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Abstract

We consider the problem of optimizing a linear function over the intersection of an affine
space and a special class of closed, convex cones, namely the symmetric cones over the re-
als. This problem subsumes linear programming, convex quadratically constrained quadratic
programming, and semidefinite programming as special cases. First, we derive some pertur-
bation results for this problem class. Then, we discuss two solution methods: an interior–
point method capable of delivering highly accurate solutions to problems of modest size,
and a first order bundle method which provides solutions of low accuracy, but can handle
much larger problems. Finally, we describe an application of semidefinite programming in
electronic structure calculations, and give some numerical results on sample problems.
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Chapter 1

Conic Optimization Problems

This chapter is expository in nature, and its purpose is to formulate a certain conic optimization problem,
and to develop background material and related notation that will be needed in the rest of the thesis. The
results of this chapter are available in the literature on conic programming and interior–point methods,
although not always in the form stated here; we give appropriate references. The development of most of the
basic concepts in this chapter is based on Rockafellar and Wets [96], whereas the section on Jordan algebras
is based on Faraut and Korányi [31]. At times, results cited from these two sources have been simplified to
better suit the current context.

1.1 Problem Formulation

Given a real, d–dimensional Euclidean space E with inner product 〈 ·, · 〉, a surjective linear operator A :
E→ Rm, a closed, convex cone K ⊆ E, and two fixed elements c ∈ E and b ∈ Rm, we consider the following
conic optimization problem (COP):

inf
x∈E

〈 c, x 〉 s.t. Ax = b ; x ∈ K, (1.1)

This problem, in fact, subsumes many familiar types of convex programs.

• When E = Sk, the space of real, symmetric k × k matrices equipped with the trace inner product
〈x, z 〉 = tr(xz), and K = Sk+, the cone of positive semidefinite matrices, we obtain semidefinite
programming (SDP).

• When E = Qk ∆= R×Rk, with the inner product 〈x, z 〉 = 2(x0z0 + x1z1 + . . .+ xkzk), and K = Qk
+

∆=
{(x0, x) ∈ E | x0 ≥ ‖x‖2} (the Lorentz or quadratic cone), we recover all forms of convex quadratically
constrained quadratic programming (QCQP). (Here ‖x‖2 is the usual 2–norm

√
x2

1 + . . .+ x2
k.)

• When E = Rk, the space of k–dimensional vectors with the standard inner product 〈 x, z 〉 = x1z1 +
. . .+ xkzk, and K = Rk+ is the cone of vectors with nonnegative entries (the nonnegative orthant), we
get linear programming (LP).

We denote by GL(E), the group of general linear transformations on E, and by Aut(K), the automorphism
group of K, i.e.

Aut(K) = {T ∈ GL(E) | TK = K} .
Let intK denote the interior of K. We say that K is homogeneous if

∀u, v ∈ intK, ∃T ∈ Aut(K) s.t. Tu = v, (1.2)

and self–dual if K coincides with its dual cone K∗, i.e.

K = K∗ ∆= {z ∈ E : 〈 z, x 〉 ≥ 0 ∀x ∈ E} .

1
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For any x and z in a self–dual cone K, 〈x, z 〉 ≥ 0, with the inequality being strict if at least one of x or z
lies in intK, and the other is nonzero.

Among the three cones mentioned above, only the nonnegative orthant is polyhedral, but they are all
homogeneous and self–dual (see, for instance, [31, Ch.I]). A cone that is both homogeneous and self–dual is
said to be symmetric, and we will confine our attention to such cones over the reals. More details are given
in Section 1.5.

The dual program of (1.1) is

sup
y∈Rm

〈 b, y 〉 s.t. A∗y + z = c; z ∈ K, (1.3)

where A∗ denotes the adjoint of A.
In the sequel, E (respectively K) refers only to the three Euclidean spaces (respectively cones) mentioned

above, and their direct sums. Specifically, given two positive integer vectors N = [N1, . . . , Ns] and n =
[n1, . . . , nq] of “block sizes”, and a positive integer n0, we deal with the Euclidean space

E = SN ⊕Qn ⊕ Rn0 , with

SN
∆= ⊕si=1SNi ,

Qn ∆= ⊕qi=1Qni ,

and its associated cone

K = SN+ ⊕Qn
+ ⊕ R

n0
+ , with

SN+
∆= ⊕si=1S

Ni
+ ,

Qn
+

∆= ⊕qi=1Q
ni
+ .

Any x ∈ E is then written as x = (xS , xQ, xL) with xS ∈ SN being a block diagonal matrix, xQ ∈ Qn being a
block vector, and the vector xL ∈ Rn0 , an ordinary vector. We will also write xS(j) (respectively xQ(j)) to
denote the jth “block” of xS (respectively xQ). We say that the COP has a semidefinite (SD), a quadratic
(QC) or a linear (LP) component depending on which of SN , Qn and Rn0 are present in E. At times, we
will specialize E to be one of SN , Qn or Rn0 . In this case, we will write x(j), dropping the subscript (S, Q,
or L) which will be evident from context.

We set dS
∆= dim SN , dQ

∆= dim Qn, and d
∆= dim E = dS + dQ + n0. To facilitate the use of matrix

notation, we identify E with Rd (equipped with the standard inner product) as follows. We employ the
isometry vec : SN → RdS to identify SN with RdS .1 Using this isometry, any x = (xS , xQ, xL) ∈ E may
be mapped onto [vec(xS),

√
2xQ, xL] ∈ Rd. The operator A may be viewed as an m × d matrix. We will

use the same symbol for both x ∈ E and its equivalent x ∈ Rd, as the latter usage will be a vector enclosed
within square brackets, and will usually appear in conjunction with matrix operations.

We conclude this section with some basic notational conventions employed in the thesis. Generally,
blackboard symbols (such as R) are used for fields and vector spaces, capital letters are usually for sets and
linear operators. Elements of a vector space and functions are denoted by small letters. Matrices may be
denoted by either small or capital letters. Components of matrices and vectors are indexed by subscripts,
and are enclosed within square brackets. We do not use the standard visual representation of row vectors
(entries on the same line) and column vectors (entries on successive lines); all vectors are column vectors,
unless explicitly superscripted with a ∗. Small Greek letters are generally used for scalars and functions,
whereas capital Greek letters denote sets. Calligraphic letters denote cones and special function classes, e.g.
Cp for the class of p times continuously differentiable functions. For a Cp function h between two vector
spaces, the notation Di

xk1 ...xki
h(x) stands for the ith order partial derivative of h with respect to the variables

xk1 , . . . , xki (The superscript is omitted when i = 1, and the subscript is omitted when [xk1 , . . . , xki ] = x).
Although notation is introduced as needed, or recalled with an appropriate reference, a list of symbols

and notation is available on page (xi) to serve as a quick reference guide.
1For instance, we can choose vec to be the map that stacks the columns of the lower triangular part of a matrix

in SN blockwise, multiplying the off–diagonal elements by
√

2.
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1.2 Optimality Conditions

We begin by introducing the definition of the normal cone to a convex set. This is a central object in this
chapter, and much of the development to follow will be based on it.

Definition 1.2.1 (Normal Cone To Convex Set)

Let H ⊆ E be a closed, convex set. The normal cone to H at x ∈ F is defined to be

NH(x) = {v ∈ E : 〈 v, x′ − x 〉 ≤ 0 ∀x′ ∈ H} . (1.4)

The following theorem illustrates the fundamental role of the variational geometry of feasible sets in the
derivation of optimality conditions.

Theorem 1.2.1 (Basic Optimality Condition [96, Theorem 6.12] )

Let h : E→ R be a convex C1 function, and let H ⊆ E be a convex set. Then x ∈ F is a solution to

inf
x∈H

h(x) (1.5)

if and only if

0 ∈ Dh(x) +NH(x). (1.6)

The feasible region in a COP is H = H1 ∩H2, where H1 = {x : Ax = b} and H2
∆= K is a closed, convex

cone.
Whether a solution exists or not depends on the nature of the separation between H1 and H2. In general,

several cases arise [70]. Let B denote the open unit ball in E.

(i) Strongly infeasible: (H1 + εB) ∩ H2 = ∅ for some ε > 0. The problem is infeasible and remains so
under infinitesimal perturbations.

(ii) Weakly infeasible: H1 ∩H2 = ∅, but (H1 + εB) ∩H2 6= ∅ ∀ε > 0. An arbitrarily small perturbation
to H1 or H2 could make the problem strongly infeasible or strongly feasible (see (iv)).

(iii) Weakly feasible: H1 ∩H2 6= ∅, but H1 ∩ intH2 = ∅. An arbitrarily small perturbation in H1 or H2

could render the problem strongly infeasible or strongly feasible (see (iv)).

(iv) Strongly feasible: H1 ∩ intH2 6= ∅. This property is preserved under sufficiently small perturbations
to H1 and H2.

Depending on which of these four cases the primal and the dual problems fall in, various possibilities
arise with respect to the finiteness of optimal objective values, the attainment of solutions, and the existence
of a duality gap, i.e. a difference in the optimal primal and the dual objective values. See [70] for a detailed
description of all these cases. The situation in (i) is uninteresting, and those in (ii), (iii) are, in some sense,
ill–posed. The following standard constraint qualification precludes the difficulties in (i) – (iii) by putting
us in the strongly feasible case.

Assumption 1.2.1 (Slater Condition)

Primal: There exists a strictly feasible point for (1.1), i.e. ∃x ∈ intK s.t. Ax = b.
Dual: There exists a strictly feasible point for (1.3), i.e. ∃ (y, z) ∈ Rm × intK s.t. A∗y + z = c.

If both the primal and the dual problems satisfy the Slater condition, then it can be shown that the optimal
primal and the dual objective values are finite and attained, and that the primal and dual solution sets are
compact [79, Sec.4.2]. Hence, in fact, the “inf” in (1.1) and the “sup” in (1.3) can be replaced by “min” and
“max” respectively.

The Slater condition enables the computation of the normal cone to the intersection H = H1 ∩ H2 in
terms of the normal cones to H1 and to H2. We say that two convex sets H1 and H2 cannot be separated
if there exists no (a, α) ∈ E × R such that H1 ⊆ {x ∈ E : 〈 a, x 〉 ≤ α} and H2 ⊆ {x ∈ E : 〈 a, x 〉 ≥ α}.
Clearly, when the Slater condition is satisfied (i.e. H1 ∩ intH2 6= ∅), H1 and H2 cannot be separated.
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Theorem 1.2.2 (Normal Cone To Intersections [96, p.228])

Let H = H1 ∩H2, where H1 and H2 are nonempty, closed, convex subsets of E which cannot be separated.
At any x ∈ H , we have

NH(x) = NH1(x) +NH2(x).

Let us now compute explicit expressions for the normal cones to the feasible sets that arise in COP, i.e.
affine spaces and the three cones mentioned in Section 1.1.

Proposition 1.2.1 (Normal Cone To Affine Spaces)

Let H = {x ∈ E : Ax = b} where A : E → Rm is a linear operator. At any x ∈ H , we have NH(x) =
{A∗y : y ∈ Rm}.
Proof. Immediate.

Definition 1.2.2 (Complementarity)

We say that (x, z) ∈ K ×K are complementary, or satisfy complementarity, if 〈x, z 〉 = 0.

Using basic linear algebra, we can provide an alternative characterization of complementarity. In the
following lemma, we introduce the Diag(·) operator which maps its arguments to a block diagonal matrix.
(For example, if v ∈ Rk, then Diag(v) denotes the k×k diagonal matrix with the entries of v on the diagonal.
If v1 and v2 are matrices, then Diag(v1, v2) denotes the block diagonal matrix with v1 and v2 as its first and
its second diagonal blocks respectively.)

Lemma 1.2.1 (Reformulation of Complementarity)

Let (x, z) ∈ K ×K.

(i) K = SN+ : 〈x, z 〉 = 0 ⇐⇒ (xz + zx)/2 = 0.

(ii) K = Qn
+: 〈x, z 〉 = 0 ⇐⇒ Arw(x)z = 0, where

Arw(x) = Diag(arw(x(1)), . . . , arw(x(q))),

and for x(j) = [x0(j), . . . , xnj (j)],

arw(x(j)) ∆=


x0(j) x1(j) x2(j) · · · xnj (j)
x1(j) x0(j) 0 · · · 0
x2(j) 0 x0(j) · · · 0

...
...

...
...

...
xnj (j) 0 0 0 x0(j)

 . (1.7)

(iii) K = R
n0
+ : 〈x, z 〉 = 0 ⇐⇒ Diag(x)z = 0.

Proof.

(i) Since 0 = tr(xz) = tr(x
1
2 zx

1
2 ) =

〈
x

1
2 z

1
2 , x

1
2 z

1
2

〉
, we have x

1
2 z

1
2 = 0, which implies that xz (hence also

(xz + zx)/2) is zero. The reverse implication follows trivially by taking the trace of both sides of the
equation (xz + zx)/2 = 0.

(ii) It suffices to prove the statement for an arbitrary block j. Let x(j) = [x0, x̄] and z(j) = [z0, z̄]. Since
x0 ≥ ‖x̄‖2 and z0 ≥ ‖z̄‖2, we have

‖x̄‖2 ‖z̄‖2 ≤ x0z0 = −〈 x̄, z̄ 〉 ≤ ‖x̄‖2 ‖z̄‖2 , (1.8)

where the last inequality is Cauchy–Schwarz. Hence,

x0z0 = ‖x̄‖2 ‖z̄‖2 = −〈 x̄, z̄ 〉 . (1.9)
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From the first equality in (1.9), if x0 > ‖x̄‖ (respectively z0 > ‖z̄‖), then z0 = ‖z̄‖ = 0 (respectively
x0 = ‖x̄‖ = 0), and the result is true. The only remaining case is x0 = ‖x̄‖2 > 0 and z0 = ‖z̄‖2 > 0.
The second equality in (1.9) shows that the Cauchy–Schwarz inequality in (1.8) holds with equality,
so that

z̄ =
〈 x̄, z̄ 〉
‖x̄‖22

x̄ = −
(
z0
x0

)
x̄,

which is exactly the result. The reverse implication is immediate.

(iii) Both implications are obvious.

The “arrow matrix” notation arw(·) in Lemma 1.2.1 (ii) is due to [1]. The symmetrized complementarity
condition in (1.17) for the semidefinite cone plays a key role in [7], and is derived from the equivalent form
xSzS = 0 (discussed later in Remark 1.2.1) which appeared earlier in [2, 3, 79]. See also an early paper of
Bellman and Fan [9], which derives the duality theory for SDP. The complementarity condition (1.18) for
the quadratic cone is given in [1, 79].

It is now easy to derive explicit expressions for the normal cones to our three cones of interest. For the
sake of simplicity, we state Proposition 1.2.2 for the jth block, denoted Kj . The normal cone to a direct sum
is then just the direct sum of the individual normal cones.

Proposition 1.2.2 (Normal Cones To Symmetric Cones)

(i) Kj = S
Nj

+ : Let x(j) ∈ Kj have spectral decomposition

x(j) = pDiag([λ1, . . . , λNj ]) p
∗,

where without loss of generality, we may assume that λ1 ≥ . . . ≥ λr > 0 and λr+1 = . . . = λNj = 0.
Then

NKj (x(j)) =
{
v ∈ −Kj :

1
2
(x(j)v + vx(j)) = 0

}
. (1.10)

Equivalently,

NKj (x(j)) =
{
v ∈ −Kj : v = p

[
0 0
0 w

]
p∗, w ∈ SNj−r

}
. (1.11)

(ii) Kj = Q
nj

+ : Let x(j) = [x0(j), x̄(j)] ∈ Kj .

NKj (x(i)) = {v ∈ −Kj : arw(x(j))v = 0} . (1.12)

Equivalently,

NKj (x(j)) =

{ {0} if x0(j) > ‖x̄(j)‖2−Kj if x0(j) = ‖x̄(j)‖2 = 0
{v ∈ −Kj : v = α[−x0(j), x̄(j)], α ≥ 0} if x0(j) = ‖x̄(j)‖2 > 0.

(1.13)

(iii) Kj = R
n0
+ : Let x(j) ∈ Kj .

NKj (x(j)) = {v ∈ −Kj : Diag(x(j))v = 0} .
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Proof. It is easy to verify one inclusion, namely that the vectors v ∈ −Kj in all three cases above satisy
the normal cone inequality (1.4). To verify the other inclusion, assume that v satisfies (1.4). Substituting
x′ = 2x and x′ = 0 in (1.4) yields

〈 v, x(j) 〉 = 0, (1.14)

hence in fact, 〈 v, x′ 〉 ≤ 0 ∀x′ ∈ Kj . This implies that v ∈ −Kj . Now apply Lemma 1.2.1 with z(j) = −v to
get the result.

Let us consider the equivalence in (i). One inclusion, namely that the normal cone of (1.11) is contained
in the normal cone of (1.10), is easy to verify. To show the reverse inclusion, let x(j) ∈ Kj have rank r and
take a v satisfying (1.10). Since such a v must satisfy the normal cone inequality (1.4), we have, from (1.14)
and Lemma 1.2.1, that x(j)v = 0. This means that x(j) and v commute, and hence can be diagonalized by
the same orthonormal matrix (see, for instance, [52, Theorem 2.5.5]), say p. Using this fact in x(j)v = 0, we
obtain the desired inclusion. The equivalence in (ii) is straighforward.

Remark 1.2.1 (Semidefinite Cone Complementarity)

From the above proof of the equivalence in (i) in Proposition 1.2.2, it is clear that, for (x, z) ∈ K × K, the
complementarity condition (xz + zx)/2 = 0 involving a symmetrized matrix product is equivalent to the
condition xz = 0, which involves a nonsymmetric matrix product.

From the normal cone expressions in Proposition 1.2.2 and the alternative characterization of complementar-
ity in Lemma 1.2.1, it is clear that complementarity (as in Definition 1.2.2) is actually a property involving
the normal cone, as the following equivalent definition suggests.

Definition 1.2.3 (Complementarity Via The Normal Cone)

We say that (x, z) ∈ K ×K are complementary, or satisfy complementarity, if −z ∈ NK(x).

We can now write out explicit optimality conditions for COP.

Theorem 1.2.3 (Optimality Condition For COP)

Suppose the primal and the dual COP satisfy the Slater condition. Then x is primal optimal and (y, z) dual
optimal if and only if

Ax = b (primal equality constraints) (1.15)
A∗y + z = c (dual equality constraints) (1.16)
(xSzS + zSxS)/2 = 0 (SD complementarity) (1.17)
Arw(xQ)zQ = 0 (QC complementarity) (1.18)
Diag(xL)zL = 0 (LP complementarity) (1.19)

and

xS , zS ∈ Sn+; xQ, zQ ∈ Qn
+; xL, zL ∈ Rn+ (cone constraints). (1.20)

Proof. From Theorem 1.2.1 (Basic Optimality Condition) and Theorem 1.2.2 (Normal Cones to Intersec-
tions), we know that a primal feasible x is optimal if and only if there exists (y, v) ∈ Rm ×NK(x) satisfying
A∗y + v + c = 0. Setting z = −v, and using the normal cone expressions in Proposition 1.2.2, we get the
optimality conditions claimed above.

Similarly, by retracing the steps above, a dual feasible (y, z) is optimal if and only if there exists v′ ∈
NK(z) satisfying −Av′ = b. Setting x = −v′, we recover the same optimality conditions again.

The following corollary about the duality gap is easily proved. (See also [79]).

Corollary 1.2.1 (Weak And Strong Duality)

(i) Weak duality For any COP, if x and (y, z) are primal and dual feasible respectively, then 〈 c, x 〉 ≥
〈 b, y 〉.
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(ii) Strong duality Let COP satisy the Slater condition (Assumption 1.2.1). If x and (y, z) are optimal
for the primal and the dual respectively, then 〈 c, x 〉 = 〈 b, y 〉.

Proof.

(i) Since x and (y, z) satisfy the primal (1.15) and the dual (1.16) equality constraints respectively, we
have

〈x, z 〉 = 〈x, c−A∗y 〉 = 〈 c, x 〉 − 〈Ax, y 〉 = 〈 c, x 〉 − 〈 b, y 〉 , (1.21)

i.e. the duality gap 〈 c, x 〉 − 〈 b, y 〉 equals 〈x, z 〉. Since (x, z) ∈ K ×K, we have 〈 x, z 〉 ≥ 0, resulting
in the weak duality theorem: 〈 c, x 〉 ≥ 〈 b, y 〉, i.e. the duality gap 〈 c, x 〉 − 〈 b, y 〉 is nonnegative.

(ii) If x and (y, z) are optimal, then the conditions (1.17) – (1.19) coupled with Lemma 1.2.1 imply that
〈x, z 〉 = 0 in (1.21). Hence the strong duality theorem: 〈 c, x 〉 = 〈 b, y 〉, i.e. the duality gap must be
zero.

1.3 Strict Complementarity

For a set C, let riC denote its relative interior.

Definition 1.3.1 (Strict Complementarity)

A pair (x, z) ∈ K×K is said to be strictly complementary, or satisfy strict complementarity, if −z ∈ riNK(x).

Of course, strict complementarity implies complementarity, but not conversely.
We characterize complementarity and strict complementarity in terms of certain “eigenvalues” in the

following proposition. Its proof follows from the definitions of complementarity (Definition 1.2.3), strict
complementarity (Definition 1.3.1), and the explicit normal cone expressions in Proposition 1.2.2.

Proposition 1.3.1 (Complementarity Via Eigenvalues)

Let (x, z) ∈ K ×K.

(i) K = SN+ : For each j = 1, . . . , s, let λ1(j) ≥ . . . ≥ λNj (j) ≥ 0 and 0 ≤ ω1(j) ≤ . . . ≤ ωNj(j) be the eigen-
values of the matrices x(j) and z(j) arranged in nonincreasing and nondecreasing orders respectively.
Then, x and z are complementary if and only if for all blocks j, each product λi(j)ωi(j) (i = 1, . . . , Nj)
vanishes, and are strictly complementary if and only if for all blocks j, exactly one term in each product
λi(j)ωi(j) (i = 1, . . . , Nj) vanishes.

(ii) K = Qn
+: For each j = 1, . . . , q, let x(j) = [x0(j), x̄(j)] and z(j) = [z0(j), z̄(j)]. Let

λ1(j) = x0(j) + ‖x̄(j)‖2 ; λ2(j) = x0(j)− ‖x̄(j)‖2
ω1(j) = z0(j)− ‖z̄(j)‖2 ; ω2(j) = z0(j) + ‖z̄(j)‖2

Then x and z are complementary if and only if for all blocks j,

λi(j)ωi(j) = 0 (i = 1, 2),

and are strictly complementary if and only if for all blocks j, exactly one term in each of the products
above vanishes.

(iii) K = R
n0
+ : Let λ1 ≥ . . . ≥ λn0 ≥ 0 and 0 ≤ ω1 ≤ . . . ≤ ωn0 be rearrangements of the vectors x and z

in nonincreasing and nondecreasing orders respectively. Then, x and z are complementary if and only
if each product λiωi vanishes, and are strictly complementary if and only if exactly one term in each
product λiωi vanishes.
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1.4 Nondegeneracy

In this section, we introduce another constraint qualification called nondegeneracy. Again, it is a notion
involving the normal cone. For a convex set C, let linC denote the smallest subspace containing C.

Definition 1.4.1 (Primal Nondegeneracy)

A feasible x for the primal COP (1.1) is said to be primal nondegenerate if

linNK(x) ∩ ranA∗ = {0} . (1.22)

Definition 1.4.2 (Dual Nondegeneracy)

A feasible (y, z) for the dual COP (1.3) is said to be dual nondegenerate if

linNK(z) ∩ kerA = {0} . (1.23)

There is a geometric interpretation to the primal and the dual nondegeneracy conditions. Taking orthog-
onal complements on both sides of (1.22) and (1.23), it can be verified that primal (dual) nondegeneracy
at a given feasible point x ((y, z)) amounts to the transversal intersection of the affine space {x : Ax = b}
({z = c−A∗y : y ∈ Rm}) and the boundary of the cone K at the chosen primal (dual) feasible point. For
more details on nondegeneracy and strict complementarity, see [6, 89, 100] for SDP and [8, 44] for convex
QCQP.

The following lemma about the uniqueness of solutions is established in [6] for SDP and in [8] for convex
QCQP.

Lemma 1.4.1 (Uniqueness Of Solutions)

Let x (respectively (y, z)) be a primal (respectively dual) nondegenerate solution. Then the dual (respectively
primal) solution (y, z) (respectively x) is unique.

1.5 Connections With Jordan Algebras

The close connections between the cones arising in COP and the theory of Jordan algebras were pointed out
by L. Faybusovich [32, 33] and O. Güler [42, 43]. We give a brief introduction to the basic definitions and
results, leading to the definition of an eigenvalue map on E.

Definition 1.5.1 (Jordan Algebras)

Jordan algebra A vector space E with a commutative, bilinear product ◦ : E×E→ E is a Jordan algebra
if for all x ∈ E, the “multiplication–by–x” linear operator L(x) : E→ E : y 7→ x ◦ y commutes with
the operator L(x2), i.e.

x ◦ (x2 ◦ y) = x2 ◦ (x ◦ y) ∀x, y ∈ E.

Here, x2 denotes x ◦ x. Jordan algebras, though not necessarily associative, are power associative, i.e.
xp ◦ xq = xp+q ∀x ∈ E.

Identity A Jordan algebra (E, ◦) has an identity element e ∈ E if e ◦ x = x ◦ e = x ∀x ∈ E. In the sequel,
we only consider Jordan algebras with identity.

Rank For x ∈ E, we define

rank(x) = min{k > 0 | (e, x, x2, . . . , xk) are linearly dependent},

and rank(E) = maxx∈E rank(x). Of course,2 rank(x) ≤ rank(E) ≤ dim E.

2The Jordan notion of rank is not to be confused with the linear algebraic notion of rank of a matrix which is the
dimension of its range space. For example, rank(I) = 1 in the Jordan sense.
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Euclidean Jordan algebra A Jordan algebra is Euclidean if it admits a positive definite, symmetric,
bilinear form which is also associative, i.e. there exists an inner product 〈 ·, · 〉 on E such that ∀x, u, v ∈
E,

〈x, x 〉 > 0 ∀x 6= 0
〈u, v 〉 = 〈 v, u 〉
〈u, x ◦ v 〉 = 〈 x ◦ u, v 〉 .

(1.24)

Idempotents and Jordan frame For a Jordan algebra E, an element c ∈ E is called an idempotent if
c2 = c. Two idempotents c, d ∈ E are orthogonal if c ◦ d = 0. An idempotent is primitive if it is
nonzero, and cannot be expressed as the sum of two (necessary orthogonal) nonzero idempotents. An
orthogonal collection of idempotents {ci} is complete if

∑
i ci = e, the identity element of the algebra.

A complete, orthogonal collection of primitive idempotents is called a Jordan frame. If E has rank r,
then every Jordan frame in E has exactly r elements. If x ∈ E satisfies x ◦ ci = 0 for all ci in a Jordan
frame, then x = 0.

Much of the fundamental work in the theory of Jordan algebras is due to Köcher [58], but the following
nontrivial results about Euclidean Jordan algebras are conveniently compiled in Faraut and Korányi [31,
Ch.I–V].

Theorem 1.5.1 (Results on Euclidean Jordan Algebras)

Let (E, ◦) be a Euclidean Jordan algebra.

Cone of squares The set of squares K =
{
x2 : x ∈ E

}
forms a symmetric cone (called the cone of squares)

in E. Conversely, every symmetric cone is the cone of squares of some Euclidean Jordan algebra.
(Recall that a cone is symmetric if it is both self–dual and homogeneous.)

Classification Let C, H and O denote the complex numbers, the quaternions and the octonions respectively.
Every Euclidean Jordan algebra E is isomorphic to

• the space of k × k symmetric matrices over R, or Hermitian matrices over C or H, with the
product x ◦ z = (xz + zx)/2, or

• the space R× Rk with the product x ◦ z = [x0, x̄] ◦ [z0, z̄] = [〈x, z 〉 , x0z̄ + z0x̄], or

• the space of 3× 3 matrices over O with the product x ◦ z = (xz + zx)/2,

or a direct sum thereof. Consequently, every symmetric cone is isomorphic to

• k×k symmetric positive semidefinite matrices over R, or Hermitian positive semidefinite matrices
over C or H, or

• vectors x = [x0, x̄] ∈ R× Rk satisfying x0 ≥ ‖x̄‖2, or

• 3× 3 Hermitian positive semidefinite matrices over O

or a direct sum thereof.

Spectral theorem: Let rank(E) = r. For every x ∈ E, there exist (not necessarily distinct) real numbers
λ1(x), . . . , λr(x) (called eigenvalues) uniquely determined by x, and a (not necessarily unique) Jordan
frame {c1(x), . . . , cr(x)} such that

x =
r∑
i=1

λi(x)ci(x).

The interior of the cone of squares is the set of all elements with positive eigenvalues.

Trace, Determinant and Inverse For x ∈ E, define

tr(x) =
r∑
i=1

λi(x)
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det(x) =
r∏
i=1

λi(x). (1.25)

If det(x) 6= 0, then x is invertible, and its inverse is given by

x−1 =
r∑
i=1

λi(x)−1ci(x).

The factor of 1
2 in the Jordan product on the symmetric matrices ensures that x ◦ x = xx, and hence allows

the convenience of treating x2 (a Jordan product) as an ordinary matrix product. We point out that for SN ,
the identity element is just the identity matrix I. For Qn, the identity, denoted eQ, is the vector whose jth
block is [1, 0, . . . , 0] ∈ R× Rnj . For Rn0 , the identity, denoted eL, is the vector of all ones.

The following proposition gives an explicit description of eigenvalues and Jordan frames for the cases of
interest to us. In each case, it can be easily verified that the eigenvalues and Jordan frames constitute a
valid spectral decomposition.

Proposition 1.5.1 (Eigenvalues And Jordan Frames)

Let x ∈ E, a Euclidean Jordan algebra.

E = SN For each block j = 1, . . . , s, the eigenvalues of x(j) given by the usual eigenvalues λi(x(j)) (i =
1, . . . , Nj) of the matrix x(j), and the idempotents ci(x(j)) = pi(x(j))pi(x(j))∗ (j = 1, . . . , Nj),
where the pi(x(j)) are corresponding eigenvectors, constitute a Jordan frame. The rank of SNj is Nj .

E = Qn For each block j = 1, . . . , q, let x(j) = [x0(j), x̄(j)], and

u(x(j)) =
{
x̄(j)/ ‖x̄(j)‖2 , if ‖x̄(j)‖2 > 0
any vector in Rnj satisfying ‖u(x(j))‖2 = 1, otherwise.

(1.26)

The eigenvalues of x(j) are λ1(x(j)) = x0(j)+ ‖x̄(j)‖2 and λ2(x(j)) = x0−‖x̄(j)‖2. The idempotents
c1(x(j)) = 1

2 [1, u(j)] and c2(x(j)) = 1
2 [1,−u(j)] constitute a Jordan frame. The rank of Qnj is 2.

E = Rn0 The eigenvalues of x are its entries. The idempotents ci(x) = ei (i = 1, . . . , n) (the unit vectors
in Rn0) constitute a Jordan frame. The rank of Rn0 is n0.

The rank of a direct sum of Euclidean Jordan algebras is just the sum of the individual ranks.

Definition 1.5.2 (Eigenvalue Map)

Let E have rank r. For x = (xS , xQ, xL) ∈ E, we define the eigenvalue map

λ : E→ Rr : x 7→ λ(x) = [λ(xS), λ(xQ), λ(xL)],

where, in accordance with Proposition 1.5.1, the eigenvalues of xS , xQ and xL are arranged in nonincreasing
order within each block. We denote by λi(x), the ith component of λ(x). We define

λmax(x) = max
i
λi(x),

λmin(x) = min
i
λi(x), and (1.27)

λ+
min(x) = min

λi(x)>0
λi(x).

We define another eigenvalue map ω(·) on E that orders eigenvalues in nondecreasing order within each
block, i.e. ω(x) = −λ(−x) ∀x ∈ E.

In particular, by Lemma 1.2.1, the pair (x, z) ∈ K × K is complementary if and only if x ◦ z = 0. Also,
from Proposition 1.3.1, (x, z) are complementary if and only if 〈λ(x), ω(z) 〉 = 0, and are strictly comple-
mentary if and only if for each i, either λi(x) = 0 or ωi(z) = 0, but are not both zero.
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1.6 Interior–Point Algorithms

In this section, we discuss interior–point alogrithms, which started with the landmark paper of Karmarkar [55]
for LP. We only give a very brief and incomplete overview of the taxonomy and the basic ideas underlying
these algorithms; details of convergence and complexity properties are well beyond the scope of the current
discussion. For a comprehensive treatment of modern interior–point theory for COP, we refer the reader
to the monograph of Nesterov and Nemirovskii [79], the forthcoming monograph of Renegar [91], and the
articles of Nesterov and Todd [80, 81]. The book by Wright [111] deals with both the algorithmic issues
and the computational details of primal–dual interior–point algorithms, albeit almost exclusively for LP. We
have not cited the original references in the literature on which the development of modern interior–point
theory is based; most of them are available in the combined bibliographies of the works cited above, and in
that of [60].

Interior–point theory centers around the notion of a nondegenerate, strongly ν–self–concordant, logarith-
mically homogeneous barrier function for an open convex set Q ⊆ E, i.e. a C3 convex function ϑ(x) : Q→ R

which satisfies for all x ∈ Q, v ∈ E, and t > 0,

| D3ϑ(x)[v, v, v] | ≤ 2√
ν

(
D2ϑ(x)[v, v]

)3/2
(ν–self–concordance)

xi → ∂Q⇒ ϑ(xi)→ +∞ (strong self–concordance)

v 6= 0⇒ D2ϑ(x)[v, v] > 0 (nondegenerate self–concordance)
ϑ(tx) = ϑ(x)− ν ln t (logarithmic homogeneity).

For example, for the symmetric cones we consider, a traditional and well studied barrier function satisfying
all the above conditions is the log barrier

ϑ : intK → R : x→ − ln det(x) (see (1.25)),

with self–concordance parameter ν =
∑s
j=1Nj , 2q and n0 for K = SN , Qn and Rn0 respectively. Let us

assume that the primal (1.1) and the dual (1.3) problems satisfy the Slater condition (Assumption 1.2.1),
and that a strictly feasible starting point is known.

An interior–point algorithm may be a potential reduction or a path following algorithm. In a potential
reduction algorithm, a suitable potential function φρ, involving a suitable parameter ρ, is first chosen:

φρ(x; ζ) = ρ ln (〈 c, x 〉 − ζ)− ln det(x) (primal only)
φρ(x, y, z) = ρ ln 〈x, z 〉 − ln det(x)− ln det(z) (primal–dual),

where the parameter ζ is a lower bound on the optimal value of the program. (The dual potential function
may be defined analogously.) From an interior point, we apply one step of Newton’s method to approximately
minimize the potential function φρ, subject to the appropriate linear equality constraints (Ax = b for primal,
A∗y + z = c for dual, or both of these for primal–dual). A suitable step taken along this direction ensures
that the new iterate lies in the interior of the cone. Points where the potential is −∞ correspond to solutions,
and the bulk of the analysis is then devoted to establishing that the potential function can be decreased by
a constant amount in each iteration. See [105] for details.

In this thesis, we will be interested in path following algorithms. For anyµ > 0, the function (1/µ) 〈 c, x 〉−
ln det(x) is strongly convex on the primal feasible region {x : Ax = b, x ∈ K}, and hence has a unique
minimizer

xµ
∆= arg min

x

{
1
µ
〈 c, x 〉 − ln det(x) : Ax = b, x ∈ K

}
. (1.28)

Similarly, for the dual problem, we may associate with any µ > 0, the unique minimizer

(yµ, zµ)
∆= arg min

(y,z)

{−1
µ
〈 b, y 〉 − ln det(z) : A∗y + z = c, z ∈ K

}
. (1.29)

The trajectories {xµ : µ > 0}, {(yµ, zµ) : µ > 0}, and {(xµ, yµ, zµ) : µ > 0} are called the primal central
path, the dual central path, and the primal–dual central path respectively, and limit points, as µ ↓ 0, of these
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trajectories, correspond to a primal, a dual, or a primal–dual solution respectively. It is instructive to see
the connection between the primal and the primal–dual central paths. If xµ is on the primal central path,
then the optimality condition for (1.28) — setting the gradient (using the Jordan inner product of (1.24))
of the Lagrangian to zero — yields

c− µx−1 −A∗y = 0,

where x−1 is the inverse of x defined in Theorem 1.5.1. From the dual equality constraint in (1.3), we
recognize that z = µx−1, and upon taking Jordan product with x, we get

x ◦ z = µe,

where e is the identity element of E. It is easy to verify that we arrive at the same parameterization of the
primal–dual central path by starting with the optimality conditions for a point (yµ, zµ) on the dual central
path.

A path following interior–point algorithm computes an approximate solution by following one of these
central paths, and is called a primal, a dual, or a primal–dual algorithm depending on which central path it
tries to follow. As before, the algorithm starts at an interior point, and then attempts to stay sufficiently
close to the central path. At each iteration, the value of µ is decreased, and a new search direction is
generated by one step of Newton’s method. A suitable step along this direction is then calculated to ensure
that the new iterate will remain in the interior of the cone. Indeed, as µ ↓ 0, the iterates converge to a
solution of the program. Here, the bulk of the analysis lies in showing that the iterates can be restricted to
some neighborhood of the central path while still achieving a sufficient decrease in µ.

Depending on the definition of the neighborhood used in each iteration, a path following method may be a
short step (iterates confined to a tight neighborhood around the central path), or a long step (iterates lying in
a wide neighborhood around the central path). Further, these algorithms may be combined with a predictor–
corrector strategy whereby the search direction computed may be altered with one or more Newton steps,
called correctors, that improve proximity to the central path. One type of a predictor–corrector algorithm
is explained in Chapter 3.

When a strictly feasible starting point is not known, there is a class of “infeasible” algorithms, which
start from interior points not satisfying the equality constraints in (1.1) and (1.3), but still enjoy the nice
convergence and complexity properties of “feasible” algorithms by generating iterates that lie in an infeasible
neighborhood of the central path. Points within the infeasible neighborhood satisfy the the property that
the infeasibility (violation of primal and/or dual equality constraints) is bounded above by a constant times
µ, so that decreasing µ automatically produces a corresponding decrease in the infeasibility. Yet another
approach to handle the lack of a strictly feasible starting point is the homogeneous self–dual embedding
of [112]. This transforms the original problem into a new COP with extra variables, but for which a strictly
feasible starting point is readily available. See [78] for details.

Nesterov and Todd [80, 81] introduce a class of cones called self–scaled cones, namely cones K (say, in
vector spaces V) that admit a ν–self–concordant barrier function ϑ, which along with its conjugate

ϑ∗(z) = max
x∈K
−〈 z, x 〉 − ϑ(x),

satisfies for all v, x ∈ intK,

D2ϑ(v)x ∈ intK∗, and

ϑ∗(D2ϑ(v)x) = ϑ(x) − 2ϑ(v)− ν.
They establish that such cones are isomorphic to their duals (in the sense that there exists an isomorphism
π : V→ V∗ with πK = K∗), and that for any x ∈ intK and z ∈ intK∗, there exists a unique “scaling point”
w ∈ intK such that z = D2ϑ(w)x (cf. (1.2)), hence implying that the self–scaled cones are, in fact, exactly
the symmetric cones.

We conclude this section with some remarks on the generality of conic optimization and interior–point
theory. The success of interior–point methods lies in their theoretical properties (polynomial iteration com-
plexity, and under modest assumptions, asymptotic superlinear convergence), as well as their practical
success. Nesterov and Nemirovskii [79, p.50] have demonstrated the existence of a universal barrier — a
self–concordant barrier for any convex set — so that the interior–point theory applies, at least in principle, to
any convex program. Moreover, they have also shown [79, p.103] that any convex domain can be expressed
as the intersection of an affine space and a convex (not necessarily symmetric) cone in a (possibly) higher
dimension, hence implying that optimizing over the intersection of an affine space and a convex cone is the
most general model for convex programming.
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1.7 Applications

The fact that COP can be solved efficiently has led to a growing number of applications in recent years,
especially for SDP and convex QCQP. See [68, 79, 109] and the references therein.

Several applications arise as instances of eigenvalue optimization. Here, the goal is to minimize the sum
of the k largest eigenvalues of a symmetric matrix, which is a nonsmooth but convex function. Alizadeh [2]
pointed out that these problems can be expressed as SDP’s. A wide variety of problems in control theory
involve linear matrix inequalities, i.e. semidefiniteness constraints on affine, (symmetric) matrix–valued
functions. A large number of applications in control are listed in [14] and its sequel [27]. Another rich area
of applications is in the design of relaxations for NP–hard combinatorial optimization problems (see, for
instance, [69] for an early application of SDP relaxations in this area). For c ∈ Sk, the following equivalence
between Boolean quadratic programming (left) and an SDP with a rank constraint (right)

min
v∈{−1,1}k

〈 v, cv 〉 ←→ max
x∈Sk

〈 c, x 〉

s.t. Diag(x) = eL (1.30)
rank(x) = 1

x ∈ Sk+

is easily verified by setting x = vv∗, and noting that the set of binary k–vectors v on {−1, 1} is exactly
the set of k × k rank–one, symmetric, positive semidefinite matrices x, with diagonal entries equal to 1.
In (1.30), rank(x) denotes the rank of x in the linear algebraic sense, i.e. the dimension of the range space
of x. Omitting the (nonconvex) rank–one constraint results in an SDP relaxation of the original Boolean
quadratic program. The analysis of this relaxation by Goemans and Williamson [38] for the maximum cut
problem (which resulted in a 0.878 approximation guarantee) was responsible for great interest in SDP in
the combinatorial optimization community. Various other applications of SDP are cataloged in [109].

The robust least squares problem is to find x ∈ Rk minimizing ‖(A+ ∆A)x − (b+ ∆b)‖,where only
bounds on the uncertainties ∆A ∈ Rp×k and ∆b ∈ Rp are known. This problem is formulated in [26]
as a convex QCQP. Minimizing a sum of 2–norms and approximation in the complex `1–norm are also
examples of convex QCQP. Another important application is in the optimal design of mechanical structures,
especially truss topologies, where the total elastic energy stored in the structure is minimized subject to
volume constraints on the interconnecting links [10–12]. Many other applications, e.g. contact problems in
friction, digital filter design, portfolio optimization, are discussed in [68].

In Chapter 5, we describe a new application of SDP arising from quantum chemistry calculations.

1.8 Concluding Remarks

In principle, it suffices to consider only semidefinite programming, as the nonnegative orthant and the
quadratic cone can be embedded in a semidefinite cone of appropriate dimension. For example, R

n0
+ is just

the direct sum of n0 trivial 1× 1 semidefinite cones. Similarly, vectors x(j) = [x0(j), x̄(j)] ∈ Q
nj

+ are exactly
those for which the corresponding symmetric matrix arw(x(j)) is positive semidefinite. However, there is
little to be gained from such an embedding. In fact, it is computationally advantageous to retain three
distinct classes of cones.

The close connections between COP, interior–point algorithms and Euclidean Jordan algebras are that

• the Euclidean spaces E we have been considering thus far turn into Euclidean Jordan algebras when
equipped with a suitable bilinear product,

• the cones in these spaces that we have dealt with are the well known symmetric cones studied in the
theory of Jordan algebras,

• the usual log barrier function used in potential reduction interior–point algorithms is related to a well
studied object in the theory of Jordan algebras, namely the characteristic function (see [31, Ch.I] for
the definition) of the underlying symmetric cone, and

• the reformulated complementarity conditions (1.17) – (1.19) that appear in every interior–point
iteration of a path following algorithm using the so called “XZ+ZX” search direction [7] (also known
as the AHO search direction; see Chapter 3) correspond exactly to the Jordan product on E.
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Whereas earlier papers developed algorithms and complexity analyses for COP for each type of cone
separately (i.e. LP, convex QCQP and SDP), the Jordan algebraic approach of [32, 33] (see also the related
works [42, 43]) and the approach of Nesterov and Todd [80, 81] via self–scaled cones, provide an elegant and
unified framework for COP. The recent work [97] uses associative algebras to show that the polynomial
complexity results of [74] can be extended verbatim to all the symmetric cones, except the 3× 3 Hermitian
matrices over O, which is not an associative algebra [31, p.86].



Chapter 2

Perturbation Theory

In this chapter, we derive perturbation results for conic optimization problems. This chapter extends earlier
results of [77], which was joint work with M. L. Overton.

2.1 Introduction

Our aim in this chapter is to study the conditioning of conic optimization problems (COP) with respect to
small perturbations, i.e. to quantify the change in the solution of a COP induced by a sufficiently small
perturbation in the problem data. This section develops the notation and the background needed for the
rest of the chapter.

First, recall the definitions of E = SN × Qn × Rn0 , the inner product 〈 ·, · 〉 and the Jordan product
◦ on E, the cone K ⊆ E, the primal (1.1) and the dual (1.3) COP, the Diag(·) and the Arw(·) notations
of Chapter 1.

The Euclidean structure on E induces the Frobenius norm ‖x‖ ∆=
√〈x, x 〉 on x ∈ E. When a different

norm is needed, we use an appropriate subscript, e.g. ‖·‖2 for the 2–norm of a vector. Of course, using the
eigenvalue map in Definition 1.5.2, we immediately recognize that

• ‖xS‖ ∆=
√

tr(x2
S) = ‖λ(xS)‖2,

• for xQ = [x0(1), x̄(1), . . . , x0(q), x̄(q)],

‖xQ‖ ∆=
√

2
{
(x0(1)2 + ‖x̄(1)‖22) + . . .+ (x0(q)2 + ‖x̄(q)‖22)

}
=
√

2 ‖xQ‖2 = ‖λ(xQ)‖2 , and

• ‖xL‖ ∆= ‖xL‖2 = ‖λ(xL)‖2
The space E × Rm, whose elements are denoted by pairs e.g. (x, y), is equipped with the norm ‖(x, y)‖ ∆=√
‖x‖2 + ‖y‖2. For an element u = (x, y, z) in the primal–dual space E× Rm × E, the norm is defined as

‖u‖ = ‖(x, y, z)‖ =
√
‖x‖2 + ‖y‖2 + ‖z‖2. (2.1)

The norm on y ∈ Rm is arbitrary.
We use the symbol |‖ · ‖| to denote the induced operator norm.
We denote by B(u, ρ), the open ball of radius ρ centered at u. Among functions that map E×Rm×E to

itself, Lipγ(B(u, ρ)) denotes those that are Lipschitz continuous in B(u, ρ), γ being the Lipschitz constant
in the norm chosen in (2.1). We say that a function is uniformly Lipschitz continuous if it is Lipschitz
continuous at every point in its domain with the same Lipschitz constant.

We will assume that the primal and the dual COP satisfy the Slater condition (see Assumption 1.2.1).
Consequently, the primal and dual solutions exist, and the primal and the dual objective values are both

15



16 Chapter 2. Perturbation Theory

finite and equal (see Corollary 1.2.1). Thus, a triple (x0, y0, z0) solves (1.1) and (1.3) if and only if x0

is primal feasible, (y0, z0) is dual feasible and the complementarity condition x0 ◦ z0 = 0 is satisfied, i.e.
(x0, y0, z0) is optimal if and only if it is a root of

f : E→ E× Rm × E : (x, y, z) 7→
[
A∗y + z − c
Ax − b
x ◦ z

]
(2.2)

and (x0, z0) ∈ K × K. We remind the reader that, as stated in Section 1.1, the square brackets in (2.2)
indicate that the first and the third rows are to be interpreted as vectors, rather than as elements in E.

We will also assume that the following condition is satisfied.

Assumption 2.1.1 (Nondegeneracy And Strict Complementarity)

There exist a primal nondegenerate solution x and a dual nondegenerate solution (y, z) such that (x, z) are
strictly complementary.

By Lemma 1.4.1, this assumption guarantees that such a solution is unique.
We denote by ~ the symmetrized Kronecker product introduced in [7], i.e. given v, w ∈ SN ,

v ~ w : SN → SN : a 7→ 1
2
(wav + vaw).

The operator v ~ w may be represented as as a symmetric matrix of order dS . The Jacobian of f can then
be verified to be

J(x, y, z) =

[ 0 A∗ I
A 0 0
E 0 F

]
, (2.3)

where E = Diag(zS ~ I,Arw(zQ), zL), F = Diag(xS ~ I,Arw(xQ), xL), and I is the identity matrix of
appropriate dimension. Finally, we use the compact notation (A, b, c) to denote the COP’s in (1.1) and (1.3).

The organization of the rest of the chapter is as follows. In Section 2.2, we state some preliminary results
needed for the perturbation analysis in Section 2.3. In Section 2.4, we see how these bounds specialize
to the case of linear programming, where a straighforward approach based on linear algebra is possible.
We present an alternative approach for infinitesimal perturbations, based on the implicit function theorem,
in Section 2.5, and conclude in Section 2.6 with some remarks on the assumptions made and pointers to
related work in the literature.

2.2 Preliminary Results

We begin by stating some preliminary lemmas that will be used in the perturbation analysis. The following
well known result is one that we will use repeatedly.

Lemma 2.2.1 (Banach Lemma [101, p. 118])

Let T be a nonsingular operator mapping E×Rm×E to itself, and let T̃ = T + ∆T be a perturbation of T .

If |‖ T−1∆T ‖| < 1, then T̃ is nonsingular, and

|‖ T̃−1 ‖| ≤ |‖ T−1 ‖|
1− |‖ T−1∆T ‖| .

In what follows, | · | denotes the absolute value (componentwise, if the argument is a vector). An
inequality between a vector and a scalar is to be interpreted componentwise. Also recall the eigenvalue map
of Definition 1.5.2. We refer to the eigenvalues of x ∈ E in the Jordan sense (Definition 1.5.2), and also
eigenvalues of linear operators on E (defined in the usual manner). For example, x ∈ Qn has 2q eigenvalues
in the Jordan sense, whereas the linear operator Arw(x) : Qn → Qn has q +

∑q
j=1 nj eigenvalues, which

are just the ordinary eigenvalues of the matrix Arw(x). We point this out to avoid potential confusion
between these two usages of the word “eigenvalues”. For example, λmax(·) denotes the largest eigenvalue of
its argument, which can be an element in E (see Definition 1.5.2) or a linear operator from E to E.
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Lemma 2.2.2 (Eigenvalues Of Kronecker Products)

Let x, v ∈ SN be commuting matrices, and for each block j = 1, . . . , s, let α1, . . . , αNj and β1, . . . , βNj

denote the eigenvalues of x(j) and v(j) respectively. For each j = 1, . . . , s, the Nj(Nj + 1)/2 eigenvalues of
x(j) ~ v(j) are given by

1
2

(αkβl + βkαl) , 1 ≤ k ≤ l ≤ Nj .

In particular, when v = I, we have |‖ x~ I ‖| = maxi | λi(x) |≤ ‖x‖.
Proof. See [7].

Lemma 2.2.3 (Eigenvalues Of Arrow Matrices)

Let x ∈ Qn, and for each block j = 1, . . . , q, let x(j) = [x0(j), x̄(j)] ∈ R × Rnj . For each j = 1, . . . , q, the
nj + 1 eigenvalues of arw(x(j)) are

x0(j) + ‖x(j)‖2 , x0(j), . . . , x0(j), x0(j)− ‖x(j)‖2 .
In particular, |‖ Arw(x) ‖| ≤ ‖x‖.
Proof. Since arw(x(j)) = x0(j)I + eQ(j)x̄(j)∗ + x̄(j)eQ(j)∗, its eigenvalues are those of the matrix
eQ(j)x̄(j)∗ + x̄(j)eQ(j)∗ shifted by x0(j). The latter matrix has rank at most 2, and it is easy to ver-
ify that its two possibly nonzero eigenvalues are ±‖x̄(j)‖2, with corresponding eigenvectors given by (1.26).
The claimed inequality follows quickly: for x(j), z ∈ R× Rnj ,

|‖ arw(x(j)) ‖| = max
‖z‖=1

‖arw(x(j))z‖ = max
‖z‖2=1/

√
2

√
2 ‖arw(x(j))z‖2 = max

i
| λi(arw(x(j))) |

=| x0(j) + ‖x̄(j)‖2 |≤ ‖x(j)‖ ,
where the last inequality can be verified by squaring both sides. If j0 = argmaxj |‖ arw(x(j)) ‖|, then

|‖ Arw(x) ‖| = max
j
|‖ arw(x(j)) ‖| = |‖ arw(x(j0)) ‖| ≤ ‖x(j0)‖ ≤ ‖x‖ ,

thus concluding the proof.

Lemma 2.2.4 (Eigenvalue Perturbations in SN [82, p. 58])

Let x, x+ v ∈ SN . For any block j = 1, . . . , s,

| λ(x(j) + v(j)) − λ(x(j)) | ≤ ‖v(j)‖ .

Lemma 2.2.5 (Eigenvalue Perturbations in Qn
)

Let x, x+ v ∈ Qn. For each block j = 1, . . . , q,

| λ(x(j) + v(j)) − λ(x(j)) | ≤ ‖v(j)‖ .
Proof. Apply Lemma 2.2.4 to Arw(x) and Arw(x + v).

The next two lemmas deal with properties of the Jacobian (see (2.3)) associated with a COP. We will say
that a solution u0 = (x0, y0, z0) to a COP satisfies

• nondegeneracy, if x0 is primal nondegenerate and (y0, z0) is dual nondegenerate, and

• strict complementarity, if (x0, z0) satisfy strict complementarity.

Lemma 2.2.6 (Nonsingularity of Jacobian)

Let u0 = (x0, y0, z0) be a primal–dual solution to COP. Then, the Jacobian of f at the solution, J(u0), is
nonsingular, if and only if u0 satisfies nondegeneracy and strict complementarity.
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See [44] for the proof. The “if” implication is also proved in [32], and extends the original result for SDP [7].
See also [8].

Lemma 2.2.7 (Lipschitz Continuity of Jacobian)

Let (A, b, c) define any COP, not necessarily satisfying the Assumption 2.1.1. Then, the Jacobian J(u)
associated with it is uniformly Lipschitz continuous, with 1 being a global Lipschitz constant.

Proof. Let u1 = (x1, y1, z1), v = (v1, v2, v3), and u2 = (x2, y2, z2) all be elements of E× Rm × E. We have

|‖ J(u2)− J(u1) ‖| = max
‖v‖=1

|‖ (E2 − E1)v1 + (F2 − F1)v3 ‖| (see (2.3))

≤ max
‖v1‖=1

|‖ (E2 − E1)v1 ‖|+ max
‖v3‖=1

|‖ (F2 − F1)v3 ‖|
= |‖ E2 − E1 ‖|+ |‖ F2 − F1 ‖|
≤ ‖z2 − z1‖+ ‖x2 − x1‖ (by Lemmas 2.2.2 and 2.2.3)
≤ ‖u2 − u1‖ ,

hence the result.

We state a finite dimensional version of the Kantorovič theorem which is central to our perturbation analysis.

Theorem 2.2.1 (Kantorovič Theorem [54, Ch.XVIII])

Let ρ0 > 0, u0 ∈ Rp, h : Rp → Rp, and h ∈ C1(B(u0, ρ0)). Assume for any norm on Rp and the corresponding
induced operator norm that the Jacobian Dh(·) ∈ Lipγ(B(u0, ρ0)) with Dh(u0) nonsingular, and let

β = |‖ Dh(u0)−1 ‖|, η = |‖ Dh(u0)−1 h(u0) ‖|, α = βγη, ρ =
1−√1− 2α

βγ
.

If (a) α ≤ 1
2 , and (b) ρ ≤ ρ0, then

(i) h has a unique zero, say ũ0, in clB(u0, ρ), and
(ii) Newton’s method with unit steps, started at u0, converges to this unique zero ũ0.

The following corollary is immediate.

Corollary 2.2.1 (Nonsingularity Of Perturbed Jacobian)

Let the conditions of Theorem 2.2.1 be satisfied. If α < 1/2, then Dh(ũ0) is nonsingular.

Proof. Since the conditions of Theorem 2.2.1 are satisfied, G must have a zero, say ũ0, such that

‖ũ0 − u0‖ ≤ ρ =
1−√1− 2α

βγ
(2.4)

≤ 2α
βγ

when 0 ≤ α ≤ 1/2 (2.5)

<
1
βγ

when α < 1/2

so that

|‖ Dh(ũ0)−Dh(u0) ‖| ≤ γ ‖ũ0 − u0‖ < 1
β

=
1

|‖ Dh(u0)−1 ‖| .

The Banach Lemma (Lemma 2.2.1) now implies that Dh(ũ0) is nonsingular.
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2.3 Perturbation Analysis

The two classical, qualitative notions of stability for a general mathematical programming problem are
stability with respect to the optimal value, and stability with respect to the solution set [66]. Our analysis
quantifies the latter for a COP satisfying the assumption, by explicitly bounding the change in the solution
for a sufficiently small perturbation in the problem data. Consider a perturbation of the problem data A, b,
and c in (1.1). In what follows,

Ã = A+ ∆A, b̃ = b+ ∆b, and c̃ = c+ ∆c (2.6)

all denote perturbations in the original problem (1.1). Correspondingly, (2.2) for the perturbed system
becomes

f̃(u) ∆= f̃(x, y, z) ∆=

 Ã∗y + z − c̃
Ãx− b̃
x ◦ z

 = 0. (2.7)

and the Jacobian of f̃ (see (2.3)) becomes

J̃(u) ∆= J̃(x, y, z) =

 0 Ã∗ I

Ã 0 0
E 0 F

 . (2.8)

We denote the solution to the original problem by u0 = (x0, y0, z0) and the solution to the perturbed problem
by ũ0 = (x̃0, ỹ0, z̃0). For a COP (A, b, c) satisfying Assumption 2.1.1 and whose solution is u0 = (x0, y0, z0),
and for its perturbation given in (2.6), we define the following quantities which will be used in the next
theorem and the corollary following it. Using the projection π : E × Rm × E → E × Rm × E : (x, y, z) 7→
(x, y, 0), we define the linear operators K = J(u0)−1π (see (2.3)) and L = πJ(u0). Then, we set

β0
∆= |‖ J(u0)−1 ‖|

β1
∆= |‖ K ‖|, and

δ0
∆= min

{
λ+

min(x0), λ+
min(z0)

}
(see Definition 1.5.2).

We now state the main result.

Theorem 2.3.1 (COP Perturbation Theorem)

Let u0 be the primal–dual solution to the COP (A, b, c) satisfying the Assumptions, and let [Ã, b̃, c̃] =
(A+ ∆A, b+ ∆b, c+ ∆c). Let

ε0
∆= |‖ ∆A ‖| ‖(x0, y0)‖+ ‖(∆c,∆b)‖ .

If

|‖ ∆A ‖| ≤ 1
2β1

, and (2.9)

ε0 < min
(

σ − 1
2σ2β0β1

,
δ0

2σβ1

)
for some 1 < σ ≤ 2, (2.10)

then
(i) the COP defined by [Ã, b̃, c̃] has a solution, say ũ0, which satisfies

‖ũ0 − u0‖ ≤ σβ1ε0
1− β1|‖ ∆A ‖| , (2.11)

(ii) the solution to [Ã, b̃, c̃] is unique.

(iii) Newton’s method with unit steps applied to f̃ , started at u0, converges to ũ0 quadratically.
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Proof. To prove (i), we proceed in two steps. First, we use the Kantorovič theorem to show that f̃ has a
root ũ0 that satisfies the bound in (2.11). Second, we show that (x̃0, z̃0) lies in K×K, and hence is a solution
to the COP.

To use the Kantorovič theorem in the first step, we note the nonsingularity of the Jacobian J(u0) and
the Lipschitz continuity of J(·) with Lipschitz constant γ = 1 (Lemma 2.2.6 and Lemma 2.2.7). Defining

∆J ∆= J̃(u0)− J(u0) =

[ 0 ∆A∗ 0
∆A 0 0
0 0 0

]
, (2.12)

we have |‖ ∆J ‖| = |‖ ∆A ‖|, and therefore

|‖ J(u0)−1∆J ‖| ≤ β1|‖ ∆A ‖| ≤ 1
2

(from (2.9)) (2.13)

so that by the Banach Lemma (Lemma 2.2.1), J̃(u0) is nonsingular with

β = |‖ J̃(u0)−1 ‖| ≤ 2β0. (2.14)

Let

η =
∥∥∥J̃(u0)−1f̃(u0)

∥∥∥ and α = βη. (2.15)

We need only verify assumption (a) of the Kantorovič theorem (Theorem 2.2.1), i.e. that α ≤ 1
2 ; assump-

tion (b) then follows trivially from the fact that the Lipschitz constant is global. We have

f̃(u0) =

[ (A+ ∆A)x0 − (b+ ∆b)
(A+ ∆A)∗y0 + z0 − (c+ ∆c)

x ◦ z

]

=

[ (∆A)x0 −∆b
(∆A)∗y0 −∆c

0

]
, (2.16)

so that ∥∥∥J(u0)−1f̃(u0)
∥∥∥ ≤ β1 {|‖ ∆A ‖| ‖ (x0, y0) ‖ + ‖(∆b,∆c)‖} = β1ε0. (2.17)

Therefore, we obtain the estimate

η =
∥∥∥J̃(u0)−1f̃(u0)

∥∥∥
=

∥∥∥(I + J(u0)−1∆J
)−1

J(u0)−1f̃(u0)
∥∥∥

≤ β1ε0
1− |‖ J(u0)−1∆J ‖| (from (2.17) and Lemma 2.2.1) (2.18)

≤ 2β1ε0 (from (2.13)) (2.19)

and from (2.14), (2.19) and (2.10), we conclude that

α = βη ≤ 4β0β1ε0 <
2(σ − 1)
σ2

≤ 1
2
. (2.20)

Since α < 1
2 , the hypotheses of the Kantorovič theorem hold, whence we can conclude that f̃ has a unique

zero ũ0, with

‖u0 − ũ0‖ ≤ 1−√1− 2α
β

. (2.21)
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We have

σ2α− 2σ + 2 < 0 (from (2.20))
⇒ σ2α2 − 2σα+ 2α ≤ 0 (since α = βη ≥ 0)

⇒ 1− σα ≤ √1− 2α,

or equivalently,

1−√1− 2α
β

≤ σα

β
= ση,

so that, using (2.21),

‖u0 − ũ0‖ ≤ ση. (2.22)

Combining this with (2.18) and (2.13) yields (2.11).
To show that this root is actually a solution to the COP, we need to establish that x̃0, z̃0 ∈ K. To this

end, note that

‖ũ0 − u0‖ ≤ 2σβ1ε0 (from (2.22) and (2.19))
< δ0 (from (2.10))

so that

‖x̃0 − x0‖ < δ0 and ‖z̃0 − z0‖ < δ0. (2.23)

The following argument shows that x̃0 ∈ K. For each i,

λi(x0) > 0⇒ λi(x̃0) > 0 (from (2.23) and Lemmas 2.2.4, 2.2.5),

and

λi(x0) = 0⇒ ωi(z0) > 0 (strict complementarity of x0 and z0)
⇒ ωi(z̃0) > 0 (from (2.23) and Lemmas 2.2.4, 2.2.5)
⇒ λi(x̃0) = 0 (complementarity of x̃0 and z̃0).

A similar argument shows that z̃0 ∈ K. Thus, ũ0 = (x̃0, ỹ0, z̃0) is indeed a solution to the perturbed COP.
This concludes the proof of (i) in the theorem.

The proof of (ii) in the theorem is an immediate consequence of Corollary 2.2.1: since J̃(ũ0) is nonsingular,
Lemma 2.2.6 implies that the solution ũ0 to the perturbed problem [Ã, b̃, c̃] satisfies strict complementarity
and nondegeneracy. The latter property then guarantees, by Lemma 1.4.1, that ũ0 is the unique solution.

The proof of (iii) is a consequence of the second conclusion of Theorem 2.2.1, combined with the non-
singularity of J̃(ũ0).

The following corollary establishes a bound on the relative error in the solution of a perturbed COP, and
thus introduces the notion of a condition number for COP.

Corollary 2.3.1 (Conditioning of COP)

Let the conditions of the COP Perturbation Theorem (Theorem 2.3.1) hold, and let ∆u0 = ũ0 − u0. Then,

‖∆u0‖
‖u0‖ ≤

σ |‖ K ‖| |‖ L ‖|
1− |‖ K ‖| |‖ ∆A ‖|

( |‖ ∆A ‖| ‖(x0, y0)‖
‖(c, b)‖ +

‖(∆c,∆b)‖
‖(c, b)‖

)
. (2.24)
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Proof. Observe that u0 satisfies Lu0 = (c, b, 0), so that

|‖ L ‖| ‖u0‖ ≥ ‖(c, b)‖ .
The result follows by combining this inequality with (2.11).

Thus, |‖ K ‖| |‖ L ‖| may be viewed as a condition number. In the special case ∆A = 0, we have β = β0, the
inequality in (2.10) can be relaxed to

ε0 < min
(

2(σ − 1)
σ2β0β1

,
δ0
σβ1

)
(1 < σ ≤ 2)

and (2.24) reduces to

‖∆u0‖
‖u0‖ ≤ σ |‖ K ‖| |‖ L ‖|

(‖(∆c,∆b)‖
‖(c, b)‖

)
.

2.4 Linear Programs

In the case E = Rn, we recover linear programming (LP), and the cone under consideration is Rn+, the
polyhedral cone of componentwise nonnegative vectors. In this case, a simpler perturbation analysis is
possible via linear algebra. It is instructive to see how the perturbation results of the previous section
specialize to LP.

Note that the nondegeneracy and the strict complementarity assumption (Assumption 2.1.1) simplifies
considerably in this case. Nondegeneracy implies that the primal solution, rearranged as x0 = (x1

0, x
2
0),

has exactly m strictly positive components (denoted by x1
0), and, that if we rearrange the columns of A as

[A1 A2] with A1 and A2 corresponding to x1
0 and x2

0 respectively, then A1 (the “basis matrix”) is nonsingular.
Writing z0 = (z1

0 , z
2
0) accordingly, we have z1

0 = 0, and by strict complementarity, z2
0 > 0. Therefore,

J(u0) =


A1 A2 0 0 0
0 0 A∗1 I 0
0 0 A∗2 0 I
0 0 0 Diag(x1

0) 0
0 Diag(z2

0) 0 0 0

 .
Thus, Theorem 2.3.1 holds with β1 = |‖ K ‖|, with

K =


A−1

1 0 0 0 0
0 0 0 0 0
0 (A−1

1 )∗ 0 0 0
0 0 0 0 0
0 −A2(A−1

1 )∗ I 0 0

 .
However, it is possible to use a simple linear algebra argument to obtain a perturbation bound. Rearranging
c as (c1, c2) and defining

R =

[
A1 0 0
0 A∗1 0
0 A∗2 I

]
, (2.25)

the solution to the LP is given by R (x1
0, y0, z

2
0) = (b, c1, c2), and x2

0 = 0, z1
0 = 0. Since this holds for

any sufficiently small perturbation (so that the basis does not change), the standard perturbation result for
square, nonsingular linear systems [99, p. 26] gives

‖∆u0‖ =
∥∥(∆x1

0,∆y0,∆z
2
0)
∥∥

≤ |‖ R−1 ‖|
1− |‖ R−1 ‖| |‖ ∆R ‖| (|‖ ∆R ‖| ‖(x0, y0)‖+ ‖(∆c,∆b)‖) . (2.26)

Here, ∆R is the matrix obtained by replacing A1, A2 and I in (2.25) by ∆A1, ∆A2 and 0 respectively. Since
|‖ ∆R ‖| = |‖ ∆A ‖| and |‖ R−1 ‖| = |‖ K ‖|, the bound obtained in Theorem 2.3.1 via the Kantorovič
theory specializes, except for the factor of σ, to the one in (2.26) obtained by linear algebra.
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2.5 Asymptotic Error Bounds

An alternative approach is to introduce a perturbation parameter t (assumed to be a scalar, for simplicity),
and study the solution u(t) = (x(t), y(t), z(t)) of the parametrized COP [A(t), b(t), c(t)], where A(·), b(·) and
c(·) are assumed to be at least C1 in some neighborhood around t0, and t = t0 corresponds to the original
problem. We may now regard f defined in (2.2) to be f(t, x, y, z), and replace A, b, c in the right hand side
of (2.2) by the functions A(t), b(t), c(t) respectively. In view of Lemma 2.2.6, the implicit function theorem
states that Du(t), the derivative of the solution with respect to t, is well defined and continuous in some
neighborhood (t0 − ε0, t0 + ε0) around t0, with

Du(t0) = −J(u0)−1Dtf(t0, x0, y0, z0). (2.27)

Indeed, we can conclude that ∀ δ > 0, ∃ ε(δ) > 0 such that ∀t ∈ (t0 − ε(δ), t0 + ε(δ)),

‖u(t)− u(t0)‖ ≤ (|‖ Du(t0) ‖|+ δ) | t− t0 | .

Thus, |‖ Du(t0) ‖| can be considered to be an asymptotic error bound.1 However, the implicit function
theorem does not provide a way to estimate ε(δ). On the other hand, the Kantorovič approach uses ∆A =
A(t) − A(t0), ∆b = b(t) − b(t0) and ∆c = c(t) − c(t0) to provide explicit bounds both on ‖ũ0 − u0‖ (see
(2.11)) and on the permissible perturbations (see (2.9) and (2.10)), without any assumptions on the functions
A(·), b(·), and c(·). In the limiting case t −→ t0, we have ε0 −→ 0, so that we may let σ −→ 1 in (2.10).
Then, from (2.15) and (2.16), the quotient η/ | t− t0 |−→ |‖ Du(t0) ‖| given in (2.27). Hence, the Kantorovič
bound in (2.22) divided by | t− t0 | approaches |‖ Du(t0) ‖|.

2.6 Concluding Remarks

We conclude by making a few remarks about the assumptions made. The Slater condition (the existence of
strictly feasible points for the primal and the dual) guarantees that the problem remains well–posed under
small perturbations. A problem violating the Slater condition is ill–posed in the sense that it could become
infeasible under an arbitrarily small perturbation. Indeed, in the absence of further qualifications on the data
and the nature of the perturbation, the solution multifunction may not even be outer semicontinuous [96,
Def. 5.4], if the Slater condition is violated.

Our assumption of nondegeneracy and strict complementarity (Assumption 2.1.1) is stronger than the
Slater condition, but guarantees a unique solution to the COP, and is crucial for the application of the
Kantorovič theory. Again, in the absence of further qualifications on the data and the nature of the per-
turbation, the solution multifunction may not be inner semicontinuous [96, Def. 5.4], if the nondegeneracy
condition is violated. Nevertheless, the nondegeneracy and strict complementarity assumption is generically
satisfied [6, 90].

For linear programming, in the special case of perturbations to b alone (i.e. ∆A = 0, ∆c = 0) and
under the assumption that the perturbed problem has a nonempty solution set, Mangasarian and Shiau [71]
bound the distance between the solution sets of the original and the perturbed problems in terms of the
perturbation in b. Robinson [94] uses Hoffman’s lemma for linear inequalities to bound the distance between
the solution set of a linear program and a fixed point in the solution space. Renegar [92, 93] introduces the
notion of the distance to ill–posedness, and derives error bounds for a general class of mathematical programs
in the setting of reflexive Banach spaces. However, a feature common to all these results, including the one
presented in this chapter, is that they require some form of knowledge of the solution (or the active set at
the solution) of the original program. In this sense, computing the condition number of a COP involves at
least as much work as solving the program itself.

1This notion of an asymptotic error bound was suggested by one of the anonymous referees of [77].



Chapter 3

Interior–Point Methods

Several interior–point codes for COP, and particularly SDP, have been actively developed over the last few
years (see, for instance, [36, 103, 107]). In this chapter, we describe primal–dual path following methods
for COP. We address several computational issues relating to linear algebra, data sparsity, safeguards and
higher order corrections, and present numerical results on benchmark problems using SeQuL, a COP solver,
which evolved from its predecessor SDPpack [4, 5], but incorporates many improvements. This chapter is
based on joint work with J–P. Haeberly and M. L. Overton [45, 46]. The code SeQuL was almost entirely
written by J–P. Haeberly.

3.1 Introduction

Recall the basic definitions of E, K ⊆ E, the primal (1.1) and the dual (1.3) COP, and the notations of Sec-
tion 1.1. Assuming the Slater condition (Assumption 1.2.1), the optimality conditions (see Theorem 1.2.3
and (2.2)) reduce to solving the smooth system of nonlinear equations

f(x, y, z) ∆=


A∗y + z − c
Ax− b

1
2vec(xSzS + zSxS)

Arw(xQ)zQ
Diag(xL)zL

 = 0 (3.1)

along with the cone constraints in (1.20). The isometry vec as well as the Arw(·) and the Diag(·) notations
in (3.1) were defined in Chapter 1.

As we will see in the next section, solving the COP will reduce to applying Newton’s method to a
relaxed version of the optimality conditions in (3.1) to generate a search direction (∆x,∆y,∆z), along
which a new iterate will be chosen. However, it turns out that there are many equivalent versions of the
semidefinite complementarity condition in (3.1), which result in different search directions. The form we
use, 1

2 (xSzS + zSxS) = 0, results in the AHO [7] (also known as the XZ+ZX search direction), whereas
using xSzS = 0 (see Remark 1.2.1) results in the KSH/HRVW/M [49, 59, 75] (also known as the XZ
direction) of the SDP literature. Yet another direction is the NT direction [108], which is obtained by
using the condition w−1/2(xSzS)w1/2 = 0, with w = x

1/2
S (x1/2

S zSx
1/2
S )−1/2x

1/2
S . More generally, using the

Monteiro–Zhang symmetrization operator [76]

Hp(xszS) =
1
2
(
p(xSzS)p−1 + (p−1)∗(xSzS)∗p∗

)
several families of search directions can be unified. The nonsingular matrix p is chosen so that Hp(xSzS) =
µI ⇐⇒ xSzS = µI. Hence the central path (see Section 1.6) remains unaltered if xSzS = µI is replaced
by Hp(xSzS) = µI. Choosing p = I (p = x

1/2
S , or p = w−1/2 with w as defined above) gives rise to the AHO

(KSH/HRVW/M, or NT) direction. See [106] for more details on various search directions in SDP.
The sequel is organized as follows. We begin by describing a primal–dual path following interior–

point algorithm, based on the AHO direction, in Section 3.2, and some computational issues pertaining to

24
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this algorithm in Section 3.3. In Section 3.4 and Section 3.5, we introduce extensions of the “higher order
corrections” (HOC) and “multiple centrality corrections” (MCC) schemes, introduced for linear programming
(LP) by Mehrotra [72] and Gondzio [40] respectively, to COP, and describe the use of these methods in the
primal–dual path–following algorithm of Section 3.2. We present numerical results demonstrating the relative
merits of the higher order schemes in Section 3.6, and conclude in Section 3.7 with a brief summary.

3.2 Primal–Dual Path Following Methods

Recall that eQ and eL (see page 10) are the identity elements of Qn and Rn0 respectively, i.e. for each block
j = 1, . . . , q, eQ(j) = [1, 0, . . . , 0] ∈ R×Rnj , and eL = [1, . . . , 1], and that I denotes the identity element of
SN .

For µ > 0 consider the modified system

fµ(x, y, z)
∆=

[
A∗y + z − c
Ax− b
gµ(x, z)

]
= 0, (3.2)

where

gµ(x, z) =

 1
2vec(xSzS + zSxS − 2µI)

Arw(xQ)zQ − µeQ
Diag(xL)zL − µeL

 .
For any given µ > 0, there exists a unique solution (xµ, yµ, zµ) ∈ SN++×Qn

++×R
n0
++ to the system (3.2) [79].

Recall from Section 1.6 that the trajectory {(xµ, yµ, zµ) | µ > 0} is called the central path. The parameter
µ plays the role of a homotopy parameter. Any limit point of the central path as µ ↓ 0 is a solution to the
COP.

A typical primal–dual path–following algorithm for COP approximately solves a sequence of systems
fµk(x, y, z) = 0 where µk ↓ 0. For each µ = µk, an approximate solution to (3.2) is computed by applying
one step of Newton’s method. Thus one computes a search direction (∆x,∆y,∆z) as the solution of the
linear system [ 0 A∗ I

A 0 0
E 0 F

][∆x
∆y
∆z

]
= −fµ(x, y, z) (3.3)

where we recognize the matrix on the left hand side to be the Jacobian (see (2.3)) of f in (3.2). The current
point is then updated as

x← x+ α∆x,
y ← y + β∆y,
z ← z + β∆z,

for suitable values of the step lengths α and β, chosen to ensure that the new iterates x and z remain inside
the cone.

The algorithm is described as follows. Let ∆x = (∆xS ,∆xQ,∆xL), and ∆z = (∆zS ,∆zQ,∆zL). For an
iterate (x, y, z) strictly satisfying the cone constraints, we perform the following steps, which constitute one
basic interior–point iteration:

Algorithm 3.2.1 (Basic Interior–Point Iteration)

Step 1 (Predictor Direction) Compute a predictor search direction (∆xpred,∆ypred,∆zpred) by solving
(3.3) with µ set to 0.

Step 2 (Step Length Calculation) Compute positive primal and dual step lengths α̂pred and β̂pred such
that

x+ α̂pred∆xpred and z + β̂pred∆zpred

lie on the boundary of the cone SN+ ×Qn
+ × R

n0
+ .
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Step 3 (µ Calculation) Let

x′ ∆= x+ αpred∆xpred and z′ ∆= z + βpred∆zpred

where αpred = min(α̂pred, 1) and βpred = min(β̂pred, 1) and set

µ =
( 〈x′, z′ 〉
〈x, z 〉

)3 〈 x, z 〉
ν

, (3.4)

where

ν =
s∑
j=1

Nj +
q∑
j=1

nj + n0.

Step 4 (Corrector Direction) Recompute the (relaxed) complementarity conditions in the right hand
side of (3.3) as

−gµ(x, z)−

 1
2vec(∆xpred

S ∆zpred
S + ∆zpred

S ∆xpred
S )

Arw(∆xpred
Q )∆zpred

Q

Diag(∆xpred
L )∆zpred

L


and solve (3.3) again for a new search direction (∆x,∆y,∆z).

Step 5 (Step Length Calculation) Recompute positive primal and dual step lengths α̂ and β̂ such that

x+ α̂∆x and z + β̂∆z

lie on the boundary of the cone SN+ ×Qn
+ × R

n0
+ .

Step 6 (Update) Update the iterates as

x← x+ α∆x; y ← y + β∆y; z ← z + β∆z

where α = min(τα̂, 1) and β = min(τβ̂, 1), with τ < 1, e.g. τ = 0.999.

The performance of the algorithm depends upon the choice of µ in Step 3 of the basic iteration. The rule
in (3.4) is Mehrotra’s predictor–corrector method [73], originally proposed for LP, which significantly reduces
the number of interior–point iterations required to compute a solution of given accuracy. In developing the
algorithm and the code, we have followed the practice in LP codes, where the implementations deviate (often
significantly) from the theoretical versions of the algorithms, which impose careful restrictions on updating
µ to ensure that all the iterates lie within a certain neighborhood of the central path. The algorithm as
described above does not possess convergence or complexity guarantees. See the recent theses [24, 102]
which discuss several variants of primal–dual interior–point algorithms for SDP and analyze their theoretical
properties.

3.3 Computational Issues

In this section, we discuss computational issues that are important to the performance of the algorithm.
First, we describe how the Newton system may be reduced to a smaller Schur complement matrix. Then, we
discuss how sparsity in the data is handled. Finally, we elaborate on a safeguard used for setting the value
of µ in Step 3 of the basic interior–point iteration.
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3.3.1 Schur Complement

The linear system (3.3) may be reduced, by a standard block Gauss elimination procedure [7], to a more
compact system (involving only the variable ∆y) whose coefficient matrix on the left-hand side is the m by
m Schur complement matrix

M
∆= AE−1F A∗. (3.5)

Let us represent the m×d matrix A by the triples ((AS)i, (AQ)i, (AL)i) ∈ SN×Qn×Rn0 (i = 1, . . . ,m),
where the ith row of A is [vec((AS)i),

√
2(AQ)i, (AL)i] (see Section 1.1). We may then partition the columns

of this matrix as A = [AS AQ AL], where AS , AQ, and AL are m × dS , m × dQ and m × n0 matrices
respectively. With this notation, it is easy to verify that the Schur complement matrix M can be computed
by summing up the contributions from the semidefinite, the quadratic and the linear parts of the problem,
i.e.

M = MS +MQ +ML, (3.6)

MS
∆= AS(I ~ zS)−1(I ~ xS)A∗S , (3.7)

MQ
∆= AQArw(zQ)−1Arw(xQ)A∗Q, (3.8)

ML
∆= ALDiag(zL)−1Diag(xL)A∗L. (3.9)

Forming and factoring M is the most expensive part of the algorithm. Since MS and MQ are generally not
symmetric1 for the AHO search direction, the code uses the LU factorization provided by LAPACK to factor
M . This factorization is then used to first obtain ∆y, and upon back substitution, ∆x and ∆z.

To form contribution MQ from the quadratic part, observe that multiplying a block vector by Arw(xQ)
requires only a blockwise scalar multiplication and two rank one updates, and is thus an O(dQ) operation.
Similarly, the cost of solving a system of equations whose coefficient matrix is Arw(xQ) is O(dQ), using the
Sherman–Morrison–Woodbury formula [39].

3.3.2 Step Length Calculation

Once a search direction (∆x,∆y,∆z) is calculated, we need to determine the distance from the current
iterate (x, y, z) to ∂K along the direction (∆x,∆y,∆z), i.e. we need to determine

α̂ = sup {t > 0 : x+ t∆x ∈ K} , and

β̂ = sup {t > 0 : z + t∆z ∈ K} .
For a semidefinite block xS(j), this amounts to solving an eigenvalue problem. If ∆xS(j) is not positive
semidefinite, we may compute αS(j), the largest value of t for which xS(j) + t∆xS(j) ∈ S

Nj

+ , as

αS(j) =
1

λmax(−xS(j)−1∆xS(j))
.

If ∆xS(j) is positive semidefinite, then αS(j) = +∞.
For the jth quadratic block, let xQ(j) = [x0, x̄] and ∆xQ(j) = [∆x0,∆x]. The inequality xQ(j) +

αQ(j)∆xQ(j) ∈ Q
nj

+ is equivalent to u1(j)α2 + u2(j)α+ u3(j) ≥ 0, where

u1(j) = ∆x2
0 − ‖∆x‖22 ,

u2(j) = 2 (x0∆x0 − 〈x,∆x 〉) , and

u3(j) = x2
0 − ‖x‖22 > 0 (since xQ(j) ∈ int Q

nj

+ ).

Let the roots of u1(j)α2 + u2(j)α+ u3(j) = 0 be α1 and α2. Then αQ(j) is computed as follows:

u1(j) > 0 : real positive roots ⇒ αQ(j) = min {α1, α2}
1The KSH/HRVW/M and NT directions result in a symmetric Schur complement matrix.
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real negative roots ⇒ αQ(j) = +∞
complex roots ⇒ αQ(j) = +∞

u1(j) < 0 : exactly one negative root ⇒ αQ(j) = max {α1, α2}
u1(j) = 0 : negative root ⇒ αQ(j) = +∞

positive root ⇒ αQ(j) = −c/b.
To see that the cases excluded above can never occur, it suffices to observe that when u1(j) 6= 0, we have
α1α2 = u3(j)/u1(j) with u3(j) > 0.

For the LP component, the step length calculation is the usual ratio test. Letting xL = [x1, . . . , xn0 ]
and ∆xL = [∆x1, . . . ,∆xn0 ],

αL = max
1≤i≤n0

−xi
∆xi

.

If ∆xL ≥ 0, then αL = +∞.
The primal step length α̂ to ∂K is then

α̂ = min
{

min
j
αS(j), min

j
αQ(j), αL

}
.

The dual step length β̂ is calculated similarly.

3.3.3 Sparsity

Many problems arising in applications have very sparse constraint matrices. This is the case, for example, in
problems of truss topology design and clock mesh design [110]. In order to obtain the best performance of the
algorithm, it is imperative to exploit sparsity in the formation and the factorization of the Schur complement
matrix M in (3.5). The code takes advantage of sparsity in the formation of MS , the semidefinite component
of M (see (3.7)).

The code stores sparse blocks in the constraint matrices (AS)i (i = 1, . . . ,m) in the Harwell–Boeing
format [25], and efficiently implements multiplication of a dense matrix with a sparse matrix and computation
of the inner product of a dense matrix with a sparse matrix. If D is a dense matrix of size p1 by p2 and S
is sparse of size p2 by p3, then the dense product B = DS is computed as

Bj =
p2∑
k=1

S(k, j)Dk,

where Bj , Dk ∈ Rp3 denote the jth and kth columns of B and D respectively. These are the only sparse
operations that are needed to compute MS. To see this, note that the (k, l) entry of MS is obtained as

MS(k, l) =
s∑
i=1

(vec((AS)k(i)))∗ (I ~ zS(i))−1 (I ~ xS(i))vec((AS)l(i))

where the sum is over the s semidefinite blocks, and (AS)k(i) denotes the ith block of the kth constraint
matrix (AS)k. Each term in this sum is computed as follows. First, hl(i) is computed as the solution to the
Lyapunov equation

hl(i)zS(i) + zS(i)hl(i) = xS(i)(AS)l(i) + (AS)l(i)xS(i). (3.10)

Then, MS(k, l) is computed as

MS(k, l) =
s∑
i=1

〈 (AS)k(i), hl(i) 〉 . (3.11)

Thus, we need to multiply sparse matrices with dense matrices to compute the right–hand sides in (3.10)
and we need to compute inner product of sparse matrices with dense matrices to evaluate the summands in
(3.11). Observe that even if the matrices (AS)k (k = 1, . . . ,m), are very sparse, xS is generally dense.

See [35] for a more involved strategy to exploit sparsity.
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3.3.4 Selecting µ

Let us rewrite equation (3.4) in Step 3 of the basic interior–point iteration as

µ = σ
〈x, z 〉
ν

where σ is chosen by Mehrotra’s cubic rule, namely

σ =
( 〈x′, z′ 〉
〈x, z 〉

)3

. (3.12)

This choice of σ works well in practice but may be too aggressive on some of the more difficult COP’s,
causing a failure of the algorithm due to short steps, i.e. the step lengths computed in Step 6 of the basic
interior–point iteration are too small to result in any significant progress. On such problems, it is preferable
to adopt a more conservative strategy. For example, the algorithm can monitor the size of the step lengths
α̂pred and β̂pred computed in Step 2 of the basic interior–point iteration. If one of α̂pred and β̂pred is small
then σ is chosen closer to 1, increasing the centering component in (∆x,∆y,∆z).

Here is an example of such a strategy as we implemented it. Modify the choice of σ in Step 5 of the
basic interior–point iteration as follows:

if α̂pred < 0.1 or β̂pred < 0.1 then σ = 0.5

elseif α̂pred < 0.2 or β̂pred < 0.2 then σ = 0.2

elseif α̂pred < 0.5 or β̂pred < 0.5 then σ = 0.1

else σ =
( 〈x′, z′ 〉
〈x, z 〉

)3

.

In the next two sections we describe two modifications to the basic interior–point iteration. They are
both extensions of well known methods for LP.

3.4 Higher Order Corrections

Implementations of Mehrotra higher order corrections (HOC) scheme for LP have been described in [16, 72,
111]. The performance of the method has been tested by Mehrotra [72] and Carpenter, Lustig, Mulvey and
Shanno [16] on some collections of Netlib test problems [23]. Mehrotra reports that the use of higher order
corrections resulted on the average in a reduction of 25% to 35% in the number of iterations, and significant
savings in the cpu time on several problems. Carpenter, Lustig, Mulvey and Shanno report that the number
of outer iterations of the algorithm can often be reduced with the use of higher order corrections but that the
total number of back solves required is usually increased. The consensus seems to be that the method is not
practical unless the cost of a back solve is negligible compared to the cost of factoring the Schur complement
matrix.

The situation is more promising for SDP, and hence for COP, because the ratio of the cost of forming
and factoring the Schur complement matrix defined in (3.5) to that of performing a back solve to compute
a direction (∆x,∆y,∆z) and the associated step lengths α and β is usually very much greater than it is in
LP. Indeed, recalling the definitions of d, dS , dQ and d (see Section 1.1), we see that in the case of dense
blocks, the cost of forming the Schur complement matrix M is

O

(
m

s∑
i=1

N3
i +m2ds +mdq +m2q +m2n0

)
, (3.13)

and the cost of factoring M is O(m3). On the other hand, the cost of computing the directions (∆x,∆y,∆z)
once the matrix M has been factored is

O

(
m2 +

s∑
i=1

N3
i +md

)
(3.14)
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and the cost of computing the steps to the cone boundaries is

O

(
s∑
i=1

N3
i + dq + n0

)
. (3.15)

(See Appendix A for the derivation of the operation counts in (3.13), (3.14) and (3.15).)
The higher order corrections scheme (HOC) extends readily to COP. We assume that the directions

(∆xpred,∆ypred,∆zpred) and the corresponding step lengths α̂pred, β̂pred, αpred and βpred have been initialized
as in Steps 1 – 3 of the basic interior–point iteration, and we replace Steps 4 and 5 in the basic iteration
with the following steps:

Algorithm 3.4.1 (Higher Order Corrections)

HOC Step 0 Initialize a loop counter to 1

HOC Step 1 Compute a new direction (∆x, ∆y,∆z) as in Step 4 and corresponding step lengths α̂ and β̂
as in Step 5.

HOC Step 2 If α̂ ≥ αpred or if the loop counter is 1 then accept the primal direction and set

∆xpred ← ∆x and α̂pred ← α̂.

If β̂ ≥ βpred or if the loop counter is 1 then accept the dual direction and set

∆zpred ← ∆z, ∆ypred ← ∆y and β̂pred ← β̂.

HOC Step 3 If both the primal and the dual direction have been accepted then proceed to HOC Step 4.
Otherwise, terminate the HOC iteration: restore

∆x← ∆xpred and α̂← α̂pred

if the primal direction was rejected; restore

∆z ← ∆zpred, ∆y ← ∆ypred and β̂ ← β̂pred

if the dual direction was rejected; proceed to Step 6 of the basic iteration.

HOC Step 4 Increment the loop counter. If the iteration count exceeds a predefined bound then terminate
the HOC iteration and proceed to Step 6 of the basic iteration. Otherwise go to HOC Step 1.

3.5 Multiple Centrality Corrections

The multiple centrality corrections (MCC) scheme for LP was introduced by Gondzio [40]. It is currently
implemented in several LP solvers, including HOPDM [41] and PCx [22]. Its extension to COP can be
summarized as follows. Let (∆xpred,∆ypred,∆zpred) denote a predictor direction from the current iterate
(x, y, z) and let α̂pred and β̂pred denote the corresponding primal and dual step lengths to the boundary of
the cone SN+ × Qn

+ × R
n0
+ . Note that these quantities are typically initialized with the direction and step

lengths computed in Steps 4 and 5 of the basic iteration. However, they can be initialized with the values
obtained at the end of a HOC loop allowing the MCC scheme to be combined with HOC. Let µ be defined
as in Step 3 of the basic interior–point iteration. We consider step lengths of the form α = min(1, α̂pred + δ)
and β = min(1, β̂pred + δ) for some parameter δ > 0, so α > α̂pred when α̂pred < 1 and β > β̂pred when
β̂pred < 1, and we consider the new point

(x, y, z) = (x+ α∆xpred, y + β∆ypred, z + β∆zpred).
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Next we compute a corrector direction (∆xcorr,∆ycorr,∆zcorr) aimed at improving the centrality of (x, y, z).
Let ρ denote the vector of eigenvalues of the matrix 1

2 (xSzS + zSxS) and let p denote the corresponding
orthogonal matrix of eigenvectors, so that

1
2
(xSzS + zSxS) = pDiag(ρ) p∗.

Let rS (rQ, rL) denote the vector obtained by projecting the entries of ρ (Arw(xQ)zQ, Diag(xL)zL) onto a
suitable neighborhood of µ[1, . . . , 1] (µeQ, µeL), and let

RS = pDiag(rS) p∗.

One may then consider a corrector direction (∆xcorr,∆ycorr,∆zcorr) defined by the solution to the system
(3.3) with the right hand side given by

0
0

vec(RS)− 1
2 (xSzS + zSxS)

rQ −Arw(xQ)zQ
rL −Diag(xL)zL

 .
We may then combine the predictor and the corrector directions to get

(∆x,∆y,∆z) = (∆xpred,∆ypred,∆zpred) + (∆xcorr,∆ycorr,∆zcorr).

The motivation for the correction is to obtain an increase in the step lengths when replacing the direction
(∆xpred,∆ypred,∆zpred) by (∆x,∆y,∆z), and so to obtain a larger reduction in complementarity.

Note that we attempt to adjust the eigenvalues of 1
2 (xSzS + zSxS) rather than those of xSzS . The

advantage of using the former matrix is that it is symmetric, but neither matrix is necessarily positive
definite. Both have the same trace and therefore the same eigenvalue average. Furthermore, we have the
following inequalities:

λmin(
1
2
(xSzS + zSxS)) ≤ λmin(xSzS)

λmax(
1
2
(xSzS + zSxS)) ≥ λmax(xSzS).

where λmin(B) and λmax(B) denote the smallest and largest eigenvalues of the matrixB (see [53, Ex.20,p.187]).

The correction can be repeated, taking the direction (∆x,∆y,∆z) just computed as the predictor di-
rection for a new correction. This iteration stops when the new direction fails to yield sufficient progress or
the iteration count exceeds a predefined bound. Here progress is deemed sufficient if the step lengths for the
new direction are not less than those of the previous direction and either the new primal step length or the
new dual step length exceeds the corresponding step length for the previous direction by a preset margin.

We now describe the actual implementation of MCC that we used. Following Gondzio’s code for LP
(private communication), we define the function φ : R× R→ R by

φ(ξ, µ) =


µ− ξ if ξ < κminµ

max(κmaxµ− ξ,−κmaxµ) if ξ > κmaxµ

0 otherwise

where κmin, κmax are parameters chosen to satisfy

0 < κmin ≤ 1 ≤ κmax.

We need two more parameters, γ and δ, satisfying 0 < γ < 1 and δ > 0. We assume that the step lengths α̂,
β̂ and the direction (∆x,∆y,∆z) have been computed as in Steps 4 and 5 of the basic interior–point iteration
or by HOC. We insert the following steps in between Steps 5 and 6 of the basic interior–point iteration:



32 Chapter 3. Interior–Point Methods

Algorithm 3.5.1 (Multiple Centrality Corrections)

MCC Step 1 Set

∆xpred ← ∆x, ∆ypred ← ∆y, ∆zpred ← ∆z, α̂pred ← α̂, β̂pred ← β̂.

MCC Step 2 Compute the modified step lengths as

α = min(1, α̂pred + δ) and β = min(1, β̂pred + δ)

and compute the point (x, y, z) as

(x, y, z) = (x+ α∆xpred, y + β∆ypred, z + β∆zpred).

MCC Step 3 Compute vS , vQ and vL as follows:

1. Let ρ denote the vector of eigenvalues of the matrix 1
2 (xSzS + zSxS), let p denote the corre-

sponding orthogonal matrix of eigenvectors, and let uS denote the vector obtained from ρ by
setting

(uS)j = φ(ρj ;µ), 1 ≤ j ≤
s∑
i=1

Ni.

and let

vS = vec(pDiag(uS) p∗).

2. Let vQ denote the block vector obtained from wQ = Arw(xQ)zQ as follows. Let (w0, w1, . . . , wni)
(respectively (v0, v1, . . . , vni)) denote the ith block of wQ (respectively vQ) and set

v0 = φ(w0, µ).

For 1 ≤ j ≤ ni, set

vj =


−ε− wj if wj < −ε
ε− wj if wj > ε

0 otherwise

where ε = min((1− κmin)µ, v0/ni).
3. Let vL denote the vector obtained from wL = Diag(xL)zL by setting

(vL)j = φ((wL)j ;µ), 1 ≤ j ≤ n0.

MCC Step 4 Compute a corrector direction (∆xcorr,∆ycorr,∆zcorr) as the solution of the system of equa-
tions (3.3) with right–hand side

[0 0 vS vQ vL] .

MCC Step 5 Compute the step lengths α̃ and β̃ to the boundary of the cones for the direction

(∆xpred,∆ypred,∆zpred) + (∆xcorr,∆ycorr,∆zcorr).

Let αpred = min(α̂pred, 1) and βpred = min(β̂pred, 1). If α̃ ≥ αpred then accept the new primal direction
and set ∆x ← ∆xpred + ∆xcorr and α̂ ← α̃. If β̃ ≥ βpred then accept the new dual direction and set
∆y ← ∆ypred + ∆ycorr, ∆z ← ∆zpred + ∆zcorr and β̂ ← β̃.

MCC Step 6 If α̃ < αpred + γδ and β̃ < βpred + γδ then terminate the MCC iteration, because the last
correction has failed to achieve sufficient progress. Also terminate the MCC iteration if either the new
primal or the new dual direction was rejected or if min(α̂, β̂) is greater than a predefined threshold
value, e.g. 0.99. Finally, if the iteration count exceeds a predefined bound then terminate the MCC
iteration; otherwise, go back to MCC Step 1.

Several variants of the implementation are possible. For example, one can terminate the MCC iterations
only when both the new primal and dual directions have been rejected; one can also modify the criteria
that determine whether sufficient progress has been achieved (see MCC Step 6). We have found that the
implementation described above performed best on our set of test problems.
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3.6 Numerical Results

We now present numerical results for the proposed schemes on a variety of test problems described in Ta-
ble 3.1. The truss topology design problems were contributed by A. Nemirovskii. The clock mesh design
problems are circuit design problems dealing with the propagation of a clock signal in integrated circuits;
see [110] for details. All the runs were performed on an SGI workstation with an R10000 processor, an
R10010 floating point unit and 128 MB of memory.

All the algorithms use the infeasible initial point

y = 0, (xS , xQ, xL) = (zS , zQ, zL) = η(I, eQ, eL)

where η is a positive scale factor. The choice of η can greatly affect the robustness; generally a larger value
of η makes the algorithm more reliable on harder problems but also require more iterations on easier ones.
For the runs reported here we used η = 1000. The choice of step length parameter τ in Step 6 of the basic
iteration affects the results in similar ways: a value close to one gives faster convergence on most problems
but may occasionally lead to failure. For the runs reported here, we used τ = 0.999. We also set κmin = 0.1,
κmax = 10, δ = 0.1, and γ = 0.1 (see Section 3.5). The threshold value in MCC Step 6 was set to 0.99.

In Figure 3.1, we show the performance of the higher order corrections (HOC), the multiple centrality
corrections (MCC) and the combination of HOC, MCC and SAFE (the safeguard discussed in Section 3.3.4)
on the eight problems in Table 3.1. If the safeguard is activated, i.e. σ is not set according to Mehrotra’s
cubic formula, then no HOC or MCC type of corrections are attempted for the current iteration. We discuss
the effect of this option in Section 3.6. The maximum number of corrections per basic interior–point iteration
was set to six for both HOC and MCC. These results are shown together with those for the basic algorithm
(BASIC). The top two plots in Figure 3.1 show the final primal infeasibility (the norm of the left-hand side
of (1.15)) and the final complementarity (the sum of the left hand sides of (1.17), (1.18) and (1.19)) on log
scales (base 10). Looking at these plots, we see that all problems were satisfactorily solved by all schemes,
except that MCC did not solve problem 1 (truss5 in Table 3.1) and BASIC, MCC, and MCC+HOC+SAFE
all failed to solve problem 8 (sqlp4 in Table 3.1)2. In all cases (except the failures just noted), the dual
infeasibility norm was reduced below 10−12, so this is not shown. The bottom two plots in Figure 3.1 show
the iteration count and the relative cpu time, omitting the data points for the failures just noted, so that
the other results may be compared more conveniently. The data shown in the latter of these two plots is
normalized so that the time for HOC is 1. In other words, it shows the cpu time taken by a particular
scheme divided by the cpu time taken by the HOC scheme.

We conclude that the HOC scheme is superior: it is the only scheme to solve all the problems; it yields
the smallest number of iterations on all the problems except problem 7 where MCC wins by one iteration;
and it achieves the best cpu time on all the problems except problems 4 and 7 where MCC is faster by less
than 10%.

In Figure 3.2, we show the variation in the number of interior–point iterations and the cpu time needed
to solve truss8 (see Table 3.1) as a function of the maximum number of corrections allowed per basic
interior–point iteration, both for HOC and MCC. We see that, for this particular test problem, the optimal
strategy for HOC is to set the maximum number of corrections to six and that even when allowing up to
twenty corrections per iteration HOC still performs better than the basic code. On the other hand, MCC
performs best when allowing no more than one correction per iteration and the benefits of the scheme rapidly
disappear as the maximum number of corrections allowed increases. The best performance of MCC is just
slightly better than HOC’s best performance.

Finally, in Figure 3.3, we compare the savings in iteration count and cpu time as a function of problem
size for HOC and MCC. We consider randomly generated dense SDP’s and QCQP’s whose sizes are given
in Table 3.2 and Table 3.3 respectively. For each size, averages were computed over five random instances.
The maximum number of corrections per basic interior–point iteration was set to six for both HOC and MCC.
We see that, in the case of SDP, all of HOC, MCC, and MCC+HOC+SAFE achieve substantial reductions
in the number of iterations in all the problems and substantial reductions in the cpu time for problems of
size greater than 50. In the case of QCQP, MCC+HOC+SAFE performs poorly, but the performance of
HOC and MCC is comparable to the case of SDP. Overall, HOC is clearly superior, although it should be
noted that MCC outperforms HOC on small problems.

2The BASIC scheme still does not solve problem 8 when the initial scale factor η is raised to 10000, but it does
so when τ is set to 0.95 instead of 0.999.



34 Chapter 3. Interior–Point Methods

# Name Type N n n0 m Description
N1 = 10

1 truss5 SD
... [ ] 0 208

N33 = 10
N34 = 1 Problems from truss
N1 = 19 topology design

2 truss8 SD
... [ ] 0 496

N33 = 19
N34 = 1 (sparse)

3 clk1 SD, LP N1 = 81 [ ] 288 144 Clock mesh design in
4 clk2 SD, LP N1 = 169 [ ] 624 312 VLSI circuits (sparse)

N1 = 50
5 sqlp1 SD N2 = 50 [ ] 0 300

N3 = 50
n1 = 200

6 sqlp2 QC [ ] n2 = 200 0 300 Randomly generated
n3 = 200 problems

7 sqlp3 LP [ ] [ ] 1000 300 (dense)
SD N1 = 50 n1 = 200

8 sqlp4 QC N2 = 50 n2 = 200 1000 300
LP N3 = 50 n3 = 200

Table 3.1: The set of test problems. The columns marked N , n and n0 correspond to the block
structure of the semidefinite (SD), quadratic (QC) and linear (LP) parts of the problem, and m is
the number of primal equality constraints.

3.7 Concluding Remarks

We presented a primal–dual path following interior–point algorithm based on Mehrotra’s predictor–corrector
method for COP, and discussed several of computational issues such as linear algebra and sparsity. We
presented extensions of Mehrotra’s higher order corrections (HOC) scheme and Gondzio’s multiple centrality
corrections (MCC) scheme to COP.

Experience reported for LP has been that, although both these higher order methods usually reduce
the number of iterations required, MCC typically yields a reduction in cpu time while HOC does not. Our
experience with these methods in the context of COP has been somewhat different. These methods are
attractive for COP because the relative cost of performing a single correction, compared to the cost of one
basic interior–point iteration, is much less for COP than for LP. While the savings obtained with MCC in COP
are comparable to those reported for LP, our experience is that the benefits derived from Mehrotra’s HOC
method are much greater for COP than have been reported for LP. Finally, we have presented benchmarks
showing that the use of the higher order schemes substantially improves the iteration count, the solution
time and the robustness of the algorithm.
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test set in Table 3.1.
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Figure 3.2: Performance of HOC and MCC as a function of the maximum number of corrections
allowed per interior–point iteration. The problem selected was truss8 shown in Table 3.1.
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# N m

1 N1 = 20 20
2 N1 = 50 50
3 N1 = 100 100
4 N1 = 150 150
5 N1 = 200 200
6 N1 = 250 250

Table 3.2: Randomly generated dense SDP’s used to study performance of HOC and MCC as a
function of problem size.

# n m

1 n1 = . . . = n60 = 3 20
2 n1 = . . . = n150 = 3 50
3 n1 = . . . = n300 = 3 100
4 n1 = . . . = n450 = 3 150
5 n1 = . . . = n600 = 3 200
6 n1 = . . . = n750 = 3 250

Table 3.3: Randomly generated dense QCQP’s used to study performance of HOC and MCC as a
function of problem size.



Chapter 4

Bundle Methods

This chapter is of a survey nature, and is based on Helmberg and Rendl [48], Lemaréchal and Oustry [64],
and Helmberg and Oustry [47]. We describe our implementation of a first order bundle method for a special
class of semidefinite programs which can be formulated as unconstrained eigenvalue optimization problems.
Although this transformation technique applies to the general COP (with quadratic and linear components
also) as described in Section 1.1, the present implementation, and hence also this discussion, is confined
to semidefinite programming. This implementation is a part of on–going joint work with F. Oustry and
M. L. Overton on bundle methods for eigenvalue optimization. The author is grateful to F. Oustry whose
valuable insights have directly contributed to the implementation described here.

4.1 Introduction

By restricting E = SN and K = SN+ in the general formulation of COP in (1.1) and (1.3), we obtain a
primal–dual pair of SDP. We assume that the linear operator A is given by

A : E→ Rm : x 7→ [〈 a1, x 〉 , . . . , 〈 am, x 〉], (4.1)

where a1, . . . , am ∈ SN , and use the symbol � to denote membership in the cone of positive semidefinite
matrices, i.e. for any symmetric matrix v, v � 0 means that v is positive semidefinite. We will assume that
the Slater condition (Assumption 1.2.1) is satisfied.

Let N = N1 + . . .+Ns. We redefine the eigenvalue map λ(·) of Definition 1.5.2 as follows:

λ : SN → RN : z 7→ [λ1(z), . . . , λN (z)]

where λ1(z) ≥ . . . ≥ λN (z). (This differs from Definition 1.5.2 as the sorting is done for the whole matrix z
rather than within each block.) For 1 ≤ k ≤ N , we denote by Ek(z), a subspace containing the eigenspace of
λ1(z), . . . , λk−1(z), and contained in the eigenspace of λ1(z), . . . , λk−1(z). Note that Ek(z) is not uniquely
defined if λk(z) = λk+1(z). We use

λmax(z)
∆= max

1≤i≤N
λi(z)

to denote the maximum eigenvalue map, and Emax(z) to denote the eigenspace corresponding to λmax(z).
Observe that although λmax(z) = λ1(z), Emax(z) 6= E1(z), unless the largest eigenvalue is simple. Of course,
Emax(z) ⊇ E1(z) always.

The class of SDP’s we are interested in are those that satisfy the following assumption.

Assumption 4.1.1 (Constant Trace Condition)

All primal feasible x satisfy tr(x) = a, where a > 0 is a known constant.

SDP’s arising from combinatorial optimization typically satisfy this assumption (see (1.30)), as do those in
the quantum mechanics application described in Chapter 5.

39
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Helmberg and Rendl [48] observed that an SDP satisfying the constant trace condition is equivalent to
an unconstrained eigenvalue optimization problem, and hence is amenable to nonsmooth algorithms such as
the bundle method. To see this, let us add the constant trace condition as a redundant constraint to get the
equivalent primal SDP

inf
x∈E

〈 c, x 〉 s.t. Ax = b ; tr(x) = a ; x � 0, (4.2)

and its dual

sup
(y0,y)∈R×Rm

〈 b, y 〉+ ay0 s.t. A∗y + y0I + z′ = c; z′ � 0. (4.3)

Since tr(x) = a > 0, the optimal primal solution x 6= 0, which by complementarity of eigenvalues (see Propo-
sition 1.3.1), implies that λmin(z′) = 0. Rewriting this as λmax(−z′) = 0, we get from the dual equality
constraint that

0 = λmax(A∗y − c+ y0I) = λmax(A∗y − c) + y0,

hence y0 = −λmax(A∗y − c). Substituting for y0 in the dual objective, and rewriting the sup as an inf, we
get

inf
y∈Rm

h(y) (4.4)

h(y) ∆= aλmax(A∗y − c)− 〈 b, y 〉 (4.5)

which is an unconstrained eigenvalue optimization problem, where the objective function h(y) is nonsmooth
but convex. Hence y ∈ Rm is a solution to (4.4) if and only if

0 ∈ ∂h(y)
where ∂h(y) is the subdifferential of f at y (see Section 4.2).

In the sequel, we assume without any loss of generality that a = 1.
Eigenvalue optimization problems such as (4.4) have been extensively studied in the literature [21, 85,

86, 88]; see [67] for a tutorial survey. Details on subgradient bundle methods can be found in [50, 56, 57, 98],
which develop the original pioneering work of Lemaréchal [61, 62] (see also [63]). Bundle methods specifically
tailored for eigenvalue optimization are discussed in [47, 48, 64, 83, 84].

The reason to consider a bundle method is that, being a first order method, it can quickly provide
solutions of low accuracy to SDP’s which are so large that there is no hope of solving them with a primal–
dual interior–point algorithm. The latter class of algorithms typically involve factorizing a matrix whose
order m is the number of dual variables (see Section 3.3.1 and Appendix A). For large m, even storing this
matrix may not be possible. On the other hand, each iteration of a bundle method is cheap, both with
respect to computational time and memory requirement. However, we note that some large SDP’s arising
from sparse graph problems have recently been solved with a pure dual (as opposed to primal–dual) potential
reduction interior–point algorithm [13].

4.2 Proximal Bundle Methods

In this section, we describe the proximal bundle method [57] for a finite–valued convex function h : Rm → R.
For such a function, we begin with the definition and the continuity properties of its ε–subdifferential, a
fundamental object in bundle algorithms. Subsequently, we specialize the definitions to the function h
in (4.5).

Definition 4.2.1 (ε–subdifferential [50, Vol.II, p.92])

Given ε ≥ 0, an element v ∈ Rm is said to be an ε–subgradient of the convex function h at x ∈ Rm if

f(x′) ≥ f(x) + 〈 v, x′ − x 〉 − ε ∀x′ ∈ Rm.

The ε–subdifferential is the multifunction ∂εh : Rm ⇒ Rm that maps x ∈ Rm to the set of ε–subgradients of
h at x. When ε = 0, the ε–subdifferential is simply called the subdifferential, and the subscript is dropped.1

1Not to be confused with the earlier usage ∂K, the boundary of the cone K.
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While the subdifferential ∂h is generally only outer semicontinuous [50, Vol.I, p.283], the ε–subdifferential is
continuous for all ε > 0 [50, Cor.XI.4.1.5]. Furthermore, a subgradient at one point in the space can be used
to approximate an ε–subgradient at another point. This property makes the ε–subdifferential a very useful
object in bundle algorithms (see [50, XI.4]).

Lemma 4.2.1 (Transport of Subgradients [15])

Let h : Rk → R be a closed, convex function, y ∈ Rk and ε ≥ 0. For any η > 0 and v ∈ ∂εh(y), there exist
yη ∈ B(y, η) and vη ∈ ∂h(yη) such that ‖vη − v‖ ≤ ε/η.
Let W =

{
w : w ∈ SN+ , tr(w) = 1

}
. For any z ∈ SN , Rayleigh’s formula yields

λmax(z) = max
‖p‖2=1

〈 p, zp 〉 = max
w=pp∗

〈 z, w 〉 = max
w∈SN

+ ; tr(w)=1
〈 z, w 〉 = max

w∈W
〈 z, w 〉 ,

which clearly shows λmax(·) to be the support function [50] of the compact, convex set W . Using this, the
following explicit expression can be derived for ∂ελmax(z) [34, 51, 86, 87]:

∂ελmax(z) = {w ∈ W : 〈w, z 〉 ≥ λmax(z)− ε} (ε ≥ 0). (4.6)

When ε = 0, (4.6) reduces to

∂λmax(z) = conv {pp∗ : ‖p‖2 = 1, p is an eigenvector of z corresponding to λmax(z)} .

Equivalently, we can write

∂λmax(z) = {pvp∗ : tr(v) = 1} , (4.7)

where the columns of p are an orthonormal basis for Emax(z). Setting h(y) = aλmax(A∗y − c)− 〈 b, y 〉 and
using a chain rule (see, for instance, [17, 50]), we get

∂εh(y) = {Aw − b ∈ Rm : w ∈ ∂ελmax(A∗y − c)} (ε ≥ 0).

Therefore, for any inner approximation Ŵ ⊆W , the function

φ̂(y) ∆=
(

max
w∈cW

〈A∗y − c, w 〉
)
− 〈 b, y 〉 (4.8)

minorizes λmax(A∗y − c)− 〈 b, y 〉.
We warn the reader of an abus de language in the sequel. We use the term “subgradient” (dropping the

prefix ε) both for a matrix w ∈W and the vector Aw, with the tacit understanding that it is actually Aw−b
that is an ε–subgradient of h. Similarly, we will use the term “eigenvectors” (dropping the prefix ε) for
the columns of the matrix p in (4.7), although p might contain “ε–eigenvectors” rather than eigenvectors of
A∗y− c, i.e. if k is the multiplicity of λmax(z), then p would satisfy, for some ε > 0, 〈 pp∗, z 〉 ≥ kλmax(z)− ε,
rather than 〈 pp∗, z 〉 = kλmax(z). The reader must bear in mind that the ε prefix is implicit.

Now, the basic idea behind the proximal bundle method is to minimize at each iteration k, a model of
the form

φk(y) ∆=
(

max
w∈Wk

〈A∗y − c, w 〉
)
− 〈 b, y 〉+ ρk

2

∥∥yk − y∥∥2

2
. (4.9)

The first two terms in the right hand side of (4.9) is a subgradient model minorizing h, and is based on
the chosen inner approximation W k ⊆ W . The third term in the right hand side of (4.9) penalizes (with a
penalty parameter ρk > 0), the distance between the current iterate yk and the new minimizer. Hence the
subproblem at each iteration assumes the form

min
y∈Rm

(
max
w∈Wk

〈A∗y − c, w 〉
)
− 〈 b, y 〉+ ρk

2

∥∥yk − y∥∥2

2
. (4.10)



42 Chapter 4. Bundle Methods

Let (y, w) be the minimizer of (4.10). If y produces “sufficient decrease” in the objective function in (4.4),
we perform a serious step by setting yk+1 = y. Otherwise, we perform a null step by setting yk+1 = yk. In
either case, a new approximation W k+1 to W is chosen to contain w and at least one new subgradient from
∂h(y), resulting in a new model φk+1(y). In general, W k+1 would contain subgradients computed at earlier
iterates yi (i = 0, . . . , k), which by Lemma 4.2.1, may be viewed as ε–subgradients at the current point
yk+1, for a suitable value of ε. We then proceed to the next iteration.

The algorithm may be stated as follows. The original algorithm and its proof of global convergence are
due to Kiwiel [57]. Its specialization to the λmax(·) function, using a nontraditional “semidefinite model”
for W k+1 (explained in Section 4.3) is due to Helmberg and Rendl [48]. A unifying view of various bundle
methods for eigenvalue optimization is developed in Lemaréchal and Oustry [64], and in Helmberg and
Oustry [47].

Algorithm 4.2.1 (Proximal Bundle Method)

Input The following are given:

y0 ∈ Rm: Initial guess.
δ > 0: Termination threshold.
γ ∈ (0, 1

2 ): Sufficient decrease parameter to determines which iterations are serious steps and which
are null steps.

ρ0 > ρmin > 0: Penalty for the proximal term.

Step 1 (Initialization) Set k = 0, compute g0 ∈ ∂h(y0).

Step 2 (Model Minimization) Solve the subproblem (4.10) to obtain the solution (y, w).

Step 3 (Termination) If h(yk)− φ̂k(y) ≤ δ(| h(yk) | +1), then return yk as an approximate solution and
terminate.

Step 4 (Step Quality) If

h(y) ≤ h(yk)− γ
(
h(yk)− φ̂k(y)

)
, (4.11)

set yk+1 = y (serious step). Otherwise, set yk+1 = yk (null step).

Step 5 (Update) Compute at least one new subgradient w ∈ ∂λmax(A∗y − c). Choose W k+1 ⊆ W
such that {w,w} ⊆ W k+1. If (4.11) was satisfied, choose ρk+1 ∈ [ρmin, ρk]. Otherwise, choose
ρk+1 ∈ [ρk, 10ρk]. Set k = k + 1, and go back to Step 2 (model minimization).

Ensuring that {w,w} ⊆ W k+1 in Step 5 guarantees that after a null step, the objective value in (4.10)
will increase in the next iteration, i.e. the model will approximate the function better. The sequence of
objective values h(yk) (k = 0, 1, . . . ) monotonically decreases to infy∈Rm h(y). The sequence of iterates
yk (k = 0, 1, . . . ) converges to a minimizer of h, if one exists, and is unbounded otherwise [56, 57].

4.3 The COP Subproblem

We now give details about the model minimization step (Step 2), and the resulting subproblem.
Let (y, w) be the solution to (4.10). Interchanging the min and the max [95, Corollary 37.3.2] in (4.10),

we get

max
w∈Wk

min
y∈Rm

〈A∗y − c, w 〉 − 〈 b, y 〉+ ρk

2

∥∥yk − y∥∥2

2
, (4.12)

where the inner minimization is unconstrained, and hence whose minimizer y must satisfy 0 = Aw − b +
ρk(yk − y), or equivalently,

y = yk +
1
ρk

(Aw − b) . (4.13)
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Substituting this expression for y back into the objective of (4.12), we get

min
w∈Wk+1

〈
c−A∗yk, w 〉+

1
2ρk
〈Aw − b, Aw − b 〉 . (4.14)

This is the subproblem to be solved at each iteration.
Let wi ∈ W (i = 1, . . . , l) be subgradients accumulated from earlier iterations, z = A∗yk − c, and p,

an orthonormal basis for Er(z) (r ≥ 1). Let rj (j = 1, . . . , s) be the number of the r largest eigenvalues
λ1(z), . . . , λr(z) that occur within the jth block of z, and let r = [r1, . . . , rs]. We choose, for α = [α1, . . . , αl],
the set

W k+1 ∆=

{
l∑
i=1

αiwi + p v p∗ :
l∑
i=1

αi + tr(v) = 1, α ∈ Rl+, v ∈ Sr+

}
,

which is contained in W , to define the subgradient model at the (k + 1)th iteration. Although it suffices
to take r = 1, the use of multiple eigenvectors (r > 1) improves the model by including the “semidefinite”
component p v p∗. This is due to [48], and is different from traditional bundle methods which typically use
a polyhedral representation for W k+1.

Further, let us write α = [α1, . . . , αl]. Now (4.14) reduces to

min
(α,v)∈Rl×Sr

β

s.t.
〈
c−A∗yk, w 〉+

1
2ρk
〈Aw − b, Aw − b 〉 − β ≤ 0

w =
l∑
i=1

αiwi + p v p∗

l∑
i=1

αi + tr(v) = 1

α ≥ 0; v � 0.

Eliminating w, we can write this problem as

min
(α,v)∈Rl×Sr

β

s.t.
1
2
〈 [α,vec(v)], Q [α,vec(v)] 〉 + 〈u, [α,vec(v)] 〉 − β ≤ 0 (4.15)

l∑
i=1

αi + tr(v) = 1

α ≥ 0; v � 0,

where Q is a positive semidefinite matrix of order l + r(r + 1)/2, and u is a vector of length l + r(r + 1)/2.
The exact expressions for Q and u will be given in Section 4.4.1. Upon further rewriting, (4.15) can be cast
in the standard form of a COP over a direct sum of semidefinite cones, quadratic cones and the nonnegative
orthant (see Chapter 1).

4.4 Computational Issues

We discuss computational issues relating to the solution of the COP subproblem, updates of the bundle,
and the exploitation of sparsity. Our implementation is partly in Matlab (bundle management, eigenvalue
routines) and partly in C (the operators x 7→ Ax and y 7→ c − A∗y, computation of the data for the
subproblem etc.).
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4.4.1 Solving The Subproblem

We use SeQuL (see Chapter 3) to solve the subproblem in (4.15). For convenience, let us drop the superscript
k on y, ρ and p. Using the vec isometry of Section 3.2, the matrix Q and the vector u = [u1, . . . , ul, ũ] in
the convex quadratic constraint in (4.15) can be written as

ui =
〈
y − 1

ρ
b,Awi

〉
− 〈 c, wi 〉 (i = 1, . . . , l), (4.16)

ũ = vec(p∗(A∗(y − 1
ρ
b)− c)p)], and (4.17)

Q =
[
Q11 Q12

QT12 Q22

]
, with (4.18)

Q11 =
1
ρ
G∗G, (4.19)

Q12 =
1
ρ

 (vec(p∗ (A∗gi) p))∗
...

(vec(p∗ (A∗gl) p))∗

 , and (4.20)

Q22 =
1
ρ

m∑
i=1

vec(p∗ ai p) (vec(p∗ ai p))∗. (4.21)

The convex quadratic constraint in (4.15) can be written in the standard quadratic cone format using the
Cholesky factorization of Q (see [79, p.221]). Note that this factorization is cheap because the dimension
l + r(r + 1)/2 of Q depends only on the size of the model parameters l and r, which are generally small
constants compared to m and dS . In fact, even solving the COP is relatively inexpensive compared to the
cost of one bundle iteration. The dominant cost of each iteration lies in computing the new eigenvectors to
be stored in p. However, when m becomes comparable to dS (the dimension of SN ), forming Q can be the
most expensive part of each bundle iteration (cf. Section 3.3.1 and Appendix A). This is the case with the
application from electronic structure calculations described in Chapter 5. See Appendix B for estimates on
operation counts.

4.4.2 Managing the bundle

From (4.17) – (4.21), it is clear that there is no need to explicitly store the matrices wi. It suffices to store
the vectors gi = Awi and the scalars ti = 〈 c, wi 〉 (i = 1, . . . , l). The bundle then consists of the matrix
m× l matrix G = [g1 . . . gl], the vector t = [t1 . . . tl] (together called the polyhedral component), and the
matrix of eigenvectors p (called the semidefinite component), whose jth block (j = 1, . . . , s) is of size Nj×rj .
Note that rj would be zero if none of the r largest eigenvalues occurred in the jth. Since a significant amount
of computational time may be spent in conjugations by p (see Section 4.4.3), it is important to retain this
block structure in p.

At a given iteration, suppose the “bundle is full”, i.e. the number of columns in G and/or the number
of eigenvectors in p have reached their allowable limit of, say, l and r respectively. In order to make space
for the current model minimizer and/or the new eigenvectors of A∗y − c, some columns in G and/or p
can be “lumped” with a strategy called aggregation. This concept was introduced by Kiwiel [56], who has
shown that aggregation can be performed without impeding global convergence. We describe two possible
strategies. For vectors (matrices), the notation ·|J denotes the restriction of the vector (matrix) to those
components (columns) in the index set J .

Polyhedral aggregation Let gi = Awi, ti = 〈 c, wi 〉 (i = 1, . . . , l) be the subgradient information
used in the current model. Assume that (α, v) is the solution to the subproblem (4.15), and let the
corresponding subgradient information be g =

∑l
i=1 αigi +A(pvp∗), t = 〈α, t 〉+ 〈 c, pvp∗ 〉. Choosing

a threshold η ∈ (0, 1), partition the index set J = {1, . . . , l} as

Pzero = {i ∈ J : αi = 0}
Psmall = {i ∈ J : 0 < αi ≤ η}



4.4. Computational Issues 45

Plarge = {i ∈ J : αi > η} ,

and perform the aggregation as follows:

gagg =

∑
i∈Psmall

αigi∑
i∈Psmall

αi

tagg =

∑
i∈Psmall

αiti∑
i∈Psmall

αi

G← [G|Plarge g gagg]

t← [t|Plarge t tagg].

The vectors stored in p may now be discarded, and be replaced by eigenvectors corresponding to a
few of the largest eigenvalues of A∗y − c.

Polyhedral + Semidefinite aggregation Except for the fact that we use multiple polyhedral pieces
gi (i = 1, . . . , l), this strategy is similar to the one described in [48].

Let v = qDiag(ω) q∗ be a spectral decomposition of v. Choose η ∈ (0, 1) and partition the index sets
J = {1, . . . , l} and K = {1, . . . , r} as

P poly
zero = {i ∈ J : αi = 0} P sd

zero = {i ∈ K : ωi = 0}
P poly

small = {i ∈ J : 0 < αi ≤ η} P sd
small = {i ∈ K : 0 < ωi ≤ η}

P poly
large = {i ∈ J : αi > η} P sd

large = {i ∈ K : ωi > η} ,

and perform the aggregation as follows:

gagg =

∑
i∈Ppoly

small
αigi +A(p q|P sd

small
Diag(ω|P sd

small
) (q|P sd

small
)∗ p∗)∑

i∈Ppoly
small

αi +
∑
i∈P sd

small
ωi

tagg =

∑
i∈Ppoly

small
αiti +

〈
c, p q|P sd

small
Diag(ω|P sd

small
) (q|P sd

small
)∗ p∗

〉
∑

i∈Ppoly
small

αi +
∑

i∈P sd
small

ωi

G← [G|Ppoly
large

g gagg]

t← [t|Ppoly
large

t tagg]

p← p q|P sd
large

This reduces the number of columns in p, and makes room for some of the eigenvectors corresponding
to a few of the largest eigenvalues of A∗y − c. As the new eigenvectors added will generally not be
orthogonal to the span of the existing eigenvectors in p, it is necessary to orthogonalize the columns
of p.

Note that pure polyhedral aggregation separates the old subgradients from previous iterations (“global
information”) in G from the subgradients at the current point (“local information”) in p. On the contrary,
when semidefinite aggregation is included, p (upon updating) becomes p q|P sd

large
, and hence contains some

global information too. Since global convergence of the algorithm relies only on retaining an aggregate
subgradient, and adding at least one new subgradient at each iteration, the aggregation strategy and the
choice of η are just additional flexibilities in the algorithm. Our implementation requires the upper bounds
lmax ≥ 1 and rmax ≥ 1 on l and r respectively, and the number of new eigenvectors to be added to p at each
iteration, to be specified. Although the memory consumption of the algorithm varies from one iteration to
another, the numbers lmax and rmax dictate a uniform upper bound on the dominant storage requirement of
the algorithm.
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4.4.3 Sparsity

Most large scale applications, e.g. SDP relaxations of combinatorial optimization problems involving sparse
graphs, result in SDP’s with sparse data matrices c, ai (i = 1, . . . ,m), and it is crucial to effectively exploit
this sparsity.

Let p(j) denote the jth block of p. If ai(j) contains only o(Nj + N2
j /rj) nonzeros, then much effort

expended in computing Q12 (see (4.20)) and Q22 (see (4.21)) can be saved in the orthogonal conjugations
p(j)∗ ai(j) p(j) by computing them as

p(j)∗ ai(j) p(j) =
∑
k,l

ai(j)(k, l) pk p∗l (4.22)

where ai(j)(k, l) is the (k, l) entry of ai(j), pk and pl are the kth and lth columns of p(j)∗ respectively, and
the summation ranges over the nonzero entries of ai(j).

The COP subproblem itself has sparse semidefinite and linear components, but the quadratic compo-
nent is generally dense (see (4.19) – (4.21)). However, it is not crucial to exploit sparsity at the level of
the subproblem, as solving it is relatively inexpensive compared to the cost of one full bundle iteration
(see Appendix B for details).

If the c, ai (i = 1, . . . ,m) are have sparsity patterns such that the matrix–vector multiplication with the
matrix A∗yk − c is cheap (as is the case in many applications), then a Lanczos routine is used to determine
a few of the the largest eigenvalues of A∗yk − c and the corresponding eigenvectors. For small matrices
(say, smaller than 400 × 400), it is faster to compute a full spectral decomposition of A∗yk − c with the
QR algorithm. Our implementation switches between the Matlab routines eigs (Lanczos) and eig (QR)
depending on the size of the matrix.

4.5 Numerical Results

In this section, we illustrate the behavior of the algorithm on a moderate sized and randomly generated,
sparse problem with N = [30 900] and m = 1000. (Some larger problems arising from electronic structure
calculations are solved in Section 5.4.) The algorithm was executed on a SUN Ultra Sparc I with a 143 MHz
CPU and 64 MB of memory.

We start with a randomly generated point as an initial guess. We set γ = 0.2, η = 0.1, lmax = rmax = 20.
In each iteration, we add 5 new eigenvectors to p. We terminate if, for ε = 10−3, we find an ε–subgradient
of norm less than 10−3, or if 50 iterations are performed, whichever occurs earlier.

Table 4.1 tabulates the serious steps in a typical run of the algorithm. We use polyhedral aggregation
when necessary. Despite lmax and rmax being 20, the algorithm did not use more than l = 5 polyhedral
pieces and r = 10 eigenvectors in p in any iteration. The algorithm can make quick progress initially and
get into a vicinity of the solution, but after this stage, progress is very slow. About 93% of the time is spent
in eigenvalue/eigenvector calculation, and about 6% of the time is spent in forming the matrix Q for the
subproblem. Hence the cost of solving the subproblem is negligible.

Iter ‖g‖ ε obj cpu
0 — — 7.578e+00 0
1 1.9e+00 1.0e+00 4.304e+00 24
2 1.5e+00 9.2e–01 3.341e+00 1:04
3 3.5e–01 1.3e+00 1.802e+00 1:54
4 2.5e–01 1.0e–01 1.551e+00 2:42
6 2.2e–01 2.4e–01 1.222e+00 4:07
8 1.7e–01 1.0e–01 1.072e+00 5:30
10 1.1e–01 7.0e–02 1.029e+00 6:37
12 6.4e–02 4.5e–02 9.959e–01 7:57
14 3.9e–02 1.3e–02 9.900e–01 9:19
17 2.6e–02 3.2e–03 9.888e–01 11:32
19 2.2e–02 6.3e–04 9.884e–01 13:03
20 1.6e–02 9.4e–04 9.873e–01 13:47
22 1.3e–02 7.7e–04 9.866e–01 15:28
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Continued from previous page . . .
Iter ‖g‖ ε obj cpu
24 1.2e–02 5.7e–04 9.860e–01 17:07
26 1.0e–02 4.5e–04 9.855e–01 18:46
28 9.6e–03 3.1e–04 9.851e–01 20:21
29 9.0e–03 2.3e–04 9.847e–01 21:12
30 8.8e–03 5.8e–04 9.839e–01 21:58
32 8.0e–03 5.2e–04 9.837e–01 23:42
34 8.2e–03 4.1e–04 9.834e–01 25:24
35 8.0e–03 3.3e–04 9.832e–01 26:09
36 7.7e–03 6.4e–04 9.825e–01 26:54
37 7.7e–03 3.5e–04 9.823e–01 27:48
38 7.7e–03 6.5e–04 9.816e–01 28:42
39 7.4e–03 4.2e–04 9.811e–01 29:36
40 7.4e–03 4.2e–04 9.806e–01 30:33
41 7.1e–03 4.6e–04 9.801e–01 31:36
42 7.1e–03 4.5e–04 9.798e–01 32:30
43 7.0e–03 4.9e–04 9.792e–01 33:36
45 6.6e–03 3.8e–04 9.790e–01 35:33
48 6.6e–03 1.7e–04 9.789e–01 38:52
50 6.8e–03 7.0e–05 9.789e–01 41:10

Table 4.1: Sequence of serious steps in a typical run of the bundle method.

In Table 4.2, we compare using a single polyhedral piece versus multiple polyhedral pieces in the ap-
proximation of the set W . Columns two through four correspond to lmax = 1, whereas columns five through
seven correspond to lmax = 20. We tabulate the first and the last iterations and every serious step in between
for lmax = 1. The first column gives the iteration numbers at which the serious steps occurred. The last
column is the ratio, expressed as a percentage, of the cpu time taken with lmax = 20 (to execute the number
of iterations stated in the first column) to the total time (50 iterations) taken with lmax = 1. The numbers
in boldface at iteration 30 and 50 show that using lmax = 20 achieves the same decrease in objective function
in 59% of the time taken by the algorithm with lmax = 1.

lmax = 1 lmax = 20
Iter ‖g‖ ε obj ‖g‖ ε obj % cpu
0 — — 7.578e+00 — — 7.578e+00 0
1 1.9e+00 1.0e+00 7.578e+00 1.9e+00 1.0e+00 4.304e+00 1
2 1.3e+00 1.0e+00 4.304e+00 1.3e+00 1.0e+00 2.842e+00 2
3 3.1e–01 9.0e–01 2.842e+00 3.1e–01 9.0e–01 1.885e+00 4
4 2.5e–01 2.3e–01 1.885e+00 2.5e–01 2.3e–01 1.473e+00 6
6 2.0e–01 2.0e–01 1.155e+00 2.0e–01 1.8e–01 1.173e+00 9
11 2.6e–01 1.2e–02 1.117e+00 8.5e–02 5.6e–02 1.028e+00 18
12 1.8e–01 3.0e–02 1.058e+00 6.6e–02 2.5e–02 1.007e+00 21
14 1.8e–01 4.7e–02 1.051e+00 4.1e–02 2.0e–02 9.991e–01 25
15 1.1e–01 2.6e–02 1.037e+00 3.6e–02 1.7e–02 9.991e–01 26
18 8.7e–02 3.6e–02 1.015e+00 3.1e–02 9.3e–03 9.946e–01 33
21 6.6e–02 2.1e–02 1.000e+00 2.7e–02 3.0e–03 9.879e–01 39
22 4.8e–02 1.0e–02 9.931e–01 1.9e–02 1.1e–03 9.879e–01 42
24 3.3e–02 4.5e–04 9.910e–01 1.7e–02 1.1e–03 9.878e–01 46
27 2.5e–02 7.4e–04 9.905e–01 1.6e–02 6.8e–04 9.869e–01 53
30 2.6e–02 2.4e–04 9.900e–01 1.1e–02 8.4e–04 9.862e–01 59
31 2.3e–02 1.3e–04 9.895e–01 1.0e–02 1.4e–03 9.862e–01 62
32 2.7e–02 3.0e–05 9.893e–01 1.0e–02 1.4e–03 9.854e–01 64
33 2.4e–02 4.6e–04 9.891e–01 1.0e–02 9.6e–04 9.854e–01 66
37 2.2e–02 1.3e–03 9.880e–01 1.4e–02 5.0e–04 9.844e–01 76
39 1.8e–02 3.6e–04 9.874e–01 8.8e–03 8.1e–04 9.843e–01 81
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Continued from previous page . . .
Iter ‖g‖ ε obj ‖g‖ ε obj % cpu
42 1.7e–02 7.8e–05 9.872e–01 9.9e–03 3.2e–04 9.838e–01 88
43 1.3e–02 7.1e–05 9.871e–01 1.2e–02 3.0e–04 9.838e–01 91
46 1.6e–02 1.7e–04 9.866e–01 7.3e–03 8.7e–04 9.837e–01 98
48 1.0e–02 9.3e–05 9.864e–01 7.4e–03 5.6e–04 9.832e–01 103
50 5.2e–02 7.4e–04 9.864e–01 7.4e–03 7.9e–04 9.824e–01 108

Table 4.2: Comparison of single (lmax = 1) versus multiple (lmax > 1) polyhedral pieces in the approximation
of W .

In Table 4.3, we compare combined polyhedral and semidefinite aggregation (columns two through four),
and plain polyhedral aggregation (columns five through seven). We show the first and the last iterations,
and every serious step in between for the algorithm with combined polyhedral and semidefinite aggregation.
The meaning of the first and last columns is similar to that in the previous table. The iterations 28 and 50
in boldface indicate that polyhedral aggregation takes about 40% of the time taken by the algorithm using
polyhedral and semidefinite aggregation to reduce the objective function to the same extent.

Polyhedral + semidefinite Polyhedral
Iter ‖g‖ ε obj ‖g‖ ε obj % cpu
0 — — 7.578e+00 — — 7.578e+00 0
1 1.9e+00 1.0e+00 4.304e+00 1.9e+00 1.0e+00 4.304e+00 1
3 1.0e+00 1.3e+00 2.676e+00 3.5e–01 1.3e+00 1.802e+00 4
4 5.6e–01 7.8e–01 1.935e+00 2.5e–01 1.0e–01 1.551e+00 5
5 2.7e–01 1.2e–01 1.703e+00 2.2e–01 2.4e–01 1.551e+00 6
6 2.3e–01 1.4e–01 1.486e+00 2.2e–01 2.4e–01 1.222e+00 8
9 1.8e–01 2.7e–01 1.242e+00 1.3e–01 5.8e–02 1.072e+00 11
11 1.5e–01 1.1e–01 1.144e+00 7.6e–02 4.1e–02 1.029e+00 14
12 1.5e–01 6.9e–02 1.109e+00 6.4e–02 4.5e–02 9.959e–01 15
17 9.9e–02 9.6e–02 1.033e+00 2.6e–02 3.2e–03 9.888e–01 22
18 9.4e–02 2.1e–02 1.018e+00 2.3e–02 5.5e–04 9.888e–01 24
20 6.1e–02 1.7e–02 9.995e–01 1.6e–02 9.4e–04 9.873e–01 27
23 5.3e–02 7.7e–04 9.972e–01 1.2e–02 5.0e–04 9.866e–01 32
24 5.0e–02 3.2e–04 9.962e–01 1.2e–02 5.7e–04 9.860e–01 33
26 3.9e–02 2.0e–03 9.928e–01 1.0e–02 4.5e–04 9.855e–01 36
28 3.4e–02 3.6e–04 9.915e–01 9.6e–03 3.1e–04 9.851e–01 40
30 2.8e–02 2.0e–04 9.906e–01 8.8e–03 5.8e–04 9.839e–01 43
32 2.5e–02 1.9e–04 9.899e–01 8.0e–03 5.2e–04 9.837e–01 46
33 2.3e–02 1.2e–04 9.890e–01 8.6e–03 4.2e–04 9.837e–01 48
35 2.0e–02 5.2e–04 9.881e–01 8.0e–03 3.3e–04 9.832e–01 50
38 1.7e–02 1.0e–04 9.878e–01 7.7e–03 6.5e–04 9.816e–01 56
39 1.4e–02 1.6e–04 9.873e–01 7.4e–03 4.2e–04 9.811e–01 58
41 1.2e–02 6.6e–05 9.869e–01 7.1e–03 4.6e–04 9.801e–01 61
43 1.1e–02 8.1e–05 9.866e–01 7.0e–03 4.9e–04 9.792e–01 65
45 1.1e–02 1.1e–04 9.863e–01 6.6e–03 3.8e–04 9.790e–01 69
47 1.0e–02 7.8e–05 9.860e–01 7.0e–03 2.1e–04 9.790e–01 73
49 9.9e–03 7.1e–05 9.858e–01 7.1e–03 6.2e–05 9.789e–01 78
50 9.9e–03 6.1e–05 9.853e–01 6.8e–03 7.0e–05 9.789e–01 80
Table 4.3: Comparison of polyhedral versus polyhedral + semidefinite aggregation.

4.6 Concluding Remarks

There is much room for improvement in the present implementation. In particular, eigenvalue and eigenvector
computation can be terminated prematurely when an estimate for the largest eigenvalue (provided by the
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Lanczos routine) is sufficiently large to guarantee a null step. This can result in significant savings, as
observed in [48]. The matrix Q does not have to be recomputed from scratch in each bundle iteration. In
any iteration in which aggregation is not performed, p only changes slightly (new columns are added), and
hence the matrix Q (see (4.18) – (4.21)) may be updated efficiently. Finally, a line search could be employed
to choose ρk (F. Rendl, private communication). If the time taken for the solution of the subproblem is
negligible compared to a full bundle iteration (as is often the case), a line search in ρk, which would require
the subproblem to be solved a small number of times (say, about two or three times) within each bundle
iteration, could improve the overall efficiency of the algorithm.

The bundle method described in this chapter is a first order method, whereas interior–point methods
(see Section 1.6) are essentially second order methods. While the latter enjoy the desirable properties of
global convergence with polynomial complexity and, with mild assumptions, rapid local convergence, the
only guarantee of first order bundle methods is global convergence. The asymptotic local convergence
can be sublinear in the worst case. (See [50, Example IX.2.2.3] for an example where the norm of the
subgradient decreases like 1/

√
k, where k is the iteration index.) Oustry [84] applies the U–Lagrangian

theory of [65] to the λmax(·) function to derive an asymptotically quadratically convergent second order
bundle method in [83]. The bundling process adds global convergence to the second order local method of
Overton and Womersley [88] (see also [100]). However, computing exact second order information (the
so called U–Hessian of the λmax(·) function) is prohibitively expensive in the large scale case. The use of
(possibly approximate) second order information in a practical algorithm is still an open issue for large scale
problems.



Chapter 5

Electronic Structure Calculations

In this chapter, we describe a new application of semidefinite programming in the area of electronic structure
calculations. We give some numerical results for these problems using both the interior–point method and the
bundle method described earlier. This is a part of on–going joint work with B. Braams, S. Jiang, J. Percus,
F. Oustry and M. L. Overton. The author is grateful to B. Braams for many tutorials explaining the details
of this application, and to S. Jiang for use of his configuration interaction code.

5.1 Introduction

We deal with the k–fold exterior product ∧kL2(R3 × {± 1
2

}
) (denoted L2 for brevity), the Hilbert space of

(Lebesgue) measurable, complex–valued, square–integrable, completely antisymmetric functions of k spatial
coordinates ri ∈ R3 and k spin coordinates si ∈

{± 1
2

}
(i = 1, . . . , k), with the inner product

〈 f, g 〉 =
∑

s1,... ,sk

∫
g∗(r1, . . . , rk; s1, . . . , sk) f(r1, . . . , rk; s1, . . . , sk)d3r1 . . . d

3rk,

where g∗ is the complex conjugate of g, d3ri is the usual Lebesgue measure on R3, and the integration is over
the whole space. The norm on this space is ‖f‖ =

√〈 f, f 〉. As usual, we let ~ = h/(2π), where h is Planck’s
constant. We use ∆i to denote the Laplacian with respect to the ith spatial coordinate. As in Chapter 4, we
will use the symbol � to denote membership in the positive semidefinite cone, i.e. for a symmetric matrix
v, v � 0 means that v is positive semidefinite. The symbol lCk (l ≥ k ≥ 0) denotes the binomial coefficient
l!/(k!(l− k)!).

Consider a system of k identical particles each of mass m, and whose positions we denote by ri ∈ R3 (i =
1, . . . , k), moving in an external potential V (·). The nonrelativistic Hamiltonian for such a system is the
operator H : L2 → L2, whose action on ψ ∈ L2 is given by

Hψ = H1ψ +H2ψ (5.1)

H1ψ =
k∑
i=1

−~2

2m
∆iψ + V (ri)ψ (5.2)

H2ψ =
∑

1≤i<j≤k
U(ri, rj)ψ (5.3)

The first and the second terms in the summand of (5.2) are respectively the kinetic energy and the potential
energy, whereas (5.3) represents two–particle Coulomb interactions. H1 and H2 are respectively called the
one–body and the two–body terms of the Hamiltonian.1 For example, if we are dealing with an atomic system
with atomic number z, with the nucleus located at the origin, then

V (ri) ∝ −ze
2

‖ri‖2
1The Hamiltonian H , and its one–body and two–body parts H1 and H2 respectively, are not to be confused with

the earlier usage for feasible sets on page 3.
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U(ri, rj) ∝ e2

‖ri − rj‖2
,

where e is the electronic charge.
Underlying such a system is the notion of a quantum state, i.e. a wave function ψ ∈ L2, which satisfies

the (time independent, many–body) Schrödinger equation

Hψ = λψ. (5.4)

The eigenvalues λ ofH correspond to possible energy levels of the system, and the associated eigenfunctions ψ
are the so called pure states. An eigenfunction ψ, despite the freedom in its magnitude and phase, corresponds
to a single quantum state. We will always normalize ψ to unit norm. The physical interpretation of the
normalized wave function is that it is a probability amplitude, and that | ψ(r1, . . . , rk) |2 is the positional
probability density. For a system of electrons, the wave function is antisymmetric, i.e. for any permutation
π of the electrons,

ψ(r1, . . . , rk) = sgn(π)ψ(π(r1, . . . , rk))

where sgn(π), the sign of the permutation, is +1 if the permutation is even, and −1 if the permutation is
odd. We assume throughout that we are dealing with a system of electrons, and hence with an antisymmetric
wave function. These facts may be found in a textbook on quantum chemistry, for instance [104].

5.2 Reduced Density Operators

This section discusses the representability of reduced density operators, and is based on Coleman [18–20],
Garrod and Percus [37] and Erdahl [28]. See also the surveys by Erdahl [29, 30] for the key role played by
convexity in the representability problem.

Our interest lies in a fundamental quantity in quantum chemistry, namely the smallest eigenvalue of H ,

λmin(H) = min
‖ψ‖=1

〈ψ,Hψ 〉 , (5.5)

which is called the ground state energy of the system.
In order to see how this may be calculated, let us move to a finite dimensional setting by introducing

a finite basis for the k–particle wave function ψ(r1, . . . , rk). Such a finite basis may be obtained by first
selecting a finite basis {φi(r)} (i = 1, . . . , l) for the one–particle wave function ψ(r), and then computing
the k–particle basis functions via the Slater determinants :

φi1...ik(r1, . . . , rk) =
1√
k!

∣∣∣∣∣∣∣
φi1(r1) . . . φi1 (rk)

... · · · ...
φik(r1) . . . φik (rk)

∣∣∣∣∣∣∣ (1 ≤ i1, . . . , ik ≤ l).

Note that interchange of two particles results in the interchange of two columns in the determinant, and
hence a change in the sign of the basis function φi1...ik . This automatically builds in antisymmetry into the
wave function ψ. From these antisymmetry considerations, it suffices to have lCk k–particle basis functions
to represent ψ. We will not be concerned with the selection of the one–particle basis functions; we assume
that they are given, and that an appropriate basis for the k–particle wave function can be generated.

We associate any ψ(r1, . . . , rk) ∈ L2 with its vector of coordinates in this basis, with each coordinate
ψ(i1, . . . , ik) ∈ ∧kCl. We denote the latter lCk–dimensional coordinate space by Fk. Viewing H as a
Hermitian operator on Fk, the minimization in (5.5) can be written as

λmin(H) = min
P∈P; tr(P )=1

〈H,P 〉 , (5.6)

where P is the cone of Hermitian, positive semidefinite operators on Fk. However, the dimension of the
space of linear operators on Fk is (lCk)2. Computing the smallest eigenvalue in this framework, called a full
configuration interaction (CI) calculation, is prohibitively expensive even for modest values of l and k.
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All the information contained in the wave function is not needed for the computation of the ground
state energy. It is possible to reformulate the problem in terms of more economical objects, namely the
reduced density operators, which contain just enough information for our purpose, and which greatly reduce
the dimensionality of the problem.

Let us define the following one–particle and two–particle reduced density operators

Γ1(i, i′) = k
∑

i2,... ,ik

ψ(i, i2, . . . , ik)ψ∗(i′, i2, . . . , ik) (1 ≤ i, i′ ≤ l) (5.7)

Γ2(i, j; i′, j′) =
1
2
k(k − 1)

∑
i3,... ,ik

ψ(i, j, i3, . . . , ik)ψ∗(i′, j′, i3, . . . , ik) (1 ≤ i, i′, j, j′ ≤ l). (5.8)

We may associate the one–particle and the two–particle terms of the Hamiltonian with their matrices of
coordinates

H1(i, j) =
∫
φ∗i (r)H1(r, r′)φj(r)d3rd3r′ (1 ≤ i, j ≤ l)

H2(i, j; i′, j′) =
∫
φ∗i (r1)φ

∗
j (r2)H2(r1, r2; r′1r

′
2)φi′(r

′
1)φj′ (r

′
2) d

3r1d
3r2d

3r′1d
3r′2 (1 ≤ i, j, i′, j′ ≤ l)

in the chosen basis, and rewrite (5.5) as

λmin(H) = min
(Γ1,Γ2)∈D1×D2

〈H1,Γ1 〉+ 〈H2,Γ2 〉 (5.9)

where the inner product is now the trace inner product between matrices, and D1 × D2 is the set of all
pairs (Γ1,Γ2) derivable, as in (5.7) and (5.8), from some antisymmetric wave function ψ ∈ L2 of unit norm.
However, note that Γ1 and Γ2 are not independent variables. In fact, from (5.7) and (5.8),

Γ1(i, i′) =
2

k − 1

∑
j

Γ2(i, j; i′, j),

so that Γ1 is just a scaled partial trace of Γ2. We denote this relation as

Γ1 = `0(Γ2),

where `0 is a linear map.
These reduced density operators suffice to compute any quantity of the system that depends only on

one-body and two-body interactions. This class of quantities includes the Hamiltonian.
Although D1 and D2 are convex cones [28], the fundamental problem with the formulation (5.9) is that,

for k ≥ 3, there is no explicit description available for D2, the set of “representable” two–body reduced
density operators, i.e. there is no known characterization that allows us to verify if a given Γ2 ∈ D2 is
representable, via (5.8), from some antisymmetric ψ ∈ L2. (The structure of representable Γ1 has been
completely characterized by Coleman [18].) This fundamental problem in quantum mechanics is called the
representability problem. It is well known that D2 is far from being polyhedral.

A representability condition for D2 is a symmetric matrix V such that 〈Γ2, V 〉 ≥ 0 ∀Γ2 ∈ D2, i.e.
a necessary condition for Γ2 to be a valid two–body operator. Observe that the set of all representability
conditions for D2 is itself a cone, and coincides with D∗

2 , the dual cone of D2.
In the next section, we will describe three representability conditions in the literature, all of which lead

to semidefinite constraints.

5.3 Semidefinite Relaxations

In this section, we describe three representability conditions (called the P–, the Q–, and the G–conditions),
which were discovered by Garrod and Percus [37].

As described in Section 5.2, let Fk denote the lCk–dimensional coordinate space of the k–particle basis
functions. Then, the 2l–dimensional space F = ⊕ki=1Fk is called Fock space, and is spanned by basis elements
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denoted φI , where I is an arbitrary subset of {1, . . . , l}. For any i ∈ {1, . . . , k} and I ∈ 2{1,... ,l}, define the
“parity” function

p(i, I) = | {j ∈ I : j < i} |,
where | · | denotes cardinality. Then, we may define on Fock space, the annihilation operator2

ai : F→ F : φI → aiφI =
{

(−1)p(i,I)φI\{i} if i ∈ I
0 otherwise,

whose adjoint is the creation operator

a†i : F→ F : φI 7→ a†iφI =
{

(−1)p(i,I)φI∪{i} if i /∈ I
0 otherwise.

Then, for any polynomial Q with complex coefficients in the creation and the annihilation operators, the
operator Q∗Q is positive semidefinite, hence yielding the representability condition that for all ψ,

〈ψ,Q∗Qψ 〉 ≥ 0. (5.10)

Different choices of the polynomial Q lead to different representability conditions in (5.10). However, Q∗Q
is expressible in terms of Γ1 and Γ2 only when Q is of degree 1 or 2. Each of the following specific forms
for Q, when substituted into (5.10), results in a representability condition, whose name we indicate within
parentheses.

Q =
∑
i

ciai ⇒ Q∗Q = Γ1 (p–condition) (5.11)

Q =
∑
i

cia
†
i ⇒ Q∗Q = I − Γ1 (q–condition) (5.12)

Q =
∑
i,j

cijaiaj ⇒ Q∗Q = Γ2 (P–condition) (5.13)

Q =
∑
i,j

cija
†
ia
†
j ⇒ Q∗Q = `1(Γ1,Γ2) (Q–condition) (5.14)

Q = c0 +
∑
i,j

cijaia
†
j ⇒ Q∗Q = `2(Γ1,Γ2) (G–condition). (5.15)

Here c0, ci, cij ∈ C, and `1 and `2 are affine functions of the matrix variables Γ1 and Γ2. The exact forms of
`1 and `2 are somewhat complicated, and are detailed in [37].

Thus we obtain the semidefinite relaxation

min 〈H1,Γ1 〉+ 〈H2,Γ2 〉
Γ1 = `0(Γ2); tr(Γ1) = k; tr(Γ2) = k(k − 1)/2
`1(Γ1,Γ2) � 0; `2(Γ1,Γ2) � 0 (5.16)
Γ1 � 0; Γ2 � 0; I − Γ1 � 0,

which results in a lower bound on the ground state energy λmin(H).
It turns out that for k ≤ 2, the representability conditions resulting from (5.11) – (5.15) are also sufficient.

In this case, (5.16) yields the exact answer.
This size of this relaxation is independent of the number of particles k in the system, which enters only as

a parameter in the data. When cast in standard form, this SDP has only O(l4) dual variables, and a primal
matrix variable of order O(l2), and hence solving the SDP is more economical than a full CI calculation.

The specific forms of `1 and `2 are such that the constant trace condition on Γ1 and Γ2 also imply
that `1(Γ1,Γ2) and `2(Γ1,Γ2) have constant trace. Thus, this SDP is amenable to the transformation
of Section 4.1, and is expressible as an unconstrained eigenvalue optimization problem. In the next section,
we will describe the results of applying both the interior–point method of Chapter 3 and the bundle method
of Chapter 4 to solve the SDP relaxation in (5.16).

2Not to be confused with the earlier usage in (4.1).
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5.4 Numerical Results

In this section, we present numerical results on some instances of (5.16). In all cases, both the one–body
and two–body terms in the Hamiltonian were randomly generated. All the instances were solved on a Sun
Ultra Sparc I with a 143 MHz CPU and 64 MB of memory.

In Table 5.1, we solve some small problems with the interior–point code SeQuL (see Chapter 3), and
with a CI code written by S. Jiang, to compute λmin(H). Thus, the answer computed by the CI code is
to be considered as the true ground state energy, whereas the optimal value of the SDP in (5.16) is an
approximation. The SDP relaxation is actually exact in the case k ≤ 2, hence we start with k = 3. Also,
there is a symmetry between the cases when the particle number is k and l−k, hence it suffices to consdider
only half the possible range for k, i.e. 3 ≤ k ≤ dl/2e. The first two columns in Table 5.1 show the number of
one–particle basis functions and particle number respectively. The third and the fourth columns indicate the
block structure vector N and the number of primal equality constraints m. (Note that these depend only the
number of one–particle basis functions l, and not on the particle number k.) The next two columns represent
the minimum and the average relative deviation of the optimal value of the SDP relaxation from the true
ground state energy (obtained via a full CI calculation), averaged over 5 randomly generated Hamiltonians.
By relative deviation, we mean the ratio (value(SDP) − value(CI))/value(CI). The negative signs in the
table denote that the optimal value of the SDP is a lower bound. The last column is the average CPU time,
in hours (hh), minutes (mm) and seconds (ss), taken by the interior–point code to solve the SDP to high
accuracy (given by SeQuL’s default tolerances). The quality of the relaxation tends to deteriorate both with
increase in the particle number k and the number l of one–particle basis functions.

In Table 5.2, we solve some larger instances, again with randomly generated Hamiltonians, but with the
bundle method described in Chapter 4, by reformulating the SDP in (5.16) as an unconstrained eigenvalue
optimization problem. The first four columns are as before. The fifth and the sixth columns give the norm
of a computed ε–subgradient and the corresponding value of ε. The columns λ and Q give the percentage of
time spent in the eigenvalue/eigenvector computatation and in forming the matrix Q in (4.18). Note that,
in contrast with the observation of Section 4.5, forming Q now dominates the computational cost. The last
column gives the CPU time taken in hours (hh), minutes (mm) and seconds (ss).

The problem instances studied here are very small by the standards of quantum chemistry. However, our
on–going work is concentrated at present on investigating the strength of various representability conditions
(including the P–, the Q–, and the G–conditions), and on numerical exploration of the boundaries of the
representable region. For these studies, already the small model systems explored here are of much interest.

l k N m min ave hh:mm:ss
6 3 [6 15 15 36] 808 –6.72e–02 –2.78e–02 3:07
7 3 [7 21 21 49] 1485 –1.38e–01 –9.09e–02 33:47

4 –1.07e–01 –6.35e–02 1:16:40
8 3 [8 28 28 64] 2523 –1.79e–01 –1.37e–01 4:38:20

4 –2.91e–01 –2.32e–01 9:22:04

Table 5.1: Comparison of ground state energies computed via reduced density operators and full
configuration interaction, averaged over 5 randomly generated Hamiltonians.
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l k N m Ser/Tot ‖g‖ ε λ Q hh:mm:ss
6 3 [6 15 15 36] 808 23/50 1.4e–01 5.4e–03 27 71 5:37
7 3 [7 21 21 49] 1485 23/50 1.2e–01 5.8e–04 19 79 16:09

4 25/50 1.7e–01 6.9e–04 19 79 16:57
8 3 [8 28 28 64] 2523 25/50 1.4e–01 8.5e–02 16 84 48:42

4 23/50 1.9e–01 7.6e–02 16 84 50:02
9 3 [9 36 36 81] 4033 24/50 1.6e–01 1.0e–02 13 87 1:44:09
12 3 [12 66 66 144] 12,370 25/50 3.2e–01 1.3e–03 10 90 13:10:02
15 3 [15 105 105 225] 31,111 14/50 2.9e–01 2.5e–02 6 94 55:42:35

Table 5.2: Ground state energy calculations via reduced density operators, solved with a first order
bundle method.



Appendix A

Costs Per Interior–Point Iteration

This appendix is extracted from [45]. Here we derive the estimates for the costs of forming the Schur
complement matrix M in (3.5), solving the linear system once M has been factored (3.14), and computing
the step lengths to the boundary of the cone for a given direction (3.15). We assume that all data is dense,
and that the basic costs of matrix multiplication and eigenvalue computation are O(n3) for n by n matrices.

We begin by estimating the cost of forming the matrices MS , MQ and ML, defined in (3.7), (3.8) and
(3.9), making up the Schur complement matrix (3.5). The cost of forming ML is clearly O(m2n0). From
(3.8) we get that

MQ = AQArw(zQ)−1Arw(xQ)A∗Q =
q∑
i=1

MQ(i)

where

MQ(i) = AQ(i)arw(zQ(i))−1arw(xQ(i))AQ(i)∗,

arw(xQ(i)) is the ith diagonal block of Arw(xQ), and AQ(i) is the m by ni + 1 matrix whose rows are the
transpose of the ith blocks of the vectors (AQ)k, 1 ≤ k ≤ m. Let [x0, x1, . . . , xni ] and [z0, z1, . . . , zni ] denote
the ith blocks of xQ and zQ respectively, and let x̃ = [0, x1, . . . , xni ] ∈ Rni+1, z̃ = [0, z1, . . . , zni ] ∈ Rni+1,
and e0 = [1, 0, . . . , 0] ∈ Rni+1. Finally, write B = AQ(i) and let ζ = z2

0 − z̃T z̃. Then we have

MQ(i) =
x0

z0
BB∗ +

x0

ζz0
(Bz̃)(Bz̃)∗ +

1
z0

[(Be0)(Bx̃)∗ + (Bx̃)(Be0)∗]

+
1
ζ

[(
x0

z0
z̃∗z̃ − z̃∗x̃

)
(Be0)(Be0)∗ − x0

(
(Be0)(Bz̃)∗ + (Bz̃)(Be0)∗

)]
+

1
ζ

[
z̃∗z̃
z0

(Be0)(Bx̃)∗ − (Bz̃)(Bx̃)∗ +
z̃∗x̃
z0

(Bz̃)(Be0)∗
]
.

Observe that the matrix BB∗ needs to be computed only once (for each i) at the start of the algorithm, and
we therefore ignore the cost of computing it. Thus the cost of computing MQ(i) is O(mni +m2) and the
cost of computing MQ is O(mdq +m2q).

To estimate the cost of computing MS, observe that computing the right–hand side of (3.10) and comput-
ing the solution to the Lyapunov equation (3.10) require O(N3

i ) operations and there are m such equations
to solve. Computing the ith summand in (3.11) requires O(N2

i ) operations so that the cost of computing
the (k, l) entry of MS is O(dS). Thus the total cost of computing MS is O(m

∑s
i=1N

3
i +m2dS).

Next we consider the cost of solving the linear system (3.3) once the factorization of the Schur complement
matrix M has been obtained. Computing the right–hand side of the Schur complement system (see [7])
requires O(

∑s
i=1N

3
i + dQ+n0) operations, while the cost of the backsolve to obtain ∆y is O(m2). The cost

of computing ∆z is O(m(dS + dQ + n0)) = O(md) and the cost of computing ∆x from ∆z is O(
∑s

i=1N
3
i +

dQ + n0). Thus we obtain the estimate (3.14).
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Finally, computing the step lengths to the boundary of the semidefinite cone in the directions ∆xS
and ∆zS requires matrix–matrix multiplications and an eigenvalue decomposition and so is an O(

∑s
i=1N

3
i )

operation. The cost of computing the step lengths to the boundary of the quadratic cone (respectively positive
orthant) in the directions ∆xQ, ∆zQ (respectively ∆xL, ∆zL) is O(dQ) (respectively O(n0)). Summing up
the contributions, we obtain the estimate (3.15).



Appendix B

Costs Per Bundle Iteration

Recall that A is given by the m matrices ai ∈ SN , and p, the current bundle of eigenvectors, is a block
matrix whose jth block is an Nj × rj orthonormal matrix. We set

R =
s∑
j=1

rj(rj + 1)/2, and

dS =
s∑
j=1

Nj(Nj + 1)/2.

Although l and R are parameters independent of the size of the original problem m and dS , we retain them
in the operation counts in order to have some idea of their influence on the constant factors. Let the ith
column of G∗ be hi (1 ≤ i ≤ m). We assume that the cost of multiplying a p1 × p2 matrix and a p2 × p3

matrix is O(p1p2p3).
Forming Q11 costs O(m(l +R)2). Rewriting (4.20) as a sum of m outer products,

Q12 =
1
ρ

m∑
i=1

hi(vec(p∗aip))∗,

we need to compute the m orthogonal conjugations p∗aip (i = 1, . . . ,m) in order to compute Q12 and Q22.
Let cij be the cost of computing the jth block of the ith conjugation. This conjugation may be computed
as a direct matrix product, incurring a cost of O(Njr2j + rjN

2
j ), or as in (4.22), incurring a cost of fijO(r2j ),

where fij is the number of nonzeros in ai(j). Thus, it is cheaper to use (4.22) if fij = o(Nj +N2
j /rj). The

m orthogonal conjugations cost
∑

i,j cij . Computing each summand (an outer product) in Q12 and Q22 will
additionally cost O(lR) and O(R2) operations respectively, so the total cost of forming Q is

m∑
i=1

s∑
j=1

cij +mO(lR+R2 + (l +R)2),

and the cost of factorizing Q (see Section 4.4.1) is O((l +R)3).
When is expressed in standard form, the COP has l +R + 1 dual variables, and the primal variables in

its SD, QC and LP components have the structure given in Table B.1.

Variable type Block structure Data sparsity
SD [r1, . . . , rs] Yes
QC [l +R+ 3] No
LP l + 2 Yes

Table B.1: Structure of subproblem in every bundle iteration.
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The costs involved in solving the subproblem have been detailed in Appendix A. The dominant cost in
every interior–point iteration is the formation and factorization of the Schur complement matrix (see Sec-
tion 3.3.1), which is of order l+R+1. Since l and r are typically small (say, l = 50, r = 25), compared to the
parameters of the original problem (N = [N1, . . . , Ns] and m), the cost of solving the subproblem is generally
small compared that of forming Q, and of computing a few of the largest eigenvalues and eigenvectors of
A∗y − c in Step 5 of Algorithm 4.2.1.

Note that when m gets large, e.g. if m = O(dS), then the cost of forming Q can exceed the cost of
computing eigenvalues and eigenvectors.
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[90] G. Pataki and L. Tunçel. On the generic properties of convex optimization problems in conic form.
Technical Report CORR 97–16, Department of Combinatorics and Optimization, University of Wa-
terloo, Ontario (Canada), 1997.

[91] J. Renegar. A Mathematical View of Interior–Point Methods in Convex Optimization. manuscript.

[92] J. Renegar. Some perturbation theory for linear programming. Mathematical Programming, 65:73–91,
1994.

[93] J. Renegar. Condition numbers, barrier method and the conjugate gradient method. SIAM Journal
on Optimization, 6(4):879–912, 1996.

[94] S. M. Robinson. Bounds for error in the solution set of a perturbed linear program. Linear Algebra
and its Applications, 6:69–81, 1973.

[95] R. T. Rockafellar. Convex Analysis. Princeton University Press, Princeton (New Jersey), 1970.



BIBLIOGRAPHY 65

[96] R. T. Rockafellar and R. J–B. Wets. Variational Analysis, volume 317 of Grundlehren der mathema-
tischen Wissenschaften. Springer–Verlag, New York, 1998.

[97] S. Schmieta and F. Alizadeh. Associative algebras, symmetric cones and polynomial time interior–point
algorithms. Technical Report RRR 17–98, RUTCOR, Rutgers University, June 1998.

[98] H. Schramm and J. Zowe. A version of the bundle iea for minimizing a nonsmooth function: conceptual
idea, convergence analysis, numerical results. SIAM Journal on Optimization, 2(1):121–152, 1992.

[99] H. R. Schwarz. Numerical Analysis: A Comprehensive Introduction. John Wiley & Sons, New York,
1989.

[100] A. Shapiro and M. K. H. Fan. On eigenvalue optimization. SIAM Journal on Optimization, 3:552–568,
1995.

[101] G.W. Stewart and J.-G. Sun. Matrix Perturbation Theory. Academic Press, 1990.

[102] J. F. Sturm. Primal–dual interior–point approach to semidefinite programming. PhD thesis, Erasmus
Institute, Rotterdam (The Netherlands), 1997. Tinbergen Institute Research Series, Vol. 156, Thesis
Publishers, Amsterdam (The Netherlands) 1997.

[103] J. F. Sturm. Using SeDuMi 1.02, a Matlab toolbox for optimization over symmetric cones. Department
of Quantitative Economics, Maastricht University, Maastricht (The Netherlands), 1998.

[104] A. Szabo and N. S. Ostlund. Modern Quantum Chemistry. McGraw–Hill Publishing Company, first
edition (revised) edition, 1989.

[105] M. J. Todd. Potential reduction methods in mathematical programming. Mathematical Programming,
76:3–45, 1996.

[106] M. J. Todd. A study of search directions in semidefinite programming. Technical Report TR1205,
Department of Operations Research and Industrial Engineering, Cornell University, 1997.
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