
Thinksheet: A Tool for Information Navigation

by

Peter Piatko

A dissertation submitted in partial ful�llment

of the requirements for the degree of

Doctor of Philosophy

Department of Computer Science

New York University

September, 1998

Approved:
1

Professor Dennis Shasha

Research Advisor

c Peter Piatko

All Rights Reserved 1998

To my grandmother, Helen.

iii

Acknowledgments

I wish to give my deepest thanks to my advisor and friend, Professor Dennis Shasha. He

introduced me to the wonderful world of complex documents, and has given me great

advice ever since.

I am especially grateful to Churngwei Chu, for supporting me all these years.

She also provided excellent editoral advice for nearly every page of this thesis. I would

also like to thank David Tanzer for his role as editor.

Special thanks go to all those who are now or were in the past on the Thinksheet

project. This includes, but is not limited to, David Tanzer, Roman Yangarber, Dao-i

Lin, and Christopher Jones. Without their help, Thinksheet would never have been

fully realized.

I would also like to thank Arash Baratloo and Fangzhe Chang, who volunteered

their time to keep the computers in several oÆces running|including the one on my

desk.

Finally I would like to thank my parents, my sister Christine and my brother-in-

law Richard. They provided unwavering support for my studies. Christine and Richard,

having gone through the same process themselves, were able to provide invaluable ad-

vice.

iv

Table of Contents

Dedication iii

Acknowledgments iv

List of Figures viii

List of Tables x

List of Appendices xi

Abstract xii

1 Introduction 1

1.1 Introduction to the Thinksheet Model 2
1.2 Applications . 5

1.2.1 Immigration Law . 5
1.2.2 Social Security Bene�ts . 6
1.2.3 Telecommunications Requirements 7

1.3 Related Work . 7
1.3.1 User Interfaces . 7
1.3.2 Expert Systems . 8
1.3.3 Automatic Text Summarization 8

1.4 Outline of Thesis . 9

2 Thinksheet Model 10

2.1 Terminology of First Order Logic . 10
2.2 The De�nition of a Thinksheet . 11
2.3 Thinksheet's Three-valued Logic and E�ective Values 12
2.4 A Rationale for the E�ective Value of a Node 14
2.5 A Thinksheet Graph . 15
2.6 States and Consistent States . 16
2.7 Node Domains . 17

v

3 The Thinksheet Interface 19

3.1 The Spreadsheet Interface . 19
3.2 Reader Interface . 22

3.2.1 A Trial Strategy . 22
3.2.2 A Corporate Billing Plan . 26

3.3 The Writer Interface . 28
3.3.1 The Thinksheet Language . 29
3.3.2 Smart�elds . 31
3.3.3 Building a Thinksheet . 34
3.3.4 Report Format . 36

3.4 The Implementation and the Formal Model 38
3.5 The World Wide Web Interface . 39
3.6 The Tcl Interface . 40

3.6.1 Loading a Thinksheet in Tcl . 40
3.6.2 Cells in the Tcl Interface . 40
3.6.3 An Example Tcl Program . 41

4 Algorithms for Maintaining Consistency of a Thinksheet 45

4.1 Propagation . 45
4.1.1 Running Time of Propagation . 48

4.2 Optimization of Boolean Formulas . 48
4.2.1 Classifying Boolean Expressions 50
4.2.2 Checks for Boolean Formulas . 51

4.3 The New Propagation Algorithm . 52
4.4 A Full Example of Propagation . 53
4.5 Optimization Experiments . 56

4.5.1 Experiment One . 56
4.5.2 Experiment Two . 58

5 Thinksheet Implementation 60

5.1 The Core Thinksheet System . 60
5.1.1 Smart�eld Processing . 64

5.2 Implementation of the Spreadsheet Interface 65
5.3 Implementation of the CGI World Wide Web Interface 66

6 Thinksheet and Metadata 69

6.1 A Metadata Model for Thinksheet . 69
6.1.1 Tables as Values for Nodes . 70
6.1.2 Querying a Table . 70
6.1.3 Mutual Restriction . 72

6.2 Related Work . 76

vi

7 Conclusion and Future Work 77

7.1 Conclusion . 77
7.2 Future Work . 77

7.2.1 User Interfaces . 77
7.2.2 Querying a Thinksheet . 78
7.2.3 New Applications . 79

Appendices 80

Bibliography 128

vii

List of Figures

1.1 Immigration law with variables and preconditions. 3

2.1 A example Thinksheet graph. 16

3.1 Screen shot of the trial strategy Thinksheet. 20
3.2 The trial Thinksheet after clicking on the About Trial cell. 21
3.3 The trial Thinksheet after clicking on the Crime Scene cell. 22
3.4 The trial Thinksheet after answering the question for Crime Scene. . . . 23
3.5 The result of the trial Thinksheet after answering more questions. . . . 24
3.6 A telephone billing plan for toll-free calls. 25
3.7 The �rst question presented to the reader of the telephone billing Think-

sheet. 26
3.8 The billing plan Thinksheet asks for the usage pattern of the 05 calls. . 27
3.9 After entering in the usage pattern, the reader gets a recommendation

for how me he should commit. 27
3.10 The recommendation of the billing plan for the reader. 28
3.11 An example of if and while statements and of a function declaration in

the Thinksheet language. 30
3.12 Example text containing Smart�eld directives. 31
3.13 Example of the %insertcontents% directive. 32
3.14 Preambles allow local variables inside a Smart�eld. 33
3.15 Using a Smart�eld for questions. 33
3.16 Example of the %servercommand% directive. 34
3.17 The titles and preconditions of the trial strategy. 35
3.18 The Smart�eld for the �nal advice in the telephone billing plan. 36
3.19 Two nodes of a Thinksheet represented in the report format. 37
3.20 Screen shot the Web interface. 39
3.21 The printNode Tcl procedure. 41
3.22 The printNode procedure is executed when a node is answered, and other

nodes' statuses change. 42
3.23 The main Tcl program. 42
3.24 The doNothing and cellUpdate Tcl procedures. 44

viii

3.25 The randomAnswer Tcl procedure. 44
3.26 The random Tcl procedure. 44
3.27 The extractNumber Tcl procedure. 44

4.1 Using depth-�rst search for propagation may result in visiting a node
multiple times. 46

4.2 The nodes' initial e�ective values . 54
4.3 The nodes' e�ective values after propagation 57
4.4 The results of experiment one. 58
4.5 The results of experiment two. 59

5.1 The user sets the answer to node N1. 62
5.2 The nodes are topologically sorted. 62
5.3 The nodes that are marked evaluate are re-evaluated. 63
5.4 Node N1 updates. 63
5.5 Smart�elds and lazy evaluation. 64
5.6 The initial interaction when starting a Thinksheet in the WWW interface. 67
5.7 The interaction between the Browser and the Thinksheet instance. . . . 68

D.1 Screen shot of a Tcl/Tk interface. 114
D.2 Tcl/Tk code to create a grid of buttons for the spreadsheet interface. . . 117
D.3 Tcl/Tk code to create the buttons for scrolling. 117
D.4 Tcl/Tk code to load the Thinksheet and create a cell for each node. . . 118
D.5 The de�nition of the refresh procedure. 118
D.6 The de�nition of the cellUpdate procedure. 119
D.7 The de�nition of the buttonClicked procedure. 119

ix

List of Tables

4.1 The symbols used when discussing the optimizations of propagation. . . 50
4.2 Checks for Simple and Positive Simple Formulas 50
4.3 The topological sort of the trial strategy nodes. 53
4.4 The preconditions of the nodes in the topological sort. 53
4.5 The result after completing a loop of propagation 55
4.6 The result after completing a loop of propagation 55

6.1 A table with movie data. 73
6.2 A table with museum data. 74
6.3 A table with theater information. 74
6.4 A table with showtimes. 74

A.1 Case by case analysis of the proof of Lemma A.1 for the conjunction of
two formulas. 82

A.2 Case by case analysis of the proof of Lemma A.1 for the disjunction of
two formulas. 83

x

List of Appendices

A Proofs of Optimizations in Propagation 80

B The Thinksheet Language 86

C Smart�eld Directives 99

D The Tcl Interface 109

E The Thinksheet API 120

xi

Abstract

Thinksheet: A Tool for Information Navigation

Peter Piatko
New York University, 1998

Research Advisor: Professor Dennis Shasha

Imagine that you are a \knowledge worker" in the coming millenium. You must syn-

thesize information and make decisions such as \Which bene�ts plan to use?" \What

do the regulations say about this course of action?" \How does my job �t into the

corporate business plan?" or even \How does this program work?" If the dream of

digital libraries is to bring you all material relevant to your task, you may �nd yourself

drowning before long. Reading is harder than talking to people who know the rele-

vant documents and can tell you what you're interested in. That is what many current

knowledge workers do, giving rise to professions such as insurance consultant, lawyer,

bene�ts specialist, and so on.

Imagine by contrast that the documents you retrieve could be tailored precisely

to your needs. That is, imagine that the document might ask you questions and produce

a document �ltered and organized according to those you have answered.

We have been developing software that allows writers to tailor documents to the

speci�c needs of large groups of readers. Thinksheet combines the technologies of expert

systems, spreadsheets, and database query processing to provide tailoring capabilities

for complex documents. The authoring model is only slighly more complex than a

spreadsheet.

This thesis discusses the conceptual model and the implementation of Think-

sheet, and applications for complex documents and metadata.

xii

Chapter 1

Introduction

Consider the following example taken from a recent bill in the United States Congress
[Imm97]:

: : : Notwithstanding section 203 of the Immigration and Nationality Act,
during the immigration moratorium under section 2, in lieu of the number
of visas that may be allotted under section 203 of such Act|

(1) the number of visas that shall be allotted to family-sponsored immi-
grants under section 203(a) of such Act shall be 10,000 for quali�ed
immigrants under section 203(a)(2)(A) of such Act and zero for other
family-sponsored immigrants : : :

A reader unfamiliar with the law would have to �nd the cross references and
then make sense of it all. After doing all of this searching, he may realize that this
particular section is not even relevant to him, resulting in frustration and wasted time.

Such a law is an example of a complex document. Laws, regulations, require-
ments documents, and insurance plans form a small list of examples. In characterizing
complex documents, we can say the following:

1. They are diÆcult to read because they are structurally complex.

2. Only a small portion, which is usually non-consecutive, applies to a particular
reader.

Writers of complex documents do not have it any easier. Organizing, checking for
inconsistencies and other factors make writing a complex document a time consuming
and diÆcult task.

We have developed a model for reading and writing complex documents and
also implemented a system based on this model. This system is called Thinksheet.
Thinksheet combines the technologies of expert systems, and database query processing
and hypermedia to provide tailoring capabilities for complex documents. Thinksheet
helps the reader by tailoring the complex document to his needs. Thinksheet has an

1

easy authoring model that allows the writer to specify when each portion of the complex
document is relevant.

In the next section we describe our motivation and informally describe the Think-
sheet model. Section 1.3 discusses related work. Finally, Section 1.4 gives an outline
for the rest of the thesis.

1.1 Introduction to the Thinksheet Model

Before we can provide a tool for complex documents, we have to know what one is.
What makes a document complex? Research in the hypertext community gives us some
idea of what makes a document complex. For example, three rules where hypertext can
be useful are given in [Shn89]. They are that:

1. there is a large body of information organized into fragments,

2. the fragments relate to each other, and

3. the user needs only a small fraction at any time.

We may assume that if hypertext is \useful" for a document then the document
is probably complex. Therefore the above three items might be considered as rules
of thumb for judging complexity. The diÆculty a reader faces in reading a complex
document is �nding the small fraction of document fragments that he needs. So, how
does the reader retrieve the right set of fragments?

Following a database model, we can associate a set of attributes with each frag-
ment. Retrieval would be based on a query over the attributes.

For example, suppose we had a museum guidebook. We might associate at-
tributes for each museum. A museum might specify a Price (such has High or Low), a
Location, and a Subject (Art, Science, etc.). Then a reader might specify a query to
retrieve the relevant museums.

There are two potential problems with this method. First, it is well known
that people have trouble specifying boolean queries [WS94]. Second, while this method
seems good for a simple guidebook, it does not work well with documents with a more
complicated structure, such as laws or regulations. Simply adding a bunch of attribute-
value pairs to each chunk of law or regulation loses information.

We propose another method. Instead of putting attributes on each fragment,
Thinksheet will put some condition on it which speci�es whether it is relevant to the
reader.

One way of doing this is by associating a boolean formula with each fragment.
If the boolean formula is true, then the fragment is relevant. We will call this boolean
formula a precondition.

The precondition will contain variables to be �lled out by the reader. We will
associate a question with each variable to present to the reader. The reader's answer to
the question will be the variable's value. For example, for the variable named Family,

2

Do you have a family
member who is a citizen
of this country?

Family

Relation
How is the family
member related?

Family = yes

Are you currently
employed?

Employed

You may qualify for
family based immigration ...

Relation = Parent

What is your
yearly income?

Income

Employed = yes

Job Location
Where is your
job located?

Employed = yes

In which category
is your job?

Job Type

Employed = yes

Your position in the
technology industry
means that ...

Job Type = Technology
and not (Job Location = California)
and Income > 50000

Figure 1.1: Immigration Law with variables and preconditions. Rounded edged boxes
represent variables. Squared o� boxes represent the text of the document. Variable
names are the topmost words in italics. Preconditions are in italics below the boxes.

3

we can associate the question \Do you have a family member who is a citizen?" A
particular portion of immigration law might have the precondition Family = yes. If the
reader answered the question with yes, that portion's precondition would become true,
and is therefore relevant to the reader.

Now the reader does not have to give some sort of boolean query in order to get
back the relevant fragments. Instead, he answers some questions|which give variables
their values|and those fragments with true preconditions (based on the values of the
variables) will be considered relevant.

Boolean preconditions allow us to specify more complicated conditions for rel-
evancy. For example, a particular piece of immigration law might be relevant if the
immigrant's income is greater than $50,000 and he is employed in the technology indus-
try but not if that job is in the state of California (where a di�erent portion of the law
might apply). This kind of condition would be hard to represent using the relational
model without causing an explosion in the number of attributes.

However, the reader has to answer a lot of questions. Some of the questions
themselves may not be relevant to the task at hand. To continue with the immigration
example, suppose the immigrant is interested in gaining citizenship through his pro-
fessional employment. He already knows that he can not �ll in the variables to gain
citizenship through family relations, so variables related to that condition are irrelevant.
The potential citizen would prefer not to wade through all these irrelevant variables.

We can add preconditions to variables, just as we have done with fragments.
Thus, the reader can �ll out only those variables with true preconditions. Those with
false preconditions will not be presented to him. For example, in Figure 1.1, the variables
Relation, Job Industry, Job Location and Income all are dependent on either Family or
Employed. The potential immigrant could simply �ll in Family with the value no and
any other variables related to that topic|i.e. variables with the precondition Family =
yes|would disappear.

On the other hand, if the immigrant �lls in Employed with yes, then the pre-
conditions for Job Industry, Job Location, and Income become true. Thus, since those
questions are now relevant, he can now answer them. Suppose he subsequently answers
Job Industry with Technology, Job Location with New Jersey and Income with 60000.
Then the portion of text beginning with the phrase, \Your position in the technology
industry means that : : : ," will be presented to him because that portion of immigration
law will be considered relevant.

The reader interaction with the system might be something like this:

1. The reader answers any of the initial questions he desires.

2. Some questions and document chunks disappear because their preconditions be-
come false, while others are highlighted because their preconditions become true.
The reader may answer more questions whose preconditions are true. This process
continues until he answers all relevant questions or decides to stop.

4

3. Those document chunks with true precondition formulas will be presented to the
reader.

Once the reader is done answering questions, the remaining document chunks
represent the fragments of the reader's choice. The document has now been tailored to
present only the information that is relevant to the reader's needs.

This collection of questions, document chunks and preconditions is what we call
a Thinksheet. The model will be formally explained in Chapter 2, and the working
system will be discussed in Chapter 3.

The contributions of this dissertation are:

1. The Thinksheet model, which is a model for complex documents.

2. A implementation based on this model, which we call Thinksheet, which can be
used to read and write complex documents.

1.2 Applications

1.2.1 Immigration Law

In the summer of 1996, Emma Dickson created a Thinksheet about United States im-
migration law which gives advice on how to immigrate into the country based on many
di�erent criteria. At the time of the creation of this Thinksheet, Emma Dickson was
a college undergraduate majoring in history. Her experience with computers had been
mainly with popular business applications, such as word processors and spreadsheets.
After some initial tutoring, Ms. Dickson was able to create the Thinksheet on her own.
The �nal Thinksheet is approximately 70 nodes.

This Thinksheet breaks a summarization of the immigration law into many dis-
tinct pieces. There is a separate node holding each piece. Whether a particular piece
applies to a reader is reected in the preconditions of the node holding that piece.

The questions posed to the reader initially deal with broad categories. They are:

� Family. This category is of interest to the reader who has a relative who is already
a citizen or a permanent resident.

� Employment. This category is of interest to the reader who wishes to immigrate
based on his employment.

� Political. This category is of interest to the reader who wishes to be granted
political asylum.

� Country of origin. The rules for immigration may also depend on the country of
origin.

5

� Investment. This category is for readers who wish to invest money into U.S.
businesses.

Each of these categories starts out with one question. For example, the Family
category has the following question:

Do you have any relative who lives in

the United States legally?

1. Yes, my relative is a U.S. Citizen.

2. Yes, my relative is a permanent resident.

3. No.

If the reader picks choice 1 or 2, then he will be asked more questions about his
relatives in the states (for example, what the relationship of this relative is).

If the reader had chosen 3, all questions about relatives would disappear because
they are now irrelevant.

To make the reading result easier, another node, called Final Advice, consolidates
the text of all the other \piece" nodes. Because of the way Final Advice has been created,
if the reader answers none of the questions and selects this node, he will see the entire
document about immigration. Answering more questions narrows down the amount of
information shown at the end. However, the reader need not answer all of the questions
presented to him. At any time, he may stop that activity and select Final Advice. If
he feels that the information has not been narrowed down enough, he may go back and
answer more questions.

1.2.2 Social Security Bene�ts

In the summer of 1995, Christopher Jones, a sophomore undergraduate, created a Think-
sheet that calculates disability and survivorship bene�ts for Social Security in the United
States. The entire Thinksheet is approximately 150 nodes, the largest created so far.

As the student worked on this Thinksheet, we were prompted to add new features
to the system. Some of these features were additions to the user interface|e.g. making
it easier to edit the text of the Thinksheet. Other features included extensions to the
Thinksheet language (see Section 3.3.1).

A reader of this Thinksheet must �ll in the annual income for all the years
he has worked, plus information about his immediate family. However, suppose this
information were stored in a database. Upon entering the reader's name, Thinksheet
could �ll in the relevant information.

To show that this feature could be incorporated into Thinksheet, a database of
�ctitious people was created, along with their income and family information. If the
reader enters in one of those names, then the relevant information is �lled in automati-
cally by Thinksheet.

6

The resultant text is highly tailored to the individual reader. For example,
pronouns are calculated based on the answers and dynamically generated. This tailoring
is done through the use of the Smart�eld directives (see Section 3.3.2 and Appendix C).

1.2.3 Telecommunications Requirements

In the summer of 1996, Peter Piatko worked at Bellcore and used Thinksheet for a
project there which deals with the design of new telecommunications services. When
designing such services, the designer must take into consideration how the new service
may interact with other existing services. This requires knowledge about the require-
ments (and how implementations may di�er from those requirements) of the services and
protocols. This information is stored in a large body of requirements documentation.

In general, the designer references only a small portion or a small number of non-
consecutive portions of the documentation at any one time, and �nding that information
can be diÆcult and time-consuming. Thinksheet is used as a way to guide the designer
through one proprietary Bellcore requirements document, titled SR3803: Interactions
between Switch-Based and AIN Features. Because these requirements are subject to
change, the text of the document was stored in a database, which Thinksheet then
extracted by constructing the proper SQL queries based on the reader's answers to
questions.

Preliminary use of this application has met with promising results. Gri�eth, the
project director, has the following to say about Thinksheet's role [Gri97]:

The Thinksheet database has been one of the central software compo-
nents used in a project that I directed in 1996{1997 at Bellcore. It provided
easy and intuitive access to the requirements involved in a particularly dif-
�cult phase of the design process for a new telecommunications service. We
have found it easy to teach to new users and they �nd it a useful way to
access information.

1.3 Related Work

1.3.1 User Interfaces

There have been a number of user interfaces developed for the purpose of navigating
through large information spaces. Most of the interfaces are based on two observations:

1. Users usually are interested in details of a small portion of the information space.
This section of detail is called the user's focus.

2. Users would like to navigate through the information space without getting \lost."
Thus, they would like to know the context around the point which they are focusing
so as to allow them to navigate to other sections of the information space in a
straight-forward manner.

7

These focus+context techniques generally do not show the whole information
space at once, but rather give the user details of the focus and enough portions of the
rest of the information space to allow him to understand the focal point in the context
of the whole.

While this technique exists for the most part for hierarchical data structures,
the idea of tailoring the information space by providing details only for the focal point
is similar to our idea of tailoring complex documents. However, while these graphical
techniques may be used to view the overall structure of a complicated document, they
can not store as complicated semantics as Thinksheet's preconditions can.

Example of such focus+context techniques include �sheye views [Fur86], graph-
ical �sheye views [SB92, SSTR93], and Pad and Pad++ [BH94, PF93].

1.3.2 Expert Systems

Expert systems encode the knowledge of experts in a specialized subject with the aim
of solving a problem or giving advice [Jac90]. Thinksheet may be thought of as trying
to do something similar|we want to use the system to encode an expert's knowledge
of a complex document. But Thinksheet takes a simpler approach that avoids some of
the common pitfalls of expert systems.

A common problem with expert systems is that a new application of an exist-
ing expert system often requires that a whole new expert system be written [HRWL84,
Ign91]. The main reason is that there is no easy separation in such a system between (its
often very powerful) rules and data. Furthermore, expert systems have the added com-
plexity that they are state-driven|sometimes inputting the same values twice will not
result in the same output. They also often depend on non-deterministic techniques such
as conict resolution, making programming such systems diÆcult. These are reasons
they have been criticized in the industrial literature [Mer94].

At this point, Thinksheet shares the rule bias of an expert system without its
powerful rule language (e.g. Thinksheets don't allow recursion). In a Thinksheet ap-
plication, rules are encoded into the precondition and answer formulas. As questions
are answered by the user, nodes change their truth values and answers change their
values. The net e�ect is that the set of possible queries is �xed. This works well for
many applications, but does not constitute a separable query language (see Chapter 7
for future work on this, however).

1.3.3 Automatic Text Summarization

Automatic text summarization systems summarize documents through automatic or
semi-automatic means, allowing the reader to use the summaries as a source of infor-
mation instead of having to read whole documents. Typically these systems either use
a statistical approach to extract sentences from a document, which are then used as a
summary, or they use natural language processors to process a document (or group of
documents) and then use a language generator to produce a summary [KR96].

8

These systems and Thinksheet share the common goal of providing only the
relevant information to the reader, but summary generators operate on a di�erent class
of documents. Generally, they have been used to generate summaries of newspaper or
magazine articles [AL97, BE97, MR95]. These papers may have complicated subject
matter|i.e. they may be technical articles [TM97])|but they generally do not meet our
criteria for complex documents because the structure of the articles is mostly simple
and linear. These systems also do not provide the individual tailoring capability of
Thinksheet, which we think is crucial for the readers of complex documents.

1.4 Outline of Thesis

The next chapter of this thesis formally describes the Thinksheet model. Chapter 3
describes the interface to the Thinksheet system developed at NYU. Chapter 4 describes
the algorithms involved when working with a Thinksheet. Chapter 5 gives an overview
of the implementation of Thinksheet. Chapter 6 shows how we can use Thinksheet for
another application, metadata. Finally Chapter 7 provides our conclusion and discusses
future work.

9

Chapter 2

Thinksheet Model

This chapter describes the Thinksheet model more formally. This formal model is
used in the discussion of the later chapters to prove the correctness of Thinksheet's
implementation.

In the following section we give a brief overview of some of the terminology of
�rst order logic systems. In Section 2.2 we formally de�ne a Thinksheet as a collection
of nodes and formulas. Section 2.3 deals with evaluating these formulas.

2.1 Terminology of First Order Logic

Thinksheet is based on a three-valued �rst order logic. As we will be discussing various
aspects of these formulas, we introduce some of the terminology of �rst-order logic
syntax [End72].

De�nition 2.1 Some terminology of �rst-order logic languages.

1. Predicate and function symbols are symbols in the language. Each symbol has
an associated degree indicating the number of arguments to the symbol. Predicate
symbols of degree zero are propositional symbols, and function symbols of degree
zero are constant symbols.

2. A term is either a variable v, a constant c, or is a compound term of the form
f(t1; : : : ; tn) where t1; : : : ; tn are terms and f is a function symbol of degree n.

3. An atomic formula (or atom for short) is an expression of the form p(t1; : : : ; tn),
where p is a predicate symbol of degree n, and t1; : : : ; tn are terms.

4. A molecular formula is an expression of the form f1 ^ f2 (conjunction), f1 _ f2
(disjunction), : f (negation).

First order logic languages also contain syntax for quanti�ers, but this will not
be discussed here.

10

Predicate symbols are truth value symbols, for example true, false, or possible
or comparison operations such as <, > and =. Function symbols may be, for example,
arithmetic operations, such as + or �. Constants such as 1 or 2 are considered to
function symbols of degree zero. We shall use in�x notation for comparison and other
arithmetic operations, as shorthand for the pre�x form (e.g x+y, as opposed to +(x; y)).

No particular interpretation of the predicate and function symbols is necessary
for the Thinksheet model, but for the sake of discussion we will generally limit ourselves
to arithmetic over the real numbers for function symbols, and corresponding comparison
operations for predicate symbols.

From time to time in our discussion, we will refer to the set F as the set of
all well-formed formulas in our logic language. The set C will refer to the set of all
constants, i.e. all predicate and function symbols of degree zero and the set V will refer
to all terms and atoms, i.e. all function and predicate calls. In general discussion the
word formula will be informally taken to mean both terms and well-formed formulas.

2.2 The De�nition of a Thinksheet

A Thinksheet consists of nodes, and precondition and answer formulas. Nodes are
considered to be the variables of a Thinksheet. A precondition is a quanti�er-free
three-valued �rst order logic formula which evaluates to true, false, or possible. The
three-valued logic is somewhat unique to our system and will be explained in section 2.3.

De�nition 2.2 A Thinksheet T consists of (N;A; P) such that:

1. N is a set of node symbols.

2. A : N ! V [F is a many-to-one function that maps nodes to terms and formulas
(called the answers of the nodes).

3. P : N ! F is a many-to-one function that maps nodes to formulas (called the
preconditions of the nodes).

The functions A and P map nodes to the symbols representing a formula. They
do not evaluate those formulas. For n 2 N , we will call A(n) the answer of node n and
P (n) the precondition of a node n.

P maps nodes to formulas specifying relevancy. If the precondition of a node is
true, then it is considered relevant. A maps nodes to formulas representing the node's
value if its precondition is true. For example, it might map the node to a symbol
representing a reader's answer.

The variable symbols in precondition and answer formulas are the names of other
nodes. No other variable symbols are allowed. The value of a variable is the same as
the e�ective value of the node it refers to. The precise de�nition of e�ective value is
given in Section 2.3.

11

Example 2.1 Let T be a Thinksheet constructed as follows:

1. N = fN1; N2; N3; N4; N5g
2. A is a function de�ned as follows:

A(n) =

8<
:

2 if n = N1

(N1 + 2) if n = N4

possible otherwise

3. P is a function de�ned as follows:

P (n) =

8<
:

(N1 = 2^N2 = 3) if n = N3

(N3 = 1_N4 = 2) if n = N5

true otherwise

2.3 Thinksheet's Three-valued Logic and E�ective Values

Thinksheet's logic system consists of three truth symbols, true, false and possible. We
call the formulas in our three-valued logic extended boolean formulas. We de�ne a
function that maps formulas to constant values. We call this the e�ective value of a
formula. First we de�ne an ordering between the logic values that will help us in our
de�nition of e�ective value, and then give the de�nition of e�ective value.

De�nition 2.3 When we speak of the maximum or minimum of two truth values, we
refer to following ordering: false < possible < true.

De�nition 2.4 (E�ective Value) The e�ective value function e : V [F; T ! C,
which we will denote e(f; T), maps a term or formula f in the context of some Thinksheet
T = (N;A; P) to a constant value in C in the following way:

1. If f = f1 ^ f2, where f1 and f2 are formulas, then return the minimum of e(f1; T)
and e(f2; T).

2. If f = f1 _ f2, where f1 and f2 are formulas, then return the maximum of e(f1; T)
and e(f2; T).

3. If f = : f1, where f1 is a formula, then return : e(f1; T), where : true = false,
: false = true and :possible = possible.

4. If f is atom or term of the form:

f1(t1; t2; : : : ; tn)

12

where f1 is a function or predicate of degree n and t1; t2; : : : ; tn are terms, then
return the interpretation of the function or predicate f1 after the evaluation of the
terms, meaning return

f1(e(t1; T); e(t2; T); : : : ; e(tn; T))

with the following restriction: if one or more of t1; : : : tn evaluate to a truth value,
then return the minimum of the truth values. Otherwise return the value according
to the particular interpretation of the atom's symbols.

5. If f is a node symbol, n, then return the following:

e(f; T) =

8<
:

false if e(P (n); T) = false
possible if e(P (n); T) = possible
e(A(n); T) if e(P (n); T) = true

Rule 4 pertains to function or predicate symbols applied to truth values. Rule 4
overrides any interpretation of these symbols.1

Example 2.2 The following are some example evaluations of extended boolean formu-
las involving only constant values (we leave out the Thinksheet for simplicity):

1. e(true^ possible) = possible (Rule 1)

2. e(possible_ false) = possible (Rule 2)

3. e(: (possible_ false)) = possible (Rules 2 and 3)

4. e(false > 3) = false (Rule 4)

The de�nition of e�ective value in De�nition 2.4 is recursive when a formula
contains node symbols|in order to evaluate a formula, we must have the e�ective
values of the nodes referenced in the formula. In order to get the e�ective values of
the nodes, we must evaluate their precondition and answer formulas. For this reason,
we disallow circular dependencies, meaning nodes that depend on each other's values.
This way, when evaluating a particular formula, the recursion must stop|since the
dependencies are acyclic, there must be some node(s) whose precondition(s) do not
depend on any other node, and thus have no variable references in their precondition
and answer formulas.

Example 2.3 Suppose we had the Thinksheet from example 2.1. Then the evaluation
of the precondition of N5 (which is N3 = 2_N4 = 3) would happen this way:

1This means that rules 3 and 4 can lead to nonintuitive results. For example, the formula : (false = 3)
is not the same as false 6= 3. The �rst formula evaluates to true, while the second formula yields false

(because any comparison with false still yields false).

13

1. The e�ective value of N3 depends on its precondition, which is N1 = 2^N2 = 3.
We evaluate this precondition in the following way:

(a) N1's precondition is true, and its answer formula is 2, so its e�ective value is
2. Therefore the expression N1 = 2 is true.

(b) N2's precondition is also true, and its answer formula is possible, so its e�ec-
tive value is possible. By rule 4 the expression N2 = 3 is possible.

(c) The extended boolean expression true^ possible is equal to possible.

Therefore, N3's e�ective value is possible.

2. The precondition of N4 is true, and its answer formula is N1 + 2, so its e�ective
value is the evaluation of N1+2, which in this case is 4. Therefore the expression
N4 = 3 is false.

3. N5's precondition is reduced to the expression possible_ false, which evaluates to
possible.

Therefore the value of N5's precondition would possible.

2.4 A Rationale for the E�ective Value of a Node

The semantics for De�nition 2.4 may not make much sense in the abstract, but here is
an intuitive rationale:

1. A node whose precondition is not satis�ed can be discarded as false.

2. A node n whose precondition is possible reects a state of uncertainly and therefore
also has the value of possible.

3. A node whose precondition is true reects the value of its answer | intuitively,
it has the right to speak its value. However, even if the precondition is true, the
node may not yet be answered by the reader. We reect that condition by setting
the answer formula to possible and thus the e�ective value is also possible.

In some sense, the values of false and possible represent meta-statements about
a particular variable, as opposed to the actual value of the variable itself. For example,
if a node represented the temperature outside, and the node was false, that does not
mean that the value of the temperature outside was actually false (which makes no
sense in any case). Rather it means that the value is unnecessary, or not applicable.

Another way to think about false is in the context of relational database tables.
Very often, a null value is used in a table to represent the attribute is not applicable
in that particular row. For example, suppose we had a database of researchers and the
various microbes they worked on. A convenient way to store this might be a table with

14

the attributes, Researcher, Microbe Type, Attributes for the Microbes. Now it might
be the case that not all of the attributes are used for a particular microbe type|for
example, a bacterium does not have cilia, so any measurements about that would be
inapplicable. In relational databases, we simply store null into those attributes that do
not apply.

In Thinksheet, we would store preconditions with each of the attributes, so
only the applicable attributes would be available. For example, for the attribute Cilia
Length, we might specify the precondition Microbe Type = Paramecium to show that
this measurement only deals with paramecia. Thus, when we are interested only in
bacteria, Cilia Length is false, and thus not applicable. Thus corresponds to the null
found in the relational table.

We use possible to distinguish between nodes which are de�nitely not applicable,
and those nodes whose condition is uncertain or unde�ned. The value of possible can
represent a node variable that is unde�ned|i.e. the node's precondition may be true
and thus it is applicable, but no value has been assigned to it yet. This unde�ned state
is propagated to the other nodes that depend on this node, so that they too might
have the value possible. For these nodes, possible represents uncertainty, since we do
not have enough information to compute the absolute truth or falsity (applicability or
non-applicability) of the nodes because some of the nodes they depend on are unde�ned.

For example, if the precondition of a particular node is N1 = 3, and N1 is
currently unde�ned, how do we evaluate the formula? One could argue that it should
evaluate to false (after all, N1 does not have the value of 3), but we take the stance that
this loses information, because it would not properly take into account the unde�ned
state of N1. Hence the motivation of possible (with the hopes that the word conveys
the ambiguity it is supposed to mean).

2.5 A Thinksheet Graph

We may construct a graph of dependencies of the formulas in a Thinksheet. This graph
gives us the dependencies between the various nodes of the sheet.

If a formula f contains a variable that refers to node n0, then n0 is called a parent
of that formula. If the formula is associated with the precondition of node n (i.e. if
P (n) = f), then n0 is called the precondition parent of n. Similarly, if A(n) = f , then n0

is called the answer parent of n. Collectively, precondition parents and answer parents
are referred to as the parents of a node.

De�nition 2.5 A Thinksheet graph GT , for Thinksheet T = (N;A; P) consists of
(V;E) de�ned as follows:

1. A set of vertices, V = fvnjn 2 Ng.
2. A set of directed edges, E = f(v1; v2)jv1 is a parent of v2g.

15

N1 N2

N4 N3

N5

N1 N1 N2

N3 N4

Answer: Precondition:

Precondition:

+ 2 = 2 and = 3

= 1 or = 2

Figure 2.1: A example Thinksheet graph.

For example, the graph for the Thinksheet described in Example 2.1 is given in
Figure 2.1.

From an interface standpoint, the leaves of the Thinksheet graph are intended to
contain the information chunks (what will be referred to as Text nodes in Chapter 3),
while the interior nodes contain the questions. From the point of view of the formal
model, there is no meaning attached to any of the nodes, except that the nodes exist as
variables in the system (the leaves are simply variables whose values are not used).

2.6 States and Consistent States

De�nition 2.4 uses the answer and precondition formulas to map nodes to constant
values, but that does not mean that these nodes explicitly take on those values. To help
us separate this notion, we de�ne the concept of a state to map nodes to values, and
de�ne a consistent state that maps nodes to their e�ective values.

De�nition 2.6 A Thinksheet state, ST : N ! C is a function that maps a node n in
a Thinksheet T = (N;A; P) to a constant value in C.

16

De�nition 2.7 A state ST is called a consistent state if

8n 2 N;ST (n) = e(n; T)

A state of a Thinksheet may therefore map nodes to any values, but the interest-
ing state is the one that is consistent. We may also refer to a consistent state as being
correct, and any non-consistent state as incorrect.

The purpose of this de�nition of state is to mimic how a particular implementa-
tion gives values to nodes. We can then compare these values with their e�ective values
to show the correctness of the implementation.

Example 2.4 Refering at Example 2.1 again, we may de�ne a state ST for Thinksheet
T as follows:

ST (n) =

8>>>><
>>>>:

2 if n = N1

possible if n = N2

possible if n = N3

4 if n = N4

possible if n = N5

In the context of the Thinksheet given in Example 2.1, ST is a consistent state.
ST would not be a consistent state if, for example, ST (N2) = 1, because in the context
of BT the e�ective value of N2 is not 1.

2.7 Node Domains

Our model up to now has left out the discussion of the domain of the node variables
in a Thinksheet. For example, in our trial example given in Chapter 3, many of the
nodes can only be answered with a 1 or a 2. Thus their domain is restricted to those
two numbers.

In some cases it might be useful to explicitly specify the domain of values for the
nodes in a Thinksheet. For example, if one of the questions of a Thinksheet asks for
the reader's income, we expect a number of some sort, not a string. We can restrict the
reader's answers by setting the domain of that node to the set of integers. If the reader
mistakenly answers the question with a string (e.g. by entering her name), we will leave
the result as implementation de�ned, but the simplest approach is to report an error.

Our approach to formalizing the notion of node domains makes note of two
things. First the domain will refer to the node's e�ective value, not counting the meta-
values of true, possible and false. Secondly, a node's domain may depend of the e�ective
value of another node.

De�nition 2.8 A Thinksheet T may contain domains for each node with the addition
of a function D : N;T ! power set of C that maps nodes N to their domain of a set
of constant values in C.

17

We may overload the function D and de�ne the domain of the entire Thinksheet
as follows:

D(T) =
[

8n2N

D(n; T)

We may rede�ne our notion of consistent states to take into account node do-
mains by adding the extra constraint to De�nition 2.7 that ST (n) 2 D(n; T) in addition
to being equal to the e�ective value.

An interesting case is if the domain of a node is the empty set. One possible
interpretation of this is that the node can not be answered, since there is no consistent
state in which that node has an answer. In this case, the node's e�ective value would
be possible even if the its precondition was true, since it could never be bound to an
answer. An implementation may hide the node from the reader when it discovers this,
since the reader no longer has any viable way to answer this node.

Example 2.5 We create a domain function as follows for the Thinksheet described in
Example 2.1.

D(n; T) =

8>>>><
>>>>:

f1; 2g if n = N1

f3; 4; 5g if n = N4

f1; 2; 3g if n = N3 and e(N1; T) < 2
f4; 5; 6g if n = N3 and e(N1; T) � 2
Any integer otherwise

Note that the domain of N4 actually encompasses more values than it can pos-
sibly take on (according to its answer in Example 2.1, its value is N1+2. Since N1 is 2,
the only possible value for N4 is 4). In fact, we may give a domain for N4 in which it can
take on none of the values. For example, a valid domain for N4 could be f3; 5g. Since N4

must have an e�ective value of 4 according to its answer, this leads to an inconsistency.
There are many ways to interpret this inconsistency. The implementation may report
an error, or, for example, ignore the answer when it does not fall into the domain, and
thus N4's e�ective value would be possible.

A more interesting case is shown for the domain for N3. Here the domain depends
on the e�ective value of N1. We will see this idea put to good use in Chapter 6, when
the domains of nodes become linked to the values of attributes in a table.

18

Chapter 3

The Thinksheet Interface

Thinksheet is an application with multiple user interfaces. Currently there exists an
interface that looks like a spreadsheet, an interface via the World Wide Web and an
interface through the scripting language Tcl. The spreadsheet is the primary inter-
face to Thinksheet. However, nothing in Thinksheet or its model constrains it to the
spreadsheet interface. A new type of interface may be developed using the Tcl interface.

Section 3.1 discusses the spreadsheet interface. The interface contains two major
modes, called the reader and writer modes, which pertain to reading and writing complex
documents respectively. These are discussed in Sections 3.2 and 3.3.

Section 3.4 compares the implementation with the formal model presented in
Chapter 2. In Section 3.5 we discuss the interface through the World Wide Web and in
Section 3.6 the interface through the scripting language Tcl.

3.1 The Spreadsheet Interface

The primary interface to Thinksheet closely resembles a spreadsheet. A screenshot is
given in Figure 3.1.

The main portion of the Thinksheet screen is divided up into a grid of cells. Like
a spreadsheet, the columns are labeled with letter values, and the rows with numbers.
We will refer to cells as column letters followed by row numbers. For example, A2,
refers to the cell in column A, row 2. The motivation for using an interface that looks
like a spreadsheet is that people are familiar with this type of interface. Additionally,
the grid provides an easy way of laying out the information. However, other types of
interfaces may be developed using the Tcl/Tk scripting language (see Section 3.6).

Each non-empty cell represents a node in a Thinksheet. We partition the nodes
into two types, those that contain information (e.g. hypertext) and those that contain
a question to be asked to the reader. We will call these text nodes and question nodes
respectively.

The non-empty cells are labeled with two lines. The �rst line is the title for
the cell. The second line holds descriptive information about that cell. For example, in

19

Figure 3.1: Screen shot of the trial strategy Thinksheet.

20

Figure 3.2: After clicking on the About Trial cell.

Figure 3.1, cell D1's title is Crime Scene, and its description is Question. The descriptive
information tells us which type of cell it is|e.g. a Question cell will ask us a question.

Each cell also has a color associated with it. Cells whose preconditions are true
are highlighted. In this example, cell A0 (About Trial) and cell D1 (Crime Scene) are
both highlighted on startup. Cells which are possible are grayed out but still visible,
and their descriptive line is Possible. As we will see later, cells which become false
disappear from the reader's view.

Thinksheet has two modes, a reader mode, and a writer mode. In the reader
mode, the reader answers various questions and retrieves the tailored information. In
the writer mode, the writer creates the complex document by creating the question and
text nodes and the preconditions for each of them.

The next section describes the interface for the reader by running through two
example Thinksheets. Section 3.3 then describes the writer interface and how these two
Thinksheets were created.

21

Figure 3.3: After clicking on the Crime Scene cell, the reader is presented with a
question.

3.2 Reader Interface

3.2.1 A Trial Strategy

The �rst example maps out a strategy for the prosecution of a simple criminal case.
The prosecutor wishes to question the suspect on the witness stand. Which questions
he asks depends on the answers the suspect has given to previous questions. In this
example, the prosecutor wants to establish that the suspect was both at the crime scene
and had the murder weapon (in this case a gun).

Both the cells labeled About Trial and Crime Scene are highlighted on startup.
This means that the reader should click on one of the two cells. If the reader clicks on
About Trial, the reader will be shown a short paragraph which is a description of this
Thinksheet (see Figure 3.2).

When the reader clicks on Crime Scene, a question is displayed. The reader is
supposed to ask this question to the suspect and then input the suspect's answer (see
Figure 3.3). The question states:

Were you at the corner of Warner and Tampa on the night of

April 11, 1991?

1. No

22

Figure 3.4: After answering the question for Crime Scene, cell E2 (labeled Gun) has
been highlighted. Cells B2, A3, C3 and D3 have disappeared.

2. Yes

The reader (the prosecutor) should select the answer that the suspect gives him.
Suppose the reader chooses 2. Yes. The result is shown in Figure 3.4.

Notice that cell E2 has become highlighted. Its precondition has become true
and it is the next question we should ask the suspect. Cells B2, A3, C3 and D3 have
disappeared. Because of the suspect's answer the preconditions of these cells became
false and have been removed from view.

The interaction continues like this with the prosecutor asking the suspect ques-
tions. Eventually, we may reach a state such as in Figure 3.5. In this state there are no
more questions to ask and the cell Victory is highlighted. Clicking on this cell gives a
short piece of text describing how the prosecutor has won.

This simple example highlights the basic interaction of Thinksheet. There are
two types of cells|question cells and text cells. The reader answers the question cells
and retrieves the relevant text from the highlighted text cells (i.e. those cells with a true
precondition).

23

Figure 3.5: The result of the trial Thinksheet after answering more questions. Here
the Victory cell is highlighted. The text of the cell is displayed on the side.

24

Figure 3.6: A telephone billing plan for toll-free calls.

25

These are mythical corporate phone plans for France.

05 calls are free to the caller but cost money to the

corporation receiving them.

They are analogous to 800 calls in the U.S.

Which Are you interested in purchasing corporate services for?

1. 05 calls (ACME SuperDuper 05 Term Plan II)

2. non-05 calls

Figure 3.7: The �rst question presented to the reader of the telephone billing Think-
sheet.

3.2.2 A Corporate Billing Plan

Our next example demonstrates another feature of Thinksheet, that of dynamic docu-
ment construction based on the reader's answers. The example concerns an imaginary
telephone billing plan in France. The Thinksheet attempts to �nd the best billing plan
for the reader based on his calling patterns. Under this plan, the reader receives better
discounts if he commits a certain amount of money up front. The problem is to decide
how much money the reader should commit. It applies to 05 calls (which are toll free
calls|much like 800 calls in the United States) and also normal telephone calls.

In its initial state the sheet has two highlighted cells, About France Billing, which
gives a short description of the sheet, and Call Type, which is the �rst question that the
reader should answer (see Figure 3.6).

The �rst question is presented in Figure 3.7 and asks whether we are interested
in 05 service or non-05 service.

If the reader answers with the �rst choice (05 calls), cell D1 (Plan Choice) will
ask how long he wishes to stay in the plan, from one to three years. Suppose he answers
that question with one year. The result is shown in Figure 3.8.

Notice that three cells, B2, C2 and D2, are lit up. The reader may choose to
answer any of these three cells in any order. Each cell represents how much the reader
expects to spend that year on a di�erent type of calling pattern. For example cell C2
(Megasup) represents calls coming from inside the European Union. Since the receiver
of a 05 telephone call pays for the call, the reader must estimate the cost of the calls
which originate from inside the European Union.

In Figure 3.9 we see a recommendation of what the reader should commit after
answering the three questions about his usage pattern. Figure 3.10 contains some of
the text of the recommendation. Note that the recommendation includes calculations
based on the amounts the reader has entered. Section 3.3.2 describes how the writer of
this Thinksheet used Smart�elds to dynamically construct the advice to the reader.

26

Figure 3.8: The billing plan Thinksheet asks for the usage pattern of the 05 calls.

Figure 3.9: After entering in the usage pattern, the reader gets a recommendation for
how me he should commit.

27

ACME SuperDuper 05 Term Plan II
You have chosen the one year plan, giving you maximum exibility but potentially the worst

discounts. If you spend what you have speci�ed for International, MegaSup, and other

quali�ed services in your �rst year (a total of 60000.00), then you should commit 36000.00

Euros. Your discount will be 6200.00 Euros and your net bill is 53800.00 Euros less your

usage credit.
Your one time usage credit : : :

Figure 3.10: The recommendation of the billing plan for the reader.

3.3 The Writer Interface

This section describes how the writer creates Thinksheets using the spreadsheet inter-
face described in Section 3.1. Since each cell in the spreadsheet represents a node in
Thinksheet, the writer creates a Thinksheet by adding cells (nodes) to the spreadsheet.

Nodes in the spreadsheet have the following �elds:

� Title. This is the title of the node (such as the phrase Crime Scene in the
trial strategy in Section 3.2.1). The title �eld is a Smart�eld (described in Sec-
tion 3.3.2).

� Question. This holds the question text for the node. This text is presented to
the reader when he clicks on the node, and he is presented with the option of
answering the question. The question �eld follows the convention that all of the
text up to and including the �rst question mark ((?)) is the question to present
to the reader. Every line after the question mark (if any) is considered a separate
answer choice.

The question �eld is also a Smart�eld.

� Contents. This �eld contains the information that the node represents. Currently,
this is only hypertext in HTML format [Wor]. When the reader clicks on this node,
he will be presented with the hypertext information. The contents �eld is also a
Smart�eld.

� Answer. This is the answer �eld of the node as described in Chapter 2. In
general this will hold the reader's answers to questions, although the writer of the
Thinksheet may also �ll this �eld with a formula.

� Precondition. This is the precondition �eld of the node as described in Chapter 2.
This �eld will hold a boolean formula specifying the relevancy of the node.

The next sections describe the various features Thinksheet o�ers for creating
complex documents. Section 3.3.1 gives an introduction to the language for writing
precondition and answer formulas. Section 3.3.2 describes Smart�elds. Section 3.3.3

28

gives an example of building a Thinksheet. Lastly, Section 3.3.4 describes a �le format
for creating and storing Thinksheets.

3.3.1 The Thinksheet Language

Thinksheet contains an interpreted, expression-oriented language for writing precondi-
tions. We give an overview of the language here. A more complete description is given
in Appendix B.

Base Types

The Thinksheet base types are oating point numbers and strings. From these base
types, Thinksheet allows the construction of sets and ranges. The following are some
examples:

1. 2.0 is a oating point number.

2. "Hello" is a string.

3. [1,3,5] is a set of numbers.

4. 1..5 is the range of oating point numbers between 1 and 5.

Nodes and Local Variables

Thinksheet expressions may reference nodes by their location on the spreadsheet. For
example, B1 references the value of the cell at location B1 on the spreadsheet.

Thinksheet also allows for local variables. These variables are local to a statement
block (for example, a precondition or answer formula for a particular node). Local
variables begin with an underscore (_) character, for example _income.

Expressions

The core of the Thinksheet language is the ability to write boolean expressions. In order
to accommodate people's varying experience, we allow di�erent syntactic conventions
to express a boolean formula. For example, the following are equivalent:

1. A0 = 3 and not (B0 = 4 or C0 = 6)

2. A0 = 3 && ~(B0 = 4 || C0 = 6)

3. A0 = 3 and not (B0 = 4 || C0 = 6)

While the last expression is allowed in our language, the mixing of these conven-
tions is discouraged.

Thinksheet also allows conventional arithmetic expressions using addition, sub-
traction, multiplication and division. It also has access to math library functions such
as sin, cos, and log.

29

if (C1 < 50000) {

_income := C1 * 0.90;

} else {

_income := C1 * 0.85;

};

(a) An example if statement.

while (_i < 400 && _j < 200) {

_sum := _sum + _i * _j;

_i := _i + 2;

_j := _j + 1;

};

(b) An example while statement.

func _ack()

{

if ($1=0)

return $2+1;

if ($2=0)

return _ack($1-1,1);

return _ack($1-1,_ack($1,$2-1);

};

(c) An example function declaration.

Figure 3.11: An example of if and while statements and of a function declaration in
the Thinksheet language.

Statements

Statements in Thinksheet allow for conditionals, loops and the assignment of local
variables. All statements in Thinksheet are terminated with a semicolon (;).

Assignment statements are of the form variable := value;. For example:
_income := C1 * 0.85;

This statement assigns C1 � 0:85 to the local variable called _income.
The conditional statement looks much like the traditional if of the programming

language C. An example is given in Figure 3.11(a). The �rst statement is executed only
if the expression C1 < 50000 is true. Note that this expression may possible, especially
if C1 has not been answered by the reader. In this case, and in the case that the
expression is false, the second statement is executed.

30

Your tax bracket is:

%if%%if%%if% A0 > 50000 %then%%then%%then%

50% and you owe %calc%%calc%%calc% A0 * 0.5 %endcalc%%endcalc%%endcalc% in taxes.

%endif%%endif%%endif%

%if%%if%%if% A0 <= 50000 %then%%then%%then%

30% and you owe %calc%%calc%%calc% A0 * 0.3 %endcalc%%endcalc%%endcalc% in taxes.

%endif%%endif%%endif%

Figure 3.12: Example text containing Smart�eld directives (directives are in bold).

Finally, loops are allowed using while statements. An example is given in Fig-
ure 3.11(b).

Function Declaration

Functions may be de�ned globally for a particular Thinksheet. An example of a function
declaration is given in Figure 3.11(c). This function computes Ackermann's function.
Function parameters are passed by $1, $2, : : : , where the numbers refer to the parameter
position.

3.3.2 Smart�elds

Text nodes contain hypermedia information (currently HTML). In addition, the text
may contain directives that refer to the e�ective values of other nodes. We call text
with these directives Smart�elds.

Smart�elds are useful for including calculations based on the reader's answers
into the text. An example of text containing Smart�eld directives in given in Figure 3.12.
In this simple example, suppose that the reader input his income for the year into cell
A0. Then when the reader retrieves this text, it is processed using the directives inside
the percent signs. The %if% statement is like the if of common programming languages.
If the condition of the %if% is true or possible then the text between the %then% and
the %endif% is inserted into the result. Thus, in Figure 3.12, if the reader's income is
greater than $50,000, then he is in the 50 percent tax bracket. If it is less than that,
then he is in the 30 percent bracket. The %calc% statement allows calculations based
on the reader's answers. In this case, it gives a simple calculation of what the reader
owes.

Inserting the Smart�elds of Other Nodes

In addition to this simple processing ability, Smart�elds are capable of inserting the
Smart�elds of other nodes using the %insertcontents% directive. Thus another node's
Smart�eld can be used like a function. An example of this is given in Figures 3.13(a){
(b). Cell A0 contains the text to be inserted. Like a function, the node's Smart�eld

31

%if%%if%%if% $2 = 1 %then%%then%%then%

%calc%%calc%%calc% $1 %endcalc%%endcalc%%endcalc% is %calc%%calc%%calc% $2 %endcalc%%endcalc%%endcalc% year old.

%endif%%endif%%endif%

%if%%if%%if% $2 > 1 %then%%then%%then%

%calc%%calc%%calc% $1 %endcalc%%endcalc%%endcalc% is %calc%%calc%%calc% $2 %endcalc%%endcalc%%endcalc% years old.

%endif%%endif%%endif%

(a) Cell A0 holds the text to be inserted by another cell.

Here is a list of the children in your family:

%insertcontents%%insertcontents%%insertcontents% A0("Mary", 1) %endinsertcontents%%endinsertcontents%%endinsertcontents%

%insertcontents%%insertcontents%%insertcontents% A0("Joe", 7) %endinsertcontents%%endinsertcontents%%endinsertcontents%

(b) Cell A1 inserts the contents of A0 in its Smart�eld.

Here is a list of the children in your family:

Mary is 1 year old.

Joe is 7 years old.

(c) The result of retrieving the contents of A1.

Figure 3.13: Example of the %insertcontents% directive.

take parameters. In this case the parameters are referenced by $1 and $2 as the �rst
and second parameters of the function call.

In Figure 3.13(b), cell A1 inserts the Smart�eld of A0 twice, each time passing
di�erent parameters (in this case the parameters refer to the names and ages of children).
When a reader retrieves the text of cell A1, the result is shown in Figure 3.13(c).

Preambles to Allow Local Variables in Smart�elds

Smart�elds also have a preambles, which are sections in the beginning of the document
to set local variables. The text inside of the preamble is actually code in the language
described in Section 3.3.1. Any local variables set in the preamble may be used later in
the Smart�eld. The variables are local only to that particular Smart�eld and may not
be accessed by other Smart�elds.

Figure 3.14 shows an example of the usage of preambles. In this case, we show
another way to write the Smart�eld in Figure 3.12. Here, instead of using the %if%

directive to decide the tax bracket, we set two local variables inside of the preamble.
Then in our text, we insert the values of those variables using the %calc% directive.

The complete list of commands available to Smart�elds is given in Appendix C.

32

%preamble%%preamble%%preamble%

if (A0 > 50000) f
_bracket := 50;

_taxes := A0 * 0.5;

g;
if (A0 <= 50000) f

_bracket := 30;

_taxes := A0 * 0.3;

g;
%endpreamble%%endpreamble%%endpreamble%

Your tax bracket is %calc%%calc%%calc% _bracket %endcalc%%endcalc%%endcalc% percent,

and you owe %calc%%calc%%calc% _taxes %endcalc%%endcalc%%endcalc% in taxes.

Figure 3.14: Preambles allow local variables inside a Smart�eld.

Which artist are you interested in?

%if%%if%%if% A0 = "Modern" %then%%then%%then%

Picasso

Dali

%endif%%endif%%endif%

%if%%if%%if% A0 = "Renaissance" %then%%then%%then%

Michaelangelo

Raphael

%endif%%endif%%endif%

Figure 3.15: Using a Smart�eld for questions.

33

The list of employees whose salary is greater than

%calc%%calc%%calc% B2 %endcalc%%endcalc%%endcalc%.

%servercommand%%servercommand%%servercommand%

"SELECT NAME "

"FROM EMPLOYEES "

"WHERE SALARY > " B2

%endservercommand%%endservercommand%%endservercommand%

Figure 3.16: Example of the %servercommand% directive.

Questions and Titles as Smart�elds

We have described using the Smart�elds to represent the textual information of the
text nodes. In fact, the titles and question �elds for nodes may also be Smart�elds. For
questions, this means we can even modify the list of choices presented to the user on
the y. See Figure 3.15 for example.

Here cell A0 represents the art period of the reader's interests. If the reader has
answered A0 with the choice "Modern" then the choices of this question are constrained
to only modern artists (e.g. Picasso and Dali).

Thinksheet's Connection with Servers

Thinksheet has a general purpose method to communicate with processes such as data-
bases, interpreters etc. The communication is through UNIX pipes [Ste90], so whatever
the server prints to its standard output device will be treated as results to Thinksheet.
Servers were created for communication with databases (through SQL interpreters),
although they may be used to talk to other types of processes.

Servers are accessed via the %servercommand% directive in Smart�elds. An ex-
ample of the usage of %servercommand% is given in Figure 3.16. In this example, the
server is an SQL interpreter and the query asks for a list of employees meeting a certain
criterion (based on node B2). When the query is run, it will be replaced by the list of
employees.

See Appendix C for the exact syntax for server commands, as well as the method
for connecting the servers to Thinksheet.

3.3.3 Building a Thinksheet

To make the above discussion more concrete let us show how we built our example
sheets|the prosecutor's trial strategy and the phone billing plan.

In our presentation of the trial strategy example, the initial question asks if the
suspect was on a certain street corner on a speci�c date. Since this �rst question must

34

A B C D E F

1

2

3

4

5

6

Crime Scene

Gun
D1=2
or C3=2

Know Joe
D1=1

Menace
B2=1

Joe Says
B2=2
or A3=2

Not Again
D1=1
and (E2=1
or F3=1)

Recall Joe
D1=2
and (E2=1
or F3=1)

Colt 45
E2=2

Joe Picture
E3=1

Joe Rememb
E3=2
or D4=2

Impeach
A3=1
or C3=1

Victory
F3=2
or E4=2
or D3=2or D3=1 ...*

* full precondition is A3=1 or C3=1 or D3=1 or D4=1 or E4=1

Figure 3.17: The titles and preconditions of the trial strategy.

35

%if%%if%%if% d0 = 1 %then%%then%%then%

You have chosen the one year plan, giving you maximum

flexibility but potentially the worst discounts.

%endif%%endif%%endif%

%if%%if%%if% d0 = 2 %then%%then%%then%

You have chosen the two year plan.

%endif%%endif%%endif%

%if%%if%%if% d0 = 3 %then%%then%%then%

You have chosen the three year plan, giving you

potentially the best discounts.

%endif%%endif%%endif%

If you spend what you have specified

for International, MegaSup, and other qualified services

in your first year (a total of

%calc%%calc%%calc% _tot %endcalc%%endcalc%%endcalc%),

then you should commit

%calc%%calc%%calc% _commit %endcalc%%endcalc%%endcalc% Euros.

Figure 3.18: The Smart�eld for the �nal advice in the telephone billing plan.

always be asked its precondition should always be true. We leave the precondition
empty, which is equivalent to typing in the expression true.

When the prosecutor enters in the suspect's answer of 1. No, node B2 became
highlighted. This occurs because the precondition of B2 is D1 = 1 (D1 is the node
containing the initial question). The rest of the questions are set up in the same way
but with di�erent preconditions. Figure 3.17 shows the titles and preconditions of the
trial Thinksheet.

The phone billing plan is set up similarly, but with the added twist that the
advice is constructed using a Smart�eld. Figure 3.18 shows a portion of the Smart�eld
used to create the advice. Note that it inserts calculations about spending amounts and
commitments. The local variables _tot and _commit were computed in the preamble
section of the Smart�eld and are based on the reader's answers. Also note that the
Smart�eld uses the %if% directive to take into account the number of years the reader
speci�ed for the plan.

3.3.4 Report Format

Thinksheets may be created and stored in an ASCII representation that is called the
Thinksheet Report Format.1 A Thinksheet report is made up of fully delimited �elds.

1This format is the brainchild of Dave Tanzer, and was originally referred to as \The Tanzer Format."

36

%node%%node%%node% D1

%title%%title%%title%

Crime Scene

%end title%%end title%%end title%

%question%%question%%question%

Were you at the corner of Warner and Tampa on the night

of April 11, 1991?

1. No

2. Yes

%end question%%end question%%end question%

%end node%%end node%%end node%

%node%%node%%node% B2

%title%%title%%title%

Know Joe

%end title%%end title%%end title%

%question%%question%%question%

Show a picture of key witness Joe.

Do you know this man?

1. No

2. Yes

%end question%%end question%%end question%

%precondition%%precondition%%precondition%

D1=1;

%end precondition%%end precondition%%end precondition%

%end node%%end node%%end node%

Figure 3.19: Two nodes of a Thinksheet represented in the report format (�eld delim-
iters are in bold).

Since it is easily readable, writers may directly modify this �le when working on a
Thinksheet instead of using the spreadsheet interface described in Section 3.1.

Each �eld in a report �le is delimited by %field% and %end field%. The report
in Figure 3.3.4 represents two nodes at locations D1 and B2. The nodes have the titles
Crime Scene and Know Joe respectively. Each has a particular question, and node B2
has a precondition (D1 = 1). Not all the �elds have to be listed for a particular node
(e.g. node D1 does not have a precondition). If a particular �eld is not listed, then it
is considered unset or blank.

A report �le may be merged with a running Thinksheet. All �elds that are listed
are modi�ed with the new values, while those that are not remain unchanged.

This feature can be used to set the answers to several questions in response to one

37

reader answer. For example, suppose we had an application that required information
about the reader such as name, age, height, eye color, etc. We may consider each
attribute about the reader as a separate question that he has to �ll in. However, this
may be very inconvenient, especially if such information is stored in a database. Instead,
when the reader �lls in his name, Thinksheet can take action by querying the database,
creating a report form with the answers to the attribute questions �lled in, and then
merging that report (see Appendix C for the full example).

3.4 The Implementation and the Formal Model

This section compares the implementation we have discussed in this chapter with the
model given in Chapter 2. The formal model of Thinksheet considers nodes to be
variables that can be assigned values. The real implementation however has added
various features to the nodes that are not in the abstract model. For example, in this
chapter we have discussed nodes that hold questions, and nodes that hold text. A
question for a node holds no special signi�cance in the formal model except that it
might express a domain of values for the node. For example, the choices of 1. No and
2. Yes limit the domain of the node to the values of one and two. Text nodes may
be considered leaf nodes whose answer values are the Smart�elds. Smart�elds, in turn,
may simply be considered to be functions that return textual strings. The di�erence is
however, that we allow cycles through the use of the %insertcontents% directive. Our
model does not allow cycles created by dependencies on the answer and precondition
formulas of a node. For this reason, Smart�elds are considered to be outside the core
model|a sort of additional �eld added to each node in a Thinksheet.

The language given in our implementation is more complicated than the syntax
described in Section 2.1. We allow local variables, user de�ned functions and program-
ming constructs such as loops. For the most part, these additions have no e�ect on the
formalism, except for one point. In Section 2.1, we said that we make no assumptions
about the interpretation of the various function and predicate symbols, but it was the
case that these functions and predicates a�ected only the e�ective answer of the node
they were contained in. They did not have side e�ects. For example, functions that
input or output to �les are not idempotent, but store a state (in this case the position
in the �le).

Adding an outside state to a Thinksheet greatly complicates matters. Since a
state depends on its previous state, it is, in some sense, like adding a node variable
that depends on itself. We prefer to keep our Thinksheet graph acyclic because of the
simplicity it allows. On the other hand, we must cope with reality, so some notion
of state is allowed into our implementation. For example, we do allow the usage of
system calls, and communication with outside processes. This typically takes the form
of querying databases, or doing I/O with �les.

We leave the de�nition of how such a state is updated to the implementation. In
our implementation, this updating depends on our algorithm for propagation, described

38

Figure 3.20: Screen shot the Web interface.

in Chapter 4.

3.5 The World Wide Web Interface

Thinksheet has a reader-mode-only CGI interface via the World Wide Web. The inter-
action between the reader and the Thinksheet is similar to the spreadsheet interface,
but without the graphical niceties. The main part of the interface consists of three
lists. One list displays questions that the reader can answer, another list displays the
questions that the reader has already answered (so he can modify those answers if he
changes his mind), and the last list displays the relevant (true) text titles. A screenshot
of this interface is given in Figure 3.20.

As with the spreadsheet interface, the reader answers a series of questions in
the list. When he has answered enough questions, he can access the relevant text, by

39

clicking on one of the titles.

3.6 The Tcl Interface

Tcl is a cross-platform extensible scripting language that runs on UNIX, Windows and
Macintosh systems [Wel97]. Tcl has a GUI interface extension called Tk that allows the
quick construction of custom GUI systems.

An extension has been made to Tcl that allows access to Thinksheets. The
extension is in the form of new Tcl commands that allow the script-writer to create and
modify Thinksheets. The purpose of the Tcl interface is to allow the creation of custom
interfaces for Thinksheets without the complexity of C and C++ programming. For
example, the World Wide Web interface described in Section 3.5 uses the Tcl interface
on the server side.

This section describes the Tcl interface to Thinksheet. While some knowledge of
Tcl and Tk is helpful, it is not necessary to understand this section. The full reference
to the Tcl interface is given in Appendix D.

3.6.1 Loading a Thinksheet in Tcl

The command to load a Thinksheet into Tcl is as follows:
sheetGraph <thinksheet>

This command returns a Thinksheet object labeled graph<n> where <n> is a
unique number (i.e. the �rst Thinksheet that is loaded is labeled graph0). The unique
number allows us to have multiple Thinksheets loaded at the same time.

The label graph0 represents a Thinksheet object and can be used to access infor-
mation about it. It is now actually a new Tcl command, and we access the Thinksheet
in the following way:

graph0 <method>

Here, <method> refers to the method that we want to apply to the object labeled
with graph0. For example:
graph0 nodeList

returns all of the nodes residing in the Thinksheet graph.
We can set the answer to a node in the following way:
graph0 nodeSetAnswer <id> <value>

In this case <id> represents the node identi�er, and <value> represents the new
value with which to set the answer.

3.6.2 Cells in the Tcl Interface

When we change the answer of a particular node, the status of other nodes might change
along with it. We would like to be noti�ed when the status of a particular node changes.
This would allow us to skip the task of scanning the entire node list for changes each
time we change the answer of a node.

40

proc printNode {i g n} {

puts "Node: '[$g nodeTitle $n]' Status: '[$g nodeStatus $n]'"

}

set graph [sheetGraph /home/thinksheet/sheets/trial]

foreach n [$graph nodeList] {

cell $graph $n doNothing printNode doNothing

}

Figure 3.21: The printNode Tcl procedure.

Cells in Tcl take on this task. The command to create a cell is follows:
cell <graph> <nodeId> <updateProc> <deleteProc>

The various parameters have the following meaning:

1. <graph>: The name of the Thinksheet graph that you want to use.

2. <nodeId>: The node identi�er of the particular node that you want the cell to
watch.

3. <updateProc>: This is the name of a Tcl procedure that gets called when the
status of the node changes.

4. <deleteProc>: This is the name of a Tcl procedure that gets called when the cell
or corresponding node is deleted.

The cell command returns a cell identi�er of the form cell<n>, (for example
cell0). Like the creation of a Thinksheet, this return value is itself a command, and
can be used to manually call the cell update procedure, by running:

cell0 update

The three procedure names passed to the cell command must refer to procedures
that take three parameters. The three parameters that will be passed are: (1) the cell
identi�er, (2) the graph identi�er, and (3) the node identi�er.

Figure 3.21 gives an example where we add a cell to each node in the trial
Thinksheet. When a node gets updated, the cell is instructed to run the printNode

procedure, which prints out the title and status of the particular node.
The result of setting the answer to one of the nodes is given in Figure 3.22.

3.6.3 An Example Tcl Program

Here we describe an example program using the Tcl interface. This program answers
unanswered questions with random choices until there are no more questions to answer.
This type of activity might be useful if, for example, one were trying to test the integrity
of a Thinksheet.

41

% graph nodeSetAnswer 1003 "1"

Node: 'Crime Scene' Status: '1'

Node: 'Know Joe' Status: 'Question'

Node: 'Recall Joe' Status: 'False'

Node: 'Joe Picture' Status: 'False'

Node: 'Joe Remembers' Status: 'False'

Figure 3.22: The printNode procedure is executed when a node is answered, and other
nodes' statuses change.

set graph [sheetGraph /home/thinksheet/sheets/trial]

set newquestions {}

foreach n [$graph nodeList] {

if ![string compare [$graph nodeStatus $n] "Question"] {

lappend currentquestions $n

}

cell $graph $n doNothing cellUpdate doNothing

}

while {[llength $currentquestions] != 0} {

foreach n $currentquestions {

randomAnswer $graph $n

}

set currentquestions $newquestions

set newquestions {}

}

Figure 3.23: The main Tcl program.

42

We �rst take a look at the main portion of the Tcl program, given in Figure 3.23.
The �rst line loads the trial strategy Thinksheet described in Section 3.2.1. Then the
variable newquestions is set to the empty list. This variable will hold the new questions
that arise as some questions get answered.

The foreach loop does two things. First, if the node is a question node (which
is checked by comparing its status with the string "Question"), then it is appended
to the list currentquestions, which maintains the current questions to be answered.
Second, it creates a cell for each node. The cell runs cellUpdate whenever the cell gets
updated, and doNothing for initialization and deletion. These procedures are shown in
Figure 3.24.

The doNothing procedure, as its name implies, does nothing. The cellUpdate
procedure, when executed, checks to see if its node has turned into a question (by
comparing its status with the string "Question"). If the node is a question, it is
appended to the list newquestions.

The while loop in Figure 3.23 loops while there are still questions left in
currentquestions. These questions are answered by the randomAnswer routine (given
in Figure 3.25). The line
set currentquestions $newquestions

makes the new questions become the current questions.
We then reset the newquestions list and continue the loop.
The randomAnswer procedure gets the choice list of the node, and randomly

picks one (with the help of the random procedure in Figure 3.26). It then extracts the
number from the choice using the extractNumber procedure given in Figure 3.27. Then
it sets the node's answer.

43

proc doNothing {i g n} {}

proc cellUpdate {i g n} {

global newquestions

if ![string compare [$g nodeStatus $n] "Question"] {

lappend newquestions $n

}

}

Figure 3.24: The doNothing and cellUpdate Tcl procedures.

proc randomAnswer {g n} {

set choiceList [$g nodeAnswerChoices $n]

set choice [lindex $choiceList [random 0 [llength $choiceList]]]

set answer [extractNumber $choice]

$g nodeSetAnswer $n $answer

}

Figure 3.25: The randomAnswer Tcl procedure.

proc random {low high} {

return [expr int(rand() * ($high - $low) + $low)]

}

Figure 3.26: The random Tcl procedure.

proc extractNumber { c } {

if [regexp {^[0-9]+} $c number] {

return $number

} else {

return $c

}

}

Figure 3.27: The extractNumber Tcl procedure.

44

Chapter 4

Algorithms for Maintaining

Consistency of a Thinksheet

This chapter focuses on the various algorithms for maintaining Thinksheets. When a
reader changes the answer of a particular node, that node's e�ective value changes. This
change must be propagated to its descendents on the dependency graph. We call this
process propagation. Section 4.1 gives an eÆcient algorithm for propagation.

In section 4.2 we show various optimizations that can be done for special cases.
These special cases involve speci�c kinds of boolean formulas in the preconditions of the
nodes. In these cases, we may sometimes skip the re-evaluation of the precondition even
if the general algorithm for propagation calls for it. We then �t these optimizations into
the general algorithm.

Section 4.4 gives a full example of propagation.

4.1 Propagation

When a node's e�ective value changes, the new value must propagate to all of its
descendents in the Thinksheet graph. This means that its descendents may have to
recalculate themselves.

The de�nition of e�ective value in Section 2.3 gives us a naive way of doing this.
Start at each leaf of the Thinksheet graph (i.e. those nodes without dependent children)
and calculate their e�ective values with a recursive call to the e�ective value function
on the parents of that leaf.

This may be ineÆcient however, because many nodes will have to be recalculated
that need not be. For example, suppose the precondition of node C0 is A0 = 2^B0 = 3.
If we change the e�ective value of A0, then we might start recalculating the e�ective
value of C0. By the de�nition of e�ective value, we must also calculate the e�ective
value of B0. Now it might be the case that B0 does not depend on A0 (i.e. it is not
a descendent of A0 in the dependency graph), and therefore we can just use the old

45

Figure 4.1: Using depth-�rst search for propagation may result in visiting a node
multiple times.

e�ective value and skip the recalculation. But when working in this bottom-up fashion,
we have no way of knowing if this is true.

Another way of doing propagation would be to do a depth �rst search from the
node that has changed, re-evaluating each node as we visit it. However there is the
disadvantage that a single node may be evaluated many times during the course of the
search. This may happen if the node has multiple parents on the descendent graph (see
Figure 4.1).

We present an eÆcient algorithm for doing propagation. In order to do this, we
�rst de�ne what it means when a reader \changes the answer in a node".

When a reader changes the answer or precondition of a node, the Thinksheet
changes. The changes that are made reect the di�erence between the previous Think-
sheet and the new one. We de�ne the di�erence between two Thinksheets as follows:

De�nition 4.1 The di�erence between two Thinksheets T = (N;A; P) and
T 0 = (N 0; A0; P 0), is the set de�ned as follows:

T 0 � T = fnkn 2 N 0 ^ (n 62 N _ (n 2 N ^ (A(n) 6= A0(n) _ P (n) 6= P 0(N)))g

In words, T 0�T is the set of nodes such that either n is a \new" node in T 0|i.e.
n 2 N 0, but n 62 N|or the precondition or answer for that node has changed. We
leave out the case that node n has been deleted from T 0|i.e. n 2 N , but n 62 N 0. If
node n has been deleted, then no other nodes must refer to n, otherwise T 0 would not
be a Thinksheet (De�nition 2.2 disallows references to non-existant nodes). Therefore,
deleted nodes are of no consequence to propagation.

Note that in the de�nition, A(n) 6= A0(n) and P (n) 6= P 0(n) refer to syntactic
equality, not equality of value. For example, if A(n) = 7 � 2 and A0(n) = 6 � 1, then
A(n) 6= A0(n). The reason is that we have not evaluated the answer or precondition
formulas. We are merely looking for changes in the symbols for the formulas.

Thinksheet's algorithm for propagation is given in Algorithm 4.1. This algorithm
constructs a topological sort of the changed nodes and their descendents. Each node
has a mark, either evaluate or don't-evaluate. The changed nodes are initially marked
with evaluate, while the other nodes are marked with don't-evaluate.

The algorithm then iterates through the topological sort. At each node, it checks
the mark. If the mark says don't-evaluate, the algorithm skips that node and moves
onto the next one.

If the marks says evaluate, the e�ective value of the node is re-evaluated. If its
e�ective value of the node has changed, all of its children are marked evaluate.

The processing ends when we reach the end of the topological sort.

46

Input:

T old = (N;A; P), the old Thinksheet, T new = (N 0; A0; P 0), the new Thinksheet. SoldT
(the state of the old Thinksheet T).
Output:
SnewT (the state of the new Thinksheet T new).
Initialization:

R((T new � T old)
V (topological sort of R [descendents of R, according to GTnew .
for n = V:�rst to V:last do
n:mark(don't-evaluate

for all n 2 R do

n:mark(evaluate
for all n 2 N 0 do

SnewT (n)(SoldT (n)
Loop:
for n = V:�rst to V:last do
if n:mark = evaluate then
SnewT (n)(e(n; T new)
if SnewT (n) 6= SoldT (n) then
for all c 2 n:children do
c:mark(evaluate

Algorithm 4.1: The Propagation Algorithm

In our implementation, the Thinksheet will start out in some state, SoldT . Our
propagation algorithm will bring the Thinksheet to state SnewT . The algorithm is con-
sidered to be correct if the new state, SnewT , is a consistent state.

Theorem 4.1 If the input state, Sold
T , for Algorithm 4.1 is a consistent state, then the

output state, Snew
T is also consistent.

Proof In order to show that SnewT is consistent, we must show that

8n; SnewT (n) = e(n; T new)

At the end of the algorithm, we have nodes marked evaluate and nodes marked
don't-evaluate. Divide them up into disjoint sets, E and E, respectively.

Nodes in E are explicitly re-evaluated, so they trivially satisfy this condition.
For each n 2 E, it is the case that none of the parents of n have changed in their

e�ective value (otherwise the node would be marked). Also, neither the precondition
nor the answer for n has changed (otherwise it would be marked evaluate during the
initialization). Therefore the e�ective value of n has not changed. Thus SnewT (n) =
SoldT (n) = e(n; T new). �

47

Algorithm 4.1 has the properties that only those descendents that require evalu-
ation are re-evaluated, and no node is ever evaluated more than once in a propagation.

For implementation purposes, the statement,

SnewT (n)(SoldT (n)

need not be executed, as SnewT can work directly on SoldT . The two are later compared,
but this is done on a per-node basis, so only the old value of the particular node need
be kept.

Also, note that in the statement,

SnewT (n)(e(n; T new)

the call to e(n; T new) is potentially a recursive call to the e�ective value function e

because the precondition and answer formulas of a node may refer to other nodes (see
De�nition 2.4). However, we can make use of the following property. If p is a parent of
node n, then when computing e(n; T new), we can take advantage of the fact that,

e(p; T new) = SnewT (p)

because p will have been previously visited by the algorithm if its e�ective value has
changed. Therefore, further recursive calls are not necessary.

4.1.1 Running Time of Propagation

[CLR90] gives a O(N +E) time algorithm for doing a topological sort, where N is the
number of nodes and E is the number of edges of the graph. After doing the sort, we
must iterate through each of the O(N) nodes and possibly re-evaluate them. For each
node marked, we must re-evaluate its precondition and answer formulas. In the worst
case, we must re-evaluate the preconditions and answers of all the nodes. Let F be equal
to the total size of the preconditions and answer formulas in the Thinksheet. Then the
worst case running time is O(N +E + F).

4.2 Optimization of Boolean Formulas

The Propagation Algorithm is eÆcient, but in some cases we do better. When the
e�ective value of node n changes, we mark its children for re-evaluation. When we
later visit that child, one or both of the precondition or the answer formulas depend on
n. It might be the case the e�ective value of the dependent formula(s) stay the same
even though n has changed. Can we catch some of these cases without re-evaluating a
potentially long formula?

For example, suppose we had nodes A1; : : : ;An;B1; : : : Bn, which we will refer
to as the A nodes and the B nodes respectively. The precondition of the A nodes are

48

true, while the precondition of the B nodes would be as follows:

8j; 1 � j � n; precondition of Bj is A1 = j ^A2 = j ^ � � � ^An = j

Now suppose the current state of the Thinksheet is as follows: node A1 has been
answered with the value 1, while all the rest of the A nodes have been left unanswered.
This means that node B1 is possible, while the other B nodes are false.

Now suppose we answer node A2 with the value 2. The propagation algorithm
would require us to re-evaluate all of the B nodes, although clearly only the e�ective
value of B1 has changed (the rest remain false).

Let us compute the running time for this instance. The running time for the
Propagation Algorithm is O(N +E + F). We will break this down in terms of N . The
number of descendents of A2 is O(N), so the running time simpli�es to O(N+F). Each
precondition for the B nodes is of size O(N). Since there are N nodes, the running
time is O(N2).

However, with a little knowledge we would know that re-evaluating the precon-
ditions for B2; : : : ;Bn was unnecessary. Skipping the work for those nodes would reduce
the running time to O(N). In the following sections we will provide a few simple checks.
If one of those checks are met then we will know that even if the parent of a formula has
changed its e�ective value, this will not change the e�ective value of the formula itself.

We put this check into the Propagation Algorithm in the following way. In the
original algorithm, if a parent's e�ective value changed, we blindly marked its children.
In our new algorithm we perform the checks on the precondition and/or answer formulas
of each child (depending on whether the dependency is in the precondition or answer, or
both). If the checks hold, we do not mark the child, even though the parent's e�ective
value has changed. In e�ect, we know that the new e�ective value of the parent will not
modify that child, so we do not need to re-evaluate it.

The algorithm to do these checks must be fast and simple enough that it is
advantageous to use it (i.e. it should be much faster than just recomputing the formula).
This is not as diÆcult as it might seem, especially when the implementation uses an
interpreted language to evaluate the formulas (as ours does). In this case, the evaluation
of even a relatively small formula outweighs a few simple checks.

In the following sections we provide some easy checks that can be made for
extended boolean formulas. The proofs of correctness of these checks is in Appendix A.
We summarize these checks in Table 4.2.

Each of check will look at the old and new e�ective values of the parent and the
old e�ective value of the formula. Simply by looking at these values (and by a possible
constraint on the construction of the formula itself), we can determine if the e�ective
value of the formula remains unchanged.

49

Symbol Description

T old The old Thinksheet

T new The new Thinksheet

f The formula being checked

p The parent of the formula that has changed its e�ective value

Table 4.1: The symbols used when discussing the optimizations of propagation.

Simple Checks

Check e(p; T old) e(p; T new) e(f; T old)

1 possible not possible true or false

2 not possible possible possible

Positive Simple Checks

Check e(p; T old) e(p; T new) e(f; T old)

1 not false false false

2 false not false true

Table 4.2: These two tables summarize the checks for simple and positive simple
formulas. The table speci�es the old value and new value for the parent node p , and
the old e�ective value of the formula f . In these cases, the formula's e�ective value does
not change.

4.2.1 Classifying Boolean Expressions

Our checks only work for quanti�er-free extended boolean formulas. In particular, we
leave out terms such as A0 � 6, since these generally do not evaluate to a truth value.
This means that the optimizations will usually apply to the preconditions of nodes, and
not their answers.

We �rst start by identifying a subclass of the formulas to be evaluated. We call
any boolean formula that is a quanti�er-free logic formula constructed with ^, _ and/or
: a simple formula. 1 A simple formula that has no negation (i.e. it doesn't use the :
symbol) is called a positive simple formula.

Table 4.2 summarizes the checks for simple and positive simple formulas. The
next section describe the checks in more detail and give examples of where they might
come into play.

1While this may seem to encompass everything, our implementation has a more general language
that allows loops, etc.

50

4.2.2 Checks for Boolean Formulas

In this section we de�ne the checks in detail, give motivation for when the checks might
be useful, and give simple examples illustrating the checks.

Since these checks will be taking place in the context of propagation, we will
refer to symbols taken from the Propagation Algorithm. These symbols are given in
Table 4.1.

For the purposes of de�nition, we assume that p is the only parent of the formula
that has changed value. In reality, of course, multiple parents may have changed value.
If this is the case, we go through the changed parents and apply the checks to each
parent. If one parent forces a re-evaluation of the formula, then we do not have to check
further.

De�nition 4.2 (Simple Check 1) If e(p; T old) = possible and e(p; T new) 6= possible
and f is simple and e(f; T old) = true or false then e(f; T new) = e(f; T old).

The motivation for this check is for the case where a reader answers a previously
unanswered question, in this case node p. If any child formulas of p are already true or
false, then they do not need to be re-evaluated.

Example 4.1 Suppose our Thinksheet consists of three nodes, A0, B0, and C0. The
precondition of C0 is :(A0 = 1)^B0 = 2. Currently the e�ective value of A0 is 1, and B0
is possible. Therefore, the e�ective value of the precondition is :(true)^possible = false.

Now suppose the e�ective value of B0 changes to 2. According to our check, B0's
e�ective value changed from possible to 2. C0's precondition was false and therefore, it
should not have changed. This, in fact, is the case.

De�nition 4.3 (Simple Check 2) If e(p; T new) = possible and e(f; T old) = possible
then f is simple and e(f; T new) = e(f; T old).

The motivation for this check is something of the opposite of Simple Check 1.
Suppose that a reader removes the answer to a particular question node (removing an
answer means that answer formula for the node changes to possible). Then those child
formulas that were originally possible remain possible.

Example 4.2 Let there be three nodes A0, B0 and C0. C0's precondition is A0 =
1_B0 = 2. Suppose A0's e�ective value is possible and B0's e�ective value is 3. In this
case, the e�ective value of C0's precondition would be possible.

Now suppose B0's new e�ective value is possible. The e�ective value of C0's
precondition does not change.

The next two checks hold just for positive simple formulas.

De�nition 4.4 (Positive Simple Check 1) If e(p; T old) 6= false and e(p; T new) =
false and e(f; T old) = false and f is positive simple then e(f; T new) = e(f; T old).

51

This check handles cases where the parent question becomes false. If the child
formula is already false, it will remain that way.

Example 4.3 Suppose our Thinksheet consists of A0, B0 and C0. The precondition of
C0 is A0 = 1^B0 = 2. Suppose that the e�ective value of C0's precondition is already
false because the e�ective value of A0 is 2.

If the e�ective value of B0 subsequently becomes false, the e�ective value of C0's
precondition will not change.

De�nition 4.5 (Positive Simple Check 2) If e(p; T old) = false and e(p; T new) 6=
false and e(f; T old) = true and f is positive simple then e(f; T old) = e(f; T new).

This check is like the opposite of Positive Simple Check 1. In this case the
parent question goes from false to not false (possibly because of a change to an ancestor
question). If the child formula is already true, it does not need to be re-evaluated.

Example 4.4 Suppose we have a Thinksheet with three nodes, A0, B0 and C0. The
precondition of C0 is A0 = 1 _ B0 = 2. Suppose that precondition of node C0 is true
because the e�ective value of A0 is 1 and the e�ective value of B0 starts out as false.

If the e�ective value of B0 changes to another value, then the e�ective value of
C0's precondition still won't change.

4.3 The New Propagation Algorithm

Our new algorithm for propagation takes into account the optimizations discussed above.
It changes one statement of the propagation algorithm. Recall the following lines from
the old algorithm:

if SnewT (n) 6= SoldT (n) then
for all c 2 n:children do
c:mark(evaluate

The algorithm modi�es this statement to add the checks previously discussed:

if SnewT (n) 6= SoldT (n) then
for all c 2 n:children where c is not marked evaluate do
if n and the precondition and/or answer of c do not �t one of the checks in
Table 4.2 then
c:mark(evaluate

We look at the precondition or answer of child c only if they directly depend on
node n.

52

n Node Position:Title Mark

=) E3:Recall Joe evaluate
D4:Joe Picture don't-evaluate
E4:Joe Remembers don't-evaluate
D6:Impeach don't-evaluate
E6:Victory don't-evaluate

Table 4.3: The topological sort of the trial strategy nodes. The �rst column denotes
the current node in the iteration of the Propagation Algorithm.

Node Position Precondition

E3 N/A
D4 E3 = 1
E4 E3 = 2 _D4 = 2
D6 A3 = 1 _C3 = 1 _D3 = 1 _D4 = 1 _ E4 = 1
E6 F3 = 2 _ E4 = 2 _D3 = 2

Table 4.4: The preconditions of the nodes in the topological sort. The �rst column
gives the node id, while the second column gives the precondition. E3's precondition is
omitted.

4.4 A Full Example of Propagation

We will run through an example propagation using the trial strategy Thinksheet from
Chapter 3 (see Figure 3.17).

To begin with, we assume that three of the questions have already been answered
by the reader. The state of the sheet is given in Figure 4.2. Node D1 has been answered
with 2, and node E2 with 1, and node E3 with 2. The current e�ective values of all the
nodes are also given in the �gure.

Suppose that the reader decides to change the answer of node E3 to 1. We now
must propagate that change through the nodes.

The initialization of the Propagation Algorithm says we must construct a topo-
logical sort of the root nodes and their descendents. Then we mark the root node as
evaluate and all the others as don't-evaluate. The result is given in Table 4.3. Table 4.4
lists the preconditions of each of these nodes for easy reference.

Starting with the loop phase of the algorithm, we re-evaluate node E3 (Recall
Joe). Since the reader modi�ed the answer, the new e�ective value changes from 2 to
1.

We now loop through all of the children of E3, which are D4 and E4. For each

53

A B C D E F

1

2

3

4

5

6

Crime Scene

GunKnow Joe

Menace Joe Says Not Again Recall Joe Colt 45

Joe Picture
False

Joe Rememb

Impeach Victory
Possible

2

1False

False False False False

Possible

* The precondition is true, but the question is unanswered, so its effective value is possible

2

Possible *

Figure 4.2: The nodes' initial e�ective values

54

n Node Position:Title Mark

E3:Recall Joe (done)
=) D4:Joe Picture evaluate

E4:Joe Remembers evaluate
D6:Impeach don't-evaluate
E6:Victory don't-evaluate

Table 4.5: The result after completing a loop of propagation

n Node Position:Title Mark

E3:Recall Joe (done)
D4:Joe Picture (done)

=) E4:Joe Remembers evaluate
D6:Impeach don't-evaluate
E6:Victory don't-evaluate

Table 4.6: The result after completing a loop of propagation

child, we use Table 4.2 to decide whether it should be marked evaluate or not.
The precondition of D4 is E3 = 1 and of E4 is E3 = 2 _ D4 = 2. Both are

positive simple. However, the criteria in Table 4.2 are not met, so we must mark both
children as evaluate. Then we set the current node to be the next node in the topological
sort, which is D4 (Joe Picture). The result is shown in Table 4.5.

We now re-evaluate the precondition of node D4. The precondition, which is
E3 = 1, becomes true. The e�ective value of D4 is possible, because the question is
currently unanswered. Thus D4's e�ective value went from false to possible.

Let us look at the children of D4, which are E4 and D6. Node E4's precondition
is E3 = 2_D4 = 2, which is positive simple. Before the reader's modi�cation, its value
was true. Positive Simple Check 2 tells us that since the parent went from false to
possible, and the formula was true, we don't have to mark it. Note, however, that E4
is already marked as evaluate, so nothing is gained here.

Node D6's precondition is

A3 = 1 _ C3 = 1 _D3 = 1 _D4 = 1 _ E4 = 1

This is also positive simple. Simple Check 2 tells us that since D4 became possible and
the precondition D6 is already possible, we don't have to mark it for evaluation.

We then set the current node to the next node in the topological sort, E4. The
result shown in table 4.6.

55

Node E4's precondition is E4 = 2_D4 = 2. This evaluates to possible (E4 = 2 is
false, but D4's e�ective value is possible). The children of E4 are D6 and E6. Since E4's
e�ective value has not changed (it was originally possible because it was unanswered),
the children are not marked.

Finally, the last two nodes in the topological sort (D6 and E6), are marked don't
evaluate, and thus are skipped. The result of the propagation is given in �gure 4.3.
Node D4's precondition became true (and its e�ective value possible), and node E4's
precondition changed to possible (but its e�ective value remained unchanged).

4.5 Optimization Experiments

In order to show the e�ectiveness of these optimizations described in Section 4.2, we
present the results of two experiments. The �rst experiment tests how much time
the optimizations can save. The second experiment tests how much overhead these
optimizations impose|i.e. since the optimizations are checks, and if the checks fail,
then the optimizations are just overhead.

All experiments were run on a Sun SPARC workstation. The central proces-
sor was a 143 MHz UltraSPARC with 92 megabytes of memory. The results of each
experiment were obtained by taking the mean of 10 runs.

4.5.1 Experiment One

In this experiment, two series of nodes were created, A1; : : : ; An and B1; : : : ; Bn. The
preconditions of A1; : : : ; An are true. The answers of A1; : : : An�1 are possible, and the
answer of An is n. For 1 � j � n, the precondition of Bj is:

A1 < j ^A2 < j ^ � � � ^An < j

The answers of B1; : : : ; Bn are all possible.
In this initial state, the e�ective values of B1; : : : ; Bn are all false since their

preconditions are false (because the e�ective value of An is n).
In our experiment, we time how long it takes to propagate changing the answer

of An�1 to n�1 with the optimization checks in e�ect and without them. When the op-
timizations checks are in e�ect, Simple Check 1 is satis�ed for each of the preconditions
of B1; : : : ; Bn. and thus the preconditions are not re-evaluated. Without the optimiza-
tions the preconditions must be re-evaluated. The results are shown in Figure 4.4 for n
equal to 50, 100, 150, and 200. Times are shown in milliseconds.

Because the size of the precondition formulas of B1; : : : ; Bn increases with the
square of n, the time for propagation without optimization roughly follows that curve.
For n equal to 200, the time is roughly 4 seconds.

With the optimization checks, the time for propagation is never more than 65
milliseconds, which is hardly noticeable for interactive use.

56

A B C D E F

1

2

3

4

5

6

Crime Scene

GunKnow Joe

Menace Joe Says Not Again Recall Joe Colt 45

Joe Picture
Possible *

Joe Rememb

Impeach Victory
Possible

2

1False

False False False False

Possible

* The precondition is true, but the question is unanswered, so its effective value is possible

2

Possible

Figure 4.3: The nodes' e�ective values after propagation

57

Figure 4.4: The results of experiment one.

4.5.2 Experiment Two

In this experiment, we again create two series of nodes, A1 and A2 and B1; : : : ; Bn. The
preconditions of A1 and A2 are both true and their answers possible.

For 1 � j � n, the precondition of Bj is:

A1 < j ^A2 < j

In our experiment, we time how long it takes to propagate changing the answer
of A2 to n. In this case, the optimization checks are not satis�ed, so we are measuring
the overhead of the checks. The preconditions of B1; : : : ; Bn are small (involving just
two terms) to test for any signi�cant overhead in the checks.

The results are shown in Figure 4.5 for n equal to 50, 100, 150 and 200. Times
are shown in milliseconds. The overhead in this case is extremely minimal|there is
only a one millisecond di�erence when n is equal to 200.

58

Figure 4.5: The results of experiment two.

59

Chapter 5

Thinksheet Implementation

This chapter provides an overview of the design and implementation of Thinksheet.
Thinksheet has a core library designed to be attached to a user interface. The core
library is designed to be as user interface independent as possible, and is discussed in
Section 5.1. Section 5.2 and 5.3 discuss the implementation of two of the user interfaces
to the core library, the spreadsheet and World Wide Web interfaces respectively.

5.1 The Core Thinksheet System

This section gives an overview of architecture of the core library. Appendix E contains
a reference to the Application Programming Interface (API).

The core library is implemented in C++. The four main classes of the library
are the Node, SheetGraph, Parser and Value.

The principle objects are called Nodes. Each object of this class represents one
Thinksheet node. A Node contains an answer and precondition �eld as speci�ed in the
model in Chapter 2, but it also contains additional information such as �elds for the
title, the question (for question nodes), or hypertext (for text nodes).

A Node also holds the list of the parent nodes of its precondition and answer
�elds, and the list of the children nodes that reference it in their preconditions and
answers. The class has functions to set and get each of the �elds. For example, the
function setAnswer will set the answer �eld. There is also a function for retrieving the
e�ective value of a Node.

The SheetGraph stores all the Nodes of a particular Thinksheet. It has functions
for saving and loading a Thinksheet to and from a �le system. It also has functions to
retrieve nodes that have certain characteristics. For example, one can retrieve the set
of all nodes that have a true precondition.

The Parser parses and evaluates the precondition and answer formulas of the
nodes. It recognizes the language described in Section 3.3.1. When it parses a formula,
it returns a Value. A Valuemay be any of the types allowed by the Thinksheet language

60

(e.g. a logic value, a oating point, a string, or sets of these values). The implementation
of the Parser class is loosely based on Hoc [KP84].

A user interface communicates with these classes when modifying or retrieving
information from a Thinksheet. For example, if the interface captures a request to set
the answer of a particular Node, it would call the setAnswer function on the Node class.
When that function has �nished, the interface might retrieve the e�ective value of that
Node. This would return a Value which the interface would display to the user.

The core library contains classes that represent the interface's view of the Node
and SheetGraph. They are the Cell class and the SheetWindow class respectively.
When some aspect of a Node changes, the core library noti�es the Cell(s) associated
with the Node. Similarly, when a SheetGraph changes, the SheetWindow is noti�ed.
The core library contains the declaration of the Cell and SheetWindow class, but they
must be implemented by the user interface.

We may associate multiple Cells with a Node and multiple SheetWindows to a
SheetGraph, allowing multiple views of the same object. This association between a
single Node or SheetGraph and its multiple views is handled by the CellController

and SheetWindowController respectively.
For example, the Cell class might implement a button on the spreadsheet inter-

face. If something about a Node changes (e.g. its e�ective value), then the associated
Cell is noti�ed, and the button is updated (e.g. it might change color).

Similarly, the SheetWindow class might implement the entire grid on which the
Cells are placed. When something in the SheetGraph changes (e.g. a node is added or
deleted to the Thinksheet), then the SheetWindow is noti�ed, and the grid is updated
(e.g a Cell is added or removed).

The CellController and the SheetWindowController would allow the user
interface to have multiple grids open at the same time. This might be useful if one
wanted to have a reader mode and writer mode of the same Thinksheet open at the
same time.

We present an example interaction between a user interface and the core library.
This interaction represents the primary process of Thinksheet|that of the reader setting
the answer to a node.

Example 5.1 This example shows the ow of control when a user sets the answer of a
node. We discuss what happens at each step of the process.

1. The user interface captures the user's request to set the answer of a node N1. The
interface calls the setAnswer function of the Node class (see Figure 5.1).

2. A topological sort of the node and its descendents is constructed and the node is
marked with evaluate (see Figure 5.2). Then the Propagation Algorithm is run
on the topological sort. The algorithm will iterate through the topological sort
and any node that is marked evaluate will be re-evaluated, and then its children
possibly marked evaluate (see Chapter 4 for details).

61

User

N4
N2

N1
N3

SheetGraph

setAnswer (...)

Figure 5.1: The user sets the answer to node N1. Solid lines represent function calls.
Dashed lines represent node dependencies.

User

SheetGraph

N1 N2 N3 N4
E NE NE NE

toposort (...)

Figure 5.2: The nodes are topologically sorted. Those that are marked evaluate are
labeled with an E. Those that aren't are labeled with an NE.

62

User

Parser

SheetGraph

N1 N2 N3 N4
E NE NE NE

Figure 5.3: The nodes that are marked evaluate are re-evaluated by calling the Parser.
The Parser returns a Value.

User

SheetGraph

N1 N2 N3 N4
E NEE E

CellController

C1 C2

Figure 5.4: Node N1 updates through the CellController and marks its children
with evaluate. The CellController noti�es the two Cells associated with the node,
C1 and C2.

63

Carbon Dioxide: %calc% A0 * $1 %endcalc%

(a) The Smart�eld for B0, with a dependency on node A0 and $1.

Nitrous Oxide: %calc% A1 * $1 %endcalc%

(b) The Smart�eld for B1, with a dependency on node A1 and $1.

The pollution level is:

%insertcontents% B0(0.4) %endinsertcontents%

%insertcontents% B1(0.5) %endinsertcontents%

(c) The Smart�eld for B2, with a dependency on B0 and B1.

Figure 5.5: Smart�elds and lazy evaluation.

3. Since the �rst node is marked with evaluate, it is re-evaluated by calling the
Parser to interpret its precondition and/or answer formula. The Parser returns
the values of these formulas in the form of Value objects. These Values are used
to compute the new e�ective value of the node (see Figure 5.3).

4. If the e�ective value of a node has changed, then the CellController for that
node is noti�ed. The CellController, in turn, noti�es each of the Cells. The
Cells display their results to the user (see Figure 5.4).

5.1.1 Smart�eld Processing

Smart�elds are text �elds that contain directives to allow the dynamic creation of text
based on the values of nodes in a Thinksheet (see Section 3.3.2). The directives are
processed when a reader requests the text. The title, question and text �elds of a Node

are all Smart�elds. This subsection discusses how Smart�elds are processed.
Smart�elds are implemented by a SmartField class in the core library. An

object of this class stores the original unprocessed text containing the directives either
in memory or in a �le. When the user interface wants the processed text, it calls the
appropriate method of the SmartField class, which substitutes the directives and then
returns the processed text. There are also functions to view and modify the original
text of the Smart�eld, for when a writer is creating a Thinksheet.

Lazy Evaluation of Smart�elds

Smart�elds can have quite complicated directives. We would like to save time by not
doing the processing when we don't have to. In order to save time, we adopt a lazy
evaluation strategy for Smart�elds.

64

For example, Figures 5.5(a){(c) show three Smart�elds. In this example, the
Smart�eld of B0 depends on the current value of node A0 and the parameter, $1.
Likewise, the Smart�eld of node B1 depends on the current value of A1 and $1.

The �rst time we request the the text of node B2, all three Smart�elds must be
processed. However, suppose the A0's e�ective value changes, but A1's stays the same,
and then we re-request the text of node B2. In this case the Smart�eld for B1 need not
go through the processing step again because its text will not change regardless of how
we change A0.

We would like to catch these and similar cases, and only process Smart�elds
when we have to. A Smart�eld needs to reprocessed when something it depends on
changes. The \things" that a Smart�eld may depend on are:

1. Nodes|for %calc% directives, etc.

2. Other Smart�elds|for %insertcontents%.

3. Parameters (such as $1)|for Smart�elds that have been called by
%insertcontents%.

We call these objects the parents of a Smart�eld. If any of them have changed,
then the Smart�eld must be reprocessed.

Because of a Smart�eld's ability to insert other Smart�elds, we must create a
form of Smart�eld propagation. For example, the contents of B2 (Figure 5.5(c)) doesn't
immediately depend on node A0. But this Smart�eld does depend on the contents of
B0, which in turn depends on node A0. So changing the value of node A0 means that
we must reprocess the contents of B2. Therefore, a Smart�eld graph must be created.
Unlike a Thinksheet graph, a Smart�eld graph may have cycles (because a Smart�eld
may recursively insert the contents of itself).

5.2 Implementation of the Spreadsheet Interface

The spreadsheet GUI described in Section 3.1 is implemented in C++ and uses Motif,
which is a library that contains graphical user interface components such as buttons,
scrollbars, etc. [Hel91]. We use and extend a C++ framework built around the Motif
library [You92].

The framework represents each GUI component as a C++ class. For example,
a GUI button might be implemented as an object of the Button class. Applications
extend from this framework in order to customize the components.

Additionally the framework provides a structure for de�ning commands to be
executed when the user interacts with the graphical components. All commands extend
from the Cmd class provided by the framework. A command is associated with one of
the framework's GUI component classes. For example, a particular type of Cmd might

65

be associated with a Button. When that Button is clicked, the Cmd is executed (by
calling its execute function).

The spreadsheet interface maps objects of the Cell class and objects of the
SheetWindow class to graphical components on the screen. An object of the SheetWindow
class represents the entire spreadsheet window that is presented to the user. An object
of the Cell class represents one button in the spreadsheet grid. Thus a button maps to
one node of a Thinksheet, and a grid maps to the entire Thinksheet.

When a user clicks on a Cell the action taken depends on whether the interface
is in the reader mode or the writer mode. Associated with each Cell is an object of the
ClickCmd class which executes the appropriate action. For example, if the Thinksheet
is in reader mode and the reader has clicked on a question cell, the ClickCmd object
will open up a dialog window with the question and an entry to allow the reader to
input his answer. If the Thinksheet is in writer mode, the ClickCmd object would open
a dialog box allowing the user to edit the �elds of the Node associated with the Cell.

5.3 Implementation of the CGI World Wide Web Inter-
face

The implementation of the CGI World Wide Web interface can be broken down into
several processes. They are:

1. The browser. This is the client from which the user starts the interaction.

2. The HTTP daemon. The is the Web server that handles requests in the HTTP
protocol.

3. The Thinksheet server. This server handles requests to start a Thinksheet.

4. A Thinksheet instance. An instance of a running Thinksheet. In the current
implementation, an single instance is actually broken down into two processes:

(a) An Instance server. The server listens on a socket for requests. It forwards
the requests to:

(b) A Tcl Thinksheet shell. This shell receives requests from an instance server
and sends the results back.

When a browser client wants to start a Thinksheet session, it typically sends
a CGI request to the residing HTTP daemon, which executes the appropriate CGI
program to contact the Thinksheet server (see Figure 5.6(a)). The Thinksheet server
forks o� a new Thinksheet instance, and sends back a port number to the browser (see
Figure 5.6(b)). The port number identi�es the UNIX socket the Instance server will
listen to for requests.

66

Browser HTTP
Daemon

Thinksheet
Server

Request:
Open
Thinksheet CGI

Program

(a) The client request

Browser HTTP
Daemon

Thinksheet
Server

Shell
Tcl Thinksheet

CGI
Program

Response:
Port #

Instance
Server

Thinksheet Instance

(b) The Thinksheet server response

Figure 5.6: The initial interaction when starting a Thinksheet in the WWW interface.

67

Browser HTTP
Daemon

Thinksheet
Server

Shell
Tcl ThinksheetInstance

Server

Thinksheet Instance

CGI
Program

Figure 5.7: The interaction between the Browser and the Thinksheet instance.

After this, the interaction is between the Browser and the Thinksheet instance.
The browser sends a CGI request to the HTTP daemon. Once again, the daemon
executes the appropriate CGI program. One of the parameters that the browser sends
in its request is the port number the Thinksheet instance is listening to. The CGI
program contacts the Thinksheet instance using this port number. The CGI program
then sends the instance's reply back to the browser.

The Thinksheet server and a particular Thinksheet instance may be contacted
via any program that can connect to UNIX sockets, so these tools are not limited to
interactions between HTTP daemons and browsers (although that was their original
design goal).

68

Chapter 6

Thinksheet and Metadata

This chapter discusses using Thinksheet as an application to store metadata. Think-
sheet is an appropriate tool for storing certain types of metadata. Its underlying data
representation is semi-structured, but it also has access to relational tables.

The primary use of Thinksheet would be to store metadata about how to issue
correct queries. We would like to do what a human database consultant might do, as
exempli�ed by the following imaginary dialogue:

Researcher: \I want to know the relationship between salmon births and mud
erosion."

Consultant: \Which region, year, season, type of salmon : : : ?"
Researcher: \The Columbia River headwaters, 1970-1999, : : : "
Consultant: \Ok. Go to table XYZ and issue the third query on the menu

specifying salmon under Species and mud erosion under Environmental Cause."
As attractive as this scenario is to the researcher, it su�ers from the limited

number of such consultants and the fact that even the best consultant may not be
aware of every new piece of data that enters the system.

The goal therefore is to create a Thinksheet that acts as a limited consultant to
answer the researcher's queries on how to query the data. Possibilities include using
Thinksheet to store canned queries, useful joins, etc.

6.1 A Metadata Model for Thinksheet

Thinksheet can serve as a kind of expert system over the data, helping the researcher
�nd the right table, and even helping to form queries over the table once the data is
found.

In Chapter 2 we discussed the usefulness of the meta-values of false and possible
to avoid giving values to inapplicable attributes. This general principle will be useful in
de�ning a metadata structure over databases.

69

6.1.1 Tables as Values for Nodes

In our examples of Thinksheets so far, node values have generally been either strings
or numbers. However, there is nothing in the model given in Chapter 2 that disallows
other value types. Of particular interest in the realm of metadata would be to have
nodes representing tables. In this case, instead of a node being bound to the value of a
string or a number, its value is bound to a table|i.e. its answer formula is a table.

We consider the domain of node to be a table, and the various operations on
these tables may be the ones given by the relational algebra|e.g. � (select), � (project),
etc. [Ull88]. We may also include some optional predicates on tables|e.g. a predicate
to test whether a table includes a particular tuple.

For example, table T may represent a table of students at university X. Node N
may have as its answer formula the selection of students in the table in T that have a
GPA greater than 3.5.

If the reader of this Thinksheet were not interested in university X then precon-
dition of N might be false, and the reader would never see the result. The advantage of
this approach is that the underlying data can now be stored in any common relational
database system.

6.1.2 Querying a Table

Once we can access tables in a Thinksheet, we would like to establish ways for readers
to query them. We present here one way to construct these queries. It is, of course, not
the only way to do things, but it is general enough to apply to a wide variety of cases,
and illustrates the principles well.

Our method is to create a node representing each attribute of the table. The
reader will form his query by answering these nodes. We also create a node which
represents the query. We set the answer formula of this node to the query string. We
will call this node the result node because it will contain the result of the reader's query.
This result will be in the form of the table (as discussed in the previous section).

The attribute nodes may be answered with values belonging in the attributes
domain. For example, if a node represented the attribute State, it may take on the
value of any subset of fAlabama, : : : , Wyomingg. Then we create a result node which
selects from the table those rows which satisfy the reader's answers. For example, if
the reader had selected fNew Jersey, New Yorkg as the states he was interested in, the
result node would hold only those rows corresponding to New Jersey and New York.

To generalize this notion, suppose we had a table T with attributes A1; : : : ; Ak.
Let P(S) equal the power set of a set S. Then, through a slight abuse of notation, we
call P(�AT) the power set of attribute A in table T (meaning the set of all subsets of
the set of possible values of A). Then we create nodes N1; : : : Nk in a Thinksheet S such
for all j, 1 � j � k:

D(Nj; S) = P(�Aj
T) (6.1)

70

where D(Nj ; S) represents the domain function as described in Section 2.7.
Thus the answer of node Nj can be any subset of the values of attribute Aj. The

answer formula of the result node would be the following:

�V

1�i�k

Ai2Ni
T

where,

^
1�i�k

Ai 2 Ni = A1 2 N1 ^ A2 2 N2 ^ : : : ^ Ak 2 Nk

However, we have the slight problem that the selection formula follows our three-
valued logic. For example, if the reader has not answered a particular node, Ni, then
its e�ective value would be possible. This would mean that the selection formula would
contain the atom Ai 2 possible, which means that for some tuples the entire formula
might evaluate to possible

Most database systems do not understand our three-valued logic, and therefore
do not understand the meaning of possible. When the selection formula evaluates to
possible for a particular tuple, we must decide whether to include it in the result or
not. We will follow the convention that the tuple is included, under the premise that it
might be what the reader wants and therefore should be in the result.

Also note that a particular tuple might have Null values for certain attributes.
However, this has no e�ect on our selection formula (conventionally, any comparison
with Null would yield false).

Example 6.1 Suppose we had the simple two column table as follows:

A1 A2

1 2
2 4
3 6

If we wanted to issue queries on the table, we could create two nodes, N1 and
N2 to represent attributes A1 and A2. The domain for N1 would be, for example:

D(N1; S) = P(�A1T)

Our result node, NR would have as its answer �eld the following formula:

�A12N1^A22N1
T

If the e�ective value of node N1 was f1, 2g, and of N2 was possible ,then the
resultant e�ective value for NR is the evaluation of the following formula:

�A12f1;2g^A22possibleT

71

The result is the following table.

A1 A2

1 2
2 4

6.1.3 Mutual Restriction

Unfortunately, mapping multiple nodes to attributes results in a loss of information.
We may pick values for N1; : : : ; Nk such that no row in T satis�es these constraints.
Thus the result node would be empty.

Without prior knowledge of the table, we would have no knowledge of which
values are \good" in the sense that they actually select some rows.

One solution around this problem is the concept we call mutual restriction. This
means that the domain of a particular node is restricted to those values which correspond
to already answered nodes. For example, if we had two attributes, State and Capital,
and the State node was already answered with fNew Jersey, New Yorkg, then the
domain of the Capital node would be restricted to the power set of fTrenton, Albanyg

We generalize this idea by saying that the domain of each node is set in the
following way. For all j, 1 � j � k:

D(Nj ; S) = P

�
�Aj

�V

1�i�k

i6=j

Ai2Ni
T

�
(6.2)

The di�erence between this equation and equation 6.1 is that here the do-
main is restricted by the choices of the other attributes, (this is represented by theV
1�i�k;i 6=j Ai 2 Ni in the selection.)

Example 6.2 Suppose we had the same Thinksheet from Example 6.1. Now suppose
that node N1 has been answered with f1, 2g. Using mutual restriction, the domain for
node N2 would be:

P(�A2�A12f1;2gT)

In this case, the resultant domain is ffg, f2g, f4g, f2, 4gg.

Example 6.3 Table 6.1 contains some sample data about movies. Each row contains
information about the movie title, its rating, year of release, and genre. The movies
listed are a small sample of movies from the 1980's. The information in this table was
taken from The Internet Movie Database [Int].

To represent this in Thinksheet, assume thatM represents the table in Table 6.1.
We then create a node for each attribute, NT , NR, NY , and NG. Initially, when the

72

Title Rating Year Genre

Attack of the Killer Tomatoes PG 1980 Horror
Beastmaster PG 1982 Fantasy
Commando R 1985 Action
The Road Warrior R 1981 Sci-Fi
Yor, the Hunter from the Future PG 1982 Sci-Fi

Table 6.1: A table with movie data.

nodes are unanswered, the domain of each node is a projection of the corresponding
attribute. For example, the domain of NG is P(fAction, Fantasy, Horror, Sci-Fig).

Mutual restriction restricts these domains as the reader answers the nodes. For
example, the domain of the node representing Genre would be as follows,

D(NG;M) = P(�Genre�Title=NT ^Rating=NR ^Year=NY
M)

If the reader answers node NG with fFantasy, Actiong, then the new domain of
NT would be P(fHighlander II, Commandog).

Preconditions on Tables

So far, we have shown how to incorporate tables into the model of Thinksheet, but we
have not used any of Thinksheet's power to help expressiveness.

One way to add information is to use preconditions on tables to express when
the tables themselves are relevant. For example, movies fall within the realm of enter-
tainment. In Example 6.3 we presented a table with some movie information. We might
have tables for other types of entertainment, for example museums, or theater. We can
imagine create a node NE which asks Which type of entertainment are you interested
in? If the reader is interested in museums, we don't want to present information about
the movies. We can therefore make the precondition of nodes NT , NR, NY , NG, which
represent the attributes of the table, NE = Movies.

Thus, if the reader is not interested in looking at movies, these nodes will disap-
pear.

Example 6.4 Suppose we had a database containing the movie table from Example 6.3
and added another table containing information about museums. This table is shown
in Table 6.2. Let Mo and Mu represent the movie and museum tables respectively.

Now we would also like to list the location and showtimes of the movies in
Table 6.1. Therefore we create a table with theater information and another table
which lists the showtimes for those theaters (see Tables 6.3 and 6.4). Let Sh and Th
represent the showtime and theater tables respectively.

73

Name Location Type

American Museum of the Moving Image Queens Film
American Museum of Natural History Upper West Side Science
The Liberty Science Center New Jersey Science
Metropolitan Museum of Art Upper East Side Art
Museum of Modern Art Midtown Art

Table 6.2: A table with museum data.

Name Location

American Cinemas Midtown
Mega SuperPlex Upper West Side
Super MegaPlex Upper East Side

Table 6.3: A table with theater information.

Theater Name Movie Title Time

American Cinema Attack of the Killer Tomatoes 12:00am
Mega Superplex Beastmaster 6:20pm
Mega Superplex Beastmaster 9:20pm
Super Megaplex Commando 4:00pm
Super Megaplex Commando 6:00pm

Table 6.4: A table with showtimes.

74

We would like to integrate this information in some way. For example, a reader
might be interested in all of the museums and theaters nearby, or he might be interested
in the showtimes for all �lms in the genre of Horror, or some combination of multiple
constraints.

We can start by creating a node asking the reader which type of entertainment
they are interested in, in this case either movies or museums, or maybe even both. We
call that node NE. We then create attribute nodes for each table. The precondition
of the nodes representing movie attributes would be NE = movies _ NE = both and
museum attributes NE = museums _ NE = both. We could then create result nodes
with query formulas as discussed in earlier examples.

Once the reader has expressed an interest in movies, he might also be interested
in theaters and showtimes. Therefore the preconditions for the attribute nodes for these
two tables will also be NE = movies _ NE = both.

The other thing a reader might like to do is query the showtimes based on his
answers about movies and theaters. We create a query node whose answer �eld is the
following formula:

�Mo.Title, Th.Name, Sh.Time�F (Mo ./ Th ./ Sh)

where

F = Mo.Title 2 NT ^ Mo.Genre 2 NG ^ � � �
^Th.Name 2 NN ^ Th.Location 2 NL ^ � � �

where NT ; NN ; NL; : : : represent the appropriate attributes.
This query restricts the showtimes to those movies or theaters that the reader

has requested. For example, if the reader had answered NL (Theater Location) with
Upper East Side, and left the rest blank, the result would be:

Theater Name Movie Title Time

Super Megaplex Commando 4:00pm
Super Megaplex Commando 6:00pm

The reason is that Super Megaplex is the only theater on the Upper East Side.
Another useful feature we can add to this Thinksheet is to link the location of

both theaters and museums to a single node (in our normal breakdown, there would be
two nodes representing theater location and museum location). This is useful because
then a reader can look for both museums and movies that are at the same location
without redundantly answering two nodes.

A typical interaction with the reader might run something like this. The reader
only wants to go somewhere close by, so he speci�es his location|e.g. Upper West
Side|in the location node. He is not sure whether he wants to see a movie or go to
a museum, so he answers node NE with both. If he does go to a movie, he is only
interested in fantasy movies, so he answers the node representing movie genre with

75

Fantasy. He can then look at result nodes for showtimes and for museums and get the
relevant information. In this example, he would �nd that the American Museum of
Natural History is the only museum and Beastmaster is the only fantasy �lm nearby.

6.2 Related Work

Our work with Thinksheet and metadata focuses on the problem of �nding the right
data set, as opposed to integrating data from various sources [CH96, Maz97].

Typical applications for metadata include annotating scienti�c data sets [CJ96,
DCMG97]. These annotations include such information as the quality of the data, the
types of instruments used to obtain the data, etc., in addition to information useful for
�nding particular data sets (e.g. location, time of measurements, and so forth).

The metadata framework described here most closely resembles the framework
described in [GST98]. In this paper, Galhardas, et al, propose a metadata framework
based on �rst-order logic. Data and queries are represented as logic sentences. This
framework can easily be modeled in Thinksheet. The advantage of using Thinksheet
is that it is easier for a reader to issue queries by answering questions rather than by
constructing logic sentences.

76

Chapter 7

Conclusion and Future Work

7.1 Conclusion

The world is full of complex documents. Countless hours are spent reading and writing
such documents. Those who give in to frustration normally consult experts, such as
lawyers, tax consultants and so on.

Our thesis presented Thinksheet, which is a tool for easing the task of reading and
writing complex documents. We have presented the Thinksheet model, the interfaces
to the system, and discussed the implementation and algorithms behind it.

Thinksheet helps readers of complex documents by tailoring the document based
on the reader's answers to questions. Doing this �lters out the irrelevant information
and provides the text tailored to the reader. It helps writers of complex documents
by allowing them to specify conditions under which each portion of the document is
relevant.

While Thinksheet makes reading and writing complex documents easier, we be-
lieve that there is always room for improvement. The next section discusses future
work.

7.2 Future Work

7.2.1 User Interfaces

This subsection discusses ways the user interface to Thinksheet can be enhanced. It �rst
discusses possible enhancements to the reader interface and then to the writer interface.

Reading a Thinksheet

The spreadsheet interface may not be the best reader interface for all applications of
Thinksheet. The interface has particular problems when the number of cells becomes
quite large, in which case the reader has a diÆcult time �nding the right cell. We could
either develop tools to deal with this diÆculty or try another paradigm.

77

In general, we believe that there is no one best interface for all the applications
that Thinksheet covers, hence the motivation for creating Tcl interface to Thinksheet.
Tcl is an interpreted language with access to graphical user interface functions, which
allows the creation of custom interfaces for speci�c applications. We would like to see
further exploration of di�erent kinds of interfaces for Thinksheet, especially for large
Thinksheets.

Writing a Thinksheet

Even with Thinksheet's help, writing a complex document is a diÆcult and sometimes
time consuming task.

Preconditions are based on boolean logic, which is known to be inherently dif-
�cult for people to understand [WS94]. However, this work generally deals with using
boolean logic to query the data (i.e. as a reader application). Here, preconditions as
boolean logic formulas form part of the data itself. More study needs to be done to see
if their are any hidden issues when boolean logic is used as data.

Our experience with users who write Thinksheets show there are some tools that
could make their job easier. Particularly useful would be a set of tools to manipulate and
query the dependencies formed from the preconditions of nodes. For example, writers
might like to search and replace all occurrences of the term B0 > 5000 with B0 > 10000
because of some change to B0. Also, writers might like to see the path of dependencies
between two nodes n1 and n2 (i.e. all paths in a Thinksheet graph starting with node
n1 and ending with n2).

7.2.2 Querying a Thinksheet

Sometimes we would like to form queries over a Thinksheet without being restricted to
simply answering the questions. For example, suppose a prosecutor was developing a
trial strategy much like the example shown in Chapter 3. The prosecutor would be very
interested in knowing if there were ever any cases where the defendant would be found
not guilty. If the prosecutor had a node in his Thinksheet representing Not Guilty he
might like a list of all possible question/answer sessions that led to that result. Doing
this by hand would be tedious. Instead we would like a query language that would allow
us to specify such constraints.

Such a query language is described in [Tan98]. The query language allows queries
of the type \Enumerate the answers to questions that would make these two nodes true,"
or \Give the list of true nodes under the condition that the answer to this node is greater
than 10,000 and the answer to this other node is less than 5,000."

Such a language would be useful for both the reader and the writer. Readers
can now query a Thinksheet without being restricted to the path laid out by the writer.
Writers can check the consistency of their Thinksheets.

Unfortunately, if a Thinksheet contains general boolean precondition and an-
swer formulas, answering these queries is intractable. However, for a useful subclass

78

of formulas, [Tan98] has found eÆcient algorithms . Future work includes re�ning the
algorithms and implementing the query system.

7.2.3 New Applications

While this thesis has focused on using Thinksheets for complex documents such as laws
and billing plans, other types of complex documents exist. For example, a website can
be considered a complex document. We could use Thinksheet to tailor a website for a
particular user, bringing to mind such applications as web purchasing (e.g. displaying
warm clothes to those people who say they are from Alaska) and customer service (e.g.
to help a person with technical information about a particular computer hard drive).

As we enter the information age, the word document does not have to mean text
alone. Typically, an electronic document now contains a variety of multimedia, such
images, video and sound. For example, one could imagine using Thinksheet to tailor
video (e.g. suppose a person only wants to see the action sequences from one of the
movies listed in Chapter 6). The video could be broken up into chunks and tagged with
preconditions, much like a textual document.

In general, Thinksheet can be used for complex information. Chapter 6 has
already discussed how Thinksheet can also be used for metadata. There has also been
work on using Thinksheet for workow management [Sim98]. Thinksheet is useful as
long as the information shares the characteristics discussed in Chapter 1:

1. It is large and structurally complex.

2. Only a small portion applies to a particular information worker.

79

Appendix A

Proofs of Optimizations in

Propagation

This appendix gives the proofs for the checks listed in Section 4.2. Let f be the formula
being checked, and let p be a parent node of the formula. In each case, assume that p is
the only parent that has changed its e�ective value. Let T old and T new be the old and
new Thinksheets. Then if e(f; T new) = e(f; T old), we say that \the e�ective value of f
has not changed."

Proof of Simple Check 1

Theorem A.1 If e(p; T old) = possible and e(p; T new) 6= possible and f is simple and
e(f; T old) = true or false then e(f; T new) = e(f; T old).

Proof We will give our proof by induction of the formation of the precondition formulas.

1. Base case: Formula f is a single atom|a predicate of the form p(t1; t2; : : : ; tn),
where
t1; t2; : : : ; tn are terms.

Originally the parent's e�ective value was possible and the atom's value may have
been either true or false. However, it can't have been true (because by De�ni-
tion 2.4 we take the minimum of truth values when evaluating atoms containing
truth values), so it must have been false.

There must be at least one other truth value in the phrase that is false (if not, then
the atom's value would be possible). Therefore changing the value of the parent
from possible to something else does not have an e�ect on the atom's value.

2. Induction: Let f be a formula constructed by either f1 ^ f2 or f1 _ f2 or :f1,
where f1 and f2 are formulas. The old e�ective value of f was either true or false.

Suppose �rst that p is in only one of f1 or f2. Without loss of generality, assume
that f1 contains p. If e(f1; T

old) = true or false then by the induction hypothesis,

80

f1 does not change its value. Since nothing has changed in f2 its value does not
change either, so the e�ective value f does not change.

However, if e(f1; T
old) = possible then f1 might change its value. For the case of

f = f1 ^ f2 and e(f1 ^ f2; T old) = false, then e(f2; T
old) must be false. Since f2

hasn't changed the e�ective value of the whole formula stays the same. Note that
e(f1 ^ f2; T old) can not be true because we assume that f1 evaluates to possible.

For the case of f = f1 _ f2 and e(f1 _ f2; T old) = true, then e(f2; T
old) must be

true and therefore changing f1 will not change the new e�ective value. Note again
that e(f1 _ f2; T old) can not be false.

Finally f1 can not be possible in the case of f = :f1 because that would violate
our condition.

Now suppose that p is in both f1 and f2. We look at both case separately.

(a) f = f1 ^ f2.
If both f1 and f2 are either true or false, then the induction hypothesis
holds and neither will change value. However, it might be the case that
one is possible and the other false (the other can not be true because then f
would be possible, which violates our assumption). Without loss of generality,
assume that e(f1; T

old) is possible and e(f2; T
old) is false. Then, by the

induction hypothesis, e(f2; T
new) = e(f2; T

old) will not change. Therefore
e(f; T new) will remain false no matter what the value of e(f1; T

new) is.

(b) f = f1 _ f2.
If both e(f1; T

old) and e(f2; T
old) are either true or false, then the induction

hypothesis holds and neither will change value. However, it might be the case
that one is possible and the other true (the other can not be false because
then e(f; T old) would be possible, which violates our assumption). Without
loss of generality, assume that e(f1; T

old) is possible and e(f2; T
old) is true.

By the induction hypothesis, f2 will not change. Therefore e(f; T
new) will be

true no matter what the value of e(f1; T
new) is. �

Proof of Simple Check 2

To prove Simple Check 2, we �rst give the following lemma.

Lemma A.1 For a simple formula f , if e(p; T new) = possible then e(f; T new) = possible
or e(f; T new) = e(f; T old).

Proof We give our proof by induction on the formula.

1. Base case: f is an atom.

81

e(f1; T
old) e(f2; T

old) e(f1 ^ f2; T old) e(f1 ^ f2; T new)

true true true possible
true possible possible possible
true false false false
false true possible possible
false possible possible possible
false false false false

Table A.1: Case by case analysis of the proof of Lemma A.1 for f1^f2. In each of these
cases e(f1; T

new) = possible and e(f2; T
new) = e(f2; T

old). We leave out the cases that
e(f1; T

old) = possible because then e(f1; T
new) = e(f1; T

old) and then e(f1 ^ f2; T new) =
e(f1 ^ f2; T old).

By De�nition 2.4, an atom's e�ective value is the minimum of any truth values
it contains. If the e(f; T old) = true, then it can't contain any false truth values.
Therefore, is e(p; T new) = possible, then e(f; T new) = possible.

If the e(f; T old) = false, the atom either contained at least one false truth value, or
no truth values whatsoever. If it contained a false value, then e(f; T new) = false.
If not, e(f; T new) = possible.

2. Induction: Let f be a formula constructed by either f1 ^ f2 or f1 _ f2 or :f1,
where f1 and f2 are formulas.

Suppose p is in only one of f1 or f2. Without loss of generality, assume that
the parent is contained in f1. Then e(f2; T

new) = e(f2; T
old). By the induction

hypothesis, either e(f1; T
new) = possible, or e(f1; T

new) = e(f1; T
old). In the latter

case, then e(f; T new) = e(f; T old).

However, if the new e�ective value of f1 is possible, then the e�ective value of f
might change. We show that it might either change to possible, or keep its original
value, by listing each possible case for f in the following tables:

(a) f = f1 ^ f2. The cases are listed in Table A.1.

(b) f = f1 _ f2. The cases are listed in Table A.2.

(c) f = :f1. If e(f1; T new) = possible, then e(:f1; T new) = e(f; T new) = possible.

Now suppose that p is in both f1 and f2. By the induction hypothesis, the new
e�ective values for f1 and f2 will either be the same as the old e�ective values or
become possible. If both remain the same, then e(f; T new) = e(f; T old). If both
become possible, then e(f; T new) = possible, since:

e(possible ^ possible; T new) = e(possible _ possible) = possible

82

e(f1; T
old) e(f2; T

old) e(f1 _ f2; T old) e(f1 _ f2; T new)

true true true true
true possible true possible
true false true possible
false true true true
false possible possible possible
false false false possible

Table A.2: Case by case analysis of the proof of Lemma A.1 for f1_f2. In each of these
cases e(f1; T

new) = possible and e(f2; T
new) = e(f2; T

old). We leave out the cases that
e(f1; T

old) = possible because then e(f1; T
new) = e(f1; T

old) and then e(f1 _ f2; T new) =
e(f1 _ f2; T old).

If only one of them becomes possible, but the others new e�ective value equals its
old e�ective value, then we have the same result as our previous analysis where
we assumed that p is in only one of f1 or f2. �

We now prove the second check.

Theorem A.2 If e(p; T new) = possible and f is a simple formula and e(f; T old) =
possible then e(f; T new) = e(f; T old).

Proof We will give our proof by induction of the formation of the precondition formulas.

1. Base case: A single atom.

If e(f; T old) = possible, and parent e(p; T new) becomes possible, then (because we
have a single atom), e(f; T new) = possible.

2. Induction: Let f be a formula constructed by either f1 ^ f2 or f1 _ f2 or :f1,
where f1 and f2 are formulas and e(f; T

old) = possible.

If f = :f1, then because e(f; T old) = possible, it also must be the case that
e(f1; T

old) = possible. By the induction hypothesis e(f1; T
new) = possible, so

therefore e(f; T new) = e(f; T old).

This leaves the cases where f = f1 ^ f2 or f = f1 _ f2. Suppose that p is in only
one of f1 or f2. Without loss of generality, assume that f1 contains p. Therefore
e(f2; T

new) = e(f2; T
old).

By Lemma A.1, either e(f1; T
new) = e(f1; T

old) or e(f1; T
new) = possible. In the

former case, then e(f; T new) = e(f; T old).

If e(f1; T
new) = possible and e(f1; T

new) 6= e(f1; T
old) then we have the following

cases:

83

(a) f = f1 ^ f2.
Since e(f1 ^ f2; T old) = possible the old e�ective values of one or both of f1
and f2 must be possible. Since we are assuming that the e�ective value of
f1 has changed, then e(f2; T

old) = possible. Then, if e(f1; T
new) = possible,

then

e(f1 ^ f2; T new) = e(possible ^ possible; T new) = possible

Therefore e(f; T new) = e(f; T old).

(b) f = f1 _ f2.
Similarly, since e(f1 _ f2; T old) = possible, the old e�ective values of one or
both of f1 and f2 must be possible. Since we are assuming that the e�ective
value of f1 has changed, then e(f2; T

old) = possible. Then, if e(f1; T
new) =

possible, then

e(f1 _ f2; T new) = e(possible _ possible; T new) = possible

Therefore e(f; T new) = e(f; T old).

Suppose that p is in both f1 and f2. Since e(f; T
old) = possible at least one of f1 or

f2 must have an e�ective value of possible. Without loss of generality, assume that
it is f1. By Lemma A.1, e(f1; T

new) = possible or e(f1; T
new) = e(f1; T

old). In this
case both hold (because e(f1; T

old) = possible). Since, e(f1; T
new) = e(f1; T

old),
we can use the same analysis as if p was a parent for only one of the formulas. �

Proof of Positive Simple Check 1

Theorem A.3 If e(p; T old) 6= false and e(p; T new) = false and f is positive simple and
e(f; T old) = false then e(f; T new) = e(f; T old).

Proof We give the proof by induction on the formation of the precondition formula.

1. Base case: A single atom

When the parent becomes false, the atom becomes false. Since the atom is already
false, we can leave it unchanged.

2. Induction: Let f be a formula constructed by either f1 ^ f2 or f1 _ f2.
Suppose p is in only one of either f1 or f2. Without loss of generality, assume that
f1 contains p. Therefore e(f2; T

new) = e(f2; T
old). If e(f1; T

old) = false then by
the induction hypothesis e(f1; T

new) = false, so therefore e(f; T new) = e(f; T old).
In t case of f = f1 _ f2, this must be the case since both f1 and f2 must be false
in order for the whole formula to be false.

In the case of f = f1 ^ f2, e(f1; T old) may not be false, but then e(f2; T
old) must

be, so the entire formula still does not change value.

84

Now suppose f is both f1 and f2. In order for the old e�ective value of f to be
false, the old e�ective value of one or both of f1 or f2 must be false. Assume
e(f1; T

old) = false. Then by the induction hypothesis, e(f1; T
new) = false. Since

the e�ective value of f1 has not changed, we can use our analysis for the case
where p is in only one of either f1 or f2. �

Proof of Positive Simple Check 2

Theorem A.4 If e(p; T old) = false and e(p; T new) 6= false and and f is positive simple
and e(f; T old) = true then e(f; T old) = e(f; newT).

Proof We give the proof by induction on the formation of the precondition formula.

1. Base case: A single atom

If the parent e(p; T old) is false, then e(f; T old) can not be true (because the e�ective
value of the atom is the minimum of its truth values), so it holds true vacuously.

2. Induction: Let f be a formula constructed by either f1 ^ f2 or f1 _ f2.
Suppose p is in only one of either f1 or f2. Without loss of generality, assume
the p is in f1. Therefore e(f2; T

new) = e(f2; T
old). If e(f1; T

old) = true then by
the induction hypothesis, e(f1; T

new) = e(f1; T
old), and therefore e(f; T new) =

e(f; T old).

In the case of f = f1 ^ f2, e(f1; T
old) must be true, since both parts of the

conjunction must be true.

In the case of f = f1 _ f2, e(f1; T old) may not be true, but then e(f2; T
old) must

be, so the entire formula still does not change value. �

85

Appendix B

The Thinksheet Language

This appendix serves as a reference to the Thinksheet language.1 It does not attempt
to give a rigorous de�nition of the language. Rather it is meant as a user reference, with
explanations of the various language constructs, plus many examples.

The Thinksheet language is relatively simple, but it is still more complex than
the �rst order logic model given in Chapter 2. The complete language includes user-
de�ned functions, local variables, and the ability to execute shell commands. The results
from the simpli�ed model, however, are more or less the same.

General Rules for the Language

1. Spaces, tabs and carriage returns are considered whitespace.

2. Two consecutive slash characters // are used to comment out text. The rest of
the line following // is ignored.

3. The precondition and answer �elds of nodes consist of statements and/or expres-
sions.

4. Each statement and expression should end with a semi-colon. The exception is
the last line; here it is not necessary. (Therefore a one-statement precondition
need not have any semicolons.)

5. The return value of the last non-empty statement or expression of the precondition
�eld is the value that is assigned to the precondition of the node; similarly for the
answer.

6. The parser returns a value of true for an empty precondition �eld and possible for
an empty answer �eld.

1This appendix is based on a earlier document written by Minna Cha. Much of the implementation
of the Thinksheet language was done by Dao-i Lin.

86

The Available Types

1. Integers, oating point numbers (including negative numbers)

Examples:

� 7

� 4.5

� -2

2. Strings

� Strings must be enclosed within double quotes.

Examples:

� "yikes"

3. Logic Values

� There are three logic values in the Thinksheet language, corresponding to
true, false, and possible. They are written as:

{ ATRUE

{ AFALSE

{ APOSSIBLE

4. Discrete sets

� Members of a set must be either all integers or all strings.

� Members are separated by commas.

Examples:

� [1,3,5,10]

� ["abc","ick"]

� ["avs",5,6]|not valid

5. Ranges

� Ranges are inclusive (they include the endpoints).

� They can have both an upper and lower bound or just one with .. used to
signify negative or positive in�nity.

� Ranges can be oating point numbers or strings.

87

Examples:

� 1..5|all oating point numbers between 1 and 5, inclusive

� 4.5..|all oating point numbers great than or equal to 4.5.

� "b".."ca"|all strings alphabetically between "b" and "ca" including "b"

and "ca".

� .."be"|all strings alphabetically before "be" including "be".

� 4.."c"|not valid

Variables

The Thinksheet language has three di�erent types of variables. Nodes are one type of
variable and are global to the Thinksheet. The other two types are local to a statement
block. They are local variables, and local arrays.

1. Node identi�ers

A node identi�er is the column and row number of the node in the spreadsheet.
They have the following properties:

� They are used in expressions to refer to the node's e�ective value.

� They are case insensitive.

� The value of a node identi�er is the e�ective value of the node that's being
referred to.

� A node's e�ective value is based on its precondition and answer (see Chap-
ter 2.)

Examples:

� B10

2. Local variables

� These are local to a given statement block|i.e. a node's precondition or
answer �eld, or inside of a function de�nition.

� They must start with an underscore.

� := is used to assign values to local variables.

� the left side of := is the local variable being assigned the value while the right
may be any expression.

� The return value of the assignment statement is the value of the expression.

Examples:

88

� _ten :=10;

� _fooval:="Foo";

� _b5val :=b5;

Note that the assignment operator := is used only to assign values to local variables
and not to nodes. A node can only be assigned a value through its answer and
precondition �elds. The value of each �eld is determined by the return value of
the last statement or expression of the �eld. The value (or e�ective value) of a
node is based on the values of the two �elds.

3. Arrays

First we declare a variable as an array using the array declaration.

array _arrayname[bound1, bound2, ...];

Like local variables, arrays are local to a statement block.

Example:

array _X [3,4,5];

This creates a variable _X which is a 3 dimensional array, with bounds 3 by 4 by
5.

You can use an array as a variable.

Examples:

� _X[0,1,2] := 3;

� _X[1,2,4] := "string";

� _Y := _X[0,1,2] + 1;

� _X[A0,2,_Y] := 1;

Expressions

Here we discuss the di�erent types of expressions in the Thinksheet language.
Except for the predicates or, and, not, any operand that has one or more truth

values as its argument has the minimum of the truth values as its result (as de�ned in
Chapter 2).

1. Arithmetic operators:

+ - * / ^

addition, subtraction, multiplication, division, exponent.

89

2. Arithmetic operands:

integers/oating points (-6.7), singleton numerical sets ([5]), logical values
(ATRUE), and any variables which evaluate to any of the above.

Examples:

� [4] * 5;|20

� 6 * AFALSE;|AFALSE

� 6 + b6;|is okay as long as b6 evaluates to a number or a singleton numerical
set.

3. Relational operators:

� X > Y is true when 9x 2 X and y 2 Y such that x > y.

� X >= Y is true when 9x 2 X and y 2 Y such that x � y.

� X < Y is true when 9x 2 X and y 2 Y such that x < y.

� X <= Y is true when 9x 2 X and y 2 Y such that x � y.

� X == Y (or X = Y) is true when 9x 2 X and y 2 Y such that x = y.

� X != Y (or X ! Y) is true when 9x 2 X and y 2 Y such that x 6= y.

If X or Y are singletons, then they are treated as singleton sets.

4. Relational operands:

integers and oating points (-6.7), strings ("hello"), numerical sets ([5,6,7]),
string sets (["be","me","sigh"]), numerical ranges (6..9.7), string ranges
("lulu".."zzz"), logical values (APOSSIBLE) and any variables which evaluate
to any of the above.

Examples:

� 10.6 > 4|true

� 1.6..3 > 2..4|true

� [1,2,3] > 2|true

� [1,2,3] > [1,2]|true

� [1,2,3] > 1..2|true

� "abc".. > ["fg"]|true

5. Set containment operators:

� X [==] Y (or X [=] Y) is true when X and Y are identical as sets.

� X [!=] Y (or X [!] Y) is true when X and Y are not identical.

90

� X [>] Y is true when X contains Y and X [!=] Y.

� X [>=] Y is true when X contains Y.

� X [<] Y is true when Y contains X and X [!=] Y.

� X [<=] Y is true when Y contains X.

6. Set containment operands:

integers and oating points (-6.7), strings ("hello"), numerical sets ([5,6,7]),
string sets (["be","me","sigh"]), numerical ranges (6..9.7), string ranges
("lulu".."zzz"), logical values (APOSSIBLE), any variables which evaluate to
any of the above.

In a containment expression, at least one of the operands must evaluate to a set.
The other operand may be any of the above as long as numerical-valued operands
are not mixed with string-valued operands.

Examples:

� [1,2,3] [>=] 1..3|false

� [1,2,3] [<=] 1..3|true

� [1,2,3] [<] 1..3|true

� [1,2,3] [>] [1,2,3]|false

� [1,2,3] [>=] [1,2,3]|true

� [1,2,3] [>] 2|true

� .."xyz" [>] ["a","b"]|true

� 2 [>=] 2|not valid.

7. Logic operators:

� not: ~

� and: &, &&, and

� or: |, ||, or

8. Logic operands:

logical values (AFALSE, etc.), and any variables which evaluate to logical values.

Examples:

� (b5>3 || a2<2) & b2=4

� ~(b7=6) and c4=[6,9,2]

91

Note that a2 != 3 and ~(a2 = 3) are slightly di�erent. In the case that the ef-
fective value of a2 is false, then a2 != 3 would evaluate to false, while ~(a2 = 3)

would evaluate to true.

9. Conditional operator:

(logical exp) ? exp1 : exp2 : exp3

� The (logical expression) may be relational, containment, or boolean or
any variable evaluating to a boolean; exp1, exp2 and exp3 may be any ex-
pression.

� The logical expression is enclosed in parentheses followed by a question mark
followed by three expressions separated by colons.

� When the value of the logical expression is:

{ true then exp1 is returned

{ possible then exp2 is returned

{ false then exp3 is returned

Examples:

� (a4<0) ? 0 : -1 : a4

� (b4="yuck") ? [1,2,3] : APOSSIBLE : [10,12];

Only valid if b4's answer is not a numerical value since clearly a string value
is expected.

� (5<6 & 6<3) ? "weird" : "weirder" : answer(b4);

� (60<0) ? AFALSE : APOSSIBLE : ATRUE;

true

� ((4<0) ? 2 : 20 : 200) * 40;

8000

� ((b4=0) ? 1 : 0 : -1) > 0;

true if the e�ective value of b4 is 0 or true.

false if the e�ective value of b4 is not 0, or if it is possible or false.

Built-in Functions

Thinksheet has several built-in functions available. We list them in terms of category:
date functions, logical tests, string functions and math functions.

92

Date Functions

� thisyear()|returns current year.

� thismonth()|returns current month in range 1 to 12.

� thisdayofmonth()|returns current date in range 1 to 31.

� thisdayofweek()|returns current day of week in range 1 to 7, with 1 being
Sunday.

These functions have the following properties:

� They take no arguments.

� They return a numerical value in the ranges speci�ed.

Example:

thisyear() + thismonth()/100;

For July 1998, this will give the result 1998.07.

Logical Tests

� true(<logical exp>)|returns true if the value of the argument is true, false
otherwise

� possible(<logical exp>)|returns true if the value of the argument is possible,
otherwise false.

� false(<logical exp>)|returns true if the value of the argument is false, oth-
erwise false.

<logical exp> must evaluate to a logical constant.
These functions will return true or false (note they never return possible).
Examples:

� AFALSE=AFALSE|false

� APOSSIBLE=APOSSIBLE|possible

� AFALSE!=ATRUE|false

� false(AFALSE)|true

� false(7000<0)|true

93

� true(6)|false, if the argument had been a node whose value was 6, it would be
false

� true(false(AFALSE))|true

� possible(possible(b5))|false

Pure Precondition and Pure Answer

� precondition(nodeid)|returns the value of the precondition �eld of the node
referred to by the argument.

� answer(nodeid)|returns the value of the answer �eld (not necessarily the e�ec-
tive value) of the node referred to by the argument.

� answered(nodeid)|returns true if nodeid has a true precondition and has an
answer, false otherwise.

The functions have the following properties:

� They take as arguments node identi�ers.

� The return values of the functions depend is the value of the particular �eld (not
the e�ective value of the node).

� Note that answer() will return possible if the answer �eld of the node is empty,
but will not necessarily return possible or false if the precondition() of the node
is possible or false.

Examples:

� answer(b3) + 10

� possible(precondition(b5)) || possible(answer(b5))

� ~(precondition(b7))

A typical use for answered() is within a Smart�eld. For example:
%if% answered(c3) %then% %endif%

String functions

Thinksheet has a function for formating numbers into strings and for concatenating
expressions into a single string.

94

� string(<exp>, <total length>, <decimal length>)

The expression <exp> must evaluate to a number (either a oating point or an in-
teger). <total length> speci�es the entire length of the number, while <decimal
length> speci�es the number of digits after the decimal point.

Example:

{ string(a4, 10, 2)

This returns the string representing the value of a4 with two numbers past
decimal point and total length 10.

� concatenate(arg1, arg2, ... argN)

This function returns a string resulting from the concatenation of arguments arg1
though argN. The arguments may be any expressions.

Example:

{ concatenate("Hello, ", B4, ", your tax is ", C3 * 7)

Math Functions

Thinksheet has the following math functions available:

� sin(x)|returns sinx.

� cos(x)|returns cos x.

� atan(x)|returns arctan x.

� log(x)|returns lnx.

� log10(x)|returns log10 x.

� log2(x)|returns log2 x.

� exp(x)|returns ex.

� sqrt(x)|returns
p
x.

� int(x)|returns x with the truncation of any fractional part.

� abs(x)|returns the absolute value of x.

95

Statements

1. if statement:

� if (logical exp)

statement1;

� if (logical exp) {

st1; st2; ...;

};

� if (logical exp)

statement1

else

statement2;

� if (logical exp) {

st1; st2; ...;

} else {

st3; st4; ...;

};

Note the �nal semicolon.

� logical exp must evaluate to a boolean.

� If there is more than one statement/expression in either the if or else part,
then semicolons must separate each statement and/or expression and also
the set must be enclosed in curly brackets.

� If the logical expression evaluates to true, then the �rst (set of) statement(s)
and/or expression(s) is executed; if the logical expression evaluates to false
or possible, then the second (set of) statement(s) and/or expression(s) is
executed.

� The return value is the last statement or expression in the if part or else
part, depending on which (set of) statement(s) and/or expression(s) is exe-
cuted.

� The if statement may be used without the else part in which case, if the
logical expression evaluates to true, then the return value is the last statement
or expression of the if part; otherwise false or possible will be returned
depending on the value of the logical expression.

Examples:

� if (a2 >4) a2 else 4;

� if (b5=4) a1=4 else (a2=0 & b2=0);

This would be used where a logical value is expected.

96

2. while statement:

� while (logical exp) statement;

� while (logical exp) {

st1; st2; ...;

};

Note the �nal semicolon.

� the logical expressions may be relational, containment, or boolean; the state-
ments may also be expressions.

� if there is more than one statement/expression in the while statement, then
semicolons must separate each and the set must be enclosed in curly brackets.

� the logical expression is evaluated and if it evaluates to true then the (set of)
statement(s) and/or expression(s) is executed; then the logical expression is
evaluated again; looping until the logical expression evaluates to false.

� the return value will be false since the last operation for the while statement
is the logical test and it must be false for the while statement to stop.

Examples:

� _x := 2; while (_x <= 20) _x := _x^2; _x;

User-De�ned Functions

To de�ne a function in the Thinksheet language, use the following syntax.

func _name()

{

st1; st2; ...;

return value;

};

To call a function, use the following syntax:
_name(arg1, arg2, ...);

� Like variables, the name of the function must start with an underscore.

� To de�ne a function, the keyword func is followed by the function's name fol-
lowed by a set of parentheses, followed by the statements/expressions which are
separated by semicolons and enclosed in curly brackets if there is more than one.

97

� To call a function to be executed, the function name is followed by the arguments
in order, separated by commas, enclosed in parentheses.

� Unlike variables, functions are not local; they are de�ned for the whole Thinksheet.

� Functions may take arguments; they are referred to in the body of the function
as $1, $2, : : :

� The return statement returns from a function. It consists of the keyword return

followed by the value that is to be returned by the function.

Examples:

� De�nition:

func _ack()

{

if ($1=0)

return $2+1;

if ($2=0)

return _ack ($1-1,1);

return _ack ($1-1,_ack($1,$2-1);

};

Call:

_ack (0,0);

� De�nition:

func _add() return $1+10;

Call:

_add(2);

98

Appendix C

Smart�eld Directives

This appendix lists the available processing directives for Smart�elds. For an introduc-
tion to Smart�elds, see Section 3.3.2.

Smart�eld directives are bracketed by the percent symbol (%). A directive is fully
delimited, meaning it has a begin symbol and an end symbol. All directives take the
form of %<directive>% ... %end<directive>%. The available directives are listed
below in alphabetical order.

Several directives concatenate their arguments into a single string. Arguments
are separated by spaces, except for quoted arguments, which are delimited by the start
and end quotes. If the arguments to a directive are arg1, arg2 through argN, then the
concatenation of these arguments is equivalent to the result of:

concatenate(arg1, arg2, ..., argN)

where concatenate is the command in the Thinksheet language which concatenates its
arguments into a single string.

The end result of concatenation is that unquoted arguments are interpreted in
the Thinksheet language and replaced with their values. Quoted arguments are not
interpreted. For example, suppose the e�ective value of node B1 were 3. Then the
concatenation of the following:

"Testing 1, 2, " B1*2

would result in

Testing 1, 2, 6

Note that there can be no spaces in the expression B1*2. Otherwise the single
expression will be treated as multiple arguments.

The following section lists the available directives. The section after that demon-
strates how to use one of the directives to connect to a database. The last section

99

demonstrates how to use Smart�elds to modify a running Thinksheet in response to a
reader's answers.

Listing of Directives

� %calc% <formula> %endcalc%

This directive allows calculations to be inserted into the static text. These cal-
culations are written in the Thinksheet language described in Appendix B. For
example:

Your taxes are %calc% A0 * .3 %endcalc%:

If the e�ective value of A0 were 60,000, the result of processing this text would be

Your taxes are 18000

� %comment% <text> %endcomment%

All <text> in between the comment directive is ignored.

� %globalpreamble% <preamblename> %endglobalpreamble%

A particular Thinksheet may have several prede�ned preambles associated with
it (see %preamble% for an explanation of what a preamble is). Each prede�ned
preamble has its own name. The %globalpreamble% directive takes the code
associated with <preamblename> and processes it like a normal preamble.

� %if% <formula> %then% <text> %endif%

If the formula represented by <formula> is true or possible, then insert <text>
into the resultant text of the Smart�eld. The expression in <formula> is written
in the Thinksheet language.

� %importfile% <arg1> <arg2> ... <argN> %endimportfile%

Concatenate <arg1>, <arg2>, through <argN> into a single string. This string is
taken as a �lename representing a report �le. Thinksheet merges the report with
the current Thinksheet. The report �le is in the format speci�ed in Section 3.3.4.
See %importfile% and %postcondition% below for an example of the use of this
directive.

� %include% <arg1> <arg2> ... <argN> %endinclude%

Concatenate <arg1>, <arg2>, through <argN> into a single string. This string is
taken as a �lename. The text in this �le is appended into the Smart�eld directly.
The included text is not processed.

100

Example:

%include% "/tmp/file" A0 %endinclude%

If the current e�ective value of A0 is 3, then this will include the text from the
�le /tmp/file3.

� %insertcontents% <node>(<arg1>, <arg2>, ..., <argN>)

%endinsertcontents%

Inserts the Smart�eld of node <node> passing arguments <arg1> through <argN>,
only if the e�ective value of <node> is not false. The node's Smart�eld is processed
and then inserted into the resultant text.

� %outputcontents% <filename>, <nodeid1>, <nodeid2>, ... <nodeidn>

%endoutputcontents%

Destroys and replaces the �le named <filename> with the processed contents
�elds of the list of node ids.

� %postcondition% ... %endpostcondition%

This directive is available only when the Smart�eld is the question �eld for a
node. When a reader answers the question, all of the text between the directive
is processed as a Smart�eld. This is useful for executing actions based on the
reader's answer, for example, via the %system% directive (see below). See the
section on %importfile% and %postcondition% below for an example of how to
use this directive.

� %preamble% <program> %endpreamble%

The preamble de�nes variables to be used later. Inside of the preamble any code
in the Thinksheet language may be written. This code is executed when the
Smart�eld is processed and any local variables that are de�ned by the code may
be used elsewhere in the Smart�eld.

Example:

%preamble%

_foo := a2 *5;

%endpreamble%

This is an example of a Smartfield with a preamble. The value

of _foo is %calc% _foo %endcalc%

If the e�ective value of A2 was 2, then the result of processing this Smart�eld
would be:

101

This is an example of a Smartfield with a preamble. The value

of _foo is 10.

� %servercommand% <arg1> <arg2> ... <argN> %endservercommand%

This directive concatenates <arg1> through <argN> into a single string. The result
of this concatenation is passed as a command to the server. The server's output
is included in the resultant text. See the next section for a full example.

� %system% <arg1> <arg2> ... <argN> %endsystem%

This directive concatenates <arg1> through <argN> into a single string. The
resultant concatenation is used as a command that is executed in the default shell
environment. This directive does not have an e�ect on the resultant text.

Example:

%system%

"netscape http://www." B3 ".com &"

%endsystem%

� %text% <arg1> <arg2> ... <argN> %endtext%

This command concatenates its arguments into a single string and adds the result
to the resultant text.

Example:

%text% _person " owes " b3 " in taxes." %endtext%

Querying Databases with the %servercommand% Directive

This section explains the use of servers in Thinksheet and in Thinksheet's Smart�elds.
Since this directive is often used in conjunction with databases, our running example
will use an SQL interpreter as the server.

Our example will use an SQL interpreter that �lters out possible and false values.
We will call this interpreter ThinkQL. When ThinkQL encounters a comparison with
possible, it will consider that expression to be true. When it encounters a comparison
with false, it will consider that expression to be false. Comparisons between possible
or false occur because the e�ective values of nodes may be either possible or false. For
example, a query to ThinkQL might be:

SELECT name FROM movies WHERE genre = A0 or rating = A1;

If the e�ective value of A0 is possible and the e�ective value of A1 is false, then
this is equivalent to

SELECT name FROM movies WHERE genre = Possible or rating = False;

102

Therefore, the expression genre = Possible will evaluate to true for every tuple, and
the expression rating = False will evaluate to false. In this example, this would reduce
to True or False, which is true for every row in the table. Therefore, all of the names
would be selected.

ThinkQL currently parses only a small subset of the SQL language. It handles
SELECT statements in which the WHERE clause contains boolean expressions, and the
atoms of the boolean expressions are simple comparisons between attributes and values.

Connecting the Server to Thinksheet

A server has three �elds that are used to initialize it.

1. Executable Path

This is the shell command that will run the process we want to communicate with.
Thinksheet will use the search path to execute the command. In our example, we
would type thinkql (the command to start ThinkQL) assuming thinkql is in the
search path, <pathname>/thinkql if not.

Examples:

thinkql

/usr/thinksheet/bin/thinkql

2. Initialization

This is the initialization string that is sent over to the interpreter after it is invoked.
This string can be used to de�ne procedures, set defaults etc. For example, the
initialization string for ThinkQL could be a command to connect to a certain
database:

connect movie db;

3. End Output Command

Thinksheet communicates to the server through UNIX pipes [Ste90]. When Think-
sheet reads the results of what the server prints to its standard out (which gets
sent through the pipe), it has no way of knowing when the server is done. Con-
sequently, Thinksheet may freeze trying to read from an empty pipe. To remedy
this, Thinksheet and the server follow a simple protocol. When the server is done
sending Thinksheet information, it prints out a period (.) on a line by itself.
This way Thinksheet knows that it can stop reading from the pipe and continue
processing. In ThinkQL, we would do it this way:

print ".";

This line will automatically be placed after every command that Thinksheet in-
vokes, so the user doesn't have to worry about placing the dots.

103

Sending Queries to ThinkQL

Currently, communication to the server is possible only through Smart�elds using the
%servercommand% directive. Suppose our Smart�eld contained this text:

The server says:

%servercommand%

"SELECT DISTINCT name FROM movies;"

%endservercommand%

This sends the query to the server. The result might be:

The server says:

Attack of the Killer Tomatoes

Beastmaster

Commando

The Road Warrior

Yor, the Hunter from the Future

When Thinksheet sees a server command it sends the string that is in the di-
rective to the Server and then also sends the End Output Command. In the above
example, the string Thinksheet would send would be:

SELECT DISTINCT name FROM movies;

print ".";

The ThinkQL process would print the movie names, followed by a period (.)
on a separate line. Thinksheet reads from that process's standard out until it sees the
period on a line by itself. After seeing this, it knows that the list of movie names is
done and inserts that result into the Smart�eld.

Dynamic Queries

The arguments to the %servercommand% directive are concatenated together into a
single string and then sent to the server. The unquoted arguments are interpreted in
the Thinksheet language. This allows the reader of a Thinksheet to adjust the queries
dynamically. For example, one query might be:

%servercommand%

"SELECT DISTINCT name "

"FROM movies "

"WHERE genre = " B3 ";"

%endservercommand%

Thus if reader's answer to node B3 was \Action", the query that will be sent to
the server would be:

104

SELECT DISTINCT name

FROM movies

WHERE genre = 'Action';

Mutual Restriction

This section shows how we might implement mutual restriction, as described in Chap-
ter 6. The idea of mutual restriction is that the answers of a particular node restricts
the choices of other nodes. We can implement this in Thinksheet using a Smart�eld for
the nodes' questions. For example, suppose a database table about movies had three
�elds, name, genre and rating. We create three nodes in Thinksheet, A1, B1, and C1,
each node representing one of the respective attributes.

If node A1 represents the name attribute, then the Smart�eld for its question
might be:

What is the name of the movie you are interested in?

%servercommand%

"SELECT DISTINCT name "

"FROM movies "

"WHERE genre IN " B1 " "

"AND rating IN " C1 ";"

%endservercommand%

The answer choices presented to the reader of this Thinksheet will be the result
of the query sent through the %servercommand%. For example, if both B1 and C1 have
not been answered yet, the e�ective values for these nodes will be possible. Then the
query will retrieve all of the names from the database.

Note the comparisons in this WHERE clause use the keyword IN. Since the e�ective
values of nodes B1 and C1 may be a set of values (e.g. the e�ective value of B1 may be
fAction, Fantasyg), we must use the keyword IN with the attribute comparison. This
ANSI SQL predicate tests to see if the value of the attribute in a given row is any of
the values in the given set [Gru93]. Thus the expression

genre IN ('Action', 'Fantasy')

is true if genre is either \Action" or \Fantasy" for a given row.
If node B1 represents genre, the Smart�eld for its question would be:

What is the name of the movie you are interested in?

%servercommand%

"SELECT DISTINCT genre "

"FROM movies "

"WHERE name IN " A1 " "

"AND rating IN " C1 ";"

105

%endservercommand%

This query restricts the choices for genre based on the e�ective values of A1 and
C1. Node C1 would have a Smart�eld similar to nodes A1 and B1.

Using %servercommand% with MySQL

Currently, ThinkQL works only with the database system MySQL [MyS]. MySQL is a
relational database system that works under UNIX and Microsoft Windows. It currently
does not implement the whole ANSI SQL standard, but still contains a rich subset. This
section gives a brief overview of how to create a database and load �les into tables so
that they may be used by ThinkQL. Readers should refer to the MySQL documentation
for more information (see [MyS] for information about downloading the MySQL system
and its documentation).

To create a database in MySQL, we run the command:
mysqladmin create <database>

This will create a database named <database>. We may now add tables through
the MySQL interpreter. To run the interpreter, one simply enters the command mysql.
Inside the interpreter, to create a table we use the CREATE TABLE ... command. For
example, if we wanted to create a table called movies which had three �elds for name,
genre and rating, we would enter the following command:

CREATE TABLE movie (name VARCHAR(80), genre VARCHAR(10),

rating VARCHAR(10));

Having created the table, we now want to load it with information. We could
do this one entry at a time using the INSERT command, or we can create a delimited
�le and then use the LOAD command. If we use the one-entry-at-a time approach, the
command to insert an entry would look something like this:

INSERT INTO movies VALUES ('Beastmaster', 'Fantasy', 'PG');

The LOAD command has many options for loading a �le into a table that are too
extensive to explain here. However, it uses the simple defaults that attribute values are
delimited by tab characters and rows delimited by newlines. After creating such a �le,
we could load it into the table movies by entering the following command:

LOAD DATA INFILE '/tmp/movies.txt' INTO TABLE movies;

Once we have entered the data into the database, it can now be accessed by
ThinkQL. ThinkQL must be compiled with information about the location of the
MySQL libraries and C header �les. It uses this information to create a new mini-
interpreter that accesses the MySQL database. See the documentation associated with
the source code for more information.

106

Using %importfile% and %postcondition% to Modify a Think-
sheet

The %importfile% directive and the %postcondition% directive may be used together
to modify a currently running Thinksheet in response to a reader's question. For ex-
ample, suppose we had a Thinksheet about Social Security bene�ts. One factor in
calculating bene�ts is the annual income of the individual for all of the years he has
worked [DMT94]. The Social Security Thinksheet might have nodes representing each
year of income. Manually entering this income information would be tedious. If in-
stead the information were stored in a database, we would prefer if the Thinksheet
automatically entered the income information once the reader entered his name.

The combination of %importfile% and %postcondition% directives allow us to
do this. Suppose the node asking for the reader's name was in cell A1. The question
for that node would be a Smart�eld that would look something like the following:

What is your name?

%postcondition%

%system%

"dbaccess " A1 " > /tmp/income.rpt"

%endsystem%

%importfile%

"/tmp/income.rpt"

%endimportfile%

%endpostcondition"

In this example, we use the %system% directive and the �ctional dbaccess pro-
gram to access the database. The dbaccess program must create a report �le of the
format described in Section 3.3.4. This report �le will �ll in the nodes representing
annual income with the appropriate values. For example, suppose B1 and B2 were two
nodes representing two particular years of income. The dbaccess program would �nd
the income for the person named in A1 and add those two nodes to the report �le.
Thus, for example, part of the resultant report �le could contain the following:

%node% B1

%answer%

10000

%endanswer%

%endnode%

%node% B2

%answer%

20000

%endanswer%

%endnode%

107

Here the income for the reader was 10,000 and 20,000 for those two years.
The %importfile% directive then merges that report �le with the currently run-

ning Thinksheet. Because the %system% and %importfile% directives are inside of a
%postcondition% directive, they are processed and executed after the reader has an-
swered the question. Thus the reference to node A1 in the %system% directive would
correctly contain the reader's name.

108

Appendix D

The Tcl Interface

This appendix lists the commands added to Tcl to allow access to Thinksheets (see
Section 3.6). Readers interested in learning more about Tcl and Tk are referred to
[Wel97].

The next section lists the new Tcl commands. The section after that presents
an example interface developed with these added commands.

Listing of New Commands

� sheetGraph <path>

This command opens the Thinksheet located in <path> and creates a new Tcl
command whose name is graph<n> where <n> is an increasing number starting
from 0. The return value of sheetGraph is the string graph<n> (hereby referred to
simply as graph). The graph command may be used to invoke various operations
on the Thinksheet. It has the following general form:

graph option ?arg arg ...?

Option and args determine the exact behavior the command. The following
commands are available:

{ graph keyword <pattern> <nodeid1> <nodeid2> ...

This command searches for <pattern> in the text �eld of the node id's listed
in the arguments. It creates the �le links.keyword.html which contains
links to the text �elds of the nodes that contain the keyword. The return
value of this command is a list containing

ferror <errorVal> <nodeid1> <hits1> <nodeid2> <hits2> ... g
where the literal string error is followed by an error value (0 means no error)
and where nodeid1 is the node's id and hits1 is the number of pattern
matches for nodeid1. One can use the array set command to easily make
use of this information.

109

Example:

set result [eval [$graph keyword foo [$graph nodeList]]]

array set hits $result

if $hits(error) {

...

} else {

foreach node [array names hits] {

...

}

}

{ graph mergReport <filename>

This command merges the report from <filename> into the current sheet.
The contents of <filename> must be in the Report Format described in
Section 3.3.4. If it is not, then the command throws a Tcl error. The return
value of this command is the empty string.

{ graph name

The command returns the name of the Thinksheet (the �lename or directory
used to load the Thinksheet).

{ graph nodeAnswer <id>

This command returns the formula string of the answer �eld of the node
whose id is <id>.

{ graph nodeAnswerValue <id>

This command returns the value of the answer of node <id>.

{ graph nodeAnswerChildren <id>

This command returns the list of nodes whose answer �elds depend on node
id.

{ graph nodeAnswerChoices <id>

This command returns the list of valid answer choices for node <id>. It
returns an empty list if there are no choices for this node.

{ graph nodeAnswerParents <id>

This command returns the list of parents for the answer �eld of node <id>

(i.e. the list of nodes referenced in the answer formula of that node).

{ graph nodeChoicePositions <id>

This command returns the list of choices currently selected by the user from
the answer choice list for node <id> (see nodeAnswerChoices). (e.g. if choices
1, 2, and 3 were selected, it would return f1 2 3g). Note, this does not have
to correspond to the actual answer of the node, rather it pertains to the
position of the the selected answers from the answer choice list.

110

{ graph nodeClearAnswers

This command clears all of the reader-settable answers of the Thinksheet.

{ graph nodeContents <id>

This command returns the text of the contents �eld of node <id> in its
originally (unprocessed) form. The contents �eld is also known as the text
�eld of the node. The term \contents" is used because future extensions to
Thinksheet may store something other than text in this �eld.

{ graph nodeContentsFile <id>

This command returns the �le name associated with the contents �eld for
node <id>.

{ graph nodeContentsModified <id>

This command returns whether the contents have been modi�ed since the
last call to nodeFilteredContents for node <id>.

{ graph nodeDelete <idlist>

This command deletes the nodes speci�ed in <idlist>. If it can not remove
some of the nodes (because of dependencies), it throws an error and does not
modify the Thinksheet (it does not remove any of the nodes in this case).

{ graph nodeFilteredContents <id> ?import?

This command returns the text of the contents �eld for node <id> after it has
been processed as a Smart�eld. The optional argument import is a boolean
that tells whether to execute any %importfile%'s in the Smart�eld (assumes
true if not given).

{ graph nodeFilteredContentsFile <id> ?import?

This command returns the associated �le name where the processed text of
the text �eld for node <id> is stored, also processing the text at the same
time. The optional argument import is a boolean that tells whether to
execute any %importfile%'s in the Smart�eld (assumes true if not given).

{ graph nodeFilteredQuestion <id> ?import?

This command returns the processed text of the question �eld for node <id>
after it has been processed as a Smart�eld. The optional argument import is
a boolean that tells whether to execute any %importfile%'s in the Smart�eld
(assumes true if not given). This command returns only the question for the
node (everything up to and including the �rst question mark (?)). To retrieve
the list of answer choices for this node use nodeAnswerChoices.

{ graph nodeFilteredQuestionFile <id> ?import?

This command returns the associated �le name where processed question �eld
for node <id> is stored, processing the �eld at the same time. The optional ar-
gument import is a boolean that tells whether to execute an %importfile%'s
in the Smart�eld (assumes true if not given).

111

{ graph nodeHasContents <id>

This command returns 1 if node <id> has text in its contents �eld, otherwise
0.

{ graph nodeHasQuestion <id>

This command returns 1 if node <id> has text in its question �eld, otherwise
0.

{ graph nodeList

This command returns a list of node ids belonging to that graph. Node
ids may be considered unique speci�ers but actually follow a particular for-
mat prescribed by their placement on the grid in the spreadsheet interface.
The formula for calculating a node id is to take its row and column in the
spreadsheet interface and use the following formula : row * 1000 + column.

{ graph nodePreconditionValue <id>

This command returns the value of the precondition �eld of node <id>

{ graph nodePreconditionChildren <id>

This command returns the list of of nodes whose precondition �eld depends
on node <id>.

{ graph nodePreconditionParents <id>

This command returns the list of nodes which the precondition �eld of node
<id> depends on.

{ graph nodeQuestion <id>

This command returns the original unprocessed text of the question �eld of
node <id>.

{ graph nodeQuestionFile <id>

This command returns the associated �le name of the question of node <id>

{ graph nodeQuestionModified <id>

This command returns whether the question has been modi�ed since the last
call to nodeFilteredQuestion <id>.

{ graph nodeQuestionAnswerType <id>

This command returns the answer type of the question �eld of node <id>

(either text, numeric or any)

{ graph nodeQuestionSelectionType <id>

This command returns the selection type of the question �eld of the node
<id> (either singleton, multiple or range).

{ graph nodeSetAnswer <id> <answer>

This command sets the node <id>'s answer to <answer>

{ graph nodeStatus <id>

This command returns a string describing the status of node <id>.

112

{ graph nodeTitle <id>

This command returns the title �eld of node <id>.

{ graph nodeToposort <nodeid1> <nodeid2> ...

This command returns a list which is the topological sort of the node argu-
ments.

{ graph report

This command returns a string representing the Thinksheet in the Report
Format described in Section 3.3.4.

{ graph save ?savedir?

This command saves the Thinksheet to the current directory, or to savedir

if speci�ed.

{ graph tmpName

This command returns the name of the temporary directory for the graph
data.

� cell graph nodeId initProc updateProc deleteProc

This command creates a \cell" for the node labeled nodeId in graph. A cell is
a basically a trigger that gets executed whenever the status (i.e. e�ective value)
of the node changes. Three procedure names are passed to the cell command.
They are:

{ <initProc>: This is the name of a Tcl procedure for initializing the cell. It
must be called manually (see below).

{ <updateProc>: This is the name of a Tcl procedure that gets called when
the status of the node changes. It may also be manually invoked (see below).

{ <deleteProc>: This is the name of a Tcl procedure that gets called when
the cell or corresponding node is deleted.

The cell command creates a new Tcl command whose name is cell<n> where
<n> is an increasing number starting from 0. The return value of cell is the string
cell<n>. The cell<n> command may be used to manually call the initialize or
the update procedure. It may be called in two possible ways:

{ cell<n> initialize

This calls the initialization procedure de�ned by initProc.

{ cell<n> updateProc

This calls the update procedure de�ned by updateProc.

113

Figure D.1: Screen shot of a Tcl/Tk interface.

114

An Example Interface in Tcl/Tk

This section uses the added Tcl commands to build a simple reader-mode only interface
using Tcl/Tk. Since this only meant as a tutorial, we will tend to choose simplicity over
eÆciency and/or some user-interface components (e.g. menus, etc). Some knowledge of
Tcl and Tk may be helpful, although the tutorial will contain explanations of the code's
action.

The interface we will build will be a simpli�ed version of the spreadsheet interface
described in Chapter 3. A screenshot of the interface is shown in Figure D.1. The overall
ow and architecture of this example is as follows:

1. We create the graphical widgets, in this case a grid of buttons and labels.

2. We load the Thinksheet and associate cells with each of the nodes.

3. We create a refresh procedure which refreshes the entire screen. The refresh
procedure recon�gures all the labels and buttons, and associates buttons to nodes.
It is called when the reader scrolls the spreadsheet grid and at initialization time.

4. When a reader clicks on a button, the button invokes a command to ask the reader
a question or present some text.

5. When a reader answers a question, the e�ective values and status of multiple
nodes might change. Each node noti�es its cell to update; the cell then calls
the appropriate Tcl procedure. This procedure will recon�gure the appropriate
button, if the node is on-screen. Otherwise, if the node is o�-screen, it does
nothing.

The Tcl/Tk Code for the Interface

Figure D.2 shows the Tcl code for opening the Thinksheet and creating the grid of
buttons. This is the initial code that is called when the program is �rst run. The �rst
line of this code merely con�gures the height and width of the main window. The loop
creates a nine by nine grid of buttons (the number nine allows for easy computation of
the placement of labels and buttons).

Each of the button ids start with the letter \b" followed by an identi�cation
number. This id is computed the same way as node ids are computed|as 1000 times
the row of the button plus one times the column of the button. These button identi�ers
will be used later on to compute which node is to be associated with which button.

At the corners of the screen we place buttons labeled Up, Down, Left and Right

(see Figure D.3). We will use these buttons to scroll our grid (a real application would
use Tk scrollbars but those are too complicated to describe for this tutorial). These
buttons modify the variables startRow and startCol which hold the row and column of
the top left cell. For example, clicking on the button Right will increment the variable

115

startCol and then execute the function refresh (described later). The e�ect of this
is that the spreadsheet will scroll one column to the right.

Finally in Figure D.4 we load a Thinksheet with the sheetGraph command. The
command tk_getOpenFile provides a graphical �le selector, allowing the user to choose
the Thinksheet. We then create a cell for each node, which runs the cellUpdate pro-
cedure for updates and the doNothing procedure otherwise. The procedure doNothing
is, as the name implies, an empty procedure. The cellUpdate procedure is described
below. We save the association between cell and node in the cellInfo array.

Finally, we call the refresh procedure. The de�nition for refresh is given in
Figure D.5. The refresh procedure must con�gure the cells and the buttons, based on
the values of startRow, startCol and the Thinksheet (stored in graph). The result of
refresh is two things. First, the labels and the buttons will be con�gured correctly.
Secondly the array buttonInfo will store a mapping between nodes and their buttons.
This variable will be used by the cellUpdate procedure.

The code for cellUpdate is given in Figure D.6. This code is called whenever the
associated node's status changes, or when refresh manually calls this procedure. The
procedure �rst checks to see if there is a button associated with the node by checking
the buttonInfo array (the node may be o� screen, and therefore there is nothing to
update). If there is button, the procedure recon�gures the color, label and various
other features of the button. It also recon�gures the command to be executed when the
button is clicked. This command runs the procedure buttonClicked. The code for this
command is given in Figure D.7.

In a real graphical user interface, buttonClicked would open up either a listbox,
an entry widget, or a text widget to allow the reader to answer a question or read text.
Implementing these features is beyond the scope of the tutorial. To give a avor of what
the procedure should do, the code given in Figure D.7 interacts with the terminal.

The procedure buttonClicked takes two arguments, the graph representing the
Thinksheet and the node id. These two arguments are set when the button is con�gured
by the cellUpdate procedure. The buttonClicked procedure checks to see if the node
has a question. If it does, it presents the question and any answer choices it may have
using nodeFilteredQuestion and nodeAnswerChoices. It then reads the terminal for
the answer and sets the answer using nodeSetAnswer.

If the node has no question, the command assumes that it should present the
text of the node, which it does using nodeFilteredContents.

116

. configure -height 400 -width 700

for {set i 0} {$i < 9} {incr i} {

label .c$i -relief groove

label .r$i -relief groove

place .c$i -relwidth 0.1 -relheight 0.05 \

-relx [expr $i / 10.0 + 0.05] -rely 0.0

place .r$i -relwidth 0.05 -relheight 0.1 \

-relx 0.0 -rely [expr $i / 10.0 + 0.05]

for {set j 0} {$j < 9} {incr j} {

set id [expr $i * 1000 + $j]

set button [button .b$id]

place $button -relwidth 0.1 -relheight 0.1 \

-relx [expr $j / 10.0 + 0.05] \

-rely [expr $i / 10.0 + 0.05]

}

}

Figure D.2: Tcl/Tk code to create a grid of buttons for the spreadsheet interface.

set startRow 0

set startCol 0

button .up -text "Up" \

-command [list if {$startRow} {incr startRow -1; refresh}]

button .down -text "Down" \

-command {incr startRow; refresh}

button .left -text "Left" \

-command [list if {$startCol} {incr startCol -1; refresh}]

button .right -text "Right" \

-command {incr startCol; refresh}

place .up -relwidth 0.05 -relheight 0.05 -relx .95 -rely 0.0

place .down -relwidth 0.05 -relheight 0.05 -relx .95 -rely .90

place .left -relwidth 0.05 -relheight 0.05 -relx 0 -rely 0.95

place .right -relwidth 0.05 -relheight 0.05 -relx .90 -rely .95

Figure D.3: Tcl/Tk code to create the buttons for scrolling.

117

set graph [sheetGraph [tk_getOpenFile]]

wm title . [$graph name]

foreach n [$graph nodeList] {

set cellInfo($graph,$n) \

[cell $graph $n doNothing cellUpdate doNothing]

}

refresh

Figure D.4: Tcl/Tk code to load the Thinksheet and create a cell for each node.

proc refresh {} {

global startRow startCol buttonInfo graph cellInfo

set nodeList [$graph nodeList]

catch {unset buttonInfo}

for {set i 0} {$i < 9} {incr i} {

.c$i configure -text [colLabel [expr {$i + $startCol}]]

.r$i configure -text [expr {$i + $startRow}]

for {set j 0} {$j < 9} {incr j} {

set id [expr {$i * 1000 + $j}]

.b$id configure -text "" -relief flat -state disabled \

-bg [. cget -bg]

set pnode [expr {($i + $startRow) * 1000 + $j + $startCol}]

if {[lsearch $nodeList $pnode] != -1} {

set buttonInfo($graph,$pnode) .b$id

$cellInfo($graph,$pnode) update

}

}

}

}

Figure D.5: The de�nition of the refresh procedure.

118

proc cellUpdate {i g n} {

global buttonInfo

if ![catch {set button $buttonInfo($g,$n)}] {

set color [. cget -background]

if ![string compare [$g nodeStatus $n] "False"] {

$button configure -relief flat -state disabled -text "" \

-bg $color

return

}

if {![string compare [$g nodeStatus $n] "Question"] \

|| ![string compare [$g nodeStatus $n] "Text"]} {

set color yellow

}

set title "[$g nodeTitle $n]\n[$g nodeStatus $n]"

$button configure -relief raised -state normal -text $title \

-anchor w -padx 1 -pady 1 -bg $color -justify left \

-command [list buttonClicked $g $n]

}

}

Figure D.6: The de�nition of the cellUpdate procedure.

proc buttonClicked {g n} {

if [$g nodeHasQuestion $n] {

puts [$g nodeFilteredQuestion $n]

foreach c [$g nodeAnswerChoices $n] {

puts $c

}

$g nodeSetAnswer $n [gets stdin]

} else {

puts [$g nodeFilteredContents $n]

}

}

Figure D.7: The de�nition of the buttonClicked procedure.

119

Appendix E

The Thinksheet API

This appendix is a reference to the Application Programming Interface (API) for the
Thinksheet core library. It is ordered by the various objects and the methods available
for each of them.

Thinksheet uses three general classes to store sets, maps and strings. They are:

� template <class T> Set

An object of this class stores a set of objects of type T.

� template <class Key, class Val> Map

An object of this class maps objects of type Key to objects of type Val.

� CString

An object of this class represents a string of characters.

Objects of these three types are often used as parameters and return values in
Thinksheet functions.

Listing of Objects and Their Functions

The Node class

An object of this class represents a node in the Thinksheet graph. It has the following
functions:

� int userSetAnswer (const char *formula);

This function sets the answer �eld of the node to the formula speci�ed by formula.
Returns 1 if successful, 0 otherwise (e.g. if there was a syntax error in the formula).

120

� int userSetPrecondition (const char *formula);

This function sets the precondition �eld of the node to the formula speci�ed by
formula. Returns 1 if successful, 0 otherwise (e.g. if there was a syntax error in
the formula).

� const Value& effectiveValue() const;

This function retrieves the e�ective value of the node.

� SmartString* title();

Returns a pointer to the Smart�eld representing the title �eld of the node.

� Question* question();

Returns a pointer to the Smart�eld representing the question �eld of the node.

� SmartFile* contents();

Returns a pointer to the Smart�eld representing the contents �eld of the node.
The contents �eld is also known as the text �eld.

� const Set<Node*>& node_ans_parents();

Returns the answer parents of the node.

� const Set<Node*>& node_pre_parents();

Returns the precondition parents of the node.

� const Set<Node*>& node_ans_children();

Returns the set of nodes whose answer �elds depend on this node.

� const Set<Node*>& node_pre_children();

Returns the set of nodes whose precondition �elds depend on this node.

� int status() const;

Returns the status of the node. The status may be one of the following:

{ APOSSIBLE

The node's e�ective value is possible.

{ AFALSE

The node's e�ective value is false.

{ ADERIVED

The node is an uncomputed formula (i.e. the node's answer �eld is a for-
mula that depends on other nodes, and the e�ective value of that formula is
possible).

121

{ AFRONTIER

The node's precondition is true and it has an unanswered question.

{ ACONTENTS

The node's precondition is true and it has a non-empty contents �eld but no
question.

{ AEFFECTIVEVALUE

The node's e�ective value is neither false nor possible, and the node does not
have contents.

� CString statusString() const;

This returns a string representation of the node's status. The string that is re-
turned depends on the current status of the node:

{ APOSSIBLE

Returns the string Possible.

{ AFALSE

Returns the string False.

{ ADERIVED

Returns the string Derived.

{ AFRONTIER

Returns the string Question.

{ ACONTENTS

Returns the string Text.

{ AEFFECTIVEVALUE

Returns the e�ective value of the node in string form.

� int HasContents() const

Returns 1 if the node has a non-empty contents �eld, 0 otherwise.

� int HasQuestion() const

Returns 1 if the node has a non-empty question �eld, 0 otherwise.

� CString getTitleText() const;

Returns the original (unprocessed) text of the title Smart�eld.

� CString getAnswerText() const;

Returns the text of the formula for the answer �eld.

� CString getPreconditionText () const;

Returns the text of the formula for the precondition �eld.

122

� CString getQuestionText() const;

Returns the original (unprocessed) text of the question Smart�eld.

� CString getFilteredQuestionText();

Returns the processed text of the question Smart�eld, but does not execute any
%importfile% commands.

� CString getFilteredQuestionTextAndClick();

Returns the processed text of the question Smart�eld and also executes any
%importfile% commands.

� CString getContentsText() const;

Returns the original unprocessed text of the contents Smart�eld.

� CString getFilteredContentsText();

Returns the processed text of the contents Smart�eld, but does not execute any
%importfile% commands.

� CString getFilteredContentsTextAndClick();

Returns the processed text of the contents Smart�eld and also executes any
%importfile% commands.

� int putQuestionText(const char *question);

Sets the text of the question Smart�eld to question. Returns 1 is successful, 0
otherwise.

� int putContentsText(const char *contents);

Sets the text of the contents Smart�eld to contents. Returns 1 if successful, 0
otherwise.

� const Map<int, CString>& getAnswerChoices();

Returns the set of answer choices available for the question �eld, if any. For
example, if the question is:

Where you on the corner of Warner and Tampa on April 25, 1998?

1. Yes

2. No

It will return the choices 1. Yes and 2. No. The type Map<int, CString> maps
the choices to their position in the choice list (e.g. the choice 1. Yes would be in
the �rst position, and 2. No would be in the second.). The ordering depends on
the choices position in the question �eld, not on the labeling of the choice itself.
For example, if the question had been instead:

123

Where you on the corner of Warner and Tampa on April 25, 1998?

2. No

1. Yes

Then the choice 2. No would be in the �rst position.

� static int propagate (const Map< Node*,

Set<toposortMarks> >& startNodes);

This function initiates propagation as described in Chapter 4. It is normally
called by other functions in the Thinksheet core, such as userSetAnswer and
userSetPrecondition, and not the outside interface.

The parameter passed to propagate is a map from node pointers to marks. The
possible marks are:

{ SETANSWER

This marks tells the propagation engine that the answer formula for the node
has changed (i.e. the formula string has changed) and it must be re-evaluated.

{ INITANSWER

This mark tells the propagation engine that the answer formula should be
initialized to the empty string (this avoids some checks that SETANSWER per-
forms, so is slightly faster).

{ SETPRECONDITION

This mark tells the propagation engine that the precondition formula has
changed (i.e. the formula string has changed) and it must be re-evaluated.

{ REEVAL_ANSWER

This mark tells the propagation engine that the answer formula needs to be
re-evaluated (however, the formula string is still the same).

{ REEVAL_PRECONDITION

This marks tells the propagation engine that the precondition formula needs
to be re-evaluated (however the formula string is still the same).

The parameter that is passed to the propagation engine is the map which associates
nodes to a set of marks (thus we may do things like have the marks SETANSWER
and SETPRECONDITION for the same node). For example, userSetAnswer will add
the current node to the map and associate it with a single mark SETANSWER, and
then call propagate with this map as the parameter.

The SheetGraph class

An object of this class represents an entire Thinksheet. It has the following functions:

124

� void operator+= (Node *node);

This function adds the node pointed to by node to the Thinksheet.

� void operator-= (Node *node);

This function removes the node pointed to by node from the Thinksheet.

� Node *operator (int id);

This function returns a pointer to the node whose identi�er is id. If no such node
exists, it returns NULL.

� Set<Node*> nodeList() const;

Returns the set of nodes in the Thinksheet.

� CString name();

Returns the name of the Thinksheet (usually the �le or directory name from where
the Thinksheet was loaded).

� int merge(const SheetMap &sheetMap,

const Set<CString> &functionDefs,

const Set<CString> &preambleDefs,

const Map<CString, CString> &serverDefs);

The intention of this command is to merge a report �le with the SheetGraph.
In order to use this command, the user must �rst read the report �le with a
ReadReportFormat object. Here is an example of how to do this:

ReadReportFormat reader (filename);

SheetMap sheetmap;

Set<CString> functions;

Set<CString> preambles;

Map<CString, CString> server;

reader.ReadSheetMap (sheetmap, functions, preambles, server);

if (!graph->merge(sheetmap, functions, preambles, server)) {

// report the error ...

}

The SmartField class

The class SmartField is an abstract base class for SmartString and SmartFile. The
SmartField class abstracts out the notion of how the text of the Smart�eld is stored.
Therefore, any functions dealing the storage and retrieval of the text are declared ab-
stract. SmartString and SmartFile implement these functions|the former stores the
text in memory, while the latter stores the text in a �le. The functions available to an
object of the SmartField class are listed below:

125

� virtual int isempty() const = 0;

Returns 1 if the Smart�eld is empty, 0 if not. This is an abstract function in
SmartField.

� virtual int setField (const CString&)=0;

Sets the text of the Smart�eld, returns 1 if successful, 0 if not. This is an abstract
function in SmartField.

� virtual CString filtered();

Returns the processed text of the Smart�eld, but does not execute any
%importfile% commands.

� virtual CString filteredAndClick();

Returns the processed text of the Smart�eld, and executes any %importfile%

commands.

� virtual CString original() const = 0;

Returns the original unprocessed text of the Smart�eld. This is an abstract func-
tion in SmartField.

� virtual void clear() = 0;

Clears the Smart�eld. This is an abstract function in SmartField.

� void parentChange();

This noti�es the Smart�eld that one of its parent nodes has changed its e�ec-
tive value (so the text must be re-processed on the next call to filtered or
filteredAndClick).

� void modify();

This noti�es the Smart�eld that it has been modi�ed (so the text must be re-
processed on the next call to filtered or filteredAndClick). It is normally not
called (setField usually takes care of this).

� int isDifferent();

Returns 1 if something about the Smart�eld has changed since the last time
filtered or filteredAndClick has been called (either a parent has changed
or the text itself has been modi�ed).

� int recalculateOnClick();

Returns 1 if the Smart�eld must re-process itself every time the user \clicks" on
it, 0 otherwise. A \click" means that the user wants to retrieve the information
and look at it (i.e. the processed text was not asked for by some system call like

126

keyword search). In such case, if the Smart�eld contains directives like %system%
and %importfile%, it must be reprocessed every time, even if none of its parents
have changed or the text hasn't been modi�ed.

� const Map<int,CString>& importFiles();

Returns the list of �lenames from all of the %importfile% directives in the Smart-
�eld.

� const Map<int,SmartField*> &postconditions();

Returns the list of Smart�elds given in all of the %postcondition% directives in
the Smart�eld.

127

Bibliography

[AL97] Jos�e Abracos and Gabriel Pereira Lopes. Statistical methods for retrieving
most signi�cant paragraphs in newspaper articles. In Proceedings of the
ACL/EACL Workshop on Intelligent Scalable Text Summarization, Madrid,
Spain, 1997.

[BE97] Regina Barzilay and Michael Elhadad. Using lexical chains for text summa-
rization. In Proceedings of the ACL/EACL Workshop on Intelligent Scalable
Text Summarization, pages 10{17, Madrid, Spain, 1997.

[BH94] Benjamin Bederson and James D. Hollan. Pad++: A zooming graphical
interface for exploring alternate interface physics. In Proceedings of the
ACM Symposium on User Interface Software and Tecnology, pages 17{26,
1994.

[CH96] Waiman Cheung and Cheng Hsu. The model-assisted global query system
for multiple databases in distributed enterprises. ACM Transactions on
Information Systems, 14(4):421{470, October 1996.

[CJ96] Shawn Callahan and David Johnson. Dataset publishing - a means to
motivate metadata entry. In First IEEE Metadata Conference, 1996.
http://www.llnl.gov/liv comp/metadata/events/ieee-md.4-96.html.

[CLR90] Thomas H. Cormen, Charles E. Leiserson, and Ronald L. Rivest. Introduc-
tion to Algorithms. The MIT Press, 1990.

[DCMG97] Marilyn Drewry, Helen Conover, Susan McCoy, and Sara J. Graves.
Metadata: Quality vs. quantity. In Second IEEE Metadata
Conference, NOAA Auditorium, Silver Spring, Maryland, 1997.
http://www.llnl.gov/liv comp/metadata/md97.html.

[DMT94] Dale R. Detlefs, Robert J. Myers, and J. Robert Teanor. 1995 Mercer Guide
to Social Security. William H. Mercer, Inc., 1994.

[End72] Herbert B. Enderton. A Mathematical Introduction to Logic. Academic
Press, Inc., 1972.

128

[Fur86] George Furnas. Generalized �sheye views. In Proceedings of the ACM
SIGCHI Conference on Human Factors in Computing Systems, pages 16{
23, 1986.

[Gri97] Nancy Gri�eth, September 1997. Memorandum.

[Gru93] Martin Gruber. SQL Instant Reference. SYBEX Inc., 2021 Challenger
Drive, Alameda, CA 94501, 1993.

[GST98] Helena Galhardas, Eric Simon, and Anthony Tomasic. A framework for clas-
sifying scienti�c metadata. In AAAI98 Workshop on AI and Information
Integration, July 1998.

[Hel91] Dan Heller. Motif Programming Manual., volume 6 of The De�nitive Guides
to the X Windows System. O'Reilly and Assoc., 1991.

[HRWL84] F. Hayes-Roth, D. Waterman, and D. Lenat. Building Expert Systems.
Addison-Wesley, 1984.

[Ign91] James Ignizio. Introduction to Expert Systems: The Development and Im-
plementation of Rule-Based Expert Systems. McGraw Hill, 1991.

[Imm97] Immigration Moratorium Act of 1997, January 1997. Bill H.R. 347 of the
United States House of Representatives.

[Int] The Internet Movie Database. http://www.imdb.com/.

[Jac90] Peter Jackson. Introduction to Expert Systems. Addison-Wesley, second
edition, 1990.

[KP84] Brian W. Kernighan and Rob Pike. The UNIX Programming Environment,
chapter 8, pages 233{287. Prentice-Hall, 1984.

[KR96] Judith L. Klavans and Philip Resnik, editors. The Balancing Act: Com-
bining Symbolic and Statistical Approaches to Language. The MIT Press,
Cambridge, Massachusetts, 1996.

[Maz97] Subhasish Mazumdar. Organizing metadata using datalog rules. In Second
IEEE Metadata Conference, NOAA Auditorium, Silver Spring, Maryland,
1997. http://www.llnl.gov/liv comp/metadata/md97.html.

[Mer94] Dennis Merritt. Deceptive user interfaces impede AI. AI Expert Magazine,
pages 19{24, August 1994.

[MR95] Kathleen McKeown and Dragomir R. Radev. Generating summaries of mul-
tiple news articles. In Proceedings of the Eighteenth Annual International
ACM SIGIR Conference on Research and Development in Information Re-
trieval, pages 74{82, 1995.

129

[MyS] MySQL. T.c.X. DataKonsult AB. http://www.tcx.se/.

[PF93] Ken Perlin and David Fox. Pad: An alternative approach to the computer
interface. In Proceedings of the ACM SIGGRAPH Conference, pages 57{64,
1993.

[PYLS96] Peter Piatko, Roman Yangarber, Daoi Lin, and Dennis Shasha. Thinksheet:
A tool for tailoring complex documents. In H. V. Jagadish and Inder-
pal Singh Mumick, editors, Proceedings of the 1996 ACM SIGMOD Inter-
national Conference on Management of Data, page 546, Montreal, Quebec,
Canada, 4{6 June 1996.

[SB92] Manjit Sarkar and Marc H. Brown. Graphical �sheye views of graphs. In
Proceedings of the ACM SIGCHI Conference on Human Factors in Com-
puting Systems, pages 83{91, 1992.

[Shn89] Ben Shneiderman. Reections on authoring, editing and managing hyper-
text. In Edward Barrett, editor, The Society of Text, pages 115{131. MIT
Press, Cambridge, MA, 1989.

[Sim98] June 1998. Personal communication with Eric Simon.

[SSTR93] M. Sarkar, S. Snibbe, O. Tversky, and S. Reiss. Stretching the rubber sheet:
A metaphor for viewing large layouts on small screens. In Proceedings of the
ACM Symposium on User Interface Software and Tecnology, pages 81{91,
1993.

[Ste90] W. Richard Stevens. UNIX Network Programming, chapter 3, pages 102{
109. Prentice-Hall, 1990.

[Tan98] David Tanzer. Precondition theories and a query algorithm for thinksheet.
Thesis proposal, June 1998.

[TM97] Simone Teufel and Marc Moens. Sentence extraction as a classi�cation
task. In Proceedings of the ACL/EACL Workshop on Intelligent Scalable
Text Summarization, Madrid, Spain, 1997.

[Ull88] Je�ery D. Ullman. Principles of Database and Knowledge-Base Systems,
volume 1. Computer Science Press, 1988.

[Wel97] Brent B. Welch. Practical Programming in Tcl and Tk. Prentice-Hall,
second edition, 1997.

[Wor] World Wide Web Consortium. W3C's HTML Homepage.
http://www.w3.org/MarkUp/.

130

[WS94] C. Williamson and B. Shneiderman. The dynamic home�nder: evaluat-
ing dynamic queries in a real-estate information exploration system. In
B. Shneiderman, editor, Sparks of Innovation in Human-Computer Interac-
tion, pages 295{307. Ablex Publishing Corp, 1994.

[You92] Douglas A. Young. Object-oriented programming with C++ and OSF/Motif.
Prentice-Hall, 1992.

131

