computations.

Domain Separation for Independent ROs. The same technique as

above can also be used for domain separation of the random oracle, to get

multiple independent random function oracles from a single one. This is

useful in cryptographic constructions where one needs to use multiple inde-

pendent random oracles in order to prove the security of the construction.

In particular, if we have a single random oracle H : {0, 1}∗ → {0, 1}n, and

we need L independent random oracles in our constructions, then we can

achieve this by defining these random oracles as:

H1(X) := H(X ‖ 〈1〉)

...

HL(X) := H(X ‖ 〈L〉)

We cannot use the same efficient processing technique that we used for out-

put expansion, since one usually does not need to evaluate the independent

3For a prefix-free encoding g, this can be done by appending 〈1〉 . . . 〈L〉 to g(X) instead
appending to X and then evaluating g.
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random oracles on the same input.
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Chapter 4

Getting the Best out of existing

Hash Functions

In the previous chapter, we discussed the security of hash functions when

used to instantiate the random oracle. This was a really strong security

requirement from hash functions and, not surprisingly, one needs to make

ideal assumptions on the compression function to prove the security of the

iterative hash function in this case. Here we will take a more general look

at iterative hash functions without restricting to some particular security

requirement.

As we have already seen, cascade chaining is a very elegant way to build a

hash function H on arbitrary-length inputs from a given compression function

h on fixed-length inputs. Recall that for a given h : {0, 1}κ × {0, 1}n →

{0, 1}n, one can define a hash function H, parametrized by an initialization
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vector IV ∈ {0, 1}n, as follows (where input x = x1 ‖ . . . ‖ x` and xi ∈ {0, 1}
κ

for i = 1 . . . `):

H(x1 ‖ . . . ‖ x`) = h(x`, h(. . . , h(x1, IV ) . . .))

We will refer to this as the MD mode (after Merkle-Damg̊ard). The most

abundant use of the MD mode in practice comes in the design of the industry-

standard hash family SHA (which consists of several specific hash functions

SHA-x, where x ∈ {1, 224, 256, 384, 512}). Unfortunately, despite its ele-

gance and simplicity, the “plain MD” mode has several deficiencies. For

instance, it does not guarantee that a “global” collision of H implies a “lo-

cal” collision of the compression function h, unless one preprocesses the input

into a suffix-free form before applying H [22] (as we already mentioned, the

particular suffix-free encoding of appending the message length is called MD

strengthening, and is actually used in the SHA family for this reason). More

seriously, as we already saw in chapter 3, even MD strengthening falls prey

to the “extension attack” 1 which makes it insufficient for domain extension

of random oracle. Moreover, this deficiency disqualifies the natural use of

“plain MD” in the design of “pseudorandom functions” [5]. Other problems

also arise when the MD mode is used in applications such as key derivation

[25] and target collision-resistance (or UOWHFs 2) [11, 70].

Apart from the issues mentioned above, several other deficiencies of the

1given H(x) and any extension y, one can compute H(x ‖ y) without knowing x.
2Universal One-Way Hash Functions
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MD mode against exponential-time attacks have been discovered [43, 45]. All

these deficiencies, coupled with the improved brute-force attacks on the pop-

ular SHA-1 hash function proposed recently [72, 73], suggest that it is time

to design a better, more “secure” mode of operation for building a variable-

length input hash function. With this purpose, NIST has been organizing

several workshops dedicated to coming up with the next generation hash

functions [62]. However, this process will take some time, and it does not ap-

pear that such hash functions would be standardized and widely accepted in

any forseeable future. Therefore, practitioners are “stuck” with the prospect

of using existing hash functions, despite all their deficiencies. Hence, there

is a pressing need to design immediate “fixes” to the MD paradigm, without

changing it drastically.

There are two aims in coming up with such “fixes” to the MD mode. The

first, and so far the most popular, aim is to design a slight variant of the MD

mode that provably preserves a given security property of the compression

function, and to do so in the most aesthetic and efficient manner. We mention

only a few of the many examples of this approach. For collision-resistance,

we already mentioned the well known technique of MD strengthening. For

another example, by viewing the initialization vector as the key and applying

a prefix-free encoding to the message, one can obtain a variable-length input

pseudorandom function from a fixed-length input pseudorandom compression

function [5]. In the case of target collision-resistance, Shoup [70] designed

an elegant mode for building target collision-resistant (TCR) hash functions

125



(or UOWHFs [60]) from a TCR compression function by cleverly XORing

certain masks to the internal chaining variables in the MD construction.

The common feature in all these results is that one assumes exactly the same

property from the compression function h as the desired property from the

hash function H. In many cases, such as the PRF and TCR examples, this

means that a “secure” mode must be sufficiently different from the plain

MD so that its implementation requires a non-trivial modification to the

SHA implementation. Concretely, the SHA family uses a fixed public IV

(as opposed to arbitrary secret IV needed for PRFs), while in the TCR case

one cannot XOR the corresponding masks without modifying the internals

of SHA.

The second, less popular, aim is to try and design a “secure” mode that

uses only black-box calls to the plain MD mode 3. For instance, MD strength-

ening satisfies this property. Other examples include the HMAC mode for

pseudorandom functions [5] and the results for domain extension of random

oracle mentioned in the previous chapter. The attractive feature of these re-

sults is that they result in a hash function with the desired property without

tinkering with the internals of SHA, and can use any off-the-shelf imple-

mentation. Moreover, all these examples also satisfy the property-preserving

property described above.

Our Goal. In this chapter, we will emphasize the latter aim in coming up

with “fixes” for existing hash functions. That is, we consider the question

3in practice, with MD strengthening, but we ignore this aspect for now
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of building a hash function H ′ achieving a given security property P using a

black-box MD-based hash function H (with an unknown compression func-

tion h). We require that the proposed construction H ′ satisfies the following

“axioms”:

1. The construction should consist of one or two “black-box” calls to H.

In particular, the construction is not allowed to use any knowledge of

or tinker with the internals of the hash function H.

2. The construction must support variable-length inputs.

3. Compared to a single evaluation of H(M), the evaluation of H ′(M)

should make at most a fixed (small constant) number of extra calls to

the underlying compression function of H. In other words, the efficiency

of H ′ is negligibly close to that of H.

The motivation behind requiring the construction H ′ to satisfy these axioms

is from the viewpoint of a practitioner who understands the properties of

the hash function that are needed for the security of his cryptosystem, but

who wants to use an off-the-shelf standardized hash function implementation

without tinkering with its internals. Such a practitioner would be willing to

sacrifice the property-preserving aspect of the “fix” in favor of a black-box

implementation.

In fact, the above “axioms” leave very little freedom in choosing the

modes of operation for H ′. The resulting modes are essentially the most

widely-utilized constructions appearing in practical implementations:
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1. Plain MD Construction: This captures the notion that the application

uses the hash function as it is. We will denote this mode of operation

as H.

2. Encode-then-MD Construction: In this case, the user encodes the hash

function input before applying the plain MD construction. Examples

of popular encoding schemes used are suffix-free encoding and prefix-

free encoding. We will refer to the corresponding constructions as the

prefix-free MD construction Hpre and the suffix-free MD construction

Hsuf .

3. MD-then-Chop Construction: Here the user applies the plain MD mode

and only uses part of the output while discarding the remaining bits. In

particular, existing hash functions SHA-224 and SHA-384 are obtained

this way from SHA-256 and SHA-512, respectively. We denote the

MD-then-chop construction that chops s bits of the output as Hchops
.

4. NMAC/HMAC Construction: The version of the NMAC construc-

tion that we consider simply composes two applications of the plain

MD mode with possibly different initialization vectors IV1 and IV2.

While not obeying the first axiom, the NMAC construction serves as

a nice abstraction for the HMAC construction which does satisfy all

our axioms (but is slightly harder to formally analyze in some cases).

Concretely, the HMAC construction uses the NMAC construction with

IV1 = h(IV, α1) = H(α1) and IV2 = h(IV, α2) = H(α2), where each
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αi is either the null string ⊥ (in which case we let h(IV,⊥) = IV ) or

a single κ-bit block. We denote the NMAC construction as Hnmac and

the HMAC construction as Hhmac.

Now we can finally rephrase our goal as follows. Given a particular desired

security property P (such as collision-resistance or pseudorandomness) and

one of the 4 modes of operation above (which all satisfy our axioms), find the

weakest security assumption(s) P ′ on the compression function h which would

make the corresponding mode satisfy P (or determine that the construction

is insecure for any h). Ideally, this security property P ′ for h would be P itself

(which would result in a property-preserving mode of operation). However,

unlike most previous work, property preservation is not our primary concern.

In particular, we will not declare a mode of operation to be “insecure” for a

property P simply because it is not property-preserving for P . Instead, we

will find the weakest security property P ′ of the compression function that

makes the resulting construction secure. This will allow the practitioners

to decide whether or not it is reasonable to assume that the compression

function of existing hash functions, such as SHA, satisfy the property P ′.

Our Results. We achieve our main goal for a very wide variety of security

properties including collision-resistance (CR), pseudorandomness (PR), in-

differentiability from random oracle (RO), message authentication (MAC),

target collision-resistance (TCR), second preimage-resistance (SPR), ran-

domness extraction (RE) and one-wayness (OW). In each case, and for each

of the four popular modes above, we will identify the needed property P ′ on
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h. In some cases, the needed P ′ easily follows from some existing work (for

instance, from the previous chapter or [21] in the case of domain extension of

random oracle). In other cases, it required some minor, but important mod-

ifications to the existing results in order to satisfy our axioms. For example,

by assuming that “h(IV, random) = random” in addition to h being a PRF

when keyed with the first n bits of its input, we could build a variable length

PRF using the encode-then-MD mode and adjusting the proof of [5]. More

interestingly, by making extra assumptions on h, in some cases we can prove

security of the modes which were previously believed “insecure” because they

were not property-preserving. Finally, in some cases the proof will involve

careful and non-trivial modification of previous results. For example, this is

the case when analyzing the one-wayness of the Hsuf construction.

In addition to giving an exhaustive “mode × property” guide (see table

4.1) for achieving a given security property with a given popular mode, in

each section we also mention the practical implication of our results when

using existing hash functions SHA-x, where x ∈ {1, 224, 256, 384, 512}.

Related Work. We have already cited many of the relevant papers. In

particular, the variants of the MD mode that are useful in the property-

preservation of collision-resistance [22], pseudorandomness [5, 6], message-

authentication [1, 53], random oracles [21] and randomness extraction [25].

We also mention the works of [12, 13] concerned with multiple property-

preservation; namely, designing a single mode of operation which simultane-

ously preserves several properties. Unfortunately, the modes of [12, 13] do
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Assumptions on compression function:

(8)=computed SPR (cSPR)

(7)=enhanced SPR (eSPR)

(1)=Collision Resistance (CR)

(2)=Output Regular

(3)=standard PRF (sPRF)

(4)=dual PRF (dPRF)

(5)=FIL-RO

(6)=MAC with κ-bit key

(9)=Fixed-point at random IV

(10)=Family of random functions

(11)=One-way function

(7’)=eSPR after Chop

(8’)=cSPR after Chop

(3’)=sPRF after Chop

(2’)=h(Un, ·) is output regular

(1’)=CR after Chop

Misc.

SF=Suffix-free

PF=Prefix-free

MDS=MD Strengtheining

??=not known to be secure

Key ⊕ Blks =XOR key to
each block

RExt=Randomness Extrn.

CRHF

RO

PRF
Append key +

Pre-Free+(1)+(2)
(1) + (2) (1’) + (2)

(1)+(2)+(4)

Not Secure
Suf-Free not secure

Pre-Free+(5)

(5) NMAC/HMAC+(5)

IV1 6= IV2 ; α1 6= α2

MAC

Suf-Free+(1)

(prepend)

(append)

PF+(2’)+(3)

SF+(1)+(4)

(append)

Prepend key +

worse security

(1)+(2)+(6’)

(2’)+(3’)

Append key +

Any IV s/αs

TCR

SPR

RExt

OWF

Append key + N/H+(1)+(2)+(6)

SF+(7) (key ⊕ blks)key ⊕ blks key ⊕ blks

Any IV s/αs

α1 6=⊥

(1)+(2)+(6)

(7) + (9) PF+(7)+(9) (7’) + (9)

N/H+(7)+(9)

(8) + (9)
SF+(9)

PF+(8)+(9)
(8’) + (9)

Any IV s/αs

N/H+(8)+(9)

H∞(M) ∧ H∞(m`)

(10)

H∞(M) ∧ H∞(m`)

(10)

H∞(M) HMAC??

NMAC + (10)

(SF/PF??)

MDS + (10)

(2)+(11)
MDS+(2)+(11)

(2’)+(11)
NMAC+(2)+(11)

HMAC??

(SF/PF??)

SF+(1)+(6)

PF+(1)+(2)+(6)(app.)

N/HMAC+(1)+(2)

(key ⊕ blks)

Any IV s/αs

N/H+(3)+(4)

(append)

(prepend)

Plain MD Encode-then-MD MD-then-Chop NMAC/HMAC

Figure 4.1: Table for comparing Security Property vs. Mode of operation.
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not satisfy our axioms. Finally, we mention the work of Halevi and Krawczyk

[40], which concentrated on building TCR hash functions, and is the closest

in spirit to our motivation (indeed, we will use their results when discussing

the TCR property). The authors built TCR hash functions using the encode-

then-MD mode, and showed a simple coding scheme that yields a secure TCR

hash function under an appropriately strong assumption on the underlying

compression function h (still weaker than CR, but stronger than TCR).

Location of the key in keyed constructions. We note that for

keyed constructions, such as constructions of pseudorandom and TCR func-

tions, there are more than one possibilities for each hash function mode of

operation. In particular, any construction for these primitives must specify

the location of the key. In keeping with the black-box nature of the modes

of operation, we prevent popular keying methods such as setting the key to

be the IV or XORing the key into the chaining variables since this violates

our basic axioms.

Moreover, we also do not consider the dedicated-key setting [1, 13], where

there is separate space for the key in each application of the compression func-

tion. This is because existing hash functions do not support such dedicated

keys. Even though we may consider the key to be part of the message block

bits, we do not analyze this method since it yields constructions with poor in-

put bandwidth (thus violating our last axiom). Hence, we will only consider

modes of operation which incur an additive constant overhead compared to

the plain MD mode.
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4.1 Preliminaries

In this chapter, we will be interested more in the qualitative aspects of the

security of iterative hash functions rather than focusing on the exact secu-

rity in each case. For this purpose, we will give here slightly “less formal”

and asymptotic definitions for each of these security notions related to hash

functions. In particular, we will redefine some of the security notions already

defined in chapter 2 (where these definitions were in “exact security” terms).

4.1.1 Collision Resistance

In this chapter, a collision resistant function ensemble Hλ is defined for a

sequence of sets
{

{0, 1}m(λ), {0, 1}n(λ)
}

λ∈N
, where m and n denote the input

and output length of Hλ, respectively. As in chapter 2, it consists of a pair

of PPT machines (Gen, Eval). However, we will give an asymptotic version

of the definition of collision resistance here.

Definition 10. ε-CR function family A function ensemble Hλ is a ε-collision

resistant function family if for any probabilistic polynomial time machine A:

Pr
[

hs(x1) = hs(x2)
∣

∣s← Gen(1λ); (x1, x2)← A(1λ, s)
]

≤ ε

Here ε is a function of the security parameter λ.
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4.1.2 Pseudorandomness

Here a pseudorandom function ensemble Hλ is defined for a sequence of sets
{

{0, 1}m(λ), {0, 1}n(λ)
}

λ∈N
. It consists of a pair of PPT machines (Gen, Eval),

the key generation and evaluation machines.

Definition 11. ε-PRF family Let Rλ be the truly random function ensemble.

A function ensemble Hλ is a ε-pseudorandom function family if for any PPT

oracle machine A:

∣

∣Pr
[

Ahs(1λ) = 1
∣

∣s← Gen(1λ)
]

− Pr
[

Af = 1 |f ← Rλ

]∣

∣ ≤ ε

Here ε is a function of the security parameter λ.

4.1.3 Unpredictability and MACs

A message authentication code, MAC, is defined for a sequence of sets

{Mλ, Tλ}λ∈N. It consists of a triple (Gen, Tag, V er) of PPT machines, de-

noting the key generation, tagging and tag verification algorithms.

Definition 12 (ε-secure MAC). A MAC (Gen, Tag, V er) is a ε-secure

MAC if for any PPT oracle machine A that outputs a message/tag pair

(m, t) such that it never queried the tagging oracle on the message m:

Pr
[

V ers(m, t) = accept
∣

∣s← Gen(1λ); (m, t)← ATags,V ers(1λ)
]

≤ ε

Here ε is a function of the security parameter λ.
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4.1.4 Target Collision Resistance and One-Wayness

Target collision resistance is a weaker notion of collision intractability that

collision resistance. A target collision resistant function ensemble is also

called a Universal One-Way Hash Function ensemble (or simply UOWHFs).

A TCR function ensemble is defined for a sequence of sets
{

{0, 1}m(λ), {0, 1}n(λ)
}

λ∈N
,

and consists of a pair of algorithms (Gen, Eval). However, the TCR attacker

is more restricted than the collision finding attacker above, since it chooses

one of the colliding inputs without knowledge of the hash function key.

Definition 13 (ε-TCR function family). A function ensemble Hλ is a

ε-secure TCR function family if for any pair of PPT machines (A1, A2):

Pr
[

hs(x1) = hs(x2)
∣

∣(x1, α)← A1(1
λ); s← Gen(1λ); x2 ← A2(1

λ, α, x1, s)
]

≤ ε

Here ε is a function of the security parameter λ.

A notion related to TCR hash functions is that of second preimage-

resistant functions. Unlike TCR hash functions this security notion is related

to unkeyed hash functions f : {0, 1}m → {0, 1}n (where we can think of m

as being the security parameter).

Definition 14 (ε-SPR function). A function f : {0, 1}m → {0, 1}n is

ε-second preimage resistant if for any PPT machine A:

Pr
[

f(x) = f(x′)
∣

∣

∣
x

$
← {0, 1}m; x′ ← A(1λ, x)

]

≤ ε
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Related to the notion of SPR functions, we can also define the notion of

preimage resistance or one-wayness. This is a slightly weaker property than

second preimage resistance.

Definition 15. ε-secure one way function A function f : {0, 1}m → {0, 1}n

is an ε-secure one way function if for any PPT machine A:

Pr
[

f(x) = y
∣

∣

∣
y

$
← {0, 1}n; x← A(1λ, y)

]

≤ ε

4.1.5 Randomness Extraction

A randomness extractor is a function that is used to extract uniformly ran-

dom bits from inputs samples from an imperfect source of randomness. This

has been an extremely useful primitive in cryptography, as well as theoret-

ical computer science in general. We will give here brief definitions for this

primitive.

We start by defining the notion of min entropy, which is a measure of the

amount of randomness in a probability distribution. For instance consider a

distribution X over {0, 1}n. The min entropy of the distribution X , denoted

as H∞(X ), is the minimum integer m such that PrX (x) ≤ 2−m for all x ∈

{0, 1}n. Here PrX (x) denotes the probability assigned to x by the distribution

X .

We will also need a way to quantify the distance between two probability

distributions, X1 and X2, over a set S. The popular measure in this case
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is statistical distance between X1 and X2. The statistical distance between

X1 and X2 is defined as SD(X1,X2)
def
= 1

2

∑

s∈S

|PrX1
(x)− PrX2

(x)|. If two

distributions have statistical distance ε between them, then they are called

ε-close distributions.

A randomness extractor is a function h : {0, 1}κ×{0, 1}m → {0, 1}n that

takes a κ-bit uniformly random seed and a m-bit input, and outputs a n-bit

output.

Definition 16 ((k, ε) Extractor). A (k, ε) extractor is a function f : {0, 1}κ×

{0, 1}m → {0, 1}n such that for every distribution X on {0, 1}κ with H∞(X ) ≥

k, the distribution f(X , Um) is ε-close to the uniform distribution on {0, 1}n,

where Um denotes the uniform distribution on {0, 1}m.

4.2 Security of MD modes

4.2.1 Collision Resistance

We will analyze each of the four modes described above for the minimal

assumptions required on the compression function h : {0, 1}κ × {0, 1}n →

{0, 1}n needed in order to prove its collision resistance. As we discussed, we

will not restrict ourselves to the case of property preservation. In particular,

the security property needed for the compression function h may be stronger

than collision resistance.
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Plain Merkle-Damg̊ard construction

It is a well-known fact that simply assuming collision resistance of the com-

pression function does not suffice to prove collision resistance of the plain

MD construction. Indeed, if the compression function h has a fixed-point

such that there is some x ∈ {0, 1}κ such that: h(x, IV ) = IV . Then the

output of the plain MD construction H collides for the inputs x and x ‖ m,

for any m. Fortunately, if the compression function does not have any such

fixed point then the plain MD construction H can be shown to be collision

resistant.

We will state the following lemma in terms of simple security conditions

on the compression function h. In the process, we introduce a new security

property that essentially implies that the compression function is a regular

function.

Assumption 1 (Regularity of outputs). A function h : {0, 1}m → {0, 1}n

is a ε output regular function if for any efficient machine A that gives a 1

bit output:

|Pr [A(x) = 1 |x← h(Um)]− Pr [A(x) = 1 |x← Un ]| ≤ ε

Here Um and Un denote the uniform distributions on {0, 1}m and {0, 1}n,

respectively.

Now we state the conditions required in order for the plain MD construc-

tion H to be collision resistant.
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Lemma 6. The plain MD construction H using a compression function h :

{0, 1}κ × {0, 1}n → {0, 1}n is a O (` · (εreg + εcol)) collision resistant hash

function 4 if and only if h satisfies the following properties:

• h is εcol collision resistant.

• h is an εreg output regular function.

Proof: The main idea in the proof is to show that output regularity implies

that no efficient attacker can find a fixed point in the compression function

h : {0, 1}κ×{0, 1}n → {0, 1}n with non-negligible probability. That is, there

is a negligible ε such that for all efficient attackers A:

Pr
[

h(xi, h(. . . , h(x1, IV ) . . .)) = IV
∣

∣

∣
IV

$
← {0, 1}n; x1 . . . xi ← A(IV )

]

≤ ε

To the contrary, say there is an efficient attacker that finds such a fixed point

with non-negligible probability ε′, then we can show that it either breaks the

collision resistance or the output regularity assumption for the compression

function.

In order to show this, choose the initialization vector IV as IV ← h(x)

(for x ← Uκ × Un), instead of IV ← Un. If the success probability of A

changes by a non-negligible amount then we can break the output regularity

assumption. Otherwise, the attacker A still finds, with non-negligible proba-

bility, a sequence of κ-bit blocks x1 . . . xi such that h(xi, h(. . . , h(x1, IV ) . . .)) =

4` denotes the maximum number of κ-bit blocks throughout this section
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IV . Since A is unlikely to guess the preimage x of IV , it is likely to find a

collision for h. Thus maximum success probability of an efficient attacker in

finding such a fixed point is εreg + εcol.

Now that we have shown that no efficient attacker is likely to find fixed

points in h, we can essentially use the original proof of Merkle-Damg̊ard

[22, 54] to show that the plain MD construction H is collision resistant as

well.

Encode-then-MD construction

It makes sense to only consider deterministic input coding schemes, since the

resulting construction must behave like a function. We analyze two of the

most popular such coding schemes, i.e. prefix-free encoding and suffix-free

encoding.

We first not that using a prefix-free encoding on the input does not enable

us to get rid of any security properties in lemma 6. Hence we can essentially

restate the same result for the prefix-free MD construction Hpre as well. On

the other hand, if we use a suffix-free encoding (such as Merkle-Damg̊ard

strengthening) then the resulting suffix-free MD construction Hsuf can be

shown to be collision resistant by simply assuming the collision-resistance of

the compression function h [22, 54].
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MD-then-Chop construction

Note that simply assuming collision resistance of the compression function is

not useful for this construction, since we truncate s bits of the output. For

instance, consider the case when h is collision resistant on these s bits, while

is the constant function for all other bits (noted by Kelsey [44]). However,

in our setting this only means that we need to make a stronger assumption

on the compression function h. In particular, we will instead assume that h

is collision resistant even if we remove these s bits from its output.

Lemma 7. The MD-then-chop construction Hchops
, using a compression

function h : {0, 1}κ × {0, 1}n → {0, 1}n, is a O(` · (εreg + ε′col)) collision

resistant hash function if the following holds:

• The function h′ : {0, 1}κ × {0, 1}n → {0, 1}n−s defined as h′(x, y) =

h(x, y)|n−s (i.e. chopping the last s bits from the output of h) is a ε′col

collision resistant function.

• h is a εreg output regular function.

The proof of this lemma is essentially the same as for lemma 6.

NMAC/HMAC construction

We note that using the NMAC construction Hnmac does not help in improving

upon the collision resistance of the plain MD construction H. This is essen-

tially because any collision in the first the plain MD construction of Hnmac
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(using initialization vector IV1) essentially implies a collision for the entire

construction. Hence, at best, we can restate lemma 6 for this construction

as well.

Since the HMAC construction Hhmac is simply a black-box instantiation

of the NMAC construction, this does not help in improving the collision

resistance as well. However, we note that this construction has the best

exact security if α1 6=⊥.

4.2.2 Pseudorandomness

An issue in the pseudorandomness analysis of the MD modes of operation

is the location of the PRF key. As discussed above, we need to specify

the location of the key such that the resulting construction is still a black-

box variant of plain MD. For our analysis, we will assume the key length

to be the length of a single block (i.e. κ bits for the compression function

h : {0, 1}κ × {0, 1}n → {0, 1}n), and we will denote the key as K. We will

analyze two approaches for keying each MD mode of operation:

1. Prepend the key to input: The PRF construction H outputs H(K ‖ X)

on input X.

2. Append the key to input: The PRF construction H outputs H(X ‖ K)

on input X.

Moreover, we will need two versions of pseudorandomness definitions for the

compression function, one where the key occupies the last n bits and other
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where it occupies the first κ bits. We get the following two assumptions on

the compression function in this manner.

• Standard PRF (sPRF) security: Here we require that for a uniformly

chosen K ∈ {0, 1}n, the function h(·, K) must be indistinguishable from

a truly random function.

• Dual PRF (dPRF) security: Here we require that for a uniformly chosen

K ∈ {0, 1}κ, the function h(K, ·) must be indistinguishable from a truly

random function.

Depending on the maximum distinguishing advantage ε of an efficient at-

tacker in each case, we call the compression function h ε-sPRF or ε-dPRF.

Plain MD construction.

In this case if we prepend the PRF key to the hash function input, then

the resulting construction is not a PRF. This is because an attacker can use

the extension attack to find H(K ‖ X ‖ Y ) by simply knowing the output

H(K ‖ X) and computing the compression function on the remaining blocks

itself (where it does not need to know the key K). On the other hand, if we

append the PRF key to the input, then we can show that if the plain MD

construction using h is collision-resistant and satisfies the dual PRF security,

then the plain MD construction H(· ‖ K) is a variable-length input PRF.

Lemma 8. The plain MD construction H is a O(` · (εcol + εreg)+ εdprf) PRF

(with PRF key appended to the function input) if the following conditions
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hold:

• h is εcol collision resistant.

• h is a εreg output regular function.

• h is a εdprf dual pseudorandom function.

Proof: If the PRF attacker cannot find any collisions in the plain MD

construction H, then the n bit chaining variable 5 is unique for each PRF

input. In this case, the dual PRF security of h implies the PRF security of

the entire construction (with the same advantage). On the other hand, the

attacker can find a collision in H with probability at most O(` · (εreg + εcol)).

Encode-the-MD construction.

Once again, we will discuss two deterministic coding schemes here, prefix-

free encoding and suffix-free encoding. Let us first analyze the suffix-free

MD construction Hsuf . If we prepend the key to the (encoded) input, the

resulting construction is still insecure since the extension attack works in this

case as well. On the other hand, if we append the key to the (encoded) input

then the resulting construction is a PRF if the suffix-free MD construction

5The chaining variable denotes the n bit intermediate inputs/outputs in the MD con-
struction
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Hsuf using the compression function h is a dual PRF and collision resistant

(for which we only need collision resistance of h in this case).

For the prefix-free MD construction Hpre, if we append the key to the

(encoded) input then we get no advantage as compared to the plain MD

construction and we can only restate lemma 8 in this case. On the other

hand, if we prepend the PRF key to the (encoded) input then the resulting

construction is not vulnerable to the extension attack in this case. Indeed, it

was shown by Bellare et al. in [5] that the prefix-free MD construction with

the PRF key in the IV is a PRF only assuming that the compression function

h satisfies the standard PRF security. However, since we will need to prepend

the key to the input (in order to preserve the black-box property of the

construction), we will need to impose an extra condition on the compression

function. In particular, we require that the function defined as h(Un, ·) is an

output regular function. That is, if the first n bits of the compression function

h are chosen at random then the resulting function is output regular with

high probability.

Lemma 9. The prefix-free MD construction Hpre is a O(ε′reg +` ·εsprf) secure

PRF (with PRF key prepended to the input) if the following conditions hold:

• h is a εsprf sPRF.

• h(Un, ·) is a ε′reg output regular function.

Proof: The proof of this lemma essentially follows from the result of [5].

Indeed, if the attacker succeeds with non-negligible probability when the PRF
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key is prepended to the encoded input while has at most negligible success

probability if the PRF key is in the IV of the construction, then it violates

the output regularity property of the compression function. This is because

for a random and secret key as input to h(Un, ·), the output is random and

secret as well (if the output regularity property holds).

MD-then-Chop construction.

If the PRF key is appended to the input to the MD-then-Chop construction

Hchops
, then a slight variant of lemma 8 can be stated for this construction as

well. Indeed, all we need is to specify the dual PRF and collision-resistance

properties for the compression function with chopped output.

On the other hand, if we prepend the PRF key to the input to Hchops
,

then the extension attack does not seem to go through as in the case of plain

MD construction. This is because the attacker does not learn the chopped s

bits of the chaining variable by observing the output of Hchops
for the prefix of

an input. Indeed, this construction can be proven to be an arbitrary-length

input PRF by making a slightly non-standard assumption on the compression

function. In particular, we require the compression function to satisfy the

following resilient sPRF assumption:

Assumption 2 ((s, ε)-resilient sPRF). The function h : {0, 1}κ×{0, 1}n →

{0, 1}n is a (s, ε)-resilient sPRF if it is a ε-secure sPRF even if the attacker

learns s bits of the n bit key.
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Now we can state the following lemma for the MD-then-Chop construction

in terms of this assumption.

Lemma 10. The MD-then-Chop construction Hchops
is a O(ε′reg + ` · ε′sprf)

secure PRF (with PRF key prepended to the input) if the following conditions

hold:

• h is a (s, ε′sprf)-resilient sPRF.

• h(Un, ·) is a ε′reg output regular function.

NMAC/HMAC construction.

The NMAC and HMAC constructions were shown to be secure arbitrary-

length input PRFs by Bellare [3]. In [3], it is shown that the HMAC con-

struction with α1 = α2 =⊥ (i.e. with the same IV for both invocations of

the plain MD construction) is a secure arbitrary-length input PRF if the

underlying compression function satisfies both the standard and dual PRF

security definitions. This is done by simply prepending a different κ-bit key

to each invocation of the plain MD construction 6.

Lemma 11. The NMAC (resp. HMAC) construction Hnmac (resp. Hhmac) is

a O(q2` · εsprf + εdprf) PRF (with a different κ-bit key prepended to the input

in each call to the MD construction) for any IV1 and IV2 (resp. α1 and α2)

if the following conditions hold:

6if the same key is prepended in both invocations, then the construction is secure
under a slightly stronger assumption, called security against related-key attacks in [5, 3].
We ignore this setting here
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• h is a εsprf -secure sPRF.

• h is a εdprf -secure dPRF.

4.2.3 Random Oracle

We already analyzed each of the four modes of operation for indifferentia-

bility from random oracle in the chapter 3. However, we will mention these

results briefly for completeness. Note that, in this case we need to make an

“idealized” assumption on the compression function. In particular, we will

assume that the compression function is a fixed-length input random oracle

(FIL-RO).

Plain MD construction.

The plain MD construction does not give an indifferentiable construction

a random oracle from a FIL-RO. This is essentially because the plain MD

construction is vulnerable to the extension attack, as shown in chapter 3.

Encode-then-MD construction.

The suffix-free MD construction Hsuf is also vulnerable to the extension at-

tack, and cannot be indifferentiable from RO. However, if we apply a prefix-

free encoding to the input then the resulting prefix-free MD construction

Hpre is no longer vulnerable to this attack. Indeed, as shown in the previ-

ous chapter, this construction is indifferentiable from RO if the compression
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function is a FIL-RO.

MD-then-Chop construction.

The MD-then-Chop construction can be shown to be indifferentiable from RO

if we chop a non-negligible (i.e. super-logarithmic in the security parameter)

number of output bits. However, as shown in chapter 3, this construction

has slightly worse exact security. In particular, we need a birthday bound

over s (number of chopped) bits instead of n bits.

NMAC/HMAC construction.

The HMAC construction with α1 = 0κ and α2 =⊥ is indifferentiable from

RO. We note that α1 can be any κ-bit block such that α1 /∈ {⊥, α2}, while

α2 can be any bit string in {⊥} ∪ {0, 1}κ. On the other hand, the NMAC

construction is indifferentiable from RO if IV1 6= IV2.

4.2.4 Message Authentication Code

We will refer to MACs that work for fixed-length messages as FIL-MACs and

those that work for variable-length messages as VIL-MACs. We will analyze

each of the modes of operation to see if they satisfy VIL-MAC security. Let

us first note, that a pseudorandom function can be considered to be a MAC

as well (PRF output serves as the message tag). Thus all the results for

PRF security above hold for VIL-MAC security as well. We will try to find
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if these modes are VIL-MACs under weaker assumptions on the compression

function than those needed for the case of PRFs.

However, if we assume the compression function to be simply a FIL-

MAC, then we cannot use the output of one application of the compression

function to key the construction. One solution to this problem would be to

analyze the construction in the dedicated-key setting, where each call to the

compression function has a separate key space. For current hash functions,

one could assume that part of the message block space can be used to securely

key the compression function. That is, for the compression function h :

{0, 1}κ × {0, 1}n → {0, 1}n, the key occupies part of the first κ bits in the

input. In this case, we can use the results of [1, 53] to get secure VIL-MAC

constructions. However, as we discussed earlier, this violates the property

that our modes of operation should be efficient in terms of input bandwidth.

Thus, we will take a different approach here.

Plain MD construction.

If we prepend the MAC key K ∈ {0, 1}κ to the input and apply the plain MD

construction, then the resulting construction is vulnerable to the extension

attack since the attacker can obtain the tag for a message by first getting a

tag for the prefix. On the other hand, if the MAC key is appended to the

input, then we find sufficient assumptions to show that H is a secure VIL-

MAC. In particular, we will need the plain MD construction to be collision-

resistant and the compression function to be a secure MAC when the MAC
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key occupies the first κ bits of its input.

Lemma 12. The plain MD construction H is a O(`·(εreg+εcol)+εmac)-secure

VIL-MAC, when the key is appended to the input, if the following conditions

hold:

• h is a εcol collision resistant function.

• h is a εreg output regular function.

• h is a εmac secure MAC, when the first κ bits of its input is considered

to be the key space.

Proof: The collision resistance of the plain MD construction (which we get

from the first two conditions in the statement of the lemma) implies that the

n-bit input to the last application of h is unique for each new input. Hence

MAC security of the compression function h implies MAC security of the

plain MD construction H.

Encode-then-MD construction.

If we use a suffix-free encoding and append the MAC key to the input, then

we succeed in reducing the assumptions needed in lemma 12 for collision

resistance. Indeed, in this case, we can show that the suffix-free MD con-

struction Hsuf is O(εmac+`·εcol) secure VIL-MAC if the compression function

is εcol collision resistant and εmac secure FIL-MAC. On the other hand, if we
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prepend the MAC key to the input, then the resulting construction is insecure

since it is still vulnerable to the extension attack.

If we use a prefix-free encoding, and prepend the MAC key to the input

then the resulting construction is a secure VIL-MAC only if all the conditions

stated in lemma 9 hold. On the other hand, the prefix-free MD construction

Hpre with MAC key appended to the input essentially has the same security

as the plain MD construction in lemma 12.

MD-then-Chop construction.

If we prepend the MAC key to the input to the MD-then-Chop construction

Hchops
, then the resulting construction can be shown to be a VIL-MAC only

under the conditions from lemma 10. On the other hand, if we append

the MAC key to the input then we can prove the VIL-MAC security of

the resulting construction by making slightly stronger assumptions on the

compression function as compared to lemma 12.

Lemma 13. The MD-then-Chop construction Hchops
is mathcalO(` · (εreg +

εcol) + ε′mac)-secure VIL-MAC if the following conditions hold:

• h is a εcol collision resistant function.

• h is a εreg output regular function.

• h′(·) = h(·)|n−s is a ε′mac secure FIL-MAC.
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NMAC/HMAC construction.

In this case, if we prepend the MAC key to the input, then we need the same

conditions as lemma 11 in order to prove VIL-MAC security as well. On the

other hand, if we append the MAC key to the input, then both NMAC and

HMAC constructions can only be proven secure using the same conditions

as in the case of plain MD construction (lemma 12).

4.2.5 Target Collision Resistance

Target collision resistance (TCR) is a strictly weaker property than collision

resistance. However, for some purposes, TCR hash functions (also called

UOWHFs) suffice instead of CRHFs. For instance, it is possible to come up

with a signature scheme on arbitrary length messages using one that works

only for fixed-length messages by using TCR hash functions. For this reason,

this primitive has attracted even greater interest since the discovery of better

attacks against the collision resistance of existing hash functions.

When analyzing the TCR security of the hash function modes of opera-

tion, we cannot assume that the underlying compression function is a TCR

function as well. This is because the output of a TCR function need not

be random, so that each subsequent application of the compression function

will require separate key space (and this dedicated-key setting violates our

requirements from the mode of operation). Instead, we will assume that the

compression function h : {0, 1}κ × {0, 1}n → {0, 1}n is an unkeyed function
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that satisfies second preimage resistance type properties.

Plain MD construction.

In order to discuss the TCR security of the plain MD construction, we need

to first discuss appropriate keying mechanisms for this construction. As

we briefly mentioned above, Shoup [70] described an efficient masking-based

construction based on the plain MD construction. However, this construc-

tion modifies the chaining variable which violates our properties of black-box

modes of operation. Unfortunately, we do not know of any black-box ways

of keying the plain MD construction such that it can be shown to be a TCR

hash function only assuming the compression function to be a SPR function.

Halevi and Krawczyk [40] suggested an alternate way of keying the plain

MD construction that satisfies all the properties of a black-box mode of

operation. The construction HK proposed in [40] uses a κ-bit key K and

XORs the key with each message block in the plain MD construction, i.e.

HK(x1 ‖ . . . ‖ x`)
def
= h(K ⊕ x`, h(. . . , h(K ⊕ x1, IV ) . . .))

However, in order to prove TCR security of this construction one needs to

make a slightly non-standard “SPR-type” assumption on the compression

function, called the evaluated SPR assumption (e-SPR) [40].

Assumption 3 (evaluated second preimage-resistance). Consider a

function h : {0, 1}κ × {0, 1}n → {0, 1}n and let HK be the plain MD based
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construction using h (described above). The function h is ε evaluated second

preimage resistant if any efficient machine A wins in the following game with

probability at most ε (over the random choice of IV and the coins of A).

1. A chooses a sequence of κ-bit blocks ∆1, . . . , ∆i.

2. The challenger chooses a random key K and sets c = HK(∆1⊕K, . . . , ∆i−1⊕

K) and m = ∆i ⊕K.

3. A wins if it can find c′ and m′ such that h(m′, c′) = h(m, c).

Halevi and Krawczyk [40] show that if the compression function h is an

e-SPR function, then the construction HK described above is a secure TCR

hash function. However, in their proof they require that the inputs provided

to HK must be suffix-free. Indeed, this is required for their reduction to go

through. However, we note that even for the plain MD construction (with

possibly “non-suffix-free” inputs), one can make an additional assumption on

the compression function to enable us to apply the proof technique of [40].

Lemma 14. The construction HK is an O(` · (εfix + εespr))-secure TCR hash

function if the following conditions hold:

• h is an εespr-secure e-SPR function.

• For a randomly chosen IV , no efficient machine A has success proba-

bility more than εfix in finding a sequence of κ-bit blocks such that:

h(xi, h(. . . , h(IV, x1) . . .)) = IV
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Encode-then-MD construction.

If we apply a suffix-free encoding to the input before using the construction,

then the resulting mode of operation Hsuf,K is a TCR hash function based

only on the assumption that h is an e-SPR function [40]. On the other hand,

if we use a prefix-free encoding then it does not help in improving the security

of the plain MD construction and we need all conditions of lemma 14 to prove

the TCR security of the resulting construction.

MD-then-Chop construction.

For the MD-then-Chop construction, we need to make a slightly stronger

assumption on the compression function to prove the TCR security of the

resulting construction. In particular, we need to assume that the compression

function h is e-SPR even if we chop a non-negligible number of its output bits.

If we replace the second condition in lemma 14 wit this stronger condition,

then it holds for the MD-then-Chop construction as well.

NMAC/HMAC construction.

Using the NMAC or HMAC construction does not lead to improved TCR

security of the resulting construction. Again this is because if the attacker

finds a collision in the first invocation of the plain MD construction then it

implies a collision for both NMAC and HMAC construction.
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4.2.6 Second Preimage Resistance.

In this section, we will analyze each of the modes of operation for the min-

imal assumptions on the compression function needed in order to prove the

SPR security of the construction. Unfortunately, to the best of our knowl-

edge, there is no black-box mode of operation that is property preserving for

second preimage resistance. Hence we will need to make a slightly stronger

assumption on the compression function h.

Assumption 4 (computed Second Preimage Resistance (cSPR) [40]).

A function h : {0, 1}κ× {0, 1}n → {0, 1}n is a ε-secure cSPR function if any

efficient machine A has success probability at most ε in the following game:

1. The challenger randomly selects a sequence of κ-bit blocks x1, . . . , x`,

sets c = H(x1 ‖ . . . ‖ xi−1) and x = xi. Here H is the plain MD

construction using the compression function h and random IV . The

challenger sends x1, . . . , xi to A.

2. A wins if it finds (x′, c′) ∈ {0, 1}κ×{0, 1}n such that h(x′, c′) = h(x, c).

Note that this assumption is quite similar to the eSPR assumption that

we needed for the TCR hash function case.

Plain MD construction.

Here we will assume that the compression function h is a cSPR function.

However, in order to prove SPR security of the plain MD construction, we
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will also need to assume that the attacker cannot find fixed points starting

from a random IV .

Lemma 15. The plain MD construction H using the compression function h

is a O(` · (εcspr + εfix))-secure SPR function if the following conditions hold:

• h is a εcspr-secure cSPR function.

• For a random initialization vector IV , no efficient attacker can find a

sequence of κ-bit blocks x1, . . . , xi such that H(x1 ‖ . . . ‖ xi) = IV with

probability more than εfix.

Encode-then-MD construction.

If we use a suffix-free encoding on the input, then the resulting construction

Hsuf can be proven to be a SPR function solely on the assumption that the

compression function h is a cSPR function. On the other hand, the prefix-free

MD construction does not help in gaining any improvement in SPR security

over the plain MD construction.

Lemma 16 ([40]). The suffix-free MD construction Hsuf is a O(` · εcspr)-

secure SPR function if the compression function h is a εcspr-secure cSPR

function.

MD-then-Chop construction.

As in the case of collision resistance and TCR functions, we will need to

impose a slightly stronger assumption on the compression function in order
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to prove the SPR security of the MD-then-Chop construction Hchops
. In

particular, we will need to assume that the function h′(·) = h(·)|n−s is ε′cspr-

secure SPR function. This assumption along with the second condition from

lemma 15 suffices to show that the MD-then-Chop construction is a O(` ·

(εfix + ε′cspr))-secure SPR function.

NMAC/HMAC construction.

The NMAC/HMAC construction do not give any better SPR security as

compared to the plain MD construction. This is because a collision in the

first invocation of the MD construction implies a collision for both the NMAC

and HMAC constructions.

4.2.7 Randomness Extraction

The idea of using the MD construction as a randomness extractor was dis-

cussed by Dodis et al in [25]. They showed that for getting any useful ran-

domness extraction properties from the MD construction, one needs to make

a really strong assumption on the compression function h. In particular, they

assume that the compression function h : {0, 1}κ × {0, 1}n → {0, 1}n is an

ideal randomness extractor, which is the same as assuming it to be a family

of random functions7. That is, the function h(·, x) is a random function from

κ to n bits when x is uniformly distributed. We debate such a compression

7Note that this is a weaker assumption than assuming h to be a FIL-RO. In particular,
it is a (very inefficiently) realizable assumption.
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function h as a family of random functions {hr} for r ∈ {0, 1}n.

Let us start by explaining why one needs to make such a strong assump-

tion on h. If we assume h to be a regular extractor, then the distribution of

the output of h(·, x) for random x has a non-zero statistical distance from

the uniform distribution on {0, 1}n. If this output is used a seed for the

next application of the compression function then one has no guarantee of

extraction, since the seed us no longer independent of the κ-bit input block.

Actually, Dodis et al [25] do give a positive result for the MD construction

simply under the assumption that h is an almost-universal family of functions

8. However, for this result they require that every input block for the MD

construction must have some amount of conditional min-entropy9 (see [25]

for more details). However, all the results here are based on the assumption

that h is an ideal randomness extractor.

Plain MD construction.

In this case, one can show that for a restricted class of inputs (from certain

high min entropy distributions), the output of the plain MD construction,

using an ideal randomness extractor h, is close to uniform. The input distri-

bution should be such that it has high overall min entropy as well as high

conditional min-entropy in the last input block.

8i.e., for the function h(·, x), where x uniformly distributed on {0, 1}n, for any two
distinct inputs y and z, the probability that h(z, x) = h(y, x) is negligibly close to the
corresponding probability for a random function

9This is the min entropy of an input block conditioned on all the other input blocks.
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Lemma 17 ([25]). Let {Hr} be the plain MD construction defined over a

family of random functions {hr}, where the seed r is essentially the random

IV in the plain MD construction. Let X be the distribution of the inputs to

H (over bit strings with at most ` κ-bit blocks) and let X` be the distribution

induced by X on the last block of the input. If H∞(X ) > n + 2 log
(

1
ε

)

and

H∞(X`) > log ` + 2 log
(

1
ε

)

, then SD(HIV(X ),Un) = O(ε) where Un is the

uniform distribution on n-bit strings.

Encode-then-MD construction.

Note that if one applies a suffix-free encoding to the input in conjunction with

the plain MD construction, then the (encoded) input to the MD construction

may no longer satisfy the min entropy requirements from lemma 17. Indeed,

consider applying Merkle-Damg̊ard strengthening to the input before the MD

construction. In this case, the last block has no conditional entropy (since it is

simply the input length). Nonetheless, in [25], Dodis et al. show that adding

any fixed padding to an input that satisfies all min entropy requirements still

gives a good randomness extractor! Similarly, we cannot say much about a

general prefix-free encoding since it might change the input distribution in

an arbitrary way. However, if we consider prepending input length to the

input, then it still gives a good randomness extractor.
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MD-then-Chop construction.

Quite surprisingly, if we chop a sufficient number of output bits then one can

prove randomness extraction properties of the resulting construction based

on fewer assumption than lemma 17. In particular, we can get rid of the

requirement that the last input block has sufficient conditional min entropy.

Lemma 18 ([25]). Let Hchops,r be the MD-then-Chop construction defined

over a family of random functions {hr}, where the seed r is essentially the

random IV used in the construction. Let X be the input distribution to Hchops

(over bit strings with at most ` k-bit blocks). If H∞(X ) = n + s + log(` +

1), then we get that SD(Hchops
(X ), Un−s) ≤ 2−s where Un−s is the uniform

distribution on (n− s)-bit strings.

NMAC/HMAC construction.

For the NMAC construction, it can be shown that if random and independent

IV1 and IV2 are used in the two applications of the plain MD construction,

then the resulting construction Hnmac is a good randomness extractor if the

compression function represents a family of random functions. We can then

restate lemma 17 for the construction Hnmac as well, with the same exact

security. However, it turns out that translating these results to the setting

of the HMAC construction is not straightforward [25].
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4.2.8 One-Wayness

One way functions are also often referred to as preimage resistant functions.

This security property is even weaker than second preimage resistance.

Plain MD construction.

In this case, we will need to assume that the compression function h is a one

way function. Moreover, we will also require that h is output regular, so that

its output is uniformly distributed for a random input. This is essentially

because we need the input to a one-way function to be random in order to

use the one-wayness property.

Lemma 19. The plain MD construction H is O(`·εreg+εowf)-secure one-way

function if the following conditions hold:

• h is an εreg output regular function.

• h is a εowf -secure one-way function.

Proof: Say an attacker A has non-negligible advantage in the one-wayness

game against the plain MD construction H. Then we can construct another

attacker A′, that simply gives its challenge as a challenge to A. Since h is

output regular, the attacker A cannot tell the difference between this chal-

lenge and if it was given the output of H on a random input. Thus it has

non-negligible success probability in this game as well. The attacker A′ can

use the preimage outputted by A to invert its challenge as well.
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Encode-then-MD construction.

Note that if we use an arbitrary suffix-free encoding before the MD con-

struction, then we cannot say much about the one-wayness of the resulting

construction since the input distribution could be arbitrary. However, if we

apply Merkle-Damg̊ard strengthening to the input, then we can show that the

resulting construction is a one-way function under sufficient assumptions. In

particular, we need to make an additional assumption that for any message

block, most outputs of the compression function have a small number of

preimages in the chaining variable that are consistent with the given block.

Note that this property certainly holds for a random compression function

(and, thus, holds for most compression functions). As for prefix-free en-

coding, once again we cannot say anything general (for the same reason as

above), but when prepending the message length we are essentially back to

the setting of plain MD discussed above, except we need to assume that the

output of the compression function on a random IV and a fixed message

block is random.

In particular, we note that encoding the input in any way does not help

as far as one-wayness of the construction is concerned. In fact, we only

need more assumptions to prove this property, as compared to the plain MD

construction.

164



MD-then-Chop construction.

In order to prove the one-way security of the MD-then-Chop construction, we

will need to make a slightly stronger assumption on the compression function

h. In particular, we assume that the compression function h is one-way with

s bits of the output chopped. Let the one-way security of the function h with

truncated output be ε′owf . Then we can show that Hchops
is a O(`·εreg +ε′owf)-

secure one-way function (similar to lemma 19)

NMAC/HMAC construction.

The NMAC construction is a one-way function under the same conditions on

the underlying compression function h as required in lemma 19. However,

we require that random and independent initialization vectors IV1 and IV2

are used in the NMAC construction. However, it turns out that translating

these results to the setting of the HMAC construction is not straightforward.

4.3 Implications for Actual Hash Functions

We will now translate our results into suggestions for usage of actual “cascade

construction based” hash functions, such as functions from the SHA family.

As we mentioned earlier, we have tried to find the minimal assumptions

needed to make each of the four modes of operation secure (for each of the

security properties). Thus, we have left part of the “decision making” for

the practitioner who uses our results. In particular, the practitioner must
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consider the following questions:

1. What one needs to assume about the hash function in order for the

cryptosystem (that the hash function is being used for) to be provably

secure?

2. What level of trust the practitioner is willing to place in the underlying

compression function?

The answer to the first question will help in deciding the security property

to look for in the hash function mode of operation. The answer to the

second question may not be as straightforward since the design of the com-

pression functions is quite complex and mostly based on heuristic. In this

case, the practitioner needs to weigh all the properties (s)he desires from the

cryptosystem, in terms of efficiency, security etc. Thus, while some may be

willing to make a slightly stronger assumption on the compression function

to have a more efficient implementation, others may be willing to sacrifice

some efficiency for better security.

Now we will give some basic recommendations for actual hash functions

with respect to the various security properties.

4.3.1 Collision Resistance

Each of the SHA functions are essentially based on the suffix-free MD con-

struction (using MD strengthening). Hence, collision resistance for each of
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these hash functions is asymptotically same as finding collisions on the com-

pression function. It does not make much sense to use the “truncated” ver-

sions, SHA-224 and SHA-384, since this only sacrifices the collision resistance

of the original “untruncated” version (i.e. SHA-256 and SHA-512, respec-

tively). Using the NMAC/HMAC construction does not help in this case.

4.3.2 Pseudorandomness

We note that using the full SHA-256 or SHA-512 hash functions makes more

sense for pseudorandomness than using the chopped versions (SHA-228 or

SHA-384), which only have worse security. If any of the SHA functions are

used, as it is, for pseudorandomness, then we recommend appending the

PRF key to the input instead of prepending it. However, we recommend

using these functions in conjunction with a prefix-free encoding (such as

prepending input length to the input) in which case the PRF key should be

prepended to the input. Another option would be to compose two calls to

SHA-1, with independent keys prepended in each call, to get security based

on the sPRF and dPRF security of the compression function.

4.3.3 Random Oracle

Note that none of the SHA functions should be used, as it is, if the se-

curity of the cryptosystem requires the random oracle assumption for the

hash function. This is because the plain MD construction (even with MD
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strengthening) is vulnerable to simple attacks in the indifferentiability sce-

nario. One may think that both SHA-224 and SHA-384 that correspond

to “chop” versions of the functions SHA-256 and SHA-512 would be secure

(since the MD-then-Chop construction is secure). However, note that only

32 bits are chopped in the case of SHA-224, which does not give sufficient

security for almost all applications. Hence, only SHA-384 (that chops 128

bits) may be suitable to be used directly to instantiate the random oracle.

We recommend using the HMAC construction involving two black-box

calls to the SHA function (while prepending different α1 and α2 in each cal)

for this purpose. Using any of these hash functions in conjunction with a

prefix-free encoding will also work for this purpose.

4.3.4 Message Authentication

If the SHA functions are used as MACs directly, then the MAC key should be

appended to the input. In this case, security depends on both the MAC se-

curity and collision resistance of the compression function. Using the HMAC

construction does not help in improving the security either. Moreover, when

the “chopped” functions SHA-224 or SHA-384 are used as MACs, then their

security is only worse than the unchopped versions (SHA-256 and SHA-512).

If one is willing to assume pseudorandomness of the compression function,

then the techniques mentioned above for pseudorandomness can be used as

well. Another approach would be to assume the dedicated-key setting, by

inserting the MAC key in each application of the compression function (at the
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cost of some input bandwidth) and then one could use one of the techniques

suggested in [1, 53].

4.3.5 Target Collision Resistance or UOWHFs

We recommend using the technique suggested by Halevi and Krawczyk [40]

if the SHA functions are used as UOWHFs. In this case, one XORs the

UOWHF key to each block of the input. Since MD strengthening is already

used in all these functions, the UOWHF security of this construction is based

only on the eSPR [40] (see above) of the compression function.

4.3.6 Second Preimage Resistance

It makes sense to use the SHA hash functions directly for the purpose of

second preimage resistance without using any additional techniques, since

they do not lead to improved security (note that these functions already

incorporate MD strengthening).

4.3.7 Randomness Extraction

All the positive results for randomness extraction have reasonable interpre-

tation in practice, only if we are willing to assume that the SHA compression

function is close to being a family of random functions. Even though it is

theoretically impossible, since the SHA compression function has a short de-

scription, it might still be a more reasonable assumption than assuming the
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compression function to be a FIL-RO.

Under this assumption, we can deduce that the SHA functions are good

randomness extractors for input distributions with high min entropy overall

and in the last block. On the other hand, as we saw above, it might be a

good idea to use chopped function SHA-384 for this purpose to get better

extraction properties (SHA-224 does not have sufficient number of chopped

bits to give useful advantage). Using the HMAC construction does not help

in improving the extraction properties.

4.3.8 One-Wayness

In the case of “one-wayness”, the security of the chopped functions, SHA-

224 and SHA-384, seems to rely on stronger assumptions than the security

of the corresponding “unchopped” versions (SHA-256 and SHA-384). This is

because the one-way security increases with the number of output bits. On

the other hand, it might be the case that SHA-224 still has higher security

than SHA-1, which seems intuitive given the bigger IV of SHA-224. More-

over, message encoding or HMAC construction only seems to decrease the

one-wayness of the hash function.
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Part II

Block Ciphers
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Chapter 5

Feistel network made public

Feistel Networks are extremely popular tools in designing “cryptographically

strong” functions. Such networks are based on iterative application of the

simple Feistel permutation. In particular, given a function f : {0, 1}n →

{0, 1}n, the Feistel permutation based on function f is defined as:

Ψf : {0, 1}2n → {0, 1}2n

xL ‖ xR 7→ xR ‖ f(xR)⊕ xL

Typically, a Feistel network consists of several iterative applications of the

Feistel permutation with independent functions f used in each application.

The various iterative applications of the Feistel permutation are called the

rounds of the Feistel network, while the corresponding functions are called

round functions. Among their applications, they are commonly used in the
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design of popular block ciphers, such as DES, as well as other constructs,

such as popular padding schemes OAEP [9] or PSS-R [10]. Even though a

theoretical justification for the use of the Feistel network in design of DES was

not disclosed at the time of its release, this justification was later provided

by the celebrated result of Luby and Rackoff [47].

5.0.9 Luby-Rackoff’s result and Improvements

Luby and Rackoff’s result [47]. Luby and Rackoff noted that the

security of a block cipher can be best analyzed in terms of its “closeness”

from a uniformly random permutation for each key. That is, it should be an

independent pseudorandom permutation for every different key. Moreover, as

a justification for the use of Feistel network in the design of block ciphers,

they showed that three (resp. four) rounds of the Feistel transform are suf-

ficient to turn a pseudorandom function (PRF) family into a pseudorandom

permutation (PRP) family (resp. strong PRP family (SPRP)). In particu-

lar, their construction of a PRP (resp. SPRP) consisted of a three (resp.

four) round Feistel network with independent PRFs (from the PRF family)

as round functions.

Subsequent Improvements. There has been a lot of subsequent work on

improving various aspects of the Luby-Rackoff result. (referred to as “LR”

from now on). Naor and Reingold [58] provided a simpler proof of the LR

result. Moreover, they generalized the result and showed that the four round
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construction remains secure even if the first and last round of the Feistel

transform are replaced by pairwise independent permutations.

Maurer and Pietrzak [51] studied the exact security of the LR construction

if the number of Feistel rounds is increased from four. In particular, they

noted that LR type proofs consist of two parts, first the PRFs in each rounds

of the PRP/SPRP construction are replaced by uniformly random functions.

Then the resulting construction is proven to be secure against any unbounded

attacker that makes less than an exponential (of the form O(2cn)) number

of queries. LR showed that the four round construction is secure against

any attacker that makes O(2n/2) queries. Maurer and Pietrzak [51] improved

this result by showing that a 6k round Feistel network is secure against any

attacker that makes upto O(n · (1−O(1/k))) queries (thus approaching the

information-theoretic bound of O(2n) as k →∞).

Patarin [64] significantly improved this result by showing that a 5 (resp.

6) round Feistel network is a secure PRP (resp. SPRP) against any un-

bounded attacker making q � 2n queries, thus showing that the information-

theoretic bound can be achieved within a constant number of rounds.

Ramzan and Reyzin [69] generalized the LR result from a different per-

spective. They studied the security of the Feistel network (with PRFs)

against attackers that are given oracle access to some (or all) of the round

functions. They showed that if the attacker has oracle access to the middle

two round functions, then the four round Feistel network is still a secure

SPRP. On the other hand, they also showed that if there is an efficient
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attacker that, when given oracle access to either of the first or last round

function, breaks the SPRP security of the four round construction.

Apart from these there were results that studied the security of the Feistel

network when not all of the round functions are independent ([67, 63]). In

a recent work, Maurer et al [50] studied the security of the Feistel network

when the round functions are non-adaptively secure PRFs instead of adaptive

security.

5.0.10 The Problem and Our Result

A common aspect of all the works on the Feistel network mentioned above

is that they crucially rely on the following assumptions:

(a) the (pseudo)randomness of round functions; and

(b) the secrecy of (at least some of) the intermediate round values appearing

during the Feistel computation

If either of these assumptions is not true then each of the above results is

no longer valid. However, there are several natural scenarios where one (or

both) of these assumptions are violated.

Is Unpredictability enough? We start with the assumption regarding

pseudorandomness of round functions. The assumption is quite strong, since

practical block ciphers certainly do not use PRFs as their round functions.

Instead, they heuristically use considerably more than the three-six rounds
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predicted by the LR and all subsequent “theoretical justifications”. Thus,

a large disconnect still remains to be bridged. Clearly, though, we need to

assume some security property of the round functions, but can a weaker

property be enough to guarantee security? In the context of domain exten-

sion of message authentication codes, An and Bellare [1] studied a natural

question whether unpredictability — a much weaker property than pseudo-

randomness — can at least guarantee the unpredictability of the resulting

Feistel permutation. Although not as strong as pseudorandomness, this will

at least guarantee some minimal security of block ciphers (see next chapter),

is enough for message authentication, and anyways doubles the domain of the

unpredictable function, which is useful (and non-trivial!) by itself. [1] gave a

negative answer for the case of three rounds, and suggested that “even more

rounds do not appear to help”. This result indicates that previous “LR-type

techniques” are insufficient to handle unpredictability (since in the case of

PRFs three rounds are enough), and also leaves open the question whether

more Feistel rounds will eventually be enough to preserve unpredictability.

Is it Safe to Leak Intermediate Results? Another crucial reason for

the validity of the LR result is the fact that all the intermediate round values

are never leaked to the attacker. In fact, the key to the argument, and other

results mentioned above, is that the attacker effectively gets no information

about most of these values in case a PRF is used for the round functions,

and simple attacks (which we later generalize to many more rounds) are

possible to invalidate the LR result in case the intermediate round values
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are leaked. Unfortunately, for many natural applications this assumption (or

conclusion!) can not be enforced, and totally new argument is needed. There

are several examples of such applications.

Starting with the simplest example, intermediate values may be inadver-

tently leaked through an attack. For example, one might imagine a smartcard

implementing a block cipher via the Feistel network using a secure chip im-

plementing a PRF. In this case, the attacker might be able to observe the

communication between the smartcard and the chip, although it is unable to

break security of the chop. More realistically, when round functions are not

PRFs, the attacker might get a lot of information about the intermediate val-

ues anyway, even without extra attack capabilities. For instance, in the case

of unpredictable functions (UFs) mentioned above, we will construct provably

secure UFs such that the output of the Feistel Network completely leaks all

intermediate round values. Although artificial, this example illustrates that

weaker assumptions on the round functions can no longer guarantee the se-

crecy of intermediate values. For yet another example, the round function

might simply be public to begin with. This happens when one considers the

question of implementing an ideal cipher from a random oracle. In this case

the round function is a publicly accessible random oracle, and is certainly

freely available to the attacker. This question will be considered in chapter

7. As a final example (not considered in prior work), the attacker might

get hold of the intermediate values because the application requires to reveal

such values. This happens when one tries to add verifiability to PRFs and
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PRPs (or their unpredictable analogs), which we describe in more detail in

the next chapter.

Our Results. In order to deal with such situations when the intermediate

round values may be leaked to the adversary, and also handle cases when the

round functions may not be pseudorandom, we develop a new understand-

ing of the Feistel network. In particular, we develop a general framework

for studying the Feistel network that is applicable in all such scenarios. In

our modeling, a k-round Feistel network is applied to k members f1 . . . fk

independently selected from some (not necessarily pseudorandom) function

family C, resulting in a Feistel permutation π. Whenever an attacker makes

a forward (resp. inverse) query to π (resp. π−1), we assume that it learns all

intermediate values.

On the negative side, we show a simple attack allowing an adversary

to compute any value π−1(y) by making at most exponential in k number

of forward queries to π. Since such an inversion should be unlikely (with

polynomially many queries) even for an unpredictable permutation, this im-

mediately means that at least a superlogarithmic number of Feistel rounds

(in the security parameter λ) are necessary to guarantee security for any of

the applications above. Aside from showing the tightness of all our posi-

tive result describe below, this result partially explains why practical block

ciphers use significantly more than 3 − 6 rounds predicted by all the previ-

ous “theoretical justifications” of the Feistel network. Indeed, since all such

ciphers heuristically use round functions which are not PRFs, and we just
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showed that even unpredictable functions might leak a lot (or even all) of

the intermediate results, the simple attack we present might have been quite

applicable if a small constant number of rounds was used!

On the positive side, we show a general combinatorial property of the

Feistel Network which makes essentially no assumptions (such as pseudoran-

domness) about the round functions used in the Feistel construction, and

allows us to apply it to a wide variety of situations described above, where

the previous techniques failed. In essence, for any s ≤ k/2, we show that if

an attacker, making a sub-exponential in s number of (forward or backward)

queries to the construction and always learning all the intermediate round

values, can cause a non-trivial collision somewhere between rounds s and

k− s, then the attacker can also find a simple (and non-trivial) XOR condi-

tion on a constant (up to six) number of the round values of the queries he

has made. This means that if a function family C is such that it is provably

hard for an efficient attacker to find such a non-trivial XOR condition, —

and we call such families 5-XOR resistant, — then it is very unlikely that

the attacker can cause any collisions between rounds s and k − s (as long

as s, and thus k, are super-logarithmic in the security parameter λ). In the

next chapter, we show that once no such collisions are possible, it is possible

to directly argue the security of the Feistel Network for our applications.
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5.1 Preliminaries

We will denote by Fibonacci(k) the kth Fibonacci number, and thus Fibonacci(k) =

O(1.618k).

The Feistel transformation using f : {0, 1}n → {0, 1}n is a permutation

Ψf on 2n bits defined as, Ψf(x)
def
= xR ‖ xL ⊕ f(xR). The symbols xL and

xR denote the left and right halves of the 2n bit string x. We will also call

the Feistel network consisting of k iterated applications of the Feistel trans-

formation, a k-round LR construction and denote it by Ψf1...fk
(or Ψk when

f1 . . . fk are clear from context) where f1 . . . fk are the round functions used.

On a 2n bit input, the construction Ψk generates (k + 2) n-bit intermediate

round values, the last two of which form the output. This construction is

illustrated in figure 5.1.

5-XOR Condition. Consider a k-round LR construction Ψk, that uses

arbitrary round functions f1 . . . fk. Now consider any sequence of q for-

ward/inverse queries provided to this construction. As discussed above, in

the process of computing its output the LR construction Ψk also generates

(k + 2) n-bit round values. We will denote the n-bit round values associated

with the ith query as Ri
0, R

i
1, . . . , R

i
k, R

i
k+1. If this was forward (resp. inverse)

query, then the 2n bit input value is Ri
0 ‖ Ri

1 (resp. Ri
k ‖ Ri

k+1).

For any j ∈ {1, . . . , k}, the LR construction performs the round function

evaluation fj(R
i
j). We call this a new round function evaluation if Ri

j 6= Ri′

j

for any i′ < i. In this case, if the ith query is a forward (resp. inverse) one,
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fi

Ri : n-bit round value

: round functions

Figure 5.1: The k-round Feistel Network

then the round value Ri
j+1 (resp. Ri

j−1) is the new round value generated as

a result of this round function evaluation.

We say that the 5-XOR condition holds for this sequence of q queries,

with corresponding round values
{

Ri
0, R

i
1, . . . R

i
k+1

}

i∈{1...q}
, if there is at least

one new round function evaluation such that the corresponding new round

value Ri
j generated as a result can be represented as a bit-by-bit XOR of

upto 5 previously existing round values, that is:
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• If ith query is a forward query, then Ri
j can be represented as an XOR

of upto 5 round values Ri′

j′, such that either i′ < i or (i′ = i)∧ (j ′ < j).

• If ith query is an inverse query, then Ri
j can be represented as an XOR

of upto 5 round values Ri′

j′, such that either i′ < i or (i′ = i)∧ (j ′ > j).

5.2 Insecurity of O(log λ)-round Feistel

We will demonstrate here that upto a logarithmic number of Feistel rounds do

not suffice for any of our results. Essentially, we will describe an efficient at-

tacker A that only makes forward queries to the k-round LR construction Ψk

(using arbitrary round functions f1 . . . fk), and finds the input corresponding

to any permutation output y ∈ {0, 1}2n.

Theorem 18. For the k round LR construction Ψk that uses k = O(log λ)

round functions, there exists a probabilistic polynomial time adversary Aπ

that takes oracle access to Ψk. The adversary Aπ makes O(Fibonacci(k)) =

poly(λ) forward queries to Ψk and with high probability finds the input cor-

responding to an output y without actually making that query.

Proof: The adversary Aπ gets the permutation output y ∈ {0, 1}2n, that

it is supposed to invert Ψk on. For concreteness, we assume that y = 02n

(anything else works just as well). We will describe the recursive subroutine

that the attacker Aπ is based on. Say the round functions of Ψk are f1 . . . fk.

The recursive function that we describe is E(j, Y ), where j is the number of
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rounds in the Feistel construction and Y is a 2n bit value, and the task of

E(j, Y ) is to find the input such that the jth and (j + 1)th round values are

YL and YR (the left and right halves of Y ), respectively.

• E(1,Y) : Choose a random R′
0 ← {0, 1}

n. Make the forward query

R′
0 ‖ YL to Ψ1, where the 2nd round value is R′

2. Now the 1st and 2nd

round values for the input R′
2 ⊕ R′

0 ⊕ YR ‖ YL are YL and YR.

• E(j,Y) , j > 1 : Perform the following steps,

– Make a random query R0 ‖ R1 ← {0, 1}
2n, and say the 2n bit value

at the jth round is is Rj ‖ Rj+1. Then, fj(Rj) = (Rj−1 ⊕ Rj+1).

– Run E(j − 2, (fj−1(Rj−1) ⊕ YL) ‖ Rj−1) and the 2n bit value at

the (j − 1)th round is Rj−1 ‖ YL. Hence fj(YL) = Rj−1 ⊕ Rj+1.

– Run E((j−1), (fj(YL)⊕YR) ‖ YL), and the jth and (j+1)th round

values are YL and YR, respectively.

The adversary Aπ essentially runs the algorithm E(k, 02n). Now we need to

make sure that the adversary Aπ does not query on the input corresponding to

the output 02n. But since all the queries made in the recursive algorithm are

essentially chosen at random, we know that the probability of this happening

is q
22n . Hence, the probability that Aπ succeeds is at least

(

1− q
22n

)

.

We note that the above attacker works in a scenario where it can only make

forward queries to the Feistel construction Ψk. In case, it can make inverse

queries as well, it is possible to design a similar attacker that succeeds in
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O(Fibonacci(k/2)) queries. If the number of rounds k = O(log λ), then the

number of queries needed by either of these attackers is polynomial in the

security parameter λ. We will describe how this attacker works in each of

the applications of the Feistel network in the next chapter.

5.3 Combinatorial Analysis of the Feistel Net-

work

In this section, we will prove a general combinatorial lemma about the k-

round LR construction Ψk, that uses arbitrary round functions f1 . . . fk. In

the subsequent chapter, we will see that this lemma is the main ingredient

in deriving each of our results.

Consider an arbitrary sequence of q forward/inverse permutation queries

made to the LR construction Ψk, each of which is a 2n bit string. Denote the

(k +2) n-bit round values associated with the ith query as R[i, 0], R[i, 1], . . . ,

R[i, k], R[i, (k + 1)], where R[i, 0] ‖ R[i, 1] (resp. R[i, k], R[i, (k + 1)]) is the

input if this is a forward (resp. inverse) query. We say that such a sequence of

queries produces a sth round value collision, if the sth round value collides for

two different permutation queries from this query sequence. That is, when

we have R[i, s] = R[j, s] for i, j ∈ {1 . . . q} and (R[i, 0] ‖ R[i, 1]) 6= (R[j, 0] ‖

R[j, 1]).

We essentially show that if any such sequence of q queries produces a rth

round value collision for any r ∈ {s . . . (k − s)} (where s ≤ (k/2)), then one
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of the following must hold:

1. The number of queries q is exponential in s.

2. For this sequence of queries, the 5-XOR condition holds.

5.3.1 A “No-Collision” Property of the Feistel Net-

work

Now we will state the “no round value collision” property described above.

This is formalized in the lemma below:

Lemma 20. Let Ψk be a k round LR construction that uses fixed and arbi-

trary round functions f1 . . . fk. For any s ≤ k
2
, and any ordered sequence

of q = o(1.3803
s
2 ) forward/inverse queries, with associated round values

R[i, 0], . . . , R[i, k+1] for i = 1 . . . q, if the 5-XOR condition does not hold for

this sequence of queries then there is no rth round value collision for these

queries, for all r ∈ {s . . . (k − s)}.

Note that is is simply a structural property of the k-round LR construc-

tion that holds irrespective of the round functions used in the construction.

We will provide a (very) high level overview of the proof followed by the

formal proof. The proof essentially considers starts by assuming that the 5-

XOR condition does not hold for the given sequence of queries in which two

different queries collide in the rth round value. Then we prove the existence

of an exponential number of queries in this sequence as follows:
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1. We first show that each round value (generated before the rth round

value) in the later of the two colliding queries collides with the corre-

sponding round value in an earlier query.

2. Next we prove that if each of these colliding queries (made earlier) are

different and could only have been made in an order such that at least

half of these are in strict ascending/descending order, in terms of the

order in which they were made.

3. Then we show that for (almost) each of the queries in this strict as-

cending/descending sequence, there exists another strict ascending (or

descending) sequence of queries (each of which is different from the

ones already considered).

4. Finally, we note that this argument can be continued recursively, with-

out double counting, and we get a recursion for the number of queries.

Upon solving this recursion, we get that the number of queries in this

sequence is Ω(1.3803s/2).

Proof: Assume that the 5-XOR condition does not hold for the given se-

quence of queries. Without loss of generality, say one of the queries involved

in the rth (where r ∈ {s . . . (k−s)}, for s ≤ (k/2)) round value collision is the

last (qth) query. If this were not the case then we can disregard all queries

following the colliding query that was made later, and argue on the smaller

sequence of queries that remains. In addition, we also assume that the given

sequence of queries does not consist of duplicate queries. If not then we can
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disregard all but the first of these identical queries. This will not weaken our

conclusion, but makes our argument easier to explain.

We represent the jth round value associated with the ith query as R[i, j].

Thus we know that ∃i < q : R [q, r] = R [i, r]. We maintain a q vector

b that denotes the direction of each query. Thus b[i] = 1 denotes that the

ith query is a forward query, while b[i] = 0 denotes that it is an inverse

query. We define a “first occurrence” query function for each round value,

i.e. p : {1 . . . q}×{0 . . . k+1} → {1 . . . q}. For any round value R[i, j], p(i, j)

is the least input number such that R[p(i, j), j] = R[i, j].

If the colliding round number r ≤ k/2, then we get a worse lower bound

if the qth query is a forward query. Otherwise, we get a worse lower bound

if it is an inverse query. Since the two cases are symmetrical, we will only

describe here the argument when r ≤ k/2 and assuming that the qth query

is a forward query.

As the first step of our argument, we prove that all the round values

R[q, 1] . . .R [q, r − 1] collide with the corresponding round value in an earlier

query.

Claim 19. If ∃i < q : R [q, r] = R [i, r], then each of the round values

R[q, 1] . . .R [q, r − 1] were defined before the qth query was made. That is,

∀j ∈ {1 . . . r} : p(q, j) < q

proof of claim 19: We will use induction on the round number j to show
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that p(q, j) < q. We start the induction with j = r and go down to j = 1.

For j = r, we already know that p(q, r) = i from the statement of the claim.

Now say the same holds for all j = r . . . c (for c ≤ r), then we will show

that the (c − 1)th round value also collides with the corresponding round

value in an earlier query. Say, for the sake of contradiction, that R[q, c− 1]

is a new round value in input number q (i.e. p(q, (c − 1)) = q). Then the

round function evaluation f(c−1) (R[q, c− 1]) is a new round function evalua-

tion, generating the new round value R[q, c]. But R[q, c] = R[p(q, c), c], and

p(q, c) < q by induction hypothesis. This contradicts the fact that the 5-XOR

condition does not hold for the given sequence of queries. Thus, p(q, j) < q

for all j = 1 . . . r.

Hence all the round values R[q, 1] . . .R [q, r] already occur before query num-

ber q. As our next step, we will show that the order in which the queries

p(q, 1) . . . p (q, r) are made could be one of very few possible orders.

Claim 20. There is a round number j ∈ {1 . . . r}, such that,

p(q, 1) > . . . > p(q, j)

p(q, j) < . . . < p (q, r)

That is, the round value R[q, j] was defined before any of the other round

values R[q, 1] . . .R [q, r]. Moreover, the queries p(q, j) . . . p (q, r) were made

in this order, while the queries p(q, 1) . . . p(q, j) were made in the reverse
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order.

proof of claim 20: We will first prove that for any three consecutive round

values R[q, (i− 1)], R[q, i] and R[q, (i + 1)] (where i ∈ {2 . . . r − 1}), it holds

that,

[p(q, (i− 1)) > p(q, i)] ∨ [p(q, i) < p(q, (i + 1))]

The claim will then follow as a straightforward consequence.

Assume to the contrary that p(q, (i−1)) ≤ p(q, i) and p(q, (i+1)) ≤ p(q, i)

for some i ∈ {2, r − 1}. If p(q, (i − 1)) = p(q, i) (or p(q, i) = p(q, (i + 1)))

then it is easy to verify that queries p(q, i) and q are the same, which is not

the case by assumption. Thus, we have the case that p(q, (i − 1)) < p(q, i)

and p(q, i) > p(q, (i + 1)). But we know from the design of Ψk that,

fi(R[p(q, i), i]) = R[p(q, i), (i− 1)]⊕ R[p(q, i), (i + 1)]

It is also the case that,

fi(R[q, i]) = R[q, (i− 1)]⊕R[q, (i + 1)]

⇒ fi(R[p(q, i), i]) =
R[p(q, (i− 1)), (i− 1)]

⊕R[p(q, (i + 1)), (i + 1)]

⇒
R[p(q, i), (i− 1)]

⊕R[p(q, i), (i + 1)]
=

R[p(q, (i− 1)), (i− 1)]

⊕R[p(q, (i + 1)), (i + 1)]

Thus, if b[p(q, i)] = 0 then R[p(q, i), (i − 1)] can be represented as an XOR
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of three previously existing round values otherwise R[p(q, i), (i+1)] has such

an XOR representation. In any case, this will give a 5-XOR condition which

we know does not hold. Thus we can say that

∀i ∈ {2 . . . r − 1} : [p(q, (i− 1)) > p(q, i)] ∨ [p(q, i) < p(q, (i + 1))]

Now it is a straightforward task to verify that the query orders consistent

with this constraint are exactly the ones in the statement of claim 20.

From claim 20, we can deduce that there exist at least r
2

consecutive round

values in the qth query, whose “first occurrence” queries are in strictly ascend-

ing/descending temporal order. Since r < k
2
, we will get a worse lower bound

on the number of queries if we assume that q > p(q, 1) > . . . > p
(

q, r
2

)

. If on

the other hand, q > p (q, r) > . . . > p
(

q, r
2

)

we can show that q = Ω(1.3803r).

Thus, we assume that q > p(q, 1) > . . . > p
(

q, r
2

)

.

As our next step, we will prove a general property of such a strictly

ordered sequence of “first occurrence” queries of consecutive round values.

For this purpose, consider any three consecutive “first occurrence” queries out

of such a sequence, say ij = p(`, j), ij+1 = p(`, (j+1)) and ij+2 = p(`, (j+2))

such that ij > ij+1 > ij+2. We will determine the order in which the “first

occurrence” queries of the round values of the ithj query could have been made

in this case. Additionally, we will also determine the order of these queries

relative to the queries ij, ij+1 and ij+2.
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We essentially show that if the ithj query is a forward query then the

round values R[ij, 1] . . .R[ij, (j− 1)] collide with corresponding round values

in some query before the ithj query. Moreover, we also show that the queries

p(ij, 1) . . . p(ij, j−2) were made after the ithj+1 query, but before the ithj query.

If the ithj query is an inverse query, then we prove the same conditions for the

round values R[ij, (j +1)] . . .R[ij, k]. This is formally stated in the following

claim.

Claim 21. Let the queries numbered ij, ij+1 and ij+2 be the “first occurrence”

queries of the round values R[`, j],R[`, j + 1] and R[`, j + 2], respectively.

Moreover, say that ij > ij+1 > ij+2. If the ithj query is a forward query (i.e.

b[ij] = 1) then,

ij > p(ij, 1) > . . . > p(ij, j − 2) > ij+1

On the other hand, if b[ij] = 0 then,

ij > p(ij, k) > . . . > p(ij, j + 2) > ij+1

proof of claim 21: Let us start by considering the case that b[ij] = 1.

In this case, we analyze the round values R[ij, 1] . . .R[ij, (j − 1)]. Consider

the round value R[ij, (j − 1)]. If this round value does not collide with a

corresponding round value before the ithj query, then fj−1(R[ij, (j − 1)]) is

a new round function evaluation and R[ij, j] is the newly generated round
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value. But we know that

fj+1(R[`, (j + 1)]) = R[`, j]⊕ R[`, (j + 2)]

⇒ fj+1(R[ij+1, (j + 1)]) = R[ij, j]⊕ R[ij+2, (j + 2)]

⇒ R[ij, j] = R[ij+2, (j + 2)]⊕ R[ij+1, j]⊕R[ij+1, (j + 2)]

And since ij > ij+1 > ij+2, this will give a representation of the newly

generated round value R[ij, j] in terms of 3 previously existing round values,

which violates the fact that the 5-XOR condition does not hold. Thus, we

can deduce that p(ij, j − 1) < ij. Now we can argue inductively (similar to

claims 19) and show that each of the round values R[ij, 1] . . . R[ij, (j − 2)]

collide with corresponding round values in earlier queries as well.

Conclusion 1: We can deduce that ∀j ′ ∈ {1 . . . j − 1} : p(ij, j
′) < ij.

Now we will try to find the order in which these queries p(ij, j
′) could

have been made. In addition, since we know that ij+2 < ij+1 < ij, we will

also be interested in the order of the queries p(ij, j
′) relative to the ithj+1

and ithj+2 queries. Let us start by concentrating our attention on the queries

ij+1, p(ij, (j − 1)) and p(ij, (j − 2)).

Consider the case that p(ij, (j−1)) < ij+1 and p(ij, (j−2)) < ij+1. Then
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we can deduce that,

fj+1(R[ij+1, (j + 1)]) = R[ij, j]⊕ R[ij+2, (j + 2)]

⇒ fj+1(R[ij+1, (j + 1)]) =
R[ij+2, (j + 2)]⊕R[ij, (j − 2)]

⊕fj−1(R[ij, (j − 1)])

⇒
R[ij+1, (j + 2)]

⊕R[ij+1, j]
=

R[ij+2, (j + 2)]⊕R[p(ij, (j − 2)), (j − 2)]

⊕R[p(ij, (j − 1)), j]⊕ R[p(ij, (j − 1)), (j − 2)]

Thus depending on whether ij+1 is a forward or inverse query, we get a

representation of R[ij+1, j] or R[ij+1, (j + 2)] as an XOR of five previous

round values and since R[ij+1, (j + 1)] is a new round value this contradicts

the fact that 5-XOR condition does not hold for the given sequence of queries.

Thus we can deduce that,

p(ij, (j − 1)) > ij+1 or p(ij, (j − 2)) > ij+1 (5.1)

Next we consider the case that p(ij, (j − 2)) < p(ij, (j − 1)) as well as

ij+1 < p(ij, (j − 1)). In this case, we observe that,

fj−1(R[ij, (j − 1)]) = R[ij, (j − 2)]⊕ R[ij, j]

⇒ fj−1(R[p(ij, (j − 1)), (j − 1)]) =
R[ij, (j − 2)]⊕ fj+1(R[ij+1, (j + 1)])

⊕R[ij+2, (j + 2)]

⇒
R[p(ij, (j − 1)), (j − 2)]

⊕R[p(ij , (j − 1)), j]
=

R[p(ij, (j − 2)), (j − 2)]⊕ R[ij+1, j]

⊕R[ij+1, (j + 2)]⊕ R[ij+2, (j + 2)]
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Now depending on whether the p(ij, (j − 1))th query is a forward or inverse

query, we can derive a 5 XOR representation of either R[p(ij, (j − 1)), (j −

2)] or R[p(ij, (j − 1)), j] in terms of previously existing round values, thus

violating the fact that the 5-XOR condition does not hold. Hence we deduce

that

p(ij, (j − 2)) > p(ij, (j − 1)) or ij+1 > p(ij, (j − 1)) (5.2)

In order to satisfy both equations 5.1 and 5.2, we need that p(ij, (j−2)) >

p(ij, (j − 1)) as well as p(ij, (j − 2)) > ij+1.

Conclusion 2: We can deduce that the only two possible orders for these

three queries are

p(ij, (j − 2)) > p(ij, (j − 1)) > ij+1 or p(ij, (j − 2)) > ij+1 > p(ij, (j − 1))

In either case, we can deduce from conclusion 2 that p(ij, (j − 2)) >

p(ij, (j − 1)). Next consider the query p(ij, (j − 3)). If p(ij, (j − 2)) >

p(ij, (j − 3)) as well, then we can deduce that

R[p(ij, (j − 2)), (j − 3)]

⊕R[p(ij, (j − 2)), (j − 1)]
=

R[p(ij, (j − 1)), (j − 1)]

⊕R[p(ij, (j − 3)), (j − 3)]

This will give a representation of either R[p(ij, (j−2)), (j−1)] or R[p(ij, (j−

2)), (j − 3)] in terms of 3 previously existing round values depending on

whether the p(ij, (j−2))th query is a forward or an inverse query, respectively.
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In either case, this violates the fact that the 5-XOR condition does not hold

for the given sequence of queries. Thus, we can deduce that p(ij, (j − 3)) >

p(ij, (j− 2)) > p(ij, (j− 1)). Now this same argument can be continued and

using conclusion 2, we can prove that

ij > p(ij, 1) > . . . > p(ij, (j − 2)) > ij+1

If the query number ij is an inverse query, then we can carry out a

symmetric argument by considering the round values R[ij, (j +1)] . . . R[ij, k]

instead of R[ij, (j − 1)] . . .R[ij, 1]. Then it can be deduced that

ij > p(ij, k) > . . . > p(ij, (j + 2)) > ij+1

We will apply claim 21 to the sequence of first occurrence queries p(q, 1) >

. . . > p
(

q, r
2

)

. Thus consider any j = 1 . . . r
2
− 2, and the first occur-

rence queries p(q, j), p(q, (j + 1)) and p(q, (j + 2)). Since j ≤ r
2
≤ k

4
, we

will get a worse bound if the p(q, j)th query is a forward query. In par-

ticular, we can use claim 21 to show in this case that the round values

R[p(q, j), 1] . . .R[p(q, j), (j − 1)] collide with corresponding round values in

earlier queries. On the other hand, if this is an inverse query then we can

show that each of the round values R[p(q, j), (j + 1)] . . . R[p(q, j), k] collide

with corresponding round values in an earlier query. The former case clearly
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gives us a worse lower bound on the number of queries, and hence we assume

that the p(q, j)th query is an inverse query.

Hence considering query p(q, j), we can deduce that at least another (j−2)

queries we made before it but after the query p(q, (j+1)). We can also deduce

from claim 21 that these (j − 2) “first occurrence” queries are also made in

strictly descending temporal order, that is

p(p(q, j), 1) > . . . > p(p(q, j), (j − 2))

Since each of these sequence of queries is in strict temporal order, we

can apply claim 21 to each of these sequence of queries and continue in this

recursive fashion. Moreover, we also show that any queries that we count

at a certain level of the recursion in this fashion lies strictly in between two

consecutive queries from the previous level, we can deduce that we do not

perform any double counting. In figure 5.2, we illustrate an example of a

query tree with the first three levels indicated. Here the two queries that

collide in the (k/2)th round value are indicated as “colliding queries” 1 and

2, in the order they were made.

In order to bound from below the number of queries q that produce a

collision on the rth round value, we will need to count the number of queries

that are bound to exist by the argument above. Let Q(j) be a recursively

defined variable that denotes the minimum number of queries ` needed to get

round values R[`, 1] . . .R[`, j] with their first occurrence queries made in the
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Figure 5.2: Example of the first three levels of a query tree. All the queries
in this example are assumed to be forward queries.

order p(i, 1) > . . . > p(i, j). Using claim 21, we get the following expression

for Q(j),

Q(j) = j +
∑j−2

`=3Q(`− 2)

⇒ Q(j) = Q(j − 1) +Q(j − 4) + 1

⇒ Q(j) = 2 · Q(j − 1)−Q(j − 2) +Q(j − 4)−Q(j − 5)

197



The solution to the above homogeneous recurrence equation can be expressed

in terms of the powers of the roots of the following algebraic equation:

x5 − 2x4 + x3 − x4 + 1 = 0

This equation has only one root greater than 1, which is 1.3803. Thus we

can represent the solution of the above recurrence as:

Q(j) = Θ(1.3803j)

From claim 20, we get that if any query collides with an earlier query in the

rth round value, we can find a strictly increasing/decreasing sequence of r
2

“first occurrence” queries. Thus, we get that

q ≥ Q
(

r
2

)

⇒ q = Ω
(

1.3803r/2
)

⇒ q ≥ Ω
(

1.3803s/2
)

, since r ∈ {s . . . (k − s)}

The above proof only took into account the case that r < k/2. If r > k/2

then a similar argument can be carried out by swapping forward queries

with inverse queries and we can derive that q = Ω
(

1.3803(k−r)/2
)

. In either

case, we get the bound that q = Ω
(

1.3803s/2
)

, since r ∈ {s . . . (k − s)} and

s ≤ (k/2).
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5.3.2 A Slightly Weaker Result

Next we state a more restricted version of the combinatorial lemma, when the

adversary only makes forward queries to the Feistel construction. This lemma

will be useful in certain scenarios when the attacker only makes forward

queries to the Feistel-based construction (for instance, in domain extension

of MACs in next chapter).

Lemma 21. Let Ψk be a k-round LR construction that uses fixed and ar-

bitrary round functions f1 . . . fk. For any round number s, and any ordered

sequence of q = o(1.3803
s
2 ) forward queries, with associated round values

R[i, 0], . . . , R[i, k+1] for i = 1 . . . q, if the 5-XOR condition does not hold for

this sequence of forward queries then there is no rth round value collision for

these queries, for all r ≥ s.

The proof of this lemma is similar to that of lemma 20, but is slightly

simpler since the query sequence only consists of forward queries. We provide

it next for completeness.

Proof: We start by assuming that the 5-XOR condition does not hold for

the given sequence of forward queries. Without loss of generality, say one of

the queries involved in the rth round collision (for r ≥ s) is the last query,

i.e. the qth query. If this is not the case, then we can easily ignore the queries

following the collision queries and get a smaller sequence of queries for which

the property holds. We also assume that the given sequence of queries does

not consist of duplicate queries. If this is not the case then we can ignore
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all but the first one of all such identical queries and it will not weaken our

conclusion, while making the argument easier to describe.

We represent the jth round value associated with the ith query as R[i, j].

Thus we know that ∃i < q : R [q, r] = R [i, r]. We define a “first occur-

rence” function for each round value, i.e. p : {1 . . . q} × {0 . . . k + 1} →

{1 . . . q}. For any round value R[i, j], p(i, j) is the least input number such

that R[p(i, j), j] = R[i, j].

In the first step, we will prove that all the round values R[q, 1] . . .R[q, (r−

1)] collide with the corresponding round value in an earlier query. As a first

step, we prove that all the round values R[q, 1] . . .R [q, r − 1] collide with the

corresponding round value in an earlier query.

Claim 22. If ∃i < q : R [q, r] = R [i, r], then each of the round values

R[q, 1] . . .R [q, (r − 1)] were already defined before the qth query was made.

That is,

∀j ∈ {1 . . . r} : p(q, j) < q

proof of claim 22: We will use induction on the round number j to show

that p(q, j) < q. We start the induction with j = r and go down to j = 1.

For j = r, we already know that p(q, r) = i from the statement of the claim.

Now say the same holds for all j = r . . . c (for c ≤ r), then we will show

that the (c − 1)th round value also collides with the corresponding round

value in an earlier query. Say, for the sake of contradiction, that R[q, c−1] is

a new round value in query number q (i.e. p(q, c− 1) = q). Then the round
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function evaluation f(c−1) (R[q, c− 1]) is a new round function evaluation,

and hence R[q, c] is the new round function value generated as a result. But

R[q, c] = R[p(q, c), c], and p(q, c) < q by the induction hypothesis, which is

a 1-XOR representation of the new round value R[q, c]. This contradicts the

fact that the 5-XOR condition does not hold for this sequence of queries.

Thus, we know that all the round values R[q, 1] . . . R [q, r] were defined

strictly before input number q. As our next step, we will show that the

order in which the queries p(q, 1) . . . p (q, r) are made can only be one of very

few specific orders.

Claim 23. There is a round number j ∈ {1 . . . r}, such that,

p(q, 1) > . . . > p(q, j)

p(q, j) < . . . < p (q, r)

That is, the queries p(q, j) . . . p (q, r) were made in this order, while the

queries p(q, 1) . . . p(q, j) were made in the reverse order.

proof of claim 23: We will first prove that for any three consecutive round

values R[q, (i− 1)], R[q, i] and R[q, (i + 1)] (where i ∈ {2 . . . r − 1}), it holds

that,

[p(q, (i− 1)) > p(q, i)] ∨ [p(q, i) < p(q, (i + 1))]

The claim will then follow as a straightforward consequence.

Assume to the contrary that p(q, (i−1)) ≤ p(q, i) and p(q, (i+1)) ≤ p(q, i)
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for some i ∈ {2, r − 1}. We can easily see that p(q, (i − 1)) 6= p(q, i) (and

p(q, i) 6= p(q, (i + 1))) since otherwise the queries p(q, i) and q will be the

same.

Thus, it must be the case that p(q, (i−1)) < p(q, i) and p(q, i) > p(q, (i+

1)). But we know from the design of Ψk that,

fi(R[p(q, i), i]) = R[p(q, i), (i− 1)]⊕ R[p(q, i), (i + 1)]

It is also the case that,

fi(R[q, i]) = R[q, (i− 1)]⊕ R[q, (i + 1)]

⇒ fi(R[p(q, i), i]) = R[p(q, (i− 1)), (i− 1)]⊕R[p(q, (i + 1)), (i + 1)]

⇒ R[p(q, i), (i + 1)] =
R[p(q, (i− 1)), (i− 1)]⊕ R[p(q, (i + 1)), (i + 1)]

⊕R[p(q, i), (i− 1)]

Thus the new round value R[p(q, i), (i+1)] can be represented as an XOR of

3 previously existing round values. This will give a 5-XOR condition which

we know does not hold. Thus we can say that

∀i ∈ {2 . . . r − 1} : [p(q, (i− 1)) > p(q, i)] ∨ [p(q, i) < p(q, (i + 1))]

Now it is a straightforward task to verify that the query orders consistent

with this constraint are exactly the ones in the statement of claim 23.
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From claim 23, we can deduce that there exist at least r
2

consecutive round

values in the qth query, whose “first occurrence” queries are in strictly as-

cending/descending temporal order. We note that for the given game, the

worse case is if the queries p(q, 1) . . .p
(

q, r
2

)

are made in the reverse order

(i.e. this is the part with the greater number of strictly ordered queries). In

fact, if it is the case that p
(

q, r
2

)

< . . . < p(q, r), then we can show that the

number of queries q = O(1.3803r). Since we wish to find the lower bound on

the number of queries q, we assume that q > p(q, 1) > . . . > p
(

q, r
2

)

.

As our next step, we will prove a general property of such a strictly

ordered sequence of “first occurrence” queries of consecutive round values.

For this purpose, we consider the first occurrence queries p(`, j), p(`, (j + 1))

and p(`, (j + 2)), denoted by ij, ij+1 and ij+2 respectively. Assume that

these queries are made in the order ij > ij+1 > ij+2. We will show that

all the round values R[ij, 1] . . .R[ij, j − 1] collide with corresponding round

values in queries before the ithj query. Moreover, we also show that the queries

p(ij, 1) . . . p(ij, j−2) were made after the ithj+1 query, but before the ithj query.

This is formally stated in the following claim.

Claim 24. Let the queries numbered ij, ij+1 and ij+2 be the “first occurrence”

queries of the round values R[`, j],R[`, j +1] and R[`, j +2] (respectively) for

any query `. Moreover, say that ij > ij+1 > ij+2. Then, it is the case that

ij > p(ij, 1) > . . . > p(ij, j − 2) > ij+1
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proof of claim 24: Consider the round value R[ij, j−1]. If this does not col-

lide with a corresponding round value in an earlier query, then fj−1(R[ij, j−

1]) is a new round function evaluation and R[ij, j] is the new round value

generated as a result. Now we know that

fj+1(R[`, j + 1]) = R[`, j]⊕ R[`, j + 2]

⇒ fj+1(R[ij+1, (j + 1)]) = R[ij, j]⊕ R[ij+2, j + 2]

⇒ R[ij, j] = R[ij+2, (j + 2)]⊕ R[ij+1, j]⊕R[ij+1, (j + 2)]

Since ij > ij+1 > ij+2, this would give us a 5-XOR condition involving the

new round value R[ij, j] which we know does not hold. Hence we know that

p(ij, j− 1) < ij. Now we can use induction to show that all the round values

R[ij, 1] . . .R[ij, (j − 2)] also collide with a corresponding round value in an

earlier query.

Conclusion 1: We have deduced that ∀j ′ ∈ {1 . . . j− 1} : p(ij, j
′) < ij.

Now we will try to find the order in which these “first occurrence” queries

could have been made. In addition, we will also be interested in establishing

the order of these queries relative to the queries ij+1 and ij+2. Let us start by

concentrating our attention on the queries ij+1, p(ij, (j−1)) and p(ij, (j−2)).

First, consider the case that p(ij, (j− 1)) < ij+1 and p(ij, (j− 2)) < ij+1.
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Then we know that,

fj+1(R[ij+1, (j + 1)]) = R[ij, j]⊕ R[ij+2, (j + 2)]

⇒ fj+1(R[ij+1, (j + 1)]) =
R[ij+2, (j + 2)]⊕R[ij, (j − 2)]

⊕fj−1(R[ij, (j − 1)])

⇒
R[ij+1, (j + 2)]

⊕R[ij+1, j]
=

R[ij+2, (j + 2)]⊕R[p(ij, (j − 2)), (j − 2)]

⊕R[p(ij, (j − 1)), j]⊕ R[p(ij, (j − 1)), (j − 2)]

Since, R[ij+1, (j + 1)] was occurs for the first time in the ithj+1 query, we get a

representation of the newly generated round value R[ij+1, (j +2)] in terms of

5 previously existing round values. This contradicts the fact that the 5-XOR

condition does not hold for these queries. Thus we can deduce that,

p(ij, (j − 1)) > ij+1 or p(ij, (j − 2)) > ij+1 (5.3)

Along similar lines, consider the case that p(ij, (j− 2)) < p(ij, (j− 1)) as

well as ij+1 < p(ij, (j − 1)). In this case, we observe that,

fj−1(R[ij, (j − 1)]) = R[ij, (j − 2)]⊕ R[ij, j]

⇒ fj−1(R[p(ij, (j − 1)), (j − 1)]) =
R[ij, (j − 2)]⊕ fj+1(R[ij+1, (j + 1)]

⊕R[ij+2, (j + 2)]

⇒
R[p(ij, (j − 1)), (j − 2)]

⊕R[p(ij , (j − 1)), j]
=

R[ij, (j − 2)]⊕ R[ij+1, j]

⊕R[ij+1, (j + 2)]⊕ R[ij+2, (j + 2)]

Here the round value R[p(ij, (j − 1)), (j − 1)] occurs for the first time in the
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p(ij, (j−1))th query. Thus the newly generated round value R[p(ij, (j−1)), j]

can be represented as an XOR of 5 previously existing round values. This

again contradicts the fact that the 5-XOR condition does not hold for the

given sequence of queries. Hence we deduce that,

p(ij, (j − 2)) > p(ij, (j − 1)) or ij+1 > p(ij, (j − 1)) (5.4)

In order to satisfy both equations 5.3 and 5.4, it is required that p(ij, (j−

2)) > p(ij, (j − 1)) as well as p(ij, (j − 2)) > ij+1.

Conclusion 2: We can deduce that the only possible orders for these

three queries are

p(ij, (j − 2)) > p(ij, (j − 1)) > ij+1 or p(ij, (j − 2)) > ij+1 > p(ij, (j − 1))

In either case, we can deduce from conclusion 2 that p(ij, (j − 2)) >

p(ij, (j − 1)). Next consider the query p(ij, (j − 3)). If p(ij, (j − 2)) >

p(ij, (j − 3)) as well, then we can deduce that

R[p(ij, (j − 2)), (j − 3)]

⊕R[p(ij, (j − 2)), (j − 1)]
=

R[p(ij, (j − 1)), (j − 1)]

⊕R[p(ij, (j − 3)), (j − 3)]

This will give a representation of either R[p(ij, (j − 2)), (j − 1)] in terms of

3 previously existing round values. This violates the fact that the 5-XOR

condition does not hold for the given sequence of queries. Thus, we can
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deduce that p(ij, (j − 3)) > p(ij, (j − 2)) > p(ij, (j − 1)). Now this same

argument can be continued and using conclusion 2, we can prove that

ij > p(ij, 1) > . . . > p(ij, (j − 2)) > ij+1

Now we can apply claim 24 to the sequence of first occurrence queries

p(q, 1) > . . . > p
(

q, r
2

)

. Thus for each query p(q, i) (for i = 1 . . . r
2
− 2), we

can deduce that all the queries p(p(q, i), (i− 2)) . . . p(p(q, i), 1) were made in

this order between queries p(q, (i + 1)) and p(q, i). And since these queries

are made strictly in between two consecutive queries from the previous level

(i.e. p(q, (i+1)) and p(q, i) in this case), we can also deduce that each of the

queries in these sequences is different from the queries p(q, 1) . . . p
(

q, r
2

)

.

Claim 24 can be applied to any sequence of strictly ordered “first occur-

rence” queries of consecutive round values. In particular, we can apply this

claim to any of the new strictly ordered sequence of queries whose existence

we showed here. Hence we can continue this argument recursively to prove

the existence of many more queries before the last one, i.e. the qth query.

Now we can find a lower bound on the number of queries q required in

order to force a rth round collision. To find this lower bound, we introduce

a recursively defined variable Q(j), that denotes the minimum number of
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queries ` required to force a round value collision for each of the round values

R[`, 1] . . .R[`, j] with a corresponding round value in a query prior to the `th

query. From the above argument, we can deduce that

Q(j) = j +
∑j−2

i=3 Q(i− 2)

⇒ Q(j) = Q(j − 1) +Q(j − 4) + 1

⇒ Q(j) = 2 · Q(j − 1)−Q(j − 2) +Q(j − 4)−Q(j − 5)

The solution to the above homogeneous equation can be expressed in terms

of the powers of the roots of the following algebraic equation:

x5 − 2x4 + x3 − x4 + 1 = 0

This equation has only one root greater than 1, which is 1.3803. Thus we

can represent the solution of the above recurrence as:

Q(j) = Θ(1.3803j)

From claim 23, we can deduce that if the rth round value in the qth query

collides with a corresponding round value in an earlier query, then (we get

the worst lower bound if) the “first occurrence” queries of the round values
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R
[

q, r
2

]

. . . R[q, 1] are made in this order. Hence, we get that

q ≥ Q
(

r
2

)

⇒ q = Ω
(

1.3803r/2
)

⇒ q ≥ Ω
(

1.3803s/2
)

, since r ≥ s

5.3.3 Relevance for Feistel Applications

Both lemma 20 and 21 will be useful for the applications described in the next

chapter. In particular, we will be interested in using the LR construction

with round functions that resist the 5-XOR condition, when any adaptive

adversary makes a polynomial number of queries while having access to all

intermediate round values. We will specify this as a property of the function

ensemble from which the round functions are derived. Here the function

ensemble {Fn(λ)}λ∈N is such that Fn is a distribution over length-preserving

functions on n bits. A function ensemble is called a 5-XOR resistant function

family if the LR construction using independently sampled functions from

this ensemble resists the 5-XOR condition when queried a polynomial number

of times by any adaptive adversary. More formally,

Definition 17 (5-XOR resistant function family). A function ensemble

{Fk(λ),n(λ)}λ∈N, that consists of length preserving functions on n bits, is a
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5-XOR resistant function family if for any adversary A,

Pr [A 5-XOR condition in (A↔ Ψf1,...,fk
) |f1, . . . , fk ← Fk,n ] ≤ εxor = negl(λ)

Here the advantage εxor of the adversary A depends the security parameter

λ. The running time of A, input length n and number of Feistel rounds k

are all polynomial functions of λ.

By applying lemmas 20 and 21 to a LR construction using round functions

independently sampled from a 5-XOR resistant function family, we can derive

the following corollary.

Corollary 2. Let Ψk be a k-round LR construction that uses round func-

tions that are independently sampled from a 5-XOR resistant function family

consisting of functions on n bits. For any adversary A that adaptively makes

permutation queries to Ψk, while observing the intermediate round values, it

holds that

• if A makes both forward/inverse queries, then for any round number

s ≤ (k/2) with s = ω(log λ),

Pr
[

∃ rth r.v. collision in A↔ Ψk for some r ∈ {s . . . (k − s)}
]

≤ εxor

• if A makes only forward queries, then for any round number s =

ω(log λ),

Pr
[

∃ rth r.v. collision in A↔ Ψk for some r ∈ {s . . . k}
]

≤ εxor
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Here the bound εxor denotes the maximum advantage of the XOR finding

adversary that runs in time O(tA + (qAk)5), where tA is the running time

of the adversary A and qA denotes the number of queries made by it. Also,

tA, qA and the input length n are all polynomial in λ.

The proof of this corollary is quite straightforward since the 5-XOR find-

ing adversary simply runs the collision finding adversary, and performs a

brute force search for a 5-XOR condition when it finds a round value colli-

sion. From lemma 20 (or 21), such a 5-XOR condition is guaranteed to exist.

We will use this corollary in each of the results in the next chapter.
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Chapter 6

Implications for Feistel-based

Primitives

In the previous chapter, we studied a general combinatorial property of Feis-

tel networks. We also briefly mentioned that this result proves useful in

applications of Feistel networks where one of the following two assumptions

are violated:

(a) the round functions are (pseudo)random; and

(b) (At least some of) the intermediate round values appearing during the

Feistel computation are secret

We noted that if anyone of these assumptions do not hold then all previous

results that used Feistel network fail. We then gave a general combinatorial

result that could be applied to scenarios where one (or both) of the above
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assumptions do not hold. In this chapter, we use this combinatorial result

to provide constructions of new primitives as well as new (and stronger)

constructions of previously known primitives.

6.0.4 Summary of results

Strong(er) PRP from any PRF. Our result can be used to give a

construction of Strong PRPs from any PRF, that remains secure even when

intermediate PRF computations are leaked to the attacker. Earlier, we gave

examples of scenarios where such a construction may make sense. For in-

stance, one might imagine a smartcard implementing a block cipher via the

Feistel network using a secure chip implementing a PRF. In this case, the

attacker might be able to observe the communication between the smart-

card and the chip. More realistically, when the round functions of the block

cipher are not PRFs, the attacker might get a lot of information about the

intermediate values anyway. Our result implies that with a super-logarithmic

number of rounds, a Feistel based block cipher is secure in such scenarios as

well.

(Strong) unpredictable permutation (UP) from unpredictable

functions (UF). We show that using a super-logarithmic number of Feistel

rounds, one can construct (strong) unpredictable permutations using unpre-

dictable functions in each round. Strong UPs are similar to UFs in the sense

that no attacker should be able to predict an input-output pair which it has
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not explicitly queried the UP on. However, unlike UFs, here the attacker may

also make inverse queries to the UP. Note that in this case, the round func-

tions are not (pseudo)random and this assumption (a) is violated. However,

we show that for unpredictable permutations, even assumption (b) may not

be true. In particular, we give examples of (secure) UFs which when used as

round functions in the Feistel network leak all intermediate round values to

the attacker. Although artificial, this example illustrates that weaker round

functions may no longer guarantee the secrecy of round values.

Verifiable Random Permutations. We apply our result to the prob-

lem of constructing verifiable random permutations (VRPs) from verifiable

random functions (VRFs). VRFs and VRPs are verifiable analogs of PRFs

and PRPs, respectively. Let us concentrate on VRFs first. Intuitively, regu-

lar PRFs have a limitation that one must trust the owner of the secret key

that a given PRF value is correctly computed. And even when done so, a

party receiving a correct PRF value cannot later convince some other party

that the value is indeed correct (i.e., PRF values are “non-transferable”). In

fact, since the function values are supposed to be (pseudo)random, it seems

that such verifiability of outputs of a PRF would contradict its pseudoran-

domness. The way out of this contradiction was provided by Micali, Rabin

and Vadhan [55], who introduced the notion of a VRF. Unlike PRFs, a VRF

owner must be able to provide a short proof that any given VRF output

is computed correctly. This implies that the VRF owner must publish a

public key allowing others to verify the validity of such proofs. However,
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every “unopened” VRF value (i.e., one for which no proof was given yet)

should still look indistinguishable from random, even if many other values

were “opened” (by giving their proofs). Additionally, the public key should

commit the owner of the VRF to all its function values in a unique way, even

if the owner tries to select an “improper” public key. Micali et al. [55] also

gave a secure construction of a VRF based on the RSA assumption. Since

then several more efficient constructions of VRFs have been proposed based

on various cryptographic assumptions; see [49, 24, 28].

The notion of a VRP, introduced in [27], naturally adds verifiability to

PRPs, in exactly the same natural way as VRFs do to PRFs. We will describe

some applications of VRPs later in this chapter. On the one hand, it is easy

to see that a VRP (on a “non-trivial domain”) is also a VRF, just like

in the PRF/PRP case. On a first look, we might hope that the converse

implication holds as well, by simply applying the Luby-Rackoff result to

VRFs in place of PRFs. However, a moment of reflection shows that this

is not the case. Indeed, the proof for the iterated Feistel construction must

include all the VRF values for the intermediate rounds, together with their

proofs. Thus, the attacker can legally obtain all the intermediate round

values for every input/output that he queries, except for the one on which

he is being “challenged”. Thus rules out LR-type proof for this application.

We use our combinatorial result for the LR construction, to show that if

a super-logarithmic number of Feistel rounds are used, then we get a secure

verifiable random permutation from any verifiable random function.
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Verifiable Unpredictable Permutations. We also consider the nat-

ural combination of the scenarios considered so far, exemplified by the task

of constructing verifiable unpredictable permutations (VUPs) from verifiable

unpredictable functions (VUFs) [55] (also called unique signature schemes

[38, 49]). A VUF is defined in essentially the same way as VRFs, except

that the pseudorandomness requirement for VRFs is replaced by a weaker

unpredictability requirement. Similarly, VUPs, introduced in [27], are either

the permutation analogs of VUFs, or, alternatively, unpredictable analogs

of VRPs. Of course, as a VRP is also a VUP, we could attempt to build a

VUP by actually building a VRP via the Feistel construction applied to a

VRF, as suggested above. However, this seems quite wasteful since VUFs

appear to be much easier to construct than VRFs. Indeed, although in the-

ory VUFs are equivalent to VRFs [55], the “Goldreich-Levin-type” reduc-

tion from VUFs to VRFs in [55] is extremely inefficient (it loses exponential

security and forces the authors to combine it with another inefficient tree

construction). Moreover, several previous papers [55, 49] construct efficient

VUFs based on relatively standard computational assumptions, while all the

efficient VRF constructions [24, 28] are based on very ad hoc decisional as-

sumptions. Thus, it is natural to study the security of the Feistel network

when applied to VUFs. In this case, not only the round functions cannot be

assumed pseudorandom, but also all the intermediate round values must be

leaked together with their proofs of correctness, making this setting the most

challenging to analyze. Using our result, we show that a super-logarithmic

216



number of Feistel rounds with any secure VUFs gives a secure VUP.

Applications. In section 6.3, we illustrate many applications of our results,

such as:

• We show how our results provide a “closer-to-reality” justification for

the number of Feistel rounds heuristically used in practical block cipher

constructions.

• Using our results, we provide the most efficient domain extension tech-

nique for length-preserving MACs without introducing any new as-

sumptions.

• We show that VRPs immediately yield non-interactive, setup-free, perfectly-

binding commitment schemes.

• VRPs can be used to fix a subtle security flaw in the non-interactive

lottery system of Micali-Rivest [56].

• We show that these primitives can also be used to implement so called

“invariant signatures” needed by Goldwasser and Ostrovsky [38].

• Other applications of VRPs, such as verifiable CBC encryption/decryption,

verifiable huge (pseudo)random objects [36] or a “proof-transferable”

implementation of the Ideal Cipher Model using a semi-trusted third

party.

217



6.1 Preliminaries

In this section, we provide definitions for the cryptographic primitives that

we will use throughout this chapter. We start by giving an alternative defini-

tion for pseudorandom functions/permutations that is different from the ones

given in chapter 2 and is more suited for our results in this chapter. We will

give these definitions for a function ensemble {Hλ}λ∈N that is defined over

the sequence of input/output sets {{0, 1}a(λ), {0, 1}b(λ)}λ∈N. We will assume

that the key generating algorithm I(λ) outputs a bit string s ∈ {0, 1}c(λ),

where c(λ) is the key length, and the keyed function will be represented as

Hs(·). In this chapter, we will use the terms function ensemble and function

family, interchangeably.

Definition 18 (Pseudorandom Functions). A function ensemble {Fλ}λ∈N

is a pseudorandom function ensemble if for any probabilistic polynomial time

(PPT) attacker pair A = (A1, A2), which do not query their oracles on the

challenge query, it holds that:

∣

∣

∣
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∣

∣

∣
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= negl(λ)

We note that ,in asymptotic terms, definition 18 is equivalent to the

definition 3 in chapter 2. We state this in the following lemma and provide

a brief justification for the same.

Lemma 22. Definitions 18 and 3 are equivalent definitions of PRFs (mod-
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ulo exact security). In particular, a (t, q, ε)-PRF according to definition 3,

such that ε(λ) is negligible for any polynomials t(λ) and q(λ), is also a PRF

according to definition 18, and vice versa.

Proof. We first show that a PRF according to definition 3 is also a PRF

according to the definition 3 above. If this is not the case, then there is a

PPT distinguisher D that has non-negligible advantage ε in distinguishing

the uniform function ensemble and the PRF ensemble. If the D makes q

oracle queries, then we consider (q + 1) hybrid scenarios. In the first hybrid,

all oracle queries are responded to using the uniform random function. And

in the ith hybrid, the first (i − 1) queries are responded to using the PRF,

while all remaining (q − i + 1) queries are responded to using the uniform

random function. Thus, in the last hybrid, all queries are responded to using

the PRF. Since the advantage ε of D in distinguishing between the first and

(q +1)th hybrid is non-negligible. We can deduce that there is a i ∈ {1 . . . q},

such that D has an advantage of at least ε/(q + 1) in distinguishing between

the ith and (i + 1)th hybrid.

The attacker A = (A1, A2) that we design essentially chooses a random

i ∈ {0 . . . (q − 1)}, and simulates the distinguisher as follows: The attacker

A1 simply runs the distinguisher D by responding to its oracle queries using

its PRF oracle until the ith query. Then it chooses the (i + 1)th query of D

as its challenge query. Then the attacker A2 continues the execution of D by

responding to the (i + 1)th query using the challenge response, and responds

to all remaining queries of D using uniform random responses. Thus, if

219



the challenge response is random then D executes in the (i + 1)th hybrid,

otherwise it executes in the (i + 2)th hybrid. Thus with probability O(ε/q2),

the attacker A succeeds.

In the other direction, say there is an attacker A with non-negligible suc-

cess probability in the attack game of definition 18. Then the distinguisher D

can simply simulate the attack game of A by responding to all its queries us-

ing its function oracle. In response to the challenge query, it either sends the

response of its function oracle or a uniform random response. If the function

oracle of D is a uniform random function, then A can guess correctly only

with probability 1/2, otherwise it has a probability non-negligibly different

from 1/2 of guessing correctly.

In a similar way, we give here an alternative definition for pseudorandom

permutations (PRP). We will only consider the case of strong PRPs here,

hence only give the definition for this case.

Definition 19 ((Strong) Pseudorandom Permutations). A permuta-

tion ensemble {Πλ}λ∈N is a (strong) pseudorandom permutation ensemble

if for any probabilistic polynomial time (PPT) adversary pair A = (A1, A2),

none of which query their oracles on the challenge query or its inverse, it

holds that,
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This definition is again equivalent to the definition of strong PRPs from

chapter 2 (similar to the case of PRFs). A slightly weaker notion than PRFs

is that of Unpredictable functions. These primitives are similar to Message

Authentication Codes defined in chapter 2.

Definition 20 (Unpredictable Functions (UF)). A function ensemble

{Fλ} is an unpredictable function ensemble if for any probabilistic polynomial

time (PPT) adversary A, that does not query its oracle on the prediction

query, it holds that,

Pr

[

y = Fs(x)

∣

∣

∣

∣

s← I(λ); (x, y)← AFs(1λ)

]

= negl(λ)

Similar to the case of PRFs/PRPs, we can also define permutation analogs

of UFs, called Unpredictable permutations.

Definition 21 (Unpredictable Permutations). A function ensemble {Πλ}

is an unpredictable permutation ensemble if for any probabilistic polynomial

time (PPT) adversary A, that does not query its oracle on the prediction

query or its inverse, it holds that,

Pr

[

y = Πs(x)

∣

∣

∣

∣

s← {0, 1}c(λ); (x, y)← AΠs,Π−1
s (1λ)

]

= negl(λ)

As we discussed above, we can define verifiable analogs of each of the defi-

nitions above. Let us start by defining the notion of Verifiable Pseudorandom

Functions (VRFs).
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Definition 22 (Verifiable Random Functions). A Verifiable random

function family {Fλ} consists of three algorithms (Gen, Prove, Verify) such

that Gen(1λ) outputs a pair of keys (PK, SK); ProveSK(x) outputs a pair

(FSK(x), proofSK(x)), where FSK(x) is the function output and proofSK(x))

is the corresponding proof of correctness; and VerifyPK(x, y, prf) verifies that

y = FSK(x) using the proof prf (by outputting 1 if so). This VRF family

should satisfy three requirements:

• Correctness: if (y, prf)← ProveSK(x), then VerifyPK(x, y, prf) = 1.

• Soundness: no (PK, x, y1, prf1, y2, prf2), with (y1, prf1) 6= (y2, prf2),

can satisfy

VerifyPK(x, y1, prf1) = VerifyPK(x, y2, prf2) = 1

• Pseudorandomness: For any PPT adversary pair A = (A1, A2), nei-

ther of which query their oracle on the challenge input x, it holds that
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Along similar lines, we can define the notions of Verifiable Pseudorandom

Permutations (VRPs), Verifiable Unpredictable Functions (VUFs) and Veri-
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fiable Unpredictable Permutations (VUPs) as verifiable analogs of PRPs, UFs

and UPs, respectively, each of which has three algorithms (Gen, Prove, Verify),

and satisfy the Completeness and Soundness properties as well.

6.2 Implications

In the previous chapter, we proved a combinatorial property of the Feistel

construction where internal round function values were visible to the adver-

sary. Now we will describe how this property can be applied to a variety of

scenarios to yield new or improved cryptographic constructions than before.

6.2.1 More Resilient PRPs from PRFs

We give a construction of pseudorandom permutations from pseudorandom

functions, that remains secure even if the PRF input/output pairs used in

the construction are visible to the attacker. In particular, we propose using a

k-round LR construction ΨR,k, where k = ω(log λ), with independent PRFs

f1 . . . fk ← F as round functions. The following states that this construction

is a secure PRP even if the attacker can observe the intermediate round

values.

Theorem 25. If there exists an efficient PRP adversary Aπ that has a non-

negligible advantage επ in the PRP attack game against the construction ΨR,k

(using round functions from the PRF family F ), then there also exists a PRF

adversary Af that has non-negligible advantage εf in the PRF attack game
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against a PRF sampled from the PRF family F . From this, we get a bound

επ = O
(

qkεf + (qk)6

2n

)

, where εf denotes the maximum advantage of a PRF

adversary running in time O(t + (qk)5) against a PRF sampled from F , and

t, q are the running time and number of queries made by Aπ.

Proof: We show that the PRP construction ΨR,k, using PRFs sampled from

the PRF family F(·) : {0, 1}n → {0, 1}n, is a secure PRP. The proof consists

of two parts:

1. Showing that a PRF family that yields secure and independent PRFs

upon each sample is a 5-XOR resistant function family.

2. Showing that no PRP adversary can succeed with non-negligible ad-

vantage in the PRP attack game against a ω(log λ)-round Feistel con-

struction with independent and secure PRFs in each round.

XOR-resistance of PRFs. Consider a k-round Feistel construction Ψk

that uses k PRFs f1 . . . fk, independently sampled from a PRF family F(·) :

{0, 1}n → {0, 1}n, as round functions. Consider an XOR finding adversary

Axor that forces a 5-XOR condition through its queries with non-negligible

advantage. We will show that using Axor, we can design another attacker

Af that succeeds in the PRF attack game (see definition 18) against a PRF

sampled from the family F .

Claim 26. If there is an PPT attacker Axor that queries the k-round Feistel

construction Ψk (that uses independent PRFs from a PRF family F ), ob-

serves intermediate round values and forces the 5-XOR condition through its
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queries with probability εxor, then there exists a PRF adversary Af that has

advantage εf in the PRF attack game against a PRF sampled from F , where

εf ≥
1

2qk
·
(

εxor −
(qk)6

2n

)

.

proof of claim 26: The PRF adversary Af gets oracle access to the chal-

lenge PRF adversary Fs. It then needs to choose a challenge query, to which it

either gets the PRF output or a random n-bit string, and its task is to distin-

guish between the two cases. The attacker Af chooses a random round num-

ber i ∈ {1 . . . k}, and samples (k−1) independent PRFs f1 . . . fi−1, fi+1 . . . fk

from the family F . It then simulates the Feistel construction Ψk, with the

challenge PRF as the ith round function and the self-generated PRFs making

up the remaining round functions. It then simulates the XOR attack game

between Axor and Ψk.

Assume a fixed, large enough, polynomial upper bound on the number of

queries that the adversary Axor makes to Ψk. The PRF adversary chooses a

random query number j ∈ {1 . . . q} where it chooses its challenge query. On

getting the jth query, it sends the ith round value as the challenge PRF query,

and uses the challenge response as the output of the ith round function. It

computes the remaining self-generated round functions as usual. If the ith

round function is applied to a new input, then it checks to see if the new

round value generated has a 5-XOR representation in terms of previously

existing round values. If so, then it guesses that the challenge response is

the PRF output (say by outputting 1), otherwise it guesses the challenge

response to be random (by outputting 0).
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It is clear that if the attacker Af makes all its guesses correctly, i.e.

correct round number and correct query number, then it succeeds if a random

response also does not have an 5-XOR representation. Hence, we get that

Adv(Af) = Pr[(Af → 1) ∧ (PRF output)]

+ Pr[(Af → 0) ∧ (Random output)]−
1

2

Here Af → 0/1 represents the event that the attacker Af outputs 0/1. If

εxor denotes the advantage of an XOR adversary then we get that,

Pr[(Af → 1) ∧ (PRF output)] = Pr[(Af → 1)|(PRF output)]

·Pr[(PRF output)]

≥
εxor

qk
·
1

2

Pr[(Af → 0) ∧ (Random output)] = Pr[(Af → 0)|(Random output)]

·Pr[(Random output)]

≥

[

1−
(qk)5

2n

]

·
1

2

⇒ Adv(Af) ≥
1

2qk
·

[

εxor −
(qk)6

2n

]

Security of the PRP construction. We will now show that the con-

struction ΨR,k, that is based on a k-round Feistel construction using indepen-
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dently sampled round functions from a PRF family F(·) : {0, 1}n → {0, 1}n,

is a secure PRP construction.

Claim 27. If there exists an efficient PRP adversary Aπ that has a non-

negligible advantage επ in the PRP attack game against the construction ΨR,k

(using round function from PRF family F ), then there also exists a PRF

adversary Af that has non-negligible advantage εf in the PRF attack game

against a PRF sampled from the PRF family F . In particular, we get that

the maximum advantage of such a PRP adversary can be bounded by επ =

O
(

qkεf + (qk)6

2n

)

. Here εf is the maximum advantage of a PRF adversary

running in time O(t + (qk)5) against a PRF sampled from F , where t, q are

the running time and number of queries made by Aπ.

proof of claim 27: The PRF adversary Af gets oracle access to a challenge

PRF Fs. It samples (k − 1) independent PRFs f1 . . . f(k/2)−1, f(k/2)+1 . . . fk

from the PRF family F . It simulates the PRP construction ΨR,k by plug-

ging in the challenge PRF as the (k/2)th round function and using the self-

generated PRFs as the remaining round functions. It then simulates the

PRP attack game between the attacker Aπ and ΨR,k.

It computes the response to any query made by Aπ by computing all the

round values ((k/2)th one by querying the PRF oracle). When the attacker

Aπ sends its challenge query, then Af computes all the self-generated round

functions honestly, but sends the (k/2)th round value as its PRF challenge

query and uses the challenge query response as the (k/2)th round function

output. It then continues with the post-challenge phase as it did before
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the challenge query. Finally, it simply gives the same output as the PRP

adversary Aπ (i.e. guess PRF if Aπ guesses PRP, else guess random).

We note that the PRF adversary succeeds if the following conditions all

hold: (1) the PRP adversary Aπ succeeds, (2) the (k/2)th round value in

the challenge query is never required in any other query and, (3) the PRP

challenge output looks random if the PRF challenge response is random.

Thus, we have that,
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In the above argument, we have used εf to bound the advantage of all of

out PRF adversaries (in L.H.S. as well as R.H.S.). This bound εf is the

maximum advantage of a PRF adversary running in time O(t+(qk)5), where

t, q are the running time and number of queries made by the PRP attacker

Aπ. The initial two steps of the above argument can be derived as simple

conditional probability manipulations. The third step can be derived as a

result of corollary 2 in chapter 5, that says that the advantage of the collision

finding attacker is no more than that of a 5-XOR finding attacker.

In the fourth step, we use the fact that if a PRF family yields secure and

independent PRFs, then the usual PRF attack definition is equivalent to a

modified definition where the attacker has access to two independently sam-
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pled PRFs from the same family. In the challenge phase of this new attack

scenario, either random or pseudorandom responses are given to challenge

queries to both these functions. Since the attacker is not permitted to query

the PRF oracles on these challenge queries, we need the property that no

round value collision occur among round values in {(k/2)−1 . . . (k/2)+1}.

Moreover, since we know from theorem 18 in chapter 5 that there is an

attacker that can invert the Feistel network with k = O(log λ) rounds within

a polynomial number of forward queries, we can also deduce that the result

above is asymptotically tight.

6.2.2 Unpredictable Permutations

What if the round functions in the Feistel network are only unpredictable

functions and not pseudorandom? In this case, it is not clear whether the

attack in theorem 18 (chapter 5) can be made to work in this case. This is

because the UP adversary cannot make use of this attacker since it does not

seem to have access to all the intermediate round values. However, we will

first show that if certain pathological (but secure) unpredictable functions

are used as round functions, then the UP adversary can infer all the round

values simply by observing the output of the Feistel construction!

Lemma 23. For any k ≤ n
ω(log λ)

(in particular, if k = O(log λ)), there exist

230



k secure unpredictable functions f1 . . . fk, such that by querying the k-round

Feistel construction Ψf1...fk
on any input an efficient attacker can always

learn all intermediate round values.

Proof: Let {gi : {0, 1}n → {0, 1}n/k}i∈{1...k} be k secure unpredictable

functions. For i ∈ {1, k}, we will define the functions fi : {0, 1}n → {0, 1}n

as fi(x) = 0(i−2)·(n/k) ‖ xi−1 ‖ gi(x) ‖ 0(k−i)·(n/k), where xi−1 denotes the

(i− 1)th (n/k) bit block in the input x. Each of the functions fi is a secure

unpredictable function if the corresponding function gi is a secure UF.

Consider a query (R0 ‖ R1) ∈ {0, 1}
2n made to the Feistel construction

Ψf1...fk
. We will consider k blocks of (n/k) bits each in both R0 and R1,

which we will denote by R0 = R1
0 ‖ . . . ‖ Rk

0 and R1 = R1
1 ‖ . . . ‖ Rk

1 . Denote

the round values generated in computing the output of this construction as

(R0, R1) . . . (Rk, Rk+1), where Rk ‖ Rk+1 is the output of this construction.

If the number of rounds in the Feistel construction is even, then we note that

the output of the construction is:

Rk = (g1(R1)⊕R1
0 ⊕ R1

1) ‖ . . . ‖ (gk−2(Rk−2)⊕ Rk−2
0 ⊕ Rk−2

1 )

‖ (gk−1(Rk−1)⊕ Rk−1
0 ) ‖ Rk

0

Rk+1 = (g1(R1)⊕R1
0 ⊕ R1

1) ‖ . . . ‖ (gk−1(Rk−1)⊕ Rk−1
0 ⊕ Rk−1

1 )

‖ (gk(Rk)⊕Rk
1)
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If number of rounds k is odd, then the output of the Feistel construction is,

Rk = (g1(R1)⊕R1
0 ⊕ R1

1) ‖ . . . ‖ (gk−2(Rk−2)⊕ Rk−2
0 ⊕ Rk−2

1 )

‖ (gk−1(Rk−1)⊕ Rk−1
1 ) ‖ Rk

1

Rk+1 = (g1(R1)⊕R1
0 ⊕ R1

1) ‖ . . . ‖ (gk−1(Rk−1)⊕ Rk−1
0 ⊕ Rk−1

1 )

‖ (gk(Rk)⊕Rk
0)

Now it is easy to find each of the round function outputs (and hence the

intermediate round values) by simply observing the right half of the output

of the Feistel construction.

Thus we see that if the number of rounds in the Feistel construction (using

UFs) used to construct unpredictable permutations is k = O(log λ), then

the construction is insecure. Moreover, even if we attempt to construct a

shrinking MAC by chopping the left half of the output, it would be possible to

retrieve all intermediate round values by simply observing the MAC output.

In fact, even for k = ω(log λ) (but less than n/ω(log λ)) rounds it might

be possible to retrieve all intermediate round values, and hence none of the

previous proof techniques are applicable. We will prove a much stronger

result here, by showing that if we use a super-logarithmic number of rounds

in the Feistel construction (with independent unpredictable round functions)

then the resulting construction is an unpredictable permutation even if the

adversary gets all the intermediate round values along with the permutation

output (which, as we saw, it may get any way for some pathological UFs).
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The UP construction ΨU,k consists of k = ω(logλ) rounds of the Feistel

transformation using independent UFs f1 . . . fk ← F . The following theorem

essentially states that this construction is a secure UP construction.

Theorem 28. If there exists an efficient UP adversary Aπ that has non-

negligible advantage επ in the unpredictability game against ΨU,k and which

makes a polynomial number of queries to ΨU,k, then there also exists a UF

adversary Af that has non-negligible advantage in the unpredictability game

against a UF sampled from the UF family F . From this, we get that the

maximum advantage of the UP adversary Aπ is επ = O (εf · (qk)6). Here εf

denotes the maximum advantage of a UF adversary running in time O(t +

(qk)5) against a UF sampled from F , where t is the running time of the PRP

adversary Aπ and q is the number of queries made by it.

Proof: The proof of this theorem consists of two main parts:

1. A UF family that yields secure and independent UFs on each sample

is a 5-XOR resistant function family.

2. The construction ΨU,k that uses secure and independent UFs in each

round is a secure unpredictable permutation.

XOR-resistance of UFs. Consider the k-round Feistel construction ΨU,k

using independent UFs f1 . . . fk ← F in each round. If there is an adversary

Axor that queries ΨU,k and forces a 5-XOR condition through its queries with

a non-negligible advantage εxor, then we can construction a UF adversary Af
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that has non-negligible advantage in the unpredictability game against a UF

sampled from the family F .

Claim 29. If there is an adversary Axor that can force a 5-XOR condition

in an interaction with ΨU,k (that uses independent UFs sampled from a UF

family F(·) : {0, 1}n → {0, 1}n) with non-negligible probability εxor then there

exists a VUF adversary Af that has non-negligible success probability εf in

the unpredictability against a UF sampled from the family F . In particular,

we show that εf ≥
εxor

(qk)6
.

proof of claim 29: On getting the challenge unpredictable function Fs,

the UF adversary chooses a random round number i where it plugs in the

challenge UF. Next, the UF adversary Af generates (k − 1) independent

UFs f1 . . . fi−1, fi+1 . . . fk from the same family and uses these as the remain-

ing round functions to simulate the Feistel construction ΨU,k for the XOR

adversary Axor to attack.

Then it lets the UF adversary run its attack on ΨU,k. Assuming a fixed

and large enough polynomial upper bound q on the number of queries made

by Axor, the UF adversary Af chooses a random query number j ∈ {1, q}. It

guesses that the 5-XOR condition occurs after the ith round function evalua-

tion in the jth query, i.e. Rj
i . Instead of querying this input to the UF oracle,

it selects this as the challenge input and uses an XOR of upto 5 randomly

chosen previously existing round values as its prediction of the output.

If all its guesses are correct, i.e. it chooses the correct round number

i, the correct query number j and the correct XOR representation, then it
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succeeds in the UF game. The probability that all its guesses are correct is

at least 1
(qk)6

. Thus, we get that εf ≥
εxor

(qk)6
.

Security of the UP construction. We will now show that the UP

construction ΨU,k, that uses round functions from the UF family F that gives

secure and independent UFs on each sample, is a secure construction of a

unpredictable permutation

Claim 30. If there exists a PPT UP adversary Aπ that has non-negligible

advantage επ in the unpredictability game against ΨU,k and which makes a

polynomial number of queries to ΨU,k, then there also exists a UF adversary

Af that has non-negligible advantage in the unpredictability game against a

UF sampled from the UF family F . In particular, we get that the maximum

advantage of the UP adversary Aπ is επ = O(εf · (qk)6). Here εf is the

maximum advantage of a UF adversary running in time O(t+(qk)5) against

a UF sampled from F , where t, q are the running time and number of queries

made by Aπ.

proof of claim 30: The UF adversary Af gets oracle access to a challenge

unpredictable function Fs. It samples (k− 1) independent UFs f1 . . . f(k/2)−1

, f(k/2)+1 . . . fk from the same UF family F . It simulates the UP construction

by plugging in the challenge UF as the (k/2)th round function, and using the

self-generated UFs as the other round functions.
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When the UP adversary sends its challenge query R0 ‖ R1 (or Rk ‖ Rk+1),

and its predicted output Rk ‖ Rk+1 (resp. R0 ‖ R1), the UF adversary pro-

ceeds by using its self generated round functions to evaluate the intermediate

round values R0, R1, R2 . . . Rk/2 and from Rk+1, Rk, Rk−1 . . . Rk/2+1. It then

sends the challenge input/output pair (Rk/2, Rk/2−1 ⊕ Rk/2+1) as its predic-

tion. It is easy to see that if the round value Rk/2 is a new round value and

the UP adversary predicted correctly, then the UF adversary Af succeeds.

Thus, we can deduce that,

Pr[Af succeeds] = Pr







(Aπ succeeds)

∧(no (k/2)th round collision)







= Pr
[

(Aπ succeeds)
∣

∣no (k/2)th round collision
]

·Pr [no collision]

≥
(

Pr [Aπ succeeds]− Pr
[

(k/2)th collision
])

·Pr [no collision]

≥ (επ − εxor) · (1− εxor)

⇒ επ ≤
εf

1− εxor
+ εxor

⇒ επ = O(εf · (qk)6)

In the above argument, we have often bound the advantage of a UF adver-

sary by εf . This is the maximum advantage of a UF adversary running in

time O(t + (qk)5), where t, q are the running time and number of queries

made by Aπ. The transition from step (3) to (4) is possible using corollary 2
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from chapter 5, that says that the advantage of an efficient collision finding

adversary is same as that of an efficient XOR condition forcing adversary.

The last step of the argument is possible through claim 29.

6.2.3 Verifiable Random Permutations

When we attempt to use the Feistel network to construct a verifiable ran-

dom permutation using VRFs as round functions, then the attacker gets all

the intermediate round values as part of the proofs for each round function

computation. Thus, here again, one can use the attacker from lemma 18

(chapter 5) to construct a VRP attacker that violates the pseudorandom-

ness requirement of the VRP construction if the number of Feistel rounds is

k = O(log λ).

The VRP constructionΨV R,k that we use is the k-round LR construc-

tion using independent VRFs f1 . . . fk ← F as round functions. The pub-

lic/private keys of ΨV R,k are simply the concatenation of the public/private

keys of the k VUFs. The Prove functionality for ΨV R,k gives the permuta-

tion output, and as proof it gives all intermediate round values along with

the corresponding VRF proofs. The Verify functionality simply checks if all

intermediate VRF proofs verify correctly.
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Theorem 31. Let ΨV R,k = (Gπ, Π, Vπ) be the VRP construction that uses

a k-round LR construction with independent VRFs f1 . . . fk ← F . This

construction is a secure VRP if the VRFs used as round functions are se-

cure. In particular, for any probabilistic polynomial time oracle machine

Aπ = (A1, A2) that does not query its oracle on x or try to invert the re-

sponse to the challenge query, the advantage of Aπ in winning the VRP

pseudorandomness game against ΨV R,k is at most O
(

qkεf + (qk)6

2n

)

, where

εf denotes the maximum advantage of a VRF adversary that runs in time

O(t + (qk)5) against a VRF sampled from F , and t and q are the running

time and number of queries made by Aπ.

Proof: The completeness of the construction ΨV R,k is a direct consequence

of the completeness of each of the VRFs used as round functions, since if

all VRF proofs verify correctly then the resulting VRP proof does so too.

The soundness of the construction if also obvious given the fact that all the

intermediate VRFs are sound. In particular, if there are two output/proof

pairs of ΨV R,k that verify correctly, then we can find two VRF output/proof

pairs that verify correctly for one of the round functions. The proof for the

pseudorandomness property of ΨV R,k is essentially the same as the proof of

theorem 25.
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6.2.4 Verifiable Unpredictable Permutations

Our VUP construction ΨV U,k is essentially identical to the VRP construction

ΨV R,k, excepts that we use independent VRFs instead of VUFs as round

functions.

Theorem 32. Let ΨV U,k = (Gπ, Π, Vπ) be the construction using k rounds of

the Feistel construction using independent VUFs f1 . . . fk ← F . Then ΨV U,k

is a secure VRP if the VUFs used in the construction are secure VUFs. In

particular, for any probabilistic polynomial time oracle machine Aπ that does

not make a forward query on x or an inverse query on y, the advantage of

Aπ in winning the VUP pseudorandomness game against ΨV U,k is at most

O(q6k7 · εf ), where εf denotes the maximum advantage of a VUF adversary

running in time O(t+(qk)5) against a VUF sampled from F , t is the running

time of Aπ and q is the number of queries made by Aπ.

The completeness and soundness properties of this construction can be

proven in the same way as the corresponding properties of the VRP construc-

tion ΨV R,k, above. The proof for the unpredictability property is the same as

in theorem 28.

6.3 Applications

We have seen that our results for the Feistel network with public round

values leads to new or improved constructions of several cryptographic prim-
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itives. In this section, we will illustrate several practically-motivated natural

scenarios where our results are applicable.

6.3.1 Implications to Domain Extension

Since the Feistel Network doubles the length of its input, our results could

also be viewed in relation to the question of domain extension of UFs, VUFs

and VRFs. In practice, the question of domain extension is typically handled

by a collision-resistant hash function (CRHF): it uses only one call the the

underlying n-bit primitive f and does not require the secret key to grow.

However, the existence of a CRHF is a theoretically strong assumption, which

does not seem to follow from the mere existence of UFs, VRFs or VUFs.

This is especially true for UFs, whose existence follows from the existence

of mere one-way functions and, hence, can even be “black-box separated”

from CRHFs [71]. Thus, it makes sense to consider the question of domain

extension without introducing new assumptions.

For PRFs, this question is easily solved by using (almost) universal hash

functions (instead of CRHFs) to hash the message to n bits before applying

the n-bit PRF. However, this technique fails for UFs, VUFs and VRFs: in

the case of unpredictability because the output reveals information about

the hash key, and for VRFs because it is unclear how to provide proofs of

correctness without revealing the hash key. Another attempt (which works

for digital signatures) is to use target collision-resistant hash functions [60]

in place of CRHFs, but such functions have to be freshly chosen for each
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new input, which will break the unique provability of UFs, VUFs and VRFs.

(Additionally, the hash key should also be authenticated, which further de-

creases the bandwidth). In case the underlying n-bit primitive f is shrinking

(say, to n − a bits), one can use some variant of the cascade (or Merkle-

Damg̊ard) construction. Indeed, this was formally analyzed for MACs by

[1, 53]. However, the cost of this method is one evaluation of f per a input

bits. In particular, in case the output of f is also equal to n, which is natural

if one wants to extend the domain of a UF given by a block cipher, this

method is either inapplicable or very inefficient.1

In contrast, our method builds a UP/VUP/VRP from 2n to 2n bits from

the one from n to n bits, by using k = ω(log λ) evaluations of f , albeit also at

the price of increasing the secret key by the same amount. This answers the

question left open by An and Bellare [1] (who only showed that three rounds

are insufficient): Feistel Network is a good domain extender for MACs if and

only if it uses super-logarithmic number of rounds!

Moreover, in the context of UFs (and VUFs), where one wants to mini-

mize the output length as well, we notice that the output length can be easily

reduced from 2n to n. This is done by simply dropping the “left half” of the

Feistel permutation output! The justification for this optimization follows by

noticing that in this case the attacker will only make forward queries to the

Feistel construction. For such attackers, we can extend our main combinato-

1In principle, such length-preserving f can be “truncated” by a bits, but this loses an
exponential factor in a in terms of exact security. Thus, to double the input length, one
would have to evaluate f at least Ω(n/ logλ) times.
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rial lemma as follows. For any s ≤ k, if a 5-XOR resistant family is used to

implement the round functions and the attacker made less than exponential

in s number of queries, then the attacker has a negligible chance to cause

any collisions between rounds s and k (as opposed to k − s we had when

backward queries were allowed). From this, one can derive that k = ω(log λ)

Feistel rounds is enough to turn a UF (or VUF) from n to n bits into one

from 2n to n bits. Moreover, in the case of UFs we expect that one would

use a (possibly heuristic) pseudorandom generator to derive the k round keys

(much like in the case of block ciphers), meaning that the only effective cost

is k computations of the basic UF. Once the domain is doubled, however, one

can use the cascade methods [1, 53] to increase it further without increasing

the key or the output length.

6.3.2 More Resilient Block Ciphers

Although not as strong as pseudorandomness, unpredictability is a meaning-

ful property of block ciphers. First, we already mentioned that it is enough for

message authentication, and our Feistel construction is also useful in the con-

text of domain extension of MACs. We notice that it is also enough to argue

certain weaker properties of popular modes of operation on block ciphers.

For example, one can easily argue that the CBC mode with UPs (rather

than PRPs) yield a “computationally ε-universal” hash function [3], which

can then be used with an ordinary block cipher to get a secure “encrypted

CBC-MAC”. Even in the context of encryption, one can argue that CBC,
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OFB and CFB modes with UPs satisfy the following form of one-wayness

against the usual chosen message attack. The attacker can ask encryptions

or any messages. For the challenge, it specifies any message with one missing

block. Then this block is chosen at random, and the encryption of the entire

message (using the corresponding mode) is given to the attacker. Finally, the

attacker has to recover this missing block, and using UPs guarantees that the

attacker only has a negligible probability to succeeded in this game.

To summarize, the usage of UPs in place of PRPs still maintains weaker,

but still meaningful security properties. Therefore, we see their primary

utility as a way for providing a “graceful fall-back” property for the Feistel

construction. If (nearly) pseudorandom round functions are used, then with

ω(log λ) rounds the resulting permutation is a PRP. As a bonus, it remains

a PRP even if the intermediate round values could be leaked! Additionally,

even if the round functions are only unpredictable, we still have some basic

security left, so at the very least the system will not be “completely broken”.

6.3.3 Ideal Cipher Model using Semi-Honest Trusted

Party

The Ideal Cipher Model (ICM) (also known as the “Shannon Model”) assumes

the existence of a publicly accessible Ideal Block Cipher, meaning that for

every possible key s one has a fresh random permutation Πs and its inverse

Π−1
s . Although the ICM is not as popular as the random oracle model, there
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are still several notable examples of schemes where this model has been used

[15, 23, 30, 42, 46]. Unfortunately, just like the random oracle model, the

ICM model cannot be provably realized without a trusted party T (see [14]).

A naive implementation is easy, but inconvenient. First, T should keep track

of all the queries already asked to ensure consistency, which quickly becomes

very impractical. Second, the parties must trust that T has evaluated the

value Πs(x) consistently across invocations. Third, once they get such a

value, they cannot convince any other party of its validity: that party must

independently go to T to check the correctness. Finally, they must trust that

the answers of T are actually random.

It turns out that a VRP can considerably improve this naive implemen-

tation. First, we start with implementing a single truly random permutation

Π (corresponding to an ideal cipher with a fixed key). Then T can publish

the public key for a VRP π, and only keep the secret key as its state. When

some party comes to T and asks a forward or backward query to Π, T sim-

ply evaluates π or π−1 on that query, and returns the result together with a

proof of correctness. This way the parties are assured that: (a) they receive

a correct and consistent value of Π; (b) they are really talking to T (or, if

not, the value is correct anyway); (c) once T is committed to the public key,

T cannot dynamically adjust the values of Π and Π−1; (d) even if T selected

a bad public key, T is committed to a permutation; in particular, the value

of Π on a random point is guaranteed to be random. Finally, once somebody

gets a value of Π or Π−1 from T , it can transfer this value on its own, without
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the need of other parties to come to T and verify it.

To extend this to a full blown Ideal Cipher, we face a problem that T must

generate a new VRP for every key s of the Ideal Cipher. However, for our

particular VRF-based construction we can do better. Instead of assuming

the existence of a VRF from n to n bits, we assume the existence of a VRF

from n + a to n bits, where a is the length of the key s (if needed, such VRF

can always be constructed from another VRF using the domain extension

techniques we developed earlier). In this case, T will always prepend the key

s to all the VRFs inputs when evaluating the Feistel Network for the value of

Πs. This way T still stores only ω(logλ) keys for the VRFs, and can emulate

2a possible random ciphers.

6.3.4 Applications of VRPs/VUPs

Next, we mention several examples how VRPs could be useful in scenarios

where plain VRFs are not enough.

Non-interactive Commitments

We notice that VRPs immediately yield non-interactive, setup-free, perfectly-

binding commitments schemes. The sender chooses a random key pair (SK, PK)

for a VRP π. To commit to m (in the domain of the VRP), the sender sends

PK and the value c = πSK(m) to the receiver. To open m, the sender sends

m and the proof that c = πSK(m), which the receiver can check using the

public key PK. The hiding property of this construction trivially follows
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for the security of VRPs. As for binding, it follows from the fact that π is

a permutation even for an adversarial choice of PK. As we can see, it is

not clear how to achieve binding directly using plain VRFs. However, given

our (non-trivial) equivalence between VRFs and VRPs, we get that VRFs

are also sufficient for building non-interactive, perfectly binding commitment

schemes without setup. Alternatively, to commit to a single bit b, one can use

VUPs augmented with the Goldreich-Levin bit [37]. Here the sender would

pick a random r and x, and send PK, r, πSK(x), and (x · r)⊕ b, where x · r

denotes the inner product modulo 2. Using our equivalence between VUPs

and VUFs, we see that VUFs are sufficient as well.

We remark that the best general constructions of such commitments

schemes was previously based on one-way permutations (using the hardcore

bit) [16], since Naor’s construction from one-way functions [57] is either in-

teractive, or non-setup-free. Since the assumption of one-way permutations

is incompatible with VUFs or VRFs, our new construction is not implied by

prior work.

Non-Interactive Zero-Knowledge (NIZK)

We show that VRPs (and, thus, indirectly, VRFs), could be used to construct

NIZK proofs (in the common reference string model). We remark, however,

that Dwork and Naor [29] already gave a completely different construction

of NIZK proofs from VRFs (and even a weaker primitive called verifiable

pseudorandom generator). Thus, our construction only gives an alternative
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(and different) proof of an already known result by [29]. Nonetheless, we

believe that it naturally illustrates the usefulness of VRPs in comparison to

VRFs, and also solves a question left open by Goldwasser and Ostrovsky [38]

(see below).

Feige et al. [31] reduced the question of constructing NIZK proofs (in

the common reference string model) to the question of implementing the

so called “hidden bits system” HBS, and showed how to implement HBS

using trapdoor permutations. Later, Goldwasser and Ostrovsky [38] showed

how to implement HBS using so called invariant signatures. In our modern

terminology, invariant signatures are quite similar to VRFs, except for one

additional requirement: they should induce a (pseudo)random distribution

on the output when applied to a random input, even if the public key for the

VRF is adversarially chosen. Thus, we can think of invariant signatures as

“balanced” VRFs. Unfortunately, it is easy to see that regular VRFs are not

enough to plug into the construction of [38]. Namely,

(a) Plain VRFs do not have to satisfy this property (and, as far as we can

see, there is no trivial way to enforce it in VRFs; although, our results

imply a non-trivial way to do so).

(b) More severely, there exist secure (and, of course, unbalanced) VRFs for

which the transformation of [38] is completely insecure.

To briefly see point (a), imagine adding a new special public key PK∗

to any secure VRF, for which the VRF is defined to be identically zero. It

is clear that this still defines a VRF, since the prover is still committed to

247



a unique function, even for the key PK∗. And pseudorandomness holds,

since the chances PK∗ will be selected are negligible. Yet, the new VRF is

obviously unbalanced. In fact, if we use this new VRF in place of the invariant

signature in the construction of [38], we will get a completely insecure HBS

system (thus, showing (b)). Briefly, in the construction of [38] a VRF selected

by the prover is applied to a bunch or random points to define the “hidden

random string” (for which the prover can selectively open some part later).

If the prover chooses PK∗ as his public key, then the hidden random string

is all zero as well, and it is easy to see that NIZK construction of [31] will

completely fails with such non-random HRS.

On a positive side, VRPs trivially satisfy balancedness, since they are

guaranteed to be permutations for any value of the public key. This means

one can build NIZK proofs from VRPs. By our construction of VRPs from

VRFs, we see that VRFs are also sufficient for NIZK proofs for NP. Also,

even VUPs coupled with the Goldreich-Levin bit turn out to be sufficient for

this application.

Non-interactive Lottery for Micropayments

Micali and Rivest [56] suggested the following elegant way to perform non-

interactive lottery (with the main application in micropayments). The mer-

chant published a public key PK for a VRF f , the user chooses a ticket

x, and wins if some predicate about f(x) is true (for example, if f(x) is

less than some threshold t). Since f looks random to the user, the user
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cannot significantly bias his odds no matter what x he chooses. Similarly,

since the merchant is committed to f by the public key PK, they merchant

cannot lie about the value f(x). Unfortunately, this still leaves exactly the

same problem we had for the NIZK application above. Nothing stops the

merchant from publishing a “non-balanced” VRF. In the extreme case, a

constant function f(x) = c, where c is selected so that the predicate does

not hold. Once again, we need balancedness to ensure that the merchant not

only cannot change the value of f after the commitment, but also guarantees

that the value f(x) is random at least for a random x. Once again, VRPs

perfectly solve this problem.

Moreover, VRPs have an extra advantage that one can precisely know the

number of possible winners: it is exactly equal to the number of strings y

satisfying the given predicate. Thus, one can always allocate a given number

of prizes and never worry that with some small probability there will be more

winners than prizes.

Reusable Coin-Flipping

We can extend the previous lottery example to the following coin flipping

problem. Alice wants to publish some value PK (keeping the corresponding

value SK secret) allowing other to non-interactively select a random number

r as follows. Any party Bob can choose a random value x and send it to

Alice. The value x (combined with PK) uniquely defines the final value of

r. If needed, Alice can open the value of r and convince Bob that this value

249



is correct. Additionally, we want the following properties.

(a) No matter how Bob selects x, the value r looks random to Bob (except

if he “replays” some old r).

(b) For any x, Alice cannot produce two different r as the final value, even

if she adversarially chooses the public key PK.

(c) Bob is sure that that if he selects x at random, the value r is random,

even if Alice adversarially chooses the public key PK.

(d) Alice can reuse the same PK for many executions (and only has to

worry about the replay attack from Bob).

It is clear that VRPs precisely solve this problem. In contrast, VRFs

do not satisfy property (c), while other existing coin-flipping protocols are

either inefficient or do not appear to have the reusability property (d).

Adding Verifiability to PRP Applications

Finally, we mention examples how VRPs could be useful to add verifiability

to some application of PRPs (where, again, PRFs are not sufficient).

Verifiable CBC Encryption. As the simplest example, using VRPs

one can add verifiability to CBC encryption and decryption.

Verifiable Huge Random Objects. A bit less straightforwardly, we

consider the question of “truthfully”, yet efficiently, sampling huge (pseudo)

random objects, initiated by Goldreich et al. [36]. In this work, the authors

showed several applications where PRPs can be used to efficiently sample
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various exponential-sized objects (like random connected graphs). Using

VRPs one can naturally add verifiability to these constructs, so that the

sampler can compactly commit and selectively reveal small parts of the huge

object (like an edge). However, there is a subtlety. Since the PRP is often

used as only part of the sampling procedure, revealing the proofs might leak

a lot of extra information which might be undesirable. For example, in the

random connected graph example one first samples a (pseudo) random graph,

and then uses the PRP to add a random Hamiltonian cycle to it (in order to

make it connected). With VRPs in place of PRPs, revealing the VRP proof

will reveal that a given edge is part of the “special” Hamiltonian cycle, which

is probably undesirable.

Nevertheless, we can avoid this “privacy problem” in scenarios where only

PRPs are used to sample the given object. We give one such example (not

present in [36]). Specifically, we can use PRPs to sample a pseudorandom

constant-degree graph of exponential size (which is very likely to be a great

expander). In the case the graph should be bipartite, such sampling simply

consists of choosing d independent PRPs, where d is the required degree.

This allows one to easily find all the neighbors of a given node on either

side of the graph. In case of regular graphs, we need to sample d random

matchings, which can also be done using PRPs by using an elegant result of

Naor and Reingold [59] allowing one to sample pseudorandom permutations

with a prescribed cycle structure. In either case, by using VRPs in place of

PRPs we get verifiable random, constant-degree graphs, which do not suffer
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from the problem we had for random connected graphs.

Notice also that PRFs/VRFs are not sufficient for this application, since

with high probability they will not result in a truthful implementation. Ad-

ditionally, such sampling is not “reversible” (i.e., if f(x) = y, then given x

one can see that y is connected to it, but not vice versa).

We hope that more “verifiable” huge random objects could be “privately”

sampled using our technique.
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Chapter 7

Relation Between the Ideal

Cipher and Random Oracle

Models

In the introduction, we discussed the notion of idealized models and how

these make the task of designing practical and efficient protocols easier, at

the cost of formally provable security in the standard model. Two of the

most popular examples of idealized models are the Random Oracle Model

(ROM) and the Ideal Cipher Model. In chapter 3, we discussed the problem

of instantiating the random oracle with an actual hash function and the

assumptions involved therein. We discussed the ROM in some detail there

and gave indifferentiable constructions of the random oracle from a fixed-

length input random function oracle or an ideal cipher oracle. We start by
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giving a short description of the Ideal Cipher Model.

Ideal Cipher Model. The Ideal Cipher Model (ICM) (also known as

the “Shannon Model”) is an example of a ideal assumption model, just as

the ROM. In this model, we assume the existence of a publicly accessible

Ideal Block Cipher. This is essentially a block cipher, with a k bit key

and a n bit input, that is chosen uniformly from all block ciphers of this

form. All parties in the ICM can make both forward (encryption) or inverse

(decryption) queries to the ideal block cipher. One proves the security of a

cryptosystem under this assumption, and then instantiates the ideal block

cipher with an actual block cipher, such as AES. Although the ICM is not as

popular as the ROM, there are still several examples of schemes where this

model has been used [15, 23, 30, 42, 46].

Several questions have been raised regarding security in the ICM. Existing

bock ciphers, such as DES, AES etc. are vulnerable to related key attacks

and have distinguishing patterns that are unlikely to occur in a random

permutation. Hence it may not be entirely secure to use these constructions

to instantiate the ideal block cipher. As in the case of ROM, uninstantiable

schemes that are secure in the ICM have also been discovered (see [14]). But,

all these problems withstanding, the ideal cipher model does provide security

against generic attacks that do not exploit weaknesses of the underlying block

cipher.

Comparing Two Models. We discussed the indifferentiability framework

[52] earlier in this thesis, as a framework for comparing two ideal assumptions
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such as the random oracle and the ideal cipher assumptions. In particular,

we used this framework to find (indifferentiable) constructions of the random

oracle using an ideal cipher. The existence of such constructions implies that

the random oracle assumption is no stronger an assumption than assuming

the existence of an ideal cipher. That is, any cryptographic task that can be

(efficiently) accomplished in the Random Oracle Model is also (efficiently)

achievable in the Ideal Cipher Model using one of these indifferentiable RO

constructions. Thus, the indifferentiability turns out to be the right notion

when comparing two ideal assumption models.

We know from chapter 3 that there exist indifferentiable constructions

of the Random Oracle using the Ideal Cipher. Thus it is really interesting

to investigate the other direction of this question. That is, Is there an in-

differentiable construction of an Ideal Cipher using a Random Oracle? This

direction seems much more difficult to tackle. Actually, it is widely believed

that a positive answer holds in this direction too [20]. In fact, it is conjectured

that, with a sufficient number of rounds, the Luby-Rackoff (LR) construction

[47] (with independent random oracles, indexed by the ideal cipher key and

the round number, as round functions) is a secure construction of an ideal

block cipher in the ROM 1. In spite of this, there has not been much progress

in getting a formal proof of this conjecture.

In this chapter, we take a first step toward resolving this problem.

1As we already discussed in chapter 5, the LR result [47] is not applicable in this case
because an attacker can easily find out all intermediate round values by querying the
random oracle.
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7.0.5 Our Plan

We will start by describing the notion of indifferentiability in the honest-

but-curious model. This is a weaker notion than general indifferentiability

which we described in chapter 2, but is considerably stronger than the clas-

sical notion of indistinguishability (see later). We will also describe special

types of constructions, which we call transparent constructions, for which this

restricted definition is equivalent to general indifferentiability.

Once we have a suitable definition, we will describe the random permu-

tation model where we assume the existence of a publicly accessible random

permutation π (and its inverse π−1). Note that this can be thought of as a

very special case of the ideal block cipher, where the key space consists of

a single element. We will show that if we can find an indifferentiable con-

struction of a random permutation from a random oracle, it can be easily

extended to get an indifferentiable construction of an ideal block cipher from

a random oracle. This is simply done by prepending the block cipher key

to the input of the random oracle. Thus, it is (necessary and) sufficient to

study constructions of a single random permutation from a random oracle.

We will then describe a construction of a random permutation from a ran-

dom oracle: namely, the LR-construction described above, where we derive

the round functions from the random oracle (indexed by round number). We

conjecture that the LR-construction is indifferentiable from a random permu-

tation, with a sufficient number of rounds. However, we will not be able to

prove this result in general. Instead, we prove this implication in the honest-
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but-curious model, as long as the number of rounds is super-logarithmic in

the security parameter λ. We will derive this as a consequence of lemma 20

from chapter 5.

We conjecture that our result is sub-optimal in the sense that the LR con-

struction seems to be secure even with a “large enough” constant number of

rounds (see later for what large enough could be), and even in the malicious

model. However, we show optimality in the following sense: we prove that

for upto a logarithmic number of rounds the LR-construction is a transparent

construction. Thus, short of resolving our conjecture in the malicious model,

any improvement in the number of rounds even in the honest-but-curious

model will right away imply the same result in the malicious model as well.

From a negative side, we show that for super-logarithmic number of rounds

the LR-construction is provably not transparent, which means that our posi-

tive result in the honest-but-curious model does not trivially imply the same

result in the malicious model.

7.1 Indifferentiability in the Honest-but-Curious

Model

We briefly recall the general notion of indifferentiability. For two ideal prim-

itives F and G, an efficient oracle machine CG is an indifferentiable construc-

tion of the ideal primitive G using the ideal primitive F if there exists a

simulator SF such that for any efficient distinguisher D, the following prob-
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ability is negligible:

∣

∣

∣
Pr[DCF

G
,F(1λ) = 1]− Pr[DG,SG

F (1λ) = 1]
∣

∣

∣

Roughly speaking, the task of the simulator SF is to simulate the role played

by the ideal primitive F in the F ideal model (from the view of the distin-

guisher), in the G ideal model. In the new (weaker) notion of indifferentia-

bility in the honest-but-curious model, the distinguisher effectively has access

to only one oracle. To illustrate this, in the F model the distinguisher can

only query the G construction CF
G , and not the F oracle. In addition, it also

has oracle access to the queries made by the construction CG to the F oracle,

which we denote as the communication transcript TCG↔F
. Thus the role of

the simulator S in the G model changes from trying to simulate F in general

indifferentiability to trying to simulate the communication transcript TCG↔F

in the G model. When the distinguisher D is in F model, then the queries

in TCG↔F
can be divided into two categories. Those for which D does not

observe the queries of CG, and those for which it does. In the G model, the

former queries are sent directly to the G oracle and the responses of G are

sent back to D. While the latter queries are made through the simulator S,

which forwards the same query to the G oracle. But apart from sending back

the output of G to D, it also sends a simulated communication transcript TS.

These two views of the distinguisher are depicted in figure 7.1.

Definition 23. A Turing machine CG (with oracle access to F) is said to
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be (tD, tS, q, ε) indifferentiable from an ideal primitive G in the honest-but-

curious model if there exists a simulator S such that for any distinguisher D

it holds that:

∣

∣Pr
[

DCG ,TCG↔F = 1
]

− Pr
[

DG,TS = 1
]∣

∣ < ε

The simulator S simulates the transcript TS for queries made by the dis-

tinguisher to it and runs in time tS. The distinguisher D runs in time at

most tD and makes at most q queries to its oracle. The distinguishing ad-

vantage ε is a negligible function of the security parameter λ. If tS and q are

both polynomial in λ then the construction CG is said to be (polynomially)

indifferentiable from G in the honest-but-curious model.

FCG

D

F model G model

G

TSTCG↔F

S

Figure 7.1: Indifferentiability in honest-but-curious model: The distinguisher
D either interacts with CG and gets the transcript TCG↔F or it interacts with
G and gets the simulated transcript TS

Note that the simulator S does not make any extra queries to G apart

from forwarding the queries made by the distinguisher D. This fact is crucial
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since we want the property that the distinguisher should not learn anything

from observing the internal functioning of CG (i.e. queries made to F), that

it cannot learn from the ideal G oracle.

Consider the construction CG that is indifferentiable from G in the honest-

but-curious model. Our new definition guarantees that any cryptosystem P,

possibly involving honest-but-curious parties, that uses the construction CG

in the F model behaves in exactly the same way as it does in the G model.

This fact is formally stated in the following lemma.

Lemma 24. If a construction CG using F is indifferentiable from G in the

honest-but-curious model, as stated in definition 23, then any cryptographic

protocol P (involving honest-but-curious parties possibly) using CG in the F

model behaves exactly the same way as in the G model.

Proof: [also see figure 7.2] Say there exists a protocol P = (Phon,Pcur) that

behaves differently when using CG in F model. Phon represents the conven-

tional honest parties of the protocol, and Pcur represents the curious ones.

We claim that the curious parties Pcur do not gain any extra information

when using the construction CG. We will prove this by simulating the view

of all parties in P in the F model, in the G model as well. But this is exactly

what definition 23 guarantees. We simply replace the construction CG with

G. And we use the simulator S guaranteed by our definition to simulate the

transcript TCG↔F for the curious parties Pcur. Thus the queries made by

the curious parties Pcur are directed through the simulator S, which along

with the response of G adds a fake transcript TS for the curious parties. The
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conventional honest parties Phon are given direct access to the ideal primitive

G. And the indistinguishability of the two scenarios (CG, TCG↔F) and (G, TS)

implies that the views of all parties in the protocol remains the same.

We note here that the notion of “indifferentiability of CG from G in the

CG F

G modelF model

Distinguisher D

PhonPcur PcurPhon

G S

TSTCG↔F

new curious
parties in G model

Figure 7.2: An idea of the proof of lemma 24. The conventional honest parties
Phon along with the curious ones Pcur can be seen together as a distinguisher
D

honest but curious model” is at least as strong as (in fact, as we shall see

later, strictly stronger than) the notion of “indistinguishability of CG and G”.

Clearly, a distinguisher in the indistinguishability scenario will work in the

former scenario (def. 23) simply by ignoring the transcripts TCG↔F (or TS).

7.1.1 Transparent Constructions

Even though general indifferentiability seems to be much stronger than indif-

ferentiability in the honest-but-curious model (definition 23), we now show

that for certain types of constructions these two definitions are, in fact, equiv-

alent.
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Definition 24 (Transparent Constructions). A construction CG of G

(using oracle access to F) is a (tE, qE) transparent construction if there exists

a Turing machine E (called an “extracting algorithm”) such that for any

x ∈ dom(F) it is the case that ECF
G

,TCG↔F (x) = F(x). Here TCG↔F denotes

the transcript of all the communication between CG and F . E runs in time tE

and makes at most qE queries to CF
G for any input x, while dom(F) represents

the domain of F . And |x|, tD and qE are polynomial in the security parameter

λ.

Thus a transparent construction CF
G is such that it is possible to efficiently

compute F(x) at any input x by making a polynomial number of queries to

CG and observing the communication between CG and its oracle F .

Lemma 25. If a transparent construction CG (using F) is (polynomially)

indifferentiable from G in the honest-but-curious model (defn. 23) then it is

also (polynomially) indifferentiable from G.

Proof: Say that a construction CG is indifferentiable from ideal primitive

G in the honest-but-curious model. Then we have a simulator Shon that

successfully fakes the transcript TCG↔F (with TShon
) in the G model.

First, we will design a simulator Smal for general indifferentiability using

the simulator Shon. The simulator Smal needs to simulate the ideal primitive

F in G model. On getting a query x ∈ dom(F), Smal uses the extracting al-

gorithm E (for CG) to compute F(x). The extracting algorithm needs oracle

access to the construction CG and the communication transcript TCG↔F . The

262



simulator Smal replaces the construction CG with the ideal G oracle, which

it has access to. And it uses the “honest-but-curious” simulator Shon to pro-

duce a fake transcript for E. By definition 23 the extracting algorithm E has

no way to tell that it has oracle access to (G, TShon
) instead of (CG, TCG↔F).

This simulator conversion is illustrated in figure 7.3a.

Now we will show that the simulator Smal designed above actually works.

To the contrary, say there is a distinguisher Dmal with non-negligible ad-

vantage in the general indifferentiability game. Then we will design a dis-

tinguisher Dhon for the honest-but-curious indifferentiability scenario. Dhon

simply runs the “malicious” distinguisher Dmal and uses the extracting al-

gorithm E to simulate the F oracle for Dmal. Note that it is easy for Dhon

to run the extracting algorithm E, which needs the exact same oracles that

Dhon has access to. The new distinguisher is illustrated in figure 7.3b.

Say CG is a (tE, qE) transparent construction. Then if the simulator Shon

runs in time tShon
for every query, then Smal runs in time O(tShon

· qE + tE).

And if Dmal makes qDmal
queries and runs in time tDmal

then Dhon makes at

most O(qDmal
· qE) queries and runs in time O(tDmal

· tE).

This theorem essentially implies that if one is able to find a transparent

construction CG for an ideal primitive G and prove its indifferentiability in the

honest-but-curious model. This will also imply the general indifferentiability

of the construction CG.
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Dmal

E

FCG

Dhon

TCG↔F

E

G

S
′

a〉 Simulator Conversion b〉 Distinguisher Conversion

depicted in F model

TS

S

Figure 7.3: a. Conversion of the simulator S in honest-but-curious model to
simulator S ′ in general indifferentiability.
b. Conversion of the malicious distinguisher Dmal into an honest-but-curious
distinguisher Dcur.

7.2 The Construction

In this section, we will propose a construction for an ideal cipher E : {0, 1}κ×

{0, 1}2n → {0, 1}2n from a random oracle H : {0, 1}∗ → {0, 1}n. Note that

it suffices to give a construction Cπ of a single random permutation (RP)

π : {0, 1}2n → {0, 1}2n using H. Similar to the ideal cipher oracle, the

random permutation oracle π responds to both forward and inverse queries.

On input (0, x), it outputs y = π(x) and on input (1, y), it outputs x such

that π(x) = y. A constriction for the ideal cipher can be derived from this

RP construction by prepending the ideal cipher key to every query Cπ makes

to H.
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We will now concentrate on getting an indifferentiable construction of a

random permutation from RO, and all our results can be carried over to the

ideal cipher model using the technique mentioned above.

The Random Permutation Construction. We first note that the con-

structions in [47, 58] etc. are not necessarily indifferentiable from a random

permutation, since all these results are proven in the classical indistinguisha-

bility model. Here we will give an indifferentiable construction of random

permutation (RP) from the random oracle (RO) H : {0, 1}∗ → {0, 1}n. Sim-

ilar to [47, 58], our construction is based on multiple rounds of the Feistel

permutation. However, our proofs will be in the indifferentiability model.

We first formally define a “k round LR-construction”.

Definition 25 (k round LR-construction). Given functions hi ∈ Fn : i =

1 . . . k, the k round LR-construction Ψh1,...,hk
is essentially the composition

of k rounds of Feistel permutation, Ψhk
◦Ψhk−1

◦ . . . ◦Ψh1
.

We will basically use a k round LR-construction (with sufficiently large

k) to get a random permutation π : {0, 1}2n → {0, 1}2n. We will use inde-

pendent random functions hi for each round of the k round LR-construction

Ψh1,...,hk
. Note that it is easy to get these independent random functions

hi ∈ Fn from the random oracle H. These can be simply defined as hi(x) =

H(〈i〉 ‖ x) for i = 1 . . . k. Here 〈i〉 represents the log(k)-bit binary represen-

tation of i. The k round LR construction with round functions derived in

this fashion is denoted as Cπ,k. We conjecture that for sufficient number of
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rounds k this is an indifferentiable construction of RP from RO.

Conjecture 1. For a sufficient number of rounds k, the k round construction

Cπ,k (using a random oracle H : {0, 1}∗ → {0, 1}n) is an indifferentiable

construction of a random permutation π : {0, 1}2n → {0, 1}2n.

Even though we believe this conjecture to hold, we have been unable

to prove it formally. However, we will formally show that the k round LR

construction is indifferentiable from a random permutation in the honest-

but-curious scenario with a sufficient number of rounds k.

7.2.1 Transparency for O(log λ) Rounds

The question now is how many rounds should suffice to prove indifferentiabil-

ity in the honest-but-curious model? We first show that for upto a logarithmic

(in security parameter λ) number of rounds proving indifferentiability of the

LR-construction in the honest-but-curious model is no simpler than proving

its indifferentiability in general. Recall that a transparent construction is

one for which indifferentiability in the honest-but-curious model implies its

indifferentiability in the general model. We prove that for upto a logarithmic

(in λ) number of rounds the LR-construction is a transparent construction.

Theorem 33. The k round LR-construction Cπ,k is a (tE, qE) transparent

construction of the random permutation π from random oracle H for number

of rounds k = O(log(λ)). The running time tE and number of queries qE are

both polynomial in the security parameter λ.
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Proof: We need to design an extracting algorithm Ext that when given

access to (Cπ,k, TCπ,k↔H) can extract the values of H(〈i〉 ‖ x) for any x ∈

{0, 1}n and i ∈ {1 . . . k}. We will also refer to the function output H(〈i〉 ‖ x)

as hi(x).

The proof of this theorem is similar to the theorem 18 in chapter 5. In

particular, we will use the algorithm E (described there) that takes as input

a round number j and a 2n bit string Y , and finds the input such that Y

forms the j and (j + 1).

The extractor Ext gets as input 〈i〉 and x. It runs the algorithm E on

input ((i − 1), x′ ‖ x), for an arbitrary n bit string x′. It responds to the

queries made by E using the construction Cπ,k and can provide all interme-

diate round values from the transcript TCπ,k↔H . Upon finding this input X,

the extractor Ext simply sends this as a query to Cπ,k and learns the output

hi(x) from the transcript TCπ,k↔H .

This extractor Ext makes O(Fibonacci(k)) number of queries (and runs

in time O(Fibonacci(k)) as well), just like E. For number of rounds O(log λ),

this is polynomial in the security parameter λ.

Thus one can hope to prove indifferentiability of the LR-construction

for O(log(λ)) rounds in the honest-but-curious model, and it will imply the

general indifferentiability of the construction. However, there is no indication

to suggest that this task might be any easier than the general result.
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7.2.2 HBC Indifferentiability for ω(log λ) rounds

On the positive side, we prove the indifferentiability of the LR-construction

in the honest-but-curious model for a super-logarithmic number of rounds.

Theorem 34. The k round construction Cπ,k is (tD, tS, q, O ((q · k)5 · 2−n) )

indifferentiable from a random permutation π : {0, 1}2n → {0, 1}2n (with

security parameter λ) in the honest-but-curious model for k = ω (log(λ))

rounds. tS, n and q are all polynomial in λ.

Proof: The proof of this theorem consists of two parts: first, we will describe

the simulator S that fakes the communication between the construction Cπ,k

and H in the random permutation model, and next we will give a proof of

indifferentiability (in HBC model) using this simulator.

The Simulator. The simulator S gets inputs either of the form (0, x)

(forward queries) or of the form (1, y) (inverse queries), where x, y ∈ {0, 1}2n.

In the random oracle model, if the input (0, x) is given to the construction

Cπ,k, then Cπ,k makes queries to the random oracle H and computes the round

values R0 . . . Rk+1 where R0 = x|
L
, R1 = x|

R
and Ri = hi−1(Ri−1) ⊕ Ri−2

for i ∈ {2 . . . (k + 1)}. Inverse queries are handled in a similar fashion,

albeit in reverse, starting from Rk = y|
L
, Rk+1 = y|

R
and computing Ri =

hi+1(Ri+1)⊕ Ri+2 for i ∈ {k − 1 . . . 0}.

In the random permutation model, the simulator performs essentially

the same computation except that it simulates the round functions hi itself.

It maintains a table Thi
for each round function hi, in which it stores all
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previously generate round function outputs for hi. Consider a forward query

(0, x), thus R0 = x|
L

and R1 = x|
R
. The simulator generates a fake transcript

for this query as follows:

1. It forwards the query (0, x) to the random permutation π and gets

y = π(x). Thus, in our representation of the LR-construction Rk = y|
L

and Rk+1 = y|
R
.

2. Next, it checks to see if hk(Rk) is already defined. If so, then it checks

the tables Thk−1
, Thk−2

, . . . and so on to see if there exists a chain of

defined values [Ri−1 = hi(Ri) ⊕ Ri+1]i=k...bot, where bot ∈ {1 . . . k}. If

bot = 1, then all the round values for this query are already defined,

so it checks to see if (Rbot−1 ‖ Rbot) = x. If so, S returns this sequence

of round value/round function output pairs as the transcript to the

distinguisher, otherwise the simulator exits with failure since there is

no way to define the round function values consistent with π.

3. If bot > 1 then it checks to see if similarly there exists a sequence of

defined round values going down from R0 = x|
L

and R1 = x|
R
. That

is, a sequence of round values [Ri+1 = hi(Ri) ⊕ Ri−1]i=1...top, where

top ∈ {1 . . . k}. It then checks to see if top ≥ bot − 2. If so, then it

exits with failure since it cannot be consistent with both π and the

previously generated fake transcript.

4. If everything goes well until this point, then the simulator S starts

defining the missing round function outputs between top and bot. It
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defines the function outputs htop+1(Rtop+1) . . . hbot−2(Rbot−2) at random.

It connects the top and bottom sequences of round values by defining

hbot−1(Rbot−1) = Rbot ⊕Rbot−2 and hbot(Rbot) = Rbot+1 ⊕Rbot−1.

5. After completing the entire chain in this fashion, S sends it to D.

Thus the simulator simply tries to define all round function values randomly.

However, it first scans to see if some of the intermediate round values were

already defined in its previous responses. It does so both starting from top

and bottom, and defines the undefined round function outputs in the middle

at random but making sure that it connects the two partial sequences of

round values. If it so happens that there are no undefined round values in the

middle, then it realizes that it cannot be consistent with both these partial

sequences of defined round values simultaneously and exits with failure.

Proof of HBC Indifferentiability. Now we will prove that when the

simulator S described above is used in the indifferentiability game, then any

distinguisher D that makes at most (a polynomial) q queries to its oracles has

only a negligible distinguishing advantage. Here q and n (the output length

of H) are both polynomial functions of the security parameter λ, while the

number of rounds in the LR construction is k = ω(log(λ)). As we mentioned,

our proof proceeds via a hybrid argument.

Hiding the random permutation π: Let us start in the random permuta-

tion scenario. Here the distinguisher has oracle access to π and the simulator

S. Our first modification is to prevent D from directly accessing π, by re-
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placing it with a simple relaying algorithm M that acts as an interface to

π. WhenM gets a query from the distinguisher, it simply relays this query

to the random permutation π and sends back the response of π. In this

new scenario, the distinguisher has oracle access to Mπ and Sπ (see figure

7.4a). Since we have made no real change from the point of view of the

distinguisher, we have Pr[D(π,TSπ) = 1] = Pr[D(Mπ ,TSπ ) = 1].

Bounding out the “bad events”: Now we will modify the simulator S, so

that it never outputs certain types of collisions that will affect our analysis

later. Recall that the simulator S needs to define the round function values

h1(R1) . . . hk(Rk) in order to generate the transcript TS for every query made

to it. And S tries to assign random values to hi(Ri) for any new Ri.

Now we introduce a slightly modified simulator S1 that is essentially the

same as S except that it chooses round function values more carefully. Let us

first fix a little notation. We will number the queries made to the simulator

in the order they are made, query number 1 followed by 2 and so on. And

for the mth query made to the simulator, we will label its round values as

R
(m)
0 , R

(m)
1 , . . . , R

(m)
k , R

(m)
k+1.

When assigning a new round function value hi(R
(m)
i ) for query number m,

the new simulator S1 makes sure that the new round round value generated,

i.e. R
(m)
i+1 (resp. R

(m)
i−1) if the mth query is a forward query (resp. inverse

query), cannot be represented as an XOR of upto five previously existing

round values. That is, the simulator S1 intentionally prevents a 5-XOR

condition (see chapter 5) from occurring in its responses.
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The distinguisher cannot tell if it has oracle access to (M, S) or (M, S1)

unless the old simulator S outputs a round function value that results in the

5-XOR condition being true. Let us denote this event by B1. Hence for any

distinguisher D making q queries,

∣

∣

∣
Pr

[

D(Mπ ,TSπ ) = 1
]

− Pr
[

D
(Mπ ,TSπ

1
)
= 1

]∣

∣

∣
≤ Pr [B1]

We can bound the probability of B1 occurring by noticing that for randomly

assigned round function values, Pr [B1] = O
(

(q·k)6

2n

)

. This can be derived by

using the birthday paradox to bound the probability that any XOR of upto

6 round values is 0n.

Transferring Control to the Simulator: Next we will modify the relay-

ing algorithm M so that it does not simply act as a channel between the

distinguisher and π. The new relaying algorithm, which we will call M1,

responds to the π queries by making the same queries to the simulator S1

and computing π(x) (or π−1(y)) from the responses of S1 (see figure 7.4b).

To illustrate this point, sayM1 gets a query (0, x) from the distinguisher

D (that is, a forward query to π). Then M1 forwards this query to S1,

which in turn gets y = π(x) from the random permutation and constructs a

fake transcript TS1
(0, x) (or round values R0 = x|

L
, R1 = x|

R
, . . . , Rk+1). If

all goes well this transcript is consistent with π. The simulator sends this

transcript TS1
(0, x) toM1, which can recover π(x) from TS1

and respond to

the distinguisher D with this value. Inverse queries 1, y) are handled in a
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similar fashion.

From the view of D, everything in this scenario is same as in the previous

one unless the simulator S1 exits with failure on some query made by M1.

This happens if and only if S1 fails to be consistent with the random per-

mutation π on some query. We claim that if the number of queries q made

by the distinguisher D is polynomial in the security parameter λ then the

simulator S1 is always consistent with π.

Lemma 26. For a polynomial number of queries q made to the simulator

S1, the responses of the simulator are always consistent with the random

permutation π.

Proof: In fact, this lemma can be seen as a consequence of the combinatorial

lemma 20 from chapter 5. In order to see this, consider the situation in which

the simulator S1 exits with failure. This occurs if there exist partial sequences

of round values R
(m)
0 , R

(m)
1 , . . . , R

(m)
top , R

(m)
top+1 and R

(m)
bot−1, R

(m)
bot , . . . , R

(m)
k , R

(m)
k+1

with top ≥ bot − 2. But in this case, either top ≥ (k/2) or bot ≤ (k/2) + 1.

Thus, we can deduce that at least one of the round function outputs hk/2(R
(m)
k/2

or hk/2+1(R
(m)
k/2+1 is already defined. This can only occur if the corresponding

round value in the mth query collides with the corresponding round value

in an earlier query. Moreover, this earlier query must be different from the

mth query, otherwise the simulator S1 would not have been inconsistent in

the mth query. Hence, the (k/2)th or the ((k/2) + 1)th round value collides

for two of the queries made by the distinguisher. But since the simulator S1

makes sure that the 5-XOR condition does not hold, we can deduce that the
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number of queries q made by the distinguisher must be exponential in the

security parameter, i.e. q = O(1.3803k).

Thus for any distinguisher D that makes q queries q = poly(λ), it is the case

that Pr[D
(Mπ ,TSπ

1
)
] = Pr[D

(M
TSπ

1 ,TSπ
1

)
].

Removing the Random Permutation π: Until now, all responses of the

simulator are forced to be consistent with π. Now we will modify the simu-

lator S1 and get closer to the actual random oracle scenario. The new sim-

ulator, which we shall denote by S2, does not attempt to output transcripts

consistent with π. As before, it implements the k round LR-construction with

randomly assigned internal round functions. But now it also implements the

last (or first) couple of round functions hk−1, hk (or h2, h1) with randomly

chosen values (see figure 7.4c), so that the actual permutation output may

not be consistent with π.

To illustrate this, when the new simulator S2 gets a forward query (0, x).

It computes R0 = x|
L
, R1 = x|

R
and assigns random values to h1(R1), . . . , hk(Rk).

It then sends the round values R0, . . . , Rk+1 as the transcript for the query

(0, x). Inverse queries are handled in a symmetrical fashion. The relaying

algorithm, M1, as before uses these transcripts to compute its responses to

D’s queries.

Note that the distinguisher cannot tell this scenario apart from the pre-

vious scenario, unless

• the new simulator S2 violates the XOR constraint satisfied by S1. We

call this event B3.
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• the old simulator S1 exits with failure. We call this event B4.

Lemma 26 implies that the event B4 does not happen for any distinguisher

D that makes a polynomial number of queries. Thus for any distinguisher D

making at most a polynomial number of queries q,

∣

∣

∣

∣

Pr

[

D
(M

TSπ
1 ,TSπ

1
)

]

− Pr
[

D(M
TS2 ,TS2

)
]

∣

∣

∣

∣

≤ Pr [B3] = O

(

(q.k)4

2n

)

Onto the Random Oracle Model: Note that the previous scenario is es-

sentially the same as the random oracle scenario, since all round function

values chosen by S2 are random. Therefore for any distinguisher D (figure

7.4d), we have Pr[D(M
TS2 ,TS2

)] = Pr[D(CH
π,k

,TCπ,k↔H) = 1].

Combining all the above hybrids, for any distinguisher D that makes at

most q queries,

∣

∣

∣Pr
[

D(CH
π,k

,TCπ,k↔H) = 1
]

− Pr
[

(Dπ,TSπ ) = 1
]

∣

∣

∣ < O

(

(q · k)4

2n

)

Here q and n are polynomial in the security parameter λ, and k = ω(log(λ)).

In fact, with a slightly more carefully designed simulator S1 that avoids an

XOR of specific round (function) values, one gets that the distinguishing

advantage of D is O
(

q4

2n

)
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Figure 7.4: Overall Game Structure

7.2.3 Non-transparency for ω(logλ) rounds

One can deduce from theorem 34 that if the LR-construction with ω(log λ)

rounds is a transparent construction, then it will imply the general indiffer-

entiability of this construction too. Unfortunately, we show that for number

of rounds ω(log(λ)) the LR-construction is not a transparent construction.

Theorem 35. The k round LR-construction Cπ,k is not a transparent con-

struction of the random permutation π for number of rounds k = ω(log(λ)).

Proof: This theorem can also be derived as a consequence of the lemma 26.

In particular, if there exists an extracting algorithm Ext that can compute

hi(x), given as input 〈i〉 ‖ x, then it cannot be efficient for number of rounds

k = ω(logλ). In particular, if Ext works for the k round LR-construction

Cπ,k with the actual round values, then it should also work for the hybrid
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scenario in figure 7.4b, where it has oracle access to π and the round values

are faked by the simulator S1 (that avoids the 5-XOR condition).

However, in this case, we can show that if Ext is efficient, then we can

construct another (efficient) algorithm A that finds two queries that collide in

the (k/2)th round value. In particular, A chooses a random input X ∈ {0, 1}2n

and makes this query to π (and gets all intermediate round values from S1).

It then runs the extracting algorithm Ext with input 〈k/2〉 ‖ Rk/2 (where

Rk/2 is the round value that it gets from the faked transcript of S1). Since

Ext is extremely unlikely to guess the input X used by A, it will find out

hk/2(Rk/2) through a permutation query to π that is different from X, with

overwhelming probability. The collision finding algorithm A can get this

different input by keeping track of the queries made by Ext, and thus find two

queries that collide in the (k/2)th round value. However, this is impossible

from the combinatorial lemma 20 from chapter 5, since S1 prevents the 5-

XOR condition from holding.

7.2.4 Negative Results for Constant Rounds

Finally, we mention that one does need to use sufficient number of rounds

of the Feistel permutation in the construction, to have any hope of proving

it indifferentiable. Coron [20] showed that for less than 6 rounds the LR-

construction is not indifferentiable from a random permutation.

277



Theorem 36 ([20]). Let Cπ,k be the k round LR-construction of a random

permutation π, with number of rounds k < 6. Then there is an efficient

distinguisher D such that for any simulator S, D can distinguish the oracle

pair (Cπ,k, H) and (π, S) with non-negligible probability.

Proof: It is easy to see that the construction (Cπ,k, H) cannot work for k < 4,

since in this case it does not even satisfy the classical indistinguishability

definition [47]. Coron [20] gave attacks on 4 and 5 round LR-constructions

in the indifferentiability scenario. We give an attack on the 4 round LR

construction here for illustration.

Let us represent the round values of the construction Cπ,4 as R0, R1 . . . R4, R5,

such that Cπ,4(R0 ‖ R1) = (R4 ‖ R5). And the round functions will be de-

noted as h1, . . . , h4. Now consider any simulator S for which we get the

two scenarios: (Cπ,4, H) and (π, S). We will design a distinguisher D that

distinguishes these two with high probability for any simulator S.

The distinguisher D essentially forces the simulator to satisfy a constraint

that holds with very low probability for an RP π. On the other hand, it

always holds for the LR-construction Cπ,4. The algorithm of D is as follows:

1. Choose 3 arbitrary n bit strings, R2, R′
2, R3.

2. Query the random oracle H to get h2(R2), h2(R
′
2) and h3(R3), in this

order.

3. Compute R1 = h2(R2)⊕R3 and R′
1 = h2(R

′
2)⊕ R3.
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4. Query the random oracle to get h1(R1) and h1(R
′
1). Compute R0 =

h1(R1)⊕ R2 and R′
0 = h1(R

′
1)⊕R2.

5. Query the random permutation on R0 ‖ R1 and R′
0 ‖ R′

1 to get the

values R4 ‖ R5 and R′
4 ‖ R′

5, respectively.

6. Check if R4 ⊕R′
4 = R2 ⊕ R′

2. If so, then output 1 else output 0

Note that the values R2 and R′
2 were queried upon before R3. Hence the

round values R1 and R′
1 are completely arbitrary round values controlled by

the distinguisher. The distinguisher D always outputs 1 when given access to

the construction Cπ,4. But when given access to the random permutation, the

simulator S will need to find h1(R1) and h1(R
′
1) that satisfy the constraint:

π((h1(R1)⊕ R2) ‖ R1)|L ⊕ π((h1(R
′
1)⊕ R′

2) ‖ R′
1)|L = R2 ⊕R′

2

In this equation R1, R′
1, R2 and R′

2 are all effectively chosen by the dis-

tinguisher. Hence no efficient simulator can find two round function values

h1(R1) and h1(R
′
1) that satisfy the above constraint with non-negligible prob-

ability for a random permutation π.

This theorem also implies that indifferentiability (even in the honest-but-

curious model) is strictly stronger than classical indistinguishability. This is

because the LR-construction with 4 rounds or more is known to satisfy the

latter [47]. Thus we can derive the following corollary from theorem 36.
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Corollary 3. A 4 round LR-construction is indistinguishable , but not in-

differentiable, from a random permutation (even in the honest-but-curious

model).
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