
Towards Stronger User Authentication

by

Newman Fabian Monrose

A dissertation submitted in partial ful�llment

of the requirements for the degree of

Doctor of Philosophy

Department of Computer Science

New York University

May 1999

Approved:

Zvi Kedem

c
 Newman Fabian Monrose and Lucent Technologies.

All Rights Reserved, 1999

To Leah (\Peewee") & Nina.

iv

Acknowledgements

First and foremost, I express my gratitute to Aviel D. Rubin for his friendship,

guidance, and continual support throughout my studies. There were many times

when I contemplated leaving prior to completing my studies, and without his

support and encouragement, I am certain that I would not have reach thus far. I

can not thank him enough.

I am also indebted to Zvi Kedem for providing me with assistance and direction

whenever I needed it. I am grateful for his support of my research and the leader-

ship he provided on numerous occasions. I am also thankful for his friendship.

Deciding to not return home immediately after completing my studies was a

long and diÆcult process. I express special thanks to my mother and my sister

for providing emotional support and believing in me all this time. I am especially

appreciative of the support of my sister whose friendship I value tremendously.

I am thankful for Leah, Nina, and Melanie who inspired me over the past few

years. I am especially thankful for Nina who provided a sense of inner calm during

diÆcult times.

I also thank the USENIX Scholars Program, Bell Communications Research,

the Computer Science department, and my father for providing the �nancial sup-

v

port needed to complete my studies. I also express my gratitude to Michael K.

Reiter and Alain Mayer of Bell Labs, Lucent Technologies, for their interests in

my research. I would especially like to thank Mike for providing inspiration and

direction, and for helping me focus on �nishing my degree. I also thank my other

committee members, Vijay Karamcheti and Arthur Goldberg.

I am thankful for the many friends with whom I share more than just an aca-

demic relationship. I cherish the friendships I share with each one of them. I

extend a special thank-you to Ian Jermyn, who assisted me in more ways than

one. Thanks, as well, to Richard Cole for listening to my concerns over the years

and providing his assistance whenever possible. I would like to express my ap-

preciation to Arash Baratloo, Karen Culler, Sabine French, Martin Garcia, Davi

Geiger, Deepak Goyal, Raju Jawalekar, Bob Hummel, Hiroshi Ishikawa, Ayali

Itzkovitz, Leslie Palanker, Laxmi Parida, Bill Pink, Madhu Nayakkankuppam, Ty-

rone McGhee, Fritz Orneas, Archisman Rudra, Peter Wycko�, the Courant system

administrators, and the Didier family. Warmest thanks to Jay Sachs for providing

a LATEX template compliant with NYU's thesis requirements.

vi

Contents

Dedication iv

Acknowledgements v

List of Figures x

List of Tables xiii

1 Introduction 1

1.1 DiÆculty of User Authentication 2

1.2 Our Work . 5

1.2.1 Keystroke Dynamics . 6

1.2.2 Graphical Passwords . 11

1.3 Dissertation Outline . 15

2 User Authentication 17

2.1 Challenge-Response Schemes . 18

2.2 Using Encryption for Authentication 20

2.3 Biometrics . 22

vii

3 Preliminaries 25

3.1 Pattern Recognition . 25

3.2 Secret Sharing and Polynomial Interpolation 27

4 Keystroke Dynamics 30

4.1 Prior Work . 30

4.2 Our Experiments . 32

4.2.1 Data Selection and Representation 33

4.2.2 Data Extraction . 35

4.2.3 Classi�cation and Identi�cation 37

4.2.4 Results and Observations . 40

4.3 Summary . 42

5 Password Strengthening using Keystroke Dynamics 44

5.1 Introduction . 44

5.2 Related Work . 46

5.3 Preliminaries . 48

5.3.1 Features . 48

5.3.2 Security Goals . 50

5.4 Overview . 51

5.5 Stored Data Structures and Initialization 52

5.6 The Login Protocol . 54

5.7 Security . 57

5.8 Empirical Analysis . 59

5.8.1 Choosing ti . 60

viii

5.8.2 Entropy of Distinguishing Features 62

5.8.3 Reliability of Password Entry 65

5.9 Summary . 68

6 Graphical Passwords 70

6.1 Prior Work . 73

6.2 Textual Passwords with Graphical Assistance 74

6.3 The Draw-a-Secret (DAS) Scheme 78

6.3.1 Password Selection and Input 79

6.3.2 Application of DAS: An Encryption Tool for a PDA 82

6.3.3 Security of the DAS Password Scheme 84

6.3.4 Summary . 97

6.4 Conclusions . 97

7 Summary 101

7.1 Future Directions . 103

8 Bibliography 105

ix

List of Figures

4.1 Joint frequency distribution for the same user at two di�errent time

intervals. 34

4.2 Joint frequency distribution for a di�erent user over the same set of

digraphs used in Figure 4.1. 35

4.3 To automate the data selection and extraction process a system

toolkit was designed to assist in the visualization, tuning, and overall

analysis of the data. A graphical user interface with various tunable

options allow the operator to diagnose the performance of each of

the classi�ers in detail. The above is a snapshot from the main panel

of the interface. 36

5.1 Approximate entropy of d distinguishing features 64

5.2 Approximate probability of successful password entry 67

x

6.1 Variations on inputting tomato. The word tomato can be input in

the \normal" left to right manner as shown in (a). Step 0 is the

initial row of blanks, and steps 1{6 indicate the temporal order in

which the user �lls in the blanks. In addition, however, the user can

vary the position of the letters in tomato. Figure (b) demonstrates

shifting the input left by one. 76

6.2 Other strategies for inputing tomato. Figure (c) represents an

outside-in input strategy, and �gure (d) is the combination of (a)-(c). 77

6.3 Input of a graphical password on a 4 � 4 grid. The drawing is

mapped to a sequence of coordinate pairs by listing the cells in the

order which the stylus passes through them, with a distinguished

coordinate pair inserted in the sequence whenever the stylus is lifted

from the drawing surface. 80

6.4 A password is created by drawing the secret on the display as shown

in (a). Both the internal representation of the input password show-

ing the cells covered by the user's drawing and the derived key are

depicted in (b) and (c) respectively. To apply a symmetric crypto-

graphic function to records in the database (shown in (d)), the user

selects the records and then re-inputs the DAS password. If the

encryption of a known clear-text with the input password matches

the stored ciphertext created during initialization, then the symmet-

ric cryptographic routine, Ek(x), is applied to the selected records.

Otherwise, the user is prompted to re-enter the DAS secret. 99

xi

6.5 Example DAS passwords and the shortest programs that generate

them are shown above. The complexities are 24 and 26 respectively. 100

xii

List of Tables

4.1 Performance of classi�cation templates. 41

5.1 Choices for tdur and tlat . 61

6.1 Number of passwords of total length less than or equal to Lmax on

a 5� 5 grid. 87

6.2 Number of DAS passwords generated by programs of short complex-

ity on a 5� 5 grid. 95

xiii

Chapter 1

Introduction

Weak passwords are a fact of life|Bellovin and Merrit.

Password-based authentication is the dominant mechanism for verifying the

identity of computer users, even though it is well known that people frequently

choose passwords that are vulnerable to dictionary attacks. This dissertation

addresses the issue of improving the security of password-based authentication

and presents authentication techniques that are more secure than traditional ap-

proaches against password guessing attacks.

The motivation for addressing the security and shortcomings of traditional

password-based authentication is that users tend to choose passwords that are easy

to remember, which in the case of textual passwords usually implies that they are

easy to obtain by searching through a carefully formed \dictionary" of candidate

passwords. For example, in one case study of over 14,000 UNIXTM passwords,

almost 25% of the passwords were found by searching for words in a dictionary of

only 3 � 106 words [45]. This relatively high success rate is not unusual despite

1

the fact that there are roughly 2� 1014 8-character passwords consisting of digits

and upper and lower case letters alone.

1.1 DiÆculty of User Authentication

The fact that people choose passwords that are susceptible to dictionary attacks has

signi�cant impact on the design of secure authentication schemes. In traditional

authentication schemes a password is a string of characters (usually of length six

or more) that a user, say Alice, is capable of committing to memory. When Alice

logs into a host, demonstration of knowledge of the secret (i.e., the password)

shared between Alice and the host, is accepted as proof of Alice's identity. In

the classic UNIX method for authentication, the host validates an image of the

password under a one-way function so that the password itself is never presented

in the clear. Such authentication schemes that rely on time-invariant passwords

are commonly referred to as providing weak (user) authentication.

Over the past 20 years the security of time-invariant passwords for authenti-

cation has been examined by numerous researchers, notably [63, 45, 25, 82, 90].

Without exception, these studies reiterate the fact that left to their own accord,

people choose passwords that are easy to �nd by automated search. The basic

attacks that authentication protocols need to guard against are therefore:

� Password guessing attack. Here, the attacker, Mallot, is assumed to have

access to a dictionary containing some permutation of common choices of

passwords. There are primarily two ways in which Mallot can use the dictio-

nary:

2

On-line attack. Mallot repeatedly picks a password from the dictionary and

tries to use it in order to impersonate a legitimate user. If the impersonation

fails, the password is eliminated from the dictionary and Mallot tries again.

O�-line attack. Mallot records past communication or captures all infor-

mation related to authentication (for example, gets hold of /etc/password

on UNIX), and searches through the dictionary for a password which is con-

sistent with the captured information.

� Man-in-the-middle attack. Mallot is an active participant in the protocol and

can intercept and insert messages of his own.

� Replay attack. Mallot records messages and resends them at a later time.

In practice, the threat of on-line attacks can be reduced by limiting the number

of failed logins that a user is allowed to have within a predetermined time window.

O�-line guessing attacks, on the other hand, have been surprisingly e�ective (see

[63, 45, 25, 82, 90]).

To thwart dictionary attacks, it is now common practice for system admin-

istrators to invoke reactive password checkers [73, 64] on an existing collection

of user chosen passwords to identify weak password choices, or to use proactive

checkers [8, 81] to �lter out certain classes of poorly chosen passwords when the

user inputs her password for the �rst time. Password checkers successfully increase

the uncertainty (that is, the entropy rather than simply the length) of users' pass-

words, thus making them move beyond the reach of dictionary and exhaustive

search attacks, but the resulting passwords are not necessarily easy for users to

3

remember.

Password guessing attacks are still likely to succeed when conducted on a large

collection of passwords, even if proactive and reactive checkers are being used. An

approach to increasing further the work factor for o�-line guessing attacks is to

append an n-bit random number (called the salt) to a user's password and then

to \encrypt" the concatenated string using a one-way hash function. Both the

encrypted string and the salt are stored in a password table on the authentication

server. When a user tries to authenticate and enters her password, the salt is

retrieved from the password table, prepended to the password, and the concate-

nated string encrypted. The result is compared to that stored in the password

table, and authentication succeeds if they match. The diÆculty of exhaustive

search on any particular user's password is unchanged by salting since the salt is

given in clear-text in the password �le. However salting increases the complexity

of a dictionary attack against a large set of passwords simultaneously, by requiring

any precomputed dictionary of hashed passwords to contain 2n variations of each

trial password. This imposes more time for the preparation, and larger memory

requirements for the storage of the precomputed dictionary. Salting also ensures

that users with the same textual password will have di�erent encrypted entries in

the password table.

The problem with password salting is that the hashed passwords are vulner-

able to attack when the adversary captures all information relevant to login (for

example, if the attacker obtains /etc/password on UNIX systems which includes

the salt values). One way of eliminating this vulnerability is not to store the salt,

but instead to have the login program exhaustively search for it [56]. During a

4

login sequence the user inputs the password and the system searches for the n-bit

random addition by trying all possible values for the salt. This variation increases

the search space for the attacker by a factor of 2n even if he captures all the stored

information related to password authentication. Unfortunately, this results is a

signi�cant additional computational overhead on each login if n is large, and hence

a longer login response time for the user.

The security of user-chosen passwords can be improved by allowing users to type

in a phrase or sentence, called a pass-phrase, rather than a standard password. The

use of pass-phrases allows for greater entropy without imposing too much burden

on users' memory capacity. The intuition is that users can remember phrases

more easily than random character sequences, and therefore, users should pick

pass-phrases from a more uniform distribution. The pass-phrases are hashed down

to �xed sized values and used as before. If the pass-phrase is long enough, the

resulting hashed value will be random, but exactly what long enough means is

open to interpretation. An additional drawback is that it can be diÆcult to type

an entire pass-phrase during the login sequence with the echo turned o� [77].

1.2 Our Work

In the general setting addressed in this dissertation, o�-line guessing attacks are

the major concern. Since the schemes put forth in this dissertation focus on user

authentication via local login devices, our techniques, by design, are not resis-

tant against replay and man-in-the-middle attacks. However, as shown later, our

schemes can be combined in natural ways with existing strong authentication and

5

key exchange protocols [9, 10, 31, 41, 53, 89] that defend against these attacks.

1.2.1 Keystroke Dynamics

The �rst approach that we propose for improving the security of standard

password-based authentication directly addresses the problem of the additional

computational overhead associated with salting techniques as the salt gets large,

for example greater than 12 bits (i.e., the current size of the salt used in the

conventional UNIX authentication). We propose a technique for strengthening

the security of a textual password by augmenting it with biometric information.

Biometric information such as the duration and latency of the keystrokes used

during entry of the password is used to strengthen the password. Thereby, both

the password and the user's typing pattern are used to corroborate the identity of

the user. Intuitively, the technique presented can be used to improve salting by

determining some or all of the salt bits using the user's keystroke features. In this

way, some of the computational burden can be lifted from the login machine, or

alternatively the size of the salt can be enlarged for greater security. Furthermore,

our approach is complementary to the use of pass-phrases.

Speci�cally, the technique presented generates a strengthened password based

on both the characters typed and the way the user types her password. This is done

not by concatenating the password with bits generated from the user's features,

but by using the password to decrypt a table of information. The user's keystroke

features are then used to index into the table to select information from which

the strengthened password is computed. The strengthened password can then be

veri�ed for login purposes by attempting to decrypt a �le containing recognizable

6

plaintext. Login succeeds if and only if the decryption is successful. Our tech-

nique imposes a multiplicative work factor on an attacker conducting an o�-line

dictionary attack, because upon decrypting the table with a guessed password, the

attacker cannot immediately determine if the guessed password was correct. In-

stead, the attacker must sample elements of the table and generate corresponding

strengthened passwords until he either �nds the correct one or determines that the

guessed password was incorrect. The work factor for an o�-line attacker therefore

grows with the number of keystroke features that the user reliably repeats. More-

over, an on-line attacker will fail to log if he cannot mimic the legitimate user's

keystroke typing patterns.

The motivation for using keystroke features to strengthen password-based au-

thentication comes from numerous research e�orts that validate the hypothesis

that certain keystroke features are highly repeatable and that signi�cant variation

exist between users [26, 86, 48, 49, 4, 43]. These studies, as well as our own

(presented in Chapter 4), con�rm that keystroke features are an e�ective means to

distinguish users. This dissertation, however, is the �rst work that uses keystroke

features to generate a repeatable key for use in authentication.

We argue that the use of features of a user's normal typing rhythm to improve

password-based authentication is a natural choice for computer security. This ar-

gument stems from observations that similar neuro-physiological factors that make

hand written signatures unique are exhibited in a user's typing pattern [86, 28, 59].

When a person types, the time intervals between successive keystrokes, the length

of time that keystrokes are held down, and the applied pressure on the keys can

be used to construct a unique \signature" for that individual. For well-known,

7

regularly typed strings, such signatures have been shown to be consistent. Fur-

thermore, recognition based on typing rhythm is not intrusive, making it applicable

to computer access security as users will be typing at the keyboard anyway.

Challenges

The �rst and foremost challenge is to validate whether keystroke features can

reliably be used for identi�cation purposes across a diverse set of users. Prior

work in this area [26, 86, 48, 49, 4, 43] has been conducted on relatively small

sample sets and validating their results on a larger sample set taken from users of

varying ages, nationalities and backgrounds is important. Moreover, much of the

work on keystroke veri�cation uses the key down-to-down time as the base unit

of measure, but this measure may be further delineated into two components|

the total time for which the �rst key is depressed (keystroke duration), and the

time between the release of a key and the depression of the next one (keystroke

latency). An analysis of these two components, with regard to the variation across

the population, is important.

Given a set of features that a user reliably repeats (with some small degree of

variation), the challenge remains to generate the correct strengthened password.

At the same time, the attacker who captures system information used to generate

or verify strengthened passwords should be unable to determine which features

are relevant to generating a user's strengthened password, since revealing this

information could reveal information about the characters related to that password

feature. For example, suppose the attacker learns that the time between the �rst

and second keystrokes is a feature that is reliably repeated by the user and thus

8

is used in the authentication process. This may reveal information about the �rst

and second characters of the password, since the layout of the keyboard makes

some character pairs more amenable to reliable latency repetitions than others.

An important class of attack that must therefore be protected against is the

adversary who captures all the information stored related to authentication, and

then uses this information in an o�-line e�ort to �nd the strengthened password

or the correct string of characters of the password �eld as entered by the user. A

basic requirement is that any such attack be at least as diÆcult as exhaustively

searching for the password in a traditional UNIX setting where the attacker has a

copy of /etc/passwd. In particular, if Alice's password is diÆcult for an attacker

to �nd using a dictionary attack, then the strengthened password must be at least

as secure. A more ambitious challenge is to increase by a considerable amount the

work that the attacker must undertake, even if Alice chooses her password poorly,

i.e., in a way that is susceptible to a dictionary attack.

As mentioned earlier, our scheme o�ers additional security against an on-line

attacker who, for example, learns Alice's password (e.g., by observing her type it)

and attempts to login to her account. Unless the attacker can type like Alice, the

attacker will fail. However, this implies that if Alice types her password abnormally,

her login will also fail. Therefore, it is important to analyze empirically not only

the security of our scheme, but also the ability of legitimate users to reliably log

in to their own accounts.

9

Contributions

Keystroke dynamics and password strengthening We present a set of

template-based models for evaluating the thesis that users exhibit individualistic

patterns in their typing behavior. Moreover, we present empirical results based

on a diverse group of users that validate some of the prior work in this area,

but that also point out some of the inherent limitations with using a behavioral

trait (rather than an anatomical characteristic such as a �ngerprint) as a sign

of identity. We examine the more crucial of these limitations and discuss the

rami�cations for computer security.

Noting one of the more severe limitations of using keystroke dynamics as a

method of authentication, that di�erent keyboards may change a users' typing

pattern signi�cantly, we present a technique for improving the security of tex-

tual password-based authentication which performs well when restricted to logins

using the same keyboard (for example, login to a laptop). The technique is signif-

icantly more secure against attacks than conventional password-based authentica-

tion. Moreover, our technique does not reveal which of a user's keystroke features

are used to generate the corresponding strengthened password, and is the �rst to

o�er stronger security against both on-line and o�-line attacks. Furthermore, the

technique is unintrusive and works with o�-the-shelf keyboards.

The scheme presented is initially as secure as a normal password scheme. Over

time it adapts to the user's typing patterns, gradually strengthening the password

with biometric information. Moreover, while fully able to adapt to gradual changes

in a user's typing pattern, our scheme can be used to generate the same strength-

10

ened password inde�nitely. In this regard, our scheme is the �rst to generate a

repeatable secret based on a password and its keystroke dynamics that is stronger

than the password itself, and that can be used in applications other than login (for

example, �le encryption).

A major contribution of this dissertation is in analyzing the security of our

technique relative to conventional approaches. Through empirical analysis of user

keystroke data, we show that our scheme improves upon the security of conven-

tional passwords. Speci�cally, we show that �nding a user's normal password is

not made easier in our scheme than it is in a typical environment where login ac-

cess is determined by testing the hash of the password against a previously stored

hash value. More importantly, we show that the cost to an attacker of �nding the

strengthened password is generally greater, by a signi�cant multiplicative factor,

than that of �nding the original password in a conventional scheme. An additional

contribution is the empirical analysis of a user's ability to log in reliably to her

own account when our scheme is used for authentication.

1.2.2 Graphical Passwords

Given the known limitations of (textual) passwords for authentication, it is only

prudent to seek new directions in user authentication. The second approach pre-

sented here provides one such direction. We propose methods for achieving better

security than conventional password schemes by exploiting the input features avail-

able with graphical devices such as Personal Digital Assistants (PDAs). Speci�-

cally, we propose and evaluate graphical passwords, which serve the same purpose

as textual passwords, but consist of handwritten drawings, possibly in addition to

11

text. Graphical passwords derive their strength from the fact that graphical input

devices allow one to decouple the positions of the inputs from the temporal order in

which those inputs occur. We use this independence to build new password-based

authentication schemes that are convincingly stronger than conventional methods.

The most compelling reason for exploring the use of a picture-based password

scheme is that human beings seem to possess a remarkable ability for recalling line

drawings and real objects. The picture e�ect, that is, the superiority of pictorial

and object representations on a variety of measures of learning and memory has

been studied for decades [16, 80, 69, 83, 14]. Cognitive scientists and psychologists

have shown that there is a substantial improvement of performance in recall and

recognition with pictorial representations of to-be-remembered material than for

abstract and concrete words. Numerous studies exhibiting strikingly high di�er-

ences in memory recall of pictures over words can be found in the research literature

(see for example [80, 83, 67, 13]). In this dissertation we explore an approach to

user authentication that generalizes the notion of a textual password and that, in

many cases, improves the security of user authentication over that provided by

textual passwords. Furthermore our biometric technique for strengthening the se-

curity of textual password-based authentication can be combined in natural ways

with password checkers and salting to improve the security of graphical passwords

as well.

Challenges

The main challenge in developing graphical password schemes is to evaluate their

security relative to that of textual password-based alternatives. An obvious ap-

12

proach is to calculate the information content of the graphical password space as

the entropy of the probability distribution over that space, and compare that to

the entropy of the textual password space. However, given that the distribution of

graphical password choices is not known (since this is a new scheme), that approach

is not possible. Hence, a challenge remains in modeling sets ofmemorable graphical

passwords, and showing that these sets, or some subset of them, have cardinality

greater than the dictionary of textual passwords from which users typically choose.

We argue that due to the dependence of the security of a scheme on the pass-

words that users choose in practice, a new password scheme can not be proven

better than an old scheme, since there is no a priori knowledge of the distribution

of passwords that will be chosen by users under the new scheme. Performing trials

on users in order to learn the distribution of password choices for a new scheme is

impractical for such large sample spaces. In the case of textual passwords, learning

the knowledge that attackers routinely use would correspond to trying to learn the

English dictionary given no prior knowledge of the types of letter combinations

used in English, by having subjects type in 8-character passwords|a feat which

we argue is not feasible. In the absence of such objective proof, the challenge is

in presenting plausible arguments for reasoning about the security of graphical

password schemes relative to conventional textual-based password alternatives.

Furthermore, given the ease with which graphical devices such as PDAs can be

captured, an important criterion is that the passwords themselves not be stored

on the device. This restriction is important as it protects both the password and

any encrypted content from an attacker if the graphical device is captured.

13

Contributions

We analyze the security of graphical passwords1 relative to that of textual pass-

words. To this end, we present two graphical password schemes that are more

secure than textual passwords (and more secure than the scheme of [12]), and

employ novel analysis techniques to make this argument.

The �rst graphical password scheme presented builds directly on textual pass-

word schemes, by enhancing the input of textual passwords using graphical tech-

niques. In this case, if we assume the same underlying distribution of passwords

in the old and new schemes, then the graphical password is at least as strong as

the textual password scheme that underlies it, and even a conservative estimate of

the variations introduced by the graphical input yields a substantial improvement

in strength over the purely textual version.

We propose and implement a second scheme, called Draw-a-Secret (DAS), that

is purely graphical: the user draws a secret design (the password) on a grid. To

reason about improvements in security over textual passwords, we de�ne a class

of DAS passwords that, plausibly, are memorable for users. This class consists

of those passwords that can be generated by a short program in a simple grid

language. We do not argue that every memorable password has a short program

to describe it, but that passwords described by short programs are memorable. We

present the grammar for our language and show that even the set of memorable

DAS passwords characterized by programs of small complexity has cardinality

larger than the dictionaries of textual passwords to which a high percentage of

1Graphical passwords were �rst introduced by Blonder [12] but we considerably advance the concept

in both theory and practice.

14

textual passwords belong.

1.3 Dissertation Outline

In Chapter 2 we examine elementary concepts in user authentication. In Chapter

3 we review some of the fundamental work that supports the ideas put forth in this

dissertation. We give an overview of biometrics and examine why some biometrics,

like �ngerprints, are better candidates for identity veri�cation than others.

The idea of using features of a user's typing rhythm to generate strengthened

passwords came about as a direct result of preliminary work on building an authen-

tication system using keystroke dynamics [61]. (Keystroke dynamics is the process

of analyzing the way a user types at a terminal by monitoring the keyboard inputs

thousands of times per second, and attempting to identify users based on habitual

rhythmic patterns in the way they type.) In Chapter 4 we present empirical evi-

dence which supports the use of keystroke dynamics for authentication in restricted

environments, and examine some classi�cation and identi�cation strategies. We

present our observations and �ndings and compare them with prior work in this

area.

In Chapter 5 we present our technique for strengthening the security of textual

passwords. The technique e�ectively hides information about which of a user's

features are relevant to authentication, even from an attacker who captures all

system information related to authentication. Furthermore, an on-line attacker

will be unable to log in as a legitimate user unless he can mimic that user's typing

pattern. We also show that the technique presented is viable in practice in the

15

sense that a user can still log into her own account reliably.

In Chapter 6 we present an alternative technique for user authentication based

on the use of graphical passwords. We model sets of graphical passwords, and

show that the resulting password spaces are convincingly more diÆcult to attack

than conventional textual-based based approaches. In Chapter 7 we make closing

remarks and discuss areas of future work.

16

Chapter 2

User Authentication

People pick bad passwords, and either forget, write down, or resent good

ones|Bellovin and Merritt.

When a user attempts to logs into a host computer, how does the host know

who the user is? How does the host know that is it not an attacker impersonating

a legitimate user? Traditionally, authentication techniques that rely on the pos-

session of a physical object, such as an identi�cation card, or something the user

shares with the host, such as a password, have been used to solve this problem.

Authentication is the process whereby one party, the veri�er, is assured

(through acquisition of corroborative evidence) of the identity of a second party,

the claimant, involved in a protocol and that the claimant has actually partici-

pated in the protocol [60]. Throughout this dissertation the terms authentication

and identi�cation are used interchangeably. Typically, the veri�er is presented

with, or presumes beforehand, the purported identity of the claimant, for example,

that the claimant is Alice, and the goal is to corroborate that the identity of

17

the claimant is indeed Alice. Either one or both parties may corroborate their

identities to the other, providing unilateral or mutual identi�cation, respectively.

The main diÆculty in designing secure password mechanisms arises from the

fact that the space of passwords from which most users tend to choose is small

and much easier to attack by guessing than, for example, random cryptographic

keys. Guessing attacks are most e�ective when a large number of guesses can be

made automatically and each guess veri�ed to see whether the guess was correct.

A standard way to address this issue is to use salting as described in Chapter 1.

However, this approach can be computationally intensive for the login system if

the size of the salt is large.

2.1 Challenge-Response Schemes

More e�ective solutions to the problems associated with time-invariant passwords

are those that involve the use of challenge-response mechanisms. The basic idea

of challenge-response protocols used for authentication is that the password is

used to compute the value of a function on a random challenge selected by the

authentication server. The challenge changes with each session. Thus freshness of

each authenticated session can be accomplished by providing a response to a time-

variant challenge, such as a random number, where the response depends on both

the claimant's secret and the challenge. For example, the veri�er chooses a random

element n 2 Z
+, encrypts it under the secret S shared between the claimant and

the veri�er, and then expects the claimant to respond with f(n) encrypted under

S, for some agreed upon function f(). Authentication is deemed successful if the

18

claimant can correctly respond to the challenge.

Although challenge-response protocols provide freshness, they, unfortunately,

leave the password open to password guessing attacks [33]. For example, Mallot can

record an authentication session including the challenge from the authentication

server and the corresponding response from Alice. Later, he tries a set of possible

passwords on the challenge to see whether the same response is obtained. If so,

then with high probability, Mallot has found Alice's password.

One variant of challenge-response mechanisms is one-time passwords [46, 34].

As the name suggests, once a one-time passwords is used it is no longer valid. One-

time passwords are generated by applying a secure hash function, h, multiple times

to a user's secret password. The secret, s, is never stored|instead, the �rst one-

time password, po = hN (s), is stored on the authentication server. N represents the

maximum number of one-time passwords allocated to the user. The next one-time

password in the series (p1) is generated by executing the hash function N�1 times.

In general, pi is calculated as hN�i(s). Veri�cation of a user's one-time password

is accomplished by requesting pi+1 (for the current value of i) from the user and

checking that pi = h(hN�i�1(s)) = h(pi+1) [34]. If this is the case, then the user

is authenticated and the user's entry in the password �le is updated accordingly.

Otherwise, the authentication is unsuccessful.

Notice that even in challenge-response protocols such as one-time passwords,

user-chosen passwords are used as keys to cryptographic functions. The security

of these functions under such a small space of keys is clearly questionable. If the

one-time passwords are derived from a user-chosen password, the latter is still

vulnerable to password guessing attacks. The techniques we present in Chapter

19

5 strengthen the security of the derived cryptographic keys. Moreover, one-time

password schemes are relevant primarily for network settings, to defend against

the threat of a network eavesdropper capturing password information in transit

between the user and a secure authentication server. Again, in the setting we

consider in this dissertation, the concern is the capture and analysis of all stored

information relevant to authentication. In this regard, the one-time password

schemes of which we are aware o�er no bene�t against this type of attack over

traditional passwords schemes.

2.2 Using Encryption for Authentication

Variants of challenge-response protocols are also used to provide mutual authen-

tication. Typically they provide mutual authentication based on symmetric en-

cryption (and involve the use of an online trusted party, for example [68, 66]), on

public-key techniques [22, 66], or some combination of the two (see for example

[9, 10, 31, 41, 53, 89]).

To our knowledge, the �rst work to propose the use of public-key techniques in

conjunction with passwords for authentication was [30]. The authors suggested

that by providing the authentication server with a private/public-key pair, one

could protect user-chosen passwords against attacks by using public-key encryp-

tion. From this foundation, numerous techniques for frustrating guessing attacks

have since been proposed. The basic principle to which these protocols adhere is

that all data available to the attacker is made unpredictable enough to prevent

o�-line veri�cation of whether a guess is successful or not; the only way that a

20

guess can be veri�ed involves interaction with some part of the system that is in a

position to react to an excessive number of invalid login attempts.

Other in
uential work that proposed novel combinations of symmetric and

asymmetric encryption is that of [9], in which they proposed the counter-intuitive

use of a secret key (the user's password) to encrypt a randomly generated public-

key, which is subsequently used to exchange secret information such as session

keys. Their work resulted in numerous spino�s [10, 41, 53, 89] protecting against

di�erent classes of attacks, the more complex of which have the desired properties

of Zero-Knowledge (ZK) proofs [29]; in ZK proofs, the claimant, say Alice, demon-

strates knowledge of a secret to the veri�er, Bob, while revealing no information

whatsoever (beyond what Bob was able to deduce prior to the protocol run) that

is of use to him in conveying this knowledge to others.

This dissertation di�ers in its basic goals from the work outlined above: the

techniques presented expand the password space that an o�-line attacker must

explore, but allow the attacker to con�rm when the correct password has been

found. These other works do the opposite: they do not expand the password

space, but rather try to prevent the attacker from con�rming a correct guess.

Furthermore, our work is the �rst to o�er stronger security against both online and

o�-line attackers, and is also the �rst to generate a repeatable secret based on a

password and its keystroke dynamics that is stronger than the password itself and

that can be used in applications other than login. Our approaches thus have the

bene�t of being applicable in more settings and in some cases can be combined

with these other techniques to provide the bene�ts of both. Moreover, in some

of these other works, for reasons of user acceptability, encryption keys are derived

21

from a user-chosen password|there, our techniques may be combined in natural

ways to improve overall system security.

Increasingly, attention is shifting to authentication techniques that encompass

a third class of authentication|those that rely on characteristics of a person, for

example, the way in which Alice signs her name. Security measures which rely

on possession of a secret are inadequate because possession or knowledge may

be compromised without discovery|the information or article may be extorted

from its rightful owner. In the following section we review why biometrics have

become so popular over the past few years, and examine why they make such ideal

candidates for computer security.

2.3 Biometrics

Biometrics are the physical traits and behavioral characteristics that make each of

us unique. They are a natural choice for identity veri�cation because unlike keys

or passwords, biometrics cannot be lost, stolen, or overheard, and in the absence

of physical damage they o�er a potentially foolproof way of determining a user's

identity.

Indispensable to all biometric technologies is that they recognize a living per-

son and encompass both anatomical and behavioral characteristics. Biometric

technologies can be de�ned as automated methods of verifying or recognizing the

identity of a living person based on an anatomical or behavioral characteristic [59].

Anatomical (i.e., static) characteristics, such as �ngerprints and retinal prints, are

good candidates for veri�cation because they are stable (i.e., unalterable without

22

causing trauma to the individual) and are unique across a large section of the pop-

ulation. Behavioral traits, on the other hand, have some anatomical basis, but also

re
ect a person's psychological makeup. Unique behavioral characteristics such as

the pitch and amplitude in our voice, the way we sign our names, and even the

way we type, form the basis of non-static biometric systems.

Biometrics technologies are gaining popularity because when used in conjunc-

tion with traditional methods for authentication they provide an extra level of

security. However, for the foreseeable future, biometric solutions will not eliminate

the need for identi�cation cards, passwords and Personal Identi�cation Numbers

(PINs). Rather, the use of biometric technologies will provide a signi�cantly higher

level of identi�cation and accountability than passwords and cards alone, especially

in situations where security is paramount.

Biometric schemes generally rely on aspects of the body and its behavior.

Slight changes in behavior are inevitable when dealing with non-static biometrics

since they are in
uenced by both controllable actions and unintentional psycholog-

ical factors. Therefore, biometric technologies need to be robust and adaptive to

change|online signature veri�cation systems, for example, update the reference

template of a user on each successful authentication to the login device to account

for slight variations in the signature. The scheme presented in Chapter 5 ini-

tially is as secure as a conventional password scheme and then adapts to the user's

typing patterns over time, gradually strengthening the password with biometric

information.

Some examples of biometrics being used for identi�cation include hand geom-

etry, thermal patterns in the face, blood vessel patterns in the retina and hand,

23

�nger and voice prints, and handwritten signatures (see, for example, [17, 20, 40,

91, 23, 44, 72]). Today, a few devices based on these biometric techniques are

commercially available, some of which are non-intrusive. For example, the com-

mercially available Face Access Control by Elemental Shapes (FACES) [72] is a

passive monitoring system that uses the infrared emissions produced from an indi-

vidual's face to uniquely identify her. The technology is inherently more accurate

and more robust over varying lighting and environmental conditions than is the

use of video images, but is more expensive.

24

Chapter 3

Preliminaries

3.1 Pattern Recognition

The biometric techniques presented in this dissertation, for the most part, rely on

a fundamental concept|pattern recognition. Recognition is regarded as a basic

attribute of human beings. Our ability to recognize people, even after being sepa-

rated for some time, is remarkable. In this section we give a brief overview of the

fundamental concepts related to pattern recognition.

The design of an automatic pattern recognition system involves representation,

extraction, and classi�cation. Representation of input data measures characteris-

tics of the pattern or object to be recognized. When the measurements obtained

yield information in the form of real numbers, it is often useful to think of a pattern

vector as a point in an n-dimensional Euclidean space.

The extraction of characteristic features from the input data and the reduction

of the dimensionality of the resulting pattern vectors is often referred to as the

25

preprocessing and feature extraction problem. For example, we may choose to

use only a selected number of measurements from the input, either because these

features are enough to identify the individual (such as the latency between cer-

tain character pairs in Alice's password) or because the addition of extra features

(applied pressure on the keyboard, for example) increases the computational com-

plexity of the problem or yields no real bene�t. The number of degrees of freedom

of variation in the chosen index across the human population, their immutabil-

ity over time and immunity to intervention, and the computational prospects for

eÆciently encoding and reliably recognizing the identifying pattern, must all be

assessed during feature extraction.

Classi�cation and identi�cation involves the determination of optimum deci-

sion procedures. After the observed data from patterns to be recognized have

been expressed in the form of measurement vectors in the pattern space, we want

to decide to which pattern class these data belong [85, 24]. For example, given

a number of user typing pro�les, and an \unknown" reference template from a

database of available users, we want to be able to identify the unknown individual

with a speci�ed level of certainty.

Biometric methods can never provide an absolutely certain identi�cation be-

cause analysis of personal features has a natural range of variation. As such, bio-

metric identi�cation systems can fail in one of two ways; an authorized user may be

rejected or an illegitimate user may be granted access to the system. Therefore, all

biometric systems must allow for the control of error probabilities to some degree.

26

3.2 Secret Sharing and Polynomial Interpolation

Central to our technique for strengthening the security of textual passwords is the

concept of secret sharing �rst described in [79, 11]. Secret sharing is the process

of dividing some secret S into n pieces such that the secret is easily reconstructible

from any k pieces, but even complete knowledge of k�1 pieces reveals absolutely no

information about S. These schemes are commonly referred to as (k ; n) threshold

schemes, where the n pieces are called shares. The secret to be distributed is

chosen by a special participant called the dealer.

Here we review the method of construction for a particular (k ; n) threshold

scheme, namely the Shamir Threshold Scheme, which was invented in 1979 by

Adi Shamir [79]. In Shamir's scheme, the dealer constructs a random polynomial

of degree at most k�1, f(x) = a0+a1x+; : : : ;+ak�1x
k�1, where the constant term

is the secret (thus f(0) = a0 = S). Every participant involved in the sharing of

the secret, obtains a point on this polynomial. By pooling their shares at a later

time, any subset of k (or more) participants can reconstruct the secret by means of

polynomial interpolation. The theorem of polynomial interpolation says, in e�ect,

that a straight line can be passed through two points, a parabola through three, a

cubic through four, and so on.

Moreover, given k points in the 2-dimensional plane (x1; y1); : : : ; (xk; yk) with

distinct xi's, there is one and only one polynomial f(x) of degree k � 1 such that

f(xi) = yi for all i, since these points de�ne k linearly independent equations in

k unknowns [21]. Since the equations are linearly independent, there will be a

unique solution, and the constant term, a0, will be revealed as the key. Knowledge

27

of k � 1 of these shares is not suÆcient to recover the secret S, since all values

of S still remain equally probable. To see this, suppose you are told that f(x) is

a random polynomial of degree 2, and you are given only 2 points to reconstruct

f(x). There are in�nitely many parabolas that pass through those two points,

and without knowledge of a third point, the unique parabola de�ned by f(x) will

remain unknown.

The fundamental concept on which secret sharing relies is polynomial interpola-

tion. One eÆcient method for interpolation is based on the Lagrange interpolation

formula for polynomials [35]. The Lagrange interpolation formula is an explicit

formula for the unique polynomial f(x) of degree at most k. We review here the

application of Lagrange interpolation for Shamir's scheme, as this is the scheme

that we use in Chapter 5. The formula is as follows:

f(x) =
kX

i=1

yi
Y

1�j�k;j 6=i

x� xj
xi � xj

Using the Lagrangian formula we have a polynomial of degree at most k � 1

which contains the k ordered pairs (xi; yi); 1 � i � k. Any group of k participants

can compute f(x) by using the interpolation formula. However, since the partici-

pants do not need to know the entire polynomial (they only need to compute the

constant term S = f(0)), the secret may be expressed as:

S =
kX

i=1

ciyi;

where

cj =
Y

1�j�k;j 6=i

xj
xj � xi

28

is the standard Lagrange coeÆcient for interpolation. Hence, the key is a linear

combination of the k shares. An eÆcient algorithm for Shamir's (k ; n) threshold

scheme can be found in [60].

29

Chapter 4

Keystroke Dynamics

It's not what you know, or what you have, but who you are.

This chapter focuses on our e�orts to validate the thesis that keystroke features are

repeatable and distinguishable among a diverse set of users. We present our results

for an authentication system based on the use of keystroke dynamics. Keystroke

dynamics is the process of analyzing the way users type at a terminal by monitoring

the keyboard inputs thousands of times per second, and attempting to identify

them based on habitual patterns in their typing rhythm. We present our data

selection and extraction methods as well as our classi�cation and identi�cation

strategies. Our observations and �ndings are discussed and compared with prior

work in this area.

4.1 Prior Work

Keystroke identi�cation techniques can be classi�ed as either static or continu-

ous. Static identi�cation approaches analyze keystroke identi�cation character-

30

istics only at speci�c times, for example, during the login sequence. Static ap-

proaches provide more robust user identi�cation than simple passwords, but do

not provide continuous security|they can not detect a substitution of the user af-

ter the initial authentication. Continuous identi�cation, on the contrary, monitors

the user's typing behavior throughout the course of the interaction.

As early as 1980 researchers have been studying the use of habitual patterns in

a users typing behavior for static identi�cation schemes. To our knowledge, Gaines

et. al. [26] were the �rst to investigate the possibility of using keystroke timings

for authentication. Experiments were conducted with a very small population of

seven secretaries. A test of statistical independence of their pro�les was carried

out using a standard technique, the T-Test [38], under the hypothesis that the

means for character pairs (called digraphs) at di�erent sessions were the same, but

the variances were di�erent. Similar experiments were conducted by Leggett et.

al. [48, 49] with seventeen programmers but for the continuous approach to user

identi�cation. The authors report an identity veri�er that validates the results

of [26]|an identity veri�cation system where legitimate users were rejected 5.5

percent of the time, and imposters were accepted approximately 5.0 percent of the

time.

While the approaches of Gaines et. al. [26] and Leggett et. al. [48, 49] addressed

a number of problems inherent to authentication via keystroke timings, there was

considerable room for improvement. For example, [49] uses a 500 ms �lter for all

typists for the removal of data values for a variable that appear unusually large

or small and out of place when compared with the other data values. (These

erroneous data values are called outliers.) The rationale for this approach is that

31

digraphs with abnormally long latencies are not likely to be representative of the

authorized users' typing, and as such should be considered as outliers. While this

seems like a reasonable assumption it was subsequently shown by [28] that the

use of one �lter value (500 ms) for all typists for the removal of outliers can be

problematic. Gentner's studies suggests the median inter-key latency of expert

typists is approximately 96 ms, while that of novice typists is near 825 ms, and

as such, a single �lter excludes many keystrokes typical of a novice typists, while

at the same time, includes many keystrokes which are not representative of an

expert typist. (This observation, however, plays an important role in the password

strengthening technique presented in section 5.8.1.)

Some neural network approaches, [39, 4, 5, 6, 15, 2] have also been undertaken in

the last few years. While the techniques used yield favorable performance results on

small collection of users, neural network approaches have a fundamental limitation

in that each time a new user is introduced into the database, the network must

be retrained. For applications such as access control, the training requirements

are prohibitively expensive and time consuming. Furthermore, in situations where

there is a high turnover of users, the down time associated with retraining can be

signi�cant.

4.2 Our Experiments

A promising research e�ort in applying keystroke dynamics as a static authenti-

cation method is the work of Joyce and Gupta [43]. Their approach is relatively

simple and yields impressive results. Our work extends that of [43]. We present

32

our data selection and representation techniques, review the classi�er of [43], and

introduce our own classi�ers in subsequent sections.

4.2.1 Data Selection and Representation

The performance results reported here are based on a database collected sporad-

ically over a total period of approximately 7 months from 52 users on a variety

of Sun workstations. Two types of measures were taken in these experiments:

keystroke duration and latency between keystrokes. Typing pro�ciency was not a

requirement in this study, although almost all participants were familiar with com-

puters. At least two samples were collected from each user, with the time interval

between sessions being anywhere from one to six weeks. During each session, users

were asked to retype a few sentences from a list of available phrases and/or to type

a few sentences on the spur of the moment. The text to be typed was placed in

the top half of the display and the participants keystrokes were displayed in the

bottom half. It was not necessary for participants to shift their focus between the

text to be typed and their keystrokes.

Unlike previous studies in which the observers had complete control over the

collection of the data [26, 49, 4, 5, 6], participants ran the experiment at their

convenience. The results were automatically uuencoded and electronically mailed

to a designated address. Figure 4.1 depicts a representation of the joint frequency

distribution (for latencies and durations) for a set of digraphs typed by di�erent

users over di�erent time intervals. Notice that the same peaks and overall structure

can be observed between plots in Figure 4.1, but the plot of the joint distribution

for the user whose typing pattern best matches that of (a), shown in Figure 4.2,

33

is very distinct from plots (a) and (b).

(a)

(b)

Figure 4.1: Joint frequency distribution for the same user at two di�errent time intervals.

34

(c)

Figure 4.2: Joint frequency distribution for a di�erent user over the same set of digraphs

used in Figure 4.1.

4.2.2 Data Extraction

To evaluate the behavior and performance of each of the classi�ers presented in

Section 4.2.3 we developed a C++ toolkit for analyzing the data. The toolkit was

built using the xview library routines, and serves as a front-end to the main recogni-

tion engine. The toolkit (shown in Figure 4.3) aides in diagnosing system behavior

and generates graphical output for both the MatlabTM and GnuplotTM systems.

The data extraction toolkit provides a quick way to establish rough properties

on the data set by partitioning the users into distinct groups. Our clustering

criterion represents a heuristic approach that is guided by intuition|users are

clustered into groups comprising of (possibly) disjoint feature sets in which the

35

Figure 4.3: To automate the data selection and extraction process a system toolkit

was designed to assist in the visualization, tuning, and overall analysis of the data. A

graphical user interface with various tunable options allow the operator to diagnose the

performance of each of the classi�ers in detail. The above is a snapshot from the main

panel of the interface.

features in each set are pairwise correlated.

Feature sets are determined through Factor Analysis (FA) [19]. Factor anal-

ysis seeks a lower dimensional representation that accounts for the correlation

among features. This idea partitions the database of users into subsets whose in-

class members are \similar" in typing rhythm over a particular set of features and

36

whose cross-class members are dissimilar in the corresponding sense. For example,

members of group i may exhibit strong individualistic typing patterns for features

in the set S = fth; ate; st; iong, whereas members of group j may be more distinc-

tive over the features S = fere; on; wyg. K-Nearest Neighbor [24] is used as the

clustering algorithm. The net result is a hierarchical cluster that assists in user

identi�cation.

4.2.3 Classi�cation and Identi�cation

The problem of recognizing a given pattern as belonging to a particular person

either after exhaustive search through a large database, or by simply comparing

the pattern with a single authentication template can be formulated within the

framework of statistical decision theory. By this approach one can convert the

problem of pattern recognition into a much more expedient task, which involves

the execution of tests of statistical independence. The approaches described in the

following paragraphs adhere to this model.

The classi�cation technique used by Joyce and Gupta [43] represents the mean

reference signature for a given user as M = fMusername, Mpassword, M�rstname,

Mlastnameg. Veri�cation is performed by comparing the test signature T (acquired

at login time) with M and determining the magnitude of di�erence between the

two pro�les. Given M = (m1; m2; :::; mn) and T = (t1; t2; :::; tn) where n is the

total number of latencies in the signature, the veri�er computes the magnitude of

di�erence using an L1 norm. Positive identi�cation is declared when this di�erence

is within a threshold variability of the reference signature. The mean and standard

deviation of the norms kM � Sik, where Si is one of the eight training signatures,

37

are used to decide the threshold for an acceptable di�erence vector between a given

T and M.

Although these absolute veri�cation rates are encouraging, Joyce and Gupta

tested using a replacement methodology, which means that the distribution of the

training set is necessarily representative of the learning set. The use of separate

data sets, recorded at di�erent times, would be more reliable. Therefore, we inves-

tigated the performance of classi�ers based on studies where users were allowed to

participate in experiments conducted at varied times under no supervision. The

reference pro�les collected were represented as N -dimensional feature vectors and

processed in a manner similar to that of [43]. The data was split into learning and

testing sets. We used the following classi�ers for identi�cation:

� Euclidean Distance Measure: \similarity" is based on the Euclidean distance

between the pattern vectors. Let R = [r1; r2; :::; rN] and U = [u1; u2; :::; uN]

then the Euclidean distance between the two N dimensional vectors U and

R, is de�ned as:

D(R;U) =

� NX
i=1

(ri � ui)
2

�1=2

For an \unknown" U (i.e., from the testing set) the pairwise Euclidean

distances D(Ri; U); i = 1; 2; :::; n where n is the number of patterns vectors in

the database, were rank ordered and the pro�le with the minimum distance

to U was chosen.

� Non-Weighted Probability: Let U and R be N-dimensional pattern vectors as

38

de�ned previously. Furthermore, let each component of the pattern vectors

be the quadruple h�i; �i; oi; Xii, representing the mean, standard deviation,

number of occurrences, and data value for the ith feature. Assuming that

each feature for a user is distributed according to a Normal distribution, we

calculate the score between a reference pro�le R and unknown pro�le U as:

S(R;U) =
NX
i=1

sui

where

sui =
1

oui

h ouiX
j=1

P
�X(u)

ij
� �ri

�ri

�i

and X
(u)
ij

is the jth occurrence of the ith feature of U .

In other words, the score for each ui is based on the probability of observing

the value uij in the reference pro�le R, given the mean (�ri) and standard

deviation (�ri) for that feature in R. Intuitively we assign higher probabilities

to values of ui that are close to �ri and lower probabilities to those further

away. The \unknown" vector is then associated with the nearest neighbor

in the database, i.e., to the person who maximizes the probability of the

feature vector.

� Weighted Probability Measure: Some features are more reliable than others

simply because they come from a larger sample set or have a relatively higher

frequency in the written language; example in English \er", \th", and \re"

should constitute greater weights than qu or ts. Thus, the notion of weights

39

was incorporated, and the score between pro�les R and U was computed as:

S(R;U) =
NX
i=1

�
suiwui

�

where the weight of feature ui is the ratio of its occurrences relative to all

other features in the pattern vector U . Features that are based on many

occurrences are considered more reliable and weighted higher than those

features that come for a smaller sample set. Assuming that each feature for

a user is distributed according to a Normal distribution, a likelihood score

between a reference pro�le R and unknown pro�le U is calculated based on

the probability of observing a feature value in the reference pro�le R, given

the mean and standard deviation for that feature in R. Scores are weighted

an the \unknown" pro�le is then associated with the nearest neighbor in the

database, .i.e, the person who maximizes the score of the feature vector.

4.2.4 Results and Observations

The correct identi�cation rate using the weighted probabilistic classi�er was ap-

proximately 87:18% on a dataset of 52 users,1 which represents improvement

with respect to the performance of the Euclidean distance (83:22%) and the non-

weighted scoring approach (85:63%). (In Chapter 5 we examine these results in

further detail.)

While these results are encouraging, we believe that they re
ect some of the

problems with using keystroke dynamics for user recognition|di�erent keyboards

1The results presented re
ect a larger sample set than that reported in [61].

40

Table 4.1: Performance of classi�cation templates.

Classi�er Identi�cation (%)

Euclidean 83.22

Non-Weighted 85.63

Weighted 87.18

can signi�cantly a�ect the typing pattern of the user. The poor recognition results

reported here (in contrast to the performance of static biometrics such as �nger-

prints that have been shown to achieve correct classi�cation and identi�cation

rates in the 99th percentile (see for example [40])), may be attributed to the nature

of the data gathering process; the data was collected in an unrestricted setting

under no supervision. Under such conditions we argue in favor of the use of struc-

tured text instead of allowing users to type arbitrary text (i.e., text-independent

or \free-text"). While recognition based on free-text may be more desirable, free-

text recognition simply did not perform as well as recognition based on �xed-text

(interested readers are referred to [61]). Recognition based on free-text may be

expected to vary greatly under operational conditions in which the user may be

absorbed in a task or involved in an emotionally charged situation. The fact that

the input is unconstrained, that the user may be uncooperative, and that environ-

mental parameters are uncontrolled impose limitations on what can be achieved

with free-text recognition.

41

4.3 Summary

In this chapter we address the thesis of using keystroke dynamics as a biometric

for authenticating access to workstations. Keystroke dynamics is the process of

analyzing the way users type by monitoring keyboard inputs and authenticating

them based on habitual patterns in their typing rhythm. Although the use of a

behavioral trait (rather than an anatomical characteristic) as a sign of identity has

inherent limitations, for example, that di�erent keyboards may a�ect the normal

typing behavior of a user, we argue that when implemented in conjunction with

other forms of identi�cation (for example, identi�cation based on knowledge of a

password), keystroke dynamics may allow for the design of robust authentication

systems.

Our empirical results suggest that the level of veri�cation accuracy attained

with static biometrics such as �ngerprints (where false-alarm rates of less than

1% are not uncommon) is probably not achievable with a behavioral characteristic

alone. In that regard, we believe that it is unlikely that successful user recognition

systems based on keystroke dynamics can be built, unless their application is re-

stricted to more con�rmed environments than those under which our experiments

were conducted. Though in the past years additional studies [76, 75] have been pre-

sented that support the hypothesis that di�erent individuals exhibit characteristics

in their typing rhythm that are strikingly individualistic, and that these character-

istics can be successfully exploited and used for identi�cation purposes, we believe

that the strength of keystroke dynamics can be better realized when it is used in

conjunction with, and not as opposed to, standard techniques for authentication.

42

In Chapter 5 we examine how individualistic characteristics in a user's typing pat-

tern as she inputs her password can be used to build authentication schemes that

are more secure than traditional password-based alternatives. There, we present

a password strengthening technique which extends from the work presented here,

but unlike [48, 49, 39, 4, 43, 15, 55, 2, 76, 75] we do not try to recognize users

based on keystroke typing rhythm. Instead, once a claimed identity is presented,

the user's typing features as she inputs her password are used to generate a re-

peatable key that is tested for access to a login device. Futhermore, the technique

is restricted to logins using the same keyboard. Therefore, our approach involves

a much more speci�c application of the use of keystroke dynamics, but one which

can have signi�cant impact in practice.

43

Chapter 5

Password Strengthening using

Keystroke Dynamics

In a world of smart cards, hand-held authenticators, and zero-knowledge

proofs, it seems pointless to be worrying about poorly-chosen passwords.

Were the world like that, we might agree. Today, it is not|Bellovin and

Merritt.

5.1 Introduction

In this Chapter we propose a technique for improving the security of password-

based authentication. Here, keystroke dynamics is used not to recognize who is

attempting to gain access to a device, but rather to corroborate the identity of

the claimant, given knowledge of a password shared between the authentication

server and the claimant. Speci�cally, we factor password typing patterns into the

44

password authentication process, so that not only are the characters typed during

the login sequence relevant to password authentication, but the manner in which

they are typed is also relevant. Therefore, we rely on knowledge of a secret which

the user types frequently. Intuitively, biometric information is used to strengthen

the password so that an attacker who learns a legitimate user's password must still

mimic the user's normal typing pattern to log in as that user. Moreover, we show

that an attacker who obtains the stored system information used for password

authentication (the analog of the /etc/passwd �le in a typical UNIX environment)

is faced with a more diÆcult task to exhaustively search for the password than in

a traditional password-based scheme.

There are several challenges to realizing this goal. The �rst is to identify fea-

tures of a user's typing patterns (e.g., the latency and duration of keystrokes while

typing the password) that the user reliably repeats (approximately), and to trans-

late these features into \secret bits" that can be used to strengthen the password.

The second is to identify those features when the user logs in, and use them in the

veri�cation of the password. At the same time, however, the attacker who cap-

tures system information used to verify passwords should be unable to determine

which particular features are relevant to each user's authentication process, since

revealing this information could reveal information about what the characters re-

lated to that password feature are. For example, suppose the attacker learns that

the latency between the �rst and second keystrokes is a feature that is reliably re-

peated by the user and thus is used in the authentication process. Then this may

reveal information about the �rst and second characters of the password, since

due to keyboard dynamics, some digraphs are more amenable to reliable latency

45

repetitions than others.

The scheme we propose e�ectively hides information about which of a user's

typing features are relevant to authentication, even from an attacker that captures

all system information related to password authentication. At the same time, it

employs novel techniques to impose an additional (multiplicative) computational

overhead on the attacker who attempts to exhaustively search the password space.

The overhead grows with the number of features that the user reliably repeats,

which we show empirically will be large for the average user. Our empirical studies

also demonstrate that our scheme provides suÆcient ease of use to be viable in

practice.

The main limitation of our scheme is that a user whose typing patterns change

substantially between consecutive logins may be unable to login. The most com-

mon circumstance in which this could happen is if the user attempts to log in

to her account using a di�erent style keyboard than her regular one, which can

cause a dramatic change in her typing patterns. Thus, our scheme is most suitable

for use in, for example, logins to laptops, and not for use in remote logins where

the user's keyboard varies depending on her location. A second limitation of our

scheme is that it generally precludes sharing an account among multiple users,

since one user's keystroke patterns will be di�erent from another's.

5.2 Related Work

As described in Section 5.1, the use of keystroke features to strengthen user pass-

words is similar to salting, a technique that goes back at least twenty years [63].

46

Though an analogy to salting is an e�ective tool for understanding the goals of

our scheme, the mechanics of our scheme di�er fundamentally from salting. In our

scheme, a strengthened password is generated from a textual password and the

user's typing features, but not by concatenating the password with bits generated

from the user's features. Rather, the password is used to decrypt a table of infor-

mation, and the user's typing features are used to index into the table to select

information from which the strengthened password is computed. This imposes an

additional multiplicative computational overhead on an attacker conducting an o�-

line dictionary attack, because upon decrypting the table with a guessed password,

the attacker cannot immediately determine if the guessed password is correct. In-

stead, the attacker must sample elements of the table and generate corresponding

strengthened passwords until he either �nds the correct one or determines that the

guessed password was incorrect.

We reiterate that the technique presented here di�ers in its basic goals from

the works of [9, 10, 31, 41, 53, 89] that protect against o�-line guessing attacks

by using public-key techniques. Our technique expand the password space that an

o�-line attacker must explore, but allow the attacker to con�rm when the correct

password has been found. These other works on the other hand, do the opposite:

they do not expand the password space, but rather try to prevent the attacker

from con�rming a correct guess. Furthermore, our work is the �rst to o�er stronger

security against both online and o�-line attackers, and is also the �rst to generate a

repeatable secret based on a password and its keystroke dynamics that is stronger

than the password itself and that can be used in applications other than login.

47

5.3 Preliminaries

For the rest of this Chapter, we denote by pwda the correct string of characters

for the password �eld when logging into account a. That is, pwda denotes the

correct text password as used in computer systems today. In our architecture,

typing pwda is necessary but not suÆcient to access a. Rather, the login program

combines the characters typed in the password �eld with keystroke features to form

an strengthened password that is tested to determine whether login is successful.

The correct strengthened password for account a is denoted spwda. The login

program will fail to generate spwda if either something other than pwda is entered

in the password �eld or if the user's typing patterns signi�cantly di�er from the

typing patterns displayed in previous successful logins to the account. Here we

present our scheme in a way that maintains spwda constant across logins, even

despite gradual shifts in the user's typing patterns, so that spwda can also be used

for longer-term purposes (e.g., �le encryption). However, the scheme can be easily

tuned to change spwda after each successful login.

5.3.1 Features

In order to generate spwda from pwda and the (correct) user's typing patterns, the

login program measures a set of features whenever a user types a password. Em-

pirically we examine the use of keystroke duration and latency between keystrokes

as features of interest, but other features (e.g., force of keystrokes) could be used

if they can be measured by the login program. Abstractly, we de�ne a feature by a

function � : A� N ! R
+ where �(a; `) is the measurement of that feature during

48

the `-th (successful or unsuccessful) login attempt to account a. For example, if

the feature � denotes the latency between the �rst and second keystrokes, then

�(a; 6) is that latency on the sixth attempt to login to a. Let m denote the num-

ber of features that are measured during logins, and let �1; : : : ; �m denote their

respective functions.

For each feature �i, let ti 2 R
+ be a value such that the mean of �i(a; `)

over all a 2 A and all ` is roughly ti. Intuitively, ti is a threshold such that

when a particular user shows regularity in a feature, the mean value of that user's

measurements on that feature instance is equally likely to fall above or below ti,

in the absence of information about the user's password or typing patterns.

Central to our scheme is the notion of a distinguishing feature. For each feature

�i, let ti 2 R
+ be a �xed parameter of the system. Also, let �ai and �ai be the mean

and standard deviation of the measurements �i(a; j1); : : : ; �i(a; jh) where j1; : : : ; jh

are the last h successful logins to the account and h 2 N is a �xed parameter of the

system. We say that �i is a distinguishing feature for the account (after these last

h successful logins) if j�ai � tij > k�ai where k 2 R
+ is a parameter of the system.

If �i is a distinguishing feature for the account a, then either ti > �ai + k�ai , i.e.,

the user consistently measures below ti on this feature, or ti < �ai � k�ai , i.e.,

the user consistently measures above ti on this feature. The value ti should be

chosen so that users' distinguishing features fall above or below ti with roughly

equal likelihood. In Section 5.8, we give empirically generated values for ti for

features based on keystroke durations and keystroke latencies.

49

5.3.2 Security Goals

In our login architecture, the system stores information per account that is accessed

by the login program to verify attempts to login. This information is necessarily

based on pwda and spwda, but will not include either of these values themselves.

This is similar to UNIX systems, for example, where the /etc/passwd �le contains

the salt for that password and the result of encrypting a �xed string using the

password and salt. In our login architecture, the information stored per account

will be somewhat more extensive, though will still be relatively small.

The �rst attacker with which we are concerned is an attacker who captures this

information stored in the system and then uses this information in an o�-line e�ort

to �nd spwda (and pwda). A �rst and basic requirement is that any such attack be

at least as diÆcult as exhaustively searching for pwda in a traditional UNIX setting

where the attacker only has /etc/passwd. In particular, if the user chooses pwda

to be diÆcult for an attacker to �nd using a dictionary attack, then spwda will be

at least as secure in our scheme.

A more ambitious goal of our scheme is to increase the work that the attacker

must undertake by a considerable amount, even if pwda is chosen poorly, i.e., in a

way that is susceptible to a dictionary attack. The amount of additional work that

the attacker must undertake generally grows with the number of distinguishing

features for the account (when the attacker captured the system information).

On one extreme, if there are no distinguishing features for the account and the

attacker knows this,1 then the attacker can �nd pwda and spwda in roughly the

1Our scheme hides the number of distinguishing features for an account. However, if the attacker

captures system information at a point in time when he knows that a certain account has not yet been

50

same amount of time as the attacker would take to �nd pwda in a traditional UNIX

setting. On the other extreme, if all m features are distinguishing for the account,

then the attacker's task can be slowed by a multiplicative factor up to 2m. In

Section 5.8, we provide an empirical analysis of what this slowdown factor is likely

to be in practice. In addition, we show how our scheme can be combined with

other standard salting techniques, either with a stored salt [63] or one that is not

stored [56]. Thus, the slowdown factor that our scheme achieves is over and above

any bene�ts that conventional salting techniques o�er.

A second attacker that we defend against with our scheme is an \online" at-

tacker who learns pwda (e.g., by observing it being typed in) and then attempts to

log in using it.

5.4 Overview

We begin with a high-level explanation of our technique. When an account a is

initialized, the initialization program chooses the value of spwda at random from Z
�
q,

where q is a suÆciently large prime number (e.g., jqj = 160 bits). The initialization

program then creates a table of 2m shares of the secret spwda using Shamir's secret

sharing [79] (See section 3.2) as follows: it chooses a random polynomial fa 2 Z
�
q[x]

of degree m � 1 such that fa(0) = spwda, and creates a two-column \instruction

table"

used, then he would know that there are no distinguishing features for that account.

51

1

2

...

m

< ti � ti

fa(2) fa(3)

fa(4) fa(5)

...
...

fa(2m) fa(2m + 1)

The initialization program encrypts each element of both columns with pwda. This

(encrypted) table is stored in the system. In the `-th login attempt to a, the login

program uses the entered password text pwd0 to decrypt the columns of the table

(which will result in the previously stored values only if pwda = pwd0). For each

feature �i, the value of �i(a; `) indicates which of the two values in the i-th row

should be used in the interpolation to �nd fa(0) (= spwda): if �i(a; `) < ti, then

the value in the �rst column is used, and otherwise the value in the second column

is used. In the �rst logins after initialization, the value in either the �rst or second

column works equally well. However, as distinguishing features �i for this account

develop over time, the login program perturbs the value in the second column of

row i if �ai < ti and perturbs the value in the �rst column of row i otherwise. So,

the proper interpolation to �nd fa(0) in the future will succeed only when future

measurements of features are consistent with the user's previous distinguished

features.

5.5 Stored Data Structures and Initialization

Let q be a prime number as described above, and letG be a pseudorandom function

family [74] such that for any key K and any input x, GK(x) is a pseudorandom

52

element of Z�q.
2 In practice, a likely implementation of G would be GK(x) =

F (K; x) where F is a one-way function, e.g., SHA-1 [78].

There are two data structures stored in the system per account.

� A plaintext instruction table, which contains \instructions" regarding how

feature measurements are to be used to generate spwda. More speci�cally,

this instruction table contains an entry of the form

<i; �ai ; �ai>

for each feature �i. Here,

�ai = y0aiGpwda
(2i) mod q

�ai = y1aiGpwda
(2i + 1) mod q

and y0ai; y
1
ai

are elements of Z�q. Initially (i.e., when the user �rst chooses

pwda), all 2m values fy0ai; y
1
ai
g1�i�m are chosen such that all the points

f(2i; y0ai); (2i+ 1; y1ai)g1�i�m lie on a single, random polynomial fa 2 Z�q[x] of

degree m� 1 such that fa(0) = spwda.

� An encrypted, constant-size history �le, which contains the measurements for

all features over the last h successful logins to a for some �xed parameter h.

More speci�cally, if since the last time pwda was changed, the login attempts

j1; : : : ; j` to a were successful, then this �le contains �i(a; j) for each 1 � i �

m and j 2 fj`�h+1; : : : ; j`g. In addition, enough redundancy is added to this

2That is, a polynomially-bounded adversary not knowing K cannot distinguish between GK(x) and

a randomly chosen element of Z�

q, even if he is �rst allowed to examine GK(x̂) for many x̂'s of his choice

and is allowed to even pick x (as long as it is di�erent from every x̂ he previously asked about).

53

�le so that when it is decrypted with the key under which it was previously

encrypted, the fact that the �le decrypted successfully can be recognized.

When a user �rst chooses her password pwda or changes pwda, this �le is

initialized with all values set to 0, and then is encrypted with spwda = fa(0)

(see above) using a symmetric cipher. The size of this �le should remain

constant over time (e.g., must be padded out when necessary), so that its

size yields no information about l.

5.6 The Login Protocol

The login program takes the following steps whenever the user attempts to login

to a. Suppose that this is the `-th attempt to login to a, and let pwd0 denote the

sequence of characters that the user typed. The login program takes the following

steps.

1. For each �i, the login program uses pwd0 to \decrypt" �ai if �i(a; `) < ti, and

uses pwd0 to \decrypt" �ai otherwise. Speci�cally, it assigns

(xi; yi) =

8<
:

(2i; �aiGpwd0(2i)
�1 mod q) if �i(a; `) < ti

(2i+ 1; �aiGpwd0(2i+ 1)�1 mod q) if �i(a; `) � ti

The login program now holds m pairs f(xi; yi)g1�i�m.

2. The login program sets

spwd0 =
mX
i=1

yi�i mod q

where

�i =
Y

1�j�m;j 6=i

xj
xj � xi

54

is the standard Lagrange coeÆcient for interpolation (e.g., see [60, p. 526]). It

then decrypts the history �le using spwd0. If this decryption yields a properly-

formed plaintext history �le, then the login is deemed successful. (If the login

were deemed unsuccessful, then the login procedure would halt here.)

3. The login program updates the data in the history �le, computes the standard

deviation �ai and mean �ai for each feature �i over the last h successful logins

to a, encrypts the new history �le with spwd0 (i.e., spwda), and overwrites the

old history �le with this new encrypted history �le.3

4. The login program generates a new random polynomial fa 2 Z
�
q[x] of degree

m� 1 such that fa(0) = spwd0 (i.e., spwda).

5. For each distinguishing feature �i, i.e., j�ai � tij > k�ai , the login program

chooses new random values y0ai ; y
1
ai
2 Z

�
q subject to the following constraints:

�ai < ti) fa(2i) = y0ai ^ fa(2i+ 1) 6= y1ai

�ai � ti) fa(2i) 6= y0ai ^ fa(2i+ 1) = y1ai

For all other features �i|i.e., those for which j�ai � tij � k�ai , or all fea-

tures if there have been fewer than h successful logins to this account since

initialization (see Section 5.3.1)|the login program sets y0ai = fa(2i) and

y1ai = fa(2i+ 1).

6. The login program replaces the instruction table with a new table with an

3For maximum security, steps 2 and 3 should be performed without writing the plaintext history �le

to disk. Rather, the login program should hold the plaintext history in volatile storage only.

55

entry of the form

<i; �0ai ; �
0
ai
>

for each feature �i. Here,

�0ai = y0aiGpwd0(2i) mod q

� 0ai = y1aiGpwd0(2i+ 1) mod q

where y0ai ; y
1
ai
are the new points generated in the previous step.

Step 4 above is particularly noteworthy for two reasons. First, due to this step,

the polynomial fa is changed to a new random polynomial during each successful

login. This ensures that an attacker viewing the instruction table at two di�erent

times will gain no information about which features switched from distinguishing

to non-distinguishing and vice-versa during the interim logins. That is, each time

the attacker views an instruction table for an account, either all values will be the

same since the last time (if there were no successful logins since the attacker last

saw the table) or all values will be di�erent. Another important aspect of Step 4

is that fa, though generated randomly, is chosen so that fa(0) = spwda. This is

what ensures that spwda remains constant across multiple logins.

Step 5 is also noteworthy, since it shows that whether each feature is distinguish-

ing is recomputed in each successful login. Hence, a feature that was previously

distinguishing can become undistinguishing and vice-versa. This is the mechanism

that enables our scheme to naturally adapt to gradual changes in the user's typing

patterns over time.

We reiterate that our scheme can be easily combined with standard salting

techniques to further improve security. A natural place to include an additional

56

salt is just before using spwda to decrypt the history �le. For example, when spwda

is generated during a login, the key used to decrypt the history �le is Gspwda
(s)

where s is a salt. The salt can be stored as is typically done today, or may not

be stored so that the system must exhaustively search for it [56]. In this case,

the extra salt results in an additional multiplicative factor that the attacker must

overcome.

5.7 Security

In this section we discuss the security of our scheme. First, it is immediate that

our scheme helps defend against an on-line attacker who learns (or tries to guess)

pwda and then attempts to log into a using pwda. Unless this attacker can mimic

the measurements for the account's distinguishing features, the attacker will fail

in logging into the account.

We now turn to the o�-line attacker who obtains account a's history �le and

instruction table, and attempts to �nd the value of spwda. Presuming that the

encryption of the history �le using spwda is secure, since the values y0ai; y
1
ai

are

e�ectively encrypted under pwda, and since pwda is presumably chosen from a

much smaller space than spwda, the easiest way to �nd spwda is to �rst �nd pwda.

Thus, to argue the bene�ts of this scheme, we have to show two things. First,

we have to show that �nding pwda is not made easier in our scheme than it is

in a typical environment where access is determined by testing the hash of the

password against a previously stored hash value. Second, we have to show that

our scheme o�ers security bene�ts, i.e., that the cost to the attacker of �nding

57

spwda is generally greater by a signi�cant multiplicative factor.

That searching for pwda is not made easier in our scheme is obvious. The

attacker has available only the instruction table with one entry per feature, and

the encrypted history �le. Since the features listed in the instruction table are

all possible features (and not just those that are distinguishing for account a),

and since the contents of each row are pseudorandom values, the rows reveal no

information about pwda. And, all other data available to the attacker is encrypted

with spwda.

The more interesting security consideration in this scheme is how much security

it achieves over a traditional password scheme, i.e., how much harder it is to �nd

spwda than it is to �nd pwda. Suppose that the attacker captured the history �le

and instruction table after ` � h successful logins to a, and let d be the number

of distinguishing features for this account in the `-th login. When guessing a

password pwd0, the attacker can decrypt each �eld �ai and �ai using pwd0 to yield

points (2i; ŷ0ai) and (2i+1; ŷ1ai), respectively, for 1 � i � m. Note that ŷ0ai = y0ai and

ŷ1ai = y1ai if and only if pwd
0 = pwda. Therefore, there exists a bit vector b 2 f0; 1g

m

of length m such that f(2i + b(i); ŷ
b(i)
ai g1�i�m interpolates to a polynomial f̂ with

f̂(0) = spwda, if and (a.s.) only if pwd0 = pwda. (Here, b(i) denotes the i-th bit of

b.) Consequently, one \naive" approach that the attacker can take is to enumerate

through all vectors b 2 f0; 1gm and, for each f̂ thus computed, see if f̂(0) = spwda

(i.e., if f̂(0) will decrypt the history �le). This approach slows down the attacker's

search for spwda (and pwda) by a multiplicative factor of 2m.

However, the attacker has potentially more powerful attacks at his disposal

using error-correcting techniques [32]. In [62] we extend the scheme presented

58

here to confound the application of such error-correcting techniques. Since the

techniques available to the attacker are outperformed by the \naive" approach

for the range of m we are concerned with here, i.e., m � 15 for an 8-character

password, we do not present that variation.

5.8 Empirical Analysis

In this section we examine our proposal in light of empirical typing data presented

in Chapter 4. Obviously this data will enable only a rough and, we believe, pes-

simistic analysis of our proposal, because a user tends to type her password more

frequently than every one to six weeks. Indeed, we expect that once or more per

day is typical. Therefore, a password should be much more \practiced" than the

sentences used in this study and thus will yield much better results than the data

here does. Nevertheless, this data already suggests that our scheme should be

viable in practice, and will often result in a signi�cant improvement in security.

Due to space limitations, here we provide an analysis for our scheme only for the

case k = 1, where a feature �i is distinguishing if j�ai�tij > k�ai (see Section 5.3.1).

In general, a lower value of k increases the number of distinguishing features per

user and thus increases the sensitivity of login to user typing patterns. On the

other hand, a higher value of k makes it easier for the user to log in, but tends

to decrease the number of distinguishing features per user. As we show here, the

value k = 1 seems to o�er a good balance between security and ease of use.

59

5.8.1 Choosing ti

The strength of our proposal is enhanced if the number d of distinguishing features

for a user is large relative to the number m of features overall. In this section we

choose values of ti for features based on duration and latency, and based on our

data set, we show that in fact the ratio of d to m is likely to be high on average.

Let C denote the set of characters typed in these experiments, and let U be

the set of users in these experiments. For each u 2 U and c 2 C,4 let �dur(u; c)

be the mean duration of the keystrokes in which u typed c, and let �dur(u; c)

be the standard deviation of these measurements. Similarly, for each u 2 U ,

c1; c2 2 C,5 let �lat(u; c1; c2) be the mean latency between c1 and c2 whenever u

typed c1 followed by c2, and let �lat(u; c1; c2) be the standard deviation of these

measurements. Given values tdur and tlat, we de�ne the following values:

� lowdur is the percentage of all (u; c) pairs such that tdur > �dur(u; c)+�dur(u; c)

� highdur is the percentage of all (u; c) pairs such that tdur < �dur(u; c)��dur(u; c)

� lowlat is the percentage of all (u; c1; c2) triples such that tlat > �lat(u; c1; c2) +

�lat(u; c1; c2)

� highlat is the percentage of all (u; c1; c2) triples such that tlat < �lat(u; c1; c2)�

�lat(u; c1; c2)

Based on our data, reasonable values of tdur and tlat to support our scheme are

shown in Table 5.1. These values imply that lowdur � highdur and lowlat � highlat.

4Only pairs (u; c) for which we had at least 8 samples were counted.
5Only triples (u; c1; c2) for which we had at least 6 samples were counted.

60

Thus, if in the scheme of Section 5.4, we set ti = tdur for each feature �i that is

some keystroke's duration (e.g., �i is the duration of the second keystroke), then

the attacker has little a priori basis to predict whether the user's mean is above or

below ti, in the case that �i is a distinguishing feature for that user. The attacker

is in a similar situation with respect to the latency-based features �i if we set

ti = tlat. The uncertainty faced by the attacker due to these choices of tdur and tlat

is further analyzed in Section 5.8.2.

Table 5.1: Choices for tdur and tlat

tdur = 0:088709s tlat = 0:121367s

lowdur = 37:1% lowlat = 32:9%

highdur = 30:9% highlat = 31:6%

The fact that lowdur + highdur < 100% means that for various u and c, it was

the case that j�dur(u; c) � tdurj � �dur(u; c). This implies that when such a user

adopts such a character for a particular position in her password, the duration

of that character position is not likely to be a distinguishing feature for the user.

However, note that for the majority of (u; c) pairs|68% of them|choosing the

character c for a position in u's password yields a distinguishing feature for the

user. A similar situation holds for latencies between characters, where in this case

the majority is 64:5%.

61

5.8.2 Entropy of Distinguishing Features

Section 5.8.1 demonstrated choices of tdur and tlat that yielded a large number of

distinguishing features for the average account, based on the user population in our

experiments. This alone, however, is not enough to conclude that our scheme adds

a signi�cant amount of security. To see why, suppose for an extreme case that all

users could be partitioned into \slow typists" and \fast typists": slow typists have

the property that for any of their distinguishing features �i, �ai > ti (where a is

the user's account), and analogously fast typists have the property that �ai < ti for

all of their distinguishing features �i. Then, even if all of an account's features are

distinguishing, the o�-line attacker only needs to examine two possibilities upon

guessing a password pwd0: either the values in the �rst column of the (decrypted)

instruction table, or the values in the second column. If neither of these columns

can be used to generate spwda, then the attacker can conclude with high probability

that pwd0 6= pwda, after examining only 2 of the 2m possibilities.

Ideally, users would type \randomly", in the sense that for any of an account's

distinguishing features, whether that feature is \high" or \low" is uncorrelated to

other distinguishing features for that account. Of course, one cannot expect this

to be the case in reality. Therefore we measure this degree of correlation. We

need the following de�nitions. For a user u and character c, we say that c is a

distinguishing character for u if j�dur(u; c)� tdurj > �dur(u; c). Similarly, for a user

u and a character pair (c1; c2), we say that (c1; c2) is a distinguishing character

pair for u if j�lat(u; c1; c2) � tlatj > �lat(u; c1; c2). A distinguishing event e for user

u is either a distinguishing character or distinguishing character pair for u. For a

62

distinguishing event e, we de�ne �(u; e) = �dur(u; c) and �(u; e) = �dur(u; c) if e

denotes the distinguishing character c for u, and we de�ne �(u; e) = �lat(u; c1; c2)

and �(u; e) = �lat(u; c1; c2) if e denotes the distinguishing character pair (c1; c2)

for u. Finally, te = tdur if e is a distinguishing character, and te = tlat if e is a

distinguishing character pair.

Now consider the following experiment. For a �xed number of distinguishing

features d, 0 � d � 15, consider the bit string b 2 f0; 1gd generated by (i) choosing

a user u uniformly at random from U , (ii) choosing a sequence of distinguishing

events e1; : : : ; ed uniformly at random (allowing repetition) from all distinguishing

events for u, such that at most 7 events are distinguishing character pairs and at

most 8 are distinguishing characters, and (iii) for each ei, if �(u; e) < te then set

b(i) = 0 and otherwise set b(i) = 1. Then, computing the entropy on the distri-

bution of b characterizes the degree of correlation among a user's distinguishing

features for 8-character passwords. On one extreme, if all users could be parti-

tioned into \fast" or \slow" typists, then the entropy of this distribution would be

one, regardless of d. On the other extreme, if each user types \randomly" in the

sense described above, then the entropy of this distribution is d.

The entropy of this distribution based on our data, as well as the entropy of

the distributions when restricted only to 8 distinguishing characters (duration) or

7 character pairs (latency), are shown in Figure 5.1. This �gure demonstrates that

though users are far from the ideal case of \random", additional distinguishing

features do contribute entropy, at least in the range of d that we are likely to

encounter for 8-character passwords. Consequently, the job of the o�-line attacker

does become more diÆcult as the number of distinguishing features increases.

63

2 4 6 8 10 12 14
1

2

3

4

5

6

Number of distinguishing features

E
n

tr
o

p
y

combined
duration
latency

Figure 5.1: Approximate entropy of d distinguishing features

If the results of this calculation turn out to be representative in general, as

does our derived expected value of d � 0:66m from Section 5.8.1, then this sug-

gests that the average user will have roughly 10 distinguishing features for an

8-character password and that these 10 distinguishing features will impose an ad-

ditional multiplicative work factor of roughly 26:39 � 84 on the o�-line attacker's

search for spwda (or pwda). Moreover, Figure 5.1 does not capture the full uncer-

tainty that the attacker faces, since the attacker does not know the features that

are distinguishing for any given account or even the number of distinguishing fea-

64

tures for that account. The data presently available to us does not permit a more

precise calculation of this full uncertainty, though clearly the entropy re
ected in

Figure 5.1 is but one component of the uncertainty that the attacker faces.

We caution the reader that the experiment measured in Figure 5.1 is only a

coarse characterization of the entropy due to distinguishing features. This is partly

due to the nature of the data available to us, as already discussed. Moreover, our

experiment ignores certain constraints that might a�ect the entropy for high values

of d. For example, a valid experiment for the case d = 15 would require that any

two distinguishing characters c1 and c2 at adjacent positions in the password be

separated by the distinguishing character pair (c1, c2), i.e., consisting of the same

two characters. Due to insuÆcient data to conduct an experiment under the full

set of such constraints, we have waived certain constraints here. Thus, Figure 5.1

should not be viewed as a precise characterization of entropy due to distinguish-

ing features, but rather primarily as evidence that entropy due to distinguishing

features does increase as the number of distinguishing features grows.

5.8.3 Reliability of Password Entry

As discussed in Section 5.7, our scheme o�ers additional security against an online

attacker who learns pwda (e.g., by observing it being typed) and attempts to log

into a. Unless the attacker can type like the legitimate user, then the attacker

will fail. However, this implies that if the legitimate user types her password

abnormally, her login will also fail. Thus, it is important to empirically analyze

not only the security of our scheme, but also the ability of the legitimate user to

reliably log into her own account.

65

To measure this reliability, we split our records of user typing patterns into

two groups, namely \training" data and \test" data. For each user u, we com-

puted the distinguishing characters and character pairs for that user based on the

training data only. Now consider the following experiment: For a �xed number of

distinguishing features d, 1 � d � 15, consider the bit strings btrain; btest 2 f0; 1gd

generated as follows:

1. Choose a user u uniformly at random from U .

2. Choose a sequence of distinguishing events e1; : : : ; ed for u (allowing repeti-

tion) uniformly at random, where at most 7 are distinguishing character pairs

and at most 8 are distinguishing characters.

3. For each ei, if �(u; ei) < te then set btrain(i) = 0 and otherwise set btrain(i) = 1.

4. For each ei: If ei is a distinguishing character c, then choose an occurrence

of u typing c from the test data uniformly at random and set btest(i) = 0 if

the duration of that occurrence was less than tdur and btest(i) = 1 otherwise.

If ei is a distinguishing character pair (c1; c2), then choose an occurrence of u

typing (c1; c2) from the test data set uniformly at random and set btest(i) = 0

if the latency of that occurrence was less than tlat and btest(i) = 1 otherwise.

Intuitively, when btrain = btest in the above experiment, this corresponds to a suc-

cessful login by the user, where the login attempt is generated from the test data.

The fraction of cases in which btrain = btest is shown in Figure 5.2.

As expected, Figure 5.2 shows that the reliability of password entry drops as

the number of distinguishing features grows. However, even if all 15 features of an

66

2 4 6 8 10 12 14

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

Number of distinguishing features

P
ro

ba
bi

lit
y

of
 s

uc
ce

ss

Figure 5.2: Approximate probability of successful password entry

8-character password are distinguishing for the user, our data still suggests that

each of the user's login attempts succeeds with probability greater than 1=3 (among

those attempts in which the user types the correct password pwda for the account

a). That is, the expected number of login attempts before the user successfully logs

in is less than 3. We thus believe that our scheme o�ers good reliability for user

login. We reiterate that we believe our data to present a pessimistic view of our

scheme, and consequently in practice, we expect that our scheme will o�er even

better login reliability. Moreover, login reliability can be improved by increasing

67

the value of k, at the cost of decreasing the number of distinguishing features for

the average user.

5.9 Summary

Given that our scheme is at least as secure as typical password schemes in use

today, perhaps the most cogent reason to not use our scheme is the risk that a

user, due to some a sharp change in her typing patterns, �nds herself unable to log

in after repeated attempts. As discussed in Section 5.1, to minimize this risk we

further recommend that our scheme be used primarily to support local (console)

logins on the same keyboard, e.g., for �le encryption or virtual private network

access on laptops, which are frequently stolen.

In addition, an appropriate recovery channel can be established for the event

that a user �nds herself unable to gain access to her account a after repeated

attempts even though she remembers pwda. A recovery program can easily be

derived from the login program described in Section 5.4: the recovery program

decrypts all instruction table entries using the password pwda (provided by the

user) and then exhaustively searches to �nd spwda (within time proportional to

2m). However, this recovery program should not simply be used as an alternative

login program, since it would enable an attacker who learns pwda to log into a

without having to recreate the legitimate user's keystroke dynamics. Rather, the

use of this recovery program for logging in should be under tighter controls, e.g,

an administrator's.

Another possible recovery channel is to employ a more cumbersome but more

68

secure technique for recovering spwda. For example, spwda could additionally be

stored encrypted under a secret passphrase that is required to be substantially

longer than 8 characters, under a secret key that can be accessed only with a se-

cure physical token, or, in case a graphical input device is available, under a key

generated from a graphical password that is more secure than conventional pass-

words [42]. This alternative could even be made available for login under normal

circumstances, so that the user can log in if she either types her shorter pass-

word with her typical keystroke dynamics, or if she can remember the more secure

passphrase or graphical password, or has the required token available. However,

doing so might hinder the ability of our scheme to gradually adapt to changes in

the user's typing patterns, if fewer user logins take place using our scheme.

69

Chapter 6

Graphical Passwords

When people choose their own keys, they generally choose poor ones.

This is not always due to poor security practices; \Barney" is easier to

remember than *9 (hH/A"|Bruce Schneider.

In this Chapter we propose and evaluate new authentication schemes that ex-

ploit features of graphical input displays to achieve better security than that of

traditional schemes. Graphical input devices enable the user to decouple the posi-

tion of inputs from the temporal order in which those inputs occur, and we show

that this decoupling can be used to generate password schemes with substantially

larger (memorable) password spaces. In order to evaluate the security of one of our

schemes, we devise a novel way to capture a subset of the \memorable" passwords

that, we believe, is itself a contribution.

We explore an approach to user authentication that generalizes the notion of a

textual password and that, in many cases, improves the security of user authenti-

cation over that provided by textual passwords. We design and analyze graphical

70

passwords, which can be input by the user to any device with a graphical input

interface. A graphical password serves the same purpose as a textual password,

but can consist, for example, of handwritten designs (drawings), possibly in addi-

tion to text. The devices by which we are primarily motivated are personal digital

assistants (PDAs) such as the Palm PilotTM, Apple NewtonTM, Casio Cassiopeia

E-10TM, and others, which allow users to provide graphics input to the device via

a stylus. More generally, graphical passwords can be used whenever a graphical

input device, such as a mouse, is available.

To the best of our knowledge, the notion of a graphical password is due to

Blonder [12]. That work proposed a password scheme in which the user is presented

with a predetermined image on a visual display and required to select one or more

predetermined positions (\tap regions") on the displayed image in a particular

order to indicate his or her authorization to access the resource. Beyond this

proposal, however, [12] did not further explore the power of graphical passwords

or argue security for its particular proposal.

In this Chapter we considerably advance the theory and practice of graphical

passwords. We take as a main criterion the need to evaluate graphical passwords'

security relative to that of textual passwords. We design two graphical password

schemes that we believe to be more secure than textual passwords (and more

secure than the scheme of [12]), and we employ novel analysis techniques to make

this argument. Moreover, we describe our implementation of one of our graphical

password schemes on the Palm PilotTM.

The graphical password schemes that we propose derive their strength from the

following observation: A graphical interface for providing input enables the user to

71

decouple the positions of the inputs from their temporal order. This is in contrast

to textual passwords input via a keyboard: here, the temporal order in which the

user types characters uniquely determines their position in the password. However,

in a graphical password, e.g., consisting of several drawn lines, the �nal position

of each line can be determined independently of the temporal order in which the

lines are drawn. We show that this independence between input position and

order can be used to build interesting new password schemes, and in some cases

obtain authentication that is convincingly stronger than textual passwords but not

signi�cantly harder to remember.

The �rst graphical password scheme builds directly on textual password

schemes, by enhancing the input of textual passwords using graphical techniques.

In this case, if we assume the same underlying distribution on the choice of the

password, the graphical password is at least as strong as the textual password

that underlies it, and even a conservative estimate of the variations introduced

by the graphical input yields a substantial improvement in strength over the

purely textual version. We propose and implement a second scheme, called \draw

a secret" (DAS), which is purely graphical; the user draws a secret design (the

password) on a grid. Here, to argue an improvement over textual passwords, we

de�ne a class of DAS passwords that, we believe, captures a small subset of the

memorable ones. This class consists of those passwords that can be generated by

a short program in a simple grid-based language. We do not argue that every

memorable password has a short program to describe it, but that passwords

describable by short programs are memorable. We show that even this subset of

memorable DAS passwords is larger than the dictionaries of textual passwords to

72

which a high percentage of passwords typically belong.

Throughout this Chapter we focus on graphical passwords that are exactly

repeatable by the user. This distinguishes our work from all works on graphical

pattern recognition of which we are aware (see Section 6.1), where it suÆces for the

device to recognize an input as being suÆciently similar to|but not necessarily the

same as|a previously stored input. Because pattern recognition schemes require

the storage of (some representation of) the plaintext password on the device, the

password is vulnerable to an attacker who captures and probes the device. In

contrast, because graphical passwords are repeatable, our schemes can derive a

secret key, e.g., to encrypt and decrypt �les, without need to store the password

on the device. This protects both the password and the encrypted content from

the attacker if the device falls into the attacker's hands.

The rest of this Chapter is outlined as follows: In Section 6.1 we overview

other password schemes, and put our work in context. In Section 6.2, we present

textual passwords with graphical assistance. In Section 6.3, we proceed to purely

graphical passwords with a scheme called \draw-a-secret" (DAS). Section 6.3.2

shows our design and implementation of a memo pad encryption scheme based on

DAS. Section 6.3.3 proposes novel ways to analyze and estimate the security of

DAS and graphical passwords in general. Finally, Section 6.4 concludes.

6.1 Prior Work

There is a considerable amount of prior work on authenticating users via graphical

inputs to a device, particularly handwritten signatures (see, e.g., [52, 47, 65]). None

73

of these works strive for exact repeatability by the user, and therefore, a model of

the user's graphical input is stored on the device and used to ascertain whether

a new input is suÆciently similar to the previously-stored one to grant access.

This renders it essential to protect the device's (PDA's) storage from probes by an

attacker. In contrast, repeatability is achieved in our schemes, thereby enabling

designs in which the device, if captured, is of little help to the attacker.

The techniques in this Chapter can be combined in natural ways with the

those discussed in Chapter 2 for strengthening textual passwords|i.e., proactive

and reactive password checking, and salting|to improve the security of graphical

passwords, as well.

6.2 Textual Passwords with Graphical Assistance

In this section we present a password selection and input scheme which uses tex-

tual passwords augmented by some minimal graphical capabilities that enable the

decoupling of temporal order of input and the position in which characters are

input. This scheme is interesting because it simply demonstrates the power of

graphical input abilities while yielding a scheme that is convincingly stronger than

textual passwords are today.

We start by de�ning a normal, k-character textual password as a total function

� : f1; : : : ; kg ! A, where A is the set of allowed characters for the textual

password. Intuitively, the domain of � denotes the temporal order of inputs, so

that the user �rst enters �(1), then �(2), and so on. That is, for a password

\tomato", we have �(1) = t, �(2) = o, �(3) = m, �(4) = a, �(5) = t, and

74

�(6) = o.

Now suppose that the user is presented with a simple graphical input display

consisting of, say, eight positions into which to enter a textual password, as illus-

trated in Figure 6.1. In this �gure, step 0 is the initial row of blanks, and steps

1{6 indicate the temporal order in which the user �lls in the blanks; i.e., �(i) is

entered in row i. The password can be placed in the \normal", left-to-right posi-

tions as shown in Figure 6.1a. Due to the graphical nature of the input interface,

however, the user could enter the password in other positions, as well. For ex-

ample, Figure 6.1b shows a modi�cation in which the user enters the password

in a left-to-right manner, but starting from a di�erent initial position than the

leftmost. Figure 6.2c shows entering the password in an \outside-in" strategy.

And, of course, these variations can be combined in the obvious way, as shown in

Figure 6.2d.

Formally, a k-character graphical password in this scheme can be de�ned by a

total function �0 : f1; : : : ; kg ! A � f1; : : : ; mg, where m � k is the number of

positions into which characters can be entered (m = 8 in Figure 6.1). If �0(i) =

(c; j), then this means that the i-th entry (temporally) is the character c in position

j. A conventional textual password �, entered in the standard left-to-right way, can

be expressed in this scheme as a graphical password �0 where �0(i) = (�(i); i). But

as shown in Figure 6.2, more generally we can have variations �0 in which �0(i) =

(�(i); j) and i 6= j. In fact, it is easy to see that each k-character conventional

password � yields m!=(m � k)! graphical passwords �0, and indeed this is the

factor by which the size of the graphical password space exceeds the k-character

conventional password space. This can be a relatively large number: e.g., for k = 8

75

0.

1. t

2. t o

3. t o m

4. t o m a

5. t o m a t

6. t o m a t o

0.

1. t

2. o t

3. o m t

4. o m a t

5. o m a t t

6. o m a t o t

(a) Left-to-right (b) Rotated left

Figure 6.1: Variations on inputting tomato. The word tomato can be input in the

\normal" left to right manner as shown in (a). Step 0 is the initial row of blanks, and

steps 1{6 indicate the temporal order in which the user �lls in the blanks. In addition,

however, the user can vary the position of the letters in tomato. Figure (b) demonstrates

shifting the input left by one.

and m = 10, this factor is approximately 2� 106.

Of course, there are far fewer than 2� 106 variations of each 8-character pass-

word that are memorable for human users. However, it is easy to derive a convinc-

ing lower bound on the improvement this achieves over a conventional password

scheme. It is conservative to assume that the m positional rotations of a password,

plus perhaps a handful of others (e.g., reversal, outside-in, inside-out, evens-then-

odds, odds-then-evens), and combinations thereof, are memorable, because the

choices of position involved in these cases can be derived from simple algorithms

76

0.

1. t

2. t o

3. t m o

4. t m a o

5. t m t a o

6. t m t o a o

0.

1. t

2. o t

3. m o t

4. m a o t

5. m t a o t

6. m t o a o t

(c) Outside-in (d) A more complex example

Figure 6.2: Other strategies for inputing tomato. Figure (c) represents an outside-in

input strategy, and �gure (d) is the combination of (a)-(c).

that are more memorable than the positions themselves. (We will return to this

characteristic of memorability in the next section.) The attacker's work load will

thus be increased by a factor of at least m. An important feature of this scheme is

that it is at least as strong as the initial textual password that was chosen by the

user, assuming that users do not reduce the size of the space of character sequences

that they choose in response to the need to remember a positional order.

There are a number of steps that we can take to make this scheme more us-

able. First, to maximize the ease of inputting passwords with varied position, each

character should be echoed once the user places it in a position, at least with a

nondescript character (e.g., \�") but preferably with the letter itself. This is a

departure from most password-input interfaces, which echo at most a nondescript

77

character in order to protect the password from onlooking persons. However, for

the platforms by which we are primarily motivated, i.e., hand-held PDAs such as

the Palm Pilot, it is much easier to shield the screen from onlookers entirely. Going

further, the interface might allow the user to �rst enter the password \normally"

(left-to-right), and then drag each character to its �nal position in the desired

temporal order.

Inevitably, there are numerous variations on the scheme presented here. One

direction includes arranging the k input positions in some other way than a straight

line (e.g., a grid), to promote other variations in position. Rather than pursuing

these options here, we instead explore a purely graphical approach.

6.3 The Draw-a-Secret (DAS) Scheme

In this section we present a purely graphical password selection and input scheme,

which we call \draw a secret" (DAS). In this scheme, the password is a simple

picture drawn on a grid. This approach is alphabet independent, thus making it

easily accessible for users speaking Chinese, Hebrew, etc. Users are freed from

having to remember any kind of alphanumeric string.

The most compelling reason for exploring the use of a picture-based password

scheme is that humans seem to possess a remarkable ability for recalling pictures

(i.e., line drawings and real objects). The \picture e�ect", that is, the e�ect

of pictorial and object representations on a variety of measures of learning and

memory has been studied for decades [16, 80, 69, 83, 14]. Cognitive scientists and

psychologists have shown that there is a substantial improvement of performance in

78

recall and recognition with pictorial representations of to-be-remembered material

than for verbal representations.

Superiority in recall of objects over words in immediate recall and over short

retention intervals has been demonstrated through a number of experiments. Em-

pirical evidence of the power of pictures over words dates back to the early 1800s;

experiments performed by Calkins [16] showed the recall of words declining by

50% or more over a 72 hour retention interval, and recall of objects dropping by

less than 20% over the same period. Studies exhibiting strikingly high di�erences

in memory recall of pictures over words have since been replicated on numerous

occasions [80, 83, 67, 13]. Some theories that have been proposed to explain these

experimental results are outlined in Appendix 6.3.3.

6.3.1 Password Selection and Input

Consider an interface consisting of a rectangular grid of size G�G. Each cell in this

grid is denoted by discrete rectangular coordinates (x; y) 2 [1; : : : ; G]� [1; : : : ; G].

Suppose that the the user is given a stylus with which she can draw a design

on this grid. The drawing is then mapped to a sequence of coordinate pairs by

listing the cells through which the drawing passes in the order in which it passes

through them, with a distinguished coordinate pair inserted in the sequence for

each \pen up" event, i.e., whenever the user lifts the stylus from the drawing

surface. For example, consider the drawing in Figure 6.3. Here, the coordinate

sequence generated by this drawing is

(2; 2); (3; 2); (3; 3); (2; 3); (2; 2); (2; 1); (5; 5)

79

3

4
56

2

1

1 2 3 4

3

4

1

2

Figure 6.3: Input of a graphical password on a 4 � 4 grid. The drawing is mapped to

a sequence of coordinate pairs by listing the cells in the order which the stylus passes

through them, with a distinguished coordinate pair inserted in the sequence whenever

the stylus is lifted from the drawing surface.

where (5; 5) is the distinguished \pen up" indicator. If there were a second stroke

in this example, then its sequence would be appended to the end of the sequence

above, and similarly for subsequent strokes. In this way, we divide the space of

possible drawings into equivalence classes, two drawings being equivalent if they

have the same encoding, or in other words if they cross the same sequence of grid

cells, with the breaks between strokes occurring in the same places.

First we give some terminology. We de�ne the neighbors, N(x;y), of a cell (x; y)

to be the subset of the set of cells f(x� 1; y); (x+1; y); (x; y� 1); (x; y+1)g whose

elements exist in the grid. We then de�ne a stroke to be a sequence of cells fcig,

80

in which ci 2 Nci�1
, and which does not contain a \pen up" event. A password is

then de�ned to be a sequence of strokes separated by \pen up" events. The length

of a stroke is the number of coordinate pairs it contains, while the total length of

a password is the sum of the lengths of its component strokes (excluding the \pen

up" characters).

As with the scheme of Section 6.2, this scheme is most viable if the user's strokes

are echoed as curves while they are drawn. Again we appeal to the maneuverability

of the devices we are targeting (i.e., PDAs) to support the restriction that the user

must shield the input display from onlookers.

Our requirement of repeatability constrains the parameters of this scheme. As

long as the user's current drawing lies in the same equivalence class as the original

drawing, she has successfully repeated a chosen password. In general, this gives the

user suÆcient tolerance when (involuntarily) varying the drawing, provided that

the cells of the grid are not too small. Indeed, this was the purpose of separating the

drawings into equivalence classes to begin with. DiÆculties might arise however,

when the user chooses a drawing that contains strokes that pass too close to a grid-

line. In those cases, the user might vary the drawing in such a way as to change

the resulting sequence of coordinates. We consider the following two possibilities

to address this problem: (1) The user is o�ered to view the internal representation,

depicting the path of cells, when she chooses a password so that she can con�rm

which cells were actually touched by the drawing. (2) The system does not accept

a drawing which contains strokes that are located \too close" to a grid line. In the

implementation, described in Section 6.3.2, we o�er both alternatives.

81

6.3.2 Application of DAS: An Encryption Tool for a PDA

Our graphical password schemes are motivated primarily by PDAs that o�er graph-

ical input capabilities. We now describe our implementation of a memo pad en-

cryption tool for the Palm Pilot that uses a user-input graphical password to derive

the encryption key. Either of the schemes of Sections 6.2 and 6.3 could be used to

enter the password. Here we illustrate our tool using the DAS scheme, which we

have implemented and use regularly.

In our tool, an encryption/decryption key is derived from a DAS password

(i.e., its sequence of coordinates) as follows: Let B be a bit string that represents

the sequence of coordinates (including the unique \pen up" indicator). Let h

denote a cryptographic hash function, such as MD5 or SHA. The key, k, is de�ned

as h(BjjP)128, where P is unambiguous padding, resulting from �rst adding a

single 1-bit and then all 0-bits so that the result is a full input block for the

hash function h. k results from, e.g., taking the �rst 128 bits of the output of h.

Our key derivation assures that two distinct coordinate sequences are transformed

(with high probability) into two distinct, �xed-length keys. A standard symmetric

encryption scheme E with k as its symmetric key is used to encrypt and decrypt

data records stored on the PDA.

Key selection is as follows: the user is prompted with an empty grid to input

the password design. Once the password is entered, a symmetric key k is derived

and a pre-de�ned phrase p is encrypted (as Ek(p)) and stored on the PDA. On

repeat access, the user is prompted again with the empty grid, upon which she

draws the same design. A symmetric key k0 is derived and an attempt is made

82

to decrypt Ek(p). If it results in p, then k0 = k and the password (and key) is

accepted. The user then can proceed to encrypt/decrypt data records. k is deleted

from the PDA at the latest when the PDA is powered o�.

An adversary who captures the PDA can presumably obtain all of the ciphertext

encrypted under k, and since p is either public or stored in plaintext on the device,

the adversary has at least one known plaintext/ciphertext pair with which to attack

E. For a strong encryption scheme E, however, the best bet for the attacker

remains to guess the original password, which, as we will show in Section 6.3.3, on

average is likely to be much harder than if the attacker were faced with attacking

a textual password.

We implemented the DAS scheme on the Palm Pilot and use it regularly to

encrypt/decrypted information on our PDAs. The Pilot is based on the Palm

operating system that is integrated with the Graffiti writing technology. The

Palm OS supports a very natural form of data input, and as such, provides an

ideal platform for implementing the DAS scheme.

The interface for our DAS implementation is shown in Figure 6.4. Our ap-

plication shares the database of the memopad application, and allows a user to

encrypt/decrypt records in the database based on a user speci�ed drawing. Our

implementation conforms to the methodology outlined in Section 6.3.2, with SHA-

1 as the cryptographic hash function and 3DES (based on Ian Goldberg's crypto

library for his port of SSLeay for the Pilot. See http://www.isaac.cs.berkeley.

edu/pilot) as the symmetric encryption scheme.

83

6.3.3 Security of the DAS Password Scheme

We de�ne the information content of a password space as the entropy of the proba-

bility distribution over that space given by the relative frequencies of the passwords

that users actually choose. Information content is the correct measure for describ-

ing diÆculty of attack, since it determines the optimal choices to be made when

trying di�erent possibilities for a password.

High information content renders a password scheme more or less invulnerable.

For example, if users did in fact choose passwords uniformly from the space of all

textual passwords, successful attacks would be extremely unlikely. What is it that

renders such attacks successful in practice? There are two factors. The �rst is

that in reality users do not choose their passwords uniformly. If we assume that

the data collected in Klein's study [45] is representative of the general population,

then users in fact use only 10�8 of the possible passwords 25% of the time. Such a

distribution is highly peaked, and the information content of the textual password

space is correspondingly reduced.

However, the fact that users do not pick passwords uniformly is in itself not

suÆcient to make password guessing attacks successful. The second factor that

renders textual passwords vulnerable is that the attacker has signi�cant knowledge

of the distribution of user passwords, and can use that knowledge to her advantage.

In the case of textual passwords, this knowledge includes information about speci�c

peaks in the distribution (users often choose passwords based on their own name),

and information about gross properties (words in the English dictionary are likely

to be chosen). Without information about the distribution, an attacker would be

84

no better o� than if users were in fact choosing uniformly.

Due to the dependence of the security of a scheme on the passwords that users

choose in practice, a new password scheme can not be proven better than an

old scheme. Performing trials on subjects in order to learn the distribution of

user passwords for a new scheme is impractical for such large sample spaces. In

the case of textual passwords, learning the knowledge that attackers routinely

use would correspond to trying to learn the English dictionary (among others)

given no prior knowledge of the types of letter combinations used in English, by

having subjects type in 8-character passwords. In the absence of such objective

proof, we present three plausibility arguments that suggest that the DAS scheme

is considerably harder to crack than the conventional textual scheme. Two of these

are estimates of the information content of the DAS password space, and hence

address why textual passwords are vulnerable to attack in practice. The third

argument discusses the e�ect that lack of knowledge of the distribution of user

choices has on an attacker and the likelihood that such lack of information can be

used in a deliberate and constructive manner to attack a password scheme.

The Size of the Password Space

First we consider the raw size of the password space, or in other words, its in-

formation content assuming users are equally likely to pick any element as their

password. The raw size is an upper bound on the information content of the dis-

tribution that users choose in practice. We need some way to delimit the password

space in order to obtain a �nite answer, or in probabilistic terms, a way to ascribe

probability zero to an in�nite subset of passwords, leaving a �nite subset which

85

we will count. We will assume that all passwords of total length (as de�ned in

Section 6.3.1) greater than some �xed value have probability zero. We compute

the size �(Lmax; G) of the space of passwords of total length less than or equal to

Lmax on a grid of size G � G. � is de�ned in terms of the number of passwords

with total length equal to L, P (L;G) by:

�(Lmax; G) =
LmaxX
L=1

P (L;G) (6.1)

In turn, P (L;G) can be de�ned in terms of N(l; G), the number of strokes of

length equal to l by:

P (L;G) =
l=LX
l=1

P (L� l; G)N(l; G) (6.2)

In words, the above equation says that a new stroke of length l may be added

to any shorter password of length L� l to make a password of total length L. By

de�ning P (0; G) = 1, we complete the de�nition of the recurrence, once we have

given an expression for N(l; G).

The following recurrence relation de�nes N(l; G). Let n(x; y; l; G) be the num-

ber of strokes of length l ending at the cell (x; y) in a grid of size G�G. Then N

can be de�ned in terms of n by

N(l; G) =
X

(x;y)2[1;:::;G]�[1;:::;G]

n(x; y; l; G) (6.3)

Clearly, 8(x; y) 2 [1; : : : ; G] � [1; : : : ; G](n(x; y; 1; G) = 1). Moreover, it is conve-

nient to de�ne n at the \boundaries" of the grid as follows:

n(0; y; l; G) = n(x; 0; l; G) = n(G+ 1; y; l; G) = n(x;G + 1; l; G) = 0

86

The function n can then be evaluated using the following recurrence:

n(x; y; l; G) = n(x� 1; y; l� 1; G) + n(x+ 1; y; l� 1; G)

+ n(x; y � 1; l � 1; G) + n(x; y + 1; l� 1; G)

Putting the pieces together, we can calculate the size of the password space. The

results for di�erent upper bounds on total password length on a 5 � 5 grid are

given in Table 6.1.

Table 6.1: Number of passwords of total length less than or equal to Lmax on a 5 � 5

grid.

Lmax 1 2 3 4 5 6 7 8 9 10

log2(# passwords) 5 10 14 19 24 29 33 38 43 48

Lmax 11 12 13 14 15 16 17 18 19 20

log2(# passwords) 53 58 63 67 72 77 82 87 91 96

The data in Table 6.1 shows that the raw size of the graphical password space

surpasses that of textual passwords for reasonable password con�gurations. While

these numbers are encouraging, in practice not all graphical passwords are equally

likely to be chosen by users, rendering a uniform distribution overly optimistic.

For example, although the number of passwords of length greater than or equal to

12 is already greater than the number of textual passwords of 8 characters or less

constructed from the printable ASCII codes (958 � 253), this includes all possible

combinations of twelve isolated dots.

In order to obtain a more realistic estimate of the information content, in the

87

following section we suggest a model in which we characterize passwords as being

\memorable" in terms of the programs which generate them.

Modeling User Choice

We assume that the reason that users choose from such a small subset of textual

passwords is that the passwords in that set are more memorable than those outside

it. That lack of imagination on the part of the user is not the cause for the lack

of variety is supported by the fact that system-generated passwords have been so

unsuccessful [7]. By making the same assumption about DAS passwords, we can

\reduce" our task to that of modeling the set of \memorable" graphical passwords.

If we can show that this set, or some subset of it, has cardinality larger than

the dictionary of textual passwords from which users typically choose, we can

plausibly claim that as far as information content goes, DAS is more secure than

conventional textual password schemes. Here, we identify two such subsets using

di�erent criteria of memorability, and show that the cardinalities of these sets do

indeed satisfy the above criterion.

What constitutes a memorable password? In the textual case, one obvious

component is semantic content. If the sequence of characters has a meaning for

the user, the password is more likely to be memorable [58, 80, 13]. This semantic

de�nition is extremely hard, if not impossible, to characterize in the abstract. It

is only because the semantic content of many character combinations has been

established by the common use of a written language that we can talk about such

content at all. In the DAS scheme, there are obvious password components that

have meaning, but it is impossible a priori to identify exactly which passwords

88

will have semantic content, and to how many users, precisely because it is not a

representation with meanings established by common use.

Memorability based on simple shapes The �rst set of \memorable" passwords

that we de�ne is a subset of those passwords that might reasonably be expected

to carry meaning. We look at all strokes in the form of rectangles, and show that

by combining two such strokes, we already reach the size of the dictionaries used

to crack textual schemes. To be more precise, consider the set of rectangles within

a G�G grid. Since a rectangle can be de�ned by two rows (the top and bottom

edges of the rectangle) and two columns (the left and right edges), it is clear that

the number R(G) of rectangles on a G�G grid is

R(G) =

�
G

2

�2

=
1

4
G2(G� 1)2 (6.4)

Each of these rectangles can be generated in many ways. For example, the starting

point of a stroke can be at any of the corners, and the stroke direction can be

clockwise or counter-clockwise. This yields 8 possibilities for each rectangle. In

addition, one can choose whether to close the rectangle by returning to the starting

cell or not, again doubling the possibilities. On a 5 � 5 grid, this amounts to

1600 possible strokes. Two such strokes in succession gives 2:56� 106 passwords,

already roughly the size of the textual dictionary that contained the passwords of

25% of users in Klein's study [45]. Clearly we can generate a much larger set of

passwords by considering variations on the theme of rectangles, or by considering

other Gestalt forms [88].

89

A Picture is Worth a Thousand Words Our \draw-a-secret" scheme is mo-

tivated by the experimentally-proven fact that pictures are easier to remember

than words. Why are pictures easier to recall? Four hypotheses have been o�ered

as explanations of picture-word di�erences in recall:

� Common-code theory: this view of memory and recall theorizes that pictures

and words access semantic information in a single conceptual system that

is neither word-like or picture-like. This theory hypothesizes that pictures

and words both require analogous processing before accessing semantic infor-

mation, but pictures require less time than words for accessing the common

conceptual system. Common-code theorists attribute better picture recall

to di�erences in the encoding of pictures and words: pictures share fewer

common perceptual features among themselves and therefore need to be dis-

criminated from a smaller set of possible alternatives than words. The greater

number of dictionary meanings or the greater lexical complexity of words cre-

ate uncertainty and confusion, and hence poorer recall.

� Dual-code theory: unlike the common-code approach, this theory postulates

that language and knowledge of worlds are represented in functionally distinct

verbal and nonverbal memory systems. The verbal system is specialized for

dealing with linguistic information whereas the non-verbal stores perceptual

information. The most evident examples of dual process theory can be found

in experiences that we have all had at some time or the other: we meet

someone, know that person to be familiar but do not know who they are; we

recognize a melody, but fail to remember its name or when or where we heard

90

it before; we read a line of a poem, know it, but do not know where we have

read it before, much less the title or author of the poem. In all these cases,

we experience a sense of familiarity, but have|at least at �rst| no access to

any contextual or conceptual information [57].

Dual code theory suggests that there are qualitative di�erences between the

ways words and pictures are processed during memory and hypothesizes that

the reason for superior picture memory is that pictures automatically engage

multiple representations and associations with other knowledge about the

world, thus encouraging a more elaborate encoding than occurs with words

[69, 70].

� Abstract-propositional theory: in contrast to the dual-code approach, this

theory rejects any notion of sophisticated distinctions between verbal and

nonverbal modes of representation, but instead describes representations of

experience or knowledge in terms of an abstract set of relations and states,

called propositions. This theory postulates that better free recall with pic-

tures may be due to even more elaborative encoding e�ects than those sug-

gested by dual-code theorists. Propositional theorists view the involvement

of abstractive and interpretive processes in picture memory as the explanation

for the picture e�ect [54]. Therefore, a series of line drawings will be poorly

remembered if a subject is unable to interpret the drawings in a meaning-

ful way, whereas memory for the same drawings, presented in the same way

will be much better if a conceptual interpretation is provided, and it this

interpretive process which is responsible for better picture memory recall.

91

While the strongest evidence thus far for the picture e�ect can be best explained

by dual-code theory (see [57]), an understanding of picture memory and the means

by which we acquire and maintain information about the visual environment is still

an ongoing challenge. Nonetheless, the research to date provides strong arguments

in terms of the memorability of drawings over words in recognition tasks and hence

its applicability to computer security.

Memorability based on short algorithms The second set of passwords that we

describe is suggested by the discussion of text-based graphical passwords in Sec-

tion 6.2, which pointed toward a di�erent de�nition of memorability. There, a

memorable sequence of positions seemed characterized by the fact that there ex-

isted a short algorithm to describe the sequence. It is this de�nition of memorable

that we wish to apply here, since it can be characterized in precise terms. We

do not argue that every memorable password has a short algorithm to describe

it, but that passwords describable by short algorithms are memorable. We will

show that the cardinality of this subset of memorable passwords is already larger

than the dictionary of character sequences from which users most often draw their

passwords, and that therefore, following the argument above, the DAS password

scheme should be harder to crack in practice than the conventional textual scheme.

In order to characterize the complexity of the algorithm required to generate a

DAS password, we de�ne a very simple language suited to the task of describing

DAS passwords. Then, we generate all programs in this language whose complexity

is at most a chosen maximum. In order to avoid counting di�erent programs that

produce the same password twice, we then execute the generated programs to

92

output the passwords, which are then bucketed, and distinct passwords counted.

The result is the number of DAS passwords generated by programs of complexity

at most the chosen maximum.

Before describing the results of this endeavor, we give some details of the lan-

guage in which we generated the programs. The grammar of the language is as

follows:1

program ! digit digit block

block ! statement block

statement ! instr j repeat digit block end

instr ! up j down j right j left j penup j pendown

digit ! 1 j 2 j 3 j 4 j 5

The �rst two digits represent a starting position. The instructions up, down,

left, and right move the pen one square in the indicated direction. If the pen is

currently in the down position, then moving in the speci�c direction will draw a

line. Otherwise, the direction statement will merely move the pen location. The

pen begins in the up position. The repeat statement is our iterator. We allow

digit values up to the number of grid squares on each axis (i.e., 5 on a 5� 5 grid)

to indicate the number of repetitions, although in principle a password consisting

of more than 5 repetitions of something on a 5� 5 grid are possible (e.g., ten dots

in the same position).

To calculate the complexity for a given program, we assign a complexity to each

1Those readers old enough to remember the APPLE II will recognize that our language bears a

striking resemblance to Turtle Graphics, the children's language based on LOGO (see, e.g., [1]).

93

literal in our language. We assign every statement and digit complexity one, except

for the end marker, which has complexity zero. This means that repeat loops

have a complexity of two (one for the repeat statement, and one for the integer

indicating the number of repetitions) plus the complexity of the repeated block.

In addition, the last penUp statement of a program is assigned a complexity

of zero (lifting one's pen from the surface at the end of entering a password is

diÆcult to forget). So, for example, there are no programs of complexity only

two, since the integers describing the starting position of the program already

consume a complexity of two without allowing any penDown statements. The �rst

complexity of which there are any programs is three|the two digits describing the

initial starting position, followed by a penDown|and the passwords generated

by programs of complexity three are simply those consisting of a single tap on one

of the grid squares. Note that our complexity calculations for programs are very

conservative, in the sense that even pen movements between strokes (i.e., while the

pen is raised) are counted in the complexity of a program.

The results of using the above described procedure for counting the number of

DAS passwords of a given complexity on a 5� 5 grid are shown in Figure 6.2. As

expected, this data shows that the number of DAS passwords grows exponentially

as a function of the maximum complexity of the program. What is more interesting,

however, is that by extrapolation2 we see that the number of DAS passwords

generated by programs of only complexity 12 far surpasses the dictionary size of

2Calculating the exact number of memorable graphical passwords, as de�ned by our language, for

complexities greater than 10 requires signi�cantly more computational resources (and time) than we have

available to us. An attacker wishing to build any such database will face similar diÆculties.

94

approximately 3�106 used in Klein's password-cracking studies [45]. As a point of

comparison, even just tracing the outermost cells of a 5� 5 grid to make a square

already requires a program of complexity at least �fteen in our simple language.

And, obviously this design and many other, more complex ones will fall in the

realm of memorable for most users. We believe that this is compelling evidence

that DAS passwords, of which those generated by programs of complexity at most

twelve are but a very small subset, will be signi�cantly harder to crack in practice

than textual passwords.

Table 6.2: Number of DAS passwords generated by programs of short complexity on a

5� 5 grid.

Complexity Passwords

3 25

4 105

5 398

6 1,645

7 7,370

8 34,026

9 165,760

10 614,660

95

Lack of Knowledge of the Distribution

Given the size of typical password spaces, knowledge of the distribution of user

passwords is essential to an adversary. Without such knowledge the adversary has

no way of directing her search toward more probable passwords, and is no better o�

than if users really did pick their passwords uniformly from the set of possibilities

[18].

Where did the knowledge of the distribution come from in the case of textual

passwords? For the most part, dictionaries have been compiled by using reasonable

assumptions about likely choices. The assumptions stem from the use of a shared

language, and shared knowledge of the semantic content of words. For example,

in the work of Klein [45] the sources for likely passwords included the St. James

Bible, the UNIX dictionary, and many other sources of English words that were

available to the author precisely because they are a part of our language. If these

assumptions had turned out to be incorrect, textual password schemes would be

extremely diÆcult to break in practice.

The assumptions made about likely password choices are strongly con�rmed by

Klein's work, and by successful attacks on textual passwords, but con�rmation of

pre-existing dictionaries is not the same as deriving a dictionary in the �rst place by

learning from example without prior knowledge. In the case of textual passwords,

this would mean learning the English dictionary (or some equivalent corpus of

words) by collecting user passwords. This would involve acquiring millions of

veri�ed passwords, and, as such, represents a signi�cant challenge for a would-be

adversary.

96

In the case of the DAS scheme, similar reasonable assumptions about user

choice do not exist. Furthermore, the learning task is made even more diÆcult by

two factors. First, arguments 1 and 2 suggest that both the space of passwords

and the space of likely user choices are considerably larger than for textual pass-

words. Second, the platform that we are targeting, PDAs, renders the task of data

collection much harder than on, e.g., networked computers.

6.3.4 Summary

The above arguments do not prove that graphical password schemes are more

secure than traditional textual schemes. In fact, as we have argued, such a proof

is impossible. Nevertheless, taken together they provide convincing evidence that

this would indeed be the case.

6.4 Conclusions

We have presented graphical password schemes that achieve better security than

conventional textual based passwords alternatives. Our approaches exploit the

input capabilities of graphical devices that allow us to decouple the position of

inputs from the temporal order in which they occur. We presented arguments for

the security of our schemes in which we analyzed the information content of the

resulting password spaces. We also presented a novel approach for capturing the

memorability of graphical passwords by examining the class of DAS passwords

generated by short programs in a simple grid-based language, and showed that

even this relatively small subset of graphical passwords (for some �xed program

97

complexity) constitutes a much larger password space than the dictionaries of

textual passwords to which a high percentage of passwords typically belong.

We have been using our DAS-based memo pad encryption on the Palm Pilot

for a few months and we are quite happy with its ease-of-use. We hope to initiate

some user studies to collect further feedback on (1) user acceptance and (2) their

choices of passwords.

98

(a) User inputs desired secret (b) Internal representation (c) Raw bit string

(d) Interface to database (e) Re-entry of secret (f) Authorization failed

Figure 6.4: A password is created by drawing the secret on the display as shown in

(a). Both the internal representation of the input password showing the cells covered

by the user's drawing and the derived key are depicted in (b) and (c) respectively. To

apply a symmetric cryptographic function to records in the database (shown in (d)), the

user selects the records and then re-inputs the DAS password. If the encryption of a

known clear-text with the input password matches the stored ciphertext created during

initialization, then the symmetric cryptographic routine, Ek(x), is applied to the selected

records. Otherwise, the user is prompted to re-enter the DAS secret.

99

2 2 end
pendown right
repeat 2 r ight
r ight pendown
down left
left left
end penup
penup
right
r ight
down
pendown
left
left
penup
repeat 4
up

1 1 repeat 3
repeat 2 up
pendown end
down right
r ight end
up pendown
penup repeat 4
left down
repeat 3 end
down penup
end
pendown
down
right
up
penup

Figure 6.5: Example DAS passwords and the shortest programs that generate them are

shown above. The complexities are 24 and 26 respectively.

100

Chapter 7

Summary

We presented techniques for strengthening the security of password-based au-

thentication. Speci�cally, we introduced a novel approach for improving the se-

curity of password-based authentication that exploits patterns in a user's normal

typing rhythm as she inputs her password to the login device. Our technique

enables the generation of a long-term secret (that is signi�cantly larger than the

password itself) that has many potential uses, e.g., �le encryption. Our method

increases substantially the time for an o�-line attacker to exhaustively search for

this secret (or the password itself) and, where appropriate, can be used in con-

junction with other techniques, such as salting, to slow the attacker even further.

In addition, our approach improves security against an on-line attacker who learns

a user's password (e.g., by observing it being typed) and attempts to log in as the

legitimate user. Unless the attacker can mimic the keystroke behavior of the legit-

imate user|which [48, 49, 39, 4, 43, 6, 15, 55, 2, 61, 75] suggest is unlikely|the

attempted login will fail.

We have also shown that our technique for improving the security of password-

101

based authentication is viable in other ways:

� It adapts to gradual changes in a user's typing pattern over time, while gen-

erating the same long-term secret across logins. Since we use a behavioral

characteristic as part of the process of corroborating a user's identity, adapt-

ing to changes in typing behavior is important because as a user becomes

more familiar with her password, her typing patterns will change over time.

� It allows for control of error probabilities. A trade-o� between security and

usability can be met by adjusting the number of standard deviations away

from the mean typing value for feature instances used in calculating a user's

set of distinguishing features. Increasing this system parameter makes it eas-

ier for a legitimate user to log in reliably to her account, but it also increases

the probability of success for an on-line attacker.

� It is usable in practice. Using empirical analysis of user keystroke data we

showed that our scheme is easy to use by the average user. There remains a

risk in our scheme that due to a sudden shift in typing behavior, a user will

be unable to log into her account. We discussed a number of recovery mech-

anisms for this event. To minimize this risk we suggest that our technique

be restricted to local logins using the same keyboard.

In addition, we presented an alternative approach to user authentication that

is based on exploiting the input capabilities of graphical devices such as Personal

Digital Assistants. We presented two graphical authentication schemes that are

more secure than traditional approaches, and used novel analysis techniques to

make this argument. The �rst graphical password scheme presented builds di-

102

rectly on textual password schemes, by enhancing the input of textual passwords

using graphical techniques. We showed that even a conservative estimate of the

variations introduced by the graphical input yields a substantial improvement in

strength over the purely textual version.

The second scheme presented is based on a purely graphical approach called

Draw-a-Secret (DAS), in which a user's password consist of line drawings on a

rectangular grid. To reason about improvements in security over textual passwords,

we de�ned a class of graphical passwords that, plausibly, are memorable for users.

We considered the class of passwords that can be generated by a short program in

a simple grid language and showed that even the set of DAS passwords generated

by very short programs already has cardinality larger than the dictionaries used

to crack a high percentage of the textual passwords chosen by users.

7.1 Future Directions

A possible direction for future work is to pursue a more thorough analysis of the

security improvements o�ered by the techniques presented herein. In particular,

although the technique presented for strengthening the security of password-based

authentication is provably at least as secure as conventional password-based au-

thentication, we believe that the data used in our empirical analysis was not par-

ticularly well-suited to analyzing our scheme. We believe the results of our analysis

to be pessimistic and therefore an interesting direction of future work is to conduct

more targeted studies to see if they yield more optimistic results than the (already

positive) results of Section 5.8. We conjecture that this will indeed be the case.

103

With regard to our work on graphical passwords, di�erent schemes for modeling

the memorability of DAS passwords can be explored. For example, a model that

captures high-level structure more intuitively than our current models may lead to

a better understanding of the diÆculties that an o�-line attacker would face. Here,

the idea would be to capture the concept of organized drawings, in which the view

of an entire object is more than just the sum of the individual parts that constitute

it|one can view a square as an object in itself and not simply as an arrangement

of the individual lines from which it is composed. In this way, it is possible to

de�ne a set of primitive structures from which all memorable drawings can be

derived using meta-level compositions of these primitives. We hypothesize that

even a reduced set of DAS passwords (for some reasonable number of primitives)

will constitute a much larger space than that of textual-based passwords, and as

such, will be signi�cantly harder to crack in practice.

Finally, we note that though we presented our technique for strengthening the

security of password-based authentication in the context of keystroke dynamics,

other biometric information could obviously be used in place of (or in addition

to) keystroke durations and latencies. Graphical input displays supporting hand-

written character recognition, e.g., as o�ered by the Palm Pilot, o�er a wealth of

possibilities, where handwriting dynamics such as slant of characters and speed of

writing could be used in conjunction with the techniques presented herein.

104

Chapter 8

Bibliography

[1] H. Abelson, J. Bamberger, I. Goldstein and S. Papert. Logo Progress

Report. MIT AI memo no. 356, 1975.

[2] T. J. Alexandre. Biometrics on smart-cards: an approach to keyboard

behavioral signature. In Proceedings of the 2nd Smart Card Research

& Advanced Applications Conference, 1996.

[3] A. Alvare. How crackers crack passwords or what passwords to avoid.

In Proceedings of the 2nd USENIX Security Workshop, 1990.

[4] S. Bleha, C. Slivinksy and B. Hussein. Computer access security sys-

tems using keystroke dynamics. IEEE Transactions on Pattern Anal-

ysis and Machine Intelligence, 1990.

[5] S. Bleha. Dimensionality reduction and feature extraction applica-

tions in identifying computer users. IEEE Transactions on System,

Man and Cybernetics, 1991.

105

[6] S. Bleha and M. S. Obaidat. Computer users veri�cation using the

Perceptron algorithm. IEEE Transactions on System, Man and Cy-

bernetics, 1993.

[7] M. Bishop. Password management. In Proceedings of the International

Computer Conference, 1991.

[8] M. Bishop. Improving system security via proactive password check-

ing. Computers & Security, 1995.

[9] S. M. Bellovin and M. Merritt. Encrypted key exchange: password-

based protocols secure against dictionary attacks. In Proceedings of

the IEEE Symposium on Security and Privacy, 1992.

[10] S. M. Bellovin and M. Merritt. Augmented encrypted key exchange:

a password-based protocol secure against dictionary attacks and pass-

word �le compromise. In Proceedings of the 1st ACM Conference on

Computer and Communications Security, 1993.

[11] G. R. Blakley. Safeguarding cryptographic keys. In Proceedings of the

National Computer Conference, 1979.

[12] G. Blonder. Graphical passwords. United States patent no. 5559961,

1996.

[13] M. A. Borges, M. A. Stepnowsky and L. H. Holt. Recall and recog-

nition of words and pictures by adults and children. Bulletin of the

Psychonomic Society, 1977.

106

[14] G. H. Bower, M. B. Karlin and A. Dueck. Comprehension and mem-

ory for pictures. Memory and Cognition, 1975.

[15] M. Brown and S. J. Rogers. User identi�cation via keystroke charac-

teristics of typed names using neural networks. International Journal

of Man-Machine Studies, 1993.

[16] M. W. Calkins. Short studies in memory and association from the

Wellesley College Laboratory. Psychological Review, 1898.

[17] R. Chellappa, C. L. Wilson and S. Sirohey. Human and machine

recognition of human face images: a survey. In Proceedings of the

IEEE, 1995.

[18] T. M. Cover and J. A. Thomas. Elements of Information Theory,

John Wiley & Sons, 1991.

[19] E. Cureton. Factor analysis, an Applied Approach. Erlbaum Asso-

ciates, New Jersey, 1983.

[20] J. G. Daugman. High con�dence visual recognition of persons by

a test of statistical independence. IEEE Transactions on Pattern

Analysis and Machine Intelligence, 1993.

[21] P. J. Davis. Interpolation and Approximation. Blaisdell, London,

1963.

[22] W. DiÆe and M. E. Hellman. New directions in cryptography. IEEE

Transactions on Information Theory, 1976.

107

[23] G. R. Doddington. Speaker recognition|identifying people by their

voices. Proceedings of the IEEE, 1985.

[24] R. Duda. Pattern Classi�cation and Scene Analysis. John Wiley &

Sons, New York, 1973.

[25] D. Feldmeier and P. Karn. UNIX password security|Ten years later.

Lecture Notes in Computer Science, 1990.

[26] R. Gaines, W. Lisowski, S. Press and N. Shapiro. Authentication by

keystroke timing: some preliminary results. Rand report R-256-NSF.

Rand Corporation, 1980.

[27] S. Gar�nkel and E. Spa�ord. Practical Unix & Internet Security.

O'Reilly & Associates Inc., 1996.

[28] Gentner. Keystroke timing in transcription typing. Cognitive aspects

of skilled typewriting, 1993.

[29] S. Goldwasser, S. Micali and C. Racko�. The knowledge complexity of

interactive proof systems. In Proceedings of the 17th ACM Symposium

on Theory of Computing, 1985.

[30] L. Gong, T. M. Lomas, R. M. Needham and J. H. Saltzer. Protecting

poorly chosen secrets from guessing attacks. IEEE Journal on Selected

Areas in Communications, 1993.

[31] L. Gong. Optimal authentication protocols resistant to password

108

guessing attacks. In Proceedings of the 8th IEEE Computer Security

Foundations Workshop, 1995.

[32] V. Guruswami and M. Sudan. Improved decoding of Reed-Solomon

and algebraic-geometric codes. In Proceedings of the 39th IEEE Sym-

posium on Foundations of Computer Science, 1998.

[33] S. Halevi and H. Krawczyk. Public-key cryptography and password

protocols. In Proceedings of the 5th ACM Conference on Computer

and Communications Security, 1998.

[34] N. Haller. The s/keyTM one-time password system. In Proceedings of

the Network and Distributed System Security Symposium, 1994.

[35] F. B. Hildebrand. Introduction to Numerical Analysis. McGraw Hill,

London, 1956.

[36] D. Hoover. Software smart cards via cryptographic camou
age. To

appear in Proceedings of the IEEE Symposium on Security and Pri-

vacy, 1999.

[37] G. Horng. Password authentication without using a password table.

Information Processing Letters, 1995.

[38] P. J. Huber. Robust Statistics. Wiley, 1981.

[39] B. Hussien, R. McLaren and S. Bleha. An application of fuzzy al-

gorithms in a computer access security system. Pattern Recognition

Letters, 1989.

109

[40] D. K. Isenor and S. G. Zaky. Fingerprint identi�cation using graph

matching. Pattern Recognition, 1986.

[41] D. Jablon. Strong password-only authenticated key exchange. ACM

Computer Communications Review, 1996.

[42] I. Jermyn, A. Mayer, F. Monrose, M. K. Reiter and A. D. Rubin. The

design and analysis of graphical passwords. To appear in Proceedings

of the 8th USENIX Security Symposium, 1999.

[43] R. Joyce and G. Gupta. Identity authorization based on keystroke

latencies. Communications of the ACM, 1990.

[44] L. G. Kersta. Voiceprint identi�cation. Nature, 1962.

[45] D. Klein. Foiling the cracker: a survey of, and improvements to, pass-

word security. In Proceedings of the 2nd USENIX Security Workshop,

1990.

[46] L. Lamport. Password identi�cation with insecure communications.

Communications of the ACM, 1981.

[47] F. Leclerc and R. Plamondon. Automatic signature veri�cation: the

state of the art. International Journal on Pattern Recognition and

Arti�cial Intelligence, 1994.

[48] G. Leggett and J. Williams. Verifying identity via keystroke charac-

teristics. International Journal of Man-Machine Studies, 1988.

110

[49] G. Leggett, J. Williams and D. Umphress. Veri�cation of user identity

via keystroke characteristics. Human Factors in Management Infor-

mation Systems, 1989.

[50] R. E. Lennon, S. M. Matyas and C. H. Meyer. Cryptographic authen-

tication of time-invariant quantities. IEEE Transactions on Commu-

nications, 1981.

[51] C. H. Lin, C. C. Chang, T. C. Wu and R. C. Lee. Password au-

thentication using Newton's interpolating polynomials. Information

Systems, 1991.

[52] G. Lorette and R. Plamondon. Dynamic approaches to handwritten

signature veri�cation. World Scienti�c, 1990.

[53] S. Lucks. Open key exchange: how to defeat dictionary attacks with-

out encrypting public keys. In Proceedings of the Workshop on Secu-

rity Protocols, 1997.

[54] S. Madigan. Picture memory. Imagery, Memory and Cognition.

Lawrence Erlbaum Associates, 1983.

[55] D. Mahar, R. Napier, M. Wagner, W. Laverty, R. Henderson and

M. Hiron. Optimizing digraph-latency based biometric typist veri�ca-

tion systems: inter and intra typists di�erences in digraph latency dis-

tributions. International Journal of Human-Computer Studies, 1995.

[56] U. Manber. A simple scheme to make passwords based on one-way

functions much harder to crack. Computers & Security, 1996.

111

[57] G. Mandler. Your face looks familiar but I can't remember your name:

a review of dual process theory. Relating Theory and Data, 1991.

[58] G. A. Miller. The magical number seven, plus or minus two: some lim-

its on our capacity for processing information. Psychological Review,

1956.

[59] B. Miller. Vital sings of identity. IEEE Spectrum, 1994.

[60] A. J. Menezes, P. C. van Oorschot and S. A. Vanstone. Handbook of

Applied Cryptography, CRC Press, 1997.

[61] F. Monrose and A. D. Rubin. Authentication via keystroke dynamics.

In Proceedings of the 4th ACM Conference on Computer and Com-

munications Security, 1997.

[62] F. Monrose and M. K. Reiter. Password strengthening using keystroke

dynamics. Submitted for publication, 1999.

[63] R. Morris and K. Thompson. Password security: a case history. Com-

munications of the ACM, 1979.

[64] A. Mu�et. Crack: a sensible password checker for Unix. Available via

anonymous ftp from cert.org.

[65] V. S. Nalwa. Automatic on-line signature veri�cation. Proceedings of

the IEEE, 1997.

[66] R. M. Needham and M. D. Schroeder. Using encryption for authenti-

112

cation in large networks of computers. Communications of the ACM,

1978.

[67] D. L. Nelson, U. S. Reed and J. R. Walling. Picture superiority e�ect.

Journal of Experimental Psychology: Human Learning and Memory,

1977.

[68] C. Neuman and T. Ts'o. Kerberos: an authentication service for

computer networks. IEEE Communications, 1994.

[69] A. Paivio, T. B. Rogers and P. C. Smythe. Why are pictures easier

to recall than words? Psychonomic Science, 1968.

[70] A. Paivio. Imagery and Verbal Processes. Holt, Rinehard and Win-

ston, New York, 1971.

[71] A. Paivio. Imagery in recall and recognition. Recall and Recognition,

John Wiley, New York, 1976.

[72] F. J. Prokoski, R. B. Riedel and J. S. CoÆn. Identi�cation of indi-

viduals by means of facial thermography. IEEE Computer, 1992.

[73] T. Raleigh and R. Underwood. CRACK: a distributed password ad-

visor. In Proceedings of the 1st USENIX Security Workshop, 1988.

[74] R. L. Rivest. Cryptography. In Handbook of Theoretical Computer

Science, Elsevier Science, 1990.

[75] J. A. Robinson, V. M. Liang, J. A. Chambers and C. L. MacKen-

113

zie. Computer user veri�cation using login string keystroke dynamics.

IEEE Transactions on System, Man, and Cybernetics, 1998.

[76] W. de Ru and Jan H. Elo�. Enhanced password authentication

through fuzzy logic. IEEE Expert, 1997.

[77] B. Schneier. Applied Cryptography, 2nd edition. John Wiley & Sons,

1996.

[78] FIPS. Secure hash standard. Federal Information Processing Stan-

dards Publication 180-1, U.S. Department of Commerce, 1995.

[79] A. Shamir. How to share a secret. Communications of the ACM, 1979.

[80] R. N. Shepard. Recognition memory for words, sentences and pic-

tures. Journal of Verbal Learning and Verbal Behavior, 1967.

[81] E. Spa�ord. Preventing weak password choices. In Proceedings of the

14th National Computer Security Conference, 1991.

[82] E. Spa�ord. Observations on reusable password choices. In Proceed-

ings of the 3rd USENIX Security Symposium, 1992.

[83] L. Standing. Learning 10,000 pictures. Quarterly Journal of Experi-

mental Psychology, 1973.

[84] M. Steiner, G. Tsudik and M. Waidner. Re�nement and extension of

encrypted key exchange. ACM Operating Systems Review, 1995.

[85] J. T. Tou and R. C. Gonzalez. Pattern Recognition Principles.

Addison-Wesley, 1981.

114

[86] D. Umphress and G. Williams. Identity veri�cation through keyboard

characteristics. International Journal of Man-Machine Studies, 1985.

[87] J. E. Wells. Encoding and memory for verbal and pictorial stimuli.

Journal of Experimental Psychology, 1972.

[88] M. Wertheimer. Laws of organization in perceptual forms. Routledge

& Kegan Paul, London, 1938.

[89] T. Wu. The secure remote password protocol. In Proceedings of the

Network and Distributed System Security Symposium, 1998.

[90] T. Wu. A real-world analysis of Kerberos password security. In Pro-

ceedings of the Network and Distributed System Security Symposium,

1999.

[91] J. Zhang, Y. Yan and M. Lades. Face recognition: eigenface, elastic

matching and neural nets. Proceedings of the IEEE, 1997.

115

Towards Stronger User Authentication

by

Newman Fabian Monrose

Advisor: Zvi Kedem

Password-based authentication is the dominant mechanism for verifying the iden-

tity of computer users, even though it is well known that people frequently choose

passwords that are vulnerable to dictionary attacks. This dissertation addresses

the issue of improving the security of password-based authentication, and presents

authentication techniques that are more secure than traditional approaches against

o�-line attacks.

We present a technique for strengthening the security of a textual password

by augmenting it with biometric information such as the duration and latency of

keystrokes during entry of the password. Thereby, both the password and the

user's typing pattern are used to corroborate the user's identity. The technique

presented adapts to gradual changes in a user's typing pattern while maintaining

the same strengthened password across multiple authenticated sessions. Moreover,

our technique does not reveal which of a user's keystroke features are used to gener-

ate the corresponding strengthened password. This knowledge is hidden even from

an attacker who captures all the system information used by the authentication

server, and we show that our technique increases signi�cantly the amount of work

such an attacker must perform.

Additionally, we present an alternative technique for user authentication which

exploits features of graphical input devices. We propose and evaluate graphical

passwords, which serve the same purpose as textual passwords, but consist of

handwritten drawings, possibly in addition to text. Graphical passwords derive

their strength from the fact that graphical input devices allow one to decouple the

positions of inputs from the temporal order in which these inputs occur. We use

this independence to build new password-based authentication schemes that are

convincingly stronger than conventional methods.

