
Detecting, modeling and rendering complex

configurations of curvilinear features

by

Evgueni Parilov

A dissertation submitted in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

Department of Computer Science

New York University

January 2009

Approved:

Denis Zorin

c© Evgueni Parilov

All Rights Reserved, 2009

SOME ARE HERE TO GET TO THEIR JOBS, SOME ARE TRYING TO ENTERTAIN

THEMSELVES OR THE OTHERS AROUND, SOME SLEEP, SOME LOUGH... I DO NOT

BELONG TO ANY OF THEM, I WRITE MY THESIS WHEN I TAKE A SUBWAY FROM

BROOKLYN TO MANHATTAN. BUT SOON ENOUGH, I WILL BECOME AGAIN NOR-

MAL, LIKE EVERYBODY ELSE.

To Sveta and Seva

v

Acknowledgments

I would like to acknowledge my advisor Denis Zorin for believing in me and en-

couraging me all these years. Special thanks to him for letting me finish what have I

started. From him I learned scientific approach, how can a small finding turn into a

big discovery.

I must acknowledge Demetri Terzopoulos. His multidisciplinary research always

fascinated me and inspired me to always attack a problem from several different

angles. His valuable input during my proposal defense helped me a lot to accomplish

my goals in the final thesis.

Ken Perlin, for his invaluable comments and unconventional ideas. He inspires

everybody in MRL by his unlimited energy and broad knowledge base. He always

has an advice to everybody on any subject.

I am very grateful to Davi Geiger, Yan LeCun, and Chee Yap, who served in my

dissertation committee, for their valuable time. I enjoyed so much seeing in their

faces how much they appreciate my work, I am thankful and humbled.

Mary Potasek for her subtle guidance and supervision on topics that while did

not get to the thesis nevertheless influenced my vision and helped me forming my

scientific opinion.

Thanks to various researchers around the globe who helped me in learning basics

of geometric random processes to be able to explore more advanced topic of random

vi

fibre processes. Especially, many thanks are to the very valuable input from Marie-

Colette van Lieshout, Dietrich Stoyan, and Ilya Molchanov.

I cannot even estimate how much inspiration I have got from talking to my friends

and colleagues from Computer Science department and MRL. Especially, Henning

Biermann, Lexing Ying, Jeff Han, Harper Langston, George Biros, Emre Mengi,

Vikram Sharma, Wei Shao, M. Alex O. Vasilescu, Ilya Rosenberg, Marc’Aurelio

Ranzato, Vladimir Savchenko, Marina Spivak, Denis Kovacs, Sung-Hee Lee, Tatyana

Kichkaylo, and I thank them all.

Rosemary Amico – the best departmental coordinator ever. I always knew that

she never gives up helping students, and can come up with a nontrivial alternative

solution to any organizational problem. CS department is lucky to have her on board.

Special thanks to Meghan Hartley whose professional and courteous assistance saved

enormous amount of time to the students and researchers in the lab.

Special thanks to Bio-Optics Lab at Unilever Research, Edgewater NJ, for sharing

knowledge and company during all the summer internships.

My parents, for believing in me all these years since I first expressed my interest

in pursuing a higher degree. You made me trust that dreams always come true when

you sincerely believe in them.

My wife and son, for their unconditional support all those years on my road to

fulfilling my dream to becoming a scientist.

vii

Abstract

Curvilinear features act as a basis in description and representation of a variety of real

world patterns spanning from simple regular patterns like honeycomb tiling or text

glyphs to very complicated random patterns like networks of furrows on the surface

of the human skin, webs of cracks and fissure patterns on dry soil, clay, or old paint-

ings, networks of blood microvessels, and planar maps of linear fault zones. In this

work we have developed a set of methods and new data representations for solving

key problems related to curvilinear features, which include (1) robust detection of

intricate networks of curvilinear features from digital images, (2) GPU-based sharp

rendering of fields with curvilinear features, and (3) a parametric synthesis approach

to generate systems of curvilinear features with desirable local configurations and

global control.

Existing edge-detection and image segmentation techniques for detecting features

from digital images may underperform in the presence of inevitable noise, usually do

not link the detected edge points into chains, often fail on complex structures and

weakly presented curves, heavily depend on initial guess, or/and assume significant

manual phase. We have developed a technique based on active contours, or snakes,

which avoids laborious manual initial positioning of the snakes, does not require

user interaction during optimization, and can detect large networks of curves with

complex junctions.

viii

The standard bilinear interpolation of piecewise continuous fields defined on reg-

ular grids results in unwanted smoothing along the curvilinear discontinuities, which

is common during rendering of surfaces with small detail features like creases, wrin-

kles, and dents. In many cases, spatially varying features are best represented as

a function of the distance to the discontinuity curves and its gradient, like the nor-

mal field near the creases along curves. We have presented a real-time, GPU-based

method for unsigned distance function field and its gradient field interpolation which

preserves discontinuity feature curves. The discontinuities are represented by a set

of quadratic Bezier curves, with minimal restriction on their topology.

Detail features are very important visual clues which make computer-generated

imagery look less artificial. Sample-based synthesis has become ubiquitous tech-

nique in generating arbitrary size textures of a high quality which locally resemble

a given small reference texture. However, it shows inferior performance on tex-

tures with well structured patterns producing gaps in features or breaking feature

coherency. Control on the pattern specification is very limited and often requires ex-

haustive ad-hoc search for the right parameters, yet not intuitive. We have explored

an alternative approach of generating features using random fibre process. Existing

mathematical models of random fibres — stochastic processes of networks of curves

and lines — model only completely random, stationary, and isotropic curve arrange-

ments in the plane. We have developed a Gibbs-type random process of linear fibres

based on local fibre interactions. It allows generating non-stationary curvilinear net-

works with some degree of regularity, and provides an intuitive set of parameters

which directly defines fibre local configurations and global pattern of fibres.

For random systems of linear fibres which approximately form two dominant

orientation fields, mutually orthogonal at each point, we have adapted a streamline

placement algorithm which converts such systems into overlapping random sets of

ix

coherent smooth curves.

x

Contents

Dedication v

Acknowledgments vi

Abstract viii

List of Figures xv

List of Tables xxii

List of Algorithms xxiii

Introduction 1

Motivation . 1

Thesis and methodology . 5

Contributions . 9

Thesis organization . 12

1 Curves detection by autonomous snakes 13

1.1 Introduction . 13

1.2 Snakes optimization framework 19

xi

1.3 Interactive active contours . 22

1.3.1 Merge-split operations on snakes 25

1.3.2 Three-step optimization algorithm 30

1.3.3 Discussion . 31

1.4 Summary . 36

2 Real-time rendering of feature curves 37

2.1 Introduction . 37

2.2 Related work . 39

2.3 Background: GPU, shaders, framebuffers 45

2.4 Overview of algorithm . 49

2.5 Distance field to features . 54

2.5.1 Distance functions . 55

2.5.2 Calculating distance field to feature curves 57

2.6 Feature discretization: discontinuity configuration and signature . . 60

2.6.1 Curvilinear features: optimizing invalid signatures 66

2.6.2 Rasterization of distance field and its gradient 70

2.7 Rendering of feature maps . 71

2.7.1 Side test . 74

2.7.2 Interpolation in a curvilinear triangle 80

2.7.3 Code outline for the normal interpolation shader 83

2.8 Interactive rendering of linear features 85

2.9 Implementation and Results . 88

2.9.1 Feature curves . 90

2.9.2 Linear features . 96

2.10 Summary . 102

xii

3 Parametric synthesis of patterns with curvilinear features 104

3.1 Introduction . 104

3.2 Related work . 115

3.3 Background: random arrangements of objects in the plane 121

3.3.1 Framework of Poisson point processes 122

3.3.2 Gibbs point process: inter-point interactions 124

3.3.3 Fibre processes: general models 131

3.3.4 Metropolis-Hastings algorithm for generating random point

arrangements . 136

3.4 New model of interacting random fibres 143

3.4.1 Adaptation of Gibbs point process models to random fibres;

energy conservation requirement 143

3.4.2 Interaction pair-potential between pair of fibres 150

3.4.3 Complete model for random processes of interacting fibres . 154

3.5 Random systems of line segments — linear fibres 157

3.5.1 Interaction model for linear fibres 158

3.5.2 Zero- and first-order potentials 160

3.5.3 Interaction pair-potential for linear fibres 163

3.6 Parametric synthesis of linear fibres systems 168

3.6.1 Detailed balance equation for linear fibres 169

3.6.2 Synthesis algorithm . 173

3.6.3 Examples of generated linear fibres systems 180

3.7 User control on synthesis . 187

3.7.1 User control models through distance based constraints and

weighted models . 189

3.7.2 Total length constraints . 194

xiii

3.7.3 Connectivity constraint . 200

3.7.4 Hard-constraints: weighted models to enforce aligning with

orientation vector field . 206

3.7.5 Soft-constraints . 215

3.8 Summary . 221

4 A method of generating networks of curves aligned with random systems

of linear fibres 226

4.1 Multi-orientation vector fields . 228

4.2 Streamlines aligned with cross-orientation vector fields 237

4.3 Streamlines based on context-dependent vector fields 240

4.4 Summary . 252

5 Results: synthesis and GPU rendering of a feature curve network 253

5.1 Synthesis of a random network of curves 254

5.2 Real-time rendering of network of curves 258

Conclusion 265

Future work . 268

Basic Notation 271

Bibliography 274

xiv

List of Figures

1.1 Skin images with visible fine-scale structures. 14

1.2 Images of skin negative replicas 15

1.3 Autonomous snakes after several iterations. 23

1.4 Forming the bundles of snakes. 24

1.5 Static thinning of snake bundles is problematic. 24

1.6 Operation 1. Merging partially aligned snakes. 25

1.7 Operation 2. Splitting partially aligned snakes. 27

1.8 Stage 1: iterations without applying snake merging/splitting. 31

1.9 Stage 2: iterations with snake merging only. 31

1.10 Stage 3: iterations with applying merging/splitting. 32

1.11 Close snapshot: result of thinning of snake bundles. 32

1.12 Resulting furrow network recovered from a skin image. 33

1.13 Image domain cell decomposition. 35

2.1 Typical normal map interpolation artifacts versus our artifact free

normal maps. 38

2.2 Our normal map is a blend of (conventional) continuous and (proce-

dural) discontinuous normals. 40

2.3 Comparing a quality of distance function calculations. 43

xv

2.4 Left: graphics pipeline. Right: Texture interpolation under the pres-

ence of discontinuity. 47

2.5 Outline of our method to interpolate normal field N(u,v). 50

2.6 Interpolation between the global smooth normal map N(u,v) and the

discontinuous normal map nh defined by local profile h(d). 53

2.7 Left: Distance function singularities within a rectangle. Right: Dis-

tance function level lines rendered by using our techniques. 56

2.8 Interpolation domains form a partition of a texel. 57

2.9 Calculation of unsigned distance to the feature lines and curves. . . 58

2.10 Texel valid discontinuity configurations. 62

2.11 Texel prohibited discontinuity configurations. 62

2.12 Rasterization of curvy features. Possible artifacts. 63

2.13 Discontinuity descriptor defining curvy feature. 64

2.14 Discontinuity descriptors for linear features. 65

2.15 Examples of invalid discontinuity signatures. 66

2.16 An initial configuration for spline energy optimization. 67

2.17 Spline energy optimization constraints. 69

2.18 An example of optimal Bezier splines locations. 70

2.19 Localizing a subdomain from the texel partition covering a sample. . 73

2.20 Ambiguous side assignment with respect to an implicit curve. 75

2.21 A sufficient condition for unambiguous side assignment 76

2.22 Resolving the side test ambiguity for the case x0 6= 0. 77

2.23 Resolving the side test ambiguity for the case x0 = 0. 79

2.24 Interpolation within a regular triangle and a trianble with one curve

edge. 81

2.25 Interpolation within a triangle with two curvy edges 82

xvi

2.26 Three-step algorithm to interpolate normal Nt 86

2.27 Interactive linear fibres. 87

2.28 Comparing different interpolation methods. 90

2.29 Applying different user-defined profiles along curvy features. 91

2.30 A coke can with added fingerprint features. 92

2.31 A plate with an Escher pattern of curvy features. 95

2.32 Glass with fractures. 98

2.33 A snake head model with curvilinear features approximated by a set

of linear segments. 99

2.34 An example of applying different profiles to a 3D geometry. 100

2.35 Resolving complex topology of several curves meeting at one point. 100

2.36 Sharp rendering of glyphs. 102

3.1 Examples of natural patterns formed by curvilinear features. 106

3.2 Two examples of fibre configurations produced by given interaction

functions hθθθ (d,w). 112

3.3 Example of a linear fibre system and a phase space X = XP×XL×

XW. 113

3.4 Our unsuccessful attempt to generate a new target texture with net-

work of curves by applying Heeger and Bergen steerable pyramid

texture synthesis. 116

3.5 Our attempt to generate random network of curves by applying fea-

ture matching algorithm of Wu and Yu. 119

3.6 Examples of homogeneous Poisson point processes. 123

xvii

3.7 Examples of constructing new simple random processes from ho-

mogenous Poisson process. Clustering, Neyman-Scott process,hard-

core process. 125

3.8 Examples of two Strauss point processes 132

3.9 A simple fibre system Φ = ϕ0 ◦ϕ1 ◦ . . .◦ϕ10. 145

3.10 Alternative representations of a fibre system Φ. 147

3.11 Change of interaction profile between two fibres after partitioning

one of them. 148

3.12 Graphical representation of the fibre system interaction integral. . . 150

3.13 Interaction between infinitesimal pieces of two fibres. 150

3.14 Representation of a small fragment of a curvilinear fibre by a 3D point.152

3.15 Energy conservation for the first-order interaction term h̃1 and for the

second-order interaction term h̃2. 156

3.16 Schematic proof of conservation of interaction integral (ϕ)1+(ψ)1+

(ϕ,ψ)2 calculated between two fibres ϕ and ψ . Here: (ϕ)1 ≡ h̃1(ϕ),

(ϕ,ψ)2 ≡ h̃2(ϕ,ψ) . 157

3.17 Representation of fibre within its phase space. 159

3.18 Two interacting linear fibres ϕ and ψ 164

3.19 An example of adding a new fibre ψ to a fibre system Φ = ϕ1 ◦ · · · ◦ϕ4.175

3.20 Neighborhood search query Nb(ψ;Φ,R) optimized by using a do-

main partition. 176

3.21 Resolving undesirable configurations of features. 178

3.22 Relaxation scheme for a newly added fibre. 179

3.23 Different types of Poisson fibre processes. 181

3.24 Poisson linear fibre processes with large proximity radii R∆. 182

3.25 Homogeneous Poisson fibre process versus inhomogeneous. 184

xviii

3.26 Poisson homogeneous linear fibre process versus linear fibre process

with observable regularity. 186

3.27 Polar plots of different point interaction functions hθθθ (d,w). 188

3.28 Snapshots of fibre systems corresponding to different SA-temperature

values t = 0.075 and t = 0.025. 196

3.29 Different linear fibre systems generated under the same total length

constraint, lT = 350. “Cross-pattern” fibre model. 197

3.30 Possible pattern deterioration. 200

3.31 Fibre process with the local connectivity constraint. 203

3.32 Examples of candidates for fibre relaxation. 204

3.33 point × point and f ibre × f ibre relaxation schemes. 205

3.34 An extended point × f ibre relaxation scheme. 207

3.35 Fibre systems generated by applying relaxation schemes. 208

3.36 Original “cross-pattern” fibre process with different alignment weighted

models: am2-02, with W1 alignment weight function, am1, W1,

amL(3/4), W1. Vector field VF-up was applied. 210

3.37 Different alignment weight functions applied to the weighted model

am2-2: W1,W2,W3, and W4. 213

3.38 Examples of fibre systems. 214

3.39 Simulation domain wrapping. 216

3.40 Vector fields: VF-up, VF-diag, VF-rght, VF-trn, VF-rad, VF-circ. . 217

3.41 Applying hard and soft constraints to the (original) unconstrained

models. 220

3.42 Examples, model am2-2: different alignment weight functions. . . . 222

3.43 Applying different soft constraint models with the “diagonal” fea-

ture: asm2-2, W1, asm2-2, W2, asmL(3/4), W1, and asm1, W1. . . 223

xix

3.44 Applying soft constraint models to a feature which follows a letter “C”.224

4.1 Examples of “fibre flow” singularities. 229

4.2 Examples of MOVFs, consistent (on the left) and inconsistent (on the

right) with a given vector field. 230

4.3 Linear fibre systems Φ(a) and Φ(b) used for creating fibre-induced

tangent vector fields, VΦ(a) and VΦ(b) 234

4.4 Fragments of optimal COVF (right column) against original fibre-

induced tangent vector field VΦ(a) 235

4.5 Examples of COVF optimization within two fragments of the fibre-

induced tangent vector field VΦ(b) 236

4.6 A fragment of a COVF with discontinuities. 238

4.7 A result of running a simple adaptation of a streamline algorithm [86].239

4.8 Context-dependent direction sampling from discrete COVF V̂ +. . . 242

4.9 Example of curvilinear network generated by our CD-algorithm with

context-dependent direction sampling from a COVF. 244

4.10 Weighted context-dependent direction sampling from a discrete COVF.246

4.11 Example of curvilinear network of two coherent sets of curves gen-

erated by our streamline placement CD-wCD-Algorithm applied to a

COVF. 249

4.12 Example of curvilinear network of two coherent sets of curves gen-

erated from the linear fibre system shown in Figure 3.36-c. 250

4.13 Example of curvilinear network of two coherent sets of curves gen-

erated from the linear fibre system shown in Figure 3.30-a. 251

5.1 An example of a linear fibre process with “cross-pattern” interaction

model. 254

xx

5.2 Network of smooth coherent curves generated from linear fibre sys-

tem illustrated in Figure 5.1. 256

5.3 Result of post-processing the network of curves illustrated in Figure 5.2.257

5.4 Rendering the network of features on a plane. 259

5.5 Rendering the network of features on a can with a different emboss-

ing profile. 260

5.6 Wiremesh-like appearance of a plate (originally illustrated in Fig-

ure 2.31). 261

5.7 Glass wiremesh-like appearance of a plate. 262

5.8 Interactive wire thinning by decreasing the visibility distance dSHOW. 263

xxi

List of Tables

2.1 Feature curves performance table. 97

2.2 Feature lines performance table. 101

2.3 Comparison in performance measured for two different generations

of NVidia GPUs. 103

3.1 Examples of point process density functions. 129

3.2 Table of Gibbs fibre process notations. 146

3.3 One step of Metropolis-Hastings “Birth-and-Death” algorithm (MH-

BnD). 169

3.4 Interaction rates table which defines a “cross-pattern” model. 187

3.5 Interaction rates table of a model favoring {30◦,60◦} interaction angles.198

3.6 Interaction rates table of a model favoring 45◦ interaction angles. . . 199

3.7 Interaction rates table of a “cross-pattern” model with better connec-

tivity. 212

3.8 Different weight functions for the vector field alignment models. . . 214

3.9 Different weight functions for the feature-based soft constraints. . . 219

xxii

List of Algorithms

1 Sharp normal interpolation shader 84

2 One iteration of Metropolis-Hastings “Birth-and-Death” algorithm

for generating fibre systems. 170

3 Fibre neighborhood search Nb(ψ;Φ,R). 177

xxiii

Introduction

Motivation

Segmentation. For several decades the edge detection algorithms have been dom-

inant segmentation techniques in computer vision and image processing [160]. A

typical vision problem is to search for all the pixels in a target still image or a video

sequence which belong to the contour or the edge boundary of one object or a group

of overlapping objects for a subsequent object(s) segmentation. A standard edge

detection method looks for the image areas where a signal undergoes a sharp jump

from a locally constant lower level of intensities to a higher level. These methods

have proved their effectiveness in many applications in 3D shape reconstruction and

recognition, image compression, motion tracking, image enhancement and noise re-

moval, in which the objects have non-degenerate interiors and are of the size of more

than just a few pixels.

But there is a class of natural images which requires special attention and im-

plies developing different detection techniques. It includes the real-world images

which are formed by a mixture of thin curvilinear features — curvilinear structures

— whose image widths are on the level of just a few pixels. For example, curvi-

linear structures are dominant features in the images of fingerprints, the microscope

images of blood vessels, the satellite images of roads and rivers, the images of hu-

1

man skin replicas with meso-scale furrows and others. Many industries would benefit

from using robust detecting methods tuned for curvilinear structures, including but

not restricted to cosmetics industry, dermatology, biomedicine for investigating and

detecting healthy patterns of skin furrows [121, 126, 29], [148, Part II, Ch. 3], ge-

ographic information system industry (GIS) for detecting linear structures (e.g., like

roads) from the satellite imagery [46, 51, 48], robot vision systems [77] or automatic

classification of protein crystallization [17] for curve tracking. The main problem in

detecting curvy structures is that the information about trace points is unknown [100]:

once the pixels belonging to a curve are found they have to be properly connected

to form a nice curve. The tracing process becomes even more complicated when

the curvy structures happen to be broken due to a relatively weak signal in some

fragments of the image. Many real-world textures contain intricate arrangements of

objects needed to be detected with a high degree of certainty. Available detection

techniques usually involve a great deal of user guidance at the beginning to allocate

potential feature locations and/or during detecting process to successfully segment

such objects. To avoid this potentially very laborious process, it is desirable to have a

small-input algorithm which runs automatically and may require only episodic help

from a user. And finally, it is advantageous to reconstruct topological information

about detected curves and lines from the images with complex feature arrangements:

knowing adjacency structure of connected curvy features helps in performing statis-

tical analysis on the features to find correlations between nearby feature curves.

GPU Rendering. The curvilinear features also play very important role in com-

puter graphics providing ways of adding small detail to virtual objects — neces-

sary to increase rendering photorealism. Such features can be attributed to an object

boundary or follow an object shadow, and may also define fine-scale geometry, for

2

example, creases, cracks, or furrows. The quality of rendering depends on how well

sharp texture features are captured. Texture mapping has become a primary model

to map features onto objects to be rendered. A standard bitmap texture is usually

represented by a raster image which contains a discrete values of the feature map,

and provides a fast random access to its values — texels — which are linearly in-

terpolated during rendering to get feature samples at arbitrary location. The quality

of (originally continuous) features can be lost already during their rasterization to

bitmap texture. But what brings more trouble is that close views of textured ob-

jects inevitably result in blurring which cannot be resolved by standard interpolation

techniques, including trilinear filtering by mipmapping. A resolution independent

feature-based interpolation, sharp at feature curves, is desirable.

All the existing feature-based methods explicitly represent the discontinuity lines

and store them either directly in the texels or in a spatial hierarchical structure. Real-

time rendering of feature-based textures is mapped to dedicated graphics processors

(GPU) by executing C-like pixel shader programs. Majority of such feature-based

techniques accept line segments only as discontinuity lines, which cannot render true

feature curves as the corners at segments joints will be observable at some resolution.

Some techniques support curvy features but do not allow them to intersect or require

them to follow the boundaries of the objects, while its adaptation to independent open

feature curves would require an additional effort.

In this work we focus on normal maps — 3D textures which replace the original

normals of the shape to produce appearance of small-scale geometry on the surface

without increasing the size of the underlying mesh — containing visible sharp fea-

tures, common for surfaces with creases, wrinkles, and dents. Such sharp features are

defined by some profile as a function of distance and its gradient to the discontinuity

curve. As a consequence, the quality of rendering of normal maps along discontinuity

3

curves depends on the quality of interpolation of the distance function and the dis-

tance gradient field. Some existing techniques are able to approximate well distance

function calculation for points sufficiently close to discontinuity curves; however, it

would be impossible to apply these methods for features with relatively large widths

and/or with high curvature values occurring along their discontinuity curves. All

distance-based existing techniques consider only signed distance fields which are not

friendly with representing open feature curves.

Synthesis. The task of generating realistic textures with rich feature content could

be as difficult as developing texture rendering techniques which preserve the features.

Nonparametric sample-based texture synthesis and statistical texture modeling have

been the most successful techniques for generating a new high quality arbitrary size

texture from a given small reference texture. Both techniques have demonstrated

their best performance on textures which can be considered as outcomes of local and

stationary random fields of 3D color values. The former technique makes use of the

locality property to gradually grow an output texture by copying the fragments of the

reference texture whose small neighborhood best matches the current neighborhood

in the output. The latter technique decomposes the reference and the output image

into a hierarchy of subbands by applying linear filters and progressively modifies the

output subbands by matching certain statistical functions (e.g., marginal histograms

as in [61]) calculated on the related reference and output subbands. However, the as-

sumptions are too strong for a variety of natural textures with the observable regular-

ity; in particular, both techniques tend to fail on textures with well structured patterns

producing unwanted gaps in features or breaking coherency. The only feature-based

technique by Wu and Yu [151] preserves well the curvilinear features, but could in-

troduce observable periodicity, and, what is more important, lacks of any control for

4

desirable pattern modifications. For example, it would be hard to modulate feature

locations and orientations in a desirable way, say, make them closer to or farther

from each other at some locations, or change the average distribution of angles be-

tween the nearby features. Moreover, what is shared with all sample-based texture

synthesis techniques is that the existing control is not intuitive and selecting optimal

parameters is routinely done in ad-hoc manner, which most of the time require sig-

nificant experience and time. Also, the parameters which work perfectly on one set

of reference images could completely fail on other sets.

Generating features directly can preserve desirable feature correlation patterns

while enabling an intuitive control to safely modulate feature correlations. The clos-

est, and probably the only techniques of this nature, includes spatial random pro-

cesses of geometric objects which are a popular subject in stochastic geometry. Spa-

tial point processes based on models of local interactions between the individual

points have been used in describing and modeling a majority of real-world point-

based randomly distributed collections which manifest a fair amount of regularity. In

particular, Gibbsian point distribution models are easy to interpret and convenient to

work with. The resulting patterns of points are aperiodic by construction. Unfortu-

nately, to the best of our knowledge, an analogue of Gibbsian distributions for curves

and lines does not exist. Random arrangements of curves and lines have been only

studied in the context of completely random Poisson special processes. A random

process with interaction-based distributions which simulates random sets of curves

or lines, with intuitive local and global control is desirable.

5

Thesis and methodology

This dissertation addresses three key problems in computer graphics, computer vi-

sion and stochastic geometry related to curvilinear features: (1) detecting curvilinear

structures from the real-world images, (2) real-time resolution-free sharp rendering

of textures with curvilinear features, and (3) stochastic modeling of near-regular pat-

terns with networks of curves distributed randomly in the plane.

Curvilinear Structure Detection. We want to develop a robust automatic tech-

nique to recognize curvilinear structures from still images for the case when such

structures form complicated networks and can be weakly presented. A user involve-

ment should be reduced to a minimum. The output should form a plane graph (a

planar graph embedded in the plane) with its edges covering all the presented curvi-

linear structures in the input image and its nodes representing all the intersections of

the image structures.

Feature curves sharp rendering. We want to build a procedural texture which

stores a normal map containing discontinuity features and smoothly interpolates the

map in real time preserving the features along the discontinuity at any resolution.

A crucial requirement on the geometry of the discontinuities is to consider features

following quadratic curves and to allow complex intersections between the feature

curves.

Generating random patterns with networks of curves. For the problem of texture

synthesis, we want to develop a parametric texture synthesis algorithm capable of

generating random near-regular patterns of curvilinear features distributed according

to some probabilistic model. The set of parameters of the model should be intuitive

and should define explicitly the local correlation pattern between the nearby curves.

User also should have a global control to be able to synthesize non-stationary tex-

6

tures.

To detect curvilinear structures from still images, we optimize a set of adaptable

snakes by applying merge-split operations. To avoid a laborious process of finding

plausible initial locations for the snakes, a target image is populated with a large

set of randomly placed short snakes. We apply reconfigurations of evolving snakes

dynamically: during optimization we change topology of the snakes, if necessary,

by merging the entirely aligned nearby snakes or by splitting the snakes which are

aligned strictly along their interiors. At each split operation, the involved snakes

are linked to each other by introducing a linkage node which stays till the end of

optimization unless only one snake is left linked to it later during optimization. The

locations of the nodes are not fixed and can propagate within the image together with

its adjacent snakes. The optimization is stopped when the spline energy of the entire

snake system stabilizes. The outcome of the algorithm is a plane graph covering all

the curvilinear structures in the image.

The main challenges are (1) developing an efficient data structure for search

queries of nearby aligned snakes, (2) and implementing safe links which would not

bring the system of connected snakes unstable during optimization.

To build a sharp resolution-free procedural normal field, we blend at rendering

time two parts, continuous and discontinuous. The continuous part is obtained by

the standard texture interpolation of the normal map. The discontinuous normal field

is computed from the feature curve network only and is defined as a function of the

unsigned distance to the curves and its gradient — such function can represent the

feature cross-section profile and may be provided as a 1D texture. Thus, the original

problem can be reformulated in terms of sharp interpolation of distance function and

its gradient. Our solution is to encode the discontinuity curves in the texel and to

prohibit interpolation of distance and gradient samples located on the different sides

7

of the discontinuity. This allows to keep normals sharp at any resolution while using

fixed size textures. We use unsigned distance field, which allows for more natural

and flexible representation of curvy features.

Our technique has two main components: the first runs as a pixel shader and com-

putes the discontinuous normal by interpolating the distance and its gradient and by

applying the feature profile afterwards. Computing a suitable distance function is the

essential part of our algorithm. To ensure that feature curves are artifact-free at any

resolution, the distance function is interpolated as close as possible to the actual Eu-

clidean distance. At the same time, it should be possible to evaluate it efficiently, so

that it can be done in a shader. It should be exactly zero on the feature curves for them

to be resolution-independent. We also require that its gradient to be perpendicular to

the curve. To achieve high performance, we compute distance and its gradient by

interpolating samples on curvilinear triangles formed by partitioning the texels. The

samples from the texel corners are propagated to the triangle corners while respect-

ing the discontinuity curves. The second component is a preprocessing algorithm that

encodes discontinuities into a discontinuity descriptor texture. This texture contains

two components — discontinuity signature and discontinuity configuration — which

are used in a shader to fully reconstruct the features within a texel. At this stage

we convert all complex feature intersections into valid configurations by running a

constrained thin-plate spline optimization within texels.

Our synthesis algorithm is conceptually different from the existing texture syn-

thesis techniques found in graphics and vision. The latter are based on multi-scale

matching fragments of output texture with reference sample texture, and which are

generally not capable of synthesizing curvilinear features, like lines and curves, with-

out introducing visible artifacts. We synthesize the feature arrangements themselves

in the texture domain by representing such arrangements as outcomes of some ran-

8

dom process of curves and lines — random fibres. In contrast to the existing mod-

els of fibre processes, our model of random fibres is local and is able to produce

near-regular fibre configurations. We adapt the Gibbs distributions of spatial point

processes to our fibre model as they allow to describe explicitly the local dependen-

cies between the objects (fibres, in this case). Such dependencies are expressed as

interaction potentials which, roughly speaking, describe the level of repulsion or at-

traction between infinitesimal parts of nearby fibres. In particular, the parameters

of such potentials define favorite and prohibited angles between tangents of two fi-

bres. This allows to specify local pattern directly. In this work we focus on linear

fibres which are represented by the line segments. We apply a variant of the Monte

Carlo Metropolis-Hastings algorithm to generate samples of random systems of lin-

ear fibres. We also provide the means for a global control by adding several types

of constraints to the Monte Carlo simulation, including control on the fibre density,

connectivity, and on aligning the fibre system with a given vector field. To convert

resulting systems of random line segments, usually not C1 connected, into smooth

curves, we developed a streamline generation algorithm which generates overlap-

ping sets of coherent curves. The curves closely follow cross-orientation vector field

(COVF) which is optimized from a tangent field of a given systems of linear fibres,

which are preliminary generated by our Gibbs-type simulation algorithm.

Contributions

We developed a set of computer graphics and vision algorithms which explore dif-

ferent aspects of working with curvilinear features and structures. These algorithms

can potentially form the following production pipeline: (1) a network of curvilinear

structures can be segmented from a target image by using our detection technique to

9

produce a plane graph covering all the structures, (2) the graph is analyzed to capture

local correlation pattern between nearby graph’s edges — the results of this analysis

can be used to generate a plausible set of parameters to our fibre simulation model

which can in turn generate a network of curvilinear structures whose local pattern

closely matches that of the original image and which can be modulated globally, (3)

the resulting network of curvilinear structures can be used as a basis in creating a very

complex texture with sharp (possibly wide) features closely following the network —

one can use our GPU rendering technique to render objects wrapped by the texture

which will prevent sharp details at any resolution. Images with intricate networks of

human skin furrows is a good example of the input to such a pipeline.

Here is the detailed list of our contributions which are covered by this thesis:

Detection of curvilinear structures.

• A new robust automatic algorithm for detecting networks of thin curvilinear

features from still images based on optimizing adaptable snakes. The algorithm

does not make any assumption about the topology of curvilinear structures;

• Snakes optimization algorithm runs in three phases: (1) with no interaction

of snakes, pulling snakes towards the image curvilinear structures, (2) with

merging the aligned snakes down to thin bundles of snakes already arrived at

their local optima, and (3) with merging/splitting the snakes to link aligned and

intersecting snakes into a graph-like structure;

• The output is a plane graph whose edges are splines which closely follow

all curvilinear structures, possibly weakly presented in the image, and whose

nodes are located at all the intersections of the structures.

10

Real-time rendering of textures with feature curves.

• A new real-time GPU-based algorithm to render normal maps containing sharp

visible features, which are preserved at any resolution along the discontinuity

curves and are smooth away from the discontinuities;

• Our discontinuity features go along either line segments or quadratic Bezier

curves. Discontinuity curves are explicitly stored in the textures of discontinu-

ity descriptors;

• We use unsigned distance field to represent the features. The field is interpo-

lated as close as possible to Euclidean distance during rendering;

• Open and close features are allowed;

• A preprocessing algorithm converts complex feature intersections to a format

suitable for storing in discontinuity descriptors. Up to two curves can be stored

in the texel;

• We implemented embossing which enables a user to define the normals near

the feature curves by providing an arbitrary cross-section profile;

• Originally developed for normal fields, our technique can be applied to any

type of discontinuous textures whose discontinuity features can be expressed

as a function of distance and/or its gradient.

Parametric synthesis of random fibre systems.

• A new parametric model for representing and generating networks of random

fibres based on Gibbs-type distributions of local interdependencies which are

described by an intuitive set of parameters;

11

• Detailed description of random linear fibres — a subclass of random fibres op-

erating with line segments only — with providing a parametric global control;

• A new algorithm of converting systems of linear fibres into overlapping sets of

coherent smooth curves.

Thesis organization

This dissertation is divided into three relatively independent parts: (1) our method

for detecting the curvilinear structures in still images is covered in Chapter 1, (2)

our real-time rendering technique for textures with curvilinear features is described

in Chapter 2, and (3) our model for generating textures with random networks of

curvilinear features is presented in Chapters 3, 4 and 5. Each part contains a sepa-

rate discussion on motivation and previous work regarding the topic of the part and

describes our methodology to address the particular problem related to the part. The

chapters can be read in an arbitrary order.

The third part of dissertation consists of three chapters. Chapter 3 contains a

detailed overview of stochastic point processes in general and Gibbs point processes

in particular. It outlines our model of general fibre system and describes in detail

our Gibbs type model of linear fibres and the Metropolis type algorithms to generate

random samples of linear fibre systems distributed according to a given interaction

model. Our method of adding the local and global constraints are also described in

Chapter 3. We formed a separate Chapter 4 for describing our variant of streamline

generation algorithm. Results for generating and rendering networks of curves are

presented in Chapter 5.

12

Chapter 1

Curves detection by autonomous

snakes

1.1 Introduction

The problem of edge detection has been an intense topic of research for already sev-

eral decades, resulting in developing a variety of powerful edge detection techniques

based on gradient filtering, parametric fitting, and the optimal enhancement paradigm

(see, for instance, overview of such methods in [160]). Unfortunately, while capa-

ble of finding edge points, these methods do not provide a way to link the points

into chains to generate networks of curves. Besides, most of them are tuned to find

object boundaries and usually fail to detect one dimensional features like lines and

curves. The following techniques were specifically developed for a problem of curve

detection.

The close-up images of human skin are an important example of images on which

the conventional edge detectors show inferior performance. The main fine-scale ge-

ometry features on the surface of the skin are formed by intricate inhomogeneous

13

Figure 1.1: Skin images with visible fine-scale structures.

networks of the skin furrows and enlarged pores. The importance of robust segmen-

tation of skin furrows has been widely recognized in many fields, including cosmet-

ics, dermatology, biomedicine [121, 126, 29], [148, Part II, Ch. 3], for instance, to

detect healthy (cancer-free) patterns of skin surface or to find effective ways of hid-

ing unwanted visible skin features. The skin can be captured by either taking high

resolution pictures of skin fragments illuminated by fluorescent light source (a ring-

shaped lamp with a cover on the camera’s side can be placed between the camera and

the skin sample), or by photographing fragments of the highly-detailed skin negative

replicas. The skin images taken by using the former method are illustrated in Fig-

ure 1.1, while the replica pictures taken from different areas of the human body are

shown in Figure 1.2.

Maintaining evenness of skin color in the images and furrow sharpness along

the wide area of skin is challenging. A network-type topology of the skin furrows

makes their detection a very challenging problem, especially when the image signal

is noisy or when depicted furrows are weak and broken. A number of methods have

14

Figure 1.2: Images of skin negative replicas taken from different ares of human body.

Left to right: back, cheek, and forehead.

been specifically developed for detecting the curves from the images. For most,

the performance could significantly degrade in detecting networks of curves similar

to that of formed by human skin furrows. Many could require a substantial user

involvement during detection, as for the case of skin images.

The simplest technique, which was extensively utilized in early detection sys-

tems, is the thinning procedure [74] . The standard thinning algorithm iteratively

cuts pixels located on the boundaries of a target object until only one-pixel skeleton

remains. Two requirements should be satisfied during thinning: a pixel is cleared

only if this does not change connectivity of the object and if the background topol-

ogy is preserved. One can apply in advance such technique to an one-bit image rep-

resenting detected edge points. The points located on the resulting skeletons are then

consecutively linked together to form curves. Another way is to apply the thinning

algorithm directly to a gray scale image using one of the following one-bit algorithm

extensions [39, 154, 1]. The main drawback of this approach is that it does not handle

well images with complex structure and can not detect weak curves which are either

blurred or fragmented due to the noise.

15

Haralik [59] presented a method for classification of ridges and valleys by pre-

liminarily transforming noisy original image into its smooth approximation. For a

continuous image, he classifies a pixel being on a ridge (valley) if the directional

derivative at this pixel is zero in the direction of greatest magnitude of the second

derivative. To make the original image continuous, a neighborhood of each image’s

pixel is fitted to a bicubic surface, so that all derivative calculations are done for

the resulting smooth surface. Ridges and valleys, defined in this method, closely

correspond to the thin curvilinear features that we want to detect from the images.

However, the method suffers from detecting a large number of false ridge pixels in

the places with radially symmetric surface profiles, and it incorrectly fits the areas

with narrow ridges and valleys.

Among the early methods of linking detected edge points into curves is Hough

transform (HT) [66]. HT is applicable for those curve patterns which can be de-

scribed by simple parametric shapes. Duda and Hart [37] applied HT for detecting

straight lines, while Ballard [11] studied possibility of extending HT to detect general

shapes, and applied HT for classifying circular and elliptical shapes. In addition to

the image space, the space of parameters of chosen shapes is created during HT. In

such parametric space, one accumulates the statistics on how many detected points

in the image space a curve with given parameters intersects. A set of parameters with

the accumulated values greater than some threshold will define a corresponding set

of curves we are looking for. The method is robust against image noise and possi-

ble gaps in the source curves. However, it is restricted to simple shapes with small

number of parameters (less then 3), so that it can not be effectively applied to detect

curves with complex intersection patterns. Besides, because of inevitable introduc-

tion of accuracy error during discretization of the parametric space, the quality of

curve detection may be poor.

16

Searching for curves following the boundaries of the analyzed objects is one of

the goals of the image segmentation techniques. Dynamic programming graph search

is one class of these techniques, where the problem of boundary detection is for-

mulated as a search for an optimal path in a certain directed graph. According to

the Udupa’s formulation [140], such graph has the image pixels as its nodes; the 8-

neighboring pixels are connected by edges; and, every edge is assigned a cost, which

is low if the edge is aligned with a close boundary. Udupa used the dynamic pro-

gramming to find an optimal path from a seed node to all other nodes by reducing

the cumulative path cost. Morse et al. [88] used Udupa’s formulation to search for a

piecewise optimal path. They required user to specify control points along the target

object’s boundary and ran a search iteratively with no user interruption. A drawback

of this approach is that in the case of unsatisfactory segmentation a user has to repeat

iterations with a new set of control points. To overcome this problem, Mortensen [89]

developed a ’Live-wire’ technique, which searches for an optimal path from a spec-

ified start node to a goal node with a possibility of immediate feedback from a user.

Based on the live-wire method, Mortensen et al. [90, 91] presented a set of image

composition tools, called ’Intelligent scissors’, which incorporate on-the-fly training,

an efficient implementation of the Dijkstra’s search for an optimal path, and tools for

optimal selection of goal nodes. In this method a user defines a search direction;

therefore, an automatic search is not available.

In contrast to the searching techniques described so far, Geiger et al. [50] pro-

posed a non-iterative method for detecting deformable contours using the dynamic

programming. They defined sufficiently large windows around a user-specified con-

tour and ran a version of the dynamic programming algorithm inside these windows.

Their method was guaranteed to always produce a global optimum. They also pre-

sented a faster version of the search algorithm by applying a multi-scale approach.

17

Though global optimality was not guaranteed in this case, a speed up might approach

of a factor of 20. This method was effectively used for detecting, tracking, and match-

ing of a small number of objects. However, the manual phase may be significantly

increased in the case of images with a large number of features.

Witkin et al. [136] built a segmentation technique based on active contours, or

snakes. Represented by deformable splines, snakes reach their minimum energy

when located along the image features with high gradient magnitude, like object’s

boundaries and individual curves. Initially placed around a target boundary, snakes

quickly evolve to the closest optimal position by minimizing their energy. However,

the method can not guarantee convergence to a global minimum and strongly de-

pends on a choice of snake parameters and its initial position. These limitations were

partially resolved by a method of McInerney and Terzopoulos [85], where they pre-

sented geometric and topologically adaptable snakes. In their approach, snakes grow,

shrink, split and merge with each other with a goal of finding all presented features

in the image. This makes snakes to be more autonomous, but a user still needs to

provide information about possible shapes in the analyzed image.

The segmentation techniques based on graph search, dynamic programming, or

active contours require a user to interact with a system either by specifying original

locations of deformable shapes, or by directly guiding the optimization time to time.

However, there exist many examples of natural images which are comprised of hun-

dreds of distinct feature curves to be detected from. It just would not be feasible to

find all seed locations manually. To address this type of textures we look for a more

automatic detection approach, which assumes a minimal manual phase. We also need

to know how the curves interact with each other. This analysis was not covered in the

methods presented so far. To summarize, we aim to develop a method of detecting

thin curvilinear features from noisy images reducing a manual step of initial locations

18

to a minimum and is capable of handling complex curve intersections.

1.2 Snakes optimization framework

Our goal is to develop a method that produces a network of curves whose intersec-

tions are explicitly represented by the nodes of the network, and which is robust with

respect to possible breaks occurring along the curvy features in the image.

The need for an explicit curve representation makes the active contour models —

snakes — a natural choice for a base model. The results presented in [136] show that

the curvilinear objects can be extracted from an image. In addition, snakes have a

beneficial property of being at least C1 smooth, which is crucial for many real world

textures containing continuous curves, e.g., meso-scale human skin furrows form

overlapping sets of piecewise continuous curves. By tuning the parameters of the

snake energy function, it is possible to ensure that snakes align with thin curvy fea-

tures and are able to detect relatively weak features or features with gaps. Point-like

detectors on the other hand may go through a complex adaptive search for a plausi-

ble threshold to find robustly all features, which are potentially vary significantly in

strength. Finally, snakes can be easily connected into networks.

A snake — an energy minimization spline — is pulled toward the near feature

where its energy has a local minimum. Three terms are included [136] in the snake’s

energy functional, E(s;u): standard thin-plate energy of the spline Espline(s;u), a

user-provided external energy Eimage(s;u), and the energy imposed by a set of con-

straints Ecnstr(s;u)

E(s;u) = Espline(s;u)+Eimage(s;u)+Ecnstr(s;u), (1.1)

where s(u) : [0,1]→ R2 is some parametrization of the spline. E(s;u) describes the

19

energy of the spline s at a point s(u). The spline optimization problem is formulated

as a minimization of the following energy functional

E(s) =
1∫

0

E(s;u)du→min . (1.2)

Espline is a sum of membrane energy (elastic string) and thin-plate energy, given by

Espline(s;u) = α| ds
du |

2 + β | d2s
du2 |2. The external energy Eimage gets its largest values in

the areas of the high contrast and depends only on the images signal: Eimage(s;u) =

−E2
∇I(s;u), where E∇I(s;u) = |∇I(s(u))|. To derive a force balance equation one

can use variational principles which, in particular, postulate that a minimizer of

the following functional J(s) =
∫ u1

u0
g(s,su,suu)du should solve the following Euler-

Lagrange equation ∂g
∂ s −

d
du

∂g
∂ su

+ d2

du2
∂g

∂ suu
= 0. So, by considering g(s,su,suu) =

α|su|2 +β |suu|2 , one can derive the following force balance equation

αsuu(u)+β suuuu(u)+∇E∇I(s;u)+∇Ecnstr(s;u) = 0. (1.3)

which defines an optimal position of the snake. The first term describes the mem-

brane behavior (it tries minimizing the distance between the control points), and de-

fines the bending force. The second term characterizes the thin-plate behavior (it

flattens the high curvature areas) and defines the elastic force.

The balance equation is solved numerically by discretizing a given set of snakes

s1,s2, . . . ,sM into an N×2 “vector” of 2D points (the snake nodes)

X = (s1(u1
1),s1(u1

2), . . . ,s1(u1
N1

),

s2(u2
1),s2(u2

2), . . . ,s2(u2
N2

), . . . ,sM(uM
1),sM(uM

2), . . . ,sM(uM
NM

))T , (1.4)

where N = N1 +N2 + · · ·+Nn is the total number of snakes nodes.

A discrete version of the balance equation 1.3 can be written by the following

20

system of equations

AX +F(X) = 0, (1.5)

where A is an N ×N pentadiagonal banded matrix corresponding to a finite dif-

ference approximation of the spline force operator (given by the first two terms in

equation 1.3), and an n-th row of the N× 2 matrix F =
[

f1 | f2] represents an exter-

nal force vector (f 1
n , f 2

n) (given by the rest of the terms in equation 1.3) applied to

the corresponding n-th snake node. Nonlinearity of the resulting equation makes it

impossible to find an exact solution, therefore an iterative method should be used

instead. The Newton algorithm is the fastest among other algorithm near a solution,

and is based on the numerical integration of the following system

dX
dt

+AX +F(X) = 0.

The locations of snake nodes X(t) are considered as functions of time t. They evolve

(when the derivative dX/dt is not zero) until the balance equation 1.5 is satisfied.

The following are the explicit and implicit Euler schemes to solve the ODE above:

γ(Xt+1−Xt)+AXt +F(Xt) = 0 , (1.6)

γ(Xt+1−Xt)+AXt+1 +F(Xt) = 0 . (1.7)

The authors showed [136] that inside some range for spline parameters and for the

iteration steps, the Euler implicit iteration scheme

(A+ γI)Xt+1 = γXt−F(Xt) (1.8)

rapidly converges to a local solution. The matrix (A + γI) is pentadiagonal, so that

its inverse can be efficiently calculated by using LU decomposition in O(N2) steps.

The main difficulty with obtaining a reasonable solution is in determining the best

initial locations of the snakes and in choosing the eight values for snakes lengths.

21

In the previous work, these locations were chosen manually and snakes are guided

during optimization to avoid getting in spurious local minima. Our method optimizes

a large number of snakes and filter out the snakes which are stuck at fake optimal

locations. In this case we can afford to choose the initial locations for the snakes at

random.

1.3 Interactive active contours

Our approach is to populate a given image with a large number of short random

snakes. With a sufficiently large number of initial snakes, all curvilinear features

will have a number of sufficiently close snakes, which can be aligned with it; at the

same time, snakes that are not close to any feature and end up converging to spu-

rious local minima need to be deleted. As shown in Figure 1.3, a large fraction of

snakes were pulled towards the features. However, the snakes remaining at random

positions are not easy to remove. An obvious approach to solve this problem is to

threshold the spurious snakes, getting rid of those snakes that are either not aligned

with the dominant local orientation or/and are not located in the area of high snake

density. Besides the fact that the thresholding may significantly slow down the de-

tection process, one should always find a balance between removing spurious snakes

and preserving aligned snakes. A threshold may be proper to cut not aligned snakes,

but at the same time using this threshold, we may remove important snakes, which

accurately localize the features.

In addition to the problem of thresholding of specious snakes, we found that

the bundles of valuable snakes, pushed to the furrows, can be wide. A close view

Figure 1.4 reveals forming two types of bundles: relatively narrow and wide bundles.

Any simple process of merging the immediate neighbors in a wide snake bundle may

22

Figure 1.3: Snakes snapshot after several iterations of energy minimization of ran-

domly placed short snakes.

produce several bundles sufficiently far from each other not to be merged further,

see Figure 1.5. Then the following questions should be raised: how to detect the

entire bundles of valuable snakes, and how to choose a representative snake from a

significantly wide bundle. A solution for both questions, as well as for the problem

of thresholding, comes from thinning the bundles dynamically instead of running

filtering as a post-process.

We impose an additional requirement that only one-snake width curves are al-

lowed to be presented in the image at the end of snake iterations. Specifically, no

pair of snakes with a parallel segment should be close to each other. If the collec-

tion of snakes is reduced using this rule, the remaining snakes unambiguously and

compactly represent the curvilinear features in the image. We have considered two

strategies to impose this requirement: to enforce the requirement once the snakes’

23

spurious
snakes
(noise)

wide bundle

narrow bundle

Figure 1.4: A close view at the resulting bundles of snakes. Some snakes were

detected falsely.

motion is terminated, and to merge snakes during snake optimization. As shown in

Figure 1.3, static merging does not handle well bundles, which could be significantly

wide. On the other hand, dynamic merge can guarantee that the current bundle rep-

resentatives will be close enough to the features for merging down to one snake. We

apply the dynamic merge of the aligned snakes in our approach, so we need to have

an efficient procedure for finding a new positions of just merged snakes and their

energy.

Figure 1.5: Thinning relatively large snake bundles may be problematic.

24

1.3.1 Merge-split operations on snakes

Now we will describe our merge and split operators which are applied to snakes

during optimization. We define a pair of snakes, s1 and s2, to be in the chain config-

uration if each snake can be split into two or three parts s1i and s2i, i = 1,2,3, so that

one snake is a continuation of the other through the aligned parts parts s1i and s2 j.

The merge operation produces a new snake by averaging the aligned pieces to a new

piece smid and by concatenating smid with the other misaligned pieces. Figure 1.6

shows all the possible allowed chain configurations and the results of applying the

merge operation on them: 1) for the case of the alignment of snakes tails, smid results

from averaging s12 and s21, so that a new snake is formed by snew = [s11,smid,s22],

and 2) for the case of the alignment of entire body of one snake with a part of the

other snake, smid is an average of s12 and s2, so that snew = [s11,smid,s13].

1

2 new

1

2 new

S11

S12

S21 S22

S11

Smid

S22

S11
S12

S13 S11 S13Smid

Figure 1.6: Merging of two partially aligned snakes. Top: snakes’ tails are aligned.

Bottom: one snake is entirely aligned with a part of the other snake.

As we intend to merge snakes bound to a feature, the merge operations are ap-

plied only after the snake simulation moves them close enough to such features. One

25

of the open questions is achoice of the time when merging should begin. This choice

is really a tradeoff between not letting to merge spurious snakes together at the first

iterations and not missing important merges of the snakes that cover the weakly pre-

sented features, as they usually move apart on the early iterations.

The set of possible chain configurations for which the merge operation can be

performed is very limited. It misses one important configuration when the snakes

may have an aligned area in the middle. This often occurs at the intersections of

features, which are particularly important to be detected to capture the topology of

curvilinear structures in the image. This limitation makes the merge operation insuf-

ficient, so that an additional procedure is needed, which merges two nearby snakes

with aligned interiors.

This is achieved by a split operation. Similarly to the merge operation, we merge

the aligned parts to one of the two snakes. From what left of the other snake, we

create two new separated snakes. All allowed configurations and the split operation

in action are illustrated in Figure 1.7.

The same considerations, which we described before ruling in favor of choosing a

dynamic merging (i.e., simultaneously with the iterations) versus post-process static

merging, can be applied for the split operation — we will be maintaining a dynamic

splitting. It requires to “link” snakes at the places where one of the snakes one of the

snakes was cut, so that the snakes do not separate during iterations. Thus, the snakes

optimization algorithm has to be adjusted to allow linking the snakes.

Two different ways can be tried to implement links between the snakes. The

simplest way is to connect two nodes of the snakes by a spring [136]. It does not

modify the original snake model as spring forces can be included in the snake energy

equation. Unfortunately, what we found from experience, the resulting system be-

comes stiff that may lead to chaotic oscillations of snakes, which most likely results

26

1

2

1

2

S11

S12

S11

Smid

S11 S12 S11

S13 S13 1

2 2

2

1S12

Figure 1.7: Splitting of two partially aligned snakes. Top: Snakes share their aligned

interiors. Bottom: Just link the tail node of one snake to an interior node of the other.

in diverging the system optimization.

We apply a different approach: instead of introducing a spring force between

snakes nodes, which could contribute to a system instability, we impose equality

constraints on the snakes nodes. The corresponding isoperimetric constraints should

be added to the original variational problem. We use Lagrange multipliers framework

to incorporate isoperimetric equality constraints into the original mathematical model

of snakes 1.5.

The following integral form represents the equality constraint which guarantees

for two nodes i and j at different snakes to coincide

∫ [
D(ui)−D(u j)

]
s(u)du = 0 . (1.9)

Its discrete form is given by

wTX = 0, (1.10)

27

for a vector w with N−2 zero components and wi = −w j = 1, if nodes i and j are

constrained to be at the same location, i.e., s(ui) = s(u j), 1≤ i, j≤ N, and the snakes

locations X defined by equation 1.4 with N as the total number of nodes of the snakes

under optimization.

To reduce an optimization problem 1.2 with K > 0 constraints of the form 1.9 to

an extended system of equations of snake force balance we introduce 2K Lagrange

multipliers {λk}K
k=1 and {µk}K

k=1 as an additional set of variables (λ -s are for x-

coordinates and µ-s for y-coordinates of snake nodes). The multipliers are arranged

in the following K×2 matrix

Λ =

 λ1 λ2 . . . λK

µ1 µ2 . . . µK

T

.

A k-th row of the maxtrix Λ corresponds to the k-th equality constraint of type 1.10:

s(uik) = s(u jk), k = 1,2, . . . ,K. We form an N×K matrix W with columns made of

vectors wk

W =
[
w1|w2| . . . |wK] ,

where wk represents a k-th constraint and is a sparse vector with the following non-

trivial elements wk
ik = −wk

jk = 1 for each k = 1,2, . . . ,K. The following system of

Euler-Lagrange equations corresponds to a discrete version of the resulting extended

system of snake force balance with constraints

AX +F(X)+WΛ =0 ,

WTX =0 .

The resulting system can be rewritten in a simpler form

ÃY + F̃(Y) = 0, (1.11)

28

by introducing the following (N + K)× (N + K) matrix Ã, an unknown matrix-

variable Y and a new matrix of external force values F̃ with (N +K)×2 components

Ã =

 A W

WT 0

 , Y =

 X

Λ

 , F̃(Y) =

 F(Y |X)

0

 .

The system 1.11 can be solved by an implicit Euler in the same way as was done for

Equation 1.5

(Ã+ γ Ĩ)Yt+1 = γYt− F̃(Yt). (1.12)

In the original variables it has the following form A+ γI W

WT γIK

 Xt+1

Λt+1

= γ

 Xt

Λt

−
 F(Xt)

0

 , (1.13)

or

(A+ γI)Xt+1 +WΛt+1 = γXt−F(Xt) ,

WTXt+1 + γΛt+1 = γΛt .

To be able to iterate, we replace Λt+1 with Λt in the first equation, so that the iteration

scheme becomes

(A+ γI)Xt+1 +WΛt = γXt−F(Xt) , (1.14)

WTXt+1 + γΛt+1 = γΛt . (1.15)

We iterate the resulting equations in the system above in turn to be able to iterate

by Xt and Λt separately. First, we find the next snakes locations Xt+1 by inverting the

Equation 1.14

Xt+1 =−(A+ γI)−1WΛt +(A+ γI)−1(γXt−F(Xt)) ,

29

and, second, we update the Lagrange multiplier Λt+1 based on the previous value Λt

and on just updated snakes locations Xt+1 by using Equation 1.15

Λt+1 = Λt−WTXt+1/γ.

Experiments showed that the equality constraints could be progressively added

or deleted from the system without harming its convergence. There is no limit on the

number of links; and possible clusters of links do not dangerously oscillate.

1.3.2 Three-step optimization algorithm

Our process of feature detection has the following three phases:

• initial random positioning and optimization without merging and splitting;

• optimization with simultaneous merging;

• optimization with merging and splitting.

We run snake optimization without performing merge and split operations first, be-

cause we want to apply these operations mostly to the snakes, which are already

aligned with features. To make the split operation robust, we iterate during the sec-

ond phase only with simultaneous merging. This creates independent bundles of

snakes aligned to the features, so that in the last phase the split operation links only

already optimized bundles in a network rather than spurious individual snakes. If, on

the other hand, one performs the splitting with merging during the second phase, then

the resulting network may have many specious connections. Figures 1.8, 1.9, 1.10,

illustrates effectiveness of our three-phase approach. The final image justifies that

the approach is capable of satisfying the requirements on the detection algorithm we

defined earlier in this work. Indeed, the detection of curvilinear structures is close to

30

precise, the intersections of snakes occur mostly on the corresponding intersections

of features, and the snakes are linked into a net of snakes, based on which a plane

graph covering all the features can be built in a straightforward way.

Figure 1.8: Snapshot 1: original ran-

domly placed snakes after several itera-

tions without merging/splitting.

Figure 1.9: Snapshot 2: after several iter-

ations with merging aligned snakes.

1.3.3 Discussion

Figure 1.12 shows that there is still a couple of minor problems which need to be

addressed for the skin images in particular. First, the algorithm may miss detecting

some enlarged furrow, especially at the furrows intersection points. At those places,

a redundant number of close net nodes may occur. They can be merged during post-

processing. Another minor problem is that some snakes may have unlinked tails. As

the real furrows do not stop in the middle of a ridge, those unlinked snakes have to

be extended to the nearest transversal snake.

31

Figure 1.10: Snapshot 3: after several

iterations with merging/splitting aligned

snakes.

Figure 1.11: Close snapshot: result

of thinning of snake bundles.

Performance of our approach still depends on how well the parameters for the

snake optimization are chosen. The main difference between the original snakes and

our approach is that our set of parameters does not need to be manually changed dur-

ing optimization. We roughly divide all the parameters into two groups which affect

the performance of the method at different optimization stages. The first group con-

sists of the initial parameters of the snakes inherited from the original model [136].

We consider the following three most important parameters: (1) a distribution for the

initial lengths of the snakes, (2) the starting number of the snakes, and (3) the snakes

initial positions. The second group of parameters control optimization phases.

Preliminary analysis of the curvilinear structures in the target image (or on similar

images) can help to select optimal values for parameters from the first group. For

example in the case of furrows image, before running snake-based optimization one

32

can apply a standard edge detection technique to find candidate locations of furrows

in the images — primary snakes — as a first approximation. The primarily detected

furrows let us approximate the average distance between the neighboring valleys.

Such a distance is a good estimate for the initial length of the snakes. The starting

number of snakes should be proportional to the ratio of the total average length of

primary snakes over the average initial snakes length — in this way each furrow gets

a sufficient number of snakes to cover it and to link with the surrounding aligned

snakes. We use locations of the primary snakes for initial locations of the snakes’

middle points. The plateaux on the skin surface are most likely to be detected as

areas free of features. We do not place the initial snakes in these areas.

Figure 1.12: Resulting furrow network recovered from a skin image.

Multi-scale snake optimization could significantly improve snake optimization

and partially solve the problem of initial snakes lengths. The idea is to optimize

several sets of random snakes in turn by gradually increasing initial lengths starting

33

from the one with a reasonable value. Finally, based on the performances of different

scales, one chooses the scale with the best detection results. In addition, the detected

features from the previous scale could be used as primary snakes for the next scale.

The second group of parameters control merge/split operations. Some of the such

parameters influence the way to select and determine a pair of snakes to be in one of

the chain configurations. The rest determine switch times between the consecutive

phases of our three-phase algorithm

The straightforward way of testing each pair of snakes to obey one of the chain

configuration is extremely expensive. Also, deterministic method of choosing a snake

to be absorbed by the other snake from the chain configuration should be developed.

It should be based how well a new, averaged, snake configuration is tight with the

close feature. We adapt the idea of decomposing the texture domain into a collection

of uniform cells, so that some snakes can be accessible (referenced) from the cells

and can attribute their tangential information with the cells.

We require each cell to have only one reference to a snake. The snakes which

overlap a cell are tested to be aligned with the snake referenced in the cell by com-

paring their tangents. Those snakes which pass such test undergo merging or splitting

with the cell snake. A fragment of the image decomposition with an example of ref-

erencing the snakes from the cells is illustrated in Figure 1.13.

To decide which snake should occupy a cell, we introduce the importance levels

associated with the nodes of all snakes. The idea is to assign larger importance values

to those nodes, which are statistically more significant during the optimization. In our

implementation, the significance level of a snake node is measured by the number of

snakes merged to the snake at the node so far. The following argument supports such

a choice of the node importance measure. The more snakes a given snake absorbs at

a given node, the higher is probability that it is aligned with a feature.

34

Figure 1.13: Referencing snakes from the cells. In this picture, a snake is referenced

by a cell if the its part which overlaps with the cell is colored in red.

When two snakes (or their interiors) are merged, the importance level values of

the survived snake are increased by the corresponding values of the nodes of the ab-

sorbed snake. Then, the importance level values of all the nodes of the survived snake

are compared with that of the corresponding nodes currently referenced from the cells

which are overlapped by the survived snake. The cells with smaller importance level

values are updated to reference to the survived snake.

In addition, we can improve the performance of the optimization during the snake

selection step by removing snakes with insignificantly small average importance level

values.

From our experience, our selection method of the pairs of snakes does not affect

much the quality of feature detection as compared to a detection run with exhaustive

testing of all possible node pairs. Our choice of the importance level assignment may

not be the optimal — one can explore different approaches in assigning significance

values to the snakes nodes.

35

Currently, the timing for each stage of the algorithm is user-specified. An heuris-

tic is needed to choose the switching times automatically. Such heuristic measures

the readiness of the snakes to be iterated on a higher level. For example, one can

measure the change of the average speed of the snakes, so that once this value passes

some threshold it triggers the algorithm to proceed to the next stage. Before switch-

ing to the third stage, on the other hand, one should guarantee that the current snake

bundles already cover all the features.

It is also worth mentioning that the original image should be blurred before apply-

ing snake-based algorithm to remove speckle noise and to smooth the feature gradient

values.

1.4 Summary

We have described a three-stage algorithm which robustly detects curvilinear struc-

tures from the still images by optimizing a set of topology-adaptive snakes. This

is a bottom-up detection algorithm which starts with optimizing a large number of

randomly placed short snakes and progressively merges nearby snakes aligned to the

image features into larger snakes. Such strategy allows avoiding laborious initial

positioning of the snakes and frequent guiding those snakes which were stuck in spu-

rious local minima. At the locations where more than two curvilinear structures meet

at a point, misaligned snakes are linked to each other. This creates a graph structure

with snakes as its edges and the linking locations as its nodes. Such a plane graph is

very useful for a local feature correlation analysis.

36

Chapter 2

Real-time rendering of feature curves

2.1 Introduction

Texture mapping is a powerful tool for adding high-resolution detail to the ma-

terial properties and geometry of models. However, the regular sampling pattern

used in textures leads to a range of aliasing problems, particularly for curved one-

dimensional features. Such features are common in textures and include fine-scale

geometry, such as gratings, creases, scratches, cracks and seams, shadow maps and

vector glyphs. For example, two main types of artifacts may be observed for normal

maps: staircasing artifacts due to misalignment of linear features with the texture

sample grid, and lighting artifacts due to use of bilinear interpolation in areas of

discontinuity (Figure 2.1).

Recent feature-based texture representations [116, 138, 124, 133] improve texture

appearance by explicitly representing discontinuities. This approach eliminates or

reduces many types of artifacts, and focuses on a unique way of representing and

real-time rendering of curvilinear features.

In this paper we describe algorithms for textures with feature curves, extending

37

Figure 2.1: Left: Typical bump and normal map artifacts. Note the bright lines at

the bottom of the crease: these lines are due to the interpolation between normals

pointing in opposite directions. Right: the enhanced map using our technique. The

resolution of the map in both cases is the same; the visible part is 40x40 pixels.

previously proposed feature-based texturing techniques. The distinctive elements of

our approach to representing features are: a) features not only represent the object

boundaries but also can be arbitrary functions of the distance and direction to curvi-

linear discontinuity, and b) curved features are represented by quadratic Bezier seg-

ments, rather then approximated with line segments, which is essential for resolution

independence.

Another central element of our construction is an approximation of the unsigned

distance function to the feature curve set and its gradient: the distance function van-

ishes precisely along the feature curves, is smooth away from feature curves, and

is efficiently represented by a pair of auxiliary textures. Using unsigned distance

functions is crucial for representing open feature curves. We present a GPU-based

algorithm for reconstructing the distance map and its gradient from these textures in

real time.

To avoid input restrictions, we developed a robust, incremental preprocessing al-

gorithm, which converts complex configurations with multiple connected features

38

into a texture representation that can be handled by our rendering algorithm simpli-

fying complex joints as necessary. As a result, our system imposes few restrictions

on the input set of feature curves, although certain configurations may cause artifacts,

as discussed in Section 2.9. The preprocessing algorithm is interactive if linear rather

than quadratic curves are used.

Our approach combines elements of texture-based and procedural geometry rep-

resentation: the user can specify a profile for the immediate neighborhood of a sharp

feature as a function of the distance to the feature. Through using user-controlled

profiles, we can produce a variety of behaviors without dramatic increase in texture

size.

In this paper, we focus on normal maps, for which these extensions are most

relevant. However, our technique can be useful for any piecewise-smooth texture,

for which it is desirable to introduce different types of feature profiles as a function

of the distance to the curve (e.g., color variation as the distance to the veins on tree

leaves or crease profile variation in displacement maps).

We build our normal fields at rendering time by blending two parts, continuous

and discontinuous (which is illustrated in Figure 2.2). The continuous part is obtained

by the standard texture interpolation of normal map. The discontinuous normal field

is computed from the curve network and a given feature profile only:the original

normal map is not used. Our focus is on construction of the discontinuous part of the

normal field from feature curves.

2.2 Related work

Images and textures with resolution-independent features. The idea of explicit rep-

resentation of discontinuities for data sampled on regular or unstructured grids has

39

+ =d

() (1 ()) ()cont discontb d b d d= + −n N n

Figure 2.2: Our model for sharp normal maps: continuous normal map (on the left)

is blended with a procedurally defined discontinuous normals (in the middle).

appeared in computer graphics in many different contexts (e.g., discontinuity mesh-

ing for radiosity [60] to nonphotorealistic rendering). We focus only on the most

closely related work. [122] presented an illustration reproduction approach, which

keeps discontinuous regions sharp at any scale. The reconstruction algorithm starts

from an arbitrary interpolation kernel and re-weights its intensity values according to

the closeness to the sample. As the algorithm is based on finding shortest paths, it is

difficult to adapt it for interactive applications.

Our method is based on feature-based textures work [116], bixels [138] and sil-

houette maps [124]. [10, 116] have developed a general framework for representing

sharp features in textures, called feature-based textures. Feature boundaries are rep-

resented by Bezier segments, and texels may store complex intersections of bound-

aries. Only values in the same continuous region are used for texture interpolation.

Our method can be regarded as an extension of this approach with distance functions

and an adaptation of it to hardware implementation by conversion of the input curve

networks to simplified form.

[138] encode discontinuities using bixels, i.e., pixels with additional annotation,

which define texture discontinuity segments for every pixel, allowing only a restricted

set of combinations of segments. Our feature maps are similar in spirit, but they

40

encode the distance field and are adapted to interactive rendering.

Sen’s silhouette maps [124], extending [125], are similar to feature-based textures

and bixels, but the interpolation approach used in this work is further simplified such

that it maps well to graphics hardware. As in [138], a finite number of discontinuity

boundary configurations are used for each texel. The discontinuity representation is

restricted only to straight segments.

A crucial element of our technique is a distance function representation which

vanishes exactly on the feature curves. Adaptively sampled distance fields (ADF)

[49] is the most closely related technique, converting 2D (or 3D) object boundaries

into a signed distance field and storing distance samples in a quadtree or octree. The

boundaries of objects are accurately represented by using a polynomial distance field

approximation inside cells containing object boundaries [45, 106]. Using signed

distance fields makes it possible to avoid the problem of representing nonsmooth

functions as the signed distance is smooth across boundaries. However, signed dis-

tance functions are only possible for objects with well-defined interiors; i.e., no open

curves can be used. Using level sets of a smooth function for approximating feature

curves also makes it more difficult to represent joins of several curves (e.g. Fig-

ure 2.1, right). Unlike ADF, we use parametric curves to represent features inside

cells, making it possible to include curves with endpoints and curve intersections in

a direct way. In addition, this considerably simplifies ensuring C1 continuity across

cell boundaries and conversion from commonly used vector graphics formats.

Adaptive refinement is a crucial feature of ADF, which makes it possible to rep-

resent 3D objects efficiently. Unfortunately, adaptivity is difficult to implement ef-

ficiently on GPUs, so we focus on uniformly sampled representations. Thus, rather

than using adaptive refinement to resolve the topology of the curves as is done in

ADF constructions, we use preprocessing to simplify the curve network so that it can

41

be represented by a fixed number of curves per cell of a texture.

Real-time curvilinear discontinuities. Textures with curvilinear features look

more appealing than their analogues represented by the networks of linear segments.

Direct representation of curvilinear features is essential when close-up rendering of

textures is needed. Among the already mentioned works, the sharp strokes [122],

feature-based textures [10, 116], and bixels [138] accept curves as their discontinuity

features. However, GPU adaptation of the latter algorithms is relatively difficult.

Tarini and Cignoni introduced the pinchmap [133], with which smooth textures

with curvilinear discontinuities are interpolated in real-time without artifacts. The

algorithm accepts arbitrary curves and is very efficient, but the feature curves cannot

have intersections.

In the GPU algorithm [80], objects with boundaries in the form of quadratic and

cubic spline curves are sharply rendered with infinite resolution. In our approach

we also use quadratic splines for the discontinuous features. However, their feature

representation is not suitable for interpolating distance function and gradient field

around the features, essential for making discontinuity customizable as is possible

for our feature curves.

Our feature curves are comparable to the concurrent work of Qin et al. [115] on

rendering font glyphs anti-aliased at arbitrary magnification. Similar to our tech-

nique, their approach is based on exact computation of a distance field to glyph

boundaries approximated by line segments. The crucial difference is that we rasterize

the distance field and its gradient during preprocessing (local approach), while [115]

looks up the closest feature and calculates the distance directly (global approach).

This approach is difficult to generalize to resolution-independent curvy features and

to handle multiple features meeting at a point.

More recently, closely related problems were addressed in papers by Nehab and

42

Hoppe [94], and Qin and others [114]. Nehab and Hoppe describe an approximate

distance function calculation for points sufficiently close to a quadratic curve. The

discontinuities with quadratic outlines are shared between the variable-length cells

and may be of arbitrary complexity. Their approach is ideal for rendering vector

graphics defined by filled or stroked shapes. Another calculation is described in Qin

et al who approximate the distance near the curve numerically by binary search. We

believe our method is somewhat more efficient and most importantly, it yields a con-

tinuous distance function and gradient for arbitrary distances with no limitations on

curvature of the curves. See comparison of distance fields calculated by our tech-

nique versus the Nehab’s and Qin’s techniques on Figure 2.3.

ba c

Figure 2.3: Approximation of distance function by our technique (a), Qin et al. tech-

nique (b), and Hoppe and Nehab technique (c). Figures are taken from [94].

Textures representing small-scale geometry. A variety of techniques were devel-

oped for representing fine-scale geometric detail with textures. Bump maps were

invented by J. Blinn [18]. Many techniques for interactive rendering of bump maps

were proposed,(e.g., [134] and references). With the appearance of programmable

43

graphics hardware, use of basic bump mapping became commonplace. Bump map

appearance can be improved by horizon maps, a technique for self-shadowing of

bump maps, introduced in [82, 83]. [129] described how horizon maps can be ac-

celerated using hardware. Parallax mapping and steep parallax mapping [84] aim to

reduce another artifact of bump maps: incorrect behavior when a surface is tilted. A

more consistent way to address this problem is by using relief maps [99]. In many

methods for high-quality rendering of normal maps, one needs to make a transition

between different rendering modes as in [15]. Enhancements to lighting of bump

maps necessary for such transitions are described in [62]. Displacement maps, in-

troduced in [26], and relief maps [99] are a more advanced form of representing

fine-scale geometry for flat surfaces (extensions to arbitrary surfaces were presented

in [107]). Distance maps [35] significantly improve rendering quality of small de-

tails by making use of volumetric distance field to the closest surface features while

maintaining real-time performance of displacement maps.

While techniques for interactive rendering of displacement maps were recently

proposed [143], [144], these require large precomputed data sets. Interactive render-

ing of relief maps requires less data. While we describe our technique in the context

of normal maps, it can be applied to rendering of relief maps representing the same

type of geometry.

Texture and detail synthesis. As the application of our technique results in a

combination of sampled and procedurally defined normals, our work is related to

work in texture synthesis. Procedural bump maps first appeared in [104]. There

were a large number of papers on non-parametric synthesis from examples; these

techniques often can be applied to produce bump maps, e.g., [156]. Our technique

addresses a specific case of the problem of adding high-resolution detail to an image,

focusing on sharp curvilinear linear features. A general approach to this problem can

44

be found in [67].

To summarize, we believe our method to be the only real-time technique combin-

ing the following features: a) C1 sharp feature curves at arbitrary resolution, b) open

and intersecting feature curves, and c) smooth (away from feature curves) distance

function and distance function gradient, enabling user-defined distance-based feature

profiles. For linear features, our method is fully interactive.

2.3 Background: GPU, shaders, framebuffers

Modern GPUs (graphics processing units - highly parallel devices optimized for

rich and fast graphical output) underwent a rebirth after they had evolved from a

highly tuned fixed-function logic to become programmable. Fixed-function graph-

ics pipeline supports only a fixed set of operations (slightly varying among different

manufacturers): a user cannot change the order of operations but can only change

the parameters of the operations and/or enable/disable some of them. A diagram of

a typical rendering pipeline with a fixed-function logic is illustrated in Figure 2.4

(left) with boxes filled in blue. A user passes a set of geometric primitives which

are (optionally) transformed within the world space coordinate system. At this stage

camera position and orientation as well as scene lighting is also assigned. During a

rasterization step, all the primitives are projected to the camera visible frustum and

mapped into the pixel locations. At this stage all the parameters of the primitives are

interpolated down to the pixels and those primitives with smaller depth values are

shaded and stored in the pixel framebuffer.

In modern GPUs portions of graphics pipeline are programmable which gives a

user additional control during the rendering stages (some portions thought are bet-

ter to keep fixed for performance considerations; currently, they include rasterization,

45

texture filtering, post-shader α-blending and depth testing). At the current state, three

programmable components are incorporated into the graphics pipeline (depicted by

yellow boxes in Figure 2.4, left). Vertex shader [78] allows manipulating the loca-

tions of the primitive vertices and calculating lighting at the vertices before passing

the vertex data farther down the graphics pipeline. Vertex shaders usually consume

a minor part of the total rendering time which makes them ideal means for simple

real-time animation, for simulating one-reflection surface lighting effects, for fine-

scale geometry manipulation including bump-mapping, displacement mapping etc.

Geometry shader, unlike the vertex shaders which operate on vertices alone, have an

access to the entire primitive and adjacent information which allows efficient trans-

forming such primitives before rasterization stage. Pixel shaders execute on each

pixel and store the color components and depth information into designated frame-

buffers. A user can implement fairly sophisticated shading algorithms based on the

pixel shader’s input which usually includes but not restricted to (u,v)-coordinates

of the pixel within a set of (also provided) textures, the texture samplers, tangent

basis at the geometry point corresponding to the pixel sample, lighting descriptors,

interpolated per-vertex values.

Our method of sharp rendering of feature curves is implemented as a pixel shader.

At each pixel (blue square in Figure 2.4, right) we reconstruct discontinuity curve

(black curve in Figure 2.4, right), and fetch the values of distance and distance gradi-

ent encoded in the four texels which surround the pixel (green squares in Figure 2.4

(right) labeled Ti j, Ti j+1, etc). Based on this information and the pixel coordinates

within the textures, we interpolate the values of the distance and distance gradient

addressing the discontinuity and calculate the discontinuous part of the normal map

which will be associated with the pixel. Continuous part of the normal map is cal-

culated by a standard bi-linear interpolation within a pixel shader. The continuous

46

Tij
Tij+1

Ti+1j+1

Tij+1

(u,v)

Figure 2.4: Left: Standard fixed-function logic graphics pipeline (blue boxes) with

embedded programmable parts (yellow boxes). Right: Texture samples (green

squares) interpolation within a pixel (a blue filled square) addressing the presence

of discontinuity curve (black) defined in texture space.

and discontinuous normal components are blended to produce a final normal which

will be used during a shading algorithm at the final portion of the pixel shader. We

should mention that in this work we only concentrate on interpolation aspects limited

to the interior of one texel. Possible under-sampling artifacts happening when pixels

cover more than couple of texels and anti-aliasing along the sharp boundaries are not

47

addressed in this work.

Pixels shaders follow standards - shader models - which define set of operations

and features a particular GPU should support. Shader models have evolved signifi-

cantly since its introduction in 2001 (after launch of GeForce 3 series, DirectX 8.0).

With earlier shader models (< 3.0) an implementation of the method described in

this work would not be possible as it requires support for dynamic branching and

takes more than 96 shader instructions. Our first implementation of a discontinuous

normal map pixel shader was under shader model 3.0 which supports both half and

single-precision floating numbers. To speed up the shader performance we tuned our

program to half-precision which triggered some robustness issues of original geo-

metric routines and required to make some sacrifices to the quality. The latest shader

model replaces half-s by single-precision floating numbers by default, so the quality

of rendering of normal maps does not suffer anymore due to lack of precision.

We take advantage of framebuffer objects (available since introducing shader

model 2.0) by storing discontinuous normal map, produced by our pixel shader, into

a designated texture attached to the shader. We render a geometry with normal map

texture by running three passes. Pixel shaders of the first two passes calculate con-

tinuous and discontinuous parts of normal maps and store them to a framebuffer

object. On the third pass, the calculated normals are provided to its pixel shader as

a regular texture after being de-attached from the framebuffer object. This separates

sharp normal calculations from the final shading. Calculation of the discontinuous

part of the normal map is the most time consuming operation. To avoid invoking

the corresponding pixel shader during the second pass, we modify the depth values

for the pixels not overlapped with discontinuity (which account for majority of all

rendered pixels) with the value zero while other pixels are assigned with the largest

depth value.

48

2.4 Overview of algorithm

The input to our algorithm consists of a set of feature curves representing desired

sharp features or discontinuities in a target texture, a continuous texture map to which

feature curves are added, and, optionally, a one-dimensional profile defining how the

texture is modified near the feature curves. Discontinuity representation overhead,

overall shader performance, and possibility of enabling interactivity to our algorithm

depends on what type of features is selected. We distinguish linear features, the ones

which follow line segments, from curvilinear features, which may also follow curves

with nontrivial curvatures, and provide separate interpolation algorithms, memory

representation and individual perofrmance analyses for each type.

Definition 1 (Feature). A feature is a distinctive object in the texture which domain

is concentrated along a chain of connected curves and line segments and defined by

its profile around the chain. Depending on the context, we also distinguish linear

features from curvy features to emphasize the differences in approaches applied to

them.

Definition 2 (Feature curve). A Curve which defines the position of texture disconti-

nuity within a feature is called feature curve. Feature curves include line segments.

Feature curves are represented by either line segments L[bbb0,bbb2], with parametriza-

tion γL(t) given by equation 2.1, or by nondegenerate (i.e., no two control points

coincide) quadratic Bezier segments B[bbb0,bbb1,bbb2], parameterized by γB(t) as in equa-

tion 2.2. No further restrictions are imposed on the input.

γL(t) = (1− t)bbb0 + t bbb2 , (2.1)

γB(t) = (1− t)2bbb0 +2(1− t)t bbb1 + t2bbb2 , (2.2)

t ∈ [0,1] .

49

dscnt. set

distance map
around dscnt. set

normal map
{ }()tγ { }(,)N x y

§2.6.1,
curves

1.
 c

on
tin

uo
us

ˆ
ijC ˆ

ijS
ˆ
ijd ˆ

ijNconfiguration signature k̂h

User-defiend
profile

{ }ˆ
ijd +Δ

{ }ˆ
ijN +Δ

2.
 d

es
cr

et
e

Sample p(u,v)
within Tij

3.
 su

bt
ex

el
 c

on
tin

uo
us

d∇

§§2.7.(2,3),
interp_types, norm_interp

()N d ()h d

()dn

pre-processing

rendering

reconstruct
dscnt curves

within textel, Tij
(§2.7.1,side_test)

ˆ
ijd∇

§2.6.2,
distance

{ }ˆ
ijd +Δ∇

(u,v)d

()b d

Discontinuity texture Continuous texture

Figure 2.5: Block-diagram of our method applied to normal map N(u,v): (1) contin-

uous input, (2)pre-processing step, (3) rendering step.

In the rest of the algorithm description, we focus on normal maps, although the

algorithm with minor modifications can be applied to other types of textures with

features depending on a distance map d(u,v) and, if necessary, on distance gradient

field ∇d(u,v).

Our technique has two principal and relatively independent components. The first

runs as a pixel shader which computes the normal using an approximation of the dis-

50

tance to the feature curve d(u,v) and its gradient ∇d(u,v), and a feature cross-section

profile h(d) (this part is illustrate at the bottom of the block-diagram in Figure 2.5).

The result is blended with the original normal map.

The second component is a preprocessing algorithm that produces textures Ĉi j,

Ŝi j, d̂i j and ∇d̂i j which encode information about feature curves. Preprocessing en-

ables us to use a curve network as input, while using only a restricted type in the

shader (this is illustrated in the top and middle part of Figure 2.5). The central ele-

ment of our approach is computing a continuous unsigned distance function and its

gradient from the feature curve information.

At the preprocessing stage, we convert the curves and line segments to a texture-

based representation (Section 2.6), and create additional textures representing the

distance field, d̂i j, and its gradient ∇d̂i j (Sections 2.5.1 and 2.6). The feature curves

are split into texel-sized discontinuity segments, defined by discontinuity descriptors.

The descriptors are stored in two textures of discontinuity configurations Ĉi j and

discontinuity signatures Ŝi j.

At the rendering stage the original texture, profile, and additional textures gen-

erated by preprocessing step are used to compute the feature texture values at pixel

locations.

The combination of preprocessing and real-time algorithms aims to approximate,

as closely as possible, a desired piecewise-smooth function (color, normal direction,

or any other quantity encoded in the target texture) defined by the combination of the

feature curves, profiles, and a smooth map interpolating texture values (details are

shown in Figure 2.5).

We start with a precise definition of the normal field we aim to approximate.

Suppose we are given a continuous normal map, encoded in a texture N(u,v) :

[0..Umax,0..Vmax] → R3. We split the map N = (Nx,Ny,Nz) into two components

51

N = [Nxy,Nz], where Nxy(u,v) is the 2D projection of the normal to the object’s tan-

gential plane at a point p(u,v). Only Nxy(u,v) needs to be represented explicitly.

Let the distance to the closest feature curve from p(u,v) be d(u,v) and let the

gradient of d(u,v) be ∇d(u,v). Let h(d) be the user-specified profile defining dis-

placement of the fine-scale surface from the coarse geometry to which the texture is

applied. In the simplest case, it depends only on the distance to the feature set d but

may also depend on the closest point on the feature curve and other parameters.

We use a blending function b(d) to merge given normals with the normals derived

from the crease profile h(d). The process of obtaining a new normal, given by nnn(d) =

(1− b(d))nh(d) + b(d)N(d), is illustrated in Figure 2.6, where nh is a normal of

the crease profile pointing toward the feature curve. In the formulas, we omit the

dependence of d on (u,v) where it is clear. We choose b(d) to satisfy b(d) = 0 for

d ≤ w0 and b(d) = 1 for d > w, where w0 is the half-width of a band around the

feature curve, for which the original normal map has no effect (w0 can also be zero),

and w is the feature curve width.

Assuming that the projection of profile normal nh is aligned with the distance

gradient ∇d(u,v), the (non-normalized) desired normal map n(u,v) continuous ev-

erywhere but along d(u,v) = 0 can be calculated as follows

nxy(u,v) = −(1−b(d))h′(d)∇d + b̃(d)Nxy(u,v)

nz(u,v) = (1−b(d))+ b̃(d)Nz(u,v) (2.3)

where b̃(d) = b(d)
√

h′(d)2 ·∇2d +1

Our algorithms are designed to approximate the function defined by (2.3), main-

taining precise behavior at the feature curves. For the rest of the paper we assume

working in the texture domain [0..Umax]× [0..Vmax], unless a different domain is spec-

ified. The domain is split into texels Ti j = ∆U [j, j +1)×∆V [i, i+1) whose bottom-

52

d

ze

n

(,)d u v∇

(,)u vN (,)u v
()b d

()h dn

()dn

d

ze

(,)d u v∇

()h d

Figure 2.6: Interpolation between the global smooth normal map N(u,v) and the

discontinuous normal map nh defined by local profile h(d). We show updating height

maps for clarity, but we interpolate normals, not the underlying mesh.

left corners define a grid Ω = {(u j,vi) , i = 1,2, . . . ,Mv, j = 1,2, . . . ,Mu}. We use

pt = (u,v) to denote a sample in the texture domain. Texels form a partition of a

given texture domain if we exclude the north and east boundaries from each texel,

except the texels from the most right column and top row where the east and north

texel boundaries are kept, respectively.

We also assume that underlying mesh has a nice parametrization, so that texture

mapping does not distort noticeably the feature curves.

53

2.5 Distance field to features

An unsigned distance map dS(ppp) around a nonempty closed set S is defined as the

distance from a given point ppp to a closest point on S

dS(ppp) = min
sss∈S
‖ppp−sss‖ . (2.4)

In general, there may be more than one point from S equidistant to a given point. All

such points form a medial axis MS to a set S

MS =
{

ppp /∈ S | ∃sss1,sss2 ∈ S , ‖ppp−sss1‖= ‖ppp−sss2‖= dS(ppp)
}

.

A gradient of the distance function is a unit vector1 ∇dS(p) which is directed toward

the closest point on S

1) ‖∇dS(p)‖= 1 ,

2) ∇dS(p) · (ppp−sssp) = dS(p) .

In this work we focus on texture features which are defined as a function of

the distance to the corresponding feature curves. A set of feature curves Γ con-

sists of quadratic Bezier curves and line segments, Γ =
{

γk(t), k = 1,2, . . . ,K
}

,

given by equations 2.2 and 2.1, correspondingly. Thus, the unsigned distance field

to the feature curves Γ is a scalar function defined in the texture space, d(u,v) :

[0..Umax,0..Vmax]→ [0,∞), and is given by

d(u,v) = min
γk∈Γ

dγk(ppp = (u,v)) . (2.5)

1More rigorous definition of a distance gradient can be done by introducing the generalized gradi-

ent whose construction addresses the situations when the distance function is not differentiable [23],

e.g., at the points along the medial axis of a given set. The generalized gradient is a Clarke subdiffer-

ential which consists a set of vectors. Details can be found elsewhere [38].

54

A gradient of the distance function, ∇d(u,v) = ∇dΓ(ppp = (u,v)), in general, may

not be uniquely defined, e.g., at the medial axis points pppm ∈MΓ at least two vectors

satisfy the definition of the distance gradient ∇dΓ(pppm) (see Figure 2.7 on the right,

more than one vector can be considered as a distance gradient at the points on blue

line segments). At every such location we just pick randomly one vector from all the

vectors meeting the distance gradient requirements.

2.5.1 Distance functions

The distance map representing the unsigned distance function is central to our al-

gorithm: it determines the locations of the discontinuity curves and the distance to

these curves. The direction of the gradient of the distance function for many feature

profiles heavily influences the resulting value as can be seen from Equation (2.3).

To ensure rendering quality, we would like them to satisfy the following distance

function requirements (DFR):

DFR1 (a) the approximate distance function should be exactly zero at feature curves

so that sharp features can be created; (b) it should vary continuously; (c) it

should remain close to the precise distance function near feature curves in order

to be able to control feature width correctly;

DFR2 the gradient of the distance function should be continuous away from feature

curves;

To understand the difficulties with approximating the distance function, we ob-

serve that the Euclidean distance function has two types of singularities where the

gradient is discontinuous: distance zero curves and and medial axis curves, (Fig-

ure 2.7).

55

Figure 2.7: Left: Distance function singularities for a rectangle: the medial axis is

depicted in blue, and vectors denote the gradient discontinuity areas. Right: Distance

function level lines and close-up rendered by using our techniques.

We represent the first type of singularity explicitly. Most singularities of the

second type are far from feature curves, and the distance function does not affect

the result in these locations. However, at corners, the medial axis meets the feature

curves, so we need to address the gradient discontinuities there.

To satisfy our requirements, we compute the approximate distance function and

its gradient from texture grid samples as follows:

1. Within the texel the distance function d(u,v) is linearly interpolated on curved

triangular subtexel domains (Figure 2.8) aligned with feature curves to ensure

that it is zero at these lines.

2. The gradient ∇d(u,v) is also interpolated linearly. Note that this is not equiv-

alent to computing the gradient of the interpolated distance function, as the

latter would be piecewise constant.

3. The gradient samples on the texture grid ∇d̂i j = ∇d(ui,v j) are smoothed away

from the feature lines, to eliminate discontinuities at the medial axis.

56

The construction of a specific representation of the distance map is discussed in

detail in Section 2.6. The real-time evaluation of distances and gradients is discussed

in Section 2.7.

Figure 2.8: Interpolation domains (in the texture space) for the distance function near

a feature curve shown in different colors.

2.5.2 Calculating distance field to feature curves

Our set of features consists of line segments and quadratic Bezier curves, given by

equations 2.2 and 2.1, respectively. Computing the unsigned distance and its gradient

to a line segment γ is straightforward and is decomposed into three cases, depending

on a relative location of a sample point ppp with respect to the line segment’s interior

dγ(ppp) =



‖ppp−bbb0‖ , bbb01 · (ppp−bbb0) < 0 ,(
(ppp−bbb0)2−|bbb01 · (ppp−bbb0)|2 /bbb2

01

)1/2

, 0≤ bbb01 · (ppp−bbb0) < lγ

‖ppp−bbb1‖ , otherwise ,

where bbb01 = bbb1−bbb0 and lγ = ‖bbb01‖. If the (counter clock-wise) normal vector to γ

is introduced, nnnγ = (−b01,y,b01,x)/‖bbb01‖, then the distance gradient is given by the

57

following cases

∇dγ(ppp) =


1

‖ppp−bbb0‖ (ppp−bbb0), bbb01 · (ppp−bbb0) < 0 ,[
2χR+{(ppp−bbb0) ·nnnγ}−1

]
nnnγ , 0≤ bbb01 · (ppp−bbb0) < lγ

1
‖ppp−bbb1‖ (ppp−bbb1), otherwise ,

where χR+(x) is a characteristic function of a nonnegative real numbers R+ = [0,∞].

Figure 2.9-(left) illustrates three different regions (filled in yellow, blue, and green)

around linear feature which correspond to the cases mentioned in the equations defin-

ing the distance and its gradient vector above. The size of the regions is defined by

the width of a given feature, wF .

0b

1b

1p1()d∇ p

2()d∇ p

2p
0b

2b

1b1p
p1()d∇ p

d∇ p()

0l
2l

Bγ (t)p

Figure 2.9: Calculation of unsigned distance to the feature line given by a line seg-

ment L[bbb0,bbb2] (left) or feature curve given by a Bezier segment B[bbb0,bbb1,bbb2] (right)

with their gradient vectors is split into three cases depending on where a sample point

is located relative to the interiors of the lines (regions corresponding to different cases

are filled in different colors). Distance values are calculated only within a specified

effective feature width wF .

Computing the distance and its gradient to a quadratic Bezier segment B[bbb0,bbb1,bbb2],

with parametrization γB(t) = (1− t)2bbb0 + 2(1− t)t bbb1 + t2bbb2, is split into the same

three cases as was done for the line segments: the samples which lie in the region on

58

the “left” from the line l0 which passes the first control point bbb0 (filled in yellow in

Figure 2.9 on the right), the region around the interior of the Bezier segment (filled

in blue), and the region on the “right” from the line l2 (filled in green) which passes

the third control point bbb2 (lines are defined by l0(t) = bbb0 +nnn0 t and l2(t) = bbb2 +nnn2 t,

where nnnk, k = 0,2, are counter clock-wise normal vectors to the Bezier tangents at

bbbk: nnn0 = (−b01,y,b01,x)/‖bbb01‖ and nnn2 = (−b12,y,b12,x)/‖bbb12‖ where bbb12 = bbb2−bbb1).

The first and the third case are of no difference from that of derived for line segments.

The second case requires more effort to be solved.

So, for the second case, where sample points fallen between the lines l0 and l2

(region, filled in blue in Figure 2.9 on the right), we consider two possible situations

depending on the magnitude of the curvature of the Bezier segment. When the cur-

vature radius at every curve’s point is sufficiently larger than the feature width wF

then the distance from a sample point ppp to the curve can be computed by solving the

following cubic equation for a parameter t

(
ppp− γB(t)

)
· ∂tγB(t) = 0 ,

so that dγB(ppp) =
∥∥ppp− γB(tp)

∥∥ and ∇dγB(ppp) = (ppp− γB(tp))/dγB(ppp), where tp is a so-

lution of the equation (such equation describes a necessary condition for a closest

point γB(tp), which requires a vector spanned between a sample point ppp and the clos-

est point to be orthogonal to a tangent vector at the closest point1). We find a root to a

cubic equation by running a version of Newton-Raphson method [111, Ch.9] which

converges to a solution in several iterations. Alternatively, one can use analytical

methods [19] or an iterative solver described by Qin et al. [115]

1To prove that such condition is necessary, one can use the continuity of the normal vector to the

Bezier curve at the curve’s points and that for the case with small enough curvature of the Bezier there

is only one line passing the sample point and being orthogonal to the interior of the Bezier.

59

For the case when there are points on a Bezier curve with high curvature value,

we split the curve into “safe” and “unsafe” regions, γB = γS
1 ∪·· ·∪γS

K∪γU , and apply

a different algorithm for an unsafe part γU while using the same iterative algorithm

described above for the safe parts, γS
k , k = 1,2, . . . ,K. We define a portion of a Bezier

to be safe if its curvature is smaller than (1.1wF)−1. For an unsafe Bezier γU we

run a version of Newton method to find a distance to the interior of the Bezier (the

region filled in blue in Figure 2.9 on the right) minimizing the following polynomial

of degree four
(
γU(t)

)2− 2γU(t) · ppp. For the regions filled in yellow and green in

Figure 2.9 we follow the same steps as for the line feature with the only difference

at points where the yellow and blue regions overlap. In such case, we calculate the

distance to the first and the third control point of the unsafe Bezier and choose the

minimum.

An alternative geometric approach to find distance to a parametric curve based

on binary search is described in recent work of Qin et al. [114]

2.6 Feature discretization: discontinuity configuration

and signature

Feature rasterization has two goals: to simplify the connectivity of the feature curves

so that it can be represented using a fixed number of curvilinear segments per texel,

and to ensure that in the case of curvy features the simplification process results in a

network of curves with no self-intersections and sufficiently smooth curve segments.

The former is achieved by a snapping process locally modifying curvilinear segments

overlapping a texel. The latter requires solving a collection of local constrained op-

timization problems. While computationally relatively expensive, the latter step is

60

essential for obtaining a usable simplified curve network (see Section 2.6.1); this

step is unnecessary only if line segments are considered.

For every texel overlapping a curve, we define a discontinuity configuration and

a signature. The discontinuity configurations and signatures are stored as additional

textures. A discontinuity configuration defines the number of discontinuity segments

within the texel and which edges are crossed by the segments. The discontinuity

signature stores more detailed information: exactly where the discontinuity passes

through an edge and its tangential direction (in the case of curvy features).

In principle, local configurations of discontinuities can be arbitrarily complex:

any number of curves can overlap a texel. Following [138] and [124], we reduce

the number of allowed configurations, avoiding introduction of points in the center

of texels. Valid discontinuity configurations for a single texel are defined by the

following three rules:

• One boundary edge of a texel may be crossed by discontinuity curves at no

more than one point.

• There are no more than two discontinuity curves inside any texel.

• A discontinuity curve ends on a texel boundary.

We call a portion of the discontinuity curve overlapped by a texel as a discontinu-

ity segment. Examples of valid configurations of discontinuity segments are shown

in Figure 2.10. The main difference between curvy and linear feature representations

is that curves share a tangential vector at an intersection point located on the texel’s

edge as is shown in the top row images of Figure 2.10 (left).

Our choice of the set of valid configurations aims to achieve a good balance be-

tween generality of networks that can be represented exactly, required texture size,

61

Figure 2.10: Valid discontinuity configurations for a texel. Left: curvilinear features.

Right: Linear features only.

and algorithm complexity. The major limitation of our choice of valid configurations

is that no more than two curves may overlap a texel, curve termination inside texels

is not allowed, no more than four curves can share endpoints, and curves sharing a

point on a texel boundary also have to share a tangent (see Figure 2.11).

Figure 2.11: Texel prohibited discontinuity configurations.

The algorithm modifies discontinuity curves locally and transforms an arbitrary

configuration into the one that satisfies our requirements.Figure 2.12 (left) illustrates

the changes in the discontinuity map the algorithm performs.

Once the transformation is complete, every texel has at most two discontinuity

segments, so we can store texels’ configurations in the configuration map as quadru-

ples Ĉi j. Configuration C is [0,0,0,0] for an empty texel, has two pairs of endpoint

62

Figure 2.12: Left: Rasterization process consists of adding one by one curvy fea-

tures to texels and transforming all invalid texel configurations by transforming edge

points. Black points are replaced by their center of mass (white points) to satisfy

the first rule, identified discontinuity segments are deleted to follow the second rule,

no hanging curves inside a texel according to the third rule. Right: Transformation

artifacts: (top) reduction of a curve to two linear discontinuity segments, (bottom)

change of topology.

edge indices for a texel with two discontinuity segments:

C = [(l1,m1),(l2,m2)] , (2.6)

and two copies of endpoint edge indices of the only discontinuity segment within a

texel with one discontinuity: C = [(l1,m1),(l1,m1)]. The edge indices ls,ms, s = 1,2

are in the range 1 . . .4 (edges are ordered clockwise starting with from the south

edge).

Based on the resulting configuration map and by using the adjusted network of

feature segments, we assign discontinuity signatures for all affected texels: each texel

63

is annotated with eight numbers representing the four distances from the left/bottom

corners to discontinuity segment endpoints along the texel boundary, and four an-

gles between tangential vectors at the endpoints and the horizon (Figure 2.13, on the

right). The default distance/angle pair (0.5,0) is assigned to every edge without a dis-

continuity point on it. For example, the default discontinuity signature for texels with

no segments is S = [(0.5,0),(0.5,0),(0.5,0),(0.5,0)]. If there is a segment passing

the south and the east edges, then S = [(d1,θ1),(d2,θ2),(0.5,0),(0.5,0)]. Finally,

S = [(dl1,θl1),(dm1 ,θm1),(dl2,θl2),(dm2,θm2)] , (2.7)

for texels with two discontinuities.

1

2
θ

2θ

1d

2d
1

1/ 2

1/ 2

1

2

3

4

1θ

2θ

3θ

4θ

1d

2d

3d

4d

Figure 2.13: Examples of discontinuity descriptors: discontinuity configurations (left

column) and discontinuity signatures (right column). First row: one curvy feature:

C = [(1,2),(1,2)] and S = [(d1,θ1),(d2,θ2),(1/2,0),(1/2,0)]. Second row: two

curvy features: C = [(1,3),(2,4)] and S = [(d1,θ1),(d2,θ2),(d3,θ3),(d4,θ4)].

Encoding linear features requires storing two quadruples C = [(l1,m1),(l2,m2)]

64

and S = (d1,d2,d3,d4): the signature S in this case does not include the angles (see

Figure 2.14).

3d

1d
4d 2

1d

2 1/ 2

1/ 2

Figure 2.14: Linear features: just endpoints of discontinuity segments are stored in

discontinuity signature.

The conversion process proceeds as follows. Initially, default empty configura-

tions are assigned to all texels. Each feature curve is scan-converted to the texture to

determine all texels it intersects (visited texels). For each visited texel, we check if

there are one or two intersections of the curve with the texel’s edges. In the former

case, only the intersection point is used in the conversion process, while the part of

the curve inside the texel is disregarded. In the latter case, we use a table of texel

transformations to adjust the configuration; the table maps a pair (valid texel con-

figuration, pair of edge indices for the new segment endpoints) to a transformation

defining a new configuration. Any such transformation maps a valid texel configura-

tion to another valid texel configuration and updates the texel’s discontinuity signa-

ture by calculating the center of mass of all discontinuity points included so far per

every edge (e.g., Figure 2.11).

The advantage of this algorithm is that it is easy to see that it will always produce

a valid set of configurations for all pixels; however, it may introduce artifacts in rare

situations like those depicted on Figure 2.12 (right).

65

2.6.1 Curvilinear features: optimizing invalid signatures

While texel configurations are guaranteed to be valid, in the case of curvy features,

not every resulting discontinuity signature is valid. Some configuration-signature

pairs may produce no Bezier segment at all [e.g., when their θs are equal, see Fig-

ure 2.15 (left)], produce a Bezier segment which leaves the interior of the texel [see

Figure 2.15 (right)], or C1 continuity is not maintained between connected discon-

tinuity segments. To address these issues, we transform all invalid signatures by

running a constrained optimization on the curve segments within the affected texels

and their immediate edge-neighbors.

Figure 2.15: Examples of resulting invalid signatures during rasterization of feature

curves. Left: parallel tangential directions at the “empty-circled” points never form

any Bezier segment. Center: new Bezier segments (blue curves) leave the interior of

the central texel. Right: Severe rendering artifacts resulting from an invalid signature.

We describe the details of the optimization on a texel with two discontinuity seg-

ments sharing one edge-point; other configurations are optimized in a similar way.

We minimize an energy of a set of discontinuity segments including segments within

the affected texel and connected segments in the adjacent texels. Figure 2.16 shows

an example of an invalid configuration in the central texel with two Bezier segments

δ1 and δ2 that are connected not C1 continuously to α , β , and γ Bezier segments

66

within the east, north, and west immediate neighbors at points bδ2
0 , bδ1

0 , and bγ

2, cor-

respondingly: e.g., to maintain C1 continuity at point bγ2
2 , vectors

−−→
bγ

2bγ

1,
−−−→
bγ

2bδ2
1 , and

−−−→
bγ

2bδ1
1 should be collinear.

2
α b

2δ b

1
0
δ

2
γ b

b

b2
β

bβ

γ b 2
0
δ b

δ b
α b1

1
1

1

1

1

γb0

αb0

bβ
0

Figure 2.16: An example of the initial configuration for spline energy optimization,

given by Equation 2.8, within an invalid central texel with two discontinuity segments

δ1 and δ2. All the locations of filled circles are optimized.

To make the process local, we fix the signature angles and positions in the adja-

cent texels located on the edges not shared with the central texel (points bα
2 , bβ

0 , and

bγ

0 depicted in in Figure 2.16 by open circles). Locations of control points (excluding

fixed signature locations) of all Bezier segments are the variables in the optimization

(filled circles in Figure 2.16). Linear inequality constraints keep all segments in-

side their original texels, and nonlinear equality constraints ensure tangent continuity

with adjacent segments (δ1 with β and γ , and δ2 with α and γ in Figure 2.16). The

complete optimization problem is

67



Econ f = Eα +Eβ +Eγ +Eδ1 +Eδ2 →min

S.T. linear inequalities

bα
1 ∈ T o

i, j+1, bβ

1 ∈ T o
i+1, j, bγ

1 ∈ T o
i, j−1,

bα
2 ∈ ∂eTi, j, bβ

2 ∈ ∂nTi, j, bγ

2 ∈ ∂wTi, j, bδ1
1 ∈ T o

i j , bδ2
1 ∈ T o

i j

S.T. nonlinear equalities

P(bα
1 ,bα

2 ,bδ2
1) = P(bβ

1 ,bβ

2 ,bδ1
1) = 0

P(bγ

1,b
γ

2,b
δ1
1) = P(bγ

1,b
γ

2,b
δ2
1) = 0

S.T. linear equalities

bδ1
0 = bβ

2

bδ2
0 = bα

2 , bγ

2 = bδ1
2 = bδ2

2 .

(2.8)

In the optimization problem formulation, T o and ∂e/n/wT denote the interior and

the (east/north/west) boundary of texel T , and b ∈ T o
i, j is explicitly expressed by the

inequalities
{

0 < b̂x− j < 1, 0 < b̂y− i < 1
}

. The points on the texel’s edges, e.g.

the west edge, b ∈ ∂wTi, j are identified using a function P as{
P(b̂, [j, i], [j, i+1]) = 0, 0 < b̂y− i < 1

}
,

where b̂ = [bx/∆U,by/∆V] and P(p,q,r) is zero whenever its arguments lie on the

same line. We use P(p,q,r) = (p−q) · (q− r)−|p−q|2|q− r|2. Graphical repre-

sentation of optimization constraints is shown in Figure 2.17.

The energy Eγ of a quadratic Bezier segment γ given in Bernstein form [43],

Bγ(t), with control points bγ

i , i = 1,2,3, is the standard thin-plate energy:

Eγ =
∫ 1

0

∣∣∣∣ d2

dt2 Bγ(t)
∣∣∣∣2 dt = 4

∣∣bγ

0−2bγ

1 +bγ

2

∣∣2 . (2.9)

68

γ *γ

2b

0b

2b

0bT
2b

0b
b

0b

T

1b

1b
2

0bγ

1b

2bγ
0bψ

2bψ
0bγ

1bγ

2bγ
0bψ

2bψ

γ ψ

ba

c

Figure 2.17: Optimization constraints. (a) End-points of the Bezier segments should

move along the texel boundaries. (b) The middle Bezier control points should stay

within the original texel. (c) The Bezier segments connected through the texel bound-

ary should respect the tangent continuity. Control points under constraints are filled

in green.

69

We use sequential quadratic programming to solve the optimization problem for

each local configuration separately. An example of valid configuration optimized

from an initial invalid configuration shown earlier in Figure 2.16 is depicted in Fig-

ure 2.18

0
γb 0

βb

0
αb

,i j

1,i j+

, 1i j +, 1i j −
α

β

γ 1δ

2δ

Figure 2.18: Optimal positions of the segments α ,β ,γ ,δ1, and δ2. All the locations

of open circles are fixed during optimization.

If only linear discontinuities are presented in the original texture, then every re-

sulting discontinuity signature is valid. In this case, the preprocessing algorithm

avoids signature optimization and is sufficiently fast for interactive feature line mod-

ification.

2.6.2 Rasterization of distance field and its gradient

The distance field values and the gradient values are calculated at the texel corners

simultaneously with configuration transformations. We initialize the distance field

with some “large” value and merge the local distance fields of individual features one

by one by keeping the smallest distance values within the merging domains. Gradient

70

values corresponding to the smallest distances are stored in the gradient texture.

We smooth the resulting gradient texture ∇d̂i j by using constrained Laplacian

smoothing (e.g., [135] for similar techniques). Specifically, each vertex moves to-

ward the barycenter of its neighbors, excluding the neighbors on the other side of

the discontinuity. We found that approximately 10 smoothing iterations is sufficient.

As is well known, Laplacian smoothing quickly eliminates high frequency features,

while slowly reducing low frequency features, which is the desired result in our case.

The significant improvement in appearance due to smoothing the gradient field

is shown in Figure 2.28: compare two images on the right of the top row. Note that

no smoothing is done on the distance function itself; we found it important to keep

it unchanged, e.g., for maintaining approximately constant width of creases when

desired.

2.7 Rendering of feature maps

The input to the real-time part of our algorithm include the following textures

• the distance map d̂i j
1 and the gradient field ∇d̂i j,

• the discontinuity configurations Ĉi j and discontinuity signatures Ŝi j,

• any other texture maps with features used for rendering (here we consider the

normal map N̂i j as an example),

• user-defined crease profile h(d). It may be stored in a one-dimensional texture

ĥk.

1d̂i j is a texture of unsigned distance field sampled at grid points Ω = {(u j,vi) , i = 1,2, . . . ,Mv, j =

1,2, . . . ,Mu}, d̂i j = d(u j,vi). All the other textures are sampled on the same grid Ω.

71

Our rendering algorithm, implemented as a pixel shader, uses the normal map,

per-texel discontinuity configurations and signatures and profiles to compute the nor-

mal values. Once all necessary quantities are interpolated, equation 2.3 is used to

obtain the normal. The goal is to interpolate the distance field, its gradient, and nor-

mal texture in a way that respects feature curves. In particular, there should be no

averaging of values across the discontinuity segments. We achieve this by using a

three-stage interpolation procedure which partition the texel.

Discontinuity segments partition a cell into several domains. For valid config-

urations, the segments are topologically equivalent to a subset of the boundaries of

an eight-triangle partition of the domain (Figure 2.8). For example, for a single dis-

continuity segment connecting two adjacent sides, one domain is a union of seven

curvilinear triangles on one side of the segment and the other is one triangle located

on the opposite side of the segment. For any configuration, we generate an eight-

triangle partition, adding additional vertices when necessary. The vertices of the

partition triangles located on the texel’s edges (edge vertices) are either determined

by the discontinuity endpoints (as for vertices qb and qd on Figure 2.19) or placed at

the edge center when there is no discontinuity passing such edge (as for vertices qa

and qc on Figure 2.19). The common central vertex rm is an intersection of horizontal

segment {qb,qd} with vertical segment {qa,qc}. Partition triangle vertices are only

created temporarily during the rendering step.

Our algorithm can be summarized as follows: we interpolate/extrapolate corner

values of the texel contained in the same domain of the discontinuity partition as pt

(note there may be only one corner value available) to obtain the values at the vertices

of the curvilinear triangle containing pt . Then, we obtain values at pt by interpolating

inside the triangle.

72

aq

bq

cq

dq mr

tp

Figure 2.19: Steps in locating the partition’s triangle containing pt ; discontinuity

feature passes through points qb and qd .

The curvilinear triangle which contains pt is localized in two steps: first, by find-

ing one of the four quadrants which contains the point, and second, by choosing the

triangle containing pt within the quadrant. This process is illustrated in Figure 2.19.

It requires running a test to determine on which side of a discontinuity curve a point

is (Section 2.7.1).

To determine the values at the edge vertices, we interpolate the samples at texel

corners and then use the values at edge vertices to interpolate the value at the central

vertex. The values at the edge and central are obtained using only samples from

reachable texel corners: the corners in the same discontinuity partition domain with

pt .

Once the samples at triangle corners are obtained, triangle’s corners are interpo-

lated to calculate the values at point pt : d(u,v),∇d(u,v), and N(u,v). Our procedure

ensures the distance function is exactly zero on the discontinuity segments: if two

edge vertices are on a discontinuity segment, the distance function value at these ver-

tices is zero; the value at the central vertex is interpolated from these two values and

is also zero. Our technique for interpolation on curvilinear triangles, described in

Section 2.7.2, ensures all intermediate values along the discontinuity segment con-

73

necting an edge vertex with the central vertex are also zero.

2.7.1 Side test

Linear discontinuity. The side test determines on which side of a curve a point is

located. To perform the side test, one usually finds an implicit form of the curve,

f (x,y) = 0, so that points with negative signs are located on one side of the curve and

the points with positive signs are on the other side.

If a feature is a line segment L[b0,b1], then its implicit form is given by fL(x,y) =

vγ ·p+ cγ , where vγ = (b̂1−b0)⊥ and cγ =−vγ ·b0.

The implicit form fL(x,y) = 0 describes a “larger object”: a line which has a line

segment as its part. As a line always divides the interior of a square-shaped texel into

two parts, the side test based on the sign of line implicit form is always correct: a pair

of texel points located on the same side with respect to a line segment has the same

sign fL(x,y). In contrary, the curvilinear case may introduce ambiguities.

Curvilinear discontinuity segments. By using a well-known result from algebraic

geometry [28], we find the implicit form of a Bezier segment, written in power basis

as B(s) = [qx(s),qy(s)] with qi(s) = ais2 + bis + ci, by equating the resultant of the

two polynomials qx(s)− x and qy(s)− y to zero:

fB(x,y) = Res2,2[qx(s)− x;qy(s)− y]

=

∣∣∣∣∣∣∣∣∣∣∣∣∣

−ax −bx x− cx 0

0 −ax −bx x− cx

−ay −by y− cy 0

0 −ay −by y− cy

∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0.

(2.10)

The two sides of the curve are defined by the sign of fB. The side test, based on

implicitization, may yield incorrect results for highly curved segments: a curved

74

segment may pass a unit square twice. For example, a discontinuity feature curve

given by a Bezier segment B[b0,b1,b2], depicted in Figure 2.20-(left), should sep-

arate points p1 and p2 from each other. However, the feature curve may have a

parabola γ as its implicit form which intersects the texel a second time at the NW

corner, Figure 2.20-(center). In this case the points p1 and p2 will be identified as

being on the same side of the implicit curve which is unwanted in this case.

1p

2p

0b

2b

1b
1p

2p

γ

0b
2b

1b

-0.5 0.5

 0 0(,)x y=

Figure 2.20: Left and Center: An example of an implicit form which assigns the

same side for two points separated by a discontinuity. Right: Bezier segments.

Consider a parabola which corresponds to the Bezier segment B′[b0,b1,b2] with

control points: b0 = (−1/2,0), b1 = (x0,y0), and b2 = (1/2,0), see Figure 2.20

(right). It has the following unique form up to a constant factor:

4(−yx0 + xy0)2 +2yy0− y2
0 = 0. (2.11)

After applying a linear transformation u

v

=
1
|b1|

 x0 y0

−y0 x0

 x

y

 (2.12)

the parabola becomes

2|b1|3

y2
0

v2 +
x0

y0
v− |b1|

2
=−u. (2.13)

The larger the leading coefficient is in Equation 2.13, the narrower the parabola will

be, the more likely both branches of the parabola will intersect the texel.

75

Implementing a complete test on whether the parabola intersects the texel more

than once is computationally expensive and assumes using many branching instruc-

tions. Instead, we use a simple fast test which is free from ambiguities, though, may

reject some safe Bezier segments. We also describe what needs to be done to convert

a Bezier segment which fails the test to its safe close variant.

The following propositions describe the methods of resolving the side test ambi-

guities against Bezier segments given in the form of B′ for the following two possible

cases: x0 6= 0 and x0 = 0.

2b

0b

Figure 2.21: The configuration is always safe if the entire texel is located on one side

w.r.t. the parabola’s medial axis.

Proposition 3 (Resolving ambiguity when x0 6= 0). For a texel with the boundary

edge length lT , the side test based on the implicit form given in Equation (2.10) for

the Bezier segment B′ is always consistent if

min
{

x0y0

4|b1|3
± y0

2|b1|

}
>
√

2 lT , (2.14)

provided that 2|b1|2 < |x0|.

Proposition 4 (Resolving ambiguity when x0 = 0). The case described in Proposi-

tion (3) when x0 6= 0 is changed to x0 = 0 is always unambiguous if the angle between

76

a tangential direction and the texel’s edge, θ , is separated from zero by θmin:

θmin =
2lT y0

1+4(1+ lT)2y2
0

Proof. (x0 6= 0) It is easy to see that if the entire texel lies on the same side as the

control points {bi} with respect to the parabola’s axis of symmetry, then the texel

will not intersect the parabola again keeping the configuration safe from ambiguity,

see Figure 2.21. One way to satisfy this condition is to make sure that the distances

from the control points to the medial axis are larger than the length of texel’s diagonal
√

2 lT .

u

v

d

d

d

0′b

2′b

1′b

0

1

2

u

v
d

d

d

0′b

2′b

1′b 0

1

2

Figure 2.22: Resolving the side test ambiguity for the case x0 > 0 (left), and x0 < 0

(right)

Without loss of generality, we consider only the case when y0 > 0. After applying

a linear transformation (2.12), the control points {bi} become

b′0 = (−x0,y0)/2|b1|

b′1 = (1,0)/|b1|

b′2 = (x0,−y0)/2|b1|.

77

The medial axis of the parabola given by Equation 2.13 is located at v∗=−x0y0/4|b1|3.

Therefore, to make sure that all the points are on the right (left) from the axis when

x0 > 0 (x0 < 0), the following condition should hold: y0/2|b1| < ±x0y0/4|b1|3 (see

Figure 2.22). This may be simplified to 2|b1|2 < |x0|, which is exactly what is re-

quired by the proposition.

The distance from a point b′1 to the parabola’s medial axis, d1, equals |x0|y0/4|b1|3,

and the corresponding distances d0, d2 for b′0 and b′2 are x0y0/4|b1|3± y0/2|b1. As

b′0 or b′2 are the possible closest points to the axis (see Figure 2.22), the closest

distance from the control points to the axis is min{d0,d2}. Therefore, the inequality

min{d0,d2}>
√

2 lT guarantees that the control points are at least the texel’s diagonal

length far away from the medial axis. Such inequality becomes (2.14) by substituting

the values for d0 and d2.

If the inequality (2.14) fails for the Bezier segment B′, we adjust the position of the

second control point b1 so that x0 = 0, that will lead us to the second case. This

adjustment may be brute and may introduce visible discontinuities across the texel

edges. For example, one can update b1 = (x0,y0) to be b′1 =
(
0,0.5y0/(|x0|+0.5)

)
,

so that a new Bezier segment B′′[b0,b′1,b2] is under the case x0 = 0 preserving its

original tangent continuity at least at one of the texel boundary edges.

Proof. (x0 = 0) Without loss of generality, we consider only the case y0 > 0 and

search for necessary conditions on the angle θ for the texel’s edge which passes the

control point b0, see Figure 2.23. Suppose that the texel’s edge intersects the parabola

at the point p. Then, to proof this Proposition, it is enough to derive a condition upon

which the distance d(b0,p) from b0 to the intersection point is larger than lT .

A line representing the texel’s edge has a parametrization (1/2,0)+(cosα,sinα)t.

If it were to intersect the parabola y =−2y0x2 +y0/2 — derived from Equation (2.11)

78

0b2b

1b

p

θ
α

Figure 2.23: Resolving the side test ambiguity for the case x0 = 0.

with x0 = 0 — at point p, the distance d(b0,p) is

d(b0,p) =
(

1
2y0

tanα +1
)2 (

1+ tan2
α
)
.

The condition d(b0,p) > lT holds if (tanα/2y0 +1)2 > lT . As the derivative of the

parabola equation at point b0 equals (−2y0), the value of tanα should be in the range

−∞ < tanα <−ky0 <−2y0 for some k > 2. Therefore(
1

2y0
tanα +1

)2

=
(

1− k
2

)2

> lT

is equivalent to 1−k/2 <−lT as 1−k/2 < 0. Thus, k should satisfies k > 2(1+ lT);

it leads to the following condition on the tanα

tanα <−2(1+ lT)y0.

We can approximate the smallest possible θ by expanding the arctan function into

Taylor series up to the first order

θmin = arctan(−2y0)− arctan(−2(1+ lT)y0) ≈
2lT y0

1+4(1+ lT)2y2
0
.

79

To ensure this condition holds, we always convert curvilinear discontinuity seg-

ments with small values of θ < θmin to straight segments.

To move from a particular case of the Bezier segment B′ to a general case with

arbitrary control points {bbbk,k = 0,1,2}, one just needs to find the coordinates of the

point bbb1 in the coordinate system given by the following basis vectors eeeB,x = (bbb2−

bbb0)/‖bbb2−bbb0‖ and eeeB,y = (−eB,x[1],eB,x[0]), and normalize them by lT = ‖bbb2−bbb0‖.

Such coordinates can now be substituted into equation 2.14 to run our side ambiguity

test.

2.7.2 Interpolation in a curvilinear triangle

We apply three different interpolation techniques to reconstruct the unknown values

inside a triangle given three values at the triangle’s corners, depending on the follow-

ing types of the triangle’s edge:

1. straight-line triangle: all edges are straight lines;

2. curvilinear 1C-triangle: one curvilinear edge represented by a quadratic Bezier

segment, see Figure 2.24 (right);

3. curvilinear 2C-triangle: two quadratic Bezier edges, see Figure 2.25.

To find an unknown value V (p) (i.e., distance, gradient, or normal) at a point p

inside of a straight triangle 〈p1,p2,p3〉, given corner values Vi ≡V (pi), we apply the

standard linear interpolation based on the barycentric coordinates {ui} of pi:

ui = S(pi−1,pi+1,p)/S(p1,p2,p3)

V (p) = ∑
i

uiVi

80

2p
1p

3p

p

2p1p

q

s
p

u
′p

Figure 2.24: Interpolation schemes at a sample point p for triangles of different edge

types. Left: a straight-edge triangle. Right: a 1C-triangle with one curvilinear edge.

For a 1C-triangle 〈p1,p2,q〉, where q is adjacent to the straight edges (Fig-

ure 2.24, right), we define a map from the unit square with coordinates (s,u) to the

triangle’s interior, being degenerate at the edge s = 0. For any point in the triangle,

we obtain the values of s and u by intersecting a ray [q,p) with the curvilinear edge

{p1,p2} to locate a point p′. As the edge {p1,p2} is parameterized by a quadratic

function ~ϕ(u), the system of equations for s and u is

p′ = ~ϕ(u) (2.15)

s =
∣∣p′−p

∣∣/ ∣∣p′−q
∣∣ .

Solving the system reduces to solving a quadratic equation. We note that there

is always exactly one intersection, which can be shown by using the variation-

diminishing property of Bezier curves. Finally, we use bilinear interpolation to com-

pute V (p):

V (p) = s•
(
u• (V1,V2),Vq

)
, (2.16)

where u• (V,W)≡ (1−u)V +uW

The procedure for locating p′ and inverting Equation 2.15 is summarized here:

81

p = (1− s)~ϕ(u)+ sq (2.17)

s =
px−ϕx(u)
qx−ϕx(u)

(2.18)∣∣∣∣∣∣ px qx

py qy

∣∣∣∣∣∣=
∣∣∣∣∣∣ px ϕx(u)

py ϕy(u)

∣∣∣∣∣∣−
∣∣∣∣∣∣ qx ϕx(u)

qy ϕy(u)

∣∣∣∣∣∣ (2.19)

We solve the quadratic Equation (2.19) to find u, which is substituted into Equation

2.18 to find s.

2p1p

q

v

u s

3p

p

′p

′′p

Figure 2.25: Interpolation scheme at a sample point p for a 2C-triangle with two

curvilinear edges.

We use a different approach for 2C-triangles, as a simple radial parametrization

of the type we use for 1C triangles is impossible.

For a 2C-triangle 〈p1,p2,p3〉 with curvilinear edges {p1,p2} and {p3,p2}, pa-

rameterized by ~ϕ1(u) and ~ϕ2(v) respectively, we choose an auxiliary point q on the

line passing the points p1 and p3 somewhere outside of the straight edge [p1,p3].

Consider the ray [q,p) going through point p. Again, by the Bezier curve variation-

diminishing property, one can show there will be exactly one intersection with curvi-

linear edges. For the sample p, we find the intersection points p′ and p′′ of the ray

82

[q,p) with the curvilinear edges by applying the well known Bezier clipping algo-

rithm described in [96]. Then, s is found the same way as it is done for a 1C-triangle

by solving the following system:

p′ = ~ϕ1(u)

p′′ = ~ϕ2(v)

s =
∣∣p′−p

∣∣/ ∣∣p′−p′′
∣∣ , (2.20)

while the final interpolation formula is given by

V (p) = s•
(
u• (V1,V2) ,v•

(
Vq,V2

))
. (2.21)

2.7.3 Code outline for the normal interpolation shader

We summarize the part of our fragment shader program which estimates a desired

normal n(u,v) at a given texel’s sample pt = (u,v) by reconstructing the values

Nt = N(u,v), dt = d(u,v), and ∇dt = ∇d(u,v), and by applying Equation 2.3 on the

reconstructed values. The samples falls in the texel Ti j, where i = bv/∆Vc and j =

bu/∆Uc, so that the fragment shader has the following corner samples: (nk)k=1...4 =

(N̂i j, N̂i j+1, N̂i+1 j+1, N̂i+1 j), (dk)k=1...4 =(d̂i j, d̂i j+1, d̂i+1 j+1, d̂i+1 j), and (∇dk)k=1...4 =

(∇d̂i j,∇d̂i j+1,∇d̂i+1 j+1,∇d̂i+1 j), See Figure 2.5 and the beginning of Section 2.7. As

an example, Figure 2.26 shows normal interpolation for a texel with two discontinuity

segments inside.

83

Algorithm 1 Normal shader
INPUT:

• the texture coordinates (u,v) of a current pixel’s sample

• corners’ samples nk, dk, and ∇dk, k = 1..4, of the texel Tbv/∆Vc,bu/∆Uc

• the discontinuity configuration/signature pair (C,S) for that texel.

OUTPUT: an estimated normal n(u,v).

1 Find locations of intermediate discontinuity points qa, qb, qc, qd from the

texel’s discontinuity signature S by using offset values S(1), S(3), S(5), and

S(7).

2 Fetch the texel’s edge indices for end-points of its feature curves from the dis-

continuity configuration C: C(1),C(2) for the first curve and C(3),C(4) for the

second curve. Reconstruct the Bernstein forms of the curves — B1(s),B2(s) —

by calculating their middle control points b1
1 and b2

1 as the intersection points

of the rays going from the points q∗ and into the directions given by the dis-

continuity signature S: angle values S(2), S(4), S(6), and S(8). Set rm as an

intersection of (possibly curvilinear) segments {qa,qc} and {qb,qd}.

3 Reconstruct normals, distances, and gradients at the active discontinuity points

— the points from qa...qc, which are on the same side of discontinuity seg-

ments as pt . Use the side test equations from (Section 2.7.1).

3.1 Depending on the number of corners reachable from a given active point,

choose one of the following three cases to reconstruct the normal1 n∗:

3.1.1 two corners: interpolate the normal from the values at these corners;

84

3.1.2 one corner: copy the normal from the corner;

3.1.3 none (such an active point is a common end-point of the discontinuity

segments with the sample point located between the segments): use

the normal from the opposite end-point of either segment.

3.2 Set the resulting distance d∗ to zero and assign a predefined value for the

z-component of the resulting normal ∇d∗ at every active point which is

located on the discontinuity.

4 Determine the triangle containing point pt by running the side test with respect

to curvilinear edges of the triangles from the texel’s partition; if needed, recon-

struct the normal and distance at rm, interpolating between the values at the

endpoints of the discontinuity with known values.

5 Depending on the type of the resulting curvilinear triangle, compute the in-

terpolated normal Nt , the distance dt , and its gradient ∇dt at pt from known

samples at the triangle corners, using the corresponding scheme from (Sec-

tion 2.7.2); apply Equation 2.3 to the resulting values to calculate the final

blended normal n(u,v).

2.8 Interactive rendering of linear features

Features formed by only line segments are much faster to render and require less

memory than the curvy feature do. Indeed, the linear features do not include the

1the same rules are applied for reconstructing the distance d∗ and its gradient ∇d∗; ∗ =

{a,b,c,d,m}

85

1p 2p

3p4p

aq

bq

cq

dq tp

1n 1d 2n 2d

3n 3d4n 4d

mr

4n
4d

cn
cd

dn dd

1n
1d an

ad

mn md

cn cd

dn dd mn mdtN td

Figure 2.26: Computing the normal Nt and distance dt at a texel sample pt . Left:

{qa,qb} and {qa,qc} are the discontinuity segments inside the texel; locations of

qa, qb, qc, and rm are calculated from discontinuity signature; qd is in the default

position. Center: computing normals and distances at qa, qc, qd , and rm. Right:

1C-triangle 〈qc,qd,rm〉 covers pt ; values at the triangle’s corners are interpolated to

compute Nt and dt .

heavy operations on curve reconstruction and the interpolation within a straight tri-

angle is much simpler than in a curvilinear triangle. Line segment implicitization is

done in no time comparing with the Bezier curve implicitization. In fact, our im-

plementation of linear feature shader contains only one branching which distinguish

continuous and discontinuous texels [101].

A crucial difference between linear and curvy features is that a preprocessing step

for linear features does not include time consuming optimization of invalid signatures

as all signatures with linear features are automatically valid. We took advantage of

this property and developed a program which can generate all discontinuity textures

and render them simultaneously. The program starts either with a continuous texture

without linear discontinuity features in it or with a texture which already has linear

feature discontinuities encoded within our auxiliary textures d̂i j, ∇d̂i j, Ĉi j and Ŝi j.

86

Figure 2.27: Snapshots of interactive growth of network-like embossing on a plane.

A user adds linear discontinuity features as needed either in an interactive mode or

by providing a pre-computed set of features which should appear on the screen in

a particular order with a given speed. For a current linear feature to be added we

find a rectangular fragment in the texture domain which entirely covers the feature

(taking into account the feature’s width). We load corresponding fragments from

the auxiliary textures into temporary textures of the size of the fragment and add a

87

contribution of the feature to the temporary textures by using algorithms described

in Sections 2.5.1, 2.6 and 2.6.2. This approach does not require any adaptation of

the latter algorithms as they are all sequential in the first place. The updated tempo-

rary textures are uploaded back to the corresponding fragments of auxiliary textures,

so that a user can see a new linear feature immediately. The Figure 2.27 shows a

snapshots of real-time embossing of a network-like pattern in a plane.

2.9 Implementation and Results

We have implemented the real-time interpolation algorithm as a fragment shader in

Cg and tested the implementation on an NVidia GeForce 7800GS AGP 256M, run-

ning on Pentium 4, 2.8MHz. The frame rates that we have obtained for 512x512

images are in the range from 25 to 215 frames per second (fps) for interpolating

curvilinear features, and from 65 to 380 fps for interpolating features approximated

by linear segments. Such wide ranges is the result of sensitivity of the performance

to the ratio of discontinuity pixels, configuration complexity of feature curves being

rendered in the current frame, and to the size of the scene.

A normal map with feature curves is rendered in two passes. We run the interpo-

lation shader in the first pass. It interpolates the normal texture with discontinuities

represented by feature textures and stores the resulting normals in the Framebuffer

object (FBO) [54] attached to the current fragment output. FBO is faster during

switching than its former alternative p-buffer, and it maintains up to 32 bit float im-

ages as the fragment destination texture. On the second pass, the FBO with stored

normals is detached from the fragment and is used as a general texture image that

provides pixel normals for rendering.

The interpolation shader starts with reconstructing the feature curves inside a

88

texel containing a texture sample encoded by the texture coordinates of a point cur-

rently observed by the fragment shader. It partitions the texel interior into 8 curvilin-

ear triangles, and locates a triangle which covers the texture sample. It then propa-

gates known distance/gradient/normal values from the texel’s corners to the corners

of the triangle (see Figure 2.19). Finally, the normal at the sample is interpolated

within the triangle by applying the corresponding interpolating algorithm, described

earlier in (Section 2.7.2). All the calculations are performed in single precision arith-

metic (floats). More detailed description of the shader can be found in the Algorithm

1.

Memory consumption. We use two extra textures: RGBA float and 16 bit

grayscale. The former encodes discontinuity signatures Ŝi j: its “RG” component

contains the south edge pair of the signature, and its“BA” component carries the west

edge pair. The east and the north edge signature pairs are located in the correspond-

ing “RG” and “BA” components of the east and the north texel neighbors. The latter

stores discontinuity configurations Ĉi j. Distance values are stored in the unused “A”

component of the normal map texture. Therefore, our approach requires to consume

in total extra 5 floats per texel.

Figure 2.28 compares different modes of rendering normal maps with sharp fea-

tures, enabling different parts of our approach one-by-one. The obvious artifacts at

the bottom of the crease on the images from the first column are eliminated by us-

ing a reduced version of our method which approximates the gradient field from the

distance samples. However, the resulting normal field is not smooth along the texel

edges as can be clearly seen at the high intensity spots in the second column im-

ages. This occurs because the interpolated distance field is only C0 continuous across

the texel edges. The images in the third column look more smooth at the spots after

separating the distance and gradient interpolation into two independent processes. Fi-

89

Figure 2.28: The appearance of features for different interpolation methods, from left

to right: standard bilinear interpolation of samples representing the profile; piecewise

linear distance function and piecewise constant gradient computed directly from the

distance function; piecewise linear interpolation for gradient and distance function,

without constrained smoothing of the gradient field; same with smoothing.

nally, the artifacts along the distance medial axis are smoothed away by a preliminary

filtering of the gradient field at the preprocessing stage.

2.9.1 Feature curves

Figure 2.29 shows several examples of applying user-specified profiles. All discon-

tinuity features are curvilinear (quadratic Bezier curves) and stored in the 128x128

textures (one of the examples shows texel sizes). The close-up views show that our

technique results in few artifacts even in complex situations. The rendering frame

rates for these images were 65 fps, with 75 fps for the close-up views and up to

215 fps when the object only partially covers the rendering fragment. These exam-

90

Figure 2.29: Examples of user-defined profiles. The discontinuity map is the same in

all cases; note that in some cases, the discontinuity is removed entirely: a spectrum

of creases of variable sharpness is possible.

ples have a simple feature pattern and the smallest mesh size, which makes them the

fastest among the examples with curvilinear features that follow.

Figures 2.30– 2.34 show several images of models of feature-based normal maps

rendered by our technique with different types of features and surface properties.

512x512 textures were used for rendering images on Figures 2.30, 2.34, while the

snake mesh of Figure 2.33 was wrapped by a 1024x1024 texture.

The coke can with the fingerprints on its surface shown in Figure 2.30 is rendered

at 46 fps (with at least 93 fps when the can is scaled to one-half of the image size). Its

magnified version, shown on the right, runs as low as 26 fps. To clarify the reasons for

inferior performance relative to the previous example, we considered the frame rate

dependence on the level of complexity of feature curves and the size of underlying

mesh.

91

Figure 2.30: Coke can with added fingerprint features; magnified views (without

can’s texture) shown at the bottom.

92

Definition 5 (feature coverage ratio (FCR)). We define FCR as a ratio of pixels whose

texture samples are located within discontinuity texels to the total number of pixels

in the current output frame

We measured a feature coverage ratio for the can image, and found a strong im-

pact of the feature pattern complexity within the current rendering frame on the over-

all performance. Indeed, the FCR was approximately 5.5% for the full view can

image, while discontinuity features covered more than 19% of the current frame for

the magnified version of the can. However, the FCR only partially explains the re-

sulting performance drop. The images of the Chinese character “luck” on the top row

of Figure 2.29 also have an FCR approximately equal to 5%, but they run almost two

times faster than the full view image of the can. The obvious difference between the

two images is in the locality of discontinuity pixels in the current frame. Usually, the

performance of GeForce 6/7 series cards suffer from frequently occurring incoherent

branching in the pixel shaders. Our shader has a number of conditional statements,

including the main one, which checks whether a pixel overlaps a discontinuous texel.

The fragment of the magnified luck character image has many more coherent contin-

uous pixels than the coke can image where continuous and discontinuous pixels are

mixed. As a result, a combination of the FCR ratio with pixel coherence dominates

overall performance.

The performance is only slightly sensitive to the size of the underlying mesh.

The mesh of the coke can has 4.2K faces. However, performance improved only 6%,

from 46 fps to 49 fps, for a two-triangle square with the same normal map applied.

The image of the plate with an Escher pattern Figure 2.31 runs as low as 25 fps

(35 fps for the magnified image). Performance is relatively poor in this case versus

other cases with comparable FCR because the pattern contains more discontinuity

93

texels with two feature curves in them.

Table 2.1 summarizes the performance of our feature curve shader running with

textures we just discussed. Pixel coherence and the value of the FCR are the param-

eters which greatly influence the performance, while the size of the mesh is a less

important parameter.

94

Figure 2.31: Plate with an Escher pattern; magnified views (without plate’s texture)

shown at the bottom.

95

2.9.2 Linear features

Our algorithm can be easily transformed into a shader for interpolating normal maps

with linear features, which runs significantly faster at any resolution. Indeed, there

is no need for time-consuming curve reconstruction in the step 2 (see Algorithm 1);

the side test for the linear segments does not require computationally intensive curve

implicitization in the step 3; and, an interpolation within the straight triangle does not

require solving quadratic equations as in the case for curvilinear triangles in the step

5. Moreover, our version of the shader for linear features has only one branching: the

one which checks the type of the pixel. Memory expense decreases to 3 floats per

texel as tangential directions need not be stored.

A piece of glass depicted in Figure 2.32 has a very intricate pattern of linear

features with joints having as many as 7 meeting features. The resulting feature

texture has 91% discontinuous texels. The rendering rate in this case is 222 fps (114

fps for the first magnified image, and up to 380 fps for the version scaled by 75%)

with FCR being close to 37% (90% and 20.2% for these two cases).

We approximated feature curves by linear segments for the snake mesh depicted

in Figure 2.33. It runs at 124 fps with 10% FCR, and at the same performance with

35% FCR in the case of the magnified version (the mesh has 3.3K faces). Approx-

imate feature curves look smooth enough at certain magnifications. However, the

corners are already noticeable in the magnified version, which is not yet the closest

view.

Teapots with features created by Delaunay triangulation shown on Figure 2.34 are

examples of using user-defined feature profiles. They illustrate that using different

profiles may change the way the teapot is perceived. Both the full view image and its

magnified version run at 75 fps, though their FCR ratios are different, equaling 25.4%

96

”L
uc

k”
C

ok
e

ca
n

E
sc

he
r’

s
pa

tte
rn

re
s.

=1
28

2 ,d
sc

nt
.=

16
3K

,F
ig

.2
.2

9
re

s.
=5

12
2 ,d

sc
nt

.=
2.

6M
,F

ig
.2

.3
0

re
s.

=5
12

2 ,d
sc

nt
.=

2.
6M

,F
ig

.2
.3

1

fu
ll

vi
ew

fu
ll

vi
ew

cl
os

e-
up

fu
ll

vi
ew

zo
om

1/
2×

cl
os

e-
up

fu
ll

vi
ew

zo
om

1/
2×

cl
os

e-
up

fu
ll

vi
ew

fp
s

75
65

21
5

26
46

49
93

35
25

FC
R

5
1.

6
0.

3
19

.0
5.

5
5.

5
2.

3
8

4

]f
ac

es
2

2
2

4.
2K

4.
2K

2
4.

2K
4.

3K
4.

3K

Ta
bl

e
2.

1:
Fe

at
ur

e
cu

rv
es

pe
rf

or
m

an
ce

m
ea

su
re

d
in

fr
am

es
pe

r
se

co
nd

(f
ps

)
an

d
su

pe
ri

m
po

se
d

to
fe

at
ur

e
co

ve
ra

ge
ra

tio

(F
C

R
)a

nd
th

e
un

de
rl

yi
ng

m
es

h
si

ze
.“

re
s”

=t
ex

tu
re

re
so

lu
tio

n,
“d

sc
nt

”=
m

em
or

y
us

ed
fo

rs
to

ri
ng

di
sc

on
tin

ui
tie

s.

97

Figure 2.32: Glass with fractures; magnified views shown at the bottom.

98

Figure 2.33: An example of a snake model with curvilinear features approximated

by a set of linear segments

and 89.2%, respectively. We found a clear dependence of linear feature performance

on the mesh size, in contrast to a negligible size-performance dependence for feature

curves. The teapot mesh (6.3K faces) is almost two times larger than the snake mesh.

The magnified versions of both examples run faster when features are mapped to the

plane (keeping the same FCR values): the teapot plane fragment runs at 131 fps, and

the snake plane fragment runs at 156 fps as opposed to 75 fps and 124 fps reached for

the 3D meshes (More evidence on the performance dependence of the linear version

of our shader on the mesh size is collected in Table 2.2).

Finally, we demonstrate how our algorithm handles complex star configurations,

such as the one shown in Figure 2.35 (left), on which most of the existing GPU algo-

rithms fail. While artifacts are inevitable by design (our discontinuity texel can not

have more than two intersecting curves), we keep them minimal and in the major-

ity of the patterns we guarantee holding C1 continuity along the feature curves. At

the preprocessing step, the central intersection point is split into several new points,

99

Figure 2.34: An example of different profiles; a magnified view is shown for each

texture

Figure 2.35: Magnified view (x15) of feature curves constructed from spiral arrange-

ment of Bezier curves (small picture on the left). Discontinuity map resolution:

512x512.

100

G
la

ss
Sn

ak
e

he
ad

Te
ap

ot

re
s.

=5
12

2 ,d
sc

nt
.=

1.
5M

,F
ig

.2
.3

2
(c

)
re

s.
=1

02
42 ,d

sc
nt

.=
6.

2M
,F

ig
.2

.3
3

re
s.

=5
12

2 ,d
sc

nt
.=

1.
5M

,F
ig

.2
.3

4

fu
ll

vi
ew

fu
ll

vi
ew

cl
os

e-
up

fu
ll

vi
ew

zo
om

2/
3×

cl
os

e-
up

fu
ll

vi
ew

cl
os

e-
up

fu
ll

vi
ew

re
du

ce
d

m
es

h

fp
s

11
4

22
2

38
0

12
4

15
6

12
4

75
13

1
75

98
11

5
14

0

FC
R

91
37

20
.2

35
35

10
89

.2
90

.2
25

.4
24

.5
40

.4
46

.7

]f
ac

es
2

2
2

3.
3K

2
3.

3K
6.

3K
2

6.
3K

4.
7K

3.
9K

3.
1K

Ta
bl

e
2.

2:
Pe

rf
or

m
an

ce
m

ea
su

re
d

fo
r

lin
ea

r
fe

at
ur

e
sh

ad
er

.
“r

es
”=

te
xt

ur
e

re
so

lu
tio

n,
“d

sc
nt

”=
m

em
or

y
us

ed
fo

r
st

or
in

g

di
sc

on
tin

ui
tie

s.

101

which represent simpler intersections of nearby curves in the neighboring texels: Fig-

ure 2.35.

Figure 2.36: Example of rendering sharp edges. Discontinuity map resolution:

80x80.

The shader for rendering sharp curvilinear edges of simple objects achieves the

same performance as the shader for feature lines. Snapshots of rendering the letter

‘R’ is shown on FIgure 2.36.

2.10 Summary

We have described methods for representing and real-time rendering of surfaces with

highly detailed geometry formed by sharp curvy features within a given normal map.

Features are defined in the texture domain as functions of unsigned distance to the

discontinuity curves, represented by quadratic Bezier segments, and its gradient.

Real-time algorithm runs as a pixel shader which computes the discontinuous part

of the normal map by interpolating distance and gradient fields, respecting disconti-

nuities, and by applying a cross-section profile. The result is blended with the con-

tinuous part of the normal map and stays sharp at any resolution. Our preprocessing

102

algorithms converts feature curves into texture representation. It resolves intricate

feature configurations and enables storing up to two curves in each texel.

Our model provides more flexibility in defining the discontinuous textures. We do

not impose serious restrictions on the input network of feature curves and allow open

features. The original sharp features can be modified during preprocessing and in

real-time by applying an arbitrary profile provided by a user. Being able to store only

two curves within each texel is a limitation of our approach; however, we demon-

strated that our optimization algorithm usually resolves well complex configurations

of curves meeting at one point.

We achieved a satisfactory performance for all the examples we presented in this

work (see a performance summary for two generations of target GPUs in the Ta-

ble 2.3). Among the main factors affecting the performance were coherence and the

ratio of discontinuous texels.

Curved features Linear features

far full view close-up far full view close-up

7800 GS 90–215 25–65 25–75 > 200 > 95 > 75

8800 GTX > 80 > 80 > 65 > 300 > 100 > 100

Table 2.3: Comparison in performance measured for two different generations of

NVidia GPUs.

103

Chapter 3

Parametric synthesis of patterns with

curvilinear features

3.1 Introduction

Many natural and synthetic textures depend on underlying arrangements of features.

Such features can follow the object boundary or shadow, or define fine-scale geom-

etry, for example, locations and profiles of creases, cracks or furrows on a smooth

surface. Usually, the basis for such features is formed by a set of one-dimensional

primitives, e.g., lines, line segments, and curves. Particular configurations of such

primitives are unique for certain types of natural textures. Therefore, if one tries to

replicate a natural texture, the quality of the result will significantly depend on how

close simulated configurations of primitives are to that of the source.

Primitive configurations can be completely random, as in the case of random lo-

cations of paper fibres illustrated in Figure 3.1-a, or be constructed by some determin-

istic process, as for the line segment primitives forming the boundaries of the texture

with tiles shown in Figure 3.1-b. Configurations of these types are easy to replicate.

104

Indeed, the locations of paper fibres can be simulated by scattering a number of lines

over a plane (or space) uniformly, and a tiled texture can be filled with copies of a

tile in a straightforward manner. The arrangements of the former type are a part of a

more general framework of random processes of geometrical objects: line processes.

The methods for investigating the statistical properties and generating samples of line

processes have been thoroughly developed (for example here [130, Ch.8] and [3]).

The main property of line processes (and similar processes of geometric objects) is

that the lines (objects) are distributed completely at random and the locations of in-

dividual lines are independent from the rest of the line configuration. However, it

is clear that not all the natural arrangements follow the independence assumption –

there are many real-world examples where the texture underlying networks of lines

or curves form correlated structures. Such correlation needs to be analyzed and to be

encoded into a mathematical model to be able to replicate the networks which match

the correlation.

Typical examples of natural textures with correlated features are illustrated in

Figures 3.1-(c–g). The feature configurations in these textures are more regular than

that of line processes but still placed somewhat randomly. One way of replicating

such textures is to investigate physical processes which cause the formation of the

features. For example, a 3D surface cellular automation algorithm which models

and employs soil stress distribution was successfully used in [53] to simulate dry

soil crack pattern, similar to the one shown in Figure 3.1-c. Main disadvantages of

the physically based techniques are their potentially extensive computational demand

and a lack of user-type control over the simulation.

Another way of generating natural patterns is to develop a deterministic model

with some elements of randomness which simulates key properties of the target pat-

tern. For example, fine-scale geometry of human skin surface is defined by net-like

105

a

b c

d

e f g

Figure 3.1: Examples of natural patterns. (a) Uncorrelated networks of paper fibres

(University of Jyvaskyla, Finland), (b) tiling, (c) cracks formed in dry soil, (d) glass

mosaic, (e,f) fine resolution negative replicas of fragments of human skin, (g) a frag-

ment of the drainage network of Nile river. Inset: typical local configurations of

primitives forming texture underlying networks.

106

micro-structures of the size about 100 microns, such as furrows and pores. Two dif-

ferent fragments of networks of skin furrows are illustrated in Figures 3.1-e and -f.

Wu et al. [153, 152] assumed that the pattern of furrows can be decomposed into

triangular cells. They applied a hierarchical Delaunay triangulation to divide tex-

ture space into a triangle mesh, so that the edges of triangles represent skin furrows.

Resulting furrow networks showed close resemblance with some fragments of skin

surface — generating facial skin regions would involve significant manual work to

establish necessary hierarchy, and also the triangular pattern type assumption may

not be valid at those regions. Bando at el. [12] made assumption that the skin fur-

rows go locally in two directions: they grow the furrow network by placing slightly

jittered streamlines which are guided by given direction fields. This method has more

control on simulation and produces decent results for some skin fragments; however,

it suffers the same assumption breaks as the previous method does.

Our approach is different: we want to represent the texture defining configu-

rations of curves and lines as a random process whose samples closely reproduce

the correlation pattern between primitives located nearby. Inter-primitive correlation

pattern is unique for each texture and, roughly speaking, it defines likelihood of two

close primitives meeting at a particular angle.1 The random process should be repre-

sented by a simple but at the same time powerful enough probabilistic model which

encodes the correlation pattern: a process described by a density function with an

intuitive set of control parameters is an ideal candidate. There should be a simple

and fast way to generate arrangements of curvilinear primitives distributed according

to the random process.

1Inset Figures 3.1-c, -d, and -f show configurations of close primitives — in this case line segments

— typical for their corresponding source textures. One can fix a segment (segment colored in red) and

analyze correlation between the segment and other segments (colored in blue) in its vicinity.

107

We develop our model based on an assumption of local dependency: curvilinear

primitives forming the texture are not completely independent from each other and

the location and the orientation of each primitive depends only on primitives located

nearby. This assumption allows us to construct a Markov type random process which

is both parametric and can be sampled by running a corresponding Markov chain

with a variant of the Monte Carlo Metropolis-Hastings algorithm.

Our model is based on interaction between curvilinear primitives — fibres. Close

fibres “interact” between each other by means of interaction potentials which accu-

mulate interactions between infinitesimal parts of the fibres and are expressed as cer-

tain interaction integrals. Infinitesimal parts of fibres are represented by 3D points

(point × orientation) to be able to adapt Gibbs-type 3D point distributions for de-

scribing interaction between the fibre infinitesimal parts. Gibbs point processes are

powerful random models based on distance dependent potentials which are controlled

by intuitive sets of parameters, are empowered by statistical inference algorithms, and

can explicitly encode angular correlation of fibres. We test the interaction potential

model on linear fibres — random fibre system consisting of line segments. The linear

fibre processes are extended to include a comprehensive user control based on local

and global constraints.

As in the case of Gibbs point process, the best results for the linear fibres can

be achieved by using so-called inhibiting interaction potentials. The main challenge

in working with these potentials is to ensure smoothness and connectivity of the

resulting linear fibre systems. We developed a variant of the streamline placement

algorithm which generates overlapping networks of smooth curves aligned to cross-

orientation vector fields. Such fields are constructed and optimized from tangent

fields formed by generated linear fibre systems.

Thus, our main contributions to the problem of parametric texture synthesis are

108

threefold:

• New Gibbs-type probabilistic model and algorithm for representing and gen-

erating random arrangements of linear fibres based on inter-fibre interaction

potentials;

• Set of user control which significantly enhances the original linear fibre model

by introducing a variety of constraints on fibres;

• New algorithm for generating smooth networks of curves aligned with given

fibre systems based on the streamlines placement algorithm;

In this work we focus mainly on a concept of adaptation of the Gibbs point pro-

cess framework to the case of random arrangements of curvilinear fibres. We present

a substantial number of examples which support the soundness of our model of ran-

dom processes of interacting fibres; however, we do not carry rigorous mathematical

description, and most of the technical assumptions we introduce during the derivation

of the model, including integrability of the density functions presented in this work

for fibre processes, should be mathematically justified in a future work.

This chapter is organized as follows. We go over the related work and describe

our early attempts to adapt the methods from the previous work for the problem of

parametric synthesis of curvilinear networks in Section 3.2. None of them works

well enough to satisfy our requirements for a candidate algorithm as the resulting

networks of curves are not smooth in general, the synthesis models lack compre-

hensive and intuitive set of control, and generated networks may reveal unwanted

observable repetitions. In this work we focus on a different approach: we develop

a geometric stochastic process defined by a Gibbs-type probability density function

109

with an intuitive set of control. We have chosen Gibbs point processes as a proto-

type for our interaction fibre model because 1) they are intuitive1 and can be used in

a general context, 2) they simulate local interaction between the primitives and are

well suited to model processes with necessary degree of regularity, 3) they are para-

metric and very important variants of the Gibbs random point models are enabled

with statistical inference to recover their parameters, which will eventually lead to

developing an algorithm for recovering parameters of fibre processes. Section 3.3

describes in detail the framework of spatial point processes: their probabilistic mod-

els of distribution functions and the Metropolis type algorithms to generate samples

of point configurations. Our adapted model is based on the idea that a curve, after

all, can be represented by a set of linked 2D points with attributed tangent informa-

tion, so that the interaction between two curves in a vicinity of each other can be

simulated by a Gibbs type interaction between 3D points which describe the curves

interiors and tangents. A way of accumulating point interaction under interaction

potential integrals is described in more detail in Section 3.4 for the case of general

fibre processes.

We concentrate on linear fibres — a subclass of random fibres which describes a

model for random systems of line segments. Linear fibre models based on interaction

potentials are described in Section 3.5, while a parametric synthesis algorithm based

on these models with a set of examples is presented in Section 3.6. An extensive

set of user control is introduced in Section 3.7: a user can control the density of the

fibres and can change the global behavior of the random system by introducing hard

1Gibbsian density function is based on interaction pair-potentials between closely places points,

which, depending on the distance between pairs of points, favor some point configurations, prohibit

other point configurations, and ignore the rest. Parameters of the Gibbsian model define a degree of

interaction (see equation 3.8 and example 6.2).

110

and soft constraints.

The following is an outline of major steps of our synthesis algorithm:

1. Find plausible parameters for point interaction model. The model of inter-fibre

interaction is based on integration of individual interactions between infinitesi-

mal parts of nearby fibres (see explanation to Figures 3.13 and 3.14). Infinitesi-

mal interactions are described by 3D-point pair-potentials — being an essential

part of Gibbs random point models (Section 3.3.2) — which are represented by

a piecewise constant interaction function hθθθ (equation 3.41). hθθθ (d,w) depends

on the Euclidean distance between the 2D points, d, and a “distance” between

orientations, w, attributed to the points. At this step, a user should find a plau-

sible set of values for parameters of the function hθθθ , so that it produces desired

correlations of nearby fibres. Examples of interaction functions which favor

fibre configurations illustrated in Figures 3.1-c and -e are shown in Figure 3.2.

More rigorous examples of interaction functions based on which the actual

fibre systems were generated and presented in this work are illustrated in Fig-

ure 3.27. Shaping the interaction function is a manual step — fitting the source

texture feature configurations to our Gibbs linear fibre interaction model is a

topic for future research;

2. Define dimensions of linear fibre representation space. Linear fibres are repre-

sented as points in a certain representation space, called a phase space (see

Figure 3.17), which is defined by equation 3.38. At this step, the dimensions

of the phase space are specified (as example of a linear fibre phase space is

illustrated in Figure 3.3);

3. Describe fibre constraints (if necessary). A user can provide a function of distance

to the constraint space, ρc(Φ), which describes how far a given linear fibre

111

1w
2w 1w2w

Figure 3.2: Examples of fibre configurations (blue line segments) produced by the

interaction function hθθθ (d,w) = χ[0,Rmax)(d)
{

χΩ(w)+10−4χ[0,π)\Ω(w)
}

for different

sets of parameters which follow. Fibres colored in brown will be penalized by re-

ceiving a low interaction rate (10−4 for the angle w1 versus 1 for the angle w2). Left:

Ω = [2π/3− δ ,2π/3 + δ) where δ > 0 is some small constant and Rmax is some

maximum interaction radius; the interaction function with such parameters favors

nearby fibres which form 2π/3 angles between each other, while penalizing all other

fibre configurations. Right: Ω = [π/2−δ ,π/2+δ)∪ [π−δ ,π); such function favors

cross configurations of nearby fibres.

system Φ is from satisfying some constraint (equation 3.62). Alternatively,

a user can use a set of constraints that we described in this work, including

the total length constraints which enable the user to control the fibre density

(equation 3.72), connectivity constraints which improve continuity of resulting

fibres (Section 3.7.3), hard constraints which enforce aligning the fibres with

a given vector field (Section 3.7.4, with examples of vector fields illustrated

in Figure 3.40), and soft constraints which impose the alignment requirement

112

1

2

1 2 3 4

Figure 3.3: Example of a linear fibre system with fibres taken from the follow-

ing phase space X = XP×XL×XW ≡
{
[0,4)× [0,2)

}
× [0.5,1)×

{
[0,π/10)∪

[9π/10,π)
}

. XP defines the domain for the fibre middle points, XL defines the range

of possible lengths for fibres, and XW defines the range of possible angles (or, orien-

tations) which fibres can form against the positive x-axis.

only within some distance to a given set of features (Section 3.7.5);

4. Generate systems of random linear fibres. We run a version of Metropolis-

Hastings algorithm adapted to generate random configurations of linear fibres

(original version of the algorithm for the case of point processes is thoroughly

described in Section 3.3.4) distributed according some Gibbs type distribution

π(F) (equation 3.21). Gibbs π(F) is given through its density function of the

form f (Φ) = eŨ(Φ)/Z, where energy Ũ(Φ) is a sum of fibre potentials given by

equation 3.35. The algorithm simulates a discrete-time Markov chain of fibre

systems and proceeds by updating current fibre system with either “birth” or

“death” event, when a new fibre is added or an existing fibre is deleted, respec-

113

tively. Transition probabilities of the events are written in terms of conditional

intensities λc(ψ,Φ) = f (Φ ◦ψ)/ f (Φ) (equations 3.50 and 3.51) which are

feasible and straightforward to calculate in the case of Gibbs type probability

densities (Section 3.6.1). For optimal calculation of conditional intensities and

robust addition of a new fibre to the current fibre system we developed a fibre

neighborhood search query algorithm, optimized by domain cell partition, and

a fibre relaxation scheme in Section 3.6.2. Linear fibre systems under con-

straints are generated by running a variant of simulated annealing algorithm

adapted for linear fibres which is described in Section 3.7.1. Conditional in-

tensity λc in this case is scaled by a factor depending on the distance to the

constraint space, ρc(Φ) (see equations 3.65 and 3.66).

While the model of linear fibres replicates the desired local inter-fibre dependen-

cies well, it is still more effective for generating non-smooth systems of fibres. To

resolve the issue for a certain type of linear fibres, we propose an algorithm for gener-

ating networks of smooth curves aligned with a certain cross-orientation vector field.

We require that this field is smooth enough and it assigns two orthogonal orientations

at every point where at least one orientation is locally aligned with the linear fibre

system. An obvious candidate for building such networks is a variant of the stream-

line placement algorithm extended for the case of two-orientation vector fields. The

main problem in adapting such an algorithm is making sure that generated stream-

lines form two sets of nicely overlapping and coherent streamlines. The algorithm

for generating and optimizing the cross-orientation vector field and a two-pass ver-

sion of the streamline placement algorithm adapted to cross-orientation vector fields

capable of generating coherent networks of curves is explained in Chapter 4. The al-

gorithms for representation of and streamline generation based on multi-orientation

114

vector fields which cover broader spectrum of linear fibre processes are left for a

future work.

3.2 Related work

The problem of texture synthesis have attracted a lot of attention across different dis-

ciplines during the last three decades. Existing texture synthesis techniques, which

are related to the problem of generating networks of curvilinear features, can be

roughly put into the following four main categories: procedural textures, statistics

driven synthesis, sample-based texture synthesis, and sampling random processes

of geometrical objects. Procedural textures are generated by running a relatively

short set of instructions which are governed by some mathematical model [40],

based on either a nice mathematical abstraction [104, 93] or on a real process in

nature [139, 149, 150, 47, 142]. Our approach has some similarities with procedural

texture synthesis. Our algorithm of generating random fibres is obviously resolution

independent, can cover arbitrary large area with no observable repetition in the pat-

tern of lines, and can produce unlimited number of different textures by changing the

parameters of the fibre interaction model and the parameters of the synthesis. The

main difference is that our technique cannot be performed in real time as it involves

running the time consuming Monte Carlo simulation algorithm.

The next two groups of methods generate an arbitrary-sized new texture by trying

to match the pattern in a reference (input) texture, which usually has a small size. The

algorithms of statistics driven synthesis model textures by matching certain statistics

of the input and output textures at different scales. Both the input and output tex-

tures are expanded into their image pyramids by applying a low-pass filter, so that

each level of each pyramid is decomposed into a set of subbands by applying another

115

Figure 3.4: Our attempt to generate a larger texture with network of curves (bot-

tom right image) by applying Heeger and Bergen steerable pyramid texture synthesis

method [61] to a small sample texture (bottom left image). Images in the first two

rows show the synthesis result at different pyramid scales.

116

set of filters [61]. All the subbands of the output texture are recursively updated

from the coarsest to the finest level to match histograms of relative subbands of the

input texture. Finally, the resulting output pyramid is collapsed to the finest scale

to produce the output texture. Existing multi-scale synthesis methods are based on

Laplacian or Steerable pyramids [61], on Gaussian pyramids [108], on feature-based

pyramids which preserve cross-scale feature dependencies [20], on steerable pyra-

mids [127, 128] which can also match joint statistics within each scale of the image

pyramid [109], on statistical learning [13], and on some entropy-related energy mini-

mization [158, 159]. These methods work very well on highly stochastic textures but

can fail on more structured ones. As an example, we applied the steerable pyramid

transform [61] to the input texture which was formed by rasterizing a fragment of the

network of curves which were optimized from the skin image by our snake-based al-

gorithm (Section 1, Figure 1.11). The method of steerable pyramid proved to be well

tuned for textures which have oriented or elongated structures. However, collapsing

of the finest scale in the pyramid fails to reconstruct curvilinear structures, which can

be clearly seen on the bottom right image in Figure 3.4.

Sample-based texture synthesis is rooted in the assumption that the signal in a

source texture is distributed according to some Markov Random Field. This implies

that each pixel in such a texture depends only on the pixels within its neighbor-

hood. Based on this property, the synthesis algorithm starts with an empty texture

and fills it out, pixel by pixel, by copying at each iteration the pixel from the refer-

ence texture whose neighborhood best matches the neighborhood of a current pixel

in the output [42]. Applying this strategy achieves its best results for the images

with homogenous features and weakly structured patterns. Our model for random

fibre processes is also local. However, we explicitly incorporate the feature corre-

lation pattern in the mathematical model rather than just matching an output texture

117

to a reference texture without extracting interdependencies. The latter strategy can

produce “garbage” regions in the output and finer details could be blurred. These

artifacts were addressed with some success in a multi-resolution fast synthesis [147],

synthesis of non-stationary textures by exploring local coherence between the pix-

els and by providing user control maps to control large-scale features [4], synthesis

based on “k-coherent search” by building the similarity sets for each pixel in the in-

put [137], interactive rate algorithm based on constructing jump maps during prepro-

cessing [155]. Patch-based techniques copy entire patches from the reference texture

at every iteration instead of copying pixel by pixel: new patches overwrite over exist-

ing regions [110], optimal cuts are sought through overlapping regions by applying

dynamic programming [41] or the patches are stitched together along the optimal

seams [73], the search for a matching patch is enhanced by matching underlying

curvilinear features in the feature matching algorithm [151], parameters of a patch

matching algorithm are adaptively optimized to improve synthesis efficiency [145].

Other texture synthesis techniques include global optimization which progressively

refines the output texture by minimizing a mismatch energy [72, 58], synthesis of

near-regular texture [79], context-aware textures [81], tile-based synthesis [25, 36],

and a method of intrinsic mode functions (IMF) which decomposes the reference

texture into a series of IMFs, each of which captures well directional features [157].

One of the drawbacks of all theses algorithms is that they are very sensitive to a

choice of synthesis parameters which, in reality, have nothing to do with the genuine

parameters of the signal, e.g., it is hard to translate a requirement for nearby curvilin-

ear features to be at a particular angle with respect to each other into a plausible set of

synthesis parameters. Another problem with the sample-based synthesis techniques

is that avoiding synthesizing features explicitly will inevitably cause forming broken

features in the output texture and degrading tangent continuity between connected

118

Figure 3.5: Our attempt to generate random network of curves from a small sample

(top left) by applying feature matching algorithm of Wu and Yu [151].

119

features. To our knowledge, the only technique which addressed these artifacts is the

method of feature matching and deformation by Wu and Yu [151]. According to their

patch-based approach, patches are warped to ensure continuity along the curvilinear

features across the patches. We applied their method to generate a larger texture (bot-

tom image in Figure 3.5) from a small black and white reference texture with curves

(top left image in Figure 3.5). The algorithm indeed created nice looking curves with

a reasonable number of broken features and tangent discontinuities, which locally

resembles very well the pattern of network of curves given in the reference texture.

What strikes you first are the repetitions which are quite noticeable in the texture. It

is not clear how to modulate the synthesis process to be able to slightly change fea-

ture configurations for producing conceptually new appearances. In our approach,

we give a user more flexibility in specifying the correlation patterns between the

features, so that modulation is naturally integrated in the synthesis model. We also

provide a global control on synthesis.

The approach described in this work falls into the last category of texture syn-

thesis algorithms — random processes of geometrical objects. Synthesized textures

are outcomes of certain random processes which governs distributions of geometrical

objects, like points, lines, curves, circles, triangles etc in Rd [14]. A typical synthesis

algorithm in this category involves developing a parametric multivariate probability

distribution function (pdf), which describes likelihood of occurring a set of objects

at given locations, and running a randomized algorithm, like the Monte Carlo simu-

lation, to generates random set of objects distributed according to a given pdf. The

advantage of using such algorithms against the algorithms from other categories is

that stochastic models are truly parametric; their parameters are easy to interpret;

due to explicit randomization of the algorithm steps there is a little chance of pro-

ducing textures with noticeable repetitions; and, some of the models come together

120

with the statistical inference algorithms which allow tune the model parameters to a

given objects arrangement in the reference texture. In this work we adapt a model of

Gibbs point processes (which are thoroughly described in Sections 3.3.1 and 3.3.2),

which describe random arrangements of locally dependent points in Rd , for the case

of random fibres — random arrangements of line segments and curves in R2. In our

overview of synthesis techniques for random fibres, given in Section 3.3.3, we list

all existing models for generating random fibres which happened to be not powerful

enough to produce fibre networks with fair amount of regularity. To the best of our

knowledge, our model of random fibres is a first model which takes into account com-

plex interdependencies between the nearby fibres and provides powerful and intuitive

set of control on synthesis.

3.3 Background: random arrangements of objects in

the plane

We start with describing the existing models of random arrangements of objects in

the plane. Poisson point processes are key elements in defining majority of spa-

tial point processes. We provide its definition in Section 3.3.1 and describe Gibbs

point processes through a density function with respect to the Poisson process in

Section 3.3.2. Fibre process is not a new concept: its simple models based on in-

dependent arrangements of lines in the plane and space has been thoroughly inves-

tigated and applied to real-world physical systems. We describe fiber processes and

summarize available statistical methods for them in Section 3.3.3. Finally, we review

some aspects of Markov Chain Monte Carlo (MCMC) algorithm applied for sam-

pling spatial point processes and describe their two key representatives: MC based

121

on Metropolis-Hastings sampling and Birth-and-Death processes, in Section 3.3.4.

3.3.1 Framework of Poisson point processes

Poisson point process is the central element in the theory of random arrangements

of objects. It is the simplest spatial point process and the majority of the existing

models of point processes are based on certain underlying Poisson processes. For

example, any countable random set of independent and uniformly distributed points

x = {x1,x2, . . . ,xn, . . .} in Rd having in average one point within a d-dimensional unit

cube forms a Poisson point process with unit intensity. Without loss of generality,

we consider only locally finite random arrangements of points within some bounded

Borel set X ⊂ Rd (i.e., the number of points within any B⊂ X should be finite).

Definition 6 (Poisson point process). Homogeneous (inhomogeneous) Poisson point

process XXX of a constant intensity β > 0 (with varying intensity function β (x) > 0, or

with some intensity measure λ (B), B⊆ X) satisfies the following two conditions:

1. XXX(B) — the number of points of XXX located within B — is a random variable

of Poisson distribution [55] with mean value β |B| (
∫

χB(x)β (x)dx and λ (B),

respectively).

2. Random variables XXX(B1), . . . ,XXX(BK) are independent for disjoint sets Bk ⊆ X,

k = 1,2, . . . ,K, for any K > 0.

From the definition above, one can derive that a homogeneous Poisson process XXX ,

conditioned on the number of points XXX(B) = n, generates locations of n points dis-

tributed independent and uniformly within B. Therefore, to generate samples of ho-

mogeneous Poisson process, one first chooses a number of points n which has a Pois-

122

son distribution with mean β |B|, and, second, uniformly locates the points within the

set B by using, for example, the rejection method [55] with pdf χB(x)/ |B|.

The rejection sampling technique [76, 119] is used for generating random ar-

rangements of points with inhomogeneous Poisson distribution. Instead of β (x),

which may have any level of complexity, a constant βmax is used as the intensity

to generate samples of a homogeneous Poisson process provided that β (x) ≤ βmax.

Every such a sample is kept with probability β (x)/βmax, and is disregarded with

probability 1− β (x)/βmax. Two examples of Poisson processes are shown on the

Figure 3.7.

Figure 3.6: Examples of samples of homogenous Poisson process with β = 5 (on

the left) versus inhomogeneous Poisson process with intensity function β (x,y) =

1
2(x−5)2 +2(y−5)2 (on the right).

The Poisson point process may be used as a basis to construct a variety of new

spatial point processes by using the following three operations. Thinning operation

deletes just generated points on the basis of some deletion probability function 0 ≤

p(x)≤ 1. Clustering operation consists of applying independent parent and daughter

processes. The parent process generates a set of seed locations, while the copies

123

of the same daughter process generate random points around all seed locations with

given intensity value and scattering radius. Figure 3.7 (a) shows a sample of famous

Neyman-Scott clustering process [95] which was designed to represent a distribution

of clusters of galaxies. A random number of daughter points, representing galaxies’

locations, are uniformly scattered around the cluster locations, which in turn form a

Poisson parent process of some intensity βp. Finally, a new point process may be

formed by union of two independent processes which samples do not coincide with

probability one. This operation is called superposition. One can find more examples

of derivatives of Poisson processes elsewhere [141, 130].

Not all the natural patterns can be described by totally random point processes de-

scribed so far. Random locations of certain objects/particles with non-trivial area/vol-

ume which can not physically overlap form another type of random point processes

(e.g., populations of biological structures like cells may be modeled by placing ran-

dom points on a plane which represent the centers of the structures). Points of such

processes are prohibited to be closer than some predefined distance R to each other.

Because of this property, such processes are known as hard-core point processes.

They exhibit strong regularity and, unlike Poisson processes, represent random point

arrangements whose points are locally inter-dependent.

3.3.2 Gibbs point process: inter-point interactions

Poisson and hard-core point processes represent two extremes within the entire spec-

trum of point processes: Poisson processes show no mutual interactions between the

points at all (as being realizations of independently distributed points), while hard-

core processes reveal strong regularity in the resulting point arrangements because

of hard-core interaction. Considering soft-core interaction “kernels” significantly in-

124

Figure 3.7: Examples of constructing new simple random processes from homoge-

nous Poisson process. Clustering, Neyman-Scott process with β = 0.25, R = 0.3, and

the number of daughter points 10 (on the left). Hard-core process with β = 2.0 and

repulsion radius R = 0.7 (on the right). Circles around the points can not intersect.

This process is known as Poisson-disk pattern in Computer Graphics [87, 27].

creases applicability domain of point processes [132, 69, 97, 123, 98, 32, 117, 8, 33,

9, 57, 14] allowing to model point processes with some degree of regularity, moderate

clustering. Soft-core models provide an additional control for letting users to assign

specific interaction profiles which describe better the underlying point processes.

In principle, a soft-core process is constructed by transforming a known distri-

bution function of a standard point process to a new distribution being absolutely

continuous with respect to the original distribution. The probability distribution of a

homogenous (or inhomogeneous) Poisson point process is an obvious candidate for

the original distribution because in a majority of cases it has a simple analytic form.

Distribution transformations are best described within the framework of probabil-

ity measures and probability densities which will be described later in this section.

A prevailing group of soft-core processes are based on the probability densities of

125

Gibbs type which model a wide spectrum of point patterns with observable regular-

ity by well-established simulation and statistical inference procedures.

First we define a Poisson random measure µ with unit intensity, in its general

form (e.g., with domain on a general measure space). Derivative processes will be

expressed through the densities defined with respect to Poisson measure µ . Formally,

a Poisson point process is a random variable XXX which defines a measurable mapping

from a probability space (Ω,A,P) to an exponential measure space[22] (X∞,F∞,µ).

For a compact X on Rd , enriched by a (Lebesgue) measure λ (B), which is defined

on a σ -algebra B generated by bounded Borel sets over X , we consider an exponen-

tial space X∞ defined by the union of all possible symmetric products of the copies

of the original space X given by

X∞ =
∞⋃

n=0

Xn, Xn = X ◦X ◦ . . .◦X︸ ︷︷ ︸
n

. (3.1)

Elements of the symmetric power sets Xn are point configurations x̄ consisting of n

different points from X :

x̄ = x1 ◦ x2 ◦ . . .◦ xn, N(x̄) = n. (3.2)

The order of the points within a configuration is irrelevant. We use symbols ◦ as

separators between the points to distinguish point configurations from ordered sets

of points, like vectors x = (x1,x2, . . . ,xn) (to avoid any confusion with previous work

notation we remind that in the original work [22] point configurations are written

without separators at all, i.e., x1x2 . . .xn, while the ordered sequences are denoted by

x1 • x2· · ·xn). To avoid possible complications, only finite point configurations over

X are considered, i.e. XXX(B) < ∞ for any B ∈ B, and λ is a finite measure on X, i.e.,

λ (X) < ∞ (here, XXX(B) is the number of points from a random point configuration XXX

located within B∈B). Thus, each element x̄ of the exponential space X∞, x̄∈ X∞, is a

126

(unordered) collection of a finite number of distinct points x̄ = x1◦x2◦ . . .◦xn, n < ∞,

so that X∞ perfectly describes a simulation space for random point arrangements.

A Borel σ -algebra B is naturally extended to a σ -algebra of exponential space,

F∞. Elements of F∞ are unions of symmetric products of a finite number of subsets

from B:

F =
∞⋃

m=0

Fm =
∞⋃

m=0

F1
m ◦F2

m◦· · ·◦Fm
m , F ∈ F∞, (3.3)

F∞ =
∞⋃

m=0

Fm ,

where each F j
m ∈B. In what follows we will use Fm = F ∩Fm.

A Poisson measure µ , which describes a distribution of the Poisson process with

intensity λ (B) , is defined as an infinite sum of finite measures having their supports

on finite symmetric products Fm and is given by

µ(F) = e−λ (X) [
χF∩F0(/0) (3.4)

+
∞

∑
n=1

1
n!

∫
· · ·
∫

χF∩Fn(x1 ◦ x2 ◦ . . .◦ xn) λ (dx1)λ (dx2) · · ·λ (dxn)

]

A factor 1/n! is needed to take into account all possible permutations of points in

collections {x1,x2, . . . ,xn}. The total mass of Xn is given by µn(Xn) = λn(Xn)/n! =

λ (X)n/n!, and describes a probability of finding n Poisson distributed points within

a phase space X . It is easy to check that µ is a probability measure:

µ(X∞) = e−λ (X) [χX∞
(/0)

+
∞

∑
n=1

1
n!
∫
···
∫

χXn(x1 ◦ x2 ◦ . . .◦ xn) λ (dx1)λ (dx2) · · ·λ (dxn)
]

= e−λ (X)
[

1+
∞

∑
n=1

λn(Xn)
n!

]
= e−λ (X)

[
1+

∞

∑
n=1

λ (X)n

n!

]
= 1.

New point process are constructed by specifying their density functions f with re-

spect to the Poisson process µ . Density function defines the level of deviation of the

127

new process from the original Poisson process. Intuitively, f (x1 ◦ x2 ◦ . . .◦ xn)µ(dx̄)

defines the probability of finding n points of the new point process within the incre-

ments dx1, dx2, , dxn. Formally, for a given point process π , its density function f is a

Radon-Nikodym derivative [30] of π with respect to the Poisson measure µ , written

by f = dπ/dµ , provided that π is absolutely continuous with respect to µ , so that π

is given by

π(F) =
∫

F
f (x̄)µ(dx̄), (F ∈ F∞). (3.5)

To make sure that a transformation of Poisson distribution function µ given by Equa-

tion 3.5 results in a valid distribution function π , one should at least guarantee that

the sequence of n-masses pn = π(Xn) sum up to 1,
∞

∑
n=0

pn = 1.

The Table 3.1 lists the density functions of the most popular point process models.

The following miscellaneous functions are used to describe the density functions in

the table; all indices i, j run within the range [1 . . .N(x̄)]; x∼
R

y defines a neighborhood

relation:

s(x̄) = #
{

(i, j) | 1≤ i < j ≤ N(x̄), ρ(xi,x j)≤ R
}

,

t(y, x̄) = #
{

i | 1≤ i < j ≤ N(x̄), ρ(y,xi)≤ R
}

,

x∼
R

y ⇐⇒ ρ(x,y)≤ R. (3.6)

Each density function in the Table 3.1 is associated with a set of parameters, which, in

many situations, may be recovered by using likelihood inference techniques designed

for parametric point processes (for example, maximum pseudolikelihood methods

[5, 6, 7]).

All the point process in Table 3.1 (excluding the Poisson process) describe so-

called pairwise interaction models: a pair of points from a given point configuration

128

Model name / Parameters Density function

Homogeneous Poisson f(x̄) = β n e−(β−1)λ (X)

β > 0

Inhomogeneous Poisson f(x̄) = ∏
i

β (xi) e−
∫
(β (x)−1)λ (dx)

β (x) > 0

Strauss (stationary) [132, 69] β > 0, f(x̄) = β N(x̄) γs(x̄) /Z

β > 0, 0≤ γ ≤ 1

SoftCore (nonstationary) [98] f(x̄) = ∏
i

β (xi) ∏
i< j

xi∼
R

xy

exp
{
−
(

σ

ρ(xi,x j)

)2/κ
}

/Z

β (x) > 0,σ ≥ 0,

0≤ κ ≤ 1

Lennard-Jones f(x̄) = ∏
i< j

xi∼
R

xy

exp
{
−
(

σ

ρ(xi,x j)

)12
+ τ

(
σ

ρ(xi,x j)

)6
}

σ > 0,τ > 0 /Z

Diggle Gratton [34, 32] f(x̄) = ∏
i< j

δ≤ρ(xi,x j)≤ρ

(
ρ(xi,x j)−ρ

ρ−δ

)κ

/Z

δ > 0,ρ > 0,

κ > 0

Geyer [14, Ch.3] f(x̄) = β N(x̄)
∏
i

γmin{s,t(xi,x̄)} /Z

β > 0,s > 0,

γ > 0

Table 3.1: Specific density functions describing point process models derived from

homogenous Poisson process with unit intensity.

129

that are close enough to each other contribute a nontrivial pair interaction function

term to a density function. Pair interaction functions characterizes the level of inter-

action (or, influence) between two points and is defined as a function of inter-point

distance, g2(x,y) = g2
(
ρ(x1,x2)

)
. All the models in the table are instances of more

general interaction model which may include the interaction terms of higher orders:

f(x̄) = ∏
i

g1(xi) ∏
i< j

g2(xi,x j) · · · gn(x1,x2, . . . ,xn).

However, in this work we will only concentrate on the models of the pairwise inter-

actions:

f(x̄) = ∏
i

g1(xi) ∏
i< j

g2
(
ρ(xi,x j)

)
. (3.7)

Gibbs point processes constitute a subclass of interaction models whose density

functions belong to the exponential family. Gibbs distributions arose from the area

of statistical physics and described equilibrium states of large systems of particles

by specifying some model energy function U . Gibbsian density function has the

following form

f (x̄) = eU(x̄)/Z. (3.8)

A frequently used form of the energy function is a sum of all pair-potentials,

h2(x,y) = h2
(
ρ(x,y)

)
, which define interaction forces between the pairs of close

points of a given point configuration. Again, in a more complete model of Gibbs

processes, energy functional contains interaction potentials of higher order; however,

we focus only on the first order (self-interaction) terms, h1(x), and on second order

pair potentials, h2
(
ρ(x,y)

)
:

U(x̄) = ∑
i

h1(xi)+ ∑
i< j

xi∼
R

x j

h2
(
ρ(xi,x j)

)
. (3.9)

130

Example 6.1 Hard core and Poisson processes

Hard code and Poisson point processes respect the Gibbs model with the following

potentials

h1(x) = lnβ , h2(ρ) =

{
0, ρ > 2R

−∞

(Hard core)

h1(x) = lnβ , h2(ρ) = 0 (Inhomogeneous Poisson)

Example 6.2 Inhibition and attraction processes

Two examples of the stationary Strauss model (written in Gibbs form) are inhibition

and attraction processes which have the following parametric potential functions:

h1(x) = lnβ , h2(ρ) = χρ<R(ρ) lnγ.

When γ > 1 the points tend to attract to each other when brought closer than a dis-

tance R. For γ = 1 the process becomes Poissonian with rate β . However, the model

exhibits “repulsion” between the points lying at the distances smaller than R when γ

is chosen to be less than 1, 1 > γ > 0. And finally, γ = 0 corresponds to the hard core

process. The Figure 3.8 shows examples of attracting and inhibiting Strauss point

processes against a sample of the hard and a samples of Poisson process.

3.3.3 Fibre processes: general models

Fibre processes are an example of random processes of geometrical objects which

simply speaking model the systems of curves randomly scattered in space. In contrast

to point processes whose random primitives — points — have trivial dimensions,

fibre processes generate random arrangements of objects with non-trivial measure

(e.g., length of each fibre is positive) and objects can intersect each other. The former

property requires a special attention.

131

a b

c d

Figure 3.8: Examples of samples of two Strauss processes (a) and (b) (left on the top

is inhibiting process and right on the top is attracting process), hard process (c), and

Poisson process (d) with approximately the same number of points in each, 150. For

all the examples, the simulation domain is [0,10]× [0,10] and interaction radius is

R = 0.5. Parameters: (a) β = 5.0 and γ = 0.2, (b) β = 0.75 and γ = 2.2, (c) β = 15.0,

(d) β = 1.7. All the points are surrounded by circles of diameter R.

132

Line processes — the simplest example of fibre processes which model random

arrangements of lines in the plane or space — still can be described in a proper

representation space. For example, a representation space for “directed” lines is a

cylinder X [130, CCC∗ in original notation] — a subset of R3 with points

X =
{
(cos(α),sin(α), p), α ∈ [0,2π), p ∈ R+

}
, (3.10)

where α is the angle that a line makes with a chosen reference axis and p is the

distance from line to the origin.

Measures on lines processes are naturally represented through the correspond-

ing measures on the representation space X. Infinitesimal element of a translation-

invariant measure within representation space 3.10 is given by [130, Ch.8, µ in

original notation]

ν(d p ·dα) = d p ·κ(dα),

where d p is a differential element at distance-to-origin value p, and dα is a differ-

ential element at angle value α , and κ is some measure on (0,2π]. For measures

invariant to rotations and translations, the corresponding differential measure hap-

pens to be [130, Ch.8,µ in original notation]

ν(d p ·dα) = s d p ·dα,

for a certain constant s > 0. When ν(d p · dα) is defined, distributions of the type

given by equations 3.4 and 3.5 can be constructed and be applied to describe and

analyze fibre processes of randomly distributed lines.

In general, a planar fibre process XXX is a random variable with values in a space

of fibre systems Y =
{

Φ
}

endowed with some σ -algebra F̃, so that Y−1(F), F ∈ F̃,

is measurable in the probability space (Ω,A,P).

133

A fibre system Φ is a countable union of fibres {ϕi} which could intersect one

another only at their end-points

∀ϕi,ϕ j ∈Φ, ∀p ∈ ϕi∩ϕ j =⇒ ϕ
−1
i (p), ϕ

−1
j (p) ∈ {0,1} . (3.11)

Definition 7 (Fibre). A fibre is a smooth simple plane curve ϕ , ϕ : [0,1]→ R2,

without self-intersections.

We will use the same symbol ϕ for fibre parametrization and for its length measure:

ϕ(B) =
∫

ϕ−1(B)

|∂ϕ|dt.

A fibre system length measure Φ(B) is an equivalent to the counting measure

XXX(ω;B) described for point processes (see the definition 6 of Poisson process) and

defines the length of that part of Φ which is located within a Borel set B

Φ(B) = ∑
ϕi∈Φ

ϕi(B), (3.12)

lΦ = Φ(X) = ∑
ϕi∈Φ

lϕi = ∑
ϕi∈Φ

ϕi(X), (3.13)

so that every fibre process XXX is associated with a random length measure XXX(B) with

XXX(ω,B) = Φ(B) for every corresponding realization Φ = XXX(ω). The σ -algebra F̃ is

generated in a standard way by manipulating the sets of the forms {Φ ∈ Y, Φ(B) <

l}, running through all possible Borel sets B⊆ X and the length values l ∈ R+.

A whole spectrum of statistical characteristics have been proposed so far in at-

tempts to uniquely represent and analyze the real-world patterns with underlying ran-

dom curves. They include but not limited to characteristics of the first order: intensity

measures Λ(B) and weighted random measures Ψ(B×L) which describe mean fibre

length of XXX within Borel set B having a mean value of tangential directions w(x)

134

within L [130]

Λ(B) = EXXX

(
XXX(B)

)
,

Ψ(B×L) =
∫

B χL(w(x))XXX(dx),

and the following characteristics of the second order: (1) pair-correlation functions

(PCF), g(r) [131], which describe a correlation between lengths of infinitesimal fibre

parts being in volume elements dV1 and dV2 within a distance r

g(r) dV1dV2 ∝ EXXX

(
XXX(dV1) ·XXX(dV2)

)
;

(2) second moment measures [130]

µ
2(B1×B2) = EXXX

(
XXX(B1)XXX(V2)

)
;

(3) curvature measures which describe average mean curvature M and the total cur-

vature K [3]

CXXX,0(B) = EXXX

(
K(XXX∩B)

)
CXXX,1(B) = EXXX

(
M(XXX∩B)

)
.

These characteristics were statistically estimated for a large class of Poisson line

and plane fibre processes, Voronoi cell models, e.g. [131, 3], to analyze systems

of dislocation lines, fibre and porous structures. The characteristics were specifi-

cally designed to be the best approximation to complicated and most of the time

unknown distribution functions of fibre processes with respect to a criteria that two

fibre systems with similar characteristics have similar geometric properties and sim-

ilar patterns. However, all the fibre systems considered so far were assumed to be

homogeneous (i.e., translation invariant) and isotropic (i.e., rotation-translation in-

variant) which is not the case for many variety of real-world systems with evolving

patterns. The corresponding models were based on the assumption of complete ran-

domness and independence between the fibres, and did not include any inter-fibre

135

interaction terms explicitly, as is done in the case of interacting point processes,

equations 3.8, 3.9, and Table 3.1. What is more important is that the are no sampling

algorithms which are capable of generating random fibres of systems with non-trivial

inter-fibre interaction models.

In this work we develop a framework for generating random systems populated

by line segments. As in the case of lines and planes, there have been a number of

works on modeling the random processes of line segments and on estimating first

and second order properties associated with processes [102, 44, 2, 75]; generation of

samples of line segment systems were based on straightforward Boolean models of

thin fibres [68]. Instead, we focus on designing a Gibbs type interaction model and

the methods of generating line segment systems based on Monte Carlo Metropolis

algorithm adapted to the fibre systems, the overview of which will be described in

the next section.

3.3.4 Metropolis-Hastings algorithm for generating random point

arrangements

Generating samples of random point processes specified by non-Poissonian density

functions is generally not feasible with only rejection sampling, thinning, cluster-

ing, and superposition operation at hand. Except the trivial situations, Gibbsian

density functions 3.8 contain partition functions Z which typically cannot be de-

termined explicitly — this makes applying standard sampling techniques impossible.

Instead, majority of spatial point processes are simulated by using models based on

the conditional intensities: the calculation of the partition functions in these methods

are avoided and sampling algorithms usually proceed with simple steps by updat-

ing a current sample to be distributed closely to a target distribution. Two methods

136

of this type were successfully applied to simulate arrangements of random points:

Metropolis-Hastings (MH) [52] and birth-and-death (BnD) [112] algorithms. Both

methods are based on sampling certain Markov processes which generate sequences

(or, families) of dependent random variables
{
Xt , t ≥ 0

}
— Markov chains — with

the following Markov condition on the process history:

Q(Xt+∆t ∈ F |Xt1 = x1,Xt2 = x2, . . . ,Xtk=t = x) = Q(Xt+∆t ∈ F |Xt = x) ,

for any F ∈ F∞ and t1 < t2 < .. . < tk = t < t +∆t, xk′ ∈ X∞ for k′ = 1,2, . . . ,k, such

that the transition probability Q(·|·) on the RHS is not trivial.

Metropolis-Hastings (MH) algorithm is a part of a more general framework

of Markov Chain Monte Carlo (MCMC) technique which generates discrete-time

Markov chains
{
Xk,k ≥ 0

}
by performing uniform updates of a current state, Xk→

Xk+1, according to a transition probability density Q(dy|x) = Q(Xk+1 ∈ dy|Xk = x).

The objective of MH-algorithm is to design a transition probability function, so that

in the limit Xk becomes distributed as a target distribution function π

Q(k)(F) =
∫

X∞

Q(Xk ∈ F |X0 = x)dx → π(F), F ∈ F∞ . (3.14)

Markov chain update consists of drawing a value y ∈ X∞ for the next chain’s state

distributed according to a proposal Markov kernel, P(F |x)≡ P(y ∈ F |x), for a given

current state Xk = x ∈ X∞ \F , and keeping this value with acceptance probability

A(y|x). The transition probabilities in this case are given by

Q(F |x) =
∫

y∈F

A(y|x)P(dy|x) ,

Q({x}|x) = P({x}|x)+
∫

y 6=x

[1−A(y|x)]P(dy|x) .

137

Proposal kernel P(·|·) and acceptance probability A(·|·) should be chosen so that

the resulting Markov chain is time-reversible with respect to the target point process

measure π , given by its pdf f (·) with respect to a Poisson measure µ∫
Gn+1

Q(Fn|y) f (y)µ(dy) =
∫
Fn

Q(Gn+1|x) f (x)µ(dx) . (3.15)

Satisfying this condition together with requiring π-irreducibility [∀x ∈ X∞,F ∈

F∞|π(F) > 0, P(k)(F |x) = P(Xk ∈ F |X0 = x) > 0 for some k > 0] and to be a pos-

itive Harris recurrent [P(Xk ∈ F for infinitely manyk|X0(x) = 1] guarantee the con-

vergence 3.14 from all initial distributions.

Metropolis-Hastings algorithm for point processes XXX on X∞ is based on the fol-

lowing steps:

1. Start an empty point configuration: X0 = /0 ∈ X∞;

2. After a point configuration for Xk has been found, k ≥ 0, choose with prob-

ability q(Xk) to generate a new point ξ ∈ X , ξ ∼ b(ξ ,Xk) — some pdf with

respect to λ (dξ), and accept the transition Xk→Xk+1 = Xk◦ξ with probability

A(Xk+1|Xk) = min{1,r(ξ ,Xk)};

3. Otherwise, delete an existing point x j ∈ Xk with probability d(x j,Xk \ x j);

accept the transition Xk → Xk+1 = Xk \ x j with probability A(Xk+1|Xk) =

min{1,1/r(x j,Xk \ x j)};

The transition likelihood function r(ξ ,X) is a core element of MH scheme and is

given by

r(ξ ,X) = λc(ξ ,X)
1−q(ξ ◦X)

q(X)
d(ξ ,X)
b(ξ ,X)

,

λc(ξ ,X) =
f (X◦ξ)

f (X)
,

138

where λc(ξ ,X) is the conditional intensity. It is easy to check that with such transi-

tion likelihood function, the following detailed balance equation (DBE) is satisfied

[1−q(x◦ξ)] d(ξ ,x) A(x|x◦ξ) f (x◦ξ)

= q(x) b(ξ ,x) A(x◦ξ |x) f (x) . (3.16)

As the detailed balance equation 3.16 is satisfied, so is the time-reversibility condi-

tion 3.15. Indeed, for just defined A(·|·) and P(·|·), x,y ∈ X∞ and y = y1 ◦ y2 ◦ . . .◦ yN ,

we have

∫
Gn+1

Q(Fn|y) f (y)µ(dy) =

=
e−λ (S)

(n+1)!

∫
Gn+1

λ (dy) (1−q(y))
n+1

∑
j=1

χFn(y− y j)d(y j,y− y j)A(y− y j|y) f (y)

=
e−λ (S)

(n+1)!

n+1

∑
j=1

∫
Gn+1

λ (dy) (1−q(y)) χFn(y− y j)d(y j,y− y j)A(y− y j|y) f (y)

As there is no principal difference between y j-s within Fn, the integrals in the sum-

139

mation should be the same; therefore

=
e−λ (S)

n!

∫
Gn+1

λ (dy) (1−q(y)) χFn(y− y j)d(y j,y− y j)A(y− y j|y) f (y)

=
e−λ (S)

n!

∫
Gn+1

λ (dx) λ (dy j) (1−q(x◦ y j)) χFn(x)d(y j,x)A(x|x◦ y j) f (x◦ y j)

=
e−λ (S)

n!

∫
λ (dx) λ (dy j) (1−q(x◦ y j)) d(y j,x)A(x|x◦ y j) f (x◦ y j)

×χFn×Gn+1(x× (x◦ y j)) = [DBE 3.16 is satisfied]

=
e−λ (S)

n!

∫
λ (dx) λ (dy j) q(x) b(y j,x)A(x◦ y j|x) f (x) χFn×Gn+1(x× (x◦ y j))

=
e−λ (S)

n!

∫
λ (dx) χFn(x)

∫
λ (dy j) q(x) b(y j,x)A(x◦ y j|x) f (x) χGn+1(x◦ y j)

=
e−λ (S)

n!

∫
Fn

λ (dx)
∫

x◦y j∈Gn+1

λ (dy j) q(x) b(y j,x)A(x◦ y j|x) f (x)

We can proceed with derivation if we use µ(dx)|x∈Fn = e−λ (S)

n! λ (dx)

=
∫
Fn

µ(dx)
∫

x◦y j∈Gn+1

λ (dy j) q(x) b(y j,x)A(x◦ y j|x) f (x)

=
∫
Fn

µ(dx) f (x)q(x)
∫

x◦y j∈Gn+1

λ (dy j)b(y j,x)A(x◦ y j|x)

=
∫
Fn

Q(Gn+1|x) f (x)µ(dx) .

This causes any Markov chain simulated by the Metropolis-Hastings algorithm de-

scribed earlier in this section to converge, as in 3.14.

One can also include replacement transitions to the Markov chain simulation

which displace one point within a current configuration at every iteration as follows:

randomly pick a point x j ∈ Xk, replace it with a new point y uniformly distributed in

X with the acceptance probability Ar(Xk \ x j ◦ y|Xk) = min{1, f (Xk \ x j ◦ y)/ f (Xk)}.

This new transition defines a new transition probability function Qr(·|·). A combined

140

simulation of a Markov chain performs an MH-step with some probability qbd or a

replacement step with the probability 1−qbd , so that the overall transition probabil-

ity is given by the following mixture of MH transition kernel Qbd and replacement

transition kernel Qr

Qpbd(F |x) = (1− pbd)Qr(F |x) + pbdQbd(F |x) . (3.17)

According to the Hammersley-Clifford theorem [118], a point process is a Markov

point process if and only if its density function can be decomposed into the following

product

f (x̄) = ∏
cliques ȳ⊆x̄

g(ȳ) . (3.18)

The pairwise point interaction models 3.7 surely satisfy the Hammersley-Clifford

condition 3.18, and so do Gibbs point processes 3.8 in the form of interaction po-

tentials 3.9 (here, cliques are defined through the neighborhood relation 3.6 and for

a non-clique ȳ the equality g(ȳ) = 1 should hold). The functions in the Table which

follows define an MCMC algorithm for simulating a Gibbs point process.

MH for Gibbs point processes

pbd = 1 no replacement transitions

q(x̄)≡ qb Probability of “birth” event

b(x, x̄) = 1
λ (X) pdf for a new point candidate

d(x j, x̄− x j) = 1
n+1 Probability to delete x j from x̄

r(x, x̄) = λc(x; x̄)1−qb
qb

λ (X)
n+1 “birth” transition likelihood

r(x j, x̄− x j) = λc(x j; x̄− x j)
1−qb

qb

λ (X)
n “death” transition likelihood

λc(y, x̄) = exp

{
−h1(y)− ∑

y6=x j
y∼

R
x j

h2
(
ρ(y,x j)

)}
conditional intensity

141

Spatial birth-and-death (BnD) process simulates continuous-time Markov chains

with the same birth and death transitions as in MH but with waiting times till the next

event — sojourn times, tk+1 — being exponentially distributed, tk+1∼Exp
(
BD(Xtk)

)
and BD(Xtk)≡ B(Xtk)+D(Xtk). All the transitions are always accepted, and the birth

event is chosen with probability B(Xtk)/BD(Xtk) according to b(ξ ,Xtk) while the

death event is chosen with probability D(Xtk)/BD(Xtk) according to d(x j,Xtk \ x j).

Here, the total birth rate is given by B(Xtk) =
∫

X b(x,Xtk)dλ (x) while the total death

rate is given by D(Xtk) = ∑
x j∈Xtk

d(x j,Xtk \ x j). b(ξ ,X) and d(ξ ,X) should be chosen to

satisfy the following birth-and-death balance equation: b(ξ ,X) f (X) = d(ξ ,X) f (ξ ◦

X). More details can be found in [112]. The main difference between MH and BnD

steps is that the latter updates a current configuration Xk at every step while former

may reject a transition; however, to construct an update itself can be a lot trickier for

the latter than for the former process. Some comparisons between running MH and

BnD algorithms for Strauss point processes were presented in [24].

It is very important to mention here that a convergence of an MCMC simulated by

MH algorithm to a target distribution π is pretty much everything one can guarantee

— an MH-based simulation should run infinite time to generate a true sample from π .

The problem of when to stop iterations is still open for MH algorithms. On the other

hand, an exact (or, perfect simulation) MCMC [113] algorithm delivers a sample

attained to the target distribution in finite time, though the running time is random.

Examples of perfect simulation algorithms for spatial BnD processes are described

in [64, 71]. Perfect simulation algorithms for both MH and birth-and-death processes

based on dominated Coupling-from-the-Past (CFTP) were developed in [70] for point

processes satisfying the following local stability condition: f (x̄ ◦ y) ≤ K f (x̄) for a

constant K > 0.

142

3.4 New model of interacting random fibres

In this section we describe steps of adapting Gibbs distributions to random fibre sys-

tems of general form. We define probability measure for fibre processes of the form

similar to equations 3.4 and 3.5, and will impose an energy conservation require-

ment for fibre energy function in Section 3.4.1. Sections 3.4.2 and 3.4.3 describe our

pair-potential model for fibre interaction and other possible terms within fibre energy

functional. A particular implementation of these ideas for line segment processes

will be developed in Section 3.5.

3.4.1 Adaptation of Gibbs point process models to random fibres;

energy conservation requirement

We have chosen to explore interaction models for random fibres because of a num-

ber of advantages this type of models could offer: they are easy to interpret and

are relatively convenient to work with, they break the assumption of independent

observations, they fit the framework of Markov models which include straightfor-

ward methods of generating samples of processes with local interaction between the

process primitives, and, finally, the statistical interference algorithms for point in-

teraction models can be potentially adapted to interaction fibre processes which will

make the fibre models fully parametric. Therefore, the following features should be

developed for a possible candidate to a fibre interaction model:

1. fibres should closely follow definition 7 and a proper representation space for

fibre systems has to be found where the fibres are uniquely represented —

different fibres correspond to different ”points” in the representation space; a

fibre system equivalent of a “point configuration” should be defined;

143

2. to define neighborhood relation on fibres, a valid function of “distance” be-

tween two fibres should be obtained, which is necessary to work with Markov

models;

3. interaction potentials should be defined for fibres located nearby.

In this section we assume that a proper representation space X describing fibres is

already given, and we will consider fibres of a general form, ϕ ∈ X, in accordance

with definition 7. A fibre system Φ is a union of countably many fibres with only

their end-points in common

Φ = {ϕ1,ϕ2, . . . ,ϕn} ,

and Φ is an element of a corresponding exponential space X∞. A permutation of

fibres in a fibre system clearly does not change the system. Therefore, we can use

the same notation which were introduced for point configurations (see equation 3.2)

to show members of a fibre system

Φ = ϕ1 ◦ϕ2 ◦ . . .◦ϕn, N(Φ) = n, (3.19)

ϕ j ∈Φ, ∀ j ∈ 1,2, . . . ,n .

If the fibre representation space X is endowed with a proper measure ν , a measure

space for fibre systems (X∞, F̃∞,µ) may be defined in the same way as was done for

point processes (see equation 3.4). Thus, a Poisson model with intensity ν(B) for

independently distributed fibres is given by the following probability distribution µ

µ(F) = e−ν(X)
[

χF∩F̃0
(/0) (3.20)

+
∞

∑
n=1

1
n!

∫
· · ·
∫

χF∩F̃n
(ϕ1 ◦ϕ2 ◦ . . .◦ϕn) ν(dϕ1)ν(dϕ2) · · ·ν(dϕn)

]
,

144

2ϕ

3ϕ

0ϕ

5ϕ

1ϕ

4ϕ

6ϕ

7ϕ

8ϕ

10ϕ

9ϕ

Φ

Figure 3.9: A simple fibre system Φ = ϕ0 ◦ϕ1 ◦ . . .◦ϕ10.

for a given set of fibre systems F , F ∈ F̃∞ =
∞⋃

m=0
F̃m.

New fibre processes can be constructed from Poisson fibre process µ by means

of symmetric density functions as was done for point processes in equation 3.5

π(F) =
∫

F
f (Φ)µ(dΦ), (F ∈ F̃∞) . (3.21)

Therefore, an analogue of the Gibbs distributions for random fibres will be defined

through a probability density function of the following form

f (Φ) = eŨ(Φ)/Z, (3.22)

with a proper partition function Z.

We propose using a fibre pair-potential h̃2(ϕi,ϕ j) which characterizes the level of

interaction between a given pair of fibres ϕi and ϕ j, and which is zero for the fibres

with the distance ρ̃(ϕi,ϕ j) > R. A sum of pair-potentials of all pairs of fibres in

close proximity gives rise to one possible expression for the total energy of the fibre

145

system

Ũ(Φ) = Ũ(ϕ1 ◦ϕ2 ◦ . . .◦ϕn) = ∑
i< j

ϕi∼
R

ϕ j

h̃2(ϕi,ϕ j), (3.23)

where a neighborhood relation∼
R

is based on a fibre distance functional ρ̃ : X×X→

R which should be properly defined. Table 3.2 lists new notation for Gibbs fibre

processes over the corresponding notation for Gibbs point processes.

Notation Fibre processes Point processes

Measure space of objects (X,B̃,ν) (X ,B,λ)

Object configuration Φ = ϕ1 ◦ϕ2 ◦ . . .◦ϕn x̄ = x1 ◦ x2 ◦ . . .◦ xn

Measure space of object

configurations

(X∞, F̃∞,µ) (X∞,F∞,µ)

Random process of object

configurations

XXX XXX

Density function, f eŨ(Φ)/Z eU(x̄)/Z

Energy of population, U ∑
i< j

ϕi∼
R

ϕ j

h̃2(ϕi,ϕ j) ∑
i< j

xi∼
R

x j

h2
(
ρ(xi,x j)

)
Length / Counting mea-

sure

Φ(B), B ∈ B̃ x̄(B), B ∈B

Table 3.2: Corresponding notation of Gibbs fibre processes and Gibbs point pro-

cesses.

A crucial difference between the point processes and the fibre processes is in

that the point configurations are uniquely defined up to permutation, whereas the

fibre systems may have infinitely many representations. Indeed, for a given fibre

system Φ = ϕ1 ◦ϕ2 ◦ . . .◦ϕn, one could subdivide a fibre ϕ j into two parts, ϕ j =

146

ϕ ′j ∪ϕ ′′j , to give rise to a new fibre set Φ′ = ϕ1 ◦ · · · ◦ϕ j−1 ◦ϕ ′j ◦ϕ ′′j ◦ϕ j+1 ◦ · · · ◦ϕn

which is identical to Φ in terms of point-by-point correspondence. (To save space

we introduce a new notation Φî = Φ \ϕi. Thus, Φ′ may be alternatively defined as

Φ′ = Φî ◦ϕ ′j ◦ϕ ′′j .)

jϕ jϕ′′

jϕ′

Φ ′Φ

Figure 3.10: Φ′ is one of uncountably many alternative representations of Φ.

Energy conservation. Such observation imposes a unique requirement on a candidate

for the energy function Ũ(Φ): the value of Ũ(Φ) should be the same for any valid

partition ϕ ′1 ◦ϕ ′2 ◦ . . .◦ϕ ′m of a fibre system Φ, i.e.

Φ = ϕ1 ◦ϕ2 ◦ . . .◦ϕn = ϕ
′
1 ◦ϕ

′
2 ◦ . . .◦ϕ

′
m,

Ũ(ϕ1 ◦ϕ2 ◦ . . .◦ϕn) = Ũ(ϕ ′1 ◦ϕ
′
2 ◦ . . .◦ϕ

′
m). (3.24)

To understand how the requirement given by equation 3.24 affects the energy func-

tion given by equation 3.23, we consider the simplest case when only one fibre ϕi,

ϕi ∈Φ, is subdivided into two parts, ϕi = ϕ ′i ◦ϕ ′′i . To satisfy the total energy conser-

vation condition 3.24 in the presence of a new fibre system Φî◦ϕ ′j ◦ϕ ′′j , the following

additivity condition on the fibre pair-potential function h̃2 should hold

h̃2(ϕi,ϕ j) = h̃2(ϕ ′i ,ϕ j)+ h̃2(ϕ ′′i ,ϕ j) ,

147

for any neighbor ϕ j (ϕ j ∈Φ, ϕi ∼
R

ϕ j), and

h̃2(ϕ ′i ,ϕ
′′
i) = 0 . (3.25)

The latter condition basically prohibits self-interaction of the fibres. In the models

which allow self-interaction the additivity condition becomes

h̃2(ϕi,ϕ j) = h̃2(ϕ ′i ,ϕ j)+ h̃2(ϕ ′′i ,ϕ j)+ h̃2(ϕ ′i ,ϕ
′′
i) . (3.26)

These cases are demonstrated in Figure 3.11.

iϕ

jϕ

jϕ

iϕ
jϕ

jϕ

iϕ′iϕ′

iϕ′′ iϕ′′

Figure 3.11: Schematic interaction links (broken line) between fibres ϕi and ϕ j before

(top pictures) and after (bottom pictures) partitioning ϕi. Left: no self-interaction.

Right: with self-interaction (red dots).

The additivity condition restricts the choice of the pair-potential model. Simi-

lar to the Gibbs point process model which describes pair-potentials as a function

of distance between the points, one can also try to develop a fibre pair-potential

as a multivariate function of a vector of distances ρ̃ρρ : X×X → Rk (with k pos-

sible greater than one), h̃2(ϕ,ψ) = h̃2
(
ρ̃ρρ(ϕ,ψ)

)
. However, the following argu-

ment cast doubts that such candidate can satisfy additivity condition. Indeed, by

making a fibre pair-potential a homogeneous function along each of its argument,

148

e.g., h̃2(ud,w, . . .) = uh̃2(d,w, . . .) for some scalar u > 0, and by requiring the first

component of the distance function ρ̃ρρ , ρ̃ρρ = (ρ̃d, ρ̃w, . . .), to be also homogenous

ρ̃d(vϕ,ψ) = vρ̃d(ϕ,ψ), one can guarantee fulfilling the additivity condition when

one of the fibres is broken in two equal pieces:

h̃2
(
ρ̃ρρ(ϕ,ψ)

)
= 2h̃2

(
1/2 ρ̃ρρ(ϕ,ψ)

)
= 2h̃2

(
ρ̃ρρ(ϕ/2,ψ)

)
= h̃2

(
ρ̃ρρ(ϕ/2,ψ)

)
+ h̃2

(
ρ̃ρρ(ϕ/2,ψ)

)
.

However, to find a plausible homogenous distance functional RHO is problematic.

One can consider, for instance, using the famous Hausdorff metric [92] as a can-

didate for the distance between fibres. Such distance is defined by ρ̃ρρH(ϕ,ψ) =

max
{

ρ̃ρρ
max
H (ϕ,ψ),ρ̃ρρmax

H (ψ,ϕ)
}

, where ρ̃ρρ
max
H (ϕ,ψ) = sup

ppp∈ϕ

ρ(ppp,ψ). For two short line

segments placed parallel and far from each other, the Hausdorff distance ρ̃ρρH does not

change much if one of the segments is shortened by half. However, the additivity

condition requires the distance decreasing twice.

Our model is based on “interaction integral”. Instead of looking for distance-

dependent pair-potential which would describe the interaction rate between pair of

fibres as being indivisible objects, we accumulate interaction potentials between in-

finitesimal parts of nearby fibres. Interaction integral model clearly satisfies the ad-

ditivity condition as the integration is a linear operator. It is also clear that the inter-

action integral model should include self-interaction terms of the form h̃2(ϕ,ϕ) (see

Figure 3.12).

Fibres are not just sets of points — the points are “continuously” linked and a

tangential direction is attributed to every point. To incorporate these intrinsic proper-

ties into interaction integral, we represent fibres by small enough line segments and

accumulate interaction potentials between these lines segments.

149

Φ

1 1

20
() ((), ())

u
U du dvh u vΦ ∝ Φ Φ∫ ∫

()uΦ

()vΦ

Figure 3.12: Graphical representation of the fibre interaction integral for a fibre sys-

tem Φ : [0,1]→ R2.

3.4.2 Interaction pair-potential between pair of fibres

We start from constructing a pair-potential function h̃2 based on the idea of interac-

tion integral. Our goal is to reduce the fibre interaction model to something already

established and thoroughly investigated, and, in particular, we want to find an expres-

sion for h̃2 which involves original pair-potential models of point processes.

1i
δϕ

1j
δψ

ϕ ψ2i
δϕ 2j

δψ

Figure 3.13: Partitioning two fibres ϕ and ψ into infinitesimal pieces {δϕi}i=1,2,...,Nϕ

and {δψ j} j=1,2,...,Nψ
, which in the limit become line segments.

We partition a given pair of fibres ϕ and ψ into infinitesimal pieces of the same

length, ϕ = ϕ1∪ϕ2∪·· ·∪ϕNϕ
and ψ = ψ1∪ψ2∪·· ·∪ψNϕ

, lϕi ≈ lψ j ≈∆S, as shown

150

in Figure 3.13. A fibre pair-potential between ϕ and ψ is a sum of pair-potentials

between each piece of ϕ and every piece of ψ (see equation 3.27). Every infinitesimal

piece of each fibre can be approximated by a short line segments, so that we need

to provide a model for a pair-potential between short segments [it will be sought

in the form h̄∆S
(
ρ̄ρρ∆S(δϕi,δψ j)

)
]. Finally, a line segment pair-potential is derived

from pair-potential model of 3D point processes whose first two dimensions bear a

“position” of the line segment and the third dimension reflects the tangential direction

angle against a specified coordinate axis. The following is the main approximation

we apply for pair-potential in our model (for some positive constant c2 > 0)

h̃2(ϕ,ψ) = c2 lim
∆s→0

Nϕ

∑
i=1

Nψ

∑
j=1

h̄∆S
(
ρ̄ρρ∆S(δϕi,δψ j)

)
, (3.27)

Nϕ =
lϕ
∆S

, Nψ =
lψ
∆S

.

Proposition 8 (Fibre pair-potential). A pair-potential between a pair of close to each

other fibres ϕ and ψ can be written as the following interaction integral

h̃2(ϕ,ψ) = c2

lϕ∫
0

du

lψ∫
0

dv h
(
ρρρ (xxxϕ(u),xxxψ(v))

)
, (3.28)

where h(d,w) is a multi-variate analogue of the point pair-potential depending on a

vector of distances ρρρ(xxx,yyy) between two 3D points, and xxxϕ(u) =
(
ϕ(u);wϕ(ϕ(u))

)
is

a 3D point of the fibre point ϕ(u) and the tangential direction angle (or, orientation)

wϕ(u) at ϕ(u).

Proof. In the limit, infinitesimal pieces δϕi and δψ j (see Figure 3.13) may be ap-

proximated by short line segments S(pi,wϕ(pi), lδϕi) and S(q j,wψ(q j), lδψ j), where

pi and qi are the middle points of δϕi and δψ j, wϕ(pi) denotes a tangential direc-

tion to the fibre ϕ at its point pi , and lδψ j is the length of δψ j (a shorter notation

151

for the line segments can be used: Sϕ [pi,wi] ≡ S(pi,wϕ(pi), lδϕi) to emphasize that

the short line segments of the same length are uniquely defined by the pairs of their

middle points pi and orientations wi = wϕ(pi) of directions tangent to ϕ at pi, see

Figure 3.14).

[],i iS p wϕ

iδϕ
ip

()i iw w pϕ=

[],i i ix p w=≈

Figure 3.14: Representation of a small fragment of a curvilinear fibre by a 3D point.

Left: Replacing the fragment δϕi by a short line segment Sϕ [pi,wi]. Right. Repre-

sentation of Sϕ [pi,wi] by just a 3D point xxxi = (pi;wi).

We assume that an interaction rate between two short line segments is propor-

tional to their lengths

h̄∆S
(
ρ̄ρρ∆S (δϕi,δψ j)

)
∝ α lδϕi lδψ j ≈ α∆s2 ,

where a coefficient α is intended to be a function of the segments middle points pi

and q j and the orientations at these points, w(pi) and w(q j),

α ≡ α

 xxxϕ

i =

 pi

w(pi)

 , xxxψ

j =

 q j

w(q j)

 .

Thus, xxxϕ

i and xxxψ

j are just 3D points, and we can now adapt the pair-potential model

of point processes to a model of interacting fibres as follows

α ≡ h
(
ρρρ(xxxϕ

i ,xxxψ

j)
)
.

152

ρρρ(xxx,yyy) is a vector of distances between two 3D points xxx = (x1,x2,x3)T and yyy =

(y1,y2,y3)T . The first component of ρ(x,y) can be a function of the Euclidean dis-

tance between middle points (x1,x2) and (y1,y2), while its second component can

measure an “angular difference” between orientations x3 and y3. In this way, h is

similar in spirit to the point pair-potential which depends on the inter-point distance.

Therefore

h̄∆S
(
ρ̄ρρ∆S (δϕi,δψ j)

)
≈ h

(
ρρρ
(
Sϕ [pi,wi] ,Sψ

[
q j,w j

]))
∆s2,

or, more compact,

h̄∆S
(
ρ̄ρρ∆S (δϕi,δψ j)

)
≈ h

(
ρρρ(xxxϕ

i ,xxxψ

j)
)
∆s2.

Finally, we can rewrite equation 3.27 in an integral form by making the following

substitutions

h̃2(ϕ,ψ) = c2 lim
∆s→0

Nϕ

∑
i=1

Nψ

∑
j=1

h̄∆S
(
ρ̄ρρ∆S(δϕi,δψ j)

)
= c2 lim

∆s→0

Nϕ

∑
i=1

Nψ

∑
j=1

h
(
ρρρ(xxxϕ

i ,xxxψ

j)
)
∆s2

= c2

lϕ∫
0

du

lψ∫
0

dv h
(

ρρρ
(
xxxϕ(u),xxxψ(v)

))
,

(3.29)

where xxxϕ(u) =
(
ϕ(u),wϕ(ϕ(u))

)
.

Remark: in the derivation we assumed that the fibres ϕ and ψ as curves have natural

parameterization (i.e., lϕ(u1:u2) = |u2−u1|), so that ϕ : [0, lϕ]→ R2.

For the fibre pair-potential of the form 3.28, the fibre neighborhood relation ∼
R

can be naturally defined by calling two fibres as neighbors if they have at least two

153

points no farther than some distance R from each other

ϕ ∼
R

ψ ⇐⇒ ∃u,v ∈ [0,1] ρ
(
ϕ(u),ψ(v)

)
≤ R. (3.30)

3.4.3 Complete model for random processes of interacting fibres

Similar to the point Gibbs model given by equation 3.9, we extend the fibre energy

functional 3.23 by adding a “zero-order” interaction term β (ϕ), which assigns some

weight to a fibre and, essentially, controls the intensity of the fibres. The energy

functional with zero-order term becomes

Ũ(ϕ1 ◦ϕ2 ◦ . . .◦ϕn) = ∑
i

β (ϕi) + ∑
i< j

ϕi∼
R

ϕ j

h̃2(ϕi,ϕ j). (3.31)

A similar additivity condition on a candidate for zero-order interaction term should

hold to keep the total energy conserved under arbitrary fibre system partitioning.

Thus, for a partitioned fibre ϕ = ϕ ′∪ϕ ′′ the following should be satisfied

β (ϕ) = β (ϕ ′)+β (ϕ ′′). (3.32)

The following integral form is an obvious model for zero-order interaction term

which depends on some kernel function h0, and which clearly satisfies the additivity

condition 3.32

β (ϕ) = c0

lϕ∫
0

du h0 (xxxϕ(u)) . (3.33)

The simplest possible form for zero-order interaction term is the following linear

functional proportional to the fibre length

β (ϕ) = c0 lϕ ,

154

which is a derivative of the model 3.33 with a translation and rotation invariant kernel

function h0.

The second part of the pair-potential additivity condition given by equation 3.25

is very strong and does not hold in general (especially when fibres are curvilinear).

The additivity condition given by equation 3.26 is more realistic; therefore, an addi-

tional term to the energy functional model 3.31 is needed to address the fibre self-

interaction. We propose using an integral form similar to the interaction integral for

a self-interaction term. We call it as a first-order interaction term h̃1 and, in a way, it

serves as a normalization factor to keep the energy constant under partitioning

h̃1(ϕ) = c1

lϕ∫
0

du

lϕ∫
u

dv h
(
ρρρ (xxxϕ(u),xxxϕ(v))

)
. (3.34)

The total energy functional becomes

Ũ(ϕ1 ◦ϕ2 ◦ . . .◦ϕn) = ∑
i

β (ϕi) + ∑
i

h̃1(ϕi) + ∑
i< j

ϕi∼
R

ϕ j

h̃2(ϕi,ϕ j). (3.35)

W.l.o.g. we can consider a fibre system Φ consisting of just two fibres, Φ = ϕ ◦ψ ,

to prove that the energy functional 3.35 is conserved during partition. The energy

functional for system Φ is given by

Ũ(ϕ ◦ψ) = β (ϕ)+β (ψ) + h̃1(ϕ)+ h̃1(ψ) + h̃2(ϕ,ψ) . (3.36)

If ϕ is subdivided into two pieces ϕ = ϕ ′∪ϕ ′′ , the total energy functional becomes

Ũ(ϕ ′ ◦ϕ
′′ ◦ψ) = β (ϕ ′) + β (ϕ ′′) + β (ψ) + h̃1(ϕ ′) + h̃1(ϕ ′′) + h̃1(ψ)

+ h̃2(ϕ ′,ψ) + h̃2(ϕ ′′,ψ) + h̃2(ϕ ′,ϕ ′′) . (3.37)

Term-by-term comparison of equations 3.36 and 3.37 results in the following set of

155

necessary conditions to satisfy the energy conservation U(ϕ ◦ψ) = U(ϕ ′ ◦ϕ ′′ ◦ψ)

β (ϕ) = β (ϕ ′)+β (ϕ ′′) ,

h̃1(ϕ) = h̃1(ϕ ′)+ h̃1(ϕ ′′)+ h̃2(ϕ ′,ϕ ′′) ,

h̃2(ϕ,ψ) = h̃2(ϕ ′,ψ)+ h̃2(ϕ ′′,ψ) .

Figure 3.15 graphically shows the second and the third conditions from the above

equations.

ϕ

ψ =
ϕ′

ψ

ϕ′′

ϕ

ψ =
ϕ′

ψ

ϕ′′

1h

2h

Figure 3.15: Energy conservation for the first-order term h̃1 (Top) and for the second-

order term h̃2 (Right). Red color dots are the first-order interaction links, and black

broken lines are the links of the second-order interaction.

The first and the last conditions are valid because of the way the zero-order in-

teraction and the fibre pair-potential are defined (see equations 3.28 and 3.32). The

156

following is a simple proof that the second condition is satisfied if c1 = c2

h̃1(ϕ)/c1 =
lϕ∫
0

du
lϕ∫
u

dv h
(

ρρρ
(
xxxϕ(u),xxxϕ(v)

))
=

l
ϕ ′∫
0

du
lϕ∫
u

dv h(., .)+
lϕ∫

l
ϕ ′

du
lϕ∫
u

dv h(., .)

=
l
ϕ ′∫
0

du
l
ϕ ′∫
u

dv h(., .)+
l
ϕ ′∫
0

du
lϕ∫

l
ϕ ′

dv h(., .)+
lϕ∫

l
ϕ ′

du
lϕ∫
u

dv h(., .)

= h̃1(ϕ ′)/c1 + h̃2(ϕ ′,ϕ ′′)/c2 + h̃1(ϕ ′′)/c1 .

Figure 3.16 shows a graphic proof of additivity of the energy functional 3.35.

ϕ

ψ ψ

ϕ

ψ ψ

ϕ ϕ

ϕ1u 2u

2u

1v

2v

2v

2(,)ϕ ψ′

2(,)ϕ ψ′′

2(,)ϕ ϕ′ ′′

1()ϕ′

1()ψ

1()ϕ′′

2(,)ϕ ψ

1()ψ

1()ϕ

ψ

1u

2u

1v

2v

1

1

2

2
3

3
4

4

(a) (b) (c)

Figure 3.16: Schematic proof of conservation of interaction integral (ϕ)1 +(ψ)1 +

(ϕ,ψ)2 calculated between two fibres ϕ and ψ (a:) brefore (b:) and after (c:) ϕ

partition. Here: (ϕ)1 ≡ h̃1(ϕ), (ϕ,ψ)2 ≡ h̃2(ϕ,ψ) .

3.5 Random systems of line segments — linear fibres

In this work we focus on a particular type of random fibres — linear fibres — which

are represented by line segments. However, more general models of fibres can be

also constructed by applying the interaction integral model described in the previous

sections and by following the same steps which will be described in this section. We

157

start by describing a representation space for linear fibres and constructing a proper

measure space, defining a distribution of Poisson linear fibre process and a way to

construct non-trivial linear fibre processes by means of probability density function in

the following Section 3.5.1. Though the density function may be of any level of com-

plexity and type, we mainly concentrate on interaction models with pair-potentials

based on step functions. They can be used to approximate more complicated inter-

action models and were proved to be feasible for statistical inference of the point

process models [5, 6, 7]. Zero-order potential as well as first-order potential based

on a step function are derived in Section 3.5.2. In Section 3.5.3 we show that the

linear fibre pair-potential based on a step function can not be resolved in elementary

functions, so that an approximation algorithm is also presented.

3.5.1 Interaction model for linear fibres

To define a measure space for linear fibres we first define a representation space for

line segments, called phase space. Any line segment ϕ is uniquely represented by its

middle point p, its (non-trivial) length l, and its orientation w (the c.c.w. angle made

by the line segment against the positive x-axis)

[ϕ] = (px, py, l,w) .

Therefore the space of linear fibres is in one-to-one correspondence with its repre-

sentation space X which is a subset of R4 of the following form

[ϕ] ∈ X = XP×XL×XW (3.38)

≡ X× [0,∞)× [0,π) .

The symbol X is usually attributed to both the actual space of linear fibres and the

phase space 3.38.

158

()[] , , ,x yp p lϕ α=

p

α

l lϕ= ϕ
dp

ϕ

dα

dl

()dν ϕ

Figure 3.17: Left. A linear fibre in its representation space. Right. Infinitesimal

element of the linear fibre measure.

Any Borel set B in the phase space X defines a set of linear fibres, which is called

a cylindrical subset of X. The measure on the cylindrical sets is induced by the

product of the measures defined on the components of X. An infinitesimal element

of such measure in the phase space can be given by (see Figure 3.17, on the right)

ν(dϕ) = d p ·dl ·dw .

A σ -algebra B̃ of the phase space is generated from the cylindrical subsets giving

rise to a measure space of linear fibres (X,B̃,ν).

The space of linear fibre systems X∞ consists of all possible configurations of

linear fibre systems Φ = ϕ1 ◦ϕ2 ◦ . . .◦ϕn and is defined as an exponential space

by the same construction as was described for the point processes in equation 3.1:

X∞ =
∞⋃

n=0
Xn. In principle, σ -algebra of the exponential space of linear fibre systems,

F̃∞ =
∞⋃

n=0
F̃n, can be constructed in the same ways as is done for the point processes

(see description to equation 3.3). However, overlaps between different σ -algebra

components, F̃n′ and F̃n′′ for m′ 6= m′′, should be addressed (such overlaps are due

to lack of uniqueness in representation of fibres, e.g., a linear fibre can be split in

159

two parts, and though the original fibre and its split version represent the same fibre,

they may belong to exponential space σ -algebra components of different orders, like

F1 ∈ F̃1 and F1 ◦F2 ∈ F̃2, respectively). Impact of this overlaps on Poisson measure

µ for linear fibre processes should be investigated in future work. For now, we define

such µ to be similar to that of random point processes

µ(F) = e−ν(X)
[

χF∩F̃0
(/0)

+
∞

∑
n=1

1
n!

∫
· · ·
∫

χF∩F̃n
(ϕ1 ◦ϕ2 ◦ . . .◦ϕn) ν(dϕ1)ν(dϕ2) · · ·ν(dϕn)

]
.

Probability distributions of new processes are constructed through density function

f as in equation 3.5. In this work we investigate new Gibbs type density functions

for processes of linear fibres which were defined for general fibre systems through

interaction potentials by equations 3.22 and 3.35.

The following notation will be used to represent a linear fibre in what follows: a

triple
(
ppp, lϕ ,wϕ

)
with the fibre middle point ppp, its length lϕ , and its orientation wϕ ,

or a triple (ppp, lϕ ,ϕ̂ϕϕ) with the fibre unit direction ϕ̂ϕϕ is associated with any fibre ϕ .

3.5.2 Zero- and first-order potentials

A general model for zero-order potential β (ϕ) was defined by means of some ker-

nel function h0 in equation 3.33. The orientation of a linear fibre is fixed along

its interior; therefore, the kernel function can be represented as a family of func-

tions h0(wϕ ; ·), indexed by the fibre orientations wϕ , and which depend on a position

within a simulation domain

h0 (xxxϕ(u)) = h0
(
wϕ ;ϕ(u)

)
.

160

For a translation invariant kernel function hT I
0 (wϕ ; p) = h0(wϕ)≡ h0(ϕ̂ϕϕ), zero-order

potential becomes

β
T I(ϕ) = c0 h0(ϕ̂ϕϕ) lϕ . (3.39)

For a rotation invariant kernel function hRI
0 (w; p) = h0(p), zero-order potential is

given by the following integral form

β
RI(ϕ) = c0

lϕ∫
0

du h0 (ϕ(u)) . (3.40)

And, finally, for a translation and rotation invariant kernel function, zero-order po-

tential has its simples form depending only on the length of the fibre

β
MI(ϕ) = c0 lϕ .

Models for higher order fibre potentials depend on chosen interaction function,

which, in general, may be of arbitrary complexity. In this work we consider a piece-

wise constant interaction function hθθθ for a multi-variate point pair-potential. It is

defined by the following sum of the products of characteristic functions of the first

and the second components of the vector of distances ρρρ

hθθθ (d,w) = ∑
α,β

θαβ χ[Rα−1,Rα)(d) χ[wβ−1,wβ)(w)

= ∑
α,β

θαβ Iα(d)Jβ (w), (3.41)

with parameters θαβ characterizing the interaction rate between two 3D points

whose Euclidean “distance” d falls in the half-open segment [Rα−1,Rα), and whose

orientation “distance” w is within the range [wβ−1,wβ) for a given set of radii

{Rα ,α = 1 . . .M} and a set of orientations {wβ , β = 1 . . .Mw}, and with the fol-

lowing short notation for the characteristic functions

Iα(d)≡ χ[Rα−1,Rα)(d) , R0 = 0 ,

Jβ (w)≡ χ[wβ−1,wβ)(w) , w0 = 0 .

161

Proposition 9 (First-order potential for linear fibres). Linear fibre first-order poten-

tial based on the piecewise interaction function 3.41 has the following closed form

h̃1(ϕ)
c2

=


lϕ

M
∑

α=1
θα∆Rα − 1

2

M
∑

α=1
θα∆R2

α , lϕ ∈ [RM,∞)

lϕ
m−1
∑

α=1
θα∆Rα − 1

2

m−1
∑

α=1
θα∆R2

α

+1
2θm(lϕ −Rm−1)2, lϕ ∈ [Rm−1,Rm)

(3.42)

for a fibre ϕ with the length lϕ , when the following constants are defined:

θα ≡ θα0, ∆Rα = Rα −Rα−1, ∆R2
α = R2

α −R2
α−1.

Proof. For a linear fibre ϕ with the middle point pppϕ and orientation wϕ ≡ w(ϕ), the

function xxxϕ(u) : [0, lϕ]→ R3, defined for equation 3.28, is given by

xxxϕ(u) =

(
pppT

ϕ +
{

u− lϕ
2

}
(coswϕ ,sinwϕ),wϕ

)T

=

(
pppT

ϕ +
{

u− lϕ
2

}
ϕ̂ϕϕ
′,wϕ

)T

.

Therefore, the components of the vector of distances ρρρ = (ρd,ρw)T are given by

ρd(xxxϕ(u),xxxϕ(v)) =
∥∥pppϕ +(u− lϕ/2)ϕ̂ϕϕ−

(
pppϕ +(v− lϕ/2)ϕ̂ϕϕ

)∥∥
= |u− v| ,

ρw(xxxϕ(u),xxxϕ(v)) =
∣∣wϕ −wϕ

∣∣= 0.

Substituting the following expression for multi-variate point pair-potential h(ρρρ(., .))

written for linear fibre ϕ

hθθθ

(
ρρρ
(
xxxϕ(u),xxxϕ(v)

))
= hθθθ (|u− v| ,0) =

M

∑
α=1

θα Iα (|u− v|).

(with θα = θα0) into equation 3.34 results in the following expression for the first-

order potential h̃1(ϕ)

h̃1(ϕ)
c2

=

lϕ∫
0

du

lϕ∫
u

dv
M

∑
α=1

θα Iα(|u− v|) =

lϕ∫
0

du

lϕ−u∫
0

dv
M

∑
α=1

θα Iα(|v|) .

162

We consider two cases depending on the length of fibre ϕ: lϕ ≥ RM and Rm−1 ≤

lϕ < Rm for some m≤M.

(Case lϕ ≥ RM.) By finding the level sets of the function
M
∑

α=1
θα Iα(|v|) within the

domain
{
(u,v) ∈ [0, lϕ]× [0, lϕ]

}
, the integral above can be reduced to the following

analytic expression (where Rα ≡ lϕ −Rα)

h̃1(ϕ)
c2

= θ1
(
R1R1 +

1
2

R1(lϕ −R1)
)

+
M

∑
α=2

θα

{
∆RαRα +

1
2

∆Rα(Rα−1−Rα)
}

= θ1
(
lϕR1−

1
2

R1
)

+
M

∑
α=2

θα

{
lϕ∆Rα −

1
2
(R2

α −R2
α−1)

}
= lϕ

M

∑
α=1

θα∆Rα −
1
2

M

∑
α=1

θα∆R2
α .

(Case Rm−1 ≤ lϕ < Rm.) For the second case, we end up with a summation of

the same form as above but with indices running up to m− 1 for such an m that

Rm−1 ≤ lϕ < Rm

h̃1(ϕ)
c2

= θ1
(
R1R1 + 1

2R1(lϕ −R1)
)

+
m−1
∑

α=2
θα

{
∆RαRα + 1

2∆Rα(Rα−1−Rα)
}

+θm
(1

2(lϕ −Rm)Rm−1
)

= lϕ
m−1
∑

α=1
θα∆Rα − 1

2

m−1
∑

α=1
θα∆R2

α + 1
2θm
(
lϕ −Rm−1

)2
.

A graph of the function 3.42 is a parabolic curve within each radial bucket

[Rα−1,Rα) and is a ray within [RM,∞).

3.5.3 Interaction pair-potential for linear fibres

Unlike in the case of first-order potential, a derivation of liner fibre pair-potential

based on a steplike interactin function does not lead to a closed form expression. It

is reflected in the following proposition.

163

Proposition 10 (Pair-potential for linear fibres). Linear fibre pair-potential based

on the piecewise interaction function 3.41 can not be calculated analytically and

requires applying a numerical integration.

p
qφ̂

r ψ
ϕ

ψ̂

Figure 3.18: Two interacting fibres ϕ and ψ given by their unit directions ϕ̂ϕϕ and ψ̂ψψ ,

respectively.

Proof. For a pair of arbitrary fibres ϕ and ψ uniquely defined by their middle points

ppp = ϕ(lϕ/2) and qqq = ψ(lψ/2), their lengths lϕ and lψ , and their unit directions ϕ̂ϕϕ and

ψ̂ψψ , respectively (see Figure 3.18), we need to calculate the following integral

h̃2(ϕ,ψ)/c2 =

lϕ∫
0

du

lψ∫
0

dv hθθθ

(
ρρρ
(

xxxϕ(u),xxxψ(v)
))

=

lϕ∫
0

du

lψ∫
0

dv ∑
αβ

θαβ Iα

(
‖ϕ(u)−ψ(v)‖

)
Iβ

(
ρw(xxxϕ(u), xxxψ(v))

)

=

lϕ∫
0

du

lψ∫
0

dv ∑
α

θαβ ∗ Iα

(∥∥ppp+(u− lϕ/2)ϕ̂ϕϕ− qqq− (v− lψ/2)ψ̂ψψ
∥∥)

=

lϕ∫
0

du

lψ∫
0

dv ∑
α

θαβ ∗ Iα

(
‖rrr +uϕ̂ϕϕ− vψ̂ψψ‖

)
,

where we have used that the difference between the fibres orientation ρw(xxxϕ(u),xxxψ(v))≡

wϕψ is constant and β ∗ ∈ {1, . . . ,Mw} is the index of the orientation bucket satisfying

164

wϕψ ∈ [wβ ∗−1,w∗β), and rrr = ppp− lϕϕ̂ϕϕ/2−qqq + lψψ̂ψψ/2. The argument of Iα(·) in the

last integral expression can be represented as the square root of a binary quadratic

form with a matrix A and a vector bbb

h̃2(ϕ,ψ)/c2 =

lϕ∫
0

du

lψ∫
0

dv ∑
α

θαβ ∗ Iα



u

v

T

A

u

v

 +2bbbT

u

v

+ c


1/2
 ,

where

A =

 1 −µ

−µ 1

 , bbb =

 rrr · ϕ̂ϕϕ

−rrr ·ψ̂ψψ

 , c = ‖rrr‖2 , µ = ϕ̂ϕϕ ·ψ̂ψψ,

and A is non-negative definite, A ≥ 0, since µ ≤ 1. If we exclude the simplest

case when A is singular (when fibres ϕ and ψ are parallel, so that µ = ±1), then

the quadratic form < A,bbb,c > can be transformed into its canonical form with a

nonsingular diagonal matrix by an affine transformation, (x,y)T = T (u,v)T +ttt. Thus,

the original interaction integral can be reduced to

h̃2(ϕ,ψ)/c2 =
∫∫
ΓT

dxdy ∑
α

θαβ ∗ Iα

({
x2(1+ µ)+ y2(1−µ)+ cT

}1/2
)

, (3.43)

after applying the transformation < T,ttt > given by

T =
1√
2

 1 1

−1 1

 , ttt =
1√
2

 (rrr · ϕ̂ϕϕ−rrr ·ψ̂ψψ)/(1−µ)

(−rrr ·ψ̂ψψ−rrr · ϕ̂ϕϕ)/(1+ µ)

 ,

where

cT =
(rrr · ϕ̂ϕϕ)2 + (rrr ·ψ̂ψψ)2− 2µ(rrr · ϕ̂ϕϕ)(rrr ·ψ̂ψψ)

1−µ2 ,

and ΓT is the rectangle [0, lϕ]× [0, lψ] rotated by 45 degrees c.w. around the origin

and translated by a vector ttt. Calculating integral 3.43 is equivalent to a problem of

finding the overlapping areas between the rectangle ΓT and the elliptical rings of the

form R2
α−1 ≤ x2(1+ µ)+ y2(1−µ)+ cT < R2

α . There is no a close formula solution

for this problem.

165

A straightforward way to approximate the fibre pair-potential is to apply one of

the standard quadrature rules to the interaction integral given by equation 3.28. The

following proposition describes the simplest approximation based on a trapezoidal

quadrature rule.

Proposition 11 (Approximation of fibre pair-potential). By applying a trapezoidal

quadrature rule to equation 3.28, the fibre pair-potential may be approximated by

the following expression

h̃2(ϕ,ψ) = c2 ∆lϕ ∆lψ
Nϕ

∑
i=1

Nψ

∑
j=1

wi j hθθθ

(
ρρρ
(
xxxϕ(ui),xxxψ(v j)

))
, (3.44)

where the weights are taken from the following weight matrix W

W = (wi j) =



1
4

1
2 · · ·

1
2

1
4

1
2 1 · · · 1 1

2
...

...
...

...

1
2 1 · · · 1 1

2

1
4

1
2 · · ·

1
2

1
4


(3.45)

and

ui =
∆lϕ
2

+(i−1)∆lϕ , ∆lϕ =
lϕ
Nϕ

,

v j =
∆lψ

2
+(j−1)∆lψ , ∆lψ =

lψ
Nψ

,

for given sampling rates Nϕ and Nψ of the fibres ϕ and ψ , respectively. For a

degenerate case — when one of the sampling rates is one — the following weights

vector is used instead of matrix W

w = (w j) =
(

1
2
,1, . . . ,1,

1
2

)
.

166

Proof. According to the trapezoidal quadrature rule [111, Ch.4] applied for approx-

imating integrals of the form
uN∫
u1

du
vM∫
v1

dv f (u,v), we need to calculate the weights

ui+1∫
ui−1

du
v j+1∫
v j−1

dvφi j(u,v) for the function f (u,v) being interpolated by f (u,v)= ∑
i j

fi jφi j(u,v),

with φi j(u,v) = φ u
i (u)φ v

j (v), f (ui,v j) = fi j, and

φ
x
i (x) =

x− xi−1

xi− xi−1
χ[xi−1,xi)(x) +

x− xi+1

xi− xi+1
χ[xi,xi+1)(x) .

Thus, when considering a regular grid for both dimensions
{
(ui + (i− 1)∆u,v1 +

(j−1)∆v)
}

, for a corner weight w11 we calculate the following integral

w11 =
∫∫

φi j =
u2∫

u1

du
u−u2

−∆u

v2∫
v1

dv
v− v2

−∆u
=

1
2

1
2

∆u∆v =
1
4

∆u∆v.

The same applies to the other corner weights w1M, wN1, and wNM. For the border

samples (u1,v j), 1 < j < M, the corresponding weights are

w1 j =
u2∫

u1

du
u−u2

−∆u

 v j∫
v j−1

dv
v− v j−1

∆v
+

v j+1∫
v j

dv
v− v j+1

−∆v


=

1
2

(
1
2

+
1
2

)
∆u∆v =

1
2

∆u∆v.

Weights wN j, wi1, and wiM are calculated in the same way, for 1 < i < M. And

finally, the weights corresponding to the internal samples become

wi j =

 u j∫
ui−1

du
u−ui−1

∆u
+

ui+1∫
ui

du
u−ui+1

−∆u

 v j∫
v j−1

dv
v− v j−1

∆v
+

v j+1∫
v j

dv
v− v j+1

−∆v


=
(

1
2

+
1
2

) (
1
2

+
1
2

)
∆u∆v = ∆u∆v.

Nϕ and Nψ are usually chosen such that ∆lϕ ≈ ∆lψ (e.g., by choosing a common,

small enough sampling length ∆l and by assigning Nϕ = blϕ/∆lc and Nψ = blψ/∆lc).

167

A linear fibre pair-potential based on a piecewise constant interaction function is

derived by a straightforward substitution of point pair-potential h(·)in equation 3.44

by expression 3.41, and is described by the following Proposition.

Proposition 12 (Approximation of linear fibre pair-potential). A linear fibre pair-

potential with interaction model 3.41 can be approximated by the following expres-

sion

h̃2(ϕ,ψ) = c2 ∆lϕ ∆lψ
Nϕ

∑
i=1

Nψ

∑
j=1

wi j ∑
α

θαβ ∗ Iα

(∥∥ϕ(ui)−ψ(v j)
∥∥) , (3.46)

where β ∗ ∈ {1, . . . ,Mw} is such that the orientation difference between ϕ̂̂ϕ̂ϕ and ψ̂̂ψ̂ψ

satisfies

ρw(xxxϕ(u),xxxψ(v)) ∈ [wβ ∗−1,w
∗
β
).

3.6 Parametric synthesis of linear fibres systems

Random systems of linear fibres will be simulated by applying (discrete-time) Metropolis-

Hastings algorithm. The algorithm of this type clearly belongs to a group of paramet-

ric synthesis methods as the distribution of resulting arrangements of fibre systems

can be controlled by the parameters of linear fibre model (e.g., one can alternate

the density of fibres, the fibre orientation distribution, orientation correlations be-

tween neighbor fibres etc). We describe Metropolis-Hastings simulation algorithm

applied to generate samples from the space of linear fibre systems in Section 3.6.1.

In Section 3.6.2 all necessary data structures and miscellaneous algorithms to opti-

mize simulation of linear fibre systems are developed. In Section 3.6.3 the results of

simulations based on several simple piecewise constant interaction models are pre-

sented and it is noticed that more advanced simulation algorithms are required to

168

solve the problem of a resulted inadequate fibre density and to include constrained

simulation.

3.6.1 Detailed balance equation for linear fibres

We generate samples of fibre systems by running a discrete-time Markov chain {XXXk}

with Metropolis-Hastings dynamics described in Section 3.3.4. Every state of the

Markov chain is a fibre system, XXXk = ϕ1 ◦ϕ2 ◦ . . .◦ϕn, of a finite number of fibres.

We only consider “birth” and “death” events applied to a current state of the Markov

chain, following recommendations in [52], that stated that avoiding the recombina-

tion transitions (pbd = 1 in equation 3.17) would drastically improve the convergence

rate of a Markov chain of point configurations {Xk}. Table 3.3 summarizes key ob-

jects of the Metropolis-Hastings Birth-and-Death (MH-BnD) dynamics.

Notation “birth” “death”

Current state XXXk Φ Φ

Selection probability q(Φ) 1−q(Φ)

Proposal update generate ψ delete an item ϕi

density w.r.t. ν(dψ) b(ψ,Φ) d(ϕi,Φî)

Acceptance A(Φ◦ψ|Φ) = min{1,r(ψ,Φ)} A(Φî|Φ) =

probability min{1,1/r(ϕi,Φî)}

Next state, Φ′ Φ◦ψ Φî ≡Φ\ϕi

Table 3.3: Notation for one step of Metropolis-Hastings “Birth-and-Death” algorithm

(MH-BnD).

Simulation starts from an empty fibre system and proceeds by performing a series

of uniform steps (transitions) until an acceptable arrangement of fibres is reached (or

169

by using some other empirical stopping criterion). For XXXk = /0, only “birth” transi-

tions are allowed. A high-level description of one step of the MH-BnD is given in

Algorithm 2.

Algorithm 2 One iteration of Metropolis-Hastings BnD algorithm for generating

fibre systems.
INPUT:

• a current state XXXk = Φ = ϕ1 ◦ϕ2 ◦ . . .◦ϕn,

• a description of X and functions q(Φ), b(ψ,Φ), d(ϕi,Φî), r(ψ,Φ)

OUTPUT:

the next state XXXk+1 = Φ′, which could be XXXk+1 = Φ if a proposal for a new

state is rejected.

1. choose a “birth” event with probability q(Φ) or a “death” event with probability

1−q(Φ).

2. “birth”. pick a new fibre ψ distributed according to density b(ψ,Φ), and accept

it with probability min{1,r(ψ,Φ)}, so that XXXk+1 = Φ◦ψ; otherwise, XXXk+1 =

Φ.

3. “death”. pick an existing fibre ϕi from the current fibre system Φ accord-

ing to probability d(ϕi,Φî), and accept deleting the fibre with probability

min{1,1/r(φi,Φî)}, XXXk+1 = Φî; otherwise, XXXk+1 = Φ.

A transition likelihood function r(ψ,Φ) is chosen so as to satisfy the following

170

detailed balance equation

[1−q(Φ◦ψ)] d(ψ,Φ) A(Φ|Φ◦ψ) f (Φ◦ψ)

= q(Φ) b(ψ,Φ) A(Φ◦ψ|Φ) f (Φ) . (3.47)

For the “birth” event the likelihood function r(ψ,Φ) = rb(ψ,Φ) is given by

rb(ψ,Φ) =
f (Φ◦ψ)

f (Φ)
1−q(Φ◦ψ)

q(Φ)
d(ψ,Φ)
b(ψ,Φ)

= λc(ψ,Φ)
1−q(Φ◦ψ)

q(Φ)
d(ψ,Φ)
b(ψ,Φ)

. (3.48)

For the “death” event, r(ϕi,Φî) = rd(ϕi,Φî) is given by

rd(ϕi,Φî) =
f (Φî)
f (Φ)

q(Φî)
1−q(Φ)

b(ϕi,Φî)
d(ϕi,Φî)

=
1

λc(ϕi,Φî)
1

1−q(Φ)
q(Φî)

1
d(ϕi,Φî)
b(ϕi,Φî)

=
1

rb(ϕi,Φî)
. (3.49)

For Gibbs fibre distributions f (Φ)= exp{Ũ(Φ)}/Z with the total energy model 3.35,

the conditional intensity λc is given by

λc(ψ;Φ) =
f (Φ◦ψ)

f (Φ)
= exp

{
β (ψ) + h̃1(ψ) + ∑

ψ∼
R

ϕ j

h̃2(ψ,ϕ j)

}
, (3.50)

if ψ /∈Φ = ϕ1 ◦ϕ2 ◦ . . .◦ϕn, and

λc(ϕi;Φî) =
f (Φ)
f (Φî)

= exp

{
β (ϕi) + h̃1(ϕi) + ∑

i 6= j
ϕi∼

R
ϕ j

h̃2(ϕi,ϕ j)

}
, (3.51)

otherwise. Density function b(ψ,Φ) and the probabilities d(ϕi,Φî) should be chosen

to be as simple as possible to make transition steps easy to perform. We propose

using the following constant-birth Metropolis-Hastings model (MH-BnD-CB) for

simulation a system of linear fibres: it has a constant selection rate qb, creates a new

fibre uniformly distributed along X during the “birth” step, picks an arbitrary fibre for

171

deletion from the current fibre system at the “death” step, and accpets the resulting

proposals according to the transition likelihood r(ψ,Φ). The Table entitled by ”MH-

BnD-CB” summarizes an iteration step of MH-BnD-CB dynamics applied for linear

fibres.

MH-BnD “Constant birth” (MH-BnD-CB)

q(Φ)≡ qb Probability of “birth” event

b(ψ,Φ) = 1
ν(X) Density for a new fibre candidate

d(ϕ,Φî) = 1
n+1 Probability to delete ϕi from Φ

r(ψ,Φ) = λc(ψ;Φ)1−qb
qb

ν(X)
n+1 “birth” transition likelihood

r(ϕi,Φî) = λc(ϕi;Φî)
1−qb

qb

ν(X)
n “death” transition likelihood

Drawing a sample, uniformly distributed on X is straightforward: first, a random

location for a new fibre is uniformly sampled from a given simulation domain XP

(see equation 3.38); second, its length is uniformly sampled from a given length

domain XL; and, third, its orientation is uniformly sampled from XA. XP, XL, and

XA are arbitrary compact subsets of R2, [0,∞), and [0,π), respectively, with the only

restriction for XL to be a set of the form [0, lmax]; and ν(X) = |XP| · |XL| · |XA|. An

accepted proposal is added to the current fibre system and, possibly, is subdivided

along its interior at the locations where it intersects the located nearby fibres, so that

the resulting set of fibres obeys the fibre system definition.

Neighborhood relation between the linear fibres ∼
R

is defined by specifying inter-

action area around linear fibre. We call it (interaction) fibre vicinity (or, interaction

fibre neighborhood) B(ϕ,R) of radius R which includes all the points near the fibre

172

located no farther than distance R

B(ϕ,R) =
{

x ∈ R2, min‖x−ϕ‖ ≤ R
}

.

Then, we call two fibres ϕ and ψ being neighbors if each fibre is in vicinity of the

other fibre

ϕ ∼
R

ψ ⇐⇒ B(ϕ,R)∩ψ 6= /0. (3.52)

For example, for the linear fibre model with piecewise constant interaction func-

tion hθθθ given by equation 3.41, the neighborhood relation will be specified by the

maximum interaction radius RM, i.e., ϕ ∼
RM

ψ for two fibres ϕ and ψ .

The algorithm intends to run until the equilibrium is reached. However, there is

no a deterministic simulation termination criterion available for MH-BnD-CB type

algorithm to the best of our knowledge. We suggest using empirical stopping criteria

based on the average statistics of birth/death event rates measured along a substantial

number of recent iterations. For example, one can stop simulation when actual birth

and death rates are within 20-30% relative difference, or/and when the same propor-

tion applies for the recent rejection rates. A successful adaptation of the exact simu-

lation algorithm developed for point processes — an alternative Metropolis-Hastings

type algorithm which provides a deterministic way for exit [64, 71, 70] — for the

case of fibre systems is believed to be not feasible at this point.

3.6.2 Synthesis algorithm

The synthesis algorithm for generating arrangements of fibres in the plane requires

specifying the parameters of the fibre interaction model (given by the density function

f) and the parameters related to Metropolis-Hastings (MH) iterations, and choosing

some stopping criterion, as was discussed in the previous Section. While most of the

173

steps of MH algorithm are straightforward to implement, optimality aspects of the

iterations should be discussed father.

Two potentially expensive operations that are performed at every step of MH

algorithm are

MH-O1 calculating the total pair-potential (as a part of the conditional intensity λc

given by equations 3.50 and 3.51) for a given fibre against all the fibres located

in its proximity;

MH-O2 adding a new fibre to the current fibre system during “birth” step.

Both operations make geometric search queries on localizing the neighbors for a

given fibre, so that the performance of these operations depends on how optimal the

neighbor search query is implemented.

For the first operation, we calculate pair-potentials only between a given fibre ψ

and any, generated previously, fibre ϕ which is no farther from ψ than some interac-

tion radius R, i.e., ψ ∼
R

ϕ and ϕ ∈ Φ. The pair-potentials with other fibres are zero

and should be disregarded in calculations. The result of the neighbors search query

applied for the fibres from Φ will be denoted by Nb(ψ;Φ,R)

Nb(ψ;Φ,R) =
{

ϕ ∈Φ | ψ ∼
R

φ

}
. (3.53)

The second operation requires finding all fibres in the current configuration which

intersect a new fibre. In our language, this fibres are denoted by Nb(ψ;Φ,0). All

involved fibres, ψ ◦Nb(ψ;Φ,R), should be dissected to form a new fibre subsystem

with the intersection points becoming corresponding end-points of the dissected fi-

bres. Finally, this subsystem replaces fibres from Nb(ψ;Φ,0) within Φ to form a new

fibre system Φ′ (an example is shown in Figure 3.19). Therefore, the complexity of

174

the second operation is determined by the complexity of the neighbor search query

Nb(ψ;Φ,0). Comment: To make the operation more robust, distance 0 is usually

replaced by a small distance ∆ρ . Thus, the candidates for intersection test with a

given fibre psi are taken from Nb(ψ;Φ,∆ρ).

2ϕ
4ϕ

3ϕ
1ϕ

ψ

2ϕ′
4ϕ

3ϕ′
1ϕ

ψ ′′

ψ ′
3ϕ′′

Figure 3.19: Dissection of fibres during adding a new fibre ψ to a fibre system Φ =

ϕ1 ◦· · ·◦ϕ4. Φ will be replaced by Φ′ = Φ\Nb(ψ;Φ,0)◦Φψ , where Φψ = ψ ′ ◦ψ ′′ ◦

ϕ ′2 ◦ϕ ′3 ◦ϕ ′′3 and Nb(ψ;Φ,0) in this case is {ϕ2,ϕ3}.

The algorithm of finding the neighbors Nb(ψ;Φ,R) can be implemented by test-

ing each of n fibres of the current configuration Φ against the neighborhood relation

∼
R

with a given fibre ψ . This brute-force strategy clearly takes O(n) time, n = N(Φ).

In reality, however, a fibre have no or only a few neighbors, so that the number of

tests necessary to perform on the neighborhood relation could be much smaller than

O(n). To avoid testing the fibres that are far apart we develop an additional data

structure with the size O(n) which is essential in maintaining a fast lookup function

that searches for neighbors only in a vicinity of a given fibre.

The simulation domain X can be enclosed in a finite size rectangle domain C,

X ⊆C, and the rectangle domain is partitioned by a set of cells {ci}, C = ∪ici. Every

cell ci has a list of references to all fibres which pass the cell:

F(ci;Φ) =
{

ϕ ∈Φ |ci∩ϕ 6= /0
}

.

175

ψ

Figure 3.20: Neighborhood search query Nb(ψ;Φ,R) optimized by using a domain

partition. Only fibres (blue line segments) passing the cells (filled light blue rectan-

gles) in the vicinity of fibre ψ , denoted by B(ψ,R) (rose bounded area), are tested

against the neighborhood relation.

Different partitioning strategies can be applied to the domain C [31], and a choice

depends on many factors including but not restricted to the estimated fibre density

and/or an average fibre length of the target fibre interaction model. An easy-to-

implement choice is to use a regular partitioning where all the cells are of the same

rectangular shape and the same dimensions: ci j = c + i∆xeeex + j ∆yeeex, C = ∪i jci j.

Then the lookup function returns all the cells located in the vicinity of the fibre, so

that the candidates for neighbors are picked from the found cells. This guarantees

that only close fibres will be tested and the number of tests is proportional to the

average fibre density multiplied by the area of an average fibre’s vicinity, which is

approximately equal to N̂(XXX)
|X | ·

∣∣l̂ϕ +R
∣∣2. The steps are summarized in Algorithm 3

and illustrated in Figure 3.20.

Given in its original form, the synthesis algorithm 3 may produce fibre systems

176

Algorithm 3 Fibre neighborhood search Nb(ψ;Φ,R).
PREREQUISITES: a simulation domain partition ci, every ci has links F(ci,Φ);

a global test index iT .

INPUT:

a fibre ψ , a current fibre system Φ, and an interaction radius R.

OUTPUT:

Nb(ψ;Φ,R).

1. find cells c(ψ) which are in a vicinity of ψ: c(ψ) =
{

ci ∈C |ci∩B(ψ,R) 6= /0
}

.

2. if ∪c∈c(ψ)F(c,Φ) 6= /0 increase the global index iT , otherwise, return the empty

set.

3. for every c ∈ c(ψ) and for each ϕ ∈ F(c,Φ)

skip neighborhood test if ϕ has been already labeled by iT value;

otherwise, label ϕ by iT value and perform the neighborhood test; if ψ ∼
R

ϕ

then include ϕ to Nb(ψ;Φ,R).

177

with a variety of unwanted features: narrow gaps between close aligned fibres, some

fibres turn out to be extremely short, connectivity between certain fibres are unreal-

ized (these cases are shown in Figure 3.21).

(a) (b) (c)

Figure 3.21: Fibre configurations with undesirable features (top row) and possible

solutions (bottom row).

We developed a relaxation scheme which modifies the locations of those pairs of

fibres which are in close proximity to each other. Some proximity radius R∆ controls

how close individual fibres can approach each other. By applying the relaxation

scheme we want to ensure that (1) two close fibres ϕ and ψ with ϕ ∼
∆R

ψ should be

connected and (2) there are no extremely short fibres which length values are smaller

than R∆.

The relaxation scheme needs to be applied at the “birth” step of MH algorithm

when a new fibre ψ of a length value greater than the proximity radius R∆ is added

to the current fibre configuration. First, we relax the end-point locations ψ(0) and

ψ(1) if either of them is located in the proximity to the interia of the existing fibres.

The end-point are projected to the corresponding interia giving rise to new end-points

178

ψ ′(0) and ψ ′(1), so that we replace ψ by ψ ′ [see Figure 3.22 (a)].

ψ

(0)ψ (1)ψ

iϕ jϕ

ψ ′

iϕ jϕ

ψ

(a)

kϕ

jϕiϕ

kϕ

jϕiϕ

ψ ′

ψ ′
1ψ ′′ 1ψ ′′

3ψ ′′

(b)

jψ ′′

iϕ jϕ

1jψ ′′

iϕ′ jϕ′

2jψ ′′

jϕ′′

iϕ′′

(c)Figure 3.22: Relaxation scheme within a proximity (filled area) of a fibre ψ . (a)

Translation of end-points ψ(0) and ψ(1) towards interia of close fibres ϕi and ϕ j. (b)

Pulling the interior of ψ ′ towards end-points of fibres ϕi, ϕ j, and ϕk located within

the proximity of ψ ′. (c) Avoiding forming a segments shorter than the proximity

radius R∆.

Second, we relax the interior of fibre ψ ′ by moving it towards the end-points of

the fibres being in proximity to the interior of ψ ′. Such relaxation is performed by

dissecting ψ ′ into k sub-fibres ψ ′1 ◦ψ ′2 ◦ . . .◦ψ ′k and dislocating fibres {ψ ′j} towards

the end-points as shown in Figure 3.22 (b). Resulting set of fibres ψ ′′1 ◦ψ ′′2 ◦ . . .◦ψ ′′
k̃

closely approximates a given fibre ψ and is passed to the original procedure of adding

fibres MH-O2 described earlier in this Section. Third, while applying MH-O2 algo-

rithm to fibres {ψ ′′j }, one should avoid creating extremely short segments resulted by

intersection of a fibre ψ ′′j with two close enough fibres ϕ ′ and ϕ ′′ from Φ as shown

179

in Figure 3.22 (c). It is easy to prove that such situation is possible only when ϕ ′ and

ϕ ′′ have a common end-point. As such, we can shorten one of the fibres, enough to

satisfy the relaxation criteria. Such operation is safe and it does not change much the

total energy functional of the original fibre system.

3.6.3 Examples of generated linear fibres systems

We start with the simplest possible linear fibre model which has a trivial probability

distribution function (pdf) consisting of only a zero-order potential

f (Φ) = exp
{

∑
i

β (ϕi)
}

/Z, (3.54)

where zero-order potential β (ϕ) is given in its general form by equation 3.33. Such

model is an analogue of the Poisson process as interaction between the fibres is not

included to pdf. Therefore, we call a process, corresponding to this model, as Poisson

linear fibre process. We use translation and rotation invariant kernel functions h0 for

zero-order potentials, so that

β (ϕ) = β0lϕ . (3.55)

A parameter β0 defines a concentration of the linear fibres.

Example 12.1 Poisson linear fibre system

We collected several examples of Poisson type fibre processes in Figure 3.23. In the

left column, a pair of images with fibre arrangements generated by the standard line

segment process with different fibre concentration levels are illustrated. Such process

is formed by populating a given simulation domain with overlapping line segments

of a given length range. Intersection tests are not performed during simulation of the

process. The images on the right show samples of our Poisson linear fibre process

180

a b

c d

Figure 3.23: Poisson type fibre processes with different fibre concentration levels (in-

creasing from top to bottom). Line segment process (on the left) versus our Poisson

homogenous linear fibre process (on the right) with pdf given by equation 3.54. Total

fibre length for the images in the first row is lΦ(a,b) = 218 and for the images in the

second row is lΦ(c,d) = 383.

181

with concentration values chosen as β0 = 1.5 and β0 = 2.5 (from top to bottom).

The phase space for both processes has the following components: XP = [0,7]2,

XL = [0,1], and XW = [0,2π). The proximity radius for the simulation algorithm is

set to R∆ = 0.01.

The main difference between the samples of these processes is that fibre systems

of Poisson linear fibre process have larger population of short segments then the

line segment processes do. Indeed, the systems in each row have the same total

fibre length: lΦ = 218 for the first row and lΦ = 383 for the second. However, the

number of the fibres in the systems illustrated on the left column are approximately

N(Φ(a)) = 300 and N(Φ(c)) = 300, while for the right column: N(Φ(b)) = 1,300 and

N(Φ(d)) = 3,900.

a b

Figure 3.24: Poisson linear fibre processes with large proximity radii R∆.

A simple way to introduce regularity to Poisson linear fibre systems is to sub-

stantially increase the proximity radius R∆ (refer to the previous section for its def-

inition). Applying relaxation schemes defined in Figure 3.22 during simulation of

182

Poisson linear fibre process removes short fibres and merge/link relatively far fibres.

For relatively large values of R∆ such simulation produces fibre systems with pro-

found level of regularity, though such systems are not distributed as Poisson linear

fibre processes anymore and can be thought of as a projection of a Poisson process

onto such a phase space where disconnected fibres can not be closer to each other

than the proximity radius. Figure 3.24 illustrates two examples of fibre systems gen-

erated from Poisson processes with proximity radii R∆ = 0.25 and R∆ = 0.15 used for

sub-figure (a) and sub-figure (b), respectively [which is one order of magnitude larger

than the corresponding original value of the proximity radius used in generating fibre

system shown in Figures 3.23].

Other variations of the Poisson linear fibre process are possible when zero-order

potential model β (ϕ) becomes depending on the location and/or orientation of the

fibres. Such variations are another way to bring about some regularity to a completely

random Poisson process. We demonstrate here two different models for zero-order

potentials based on translation invariant kernel function hT I
0 and rotation invariant

kernel function hRI
0 , and collect the resulting fibre systems in Figures 3.25-b,d and

3.25-c, respectively.

The linear fibre system shown in Figure 3.25-b is generated against a zero-

order potential given by equation 3.39 based on a kernel function hT I
0 (ϕ̂ϕϕ) which de-

pends on the angle between a fibre’s unit direction ϕ̂ϕϕ and a given fixed vector V

(hT I
0 (ϕ̂ϕϕ) = |ϕ̂ϕϕ ·V |k, k = 1.5, and the density parameter c0 = 6.0). For the fibre system

illustrated in Figure 3.25-c, the zero-order potential β RI is given by equation 3.40,

where hRI
0 (p) = py/dy(XP) and dy(XP) is the y-size of the simulation domain XP

(c0 = 2.5). This is an example of inhomogeneous Poisson linear fibre system whose

statistical properties vary along the simulation domain X.

The fibre system shown in Figure 3.25-d is another example of inhomogeneous

183

a b

c d

Figure 3.25: Poisson fibre processes: homogeneous (a) versus inhomogeneous (b-d).

184

Poisson linear fibre system with a zero-potential depending on a vector field V (p)

illustrated in Figure 3.40-d: β (ϕ;V) = c0

lϕ∫
0

du h0 (ϕ̂ϕϕ(u),ϕ(u);V). A kernel for such

a β is given by h0 (vvv, p;V) = |vvv ·V (p)|k. For the example we choose k = 2.0 and

c0 = 6.0. We use the same phase space for all the examples illustrated in Figure 3.25:

XP = [0,7]2, XL = [0,1], and XW = [0,2π); and also R∆ = 0.01.

In this work we generate samples of Gibbsian linear fibre processes based on the

following probability density function

f (Φ) = exp
{

∑
i

β0lϕi + ∑
i

h̃1(ϕi) + ∑
i< j

ϕi∼
R

ϕ j

h̃2(ϕi,ϕ j)
}

/Z, (3.56)

where first-order potentials h̃1 and pair-potentials h̃2 are given in their general form

by equations 3.34 and 3.28, respectively, and Φ = ϕ1 ◦ϕ2 ◦ . . .◦ϕn.

We focus only on piecewise constant interaction functions hθθθ , given by equa-

tion 3.41, which define multi-variate point pair-potentials h in the interaction integrals

of the first-order potentials and pair-potentials, so that, for example, our pair-potential

has the following form

h̃2(ϕ,ψ) = c2

lϕ∫
0

du

lψ∫
0

dv hθθθ

(
ρρρ (xxxϕ(u),xxxψ(v))

)
, (3.57)

The distance functional ρρρ is a vector function defined as follows

ρρρ(xxxϕ(u),xxxψ(v)) = (ρd(xxxϕ(u),xxxψ(v)), ρw(xxxϕ(u),xxxψ(v))), (3.58)

ρd(xxxϕ(u),xxxψ(v)) = ‖ϕ(u)−ψ(v)‖ ,

ρw(xxxϕ(u),xxxψ(v)) = gw(δΩ(ϕ̂ϕϕ(u), ψ̂ψψ(v))) ,

where

δΩ(vvv1,vvv2) = |ω(vvv1)−ω(vvv2)| ,

gw(δw) =
π

2
−
∣∣∣π
2
−δw

∣∣∣ ,
185

and ω(vvv) is the minimum angle made from the positive x-axis to vvv or −vvv and ϕ̂ϕϕ(u)

is the tangent at ϕ(u).

For easier interpretation of the interaction function hθθθ we convert the sample

values θαβ to their logarithmic versions, so that hθθθ will be parameterized by point

interaction rate constants γαβ as follows

hθθθ (d,w) = ∑
α,β

ln(γαβ) χ[Rα−1,Rα)(d) χ[wβ−1,wβ)(w) . (3.59)

In this case, we call the fibre system model inhibiting within the corresponding

ranges of distances and angles [Rα−1,Rα) and [wβ−1,wβ) if the interaction rates are

smaller than one, γαβ < 1; non-interacting if the rates equal to one, γαβ = 1; and

attracting if the the rates are greater than one, γαβ > 1.

a b

Figure 3.26: (a) Poisson homogeneous linear fibre process versus (b) linear fibre pro-

cess with inhibiting model favoring cross and aligned configuration of close fibres.

Example 12.2 Gibbsian linear fibre system with a “cross-pattern”

Let us set a phase space components as XP = [0,7]2, XL = [0,1], and XW = [0,2π).

186

The intensity of the zero-order term is chosen as β0 = 5.5. The proximity radius is set

to R∆ = 0.025. Point interaction function hθθθ is defined by its constant values within

corresponding ranges of distances and angles presented in Table 3.4. Figure 3.27-

a shows a superimposed polar plots of the point interaction function for two radii

R1 = 0.1 (orange curve) and R2 = 0.25 (green curve). Fibre systems based on the

fibre potential models with such interaction rates favor cross configuration of close

fibres.

[0,w1) [w1,w2) [w2,w3) [w3,w4) [w4,w5)

0≤ d < R1 = 0.1 10−6 10−6 10−6 10−6 10−6

R1 ≤ d < R2 = 0.25 1 10−6 10−6 10−6 1

Table 3.4: Interaction rates γαβ which define the values of point interaction func-

tion hθθθ constant within corresponding ranges of distances [Rα−1,Rα) and angles

[wβ−1,wβ). Orientation angles are w1 = 18◦, w2 = 36◦, w3 = 54◦, w4 = 72◦, and

w5 = 90◦.

Strong regularity in a fibre system distributed with such inhibiting interaction

model is clearly observed in Figure 3.26-b when compared with a sample of Poisson

homogeneous liner fibre model depicted in Figure 3.26-a.

3.7 User control on synthesis

Besides changing the “internal” state of a fibre system, like the parameters of its

underlying interaction model, one can also modulate the fibre system “externally”

to achieve necessary behavior of the system by imposing certain constraints to the

system or by making the internal parameters to depend on some external field. In this

187

0.11R = 0.252R =

1.0
610−610−

0.11R = 0.252R =

1.0
610−610−

a b

0.11R = 0.252R =

1.0
610−610−

0.11R = 0.252R =

1.0
610−610−

1.0

c d

Figure 3.27: Polar plots of different point interaction functions hθθθ given by the fol-

lowing tables: (a) Table 3.4 (b) Table 3.5, (c) Table 3.6, and (d) Table 3.7. Orange

curves define the values hθθθ (0,w), while green curves correspond to hθθθ (0.1,w)+1.

188

section we introduce a set of control which enables users to generate more regular

fibre systems with specified fibre density, with enforced connectivity between the

fibres, and with a given degree of local or global alignment with a given target vector

field or a set of curvilinear features. We give a general description of fibre models

under constraints based on a simulated annealing algorithm and weight functions for

user control in Section 3.7.1 with providing more detail and examples in the sections

which follow. Distance based constraints with enforce attaining a given total length

of the fibre system and/or a given degree of connectivity of the fibres are explained

in Sections 3.7.2 and 3.7.3, respectively. Fibre models of hard- and soft-constraints

support fibre system alignment along a given orientation field and are based on weight

functions are described in Sections 3.7.4 and 3.7.5, respectively.

3.7.1 User control models through distance based constraints and

weighted models

From many different techniques to enable an additional control on an original simu-

lation model, in this work we mainly focus on a technique of imposing constraints to

the fibre interaction model and a method of introducing varying weights within the

fibre interaction kernel. The main idea of the first technique is to simulate the original

fibre system within a constraint space. A possible implementation of this model is

to run the original MCMC algorithm described in Section 3.3.4 and reject those fibre

system candidates which leave the constraint space. The second method introduces

a series of weights within the interaction model kernels which regulate the degree of

alignment of the fibre system with a given vector field globally or with a given set

of curvilinear features locally, near the feature medial axes. When the weight func-

tions of the first type are used, we refer to it as applying “hard-constraints”, while the

189

second type is attributed to “soft-constraints”.

A method of introducing constraints to the model of fibre system can be demon-

strated on a simple example from the conventional probability theory of generat-

ing random point samples from a given distribution. Suppose that we want to

generate samples of 2D points xxx = (x1,x2) normally distributed around the origin,

fxxx ∼ N(000,D), and located on a given ellipse of radius R, x2
1

a2 + x2
2

b2 = R2. This prob-

lem can be solved by applying an inverse transform sampling [120] if the cdf of just

described distribution can be explicitly found and inverted. However, it would not

be feasible to apply this method for the case of the random fibre systems because

their probability measures contain irresolvable partition functions. Instead, we can

simulate a Markov Chain by running Metropolis-Hastings algorithm with a proper

transition pdf q(yyy|xxx) and an acceptance probability A(yyy|xxx). A constraint for a point to

be on an ellipse can be expressed by the Euclidean distance to the ellipse ρe(xxx) = 0.

We denote by f (xxx&ρe(xxx) = 0) a conditional pdf of the points distributed normally

and located on the ellipse. To satisfy the detailed balance equation the following

expression for the acceptance probability should be used

A(yyy|xxx) = min

{
1,

fe(yyy&ρe(yyy) = 0)
fe(xxx&ρe(xxx) = 0)

q(yyy|xxx)
q(xxx|yyy)

}

= min

{
1,

fe(yyy|ρe(yyy) = 0)
fe(xxx|ρe(xxx) = 0)

fc(ρe(yyy) = 0)
fc(ρe(xxx) = 0)

q(yyy|xxx)
q(xxx|yyy)

}

It is highly likely that fc(ρe(yyy) = 0) = 0 most of the time which will lead to a very

high rejection rate during MH steps. This results in a Markov chain which will never

generate any reasonable sample at all.

Relaxing the distance constraint temporarily is an alternative successful approach

which is a variant of a well-known simulated annealing algorithm, the technique

which we will be using in this work for enforcing distance-based constraints on fibre

190

system models. The main idea of the simulated annealing algorithm is to include an

additional “annealing” energy term to the original probabilistic model. Such energy

term may represent how “far” is a given sample from satisfying some criterion, or

constraint. In our example, such term depends on the distance of a sample to the

ellipse. What makes this method unique is that a candidate for the energy term also

depends on a relaxation parameter t which intuitively represents a “temperature”.

The simulated annealing algorithm starts its iterations with high temperature values

and gradually cools the temperature down. When the temperature is high, most of the

samples will be accepted according to the original unconstraint model, even though

they may have a large “distance” to the constraint space. After a certain number of

steps the temperature is gradually decreased, so that the samples “far” from satisfy-

ing the constraints are penalized more due to decreasing annealing energy term, and

are more likely to be rejected. The following expression is a general form for the

annealing energy functional

E(t,xxx) =
exp
{
−ρc(xxx)/t

}
Z̃

, (3.60)

where Z̃ is a partition function depending on a temperature parameter t. A combined

pdf for sampling a distribution containing an annealing term is given by the following

formula

fsaa(t,xxx) = f (xxx)E(t,xxx). (3.61)

Back to our example, pdf is given by f (xxx) = 1√
2π|D|

e−xxxDxxx and ρc(xxx) = x2
1/a2 +

x2
2/b2−R2.

We define a distance based annealing energy functional for the fibre systems in

the same way as we did it for point distributions above

E(t,Φ) =
exp
{
−ρc(Φ)/t

}
Z̃

, (3.62)

191

so that the combined pdf becomes

fc(t,Φ) = f (Φ)E(t,Φ). (3.63)

The only new additional requirement for the annealing term to be valid within the

framework of the fibre systems is its conservation for different partitions of the

same fibre system: the value E(t,Φ) should be the same for any valid partition

ϕ ′1 ◦ϕ ′2 ◦ . . .◦ϕ ′m of a fibre system Φ and a temperature value t. This can be eas-

ily reduced to the following distance conservation condition

Φ = ϕ1 ◦ϕ2 ◦ . . .◦ϕn = ϕ
′
1 ◦ϕ

′
2 ◦ . . .◦ϕ

′
m,

ρc(ϕ1 ◦ϕ2 ◦ . . .◦ϕn) = ρc(ϕ ′1 ◦ϕ
′
2 ◦ . . .◦ϕ

′
m). (3.64)

The Metropolis-Hastings algorithm for generating fibre systems, which was de-

scribed earlier in Section 3.6.1, requires a simple update for the transition likelihood

functions rb and rd , which were defined in equations 3.48 and 3.49, respectively. For

example, the ‘ ‘birth” likelihood function rb(ψ,Φ) becomes

rb(t,ψ,Φ) = λc(ψ,Φ)λE(t,ψ,Φ)
1−q(Φ◦ψ)

q(Φ)
d(ψ,Φ)
b(ψ,Φ)

, (3.65)

with

λE(t,ψ,Φ) = exp

{
−ρc(Φ)−ρc(ψ ∪Φ)

t

}
. (3.66)

The “death” likelihood function rd is updated in the same way.

A simulated annealing algorithm based on the updated MH (SA-MH) iterations

may consist of the following straightforward steps:

1. Start with some large temperature value t = t0;

2. Repeat the following steps until t = tM (some small temperature value);

192

2.1. Perform N MH iterations for a current temperature value;

2.2. Decrease the temperature by some value ∆t, t = t−∆t.

In the next two sections we describe two types of distance functionals which define

a fibre total length constraint and a fibre connectivity constraint.

In contrast with the external constraints, the weighted models explicitly change

the original model by introducing varying weights. For our Gibbsian fibre system

distributions we scale their kernel functions by some weights W (·) which are specif-

ically designed to emphasize particular portions of each fibre and de-emphasize the

rest based on the fibre location and orientation. In our framework of linear fibres,

interaction potentials are given by the following formulas:

β (ϕ) = c0

lϕ∫
0

du h0 (xxxϕ(u)) , (3.67)

h̃2(ϕ,ψ) = c2

lϕ∫
0

du

lψ∫
0

dv h
(
ρρρ (xxxϕ(u),xxxψ(v))

)
. (3.68)

We define the following corresponding weighted potential models βW0 and h̃W
2

β
W0(ϕ) = c0

lϕ∫
0

du h0 (xxxϕ(u))W0 (xxxϕ(u)) , (3.69)

h̃W
2 (ϕ,ψ) = c2

lϕ∫
0

du

lψ∫
0

dv h
(
ρρρ (xxxϕ(u),xxxψ(v))

)
W
(
xxxϕ(u),xxxψ(v)

)
, (3.70)

so that the total energy functional Ũ , defined by equation 3.35, with its potentials

replaced by their weighted versions for given weight functions W0(·) and W (·), be-

come

ŨW (ϕ1 ◦ϕ2 ◦ . . .◦ϕn) = ∑
i

β
W0(ϕi) + ∑

i
h̃W

1 (ϕi) + ∑
i< j

ϕi∼
R

ϕ j

h̃W
2 (ϕi,ϕ j). (3.71)

193

Example 12.3 Weighted homogenous Poisson processes

Suppose that a zero-order interaction kernel is constant, h0(xxxϕ(u))≡ b, and a weight

function is given by W0(xxxϕ(u)) = 1
2w(ϕ(u)) + 1

2 (i.e., the weight function depends

only on the fibre position). The interaction kernels of higher orders are set to zero.

Then the corresponding zero-order potential β becomes

β
W0(ϕ) = c0

lϕ∫
0

du b
(

1
2

w(ϕ(u))+
1
2

)
= c0 b

(
1
2

w̃(ϕ)+
1
2

)
lϕ .

The weight w̃(ϕ) =
lϕ∫
0

w(ϕ(u))du/lϕ represents “an average” weight along the fibre

ϕ and regulates the fibre density of the resulting model. When the weight value is

close to one, the model turns out to be an original Poisson model with intensity c0 b,

while as w̃ tends towards zero the resulting fibre system will be half dense comparing

to the one of the original model.

An example of a fibre system distributed with the density similar to kernel βW0(ϕ)

has been already generated earlier and shown in Figure 3.25-c.

3.7.2 Total length constraints

It was observed that the point processes with hard inhibition between the closely lo-

cated points usually generate more regular configuration of points than the processes

with soft inhibition do. As our Gibbs fibre interaction models are based on the point

potential integrals (see the equation 3.28), we expect to observe more regularity for

the fibre processes with hard point inhibition. However, the samples of hard inhibi-

tion fibre processes tend to be underpopulated, so that one should maintain a certain

level of fibre density to have a proper coverage of the simulation domain by fibres.

One of the methods to control the density of fibre system during synthesis is to

194

impose lower and upper bounds for the total length of the system, lT < lΦ = ∑
ϕ j∈Φ

lϕ j <

lmax, and keep the length of the resulting fibre system between the specified bounds.

In principle, it is possible to achieve this goal by performing trial and error analysis

changing the parameters of the zero-order interaction kernel 3.33. However, it re-

quires running many consecutive MH runs to select a right parameter. It is more effi-

cient to run simulated annealing MH algorithm once by providing the range [lT , lmax]

as a constraint of simulation. To use the algorithm described in the previous section

we have to define proper distance function ρc(Φ) which addresses the fibre system

total length condition.

Let δ l be the half size of the desired range of the total length values [lT , lmax],

i.e., δ l = lmax−lT
2 . For lΦ — the total length of the fibre system Φ — to be within

just specified range is equivalent to |lΦ− l| ≤ δ l, where l = lT +δ l. Satisfying such

inequality is equivalent to keeping the value for the following distance function equal

to zero:

ρl,δ l(Φ) =
(
|lΦ− l|−δ l

)
+ = 0. (3.72)

This distance function clearly satisfies the distance conservation condition given

by equation 3.64 as it depends on the total distance of the fibre system which is

partition-invariant. Therefore, we can apply the simulated annealing MH algorithm

(SA-MH) described in the previous section to generate fibre systems with defined lT

and δ l. Comment: we found the the simulation algorithm is more stable when the

parameter δ l is as small as the maximum possible length of the fibre in the phase

space. The resulting values lΦ for generated fibre systems were mostly concentrated

around given lT .

Figure 3.28 shows two intermediate states of a fibre system generated by SA-MH

algorithm. The fibre system has the same distribution as the one described in the ex-

195

a b

Figure 3.28: Snapshots of fibre systems corresponding to different SA-temperature

values t = 0.075 and t = 0.025.

ample 12.2 in Section 3.6.3 (see a fibre system sample Figure 3.26-b). The constraints

for this fibre system are chosen as lT = 350 and δ l = 5. The temperature parameter

varies in the range [0.025,1.0]. Figure 3.28 shows two snapshots corresponding to

the temperature values 0.075 and 0.025, respectively. The fibre system total length

values at those temperature values are lΦ = 211 and lΦ = 347 (as oppose to lΦ = 140

for the unconstrained fibre system depicted in Figure 3.26-b), respectively.

Fibre systems shown in Figure 3.28 demonstrate that with increasing fibre density

a fibre system constrained on the lΦ becomes more regular.

Figure 3.29 shows examples of different fibre system models under the same

total length constraint lT = 350. SA-temperature is in the range [0.01,1.0] for all

the examples. The fibre system shown in Figure 3.29-a is distributed as the system

from the previous example, and the fibre system shown in Figure 3.29-b has the

same distribution but smaller phase space X: the allowable fibre length was reduced

196

a b

c d

Figure 3.29: Different linear fibre systems generated under the same total length

constraint, lT = 350.

197

roughly two times, XL = [0.1,0.5]. The fibre systems shown in Figure 3.29-c and

Figures 3.29-d were generated from models whose pair interaction potentials favor

{30◦,60◦} and 45◦ angles between the fibres, respectively. Here is more detail on

point interaction model for the two last models:

Example 12.4 Linear fibre system with a model favoring {30◦,60◦} interaction

angles (Figures 3.29-c)

A phase space of this model is given by the following components XP = [0,7]2,

XL = [0,0.5], and XW = [0,2π). The intensity of the zero-order term is chosen as

β0 = 5.5. The proximity radius is set to R∆ = 0.025. Point interaction function hθθθ

is defined by its constant values within corresponding ranges of distances and angles

presented in Table 3.5. Figure 3.27-b shows a superimposed polar plots of the point

interaction function of this fibre model.

[0,w1) [w1,w2) [w2,w3) [w3,w4) [w4,w5)

0≤ d < R1 = 0.1 10−6 10−6 10−6 10−6 10−6

R1 ≤ d < R2 = 0.25 10−6 1 10−6 1 10−6

Table 3.5: Interaction rates γαβ which define the values of point interaction func-

tion hθθθ constant within corresponding ranges of distances [Rα−1,Rα) and angles

[wβ−1,wβ). Orientation angles are w1 = 18◦, w2 = 36◦, w3 = 54◦, w4 = 72◦, and

w5 = 90◦.

Example 12.5 Linear fibre system with a model favoring 45◦ interaction an-

gle(Figures 3.29-d)

198

A phase space of this model is given by the following components XP = [0,7]2,

XL = [0,0.5], and XW = [0,2π). Other parameters are set to β0 = 5.5, R∆ = 0.025.

Point interaction function hθθθ is defined by its constant values within corresponding

ranges of distances and angles presented in Table 3.6. Figure 3.27-c shows a super-

imposed polar plots of the point interaction function of this fibre model.

[0,w1) [w1,w2) [w2,w3) [w3,w4) [w4,w5)

0≤ d < R1 = 0.1 10−6 10−6 10−6 10−6 10−6

R1 ≤ d < R2 = 0.25 10−6 10−6 1 10−6 10−6

Table 3.6: Interaction rates γαβ which define the values of point interaction func-

tion hθθθ constant within corresponding ranges of distances [Rα−1,Rα) and angles

[wβ−1,wβ). Orientation angles are w1 = 18◦, w2 = 36◦, w3 = 54◦, w4 = 72◦, and

w5 = 90◦.

One should be careful in choosing the total length lower and upper bounds: the

pattern may become deteriorated when the lower bound is chosen too large. A fibre

system in Figure 3.29-d can be considered as an example of the constrained simula-

tion with overkilling value for lower bound lT . A “clearer” sample of the same fibre

interaction model but with smaller value for lT is shown in Figure 3.30-a (in this

case lT = 176 and minimum temperature value was 0.025). An obvious difference

between the original version, shown in Figure 3.30-b, and the clearer version of the

same model is in multiple overlapping of aligned and closely located fibres in the

case of the denser fibre system.

There is probably no deterministic way of selecting optimal values for minimum

and maximum SA-temperature parameter. We usually choose it trial and error man-

ner by choosing a lower bound value at which the system is not updated much during

199

a b

Figure 3.30: Possible pattern deterioration.

simulation for a relatively long sequence of MH steps.

3.7.3 Connectivity constraint

All examples of the fibre systems demonstrated so far are based on inhibiting in-

teraction models - described in a nutshell, only certain configurations of fibres are

favored when they are close to each other, while other configurations are penalized.

Such models are more effective in producing regular patterns than the attracting and

Poisson models are. However, a majority of fibres will be isolated making the result-

ing fibre systems scarcely inter-connected (such fibres, for example, can be seen in

the fibre systems shown in Figure 3.29). To improve connectivity of the fibres we

propose two strategies: one is to define a distance-based constraint to enforce the

fibre connectivity, and the other one is to run a coupled process which connects close

fibres based on a predefined set of rules.

200

A fibre system Φ can be represented as an undirected planar graph GΦ = (VΦ,EΦ)

embedded to a plane which supports the simulation domain. Fibres form the edges

of the graph, EΦ, while the fibre end-points and intersection points of the fibres con-

stitute the graph’s vertices VΦ. In this case the connectivity of the fibres can be

expressed in the language of the corresponding connectivity of the graph primitives.

The first strategy can be implemented in two ways by either imposing global or

local constraints. According to the first method, one would penalize the disconnected

components of a current fibre system graph by defining a constraint distance to be

equal to the number of connected components minus one, ρcn(Φ) = #conn-comp(GΦ)−

1. In this case, when all the fibres are connected, the constraint distance is zero. For

optimal implementation, one can maintain online bi-connected components which

allow performing quickly a test weather a new connected component is created when

a fibre is deleted (this would decrease the constraint energy and more likely reject

the deletion event). We leave the actual implementation for future, and concentrate

in this work more on local constraints which are faster and simpler to implement.

The idea behind our model of local connectivity constraints is to penalize the fi-

bres which have at least one hanging end-point. In the language of graphs, it means

that their underlying edges have at least one vertex with degree zero. During a fibre

system simulation we maintain a corresponding undirected planar graph GΦ, updat-

ing the graph whenever a fibre is added to or deleted from the system. A penalizing

term is calculated for every edge in the graph. A constraint distance ρcn(Φ) enabling

local connectivity constraint is a function of the underlying planar graph GΦ and is

defined by the following simple rules:

1. ρcn(Φ)≡ ρG
cn(GΦ) =

|EΦ|
∑
j=1

ρE(GΦ;e j) where e j ∈ EΦ;

2. For a given undirected planar graph G = (V,E) and a graph’s edge e ∈ E,

201

ρE(G;e) is defined as follows:

2.1. ρE(G;e) = 0, if deg
{

V (e,0)
}
6= 0 and deg

{
V (e,1)

}
6= 0;

2.2. For an edge e ∈ E with one vertex v0 = V (e,k), k = 0∨ 1, first, we traverse a

“linear chain” of edges in the graph starting from the vertex v0 and calculate its

length r′lin(v0) (a linear chain starting from a given vertex is a set of adjacent

edges {e jn ∈ E, n = 1,2, . . . ,N}, such that e j1 is adjacent to the vertex; for each

n < N, e jn 6= e jn+1 and the edge e jn is adjacent to the edge e jn+1; the vectors sup-

porting the edges are collinear; and, either e jN has an adjacent vertex with de-

gree zero or it is adjacent to a non-collinear edge which is different from e jN−1);

second, we find an edge e0 which was not encountered in the traversal and is

the closest to v0 — let the distance to e0 from v0 is denoted by r′ngb(v0); third,

we reduced the resulting distances r′lin(v0) and r′ngb(v0) to be as large as the in-

teraction radius RM [see equation 3.41], i.e., rlin(v0) = min
{

r′lin(v0),RM
}

and

rngb(v0) = min
{

r′ngb(v0),RM
}

; and finally, ρE(G;e) = min{rlin(v0),rngb(v0)};

2.3. For an edge e ∈ E with deg
{

V (e,0)
}

= 0 and deg
{

V (e,1)
}

= 0 we assign

ρE(G;e) = min{|e|, rngb(V (e,0)), rngb(V (e,1))}, where rngb(·) was defined

above.

We used the following notation above: deg{v} is the degree of a graph’s vertex v∈V ,

V (e,0) and V (e,1) are the “first” and “second” adjacent vertices of a given graph’s

edge e ∈ E.

Finally, we mix connectivity constraint with the total length constraint defined in

the previous section to form a model for generating systems with connected fibres.

The constraint distance for the model is a linear combination of the corresponding

constraint distances of the connectivity model components with a control parameter

202

wcn:

ρc(Φ) = wcnρcn(Φ)+ρl,δ l(Φ) . (3.73)

a b

Figure 3.31: Fibre process with the local connectivity constraint.

Linear fibre system with total length constraint described in example 12.5 is

placed side-by-side with a fibre system generated from the same model but with con-

nectivity constraints in Figure 3.31 (a) and (b), respectively. RM is set to the value of

the maximum interaction radius and the connectivity weight wc = 1. SA-temperature

is in the range [0.005,1.0].

The second strategy to improve connectivity of the fibres is to apply a relaxation

scheme to the simulation model. The fibre interaction model will be relaxed during

MH-algorithm generation run to address the fibre connectivity: the closely located

fibres are merged, linked, or split during simulation run. We distinguish three differ-

ent scenarios for fibre relaxation depending on the type of arrangement of the closely

203

a b

c d

Figure 3.32: Examples of candidates for fibre relaxation. Close fibres are either

connected or split at the encircled locations depending on the type of their arrange-

ment with respect to each other. Possible types are (a) overlapping aligned fibres, (b)

aligned fibres, (c) close fibres, and (d) an end-point of one fibre is close to the interior

of the other fibre.

located fibres: f ibre × f ibre, point × point, and point × f ibre. In the first sce-

nario, f ibre × f ibre, shown in Figure 3.32-a, two aligned fibres located in the close

proximity to each other are merged to form a new fibre. For this scenario as well

the others which follow we introduce a relaxation radius, Rx, which defines the size

of the proximity area. For the point × point scenario, which examples are shown

in Figure 3.32-b and -c, we find two fibres whose end-points are less than Rx apart.

Such fibres are connected to each other at a new point which is an average of the

end-points. In the point × f ibre scenario a fibre with its interior being close to an

204

end-point of another fibre, see Figure 3.32-d, is split into two fibres at the closest

point and the resulting fibres are linked to the fibre in the proximity.

M1 (a)

M1 (b)

M1 (c)

M1 (d)

M2 (a)

M2 (b)

1�

2�

1�

2�

M2 (c)

1� �

2� �

1� �

2� �

Figure 3.33: (M1) An example of point × point relaxation scheme which replaces

two fibres ψ1 and ψ2 located nearby by two connected fibres ψ ′1 and ψ ′2. (M2) Merg-

ing nearby fibres ψ1 and ψ2 in f ibre × f ibre relaxation scheme.

Examples of sequences of relaxation steps resolving all the scenarios are graph-

ically described in Figures 3.33 and 3.34. Red points in the figures correspond to

the points which are within a relaxation distance Rx from nearby fibres. Red arrows

205

represent a projection of corresponding points onto nearby fibres. The vertices of the

polygons filled with gray are averaged to form new vertices (colored in gray) which

are used as new end-point for fibres. At the end of the relaxation scheme the fibres in-

volved in the relaxation will be connected and slightly dislocated from their original

positions.

Relaxation scheme is implemented as a process coupled to our constrained

Metropolis-Hastings (MH) fibre simulation algorithm. It is invoked at certain times

during simulation to relax a specified number of fibres. The parameters of the com-

bined algorithm are the relaxation radius Rx, an angle threshold wx for an alignment

test between two close fibres, number of MH steps ncpld between consecutive runs of

coupled relaxation scheme, and the number of relaxation steps nlink within each such

run.

We applied the relaxation algorithm to the fibre systems shown in Figures 3.29-b

and 3.29-d (see the discussion to these figures for more detail on the fibre models).

Figure 3.35 shows the results of the simulations, where the following parameters

were used for the relaxation component: (a) Rx = 0.075, wx = 0.3 radians, ncpld =

250 and nlink = 50, while SA-temperature of the simulated annealing component

of the algorithm is within the range [0.01,0.5]; (b) Rx = 0.075, wx = 0.3 radians,

ncpld = 500, nlink = 200, SA-temperature is within the range [0.005,0.075].

3.7.4 Hard-constraints: weighted models to enforce aligning with

orientation vector field

Using weighted models is another powerful mechanism for generating new types of

random fibre systems. In this work we develop a number of weighted models which

enforce the fibres to be aligned with a given vector field.

206

M1 (a)

M1 (b)

M1 (c)

M2 (a)

M2 (b)

M1 (d)

l

m

M2 (c)

M2 (d)

l m�

1�

2�
�

1�

2�

�

1� �

2� �
���

��

1� �

2� �

��

Figure 3.34: Two examples of applying fibre relaxation scheme for more than two

fibres being in the relaxation proximity. (M1) an extended point × f ibre relaxation

scheme with replaces three fibres ψ1, ψ2, and φ by their linked versions ψ ′1, ψ ′2, φ ′,

and φ ′′. (M2) Same scenario as in M1 but with deleting a portion of the fibre φ which

length, l, is smaller than the relaxation proximity radius Rx.

207

a b

Figure 3.35: Fibre systems generated by applying relaxation schemes to the original

models shown (a) in Figure 3.29-b and (b) in Figure 3.29-d.

Suppose that we are given a vector field V : R2→ E (for the sake of brevity, in

some situations we will use Vp to denote a vector V (p)). We need to introduce an

alignment weight function w(v1,v2) which defines the degree of alignment between a

given pair of vectors v1 and v2. In this work we consider the following four different

alignment weight functions which we label by W1,...,W4:

W1: w(v1,v2) = |v1 · v2| , W2: w(v1,v2) = |v1 · v2|2 ,

W3: w(v1,v2) = |v1 · v2|3 , W4: w(v1,v2) =
√
|v1 · v2| .

Alignment weighted models βW0 and h̃W
2 are given by

β
W0(ϕ) = c0

lϕ∫
0

du h0 (xxxϕ(u)) W0

(
V ;xxxϕ(u)

)
, (3.74)

h̃W
2 (ϕ,ψ) = c2

lϕ∫
0

du

lψ∫
0

dv h
(
ρρρ (xxxϕ(u),xxxψ(v))

)
W
(
V ;xxxϕ(u),xxxψ(v)

)
. (3.75)

208

The simplest weighted model which imposes the aligning requirement is based on

scaling kernel function of zero-order potential and leaving pair-potential term intact.

A simple form of this model was described in Example 12.3. More general model is

given by

amL(λ): W0

(
V ; [ϕ(u),ϕ̂ϕϕ]

)
= Lλ

(
w(Vϕ(u), ϕ̂ϕϕ)

)
, (3.76)

W
(

V ; [ϕ(u),ϕ̂ϕϕ], [ψ(v),ψ̂ψψ]
)

= 1 , (3.77)

where Lλ is a parametric linear function with values in [0 . . .1], and it is given by

Lλ (w) = λ • (1,w)≡ λw+(1−λ) . (3.78)

Parameter λ is used to emphasize or to suppress the contribution of the weight func-

tion W0 to zero-order potential. We denote this model by amL(λ). An example

of applying amL(3/4) to the cross-pattern fibre model, which was described earlier

in example 12.2 constrained to the total length lT = 350, to enforce alignment of

the fibre system with the “VP-up” vector field (see Figure 3.40-a) is shown in Fig-

ure 3.36-d. Majority of fibres are aligned well with the vector field, while the rest of

the fibres respect the cross-pattern model by being perpendicular the fibres from the

majority.

The other two weighted models which we propose in this work incorporate the

weight functions into both zero-order and second-order potential kernels, and are

given in the form of 3.69 and 3.70. Here is the intuition behind these models. We

assume that the kernel functions of zero-order potentials are always nonnegative,

h0 ≥ 0, while kernel functions of pair-potentials are non-positive, h≤ 0. In this case

the weights control the contribution balance between zero-order and second-order

potentials. If the weights W0 and W for a pair of close fibres turn out to be equal,

then the fibres will be distributed according to the original model and respect the

209

a b

c d

Figure 3.36: Original cross-pattern model, defined in the description to Figure 3.29-

a, is superimposed with different alignment weighted models applied to the original

model: (b) model am2-02, with W1 alignment weight function; (c) model am1, W1;

(d) model amL(3/4), W1. Vector field VF-up was applied for (b), (c), and (d) (shown

in Figure 3.40-a)

210

same pattern possibly with changed local density depending on the weight values.

However, if the first weight W0 is relatively small, then the affected fibres tend to

repulse each other according to the inhibition model of the pair-potential, h̃2, while

for the second weight W to be relatively small, the configuration of two fibres become

constrained Poisson distributed.

The first model, denoted by am1, turns to constrained Poisson for the fibres

aligned with a given vector field. The fibres under a constrained Poisson distribu-

tion are aligned with a feature (in this case, to the given vector field) and randomly

deviate from the feature up to a defined level. Misaligned fibres will be distributed

according to the original model 3.67 and 3.68. The weight functions forming am1

model are given by

am1: W0

(
V ; [ϕ(u),ϕ̂ϕϕ]

)
= 1− w̄

(
Vϕ(u),ϕ̂ϕϕ

)
, (3.79)

W
(

V ; [ϕ(u),ϕ̂ϕϕ], [ψ(u),ψ̂ψψ]
)

= w̄
(
Vϕ(u),ϕ̂ϕϕ

)
+ w̄

(
Vψ(v),ψ̂ψψ

)
, (3.80)

where w̄(·) = 1−w(·)
2 . As for amL, this model is also flexible in choosing the align-

ment weight function w(·, ·). An example of the fibre system distributed according to

am1 with alignment weight function W1 and a target vector field VF-up is shown in

Figure 3.36 (c). The resulting fibres indeed strongly follow the vector field; however,

the cross-pattern of the original model [shown in Figure 3.36 (a)] is entirely lost.

Our second model, am2-α , while preserving the original pattern better than the

first model does, generates a “substantial” number of fibres aligned with the target

vector field. The weight functions which define the model am2-α are defined as

follows

am2-α: W0

(
V ; [ϕ(u),ϕ̂ϕϕ]

)
= 1+α w

(
Vϕ(u),ϕ̂ϕϕ

)
, (3.81)

W
(

V ; [ϕ(u),ϕ̂ϕϕ], [ψ(v),ψ̂ψψ]
)

= 1+
α

2

{
w
(
Vϕ(u),ϕ̂ϕϕ

)
+ w

(
Vψ(v),ψ̂ψψ

) }
, (3.82)

211

Examples of fibre systems generated under the weighted model am2-2 (i.e., α = 2.0)

applied to a version of the model for cross-pattern (whose point interaction model is

given in Table 3.7) with different alignment weight function are shown in Figure 3.37.

The conceptual difference between am2-α and am1 is in that a couple of fibres, both

[0,w1) [w1,w2) [w2,w3) [w3,w4) [w4,w5)

0≤ d < R1 = 0.1 10−6 10−6 10−6 10−6 1

R1 ≤ d < R2 = 0.25 1 10−6 10−6 10−6 1

Table 3.7: Interaction rates γαβ which define the values of point interaction func-

tion hθθθ constant within corresponding ranges of distances [Rα−1,Rα) and angles

[wβ−1,wβ). Orientation angles are w1 = 18◦, w2 = 36◦, w3 = 54◦, w4 = 72◦, and

w5 = 90◦. Point interaction chart is shown in Figure 3.27-d.

aligned or both misaligned with the target vector field, will be distributed closely to

the original model, with giving slightly more preference to the pairs of aligned fibres

(in fact, the only parameter of the model, α ∈ [1,2], controls the preference rate).

Indeed, for values wϕ(u) and wψ(v) to be both relatively small or both relatively large,

the resulting values of the weight functions W0 and W are approximately the same.

Here we use the following simplification wϕ(u) ≡ w
(
Vϕ(u),ϕ̂ϕϕ

)
. When the degrees of

alignment of a given pair of fibres are substantially different, a preference is given to

the fibre which is better aligned with the vector field. Example of the fibre system

distributed according to a am2-2 model with W1 alignment weight function is shown

in Figure 3.36 (b). The Table 3.8 summaries the weighted models which we proposed

so far to generate fibre systems aligned with a given target vector field.

Examples of generated fibre systems aligned with more complex vector fields are

shown in Figure 3.38.

212

a b

c d

Figure 3.37: Different alignment weight functions applied to the weighted model

am2-2. (a) W4, (b) W1 (vector field shown in Figure 3.40-b was used); (c) W2,

(d) W3 (vector field depicted in Figure 3.40-a was used). Fibre interaction model is

given in Table 3.7.

213

W0 W

amL(λ) λ ∈ [0,1] λ •
(
1,wϕ(u)

)
1

am1 1− w̄ϕ(u) w̄ϕ(u) + w̄ψ(v)

am2-α α ∈ [1,2] 1+α wϕ(u) 1+ α

2

(
wϕ(u) +wψ(v)

)
Table 3.8: Different models for weight functions W0 and W which form a basis for

the vector field alignment models.

a b

Figure 3.38: Examples. (a) VF-trn , model am1, W1 (b) VF-rght, model am2-2, W4;

vector fields are shown in Figure 3.40-d and -c, respectively

214

We want to stress here that during a fibre system simulation some boundary con-

ditions should be taken into account. Excluding such condition would introduce

artifacts in the fibres close to the boundary as they lack the same level of interaction

with the neighboring fibres as the fibres located within the interior of the simulation

domain do. We apply a wrapping strategy in which an area outside of the simula-

tion domain is populated by the fibres replicated from the area along the opposite

side boundary. The size of the area approximately equals to the largest interaction

radius RM. Such replication in the case of a rectangular simulation domain corre-

sponds to gluing opposite edges of the boundary rectangle. The Figure 3.39 shows

that a simulation with wrapping [sub-figure (b)] results in fibre system more consis-

tent and better aligned with the vector field along the boundaries than in the case of

unwrapped simulation [sub-figure (a)].

3.7.5 Soft-constraints

All the weighted random fibre models described so far represent the fibre interaction

models with what can be called external “hard constraints”: a generated fibre system

intends to be aligned to a given target vector field (or, orientation field) everywhere

equally within a domain of simulation. “Soft constraints” are different: they are ap-

plied locally at specific locations, and their strength is modulated based on a distance

function. We propose two types of soft constraints: feature-based and area-based

soft constraints. For the feature-based soft constraints the fibres located within a

vicinity of a feature set should be aligned with the features. The closer a fibre is to a

feature, the better aligned should it be with the feature. The fibres located far enough

from the feature set should be distributed according to the original model.

The area-based soft constraints are imposed in the same way as the hard con-

215

a b

Figure 3.39: Simulation domain wrapping. (a) Without wrapping reveals misalign-

ment of fibres along the east/north boundaries , while (b) with wrapping results in

a fibre system better aligned with the target vector field VF-up (see, Figure 3.40-a).

The weighted model is am2-2, W3.

straints are, but they are effective only within some (convex) region of the domain.

For instance, such region can cover given features. This type of constraint does not

require modifying the original fibre interaction model: one can use the model of

hard constraints and only introduce a characteristic function of the region which will

turn on/off the constraints based on the values of the characteristic function. Thus,

for a given region B ∈ X , weight functions W s
0 and W s defining the area-based soft

constraint model can be written as

W s
0 (xxxϕ(u)) = χB(ϕ(u))• (1,W0 (xxxϕ(u))) ,

W s(xxxϕ(u),xxxψ(v)
)

= χB(ϕ(u))χB(ψ(v))•
(
1,W

(
xxxϕ(u),xxxψ(v)

))
,

where any hard constraint model for weight functions W0 and W can be used. The

216

a b c

d e f

Figure 3.40: Vector fields: (a) VF-up, (b) VF-diag, (c) VF-rght, (d) VF-trn, (e) VF-

rad, (f) VF-circ.

corresponding weighted models for zero- and pair-potentials βW s
0 and h̃W s

2 are given

by Equations 3.74 and 3.75. In this work we rather investigate the feature-based soft

constraint model in more detail, as it enables more gradual transition of the fibre

system from being strictly aligned with the feature to become free from the aligning

constraint within the effective neighborhood of the feature.

We assume that for a given set of features F = {f j} corresponding tangent vector

field V F : R2→ E and distance map DF : R2→ R+ are provided. The set F contains

curved one-dimensional features, like line segments, quadratic curves, etc. The field

217

V F and the distance map DF at a point p ∈ X are defined as follows

V F(p) =
{

t j∗(u∗) | (j∗,u∗) = argmin
j

min
u

∣∣p− f j(u)
∣∣} ,

DF(p) = min
j

min
u

∣∣p− f j(u)
∣∣ ,

where t j(u) is a tangent vector of feature f j at point f j(u). The methods to build V F

and DF from a given set of features was described in Section 2.5.

To implement the feature-based soft constraints model we, again, use modified

version of hard constraints models amL, am1, and am2-α . We relax the hard con-

straints weight functions depending on the distance to the feature set, so that near

the features the feature-based weight functions approximately equal to the hard con-

strains weight functions and gradually change to 1 when moving away from the fea-

tures. Let α(DF; ·) : R2 → [0,2] is a feature influence function which upon a given

point returns a feature influence value based on the distance to the feature set F.

We propose the following form for α(DF,dmax; ·) parameterized with an additional

parameter dmax which defines the maximum feature influence radius

α(DF,dmax; p) = 2
(

1−min
{

DF(p)
dmax

,1
})

.

The Table 3.9 introduces soft constraints weight functions W0 and W . As in the

case of hard constraints, we use the following simplifications wϕ(u) ≡ w
(

V F
ϕ(u),ϕ̂ϕϕ

)
and αϕ(u) ≡ α

(
DF,dmax;ϕ(u)

)
. It is easy to see that when αϕ(u) is zero, which

happens when a fibre is far enough from the feature, all the potential models based

on the weight functions described in Table 3.9, turn to the original unconstrained

model 3.67 and 3.68 (excluding model asm1 which has slight misbalance towards

pair-potential term). On the other hand, when fibres are close to the features the

value of the influence weight αϕ(u) approaches 2, so that the weight functions of

218

W0 W

asmL(λ) λ •
(

1,1+(wϕ(u)−1)
αϕ(u)

2

)
1

asm1 1− w̄ϕ(u)
(
αϕ(u)

)
w̄ϕ(u)

(
αϕ(u)

)
+ w̄ψ(v)

(
αψ(v)

)
asm2 1+αϕ(u) wϕ(u) 1+ 1

2

(
αϕ(u)wϕ(u) +αψ(v)wψ(v)

)
Table 3.9: Different models for weight functions W0 and W which form a basis for

the feature-based soft constraints. w̄ϕ(u)(α)≡ 1−α

2 wϕ(u)
2 .

asmL and asm1 models become approximately equal to the corresponding models

amL and am1 of hard constraints.

The model asm2, though, has different construction: it is built from am2-α by

modulating its originally fixed parameter α depending on the distance to the feature

set. In short, asm2≡am2-α(DF, ·), with an essential change that we let parameter

α vary in [0,1], so that when α(DF, ·) is close to zero, asm2 turns to the original

unconstrained model.

An example of applying asm2 weight model of soft constraints to the linear fi-

bre model of cross-pattern (shown in Figure 3.29-a) is illustrated in Figure 3.41-d.

A feature is a line segment going along a SE-NW diagonal of the domain square;

see Figure 3.41-b (the short line segments represent the vector field and their length

values are proportional to the values of feature influence function α). Distance func-

tion has its maximum value max
p∈XP

DF(p)≈ 90.5pts and dmax = 30pts. It is clear from

comparison of the Figures 3.41-c and -d that the fibres of the latter indeed follow

the feature only in its proximity, while the fibres of the former are aligned with a

diagonal everywhere.

Different alignment weight functions for a fixed weight model reveals different

levels of agreement of resulting fibre systems with the feature. Thus, for the model

219

a b

c d

Figure 3.41: Fibre systems built by applying hard (c) and soft (d) constraints to an

(original) unconstrained model (a). Soft constraint model: asm2, W1. The feature

set consists of a “diagonal” line (b, in blue) connecting bottom-right and top-right

corners of the domain. The size of the feature distance map is 128pts.

220

mentioned in the previous example functions W2 and W3 does a decent job (Fig-

ure 3.42-b,c) while the results of applying functions W1 and W4 are less satisfactory

(compare with Figures 3.42-a and -d).

It is worth to mention that there are two conceptually different ways of guar-

anteeing local alignment of the fibre system with the feature set: make sure that a

dominant orientation of the fibres matches the tangent field of the feature, or con-

centrate substantially more fibres along the feature. The goal of the first approach is

to keep the distribution of the fibres within the feature’s effective neighborhood as

close to the original (unconstrained) interaction model as possible while guarantee-

ing that a majority of fibres are aligned with the feature. The fibre systems shown

in Figure 3.43 (a)-(c) indeed have majority of fibres aligned to the “diagonal line”

feature (shown in Figure 3.41-b) within its neighborhood and other fibres respecting

the “cross-pattern”. According to the second approach, the fibres are allowed to devi-

ate from the original (unconstrained) model along the feature, but the concentration

of the feature aligned fibres should be significant. It is clearly demonstrated in Fig-

ure 3.43 (d): the aligned fibres cluster around the feature and they do not follow the

original distribution in there.

Different soft constraint models are applied to the original cross-pattern linear

fibre model to make the fibres follow a feature curve outlining the letter “C” in Fig-

ure 3.44.

3.8 Summary

We have presented a new general construction for stochastic processes of random

fibre systems based on the model of local interactions between the fibres. Random fi-

221

a b

c d

Figure 3.42: Examples, model am2-2: different alignment weight functions. (a) W1,

(b) W2, (c) W3, (d) W4, feature map is depicted in Figure 3.41-b.

222

a b

c d

Figure 3.43: Applying different soft constraint models with the “diagonal” feature:

(a) asm2-2, W1, (b) asm2-2, W2, (c) asmL(3/4), W1, and (d) asm1, W1. The feature

maps is depicted in Figure 3.41-b.

223

a b

c d

Figure 3.44: Applying soft constraint models to a feature which follows a letter “C”

(a), the domain size of the feature distance map is 128pts. (b) asm1, W1, dmax = 20pts

(c) asmL(3/4), W1, dmax = 30pts (d) asm1, W1, dmax = 30pts.

224

bre systems can perfectly serve in generating textures with coherent and non-periodic

patterns as a basis for forming curvilinear features which define such patterns. We

have successfully adapted the Gibbs point interaction potentials to represent and

model interactions for linear fibre processes, which consider line segments as in-

dividual fibres. Our linear fibre interaction model is intuitive and convenient to use,

which is not the case for existing nonparametric sample-based synthesis techniques.

We run a variant of the Monte Carlo Metropolis-Hastings algorithm to generate a

random collection of linear fibres distributed according to a given potential-based

interaction model. We have implemented a variant of the simulated annealing al-

gorithm to include the local and global constraints to our linear fibre model. Such

constraints support a control on the fibre density, the level of fibre connectivity, and

the degree of alignment of the linear fibre systems with a user-defined orientation

field.

The linear fibre model have shown its best performance on random fibre systems

with a moderate level of connectivity between the individual fibres. We have added

a post-processing algorithm which grows collections of coherent and smoothly con-

nected curves aligned with a generated system of linear fibres to address the cases

where maintaining a connection of most of the fibres is the main requirement. This

algorithm is presented in the next chapter.

225

Chapter 4

A method of generating networks of

curves aligned with random systems

of linear fibres

One possible application for the random systems of linear fibres (or, fibres of a more

general form) is to generate networks of curves which are aligned with a given fibre

system. This is especially useful when simulating a fibre system under a given fibre

interaction model does not produce a set of nicely connected, locally coherent, and

slowly changing network of curves: an additional step is needed to either filter the re-

sulting fibres or, as we propose, to generate a new system of curves coherent with the

resulting fibre system. In this section we describe a general method to generate net-

work of curves coherent with a given system of random linear fibres and demonstrate

its performance on cross-fibre patterns. We describe a general framework of gen-

erating overlapping families of coherent streamlines aligned with a multi-orientation

vector field in Section 4.1, and illustrate its performance and its problems for the case

of cross-orientation vector fields in Section 4.2. The method of sampling the context-

226

dependent cross-orientation vector fields and its variations, presented in Section 4.3,

solve most of the problems of the original streamline generation algorithm enabling a

user to generate networks of coherent curves with a desirable degree of randomness.

The following is an outline of the method:

1. Prepare cross-orientation vector field (COVF). Based on a given linear fibre sys-

tem (generated by one of the method described in Chapter 3), a vector field tan-

gent at every point to the system is created. Usually, the tangent vector fields

are mostly discontinuous, so that applying standard streamline placement al-

gorithms will results in undesirable sharp turns of streamlines (see Figure 4.7-a

bottom-right corner, -c and -d). To resolve it we filter the tangent vector field to

form a locally coherent cross-orientation vector field (COVF) consisting of un-

ordered pairs of orthogonal vectors. We make sure that a vector from a COVF

pair is aligned with the tangent field as much as possible. More detailed defi-

nition and the optimization details are described in Section 4.1 with examples

of optimized COVFs in Figures 4.4 and 4.5;

2. Run our CD-wCD algorithm for streamline placement. A modified two-pass ver-

sion of Mebarki et al. streamline placement algorithm [86], called CD-wCD,

generates two networks of coherent curves aligned with a provided COVF. The

algorithm progressively fetches directions from COVF, choosing such COVF

orientation which is better aligned with current streamline — we call such pro-

cess as context-dependent (CD) direction sampling from COVF. During the

first pass — CD-pass (Section 4.3) — while placing streamlines we gener-

ate two weight fields which assign confidence levels to COVF components

depending on degree of alignment of such components with just generated

streamlines. During the second pass — wCD-pass (Section 4.3) — we apply

227

weighted context-dependent (wCD) direction sampling from COVF taking into

account assigned confidence levels to COVF pairs. The final network of curves

is formed by combining the resulting two set of streamlines. An example of

such network is shown in Figure 4.11.

4.1 Multi-orientation vector fields

An algorithm of building a vector field VΦ, tangent to a given fibre system Φ, is

straightforward: a tangent vector at a given point is defined by a direction of the

closest to the point fibre.

As regularity is an essential attribute of our model of linear fibres, the fibre sys-

tems produced by our algorithm are bound to consist of several groups of locally

coherent fibres overlapped within a common region. As the result, a tangent vector

field built from a typical fibre system will form a map discontinuous almost every-

where. Any streamline placement algorithm will fail to produce a reasonable set of

smooth streamlines tangent to such vector field. A different way of applying the

fibre-induced tangent vector field is needed.

Textures which consist of several overlapping distinct texture patterns are not new

in Computer Graphics and Computer Vision. Many natural multi-directional textures

were carefully investigated in [21, 65]. The phenomenon of texture laciness, when

several overlapping textures can be perceived as one new texture or as distinctive tex-

tures, was analyzed in [146]. Algorithms of reconstruction of multiple texture flows

sharing the same domain via relaxation labeling technique was described in [16].

One possibility to handle multi-directional vector fields is to decompose them

into a set of continuous vector fields which match the fragments of the original field

throughout the domain. Then, different sets of streamlines are placed independently

228

on the same domain — each set is aligned with one of the resulting continuous vec-

tor fields. Superposition of the these sets of streamlines will form a final network

of random curves. However, overwhelming majority of fibre-induced tangent fields

cannot be decomposed easily into smooth vector fields, if sometimes not at all. Fig-

ure 4.1 shows an unsuccessful attempt to classify the fibres (the corresponding fibre

system is depicted in Figure 3.28-a) into two classes with smoothly changing dom-

inant orientation. Such classification is impossible around the location where two

yellow curvilinear arrows approach each other: clear continuity of the “fibre flow” at

the arrows’ tails is broken near the arrows’ tips.

Figure 4.1: Examples of “fibre flow” singularities. Two smooth fibre flows (green

versus blue background) were classified from a fibre system with interaction model

which favors cross-patterns. Singularities are clearly noticeable at intersections of

yellow and pink arrows.

An alternative is to form a multi-orientation vector field (MOVF), which assigns

229

multiple directions at every point. MOVF should be somewhat consistent with its

underlying tangent vector field and should smoothly vary over the domain. To put

it in more detail, at every point at least one of the the MOVFs directions should

closely match the corresponding tangent vector at this point, and, for relatively close

points, each MOVF’s direction at one point should have a close counterpart at the

other point. Figure 4.2 shows examples of consistent and inconsistent MOVFs: both

MOVFs are smoothly varying, however, the MOVF on the right (yellow crosses)

lacks of consistency with underlying tangent vector field (pink line segments). In the

next section we describe how to generate streamlines from MOVF.

Figure 4.2: Examples of MOVFs, consistent (on the left) and inconsistent (on the

right) with a given vector field. MOVF cross-orientations are represented by yellow

crosses, vector fields samples — by pink line segments.

A concept of MOVF was successfully applied in [63] to construct the so called

cross-hatching patterns over smooth surfaces. The authors generated cross fields

with unordered pairs of orthogonal directions as their values by optimizing the di-

rections to smoothly vary along the geodesics. We adapt this method to generate

230

cross-orientation vector fields (COVF) from linear fibre systems. In this work we

demonstrate how to apply COVFs to generate random networks of curves with two

dominant directions. For better performance of our COVF-based algorithm, the in-

teraction model of underlying linear fibre system is expected to favor cross configu-

rations of fibres (examples of such fibre systems are illustrated in Figures 3.29-a and

-b, 3.37, and 3.39).

For a given fibre-induced tangent vector field VΦ : R2 → E, defined within a

simulation domain X , we optimize a cross-orientation vector field V + : R2→ E◦E,

to be consistent with VΦ and smooth over X . COVF V + assigns an unordered pair of

vectors vvv and www at every given point p ∈ X , such that vvv ·www = 0. To satisfy COVF’s

requirements, the following energy functional should be minimized over all the points

form a regular grid ΩX = {pi j ∈ X : i = 1,2, . . . ,Ni, j = 1,2, . . . ,N j}

EV
i j = min

k=0,1

∥∥∥vvvk
i j−ttt i j

∥∥∥ + min
k′,k′′=0,1

∥∥∥vvvk′
i j−vvvk′′

i j+1

∥∥∥ + min
k′,k′′=0,1

∥∥∥vvvk′
i j−vvvk′′

i+1 j

∥∥∥ ,

where the optimization runs on the grid values vvvk
i j ≡ V +

k (pi j) and ttt i j ≡ VΦ(pi j),

and, for the sake of simplicity, we assume that there are two vector fields V +
1 and

V +
2 which impose an arbitrary order for pairs of vectors in V +: V + ≡ {V +

1 ,V +
2 }.

The first term of EV
i j relates to COVF’s consistency with VΦ, and the second and

the third terms describe continuity of COVF along grid’s east and north directions,

respectively. The energy functional EV
i j can be reformulated to a simpler form EΘ

i j

depending on orientations, rather than vectors:

EΘ
i j = min

k

√
2−2cos{(θi j−αi j)+ kπ/2}

+min
k

√
2−2cos{(θi j−θi j+1)+ kπ/2}

+min
k

√
2−2cos{(θi j−θi+1 j)+ kπ/2} ,

231

where θi j = arccos
∣∣∣vvv1

i j ·eee1

∣∣∣ and αi j = arccos
∣∣ttt i j ·eee1

∣∣. According to the derivation

in [63], minimization of EΘ
i j can be replaced by minimization of the following func-

tional

Ei j =−cos4(θi j−αi j) − cos4(θi j−θi j+1) − cos4(θi j−θi+1 j) .

We apply a variant of the subspace trust region method with interior-reflective New-

ton method (fminunc in Matlab with Large scale optimization [56]) to run nonlin-

ear unconstrained optimization on the following energy:

E = ∑
i j

Ei j

=−∑
i j

{
cos4(θi j−αi j) + cos4(θi j−θi j+1)+ cos4(θi j−θi+1 j)

}
,

by providing a vector of gradients ggg =
(

∂E
∂θi j

)
(i, j)

with the following NiN j compo-

nents

g(i, j) =
∂E
∂θi j

= 4sin4(θi j−αi j)

+4sin4(θi j−θi j+1) +4sin4(θi j−θi+1 j)

−4sin4(θi j−1−θi j) −4sin4(θi−1 j−θi j) ,

and a sparse NiN j×NiN j Hessian matrix H =
[

∂ 2E
∂θi j ∂θi′ j′

]
(i, j),(i′, j′)

with the following

non-trivial components

H(i, j),(i, j) =
∂ 2E
∂θ 2

i j
= 16cos4(θi j−αi j)

+16cos4(θi j−θi j+1) +16cos4(θi j−θi+1 j)

+16cos4(θi j−1−θi j) +16cos4(θi−1 j−θi j) ,

232

H(i, j),(i+1, j) =
∂ 2E

∂θi j ∂θi+1 j
= −16cos4(θi j−θi+1 j) ,

H(i, j),(i, j+1) =
∂ 2E

∂θi j ∂θi j+1
= −16cos4(θi j−θi j+1) ,

H(i, j),(i, j−1) =
∂ 2E

∂θi j ∂θi j−1
= −16cos4(θi j−1−θi j) ,

H(i, j),(i−1, j) =
∂ 2E

∂θi j ∂θi−1 j
= −16cos4(θi−1 j−θi j) ,

where a two-dimensional index (i, j) is linearized by the expression iN j + j. The op-

timization, started with the initial orientation field {θi j = αi j}, turned out to converge

very rapidly for the vector fields we were dealing with. The resulting optimal COVF

V +
opt is given by its values on the grid as follows V̂ +

opt[i, j] =
{

R(θ opt
i j)eee1 ,R(θ opt

i j +

π/2)eee1
}

, where R(θ) is a rotation operator.

Figures 4.4 and 4.5 illustrate the results of COVFs optimization on 256×256 grid

of the vector fields formed by tangents of linear fibre systems shown in Figure 4.3-

a and -b, respectively. Fragments of the original vector fields are illustrated in the

figures in the left columns, with the tangents colored in dark red. Optimized COVFs

are depicted in the right columns colored in dark red and dark cyan. In both examples

COVF optimization produced satisfactory results in smoothing the initial COVFs

while keeping them consistent with the original fibre-induced tangent vector fields.

To assign an order for vector pairs from V +
opt(p) we run a simple greedy type

algorithm which makes selections progressively starting from a given set of seed

points within the domain. Formally, we decompose V +
opt into V 2+

opt : R2 → E2,

such that for V 2+
opt ≡ (Vopt,1,Vopt,2) the cross-orientation vector field V +

opt is given

by V +
opt =

{
Vopt,1,Vopt,2

}
. We start by assigning seed values for a number of grid

locations IJs =
{
(is0, js

0), . . . ,(i
s
M, js

M)
}

, V̂opt,1[ism, js
m] = vvvm and V̂opt,2[ism, js

m] = wwwm

233

a b

Figure 4.3: Linear fibre systems Φ(a) and Φ(b) used for creating fibre-induced tangent

vector fields, VΦ(a) and VΦ(b) , respectively, for examples which follow.

when V̂ +
opt[i

s
m, js

m] = {vvvm,wwwm}, while leaving vector pairs at other grid locations

empty, V̂opt,1[i, j] = V̂opt,2[i, j] = /0, ∀(i, j) /∈ IJs; and proceed by using a simple co-

herence criterion to classify a vector from a current cross-orientation vector pair

V̂ +
opt[i, j] = {vvv,www}: vvv will be included to V̂opt,k, where k = 1∨2, if

∑
i′, j′- neigh. of i, j

ρ
(
vvv,V̂opt,k[i′, j′]

)
≥ ∑

i′, j′- neigh. of i, j
ρ
(
vvv,V̂opt,3−k[i′, j′]

)
, (4.1)

where within the summation only indices i′ and j′ of already assigned elements of

V̂opt,1 and V̂opt,2 are considered, and ρ is a coherence measure between the vectors,

e.g., ρ(vvv,www) = |vvv ·www|; www will be included to the opposite vector field, V̂opt,3−k.

This simple selection algorithm can decompose a COVF into two smooth vector

fields when the underlying tangent vector field contains up to two dominant orienta-

tions within its domain (this is supported by examples in Figure 4.4-b and -d, where

the resulting vector fields V̂opt,1 and V̂opt,1, colored in dark red and dark cyan, respec-

tively, are smooth). However, the algorithm fails to produce smooth vector fields

234

505254565860626466

156

158

160

162

164

166

168

170

172

505254565860626466

156

158

160

162

164

166

168

170

172

184186188190192194196198200

84

86

88

90

92

94

96

98

100

184186188190192194196198200

84

86

88

90

92

94

96

98

100

a b

c d

Figure 4.4: Fragments of optimal COVF (right column) against original fibre-induced

tangent vector field VΦ(a) illustrated in Figure 4.3-a (the locations of the fragments

are shown by red rectangles). COVF’s grid size is 256×256.

235

156 158 160 162 164 166 168 170 172

50

52

54

56

58

60

62

64

66

156 158 160 162 164 166 168 170 172

50

52

54

56

58

60

62

64

66

124 126 128 130 132 134 136 124 126 128 130 132 134 136

a b

c d

Figure 4.5: Examples of COVF optimization within two fragments of the fibre-

induced tangent vector field VΦ(b) illustrated in Figure 4.3-b (the locations of the frag-

ments are shown by red rectangles). Left: fragments of initial COVF formed from

the tangent vector field VΦ(b) . Right: corresponding fragments of optimized COVF.

Due to singularities in the original tangent vector field (c), optimal COVF on (d) can

not be decomposed into two smooth fields (in the center of the Figure).COVF’s grid

size is 256×256.

236

at every location when more than three dominant orientations are presented in the

source linear fibre system as shown in Figures 4.5-b and -d in the top right corner

and in the center, respectively. MOVFs with more than two overlapping vector fields

are required in this case.

4.2 Streamlines aligned with cross-orientation vector

fields

The algorithm of Mebarki et al. [86] progressively integrates streamlines — poly-

lines, everywhere tangent to a given vector or orientation field, V — starting each

new streamline from a seed point selected from the center of the current biggest

empty “cavity.” Here is one step during placement of n-th streamline

sn(t +∆t) = sn(t)+
t+∆t∫
t

V (s(τ))dτ ≡ sn(t)+vvv(t,∆t) ,

sn(0) = BigCavSearch
(
{s1,s2, . . . ,sn−1}

)
.

For a given pair of vector fields V1 and V2, the algorithm runs twice to generate

streamline sets S1 = {s1
n, n = 1,2, . . . ,M1} and S2 = {s2

n, n = 1,2, . . . ,M2}, respec-

tively. The union of S1 and S2 gives a final network of curves S = S1∪S2.

As we already noticed before, COVFs which have “singularities” cannot be de-

composed in two smooth fields. COVF singularities occur when more than two lo-

cally coherent “flows” with different dominant orientations meet at a point. To find

singularity locations within a given cross-orientation vector field V +, one should

look for the locations around which any local traversal (ccw or cw) results in the

break of continuity (an example is shown in Figure 4.6). One possible scenario of

using COVFs with singularities is to perform an assignment algorithm, described in

237

Figure 4.6: A fragment of a COVF with discontinuities: a traversal around the COVF

samples, circled in red, always breaks continuity.

the previous section, which produces two vector fields Vopt,1 and Vopt,2 — smooth ev-

erywhere but in relatively small number of singularity locations — and to pass them

to the streamline algorithm described above to generate the network of curves S. The

coherence criterion given by equation 4.1 should be slightly modified, as it allows

close samples of collinear vectors to be oriented in opposite directions which can

abrupt iterations of a streamline placement algorithm. From a pair V̂ +
opt[i, j] = {vvv,www},

a vector with the largest coherence value c(ρ;vvv, i, j,1) w.r.t. the first vector field

V̂opt,1 is chosen, c(ρ;vvv, i, j,k) = ∑
i′, j′- neigh. of i, j

ρ
(
vvv,V̂opt,k[i′, j′]

)
. Suppose that it is vvv,

then, either vvv or −vvv is added to V̂opt,1 depending on which one has the largest value

c(ρ1;vvv, i, j,1), where this time a coherence measure ρ1 takes into account the orien-

tation: ρ1(vvv,www) = 1 +vvv ·www. The same procedure is performed for www and −www against

Vopt,2.

238

b

a

c d

Figure 4.7: Example of curvilinear networks generated by the original streamline

algorithm [86] but with flipping the vector samples when necessary to avoid sudden

stops.

239

Figure 4.7 shows an example of a network of curves generated by applying the al-

gorithm described above to a tangent vector field built around fibre system illustrated

in Figure 4.3-a. It works well in the prevailing number of areas in the simulation

domain, as shown, e.g., in Figure 4.7 (b). However, due to singularities in COVF,

generating non-smooth streamlines in several places is inevitable, as shown, e.g., in

Figure 4.7 (c,d). An ability to switch between the vector fields during streamline

placement can partially resolve the problem of COVF singularities.

4.3 Streamlines based on context-dependent vector fields

In this section we describe several streamline placement algorithms adapted to oper-

ate on a cross-orientation vector field (COVF). An advantage of using COVF instead

of pair of orthogonal vector fields is that COVF allows to resolve the problem of

encountering singularities in the cross field during streamline placement, which oc-

curs in a prevailing number of natural multi-orientation vector fields. As COVF has

two directions at every point, one can choose the most appropriate direction out of

the two during a current streamline integration step to make sure that the resulting

streamline is smooth. This is a central idea for our context-dependent direction sam-

pling algorithm, based on which we describe our COVF-based streamline placement

algorithms.

CD-Algorithm. We start with an algorithm of streamline placement with context-

dependent direction sampling which performs context-dependent bilinear interpo-

lation on a given grid-valued COVF, V̂ + = V +|ΩX . We still assume that V̂ + has

been preliminary decomposed into two vector fields V 2+ = (V1,V2), so that V̄ +
i j ≡{

V1[i, j],V2[i, j]
}

. However, this decomposition is necessary only for providing un-

ambiguous seed directions: V1 is used as seed vector field to generate the first set of

240

streamlines S1, and the same is for V2 to generate S2. Subsequent integration direc-

tions are drawn from COVF. Suppose that n-th streamline sk
n of k-th set of stream-

lines Sk, k ∈ {1,2}, is being placed, and m + 1 points of sk
n has been already placed,

sk
n = (pn

0, pn
1, . . . , pn

m). The first seed direction vvvn
0 has been taken from Vk as follows

vvvn
0 = τ

(
λ0,µ0;Vk[i, j],Vk[i, j +1],Vk[i+1, j],Vk[i+1, j +1]

)
,

where τ is an operator of bilinear interpolation, and λ0 and µ0 are the texel coordi-

nates of the n-th streamline’s seed point pn
0 which happened to be located within the

interior of texel Ti j

τ
(
λ ,µ;v00,v01,v10,v11

)
= λ • (µ • (v00,v01),µ • (v10,v11)) , (4.2)

pn
0 = τ

(
λ0,µ0; pi j, pi j+1, pi+1 j, pi+1 j+1

)
. (4.3)

To find (m + 2)-th point of sk
n, we need to fetch the next direction vvvn

m from COVF,

V +, at pn
m. Suppose that pn

m is located within texel Ti j and its texel coordinates

are λm and µm (as in Equation 4.3). First, we choose those directions from cor-

ner cross-orientation vectors V̂ +
i j , V̂ +

i j+1, V̂ +
i+1 j, and V̂i+1 j+1 which are better aligned

with the current integration direction vvvn
m−1: (www00,www01,www10,www11), such that wwwIJ =

Vk′[i + I, j + J], if ρ(vvvn
m−1,Vk′[i + I, j + J]) ≥ ρ(vvvn

m−1,V3−k′[i + I, j + J]), k′ ∈ {1,2},

for all index offset combinations I = 0,1 and J = 0,1. Second, every chosen vec-

tor wwwIJ is flipped if necessary to be oriented in the same direction as the current

vector vvvn
m−1 giving rise to a new quadruple of vectors (w̃ww00,w̃ww01,w̃ww10,w̃ww11), such that

w̃wwIJ = −wwwIJ , if ρ1(vvvn
m−1,−wwwIJ) ≥ ρ1(vvvn

m−1,wwwIJ), and is the same otherwise. And

third, the next integration direction vvvn
m is just a bilinear interpolation of the resulting

vectors as follows

vvvn
m = τ

(
λm,µm;w̃ww00, w̃ww01,w̃ww10, w̃ww11

)
.

The algorithm of context-dependent direction sampling is schematically shown in

241

Figure 4.8. The Figure illustrate a situation when COVF presumably has a singu-

larity within a texel Ti j which resulted in decomposition of V̂ + into two, locally

discontinuous, vector fields V1 (brown colored) and V2 (green colored).

V̂ij
+ V̂ij+1

+

V̂+V̂i+1j
+

n
mp

1
n
mp −

1
n
m−v i+1j+1

00w 01w

10w 11w

n
mv

k
ns

Figure 4.8: Context-dependent direction sampling from COVF V̂ + (pairs of brown

and green vectors at the texel corners) during integration step at point pn
m of current

streamline sk
n (dark blue). New direction vvvn

m is interpolated from the adjusted corner

vectors w̃wwIJ within the texel Ti j.

Figure 4.9 (a) shows the result of a run of our CD-algorithm on COVF used

for generating Figure 4.7. It did very good job to avoid abrupt turns of streamlines

[compare Figure 4.9 (d) and Figure 4.7 (d)]. However, switching between the vector

fields during streamline placement process can result in noticeable artifacts caused

by merging streamlines from different sets (Figure 4.9 (a), central part). It happens

when two streamlines from different sets get the integration directions from the same

vector field at the same location. Also, because of vector field switching, one or both

resulting streamline sets can turn out to be discontinuous at certain locations. Discon-

tinuity can come from near-orthogonal intersection (for the case of cross-orientation

242

vector fields) of two streamlines of the same set, seeded from distant locations, which

start by using the initial directions from the same vector field but approach each other

from orthogonal directions resulted from sampling different vector fields (Figure 4.9

(c) shows a fragment of streamlines from S1). None of these could happen when

a given COVF is preliminary decomposed into two different cross vector fields as

streamline placement algorithm uses only one resulting vector field at a time for each

streamline set (as was demonstrated in the previous section). For a possible solu-

tion, we propose assigning weights to COVF vectors which describe the confidence

level of each vector within cross-orientation vector pair to be appropriate when used

during streamline placement run for a particular streamline set. If one makes sure

that each vector in a COVF pair is not simultaneously assigned a large confidence

level for both streamline sets and aligned vectors from grid-neighboring COVF vec-

tor pairs get either both large or both small confidence levels for the same streamline

set, it can significantly decrease the likelihood of artifacts mentioned above to occur.

wCD-Algorithm. The confidence levels of COVF vectors is taken into account

in context-dependent interpolation on a given grid-valued COVF, V̂ +, which forms

to a new version of streamline placement algorithm with weighted context-dependent

direction sampling. In principle, the confidence level is a function of two variables,

the location and the direction, σ : R2×E→ [0,1], and σ(p,vvv) assigns the confi-

dence level of a given direction vvv at point p, which will be used during a streamline

placement run. In this framework there are only two possible directions at every

location defined in COVF and these directions do not change during the run. There-

fore, σ(p, ·) is replaced by a pair of confidence level functions σ1(p) and σ2(p)

which attribute weights to both vectors from COVF vector pairs, σ k : R2 → [0,1],

k ∈ {1,2}. (Comment: an order for vector in V + pairs can be chosen by using a

technique described in the previous section; so, as before, V̄ 2+ ≡ V 2+|ΩX = (V1,V2)

243

b

a

c d

Figure 4.9: (a) Example of curvilinear network generated by the streamline algorithm

with context-dependent direction sampling from the same COVF as for Figure 4.7.

(b),(c) and (d) are different fragments of the network.

244

where V̄ + ≡V +|ΩX = {V1,V2}).

Suppose, for a moment, that the functions σ k(·) are already provided. We

describe now how to calculate the next direction vvvn
m to find (m + 2)-th point of

currently placed streamline sk
n, when m + 1 points have been already allocated,

sk
n = (pn

0, pn
1, . . . , pn

m). First, we fetch two quadruples of the texel corner vectors

v̄k = (vvvk
00,vvv

k
01,vvv

k
10,vvv

k
11) and their corresponding weights σ̄ k = (σ k

00,σ
k
01,σ

k
10,σ

k
11)

from the texel Ti j which covers the current point pn
m, where vvvk

IJ = Vk[i + I, j + J],

σ k
IJ = σ k(pi+I, j+J), pi+I, j+J is a grid point and a bottom-left corner of Ti+I, j+J .

Second, we choose component-wisely the vectors from v̄1 and v̄2 which are more

coherent with a current direction vvvn
m−1 and form w̄1 = (v̄k0

0 , v̄k1
1 , v̄k2

2 , v̄k3
3) while plac-

ing less coherent vectors in w̄2 = (v̄3−k0
0 , v̄3−k1

1 , v̄3−k2
2 , v̄3−k3

3): for each t = 0,1,2,3

the index kt is chosen to satisfy the inequality ρ(vvvn
m−1, v̄

kt
t) ≥ ρ(vvvn

m−1, v̄
3−kt
t) (here

v̄k
t ′ denotes the t ′-the component of v̄k). Third, we calculate the average confidence

level of the vectors in every resulting quadruple, w̄1 and w̄2: 〈σ̄ k〉 =
3
∑

t=0
σ̄

kt
t /4 and

〈σ̄3−k〉=
3
∑

t=0
σ̄

3−kt
t /4 for the same set of {kt} defined during formation of w̄1. Then,

we proceed with the quadruple of vectors w̄σ which has the largest average confi-

dence value: w̄σ = w̄k for such a k that 〈σ̄ k〉 ≥ 〈σ̄3−k〉. Fourth, we flip the vec-

tors from the quadruple w̄σ to make them oriented in the same direction as vvvn
m−1:

w̃σ
t = −w̄σ

t if ρ1(vvvn
m−1,−w̄σ

t) ≥ ρ1(vvvn
m−1, w̄

σ
t), and is the same otherwise, for each

t = 0,1,2,3. And at last, the next integration direction vvvn
m is a bilinear interpolation

of the vectors from just calculated quadruple w̃σ

vvvn
m = τ

(
λm,µm; w̃σ

0 , w̃σ
1 , w̃σ

2 , w̃σ
3
)
.

The third step of the weighted context-dependent direction sampling algorithm intro-

duces a crucial difference from the previous algorithm: the more coherent direction

can turn out to have smaller confidence level, so that the less coherent direction will

245

be chosen to father propagate the current streamline. This may eventually result in

smoother set of streamlines or avoid merging streamlines from different streamline

sets. This scenario is demonstrated in more detail in Figure 4.10.

n
mp

1
n
m−v

n
mv

k
ns

1
0w 1

1w

1
2w 1

3w

0wσ
1w

2w
3w

σ

σ

σ

Figure 4.10: Weighted context-dependent direction sampling from a COVF (pairs

of brown and green vectors at the texel corners) during integration step at point pn
m

of current streamline sk
n (dark blue). COVF vector pairs are scaled in accordance

with their weights σ k
i j. Aligned with vvvn

m−1 vectors w̄1
t have smaller value of average

conference level, so that w̃wwσ
t are chosen instead for interpolation of a new direction

vvvn
m.

Variety of different criteria can be developed to calculate the weights σ k
i j for a

given COVF. We propose to associate the degree of local coherency of a vector field

with the weights. One possible way to interpret local coherency of a given vector

field is through analyzing how well the vector field is aligned with a streamline set

if it were generated from COVF which bears the vector field as one of its two com-

ponents. A degree of alignment of a sample from the vector field is calculated only

against streamlines located in the neighborhood of the sample. Therefore, the weight

246

fields σ k can substantially vary depending on the size (or, say, diameter) of the test

neighborhood. For example, the confidence levels for vectors located nearby and

aligned with the streamline which goes across entire streamline set, depicted in Fig-

ure 4.9-c, get approximately the same values as the corresponding confidence levels

of the orthogonal vectors if the test neighborhood can be stretched only to cover up

to two or three streamlines across. However, such confidence levels become signifi-

cantly smaller when the test neighborhood can encompass, say, more than five or six

streamlines. In the latter case, any consequent run of streamline placement algorithm

of type wCD will unlikely to place a streamline across the other streamlines at the

locations mentioned before, which will result in more smooth streamline set.

CD+wCD-Algorithm. Our version of streamline placement algorithm consists

of two stages: (1) generating weights as a measure of local coherency of vector

fields, and (2) using the weights as the confidence level in a subsequent streamline

placement pass. The first stage of the algorithm consists of performing one or sev-

eral passes of CD-algorithm, where each pass, while generating two streamline sets

with the seed directions taken from the pair of vector fields V1 and V2, constituting

a given COVF V + = {V1,V2}, updates corresponding weight fields σ1 and σ2. A

possible update strategy is to update all the weights at those locations which are

in the neighborhood of a streamline, being placed, by a certain value which de-

pends on the distance to the streamline and a degree of alignment of the vector

field at the location with the tangent of the streamline: for each k = 1,2, update

σ k(pi j) = U
(

σ k(pi j),ρ
(
tttsk

n
(u∗pi j

),Vk(pi j)
)
,di j
(
sk

n(u
∗
pi j

)
))

for those pi j ∈ ΩX which

satisfy the distance requirement di j
(
sk

n(u
∗
pi j

)
)
≡
∥∥∥pi j− sk

n(u
∗
pi j

)
∥∥∥≤ Rctxt, where u∗pi j

is

defined by u∗pi j
= argmin

u
di j
(
sk

n(u)
)
, ttts(u) is the tangent vector of a curve s at its point

s(u), and Rctxt > 0 is the test neighborhood radius — a context radius. U(σ̃ , ρ̃, d̃) is

any update function of the current weight σ̃ , the degree of coherency of the direc-

247

tion with the current streamline ρ̃ , and the distance to the streamline d̃. Initially, the

weights σ k(·) are zero everywhere. One can run more passes to accumulate more

samples of local coherency while changing the context radius Rctxt.

The second stage of the algorithm consists of running wCD-algorithm to generate

two final streamline sets taking into account the confidence level weights found dur-

ing the first stage. For every resulting streamline set SCD
k′ , k′= 1,2, two sets of weights

were generated: σ1,k′ and σ2,k′ , one per each vector field Vk′ . wCD-algorithm per-

forms streamline placement for each set SwCD
k′ by using weights σ1,k′ and σ2,k′ which

are attributed to V1 and V2.

One can also benefit from running multiple passes of the second stage of the

algorithm. During the wCD-stage new pairs of weight fields σ (0)1,k′ and σ (0)2,k′ for

every resulting streamline set S(0)
k′ can be built, k′ = 1,2. For each subsequent pass,

l > 0, the weights from the previous pass σ (l−1)1,k′ and σ (l−1)2,k′ are used to generate

new streamline sets S(l)
k′ and, simultaneously, to create a new pair σ (l)1,k′ and σ (l)2,k′

for the l +1-th pass .

We ran our CD+wCD-algorithm with one pass per each stage on the same COVF

which was used for generating networks illustrated in Figures 4.7 and 4.9. It resolved

the problem of overlapping streamlines from different sets in many places (frequent

for the results of applying just CD-algorithm) and reduced the number of abrupt turns

to a minimum (which the original algorithm without context-dependent sampling

is prone to), see Figure 4.11. The context radius was chosen to be Rctxt = 16 for

the simulation domain of the size [0,512]2, when the average separation distance

between the streamlines was 4.0 and the saturation ratio was 1.0 (see the original

algorithm [86] for more detail on the parameters). Another example of applying our

algorithm while using smaller context radius, Rctxt = 8, is illustrated in Figure 4.12.

A clear limitation of our approach is that it can only handle cross-orientation vec-

248

Figure 4.11: Example of curvilinear network generated by the streamline wCD-

Algorithm applied to the same COVF which was used for generating networks in

Figures 4.7 and 4.9.

249

Figure 4.12: Curvilinear network generated from the linear fibre system of the “rain”

model illustrated in Figure 3.36-c.

250

tor fields. If a given vector field has more than two dominant orientations which are

highly non-orthogonal, the algorithm can significantly distort original vector field.

The last example, shown in Figure 4.13, clearly demonstrate this limitation — the

underlying linear fibre process favors inter-fibre angles of 45◦ and could form four

dominant orientations locally — by revealing many spots with overlapping curves.

Figure 4.13: Curvilinear network generated from the linear fibre system illustrated in

Figure 3.30-a.

251

4.4 Summary

We have developed a new synthesis algorithm which generates overlapping networks

of random curves aligned with a given system of linear fibres. In its general formula-

tion, our algorithm first converts a given fibre system into a multi-orientation vector

field (MOVF) which contains more than one orientation at every grid sample with

the requirement that one of the orientations is aligned with the closest fibre. MOVFs

are extremely helpful in representing the incoherent underlying fibre systems, which

is exactly the case for a majority of the linear fibre systems including all the systems

which were presented in this work. Second part of our algorithm runs an adapted

version of the Mebarki et al. streamline placement algorithm [86] to generate sets of

coherent and mostly smooth curves aligned with a given MOVF which is preliminary

optimized to emphasize the dominant orientations. Such construction is perfectly

suited for systems of linear fibres whose orientations could be decomposed into a

small number of overlapping dominant coherent orientation fields (similar to “texture

flows” as in [16]). We have demonstrated effectiveness of our two-stage method on

the linear fibre systems which have two dominant orientations, always perpendicular

to each other, called cross-orientation vector field (COVF). The streamline placement

algorithm progressively propagates streamlines towards new directions fetched from

COVF by taking into account recently used propagation orientations, or what we call

a “context”. For better results, such algorithm runs more than one time, such that the

resulting orientations from the previous iterations are used as a “context” for the next

iterations.

252

Chapter 5

Results: synthesis and GPU rendering

of a feature curve network

In this chapter we demonstrate the effectiveness of our approach in synthesizing and

GPU rendering of a random network of curves. We apply our version of the Monte

Carlo Metropolis-Hastings algorithm, described in Chapter 3, to generate a sample

of a linear fibre process with the fibre interaction model favoring the cross fibre con-

figurations, constrained to be globally aligned with the orientation field of vertical

directions. To improve the connectivity and coherency of the resulting system of lin-

ear fibres, we apply our adaptation of the streamline placement algorithm, described

in Chapter 4. It creates a new network of two overlapping sets of coherent curves,

locally aligned with the original linear fibre system. By applying our feature curve

algorithm described in Chapter 2, we form a normal map and an alpha transparency

map with curvy discontinuity features placed around the curves of the resulting net-

work. We demonstrate a high quality, sharp real-time rendering of the resulting tex-

ture maps, while applying arbitrary profiles for the curvy features customizable in

real-time.

253

5.1 Synthesis of a random network of curves

Figure 5.1: A sample of a hard-constrained linear fibre process distributed by the

weighted model am2-2 (equations 3.81 and 3.82) with a “cross-pattern” point inter-

action model given by Table 3.7.

We generated a sample of a Gibbsian linear fibre process, given by equations 3.56

and 3.57, with a point interaction model hθθθ favoring orthogonal (or, cross) configu-

rations of nearby fibres (the maximum interaction radius is Rmax = 0.25), which is

given by equation 3.59 with its interaction rate values accumulated in Table 3.7. The

phase space for the process had the following components: XP = [0,7]2, XL = [0,1],

and XW = [0,2π). The proximity radius for the simulation algorithm was set to

R∆ = 0.01. The intensity of the zero-order term was chosen as β0 = 5.5. We ap-

plied the hard-core type constraints described in our model am2-2 (equations 3.81

and 3.82 with α = 2.0) to enforce the target fibre system to be aligned with the ori-

entation field of vertical directions VF-up shown in Figure 3.40 (a). We have run a

254

simulated annealing algorithm, described in Section 3.7.1, in combination with the

total length constraint lT = 350, with the SA-temperature varying within the range

[0.01,1.0]. The resulting fibre system, which took 135,000 iterations and about 10

minutes to generate (one can actually reach the similar quality with less iterations:

54,000 iterations takes 4 minutes, and 27,000 iterations takes 2 minutes), is illus-

trated in Figure 5.1.

It is apparent from Figure 5.1 that our algorithm achieved the crucial desirable

properties: (1) the resulting fibre system indeed forms locally a “cross-pattern” —

nearby not-aligned fibres are near to orthogonal to each other — and have a reason-

able amount of regularity, (2) the fibre system is aligned with a given VF-up vector

field which satisfies our target global constraint, (3) the fibre pattern is consistent

along the domain boundary as we have applied a wrapping procedure described at

the end of Section 3.7.4 (one can compare this fibre system with an unwrapped ver-

sion shown in Figure 3.37, which clearly demonstrates a pattern break along the

boundaries), (4) the fibre pattern is clearly non-periodic.

There is one desired property which still requires improvement: it relates to the

connectivity of the aligned fibres. There is a fair amount of fibre breaks in the re-

sulting fibre system. Formation of such breaks is the result of using the inhibiting

interaction potentials, which are good in producing regular patterns but tend to repel

neighboring fibres. One can try to look for better inhibiting interaction models which

have a better balance of inhibiting and attraction. We have described a different ap-

proach in this thesis — one can convert linear fibres to a set of smooth coherent curvy

fibres, locally aligned with the original fibres.

We ran our streamline placement algorithm, described in Chapter 4, to create a

network of two overlapping sets of smooth coherent curves aligned with the linear

fibres described above. The fibre orientations in this case clearly form two domi-

255

Figure 5.2: Generating a networks of overlapping sets of coherent curves by applying

our two-pass streamline CD-wCD-algorithm to a COVF optimized from the linear

fibre system illustrated in Figure 5.1.

256

nant orientation fields, approximately orthogonal to each other, so that applying our

streamline algorithm is reasonable. We have optimized a 256× 256 COVF from a

vector field tangent to the linear fibre system and have applied one iteration of our

two-pass CD-wCD algorithm (described in Section 4.3) to such COVF. For the result-

ing network of curves illustrated in Figure 5.2, we have used the following parameters

during streamlines placement within [0.0,512.0]2 simulation domain: the separation

distance between the streamlines was 8.0 and the saturation ratio was 1.0 (see details

in [86]). We found that the best value for the context radius Rctxt is equivalent to two

separation distances, Rctxt = 16.0 (see Section 4.3 for details).

Figure 5.3: Result of post-processing the network of curves illustrated in Figure 5.2.

257

The quality of the resulting random curves is satisfactory — the number of coher-

ent and smooth fibres is a way larger than that of in the original linear fibre system.

However, some post-processing still needs to be done to eliminate a few remain-

ing breaks between the curvy fibres. Figure 5.3 illustrates the result of performing

a post-processing which includes the following steps: (1) delete all relatively short

open (or, hanging) fibres, (2) translate open fibres towards the closest coherent neigh-

bors and connect them, and (3) stretch one end of open fibre till reaching an open end

of another coherent fibre or till running into (or, touching) another fibre.

5.2 Real-time rendering of network of curves

The first example is an embossing on a plane. We converted the network of curves

generated in the previous section into discontinuity map of size 512×512 (by using

our preprocessing algorithm described in Section 2.6) and formed the sharp features

of “furrows” (with the width w of 3 pixels) around the discontinuities as a normal map

(explained in Figure 2.6 and Section 2.4) with auxiliary textures of distance map and

its gradient. We used our GPU sharp interpolation shader (Section 2.7) to render in

real-time the resulting feature maps on a plane. Snapshots of the plane illustrated in

Figure 5.4 clearly demonstrate that the feature curves and curve joints remain sharp

at any resolution. The width of the feature and profile shape remains consistent very

close to the curves joint, thanks to accurate distance function and gradient.

For a second example, we applied the same normal map with network of feature

curves onto a surface of a coke cane, which is shown in Figure 5.5. This time we used

a smooth “wide ditch” profile instead of the profile of a sharp furrow. The normal

map is not discontinuous across the feature curves in this case, so that the sharpness

would not be a concern here. However, a coherency of the ditch width and shape

258

Figure 5.4: Rendering the network of features on a plane.

259

along the entire can’s surface is a consequence of using out approach of distance and

gradient close to precise interpolation.

Figure 5.5: Rendering the network of features on a can with a different embossing

profile.

Being able to calculate precisely the distance to a network of discontinuity curves

allows us to mimic wiremesh appearance of the originally opaque surfaces. We use

the distance field to calculate α transparency values of the surface wrapped by ge-

ometric detail textures with our feature curves. For the surfaces illustrated in Fig-

ures 5.6 and 5.7, we assigned α(u,v) = 0 for all the samples (u,v) which are within

some distance dSHOW > 0 from the feature discontinuities, d(u,v) < dSHOW. We as-

sign α(u,v) = 1 for other samples in the texture domain. We implement transparency

260

during real-time rendering by clearing z-buffer depth values at the pixels which cor-

respond to the texture samples with α = 1. Other pixels are shaded according to our

feature curve rendering algorithm.

Figure 5.6: Wiremesh-like appearance of a plate (originally illustrated in Fig-

ure 2.31).

The next example shows how our technique is combined with transparency and

an environment map to obtain glass appearance of the same wiremesh. Refraction

direction is calculated with respect to the interpolated normal n(u,v) at the visible

feature points, i.e, α(u,v) = 0, and is used to sample the background intensity from

a provided environment map. One can imitate changing the shape of the wires by

modifying profile of the feature curves keeping the same the original (continuous)

normal map.

The half-diameter of a feature “wire” (or, the visibility distance) dSHOW is a pa-

261

Figure 5.7: Glass wiremesh-like appearance of a plate.

262

rameter for our pixel shader, which can be modified interactively. The snapshots of

interactive process of progressive wire thinning is illustrated in Figure 5.8. The width

of the resulting visible wires is consistent within each snapshot. This is a good evi-

dence that our real-time interpolation of given distance field is accurate, which is not

always the case for recently published distance-based feature rendering techniques.

Figure 5.8: Interactive wire thinning by decreasing the visibility distance dSHOW.

Such wiremesh rendering technique can be a good approximation to volumetric

textures [103], which actually can be relatively more expensive to manipulate than

our feature curves and which quality degrades when viewed from some (even non-

263

grazing) angles.

264

Conclusion

In this thesis, we have developed a set of powerful techniques which target curvilinear

features from the following different perspectives. Our feature detection algorithm

based on optimization of topologically adaptable snakes, robustly segments networks

of curvilinear structures from the black and white images. Our method of real-time

rendering of surfaces wrapped by textures with high concentration of detail features

efficiently stores feature curves in a texture format and smoothly interpolates feature

samples preserving discontinuity feature curves at any resolution. We have devel-

oped a parametric synthesis algorithm which generates coherent and non-periodic

sets of linear fibres and have included comprehensive local and global control. Our

adaptation of the streamline generating algorithm converts such sets into networks of

smooth curves.

Snake-based detection of curvilinear structures. We have developed a robust

feature detection algorithm which efficiently recognizes intricate networks of curvi-

linear structures from still black and white images. Unlike many relevant existing

detection techniques, we avoid a time consuming manual step of localizing poten-

tial feature places by throwing a large number of short snakes in the image plane at

random. This increases a chance of hitting the target structures in the image. Opti-

mization of a large number of snakes forms wide snake bundles pulled to the image

265

structures. We have presented a dynamic thinning algorithm which reduces the bun-

dles to a one snake width and link nearby snakes into a graph-like network during

the original snake type optimization. To make such optimization stable, we have ap-

plied equality constraints to implement links between snakes nodes, instead of using

springs proposed in the original snake algorithm.

Real-time rendering of feature curves. We have described a technique for rep-

resenting and real-time rendering of textures with discontinuity feature curves. In

our rendering framework, the discontinuity features are represented as a function of

unsigned distance to the discontinuity curves and its gradient. We have shown that a

separate interpolation of distance and gradient texture fields are crucial for obtaining

high quality results in feature rendering. Our algorithm uses Bezier curve repre-

sentation for features directly, and no linear approximation artifacts appear at any

resolution. While only a limited number of local configurations are allowed by the

rendering-time representation of the feature curves, we describe a preprocessing step

that simplifies a general network to the form that can be used by the rendering al-

gorithm. The preprocessing step is relatively simple, and, for texture with piecewise

linear features, can be done interactively.

Gibbsian fibre processes. We have developed a new parametric model for repre-

senting and generating random systems of fibres distributed according to a Gibbs

type interaction model. This work represents a new look at the problem of para-

metric synthesis of textures with rich feature content: instead of synthesizing a new

texture from a reference image, where the valuable geometric information about the

features is typically lost during imaging, we generate the features themselves. We

use outcomes of a random fibre process to define the locations of the features, so that

266

the features can be formed afterwards around the fibres. Conventional models of the

fibre processes are known to model only completely random Poissonian collections

of fibres, which cannot produce near-regular patterns. Our random fibre process is

capable to generate regular patterns. It is based on a parametric attraction/repulsion

fibre interaction model which allows directly specifying the preferred and unwanted

local configuration of fibres in the output fibre systems. In addition to an implicit

local control to fibre interactions, we have embedded a global control as a set of

constraints which force a fibre system to be aligned with a given orientation map.

Hard-core global constraints influence all the fibre systems, while soft-core global

constraints affect certain areas of the simulation domain (e.g., within a neighborhood

of some specified thick feature).

In this work we have explored in a great detail linear fibre processes, which define

distributions of line segments in the plane. We have developed a variant of the Monte

Carlo Metropolis-Hastings algorithm to simulate random samples of the linear fibre

systems which converged in a reasonable time for the examples we have presented in

the thesis. The global constraints have been efficiently incorporated into the simula-

tion program by adding corresponding simulated annealing terms into the probability

model of the linear fibres.

Linear fibre process is a special case of a general framework of fibre processes,

which could include arrangements of curves. While leaving a thorough development

of models for curvy fibres for a future, we have presented a synthesis method which

converts a given system of linear fibres into overlapping sets of coherent and mostly

smooth curves. We assume that the linear fibres form roughly two independent ori-

entation flows. We optimize the flows to build cross-orientation vector field (COVF)

with orientation pairs being mostly continuous along each flow and perpendicular

to each other. We have adapted the streamline placement algorithm by Mebarki et

267

al. [86] which is capable of sampling a given COVF in a way that respects the current

“context” — the short history of propagation steps and some propagation neighbor-

hood.

Future work

Snake-based curvilinear structures detection. The original deformable models

have already demonstrated their effectiveness for tracking object boundaries [136].

Similarly, it is desirable to extend our snake-based detection algorithm to track curvi-

linear structures evolving in video sequences. The main functionality which should

be implemented for a possible extension algorithm is the ability for individual snakes

to shrink and to grow in length when the corresponding curvilinear structures deform

across the frames with simultaneous update of the corresponding plane graph (which

tracks snakes adjacency in our approach) by inserting new or deleting the old nodes

and edges when it is necessary.

Our algorithm is tuned to detect thin curvilinear features only and may fail to rec-

ognize conventional feature boundaries. A generalization of our algorithm which can

perform robust segmentation in the images with a mixture of curvilinear structures

and feature boundaries could be very valuable.

Real-time rendering of feature curves. We demonstrated effectiveness of our

method for interpolating normal maps. However, similar approaches can be applied

to more advanced types of geometric mapping, such as relief and displacement maps.

Our main limitation that no more than two curves can be stored in a texel, can be

resolved on modern GPUs by using arbitrary length discontinuity descriptors and

indirect lookups, similar to the data structures used in concurrent work [94, 105].

268

As discussed briefly in [138], one can remove some of the topological restrictions

by considering higher resolution textures, localized to the areas of multiple curve

intersections. Higher-order interpolation for the distance and its gradient would im-

prove the quality of the result at the expense of more stored data. Hashing and a

variant of the ADF approach [49] can be used to optimize memory consumption of

our technique by employing the fact that a majority of texels are not affected by

discontinuities.

Gibbsian fibre processes. In our model of random fibres, we mainly focus on gen-

erating systems of linear fibres, which are represented by line segments. However,

our method is not restricted to just linear fibres and, in principle, can be extended

to a more general case which can handle curvy primitives of bounded length. For a

general model, we have already outlined a general construction of fibre distributions

of the exponential family, based on interaction integrals. A challenging problem to-

wards completing the fibre model for curves is to design a proper phase space. We

believe that a very promising direction is to try working within the space of quadratic

Bezier segments which are completely defined by three control points (a representa-

tion space in this case is a bounded subset of R6).

Our model of linear fibres is capable of producing a variety of near-regular con-

figurations of fibres by tweaking the parameters of the fibre interaction model which

are easy to interpret. However, optimizing the constraints parameters to make the lin-

ear fibres better connected may be not trivial in some cases, and may notably distort

an original correlation pattern of the fibres. Considering the space of fibres connected

at any time is an interesting alternative direction to explore.

Statistical inference algorithms have been provided for Gibbs type spatial point

process models. In particular, the parameters of the exponential family of pair-

269

potential models of repulsion and attraction, based on step functions, can be rapidly

recovered by computing approximate maximum pseudolikelihood estimates [5, 6, 7].

Our model of random linear fibres is formed by integrating such pair-potentials. This

gives a hope that an inverse problem for linear fibres can be developed by using the

same principles which were used to derive the inference algorithms for underlying

point processes.

Our COVF-based streamline placement algorithm requires some improvements

as in some cases it produces noticeable closely overlapping curves. On the other

note, our assumption about two cross oriented coherent flows is very strong and re-

strictive: several mentioned in the thesis fibre systems clearly formed more than two

dominant orientation fields. One can develop a more general approach capable of

optimizing multi-orientation vector fields (MOVFs) from a given linear fibre system

and use the ideas which shaped our COVF-based streamline algorithm in developing

its extension to generate more than two overlapping sets of coherent curves aligned

with a given MOVF.

270

Basic Notation

Rd : d-dimensional Euclidean space

χA(x) : characteristic function of a set A

λ • (a,b) : linear interpolation function between a and b 81, 209

{eeex,eeey,eeez} : standard orthonormal basis in R3

Detecting curvilinear features
s : Snake (parametrization) 20

s(u j) : Snake’s j-th node 19

Feature curves
L[ppp,qqq] : Line segment with end points ppp and qqq 49

B[bbb0,bbb1,bbb2] : Bezier segment with control points bbb0, bbb1, and bbb2 49

γB(t) : A parametrization of a Bezier segment B 49

(Ĉi j) : Texture of discontinuity configurations C 63

(Ŝi j) : Texture of discontinuity signatures S 64

(d̂i j) : Unsigned distance texture map 71

(∇d̂i j) : Texture of distance gradients 71

271

{ppp,qqq} : Curvilinear segment, which is parameterized by

some quadratic curve γ , s.t. γ(0) = ppp and γ(1) = qqq

81

[ppp,qqq) : A ray ppp+ t(ppp−qqq), t ≥ 0 81

Fibre processes
XXX : spatial point process, (Ω,A,P)→ (X∞,F∞,µ) 122

XXX(B) : random variable of the number of points of X located

in B, B ∈B

122

λ (B) : intensity measure of a set B ∈B 122,

127

X∞ : exponential space over point process simulation do-

main X

126

F∞ : σ -algebra of the exponential space X∞ 127

B : σ -algebra generated by bounded Borel sets over X 126

µ(F) : Poisson measure (distribution of Poisson point pro-

cess) on F∞

127

π(F) : point process measure derived from the Poisson mea-

sure

128

f (x1 ◦ x2 ◦ . . .◦ xn) : probability density function of a points arrangement 128

Φ = ϕ1 ◦ϕ2 ◦ . . .◦ϕn : fibre system of n fibres, N(Φ) = n 144,146

Φî ≡Φ\ϕi : reduction of a fibre system Φ by a fibre ϕi ∈Φ 169

β (ϕ) : zero-order interaction potential 154,161

h̃1(ϕ) or (ϕ)1 : first-order interaction potential 155

h̃2(ϕ,ψ) : pair-potential,

(ϕ,ψ)2 or second-order interaction potential 151

272

ϕ ∼
R

ψ : fibre neighborhood relation 154,173

hθθθ (d,w) : point interaction function 161

X : fibre representation space 144,

158

XXX : fibre process, (Ω,A,P)→ (X∞, F̃∞,µ) 134,146

ν(B) : intensity measure of a set B ∈ B̃ 144

X∞ : exponential space over fibres process simulation do-

main X

144

F̃∞ : σ -algebra of the exponential space X∞ 144

B̃ : σ -algebra generated by bounded Borel sets over X 146

Φ(B) : the length of a portion of a fibre system which over-

laps with B ∈B

134

lϕ or ϕ(X) : the length of a fibre ϕ 134

λc(ϕi;Φî) : conditional intensity for adding a new fibre ψ to a

fibre system Φ

171

Nb(ψ;Φ,R) = : R-neighborhood of a fibre ψ within a fibre system Φ 174

V : a vector field, R2→ E,Vppp p = V (v), ppp ∈ R2 206

273

Bibliography

[1] K. Abe, F. Mizutani, and C. Wang. Thinning of gray-scale images with com-

bined sequential and parallel conditions for pixel removal. IEEE Trans. Sys-

tems, Man and Cybernetics, 24:294–299, 1994. 15

[2] R. V. Ambartsumian. Random fields of segments and random mosaics on a

plane. In Proceedings of Sixth Berkeley Symposium on Mathematical Statistics

and Probability, volume 3, pages 369–381. University of California Press,

1972. 136

[3] C. H. Arns, J. Mecke, K. Mecke, and D. Stoyan. Second-order analysis by var-

iograms for curvature measures of two-phase structures. European Physical

Journal B, 47:397–409, 2005. 105, 135

[4] Michael Ashikhmin. Synthesizing natural textures. In I3D ’01: Proceedings

of the 2001 symposium on Interactive 3D graphics, pages 217–226, New York,

NY, USA, 2001. ACM. 118

[5] A. Baddeley and R. Turner. Practical maximum pseudolikelihood for spatial

point patterns. Australian and New Zealand Journal of Statistics, 42:283–322,

2000. 128, 158, 270

274

[6] A. Baddeley and R. Turner. Spatstat: an r package for analyzing spatial point

patterns. Journal of Statistical Software, 12(6):1–42, 2005. 128, 158, 270

[7] A. Baddeley and R. Turner. The spatstat Package. http://www.spatstat.org,

2007. 128, 158, 270

[8] A. J. Baddeley and Jesper Moller. Nearest-neighbor markov point processes

and random sets. International Statistical Review, 57:89–121, 1989. 125

[9] A. J. Baddeley and R. Turner. Practical maximum pseudolikelihood for spatial

point patterns. Advances in Applied Probability, 30(2):273, 1998. 125

[10] Kavita Bala, Bruce J. Walter, and Donald P. Greenberg. Combining edges and

points for interactive high-quality rendering. ACM Transactions on Graphics,

22(3):631–640, July 2003. 40, 42

[11] D. Ballard and C. Brown. Computer Vision, chapter 4. Prentice-Hall, 1982.

16

[12] Y. Bando, T. Kuratate, and T. Nishita. A simple method for modeling wrinkles

on human skin. In Pacific Graphics, 2002. 107

[13] Ziv Bar-Joseph, Ran El-Yaniv, Dani Lischinski, and Michael Werman. Texture

mixing and texture movie synthesis using statistical learning. IEEE Transac-

tions on Visualization and Computer Graphics, 7(2):120–135, 2001. 117

[14] O. Barndorff-Nielsen, W. Kendall, and M. N. M. Lieshout. Stochastic geome-

try likelihood and computation. London, Chapman and Hall, 1999. 120, 125,

129

275

[15] Barry G. Becker and Nelson L. Max. Smooth transitions between bump ren-

dering algorithms. In Proceedings of SIGGRAPH 93, Computer Graphics Pro-

ceedings, Annual Conference Series, pages 183–190, August 1993. 44

[16] O. Ben-Shahar and S. W. Zucker. The perceptual organization of texture flow:

a contextual inference approach. IEEE Trans. Pattern analysis and machine

intelligence, 25(4):401–417, April 2003. 228, 252

[17] M. Bern, D. Goldberg, R. C. Stevens, and P. Kuhn. Automatic classification

of protein crystallization images using a curve-tracking algorithm. Journal of

Applied Crystallography, 37(2):279–287, 2004. 2

[18] James F. Blinn. Simulation of wrinkled surfaces. In Computer Graphics (Pro-

ceedings of SIGGRAPH 78), volume 12, pages 286–292, August 1978. 43

[19] James F. Blinn. How to solve a cubic equation, part 5: Back to numerics. IEEE

Computer Graphics and Applications, 27(3):78–89, 2007. 59

[20] Jeremy S. De Bonet. Multiresolution sampling procedure for analysis and syn-

thesis of texture images. In SIGGRAPH ’97: Proceedings of the 24th annual

conference on Computer graphics and interactive techniques, pages 361–368,

New York, NY, USA, 1997. ACM Press/Addison-Wesley Publishing Co. 117

[21] P. Brodatz. Textures: A Photographic Album for Artists and Designers. Dover

Publications, 1966. 228

[22] D. S. Carter and P. M. Prenter. Exponential spaces and counting processes.

Probability Theory and Related Fields, 21(1), March 1972. 126

[23] Frank H. Clarke. Optimization and Nonsmooth Analysis. Cambridge Univer-

sity Press, 1987. 54

276

[24] Peter Clifford and Geoff Nicholls. Comparison of birth-and-death and

metropolis-hastings markov chain monte carlo for the strauss process.

Technical report, Department of Mathematics, University of Auckland,

NZ, http://www.math.auckland.ac.nz/ nicholls/linkfiles/papers/Strauss.ps.gz,

1994. 142

[25] Michael F. Cohen, Jonathan Shade, Stefan Hiller, and Oliver Deussen. Wang

tiles for image and texture generation. In SIGGRAPH ’03: ACM SIGGRAPH

2003 Papers, pages 287–294, New York, NY, USA, 2003. ACM. 118

[26] Robert L. Cook. Shade trees. In Computer Graphics (Proceedings of SIG-

GRAPH 84), volume 18, pages 223–231, July 1984. 44

[27] Robert L. Cook. Stochastic sampling in computer graphics. ACM Transactions

on Graphics, 5(1):51–72, 1986. 125

[28] David Cox, John Little, and Donal O’Shea. Using algebraic geometry, chap-

ter 3, pages 78–82. Graduate Texts in Mathematics. Springer-Verlag New

York, 1998. 74

[29] Oana G. Cula, Kristin J. Dana, Frank P. Murphy, and Babar K. Rao. Skin

texture modeling. Int. J. Comput. Vision, 62(1-2):97–119, 2005. 2, 14

[30] D. J. Daley and D. Vere-Jones. An introduction to the theory of point processes,

volume I. Springer Verlag, 2nd edition, 2005. 128

[31] Mark de Berg, Marc van Kreveld, Mark Overmars, and Otfried Schwarzkopf.

Computational Geometry: Algorithms and Applications. Springer-Verlag, sec-

ond edition, 2000. 176

277

[32] P. J. Diggle, D. J. Gates, and A. Stibbard. A nonparametric estimator for

pairwise-interaction point processes. Biometrika, 74(4):763–770, 1987. 125,

129

[33] Peter J. Diggle, Thomas Fiksel, Pavel Grabarnik, Yosihiko Ogata, Dietrich

Stoyan, and Masaharu Tanemura. On parameter estimation for pairwise inter-

action point processes. International Statistical Review, 62(1):99–117, 1994.

125

[34] Peter J. Diggle and Richard J. Gratton. Monte carlo methods of inference for

implicit statistical models. Journal of the Royal Statistical Society. Series B

(Methodological), 46(2):193–227, 1984. 129

[35] W. Donelly. GPU Gems 2 : Programming Techniques for High- Performance

Graphics and General-Purpose Computation, chapter 8 Per-pixel displace-

ment mapping with distance functions. Addison-Wesley Professional, 2005.

44

[36] Weiming Dong, Ning Zhou, and Jean-Claude Paul. Optimized tile-based tex-

ture synthesis. In GI ’07: Proceedings of Graphics Interface 2007, pages

249–256, New York, NY, USA, 2007. ACM. 118

[37] R.O. Duda and P.E. Hart. Use of the hough transform to detect lines and curves

in pictures. Communications of the ACM, pages 11–15, 1972. 16

[38] S. I. Dudov. On the generalized gradient of the distance function. Journal of

Mathematical Sciences, 100(6):2593–2600, 2000. 54

278

[39] C.R. Dyer and A. Rosenfeld. Thinning algorithms for gray-scale pictures.

IEEE Trans. Pattern analysis and machine intelligence, 1(1):88–90, January

1979. 15

[40] David S. Ebert, Steven Worley, F. Kenton Musgrave, Darwyn Peachey, Ken

Perlin, and Kenton F. Musgrave. Texturing and Modeling: A Procedural Ap-

proach. Academic Press, Inc., Orlando, FL, USA, 1998. 115

[41] Alexei A. Efros and William T. Freeman. Image quilting for texture synthesis

and transfer. In SIGGRAPH ’01: Proceedings of the 28th annual conference

on Computer graphics and interactive techniques, pages 341–346, New York,

NY, USA, 2001. ACM. 118

[42] Alexei A. Efros and Thomas K. Leung. Texture synthesis by non-parametric

sampling. In ICCV ’99: Proceedings of the International Conference on Com-

puter Vision-Volume 2, page 1033, Washington, DC, USA, 1999. IEEE Com-

puter Society. 117

[43] Gerald Farin. Curves and Surfaces for Computer-Aided Geometric Design,

chapter 4. Academic Press, San Diego, 4 edition, 1997. 68

[44] N. A. Fava and L. A. Santalo. Plate and line segment processes. Journal of

Applied Probability, 15(3):494–501, 1978. 136

[45] S. F. Firsken, R. N. Perry, and T. R. Jones. Detail-directed hierarchical dis-

tance fields. US Patent 6,396,492, May 2002. 41

[46] M. Fischler, J. Tenenbaum, and H. Wolf. Detection of roads and linear struc-

tures in low-resolution aerial imagery using a multisource knowledge inte-

279

gration technique. Computer Graphics and Image Processing, (15):201–223,

1981. 2

[47] Kurt W. Fleischer, David H. Laidlaw, Bena L. Currin, and Alan H. Barr. Cel-

lular texture generation. In SIGGRAPH ’95: Proceedings of the 22nd annual

conference on Computer graphics and interactive techniques, pages 239–248,

New York, NY, USA, 1995. ACM. 115

[48] A. Fortier, D. Ziou, C. Armenakis, and S. Wang. Survey of work on road

extraction in aerial and satellite images. tech report 241. Technical report,

Universite de Sherbrooke, Quebec, Canada, 1999. 2

[49] Sarah F. Frisken, Ronald N. Perry, Alyn P. Rockwood, and Thouis R. Jones.

Adaptively sampled distance fields: a general representation of shape for com-

puter graphics. In SIGGRAPH ’00: Proceedings of the 27th annual conference

on Computer graphics and interactive techniques, pages 249–254, New York,

NY, USA, 2000. ACM Press/Addison-Wesley Publishing Co. 41, 269

[50] D. Geiger, A. Gupta, L. A. Costa, and J. Vlontzos. Dynamic programming for

detecting, trackin, and matching deformable contours. IEEE Trans. on Pattern

Analysis and Machine Interlligence, 17(3):294–302, March 1995. 17

[51] D. Geman and B. Jedynak. An active testing model for tracking roads in satel-

lite images. IEEE Transactions on Pattern Analysis and Machine Intelligence,

18(1):1–14, 1996. 2

[52] C. J. Geyer and J. Moller. Simulation procedures and likelihood inference for

spatial point processes. Scandinavian Journal of Statistics, 21:359–373, 1994.

137, 169

280

[53] Stephane Gobron and Norishige Chiba. Crack pattern simulation based on 3d

surface cellular automata. The Visual Computer, 17(5):287–309, 2001. 105

[54] Simon Green. The opengl framebuffer object exntension. In Game Developers

Conference 2005, San Francisco, CA, Mar. 2005. 88

[55] Geoffrey R. Grimmett and David R. Stirzaker. Probability and Random Pro-

cesses. Oxford, University Press, third edition, 2004. 122, 123

[56] User’s Guide. Matlab Optimization Toolbox 4.

http://www.mathworks.com/access/helpdesk/help/toolbox/optim/, 2008.

232

[57] Olle Haggstrom, Marie-Colette N. M. Van Lieshout, and Jesper Moller. Char-

acterization results and markov chain monte carlo algorithms including exact

simulation for some spatial point processes. Bernoulli, 5(4):641–658, 1999.

125

[58] Jianwei Han, Kun Zhou, Li-Yi Wei, Minmin Gong, Hujun Bao, Xinming

Zhang, and Baining Guo. Fast example-based surface texture synthesis via

discrete optimization. Vis. Comput., 22(9):918–925, 2006. 118

[59] R. M. Haralik. Ridges and valleys on digital images. Computer Vision, Graph-

ics, and Image processing, 22:28–38, 1983. 16

[60] Paul Heckbert. Discontinuity meshing for radiosity. In 3rd Eurographics

Workshop on Rendering, pages 203–226, May 1992. 40

[61] David J. Heeger and James R. Bergen. Pyramid-based texture analysis/syn-

thesis. In SIGGRAPH ’95: Proceedings of the 22nd annual conference on

281

Computer graphics and interactive techniques, pages 229–238, New York,

NY, USA, 1995. ACM. 4, 116, 117

[62] Wolfgang Heidrich, Katja Daubert, Jan Kautz, and Hans-Peter Seidel. Illu-

minating micro geometry based on precomputed visibility. In Proceedings of

ACM SIGGRAPH 2000, Computer Graphics Proceedings, Annual Conference

Series, pages 455–464, July 2000. 44

[63] A. Hertzmann and D. Zorin. Illustrating smooth surfaces. In Proceedings of

ACM SIGGRAPH 2000, Computer Graphics Proceedings, Annual Conference

Series, pages 517–526, July 2000. 230, 232

[64] Olle Hggstrm, Marie-Colette N.M. Van Lieshout, and Jesper Mller. Charac-

terization results and markov chain monte carlo algorithms including exact

simulation for some spatial point processes. Bernoulli, 5(4):641–658, 1999.

142, 173

[65] C. P. Hornung. Background Patterns, Textures, and Tints. Dover Publications,

1976. 228

[66] P. V. C. Hough. Methods and means for recognising complex patterns. Tech-

nical Report United States Patent: 3,069,654,, December 1962. 16

[67] Ryan M. Ismert, Kavita Bala, and Donald P. Greenberg. Detail synthesis for

image-based texturing. In 2003 ACM Symposium on Interactive 3D Graphics,

pages 171–175, April 2003. 45

[68] S. Karkkainen and C. Lantuejoul. Orientational analysis of planar fibre

systems observed as a poisson shot-noise process. Journal of Microscopy,

228(1):88–96, 2007. 136

282

[69] F. P. Kelly and B. D. Ripley. A note on strauss’s model for clustering.

Biometrika, 63(2):357–360, 1976. 125, 129

[70] Wilfrid S. Kendall and Jesper Mller. Perfect simulation using dominating pro-

cesses on ordered spaces, with application to locally stable point processes.

Advances in Applied Probability, 32(3):844–865, 2000. 142, 173

[71] W.S. Kendall. Perfect simulation for the area-interaction point process, chap-

ter in ”Probability Towards 2000”, edited by L. Accardi and C.C. Heyde, pages

218–234. Springer New York, 1998. 142, 173

[72] Vivek Kwatra, Irfan Essa, Aaron Bobick, and Nipun Kwatra. Texture opti-

mization for example-based synthesis. ACM Trans. Graph., 24(3):795–802,

2005. 118

[73] Vivek Kwatra, Arno Schödl, Irfan Essa, Greg Turk, and Aaron Bobick. Graph-

cut textures: image and video synthesis using graph cuts. ACM Trans. Graph.,

22(3):277–286, 2003. 118

[74] L. Lam, S.W. Lee, and C.Y. Suen. Thinning methodologies: A comprehensive

survey. IEEE Trans. Pattern analysis and machine intelligence, 14(9):869–

885, September 1992. 15

[75] G. M. Laslett. The survival curve under monotone density constraints with ap-

plications to two-dimensional line segment processes. Biometrika, 69(1):153–

160, 1982. 136

[76] Peter A. W. Lewis and Gerald S. Shedler. Simulation of nonhomogeneous

poisson processes by thinning. Technical Report 26, 403–413, Naval Research

Logistic Quaterly, 1979. 123

283

[77] Jing Lin, Hui-Tang Chen, Ping Jiang, Yue-Juan Wang, and Peng-Yung Woo.

Curve tracking and reproduction by a robot with a vision system. Journal of

Robotic Systems, 16(10):547–556, 1999. 2

[78] Erik Lindholm, Mark J. Kligard, and Henry Moreton. A user-programmable

vertex engine. In Proceedings of SIGGRAPH 01, pages 149–158, New York,

NY, USA, 2001. ACM. 46

[79] Yanxi Liu, Wen-Chieh Lin, and James Hays. Near-regular texture analysis and

manipulation. ACM Trans. Graph., 23(3):368–376, 2004. 118

[80] Charles Loop and Jim Blinn. Resolution independent curve rendering us-

ing programmable graphics hardware. ACM Trans. Graph., 24(3):1000–1009,

2005. 42

[81] Jianye Lu, Athinodoros S. Georghiades, Andreas Glaser, Hongzhi Wu, Li-

Yi Wei, Baining Guo, Julie Dorsey, and Holly Rushmeier. Context-aware

textures. ACM Trans. Graph., 26(1):3, 2007. 118

[82] Nelson L. Max. Shadows for bump-mapped surfaces. In Advanced Com-

puter Graphics (Proceedings of Computer Graphics Tokyo ’86), pages 145–

156, 1986. 44

[83] Nelson L. Max. Horizon mapping: shadows for bump-mapped surfaces. The

Visual Computer, 4(2):109–117, July 1988. 44

[84] Morgan McGuire and Max McGuire. Steep parallax mapping, 2005. 44

[85] T. McInerney and D. Terzopoulos. Topologically adaptable snakes. In Pro-

ceedings of International Conference on Computer Vision, pages 840–845,

June 1995. 18

284

[86] Abdelkrim Mebarki, Pierre Alliez, and Olivier Devillers. Farthest point seed-

ing for efficient placement of streamlines. In Proc. of IEEE Visualization,

2005. xx, 227, 237, 239, 248, 252, 257, 268

[87] Don P. Mitchell. Generating antialiased images at low sampling densities.

In Proceedings of ACM SIGGRAPH 1987, Computer Graphics Proceedings,

Annual Conference Series, pages 65–72, 1987. 125

[88] B. S. Morse, W. A. Barrett, J. K. Udupa, and R. P. Burton. Trainable optimal

boundary finding using two-dimensional dynamic programming. Technical

Report MIPG180, University of Pennsylvania, Philadelphia, PA, March 1991.

17

[89] E. N. Mortensen. Adaptive boundary detection using ’live-wire’ two-

dimensional dynamic programming. Master’s thesis, Brigham Young Uni-

versity, Provo, UT, August 1995. 17

[90] E. N. Mortensen and W. A. Barret. Intelligent scissors for image composition.

In ACM SIGGRAPH ’95. International Conference on Computer Graphics

and Interactive Techniques, August 1995. 17

[91] E. N. Mortensen and W. A. Barret. Interactive segmentation with intelligent

scissors. Graphical Models and Image Processing, 60(5), 1998. 17

[92] James Munkers. Topology. Prentice Hall, 2nd edition, 2000. 149

[93] F. K. Musgrave, C. E. Kolb, and R. S. Mace. The synthesis and rendering of

eroded fractal terrains. In SIGGRAPH ’89: Proceedings of the 16th annual

conference on Computer graphics and interactive techniques, pages 41–50,

New York, NY, USA, 1989. ACM. 115

285

[94] D. Nehab and H. Hoppe. Random-access rendering of general vector graphics.

In SIGGRAPH Asia 2008. 43, 268

[95] Jerzy Neyman and Elizabeth L. Scott. Statistical approach to problems of

cosmology. Journal of the Royal Statistical Society, 20:1–43, 1958. 124

[96] Tomoyuki Nishita, Thomas W. Sederberg, and Masanori Kakimoto. Ray

tracing trimmed rational surface patches. SIGGRAPH Comput. Graph.,

24(4):337–345, 1990. 83

[97] Yosihiko Ogata and Masaharu Tanemura. Estimation of interaction potentials

of spatial point patterns though the maximum likelihood procedure. Annals of

the Institute of Statistical Mathematics, 33(1):315–338, 1981. 125

[98] Yosihiko Ogata and Masaharu Tanemura. Likelihood analysis of spatial point

patterns. Journal of the Royal Statistical Society. Series B (Methodological),

46(3):496–518, 1984. 125, 129

[99] Manuel M. Oliveira, Gary Bishop, and David McAllister. Relief texture map-

ping. In Proceedings of ACM SIGGRAPH 2000, Computer Graphics Proceed-

ings, Annual Conference Series, pages 359–368, July 2000. 44

[100] Pierre Parent, Steven, and W. Zucker. Trace inference, curvature consistency,

and curve detection. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 11:823–839, 1989. 2

[101] E. Parilov, I. Rosenmberg, and D. Zorin. Real-time rendering of normal maps

with discontinuities. Technical report, Courant Institute of Mathematical Sci-

ences, NYU, 2005. 86

286

[102] P. Parker and R. Cowan. Some properties of line segment processes. Journal

of Applied Probability, 13(1):96–107, 1976. 136

[103] Jianbo Peng, Daniel Kristjansson, and Denis Zorin. Interactive modeling

of topologically complex geometric detail. In SIGGRAPH ’04: ACM SIG-

GRAPH 2004 Papers, pages 635–643, New York, NY, USA, 2004. ACM. 263

[104] Ken Perlin. An image synthesizer. In SIGGRAPH ’85: Proceedings of the 12th

annual conference on Computer graphics and interactive techniques, pages

287–296, New York, NY, USA, 1985. ACM Press. 44, 115

[105] R. N. Perry and S. F. Firsken. Method and apparatus for rendering cell-based

distance fields using texture mapping. US Patent 6,917,369, June 2005. 268

[106] R. N. Perry and S. F. Firsken. Method for converting two-dimensional objects

to distance fields. US Patent 7,030,881, April 2006. 41

[107] Fábio Policarpo, Manuel M. Oliveira, and Jo ao L. D. Comba. Real-time relief

mapping on arbitrary polygonal surfaces. In SI3D ’05: Proceedings of the

2005 symposium on Interactive 3D graphics and games, pages 155–162, New

York, NY, USA, 2005. ACM Press. 44

[108] Kris Popat and Rosalind W. Picard. Novel cluster-based probability model for

texture synthesis, classification, and compression. In In Visual Communica-

tions and Image Processing, pages 756–768, 1993. 117

[109] Javier Portilla and Eero P. Simoncelli. A parametric texture model based

on joint statistics of complex wavelet coefficients. Int. J. Comput. Vision,

40(1):49–70, 2000. 117

287

[110] Emil Praun, Adam Finkelstein, and Hugues Hoppe. Lapped textures. In SIG-

GRAPH ’00: Proceedings of the 27th annual conference on Computer graph-

ics and interactive techniques, pages 465–470, New York, NY, USA, 2000.

ACM Press/Addison-Wesley Publishing Co. 118

[111] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery. Numeri-

cal Recipes in C++: The Art of Scientific Computing. Cambridge University

Press, 2nd edition, 2002. 59, 167

[112] Chris Preston. Spatial birth-and-death processes. Bull. Int. Statist. Inst.,

46(2):371–391, 1975. 137, 142

[113] James Gary Propp and David Bruce Wilson. Exact sampling with coupled

markov chains and applications to statistical mechanics. In Proceedings of the

seventh international conference on Random structures and algorithms, pages

223–252, New York, NY, USA, 1996. John Wiley & Sons, Inc. 142

[114] Zheng Qin, Michael D. McCool, and Craig Kaplan. Precise vector textures

for real-time 3d rendering. In SI3D ’08: Proceedings of the 2008 symposium

on Interactive 3D graphics and games, pages 199–206, New York, NY, USA,

2008. ACM. 43, 60

[115] Zheng Qin, Michael D. McCool, and Craig S. Kaplan. Real-time texture-

mapped vector glyphs. In SI3D ’06: Proceedings of the 2006 symposium on

Interactive 3D graphics and games, pages 125–132, New York, NY, USA,

2006. ACM Press. 42, 59

288

[116] G. Ramanarayanan, Kavita Bala, and Bruce Walter. Feature-based textures.

In Rendering Techniques 2004: 15th Eurographics Workshop on Rendering,

pages 265–274, June 2004. 37, 40, 42

[117] B. D. Ripley. Statistical inference for spatial processes. Cambridge University

Press, Cambridge New York, 1988. 125

[118] B. D. Ripley and F. P. Kelly. Markov point processes. Journal of the London

Mathematical Society, 15:188–192, 1977. 141

[119] Brian D. Ripley. Stochastic simulation. John Wiley & Sons, Inc., New York,

NY, USA, 1987. 123

[120] Sheldon M. Ross. Simulation. Academic press, 2 edition, 1997. 190

[121] Andrew J. Round, Andrew W. G. Duller, and Peter J. Fish. Lesion classifi-

cation using skin patterning. Skin Research and Technology, 6(4):183–192,

2000. 2, 14

[122] Mike Salisbury, Corin Anderson, Dani Lischinski, and David H. Salesin.

Scale-dependent reproduction of pen-and-ink illustrations. In Proceedings of

SIGGRAPH 96, Computer Graphics Proceedings, Annual Conference Series,

pages 461–468, August 1996. 40, 42

[123] Roy Saunders and Gerald M. Funk Richard J. Kryscio. Poisson limits for a

hard-core clustering model. Stoch. Proc. Appl., 12(2):97–106, 1982. 125

[124] Pradeep Sen. Silhouette maps for improved texture magnification. In Graphics

Hardware 2004, pages 65–74, August 2004. 37, 40, 41, 61

289

[125] Pradeep Sen, Michael Cammarano, and Pat Hanrahan. Shadow silhouette

maps. ACM Transactions on Graphics, 22(3):521–526, July 2003. 41

[126] Zhishun She and P. J. Fish. Skin lesion differentiation using skin line direction.

In Medical Image Understanding and Analysis. University of Portsmouth. 2,

14

[127] Eero P Simoncelli and William T Freeman. The steerable pyramid: A flexible

architecture for multi-scale derivative computation. In International Confer-

ence on Image processing, pages 444–447, 1995. 117

[128] Eero P Simoncelli and A Karasaridis. A filter design technique for steerable

pyramid image transforms. In International Conference on Acoustics, Speech,

and Signal Processing, volume 4, pages 2387 – 2390, 1996. 117

[129] Peter Sloan and Michael F. Cohen. Hardware accelerated horizon mapping.

In Rendering Techniques 2000: 11th Eurographics Workshop on Rendering,

pages 281–286, June 2000. 44

[130] Dietrich Stoyan, Wilfrid S. Kendall, and Joseph Mecke. Stochastic Geometry

and its Applications. Wiley, 2nd edition, 2001. 105, 124, 133, 135

[131] H. Stoyan and D. Stoyan. Simple stochastic models for the analysis of dislo-

cation distributions. Physica status solidi (a), 97(1):163–172, 1986. 135

[132] D. J. Strauss. A model for clustering. Biometrika, 62(2):467–475, 1976. 125,

129

[133] M. Tarini and P. Cignoni. Pinchmaps: textures with customizable discontinu-

ities. Computer Graphics Forum (Eurographics 2005 Conf. Issue), 24(3):[in

press], 2005. 37, 42

290

[134] M. Tarini, P. Cignoni, C. Rocchini, and Roberto Scopigno. Real time, accu-

rate, multi-featured rendering of bump mapped surfaces. Computer Graphics

Forum, 19(3), August 2000. 43

[135] Gabriel Taubin. A signal procesesing approach to fair surface design. In

Robert Cook, editor, SIGGRAPH 95 Conference Proceedings, Annual Con-

ference Series, pages 351–358. ACM SIGGRAPH, Addison Wesley, August

1995. 71

[136] D. Terzopoulos, M. Kass, and A. Witkin. Snakes: Active contour model.

International Journal of Computer Vision, 1:321–333, 1988. 18, 19, 21, 26,

32, 268

[137] Xin Tong, Jingdan Zhang, Ligang Liu, Xi Wang, Baining Guo, and Heung-

Yeung Shum. Synthesis of bidirectional texture functions on arbitrary surfaces.

In SIGGRAPH ’02: Proceedings of the 29th annual conference on Computer

graphics and interactive techniques, pages 665–672, New York, NY, USA,

2002. ACM. 118

[138] Jack Tumblin and Prasun Choudhury. Bixels: Picture samples with sharp

embedded boundaries. In Proceedings of the 15th Eurographics Workshop on

Rendering Techniques, 2004. 37, 40, 41, 42, 61, 269

[139] Greg Turk. Generating textures on arbitrary surfaces using reaction-diffusion.

In SIGGRAPH ’91: Proceedings of the 18th annual conference on Computer

graphics and interactive techniques, pages 289–298, New York, NY, USA,

1991. ACM. 115

291

[140] J. K. Udupa, P. K. Saha, and R. A. Lotufo. Boundary detection via dynamic

programming. In Proc. SPIE Med. Imaging, volume 1808, pages 33–30, 1992.

17

[141] M. N. M. van Lieshout. Markov Point Processes and Their Applications.

World Scientific Publishing Co., 2000. 124

[142] Marcelo Walter, Alain Fournier, and Daniel Menevaux. Integrating shape and

pattern in mammalian models. In SIGGRAPH ’01: Proceedings of the 28th

annual conference on Computer graphics and interactive techniques, pages

317–326, New York, NY, USA, 2001. ACM. 115

[143] Lifeng Wang, Xi Wang, Xin Tong, Stephen Lin, Shimin Hu, Baining Guo, and

Heung-Yeung Shum. View-dependent displacement mapping. ACM Transac-

tions on Graphics, 22(3):334–339, July 2003. 44

[144] Xi Wang, Xin Tong, Stephen Lin, Shimin Hu, Baining Guo, and Heung-Yeung

Shum. Generalized displacement maps. In Rendering Techniques 2004: 15th

Eurographics Workshop on Rendering, pages 227–234, June 2004. 44

[145] Yiping Wang, Wencheng Wang, and Enhua Wu. Optimizing the parameters

for patch-based texture synthesis. In VRCIA ’06: Proceedings of the 2006

ACM international conference on Virtual reality continuum and its applica-

tions, pages 75–82, New York, NY, USA, 2006. ACM. 118

[146] T. Watanabe and P. Cavanagh. Texture laciness: the texture equivalent of

transparency. Perception, 25(3):293–303, 1996. 228

[147] Li-Yi Wei and Marc Levoy. Fast texture synthesis using tree-structured vector

quantization. In SIGGRAPH ’00: Proceedings of the 27th annual conference

292

on Computer graphics and interactive techniques, pages 479–488, New York,

NY, USA, 2000. ACM Press/Addison-Wesley Publishing Co. 118

[148] Klaus-Peter Wilhelm, Peter Elsner, and Enzo Berardesca. Bioengineering of

the Skin: skin surface imaging and analysis. CRC Press, 1997. 2, 14

[149] Andrew Witkin and Michael Kass. Reaction-diffusion textures. In Computer

Graphics, pages 299–308, 1991. 115

[150] Steven Worley. A cellular texture basis function. In SIGGRAPH ’96: Pro-

ceedings of the 23rd annual conference on Computer graphics and interactive

techniques, pages 291–294, New York, NY, USA, 1996. ACM. 115

[151] Qing Wu and Yizhou Yu. Feature matching and deformation for texture syn-

thesis. In SIGGRAPH ’04: ACM SIGGRAPH 2004 Papers, pages 364–367,

New York, NY, USA, 2004. ACM. 4, 118, 119, 120

[152] Y. Wu, P. Kalra, L. Moccozet, and N.M. Thalmann. Simulating wrinkles and

skin aging. The Visual Computer, pages 183–198, 1999. 107

[153] Y. Wu, P. Kalra, and N.M. Thalmann. Simulating of static and dynamic wrin-

kles of skin. In Computer Animation, pages 90–97, 1996. 107

[154] S.S. Yu and W.H. Tsai. A new thinning algorithm for gray scale images by the

relaxation technique. Pattern recognition, 23:1067–1076, 1990. 15

[155] Steve Zelinka and Michael Garland. Jump map-based interactive texture syn-

thesis. ACM Trans. Graph., 23(4):930–962, 2004. 118

293

[156] Jingdan Zhang, Kun Zhou, Luiz Velho, Baining Guo, and Heung-Yeung

Shum. Synthesis of progressively variant textures on arbitrary surfaces. ACM

Transactions on Graphics, 22(3):295–302, July 2003. 44

[157] Yan Zhang, Zhengxing Sun, and Wenhui Li. Technical section: Texture syn-

thesis based on direction empirical mode decomposition. Comput. Graph.,

32(2):175–186, 2008. 118

[158] Song Chun Zhu, Ying Nian Wu, and David Mumford. Minimax entropy prin-

ciple and its application to texture modeling. Neural Comput., 9(8):1627–

1660, 1997. 117

[159] Song Chun Zhu, Yingnian Wu, and David Mumford. Frame: Filters, random

fields, and minimax entropy– towards a unified theory for texture modeling.

Computer Vision and Pattern Recognition, IEEE Computer Society Confer-

ence on, 0:686, 1996. 117

[160] D. Ziou and S. Tabbone. Edge detection techniques — an overview. Interna-

tional Journal of Pattern Recognition and Image Analysis, 8:537–559, 1998.

1, 13

294

	Dedication
	Acknowledgments
	Abstract
	List of Figures
	List of Tables
	List of Algorithms
	Introduction
	Motivation
	Thesis and methodology
	Contributions
	Thesis organization

	Curves detection by autonomous snakes
	Introduction
	Snakes optimization framework
	Interactive active contours
	Merge-split operations on snakes
	Three-step optimization algorithm
	Discussion

	Summary

	Real-time rendering of feature curves
	Introduction
	Related work
	Background: GPU, shaders, framebuffers
	Overview of algorithm
	Distance field to features
	Distance functions
	Calculating distance field to feature curves

	Feature discretization: discontinuity configuration and signature
	Curvilinear features: optimizing invalid signatures
	Rasterization of distance field and its gradient

	Rendering of feature maps
	Side test
	Interpolation in a curvilinear triangle
	Code outline for the normal interpolation shader

	Interactive rendering of linear features
	Implementation and Results
	Feature curves
	Linear features

	Summary

	Parametric synthesis of patterns with curvilinear features
	Introduction
	Related work
	Background: random arrangements of objects in the plane
	Framework of Poisson point processes
	Gibbs point process: inter-point interactions
	Fibre processes: general models
	Metropolis-Hastings algorithm for generating random point arrangements

	New model of interacting random fibres
	Adaptation of Gibbs point process models to random fibres; energy conservation requirement
	Interaction pair-potential between pair of fibres
	Complete model for random processes of interacting fibres

	Random systems of line segments --- linear fibres
	Interaction model for linear fibres
	Zero- and first-order potentials
	Interaction pair-potential for linear fibres

	Parametric synthesis of linear fibres systems
	Detailed balance equation for linear fibres
	Synthesis algorithm
	Examples of generated linear fibres systems

	User control on synthesis
	User control models through distance based constraints and weighted models
	Total length constraints
	Connectivity constraint
	Hard-constraints: weighted models to enforce aligning with orientation vector field
	Soft-constraints

	Summary

	A method of generating networks of curves aligned with random systems of linear fibres
	Multi-orientation vector fields
	Streamlines aligned with cross-orientation vector fields
	Streamlines based on context-dependent vector fields
	Summary

	Results: synthesis and GPU rendering of a feature curve network
	Synthesis of a random network of curves
	Real-time rendering of network of curves

	Conclusion
	Future work

	Basic Notation
	Bibliography

