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Abstract

Consider the problem of computing isotopic approximations of nonsingular curves

and surfaces that are implicitly represented by equations of the form f(X,Y ) = 0

andf(X,Y, Z) = 0. This fundamental problem has seen much progress along several

fronts, but we will focus on domain subdivision algorithms.Two algorithms in this

area are from Snyder (1992) and Plantinga & Vegter (2004). Weintroduce a family of

new algorithms that combines the advantages of these two algorithms: like Snyder, we

use the parameterizability criterion for subdivision, andlike Plantinga and Vegter, we

exploit nonlocal isotopy.

We first apply our approach to curves, resulting in a more efficient algorithm. We

then extend our approach to surfaces. The extension is by no means routine, as the

correctness arguments and case analysis are more subtle. Also, a new phenomenon

arises in which local rules for constructing surfaces are nolonger sufficient.

We further extend our algorithms in two important and practical directions: first,

we allow subdivision cells to be non squares or non cubes, with arbitrary but bounded

aspect ratios: in2D, we allow boxes to be split into 2 or 4 children; and in3D, we allow

boxes to be split into 2, 4 or 8 children. Second, we allow the input region-of-interest

(ROI) to have arbitrary geometry represented by an quadtreeor octree, as long as the

curves or surfaces has no singularities in the ROI and intersects the boundary of ROI

transversally.

Our algorithm is numerical because our primitives are basedon interval arithmetic

and exact BigFloat numbers. It is practical, easy to implement exactly (compared to

algebraic approaches) and does not suffer from implementation gaps (compared to ge-

ometric approaches). We report some very encouraging experimental results, showing
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that our algorithms can be much more efficient than the algorithms of Plantinga and

Vegter (2D and3D) and Snyder (2D only).
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Overview of Thesis

This thesis is about the problem of constructing isotopic meshes for curves and sur-

faces. We provide a new approach, and a family of corresponding new meshing al-

gorithms, that combines the relative advantages of previous algorithms of Snyder and

Plantinga & Vegter.

In chapter 1, we give an overview of the meshing problem, and some of the recent

progress in this field. We categorize meshing algorithms into three approaches, namely

algebraic, geometric and numeric. Our approach falls underthe numeric algorithms.

In chapter 2, we give an introduction of Subdivision Algorithms. In particular, we

describe a generic framework for meshing algorithms based on domain subdivision and

review some algorithms in this framework: namely, MarchingCube Algorithm, Sny-

der’s Algorithm and Plantinga & Vegter’s Algorithm.

In chapters 3 and 4, we introduce our approach for2D curve meshing and3D surface

meshing. We describe our algorithms for both problems. We also provide complete

proofs for the correctness of our algorithms, as well as encouraging experimental results.

In chapter 5, we give the conclusion and future work.

Acknowledgements: The results in this thesis are joint workwith my advisor Pro-

fessor Chee K. Yap. The2D work has appeared in [23]. I would also like to thank Jihun

Yu for his help with rendering the figures.
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Chapter 1

What is Meshing?

Approximation of curves and surfaces is a basic problem in many areas such as

simulation, computer graphics and geometric modeling. Theapproximate surface is

often a triangulated surface, also known as a mesh. See the recent book [8] for an

algorithmic perspective on meshing problems; chapter 5 in particular is a survey of

meshing algorithms.

By the3D (resp.2D) meshing problem, we mean the problem of meshing surfaces

(resp. curves). It is interesting to identify the1D meshing with the problem of real

root isolation for a real functionf(X). Formally, themesh generation problem(or

“meshing problem” for short) is this: given a regionR0 ⊆ R
d (typically, d = 2, 3) of

interest, an error boundε > 0, a smooth curve/surfaceS implicitly represented by an

equationf(X,Y ) = 0/f(X,Y, Z) = 0, to find a piecewise linearε-approximationG

of S ∩ R0. For2D curve meshing, the mesh is just a (planar) straight line graph G (or

PSLG, see [33]); for3D surface meshing, the meshG is a triangulated surface.
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1.1 Correctness Criteria

The correctness criteria forG has two parts:topological correctnessandgeometric

accuracy. Geometric accuracy is typically taken to mean that the Hausdorff distance

betweenG andS ∩R0 is at mostε (this is also known asε-closeness):

dH(S,G)(mod R0) = max{sup
x∈S

inf
y∈G

d(x, y), sup
y∈G

inf
x∈S

d(x, y)} ≤ ε

In recent years, the topological correctness is understoodas that the approximateG

should be isotopic toS ∩ R0, denotedG ≈ S ∩ R0. For instance, Figure 1.1(c) is

produced by our algorithm with only topological correctness as stopping criterion. For

some applications, this is sufficient. But if one desires geometric accuracy as well, this

can be further refined as in Figure 1.1(a), where the error bound isε = 0.25.

(a) Cxyze (b) PV (c) Cxyz (d) Rect-2

Figure 1.1: Approximation of a tangled cubef(x, y, z) = x4 − 5x2 + y4 − 5y2 + z4 −
5z2 = −10.

Recall that a functionf : S → S ′ between two topological spacesTS andTS′ is a

homeomorphism iff is a continuous bijection with a continuous inversef−1. We next

introduce the definition of isotopy.

DEFINITION 1. Two surfacesS andS ′ is called ambient isotopic to each other if there
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exists a continuous mapping

γ : R
3 × [0, 1]→ R

3

which, for any fixedt ⊆ [0, 1], is a homeomorphismγ(·, t) fromR
3 onto itself, and which

continuously deformsS into the meshS ′ whereS ′ = γ(S, 1).

DEFINITION 2. Two surfacesS andS ′ is called isotopic to each other if there exists a

continuous mapping

γ : S × [0, 1]→ R
3

which, for any fixedt ⊆ [0, 1], is a homeomorphismγ(·, t) from S onto its image, and

which continuously deformsS into the meshS ′ whereS ′ = γ(S, 1).

Formally, isotopy is weaker than ambient isotopy, however,for our purposes, there

is no difference between isotopy and ambient isotopy: the isotopy extension lemma

ensures that an isotopy between two smooth surfaces (of classC1) embedded inR3 can

always be extended to an ambient isotopy (see [19], Theorem 1.3 of Chapter 8, p.180).

This does not directly apply to a piecewise linear surface meshS ′, but it is easy to show

that a piecewise linear surface is ambient isotopic to an approximating smooth surface,

to which the theorem applies (see [3]).

A tubular neighborhood Ŝ of a surfaceS is a thickening of the surface such that

within the volume ofŜ, the projection of a pointx to the nearest pointπS(x) on S is

well-defined. The pointsx which have the same nearest neighborπS(x) = p form a line

segment throughp normal to the surface. These segments are called fibers of thetubular

neighborhood, and they form a partition ofŜ.

LEMMA 1. (see [37], Theorem 4.1). LetS be a compact closed surface of classC2 in
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R
3 with a tubular neighborhood̂S. LetS ′ be a closed surface (not necessarily smooth)

contained inŜ such that every fiber intersectsS ′ in exactly one point. ThenπS : S ′ → S

induces an ambient isotopy that mapsS ′ to S.

The above definitions are similar in the2D case, i.e. for curves. See [3] for further

discussion of isotopy. Correspondingly, the meshing problem can be solved in two

stages: first we produce an outputG̃ that is isotopic toS ∩ R0. Subsequently, we

refineG̃ into a graphG with the requisite geometric accuracy. We may call these the

isolation andrefinement stages, following a terminology used for the1D analogue of

root approximation. The isolation stage is more challenging and usually draws most of

the attention in algorithms literature. Most of our emphasis is also on the isolation stage.

1.2 Classification of Meshing Algorithms

It is helpful to begin with a classification of the meshing algorithms. There are three

general approaches to meshing problems: algebraic, geometric or numeric. In practice,

some algorithms are best viewed as hybrids of these approaches. All three approaches

are exemplified in the survey [3].

Algebraic approachesare based on polynomial operations and algebraic number

manipulation. Most algebraic algorithms can be reduced to the powerful tool of cylin-

drical algebraic decomposition (CAD) [2]. One example is from Mourrain and T́ecourt

[29]. Usually, algebraic approaches work for curves and surfaces with self-intersections,

fold lines, or other singularities, but such methods are tooinefficient, even on the plane.

The construction of efficient specialized algorithms remains a challenge. This has led

to much interest in numerical algebraic methods (e.g., [20]). But for special cases such

as quadric surfaces [39] or cubic curves [16], efficient algebraic algorithms have been

5



devised.

Geometric approachesexploit geometric properties such as Morse theory [45, 4]

or Delaunay triangulations [5, 6, 13, 1, 14]. These geometric properties are encoded

into the primitives used by the algorithm. Typical primitives include the orientation

predicates or ray shooting operations. Usually, geometricapproaches only work for

smooth curves and surfaces. However, by introducing constraints on the input, some

algorithms also work for non-smooth curves and surfaces. For example, with a new

sampling condition, Boissonnat and Oudot’s algorithm also works for some non-smooth

surfaces provided that the normal deviation is not too largeat the singular points (see

[7, 3]).

Numeric approachesfocus on approximation and numerical primitives such as

function evaluation [25, 32, 44, 23, 24, 46, 47]. Such primitives are usually embed-

ded in simple global iterative schemes such as bisection. There is considerable work

along this line in the interval arithmetic community (e.g.,Martin et al [26]). These al-

gorithms are often called “curve tracing algorithms”. See Ratschek and Rokne [35] for

references to curve tracing papers. Until recently, numeric approaches were shunned

by computational geometers as lacking exactness or complexity analysis. This is un-

fortunate as practitioners overwhelmingly favor numeric approaches for three simple

reasons:(i) Efficient and easy to implement; (ii) Complexity is more adaptive; (iii) Can

restrict to some region of interest.Our overall goal is to address the above shortcomings

of numeric approaches while retaining their advantages.

As suggested above, geometric algorithms are usually described in an abstract com-

putational model that postulates certain geometric primitives (i.e., operations or pred-

icates). These primitives may be implemented either by numerical or algebraic tech-

niques; the algorithm itself is somewhat indifferent to this choice. For the meshing
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problem, a popular approach is based on sampling points on input surface [13, 5, 1, 14].

The geometric primitive here is ray-shooting; it returns the first point (if it exists) that

the ray intersects on the input surface. For algebraic surfaces, this primitive reduces

to a special case of real root isolation (namely, finding the smallest positive real root).

The sampled points have algebraic number coordinates. In addition, the algorithms typ-

ically maintain a Delaunay triangulation of the sampled points, and thus would need

orientation predicates on algebraic points. But exact implementation of these primi-

tives requires expensive and nontrivial algebraic number manipulations. This does not

seem justified in meshing applications. On the other hand, ifwe use approximations

for sample points, they may no longer lie on the surface. Thisgives rise to the well-

known “implementation gap” concerns of computational geometry [51]: nonrobustness,

degeneracies, approximation, etc. In contrast, the subdivision methods studied in this

thesis suffers no such implementation gaps. As subdivisionmethods are important to

large communities of practitioners in numerical scientificcomputation, it behooves us

to develop such methods into exact and quantifiable tools fornumeric algorithms.

1.3 Recent Progress in Subdivision Algorithms

In this thesis, we focus on algorithms based on domain1 subdivision methods. We

view subdivision algorithms as falling under the numeric approaches (see below for the

numerical computational model). The simplest form of domain subdivision uses only

axes-parallel boxes (e.g., in bisection searches and Marching Cubes [25]). According to

a taxonomy of meshing algorithms in [3], this form is called “cube-based scaffolding”.

Newman and Yi gave a survey of the development of Marching Cubes Algorithm and

1 We use the term “domain subdivision” to refer to the subdivision of the underlying spaceR2 or R
3 in

which the curve or surface lives. Subdivision can also take place in parameter space, as in Bezier surfaces.
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its extensions in [30]. The scaffolding provides a global data structure, but the imple-

mentation of the primitives must still be reduced to algebraic or numerical operations.

E.g., Seidel and Wolpert [40] used algebraic primitives within this scaffolding. Our

algorithms will focus on numerical primitives. Note that numerical primitives are not

necessarily immune to implementation gaps. For instance, the Morse theory approach

to surface meshing in [45] reveals such gaps.

There have been many attempts to extend Marching Cubes [25] from uniform to

adaptive grids such as octrees. One example is from Shekhar et al. [42], but it requires

crack patching efforts. Some dual approaches are used to eliminate patching problem.

Two examples are Dual Contouring [21] and Dual Marching Cubes [38]. [42] and [21]

use bottom up “simplification” of the regular grid to form an octree. In contrast, [38]

uses a more advantageous top down subdivision scheme to construct the octree. But

all of them do not have any topological guarantees. Varadhanet al. [49] introduced

an algorithm for constructing a homeomorphic mesh, but their approach is not clear if

inputs are functions, and has implementation gaps.

Since numerical methods traditionally do not offer topological guarantees, the key

challenge is to devise methods that offer such guarantees. The direct precursors for our

work are the subdivision algorithms of Plantinga & Vegter [32, 31] and Snyder [44, 43].

Both algorithms are based on interval arithmetic [28] and theability to evaluate the ex-

act sign of a function at bigfloat values. For a large class of functions, not necessarily

algebraic, these primitives can be easily implemented exactly using a bigfloat number

package. Snyder’s algorithm is applicable in all dimensions (but it has termination prob-

lems as noted below). Currently, the Plantinga & Vegter method is only known in 2 and

3 dimensions. Ben Galehouse [17] has a subdivision algorithmfor meshing surfaces

in any dimension, but like Snyder, he requires recursive meshing of the boundary. Both
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Plantinga & Vegter and Ben Galehouse use surface normal controlling primitives in their

algorithms. All these algorithms are also related to the SCCI-hybrid algorithm for curve

tracing by Ratschek and Rokne [35].

The problem of approximating curves defined by a bivariate polynomial is the2-

dimensional version of the general problem of approximating the hypersurface defined

by ad-variate polynomial. The cased = 3 is clearly very important in practice. When

d = 1, this is the classic root approximation problem. Computing up to isotopy in this

case is known as the root isolation problem. Recent progress in this 1D problem can

be found in [11, 10, 36, 22]. For a nice survey of work on the Descartes-Bernstein

methods, including the so-called bit-stream algorithms, see [15]; for results related to

the continued fraction method, see [41].

Both Plantinga & Vegter and Snyder assume the input curves andsurfaces are non-

singular. Recently, numerical subdivision algorithms thatcan work with singularities

and degeneracies have appeared: [52] gave a Bezier curve intersection algorithm that

is correct even in the presence of tangential intersection.Subdivision techniques for

approximating curves with isolated singularities were given in [9]. The paper also ex-

tended the algorithm of Plantinga & Vegter to domains with irregular geometry. [11]

introduced the1D versions of the Plantinga & Vegter algorithm, and extended it to treat

singularities (i.e., multiple zeros). Another key attraction of subdivision algorithms is

their adaptive complexity. [10] introduced continuous andalgebraic amortization tech-

niques, resulting in one of the first adaptive analysis of subdivision algorithms.
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Chapter 2

Overview of Subdivision Algorithms

To provide intuition for our algorithm, we will recall the work of Snyder and Plantinga

& Vegter in2D case. In most of our discussion, we fix a real curve

S := f−1(0) =
{
p ∈ R

2 : f(p) = 0
}

. (2.1)

which is specified by aC1 functionf(X,Y ) : R
2 → R. We assume interval arithmetic

and interval versions of functions such asf and its partial derivativesfx, fy.

A 2D box is given byB = Ix × Iy ⊆ R
2 whereIx, Iy are real intervals. Letm(Ix)

andw(Ix) denote the midpoint and width ofIx. For a boxB = Ix × Iy, let wx(B) :=

w(Ix), mx(B) = m(Ix); similarly for wy(B),my(B). Then the midpoint, width and

diameter ofB are (resp.)m(B) := (mx(B),my(B)), w(B) := min {wx(B), wy(B)}

andd(B) := max {wx(B), wy(B)}. We name the fouredgesof a boxB by their relative

positions (left, right, top, bottom). See Figure 2.1 for illustration of this terminology.

The fourcorners are (resp.) topleft, topright, bottomleft and bottomright. The sign

of a cornerc refers to the sign off(c). By making an infinitesimal perturbation off

(which will be discussed later), we may assume that every corner c has a positive or a
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negative sign (never the zero sign). An edge ismonochromatic if the sign at both of its

corners are the same. A box ismonochromatic if the sign at all of its corners are the

same. Since there are only two signs, the negation of monochromatic isbichromatic.

A full-split of B is to subdivideB into four equal subboxes; ahalf-split subdivides

B into two equal subboxes. There are two kinds of half-splits:horizontal and vertical.

These subboxes are called thechildren of B. If the children of the full split ofB are

denotedB1, . . . , B4 (with Bi in theith quadrant relative tom(B)), then the children in a

horizontal (resp., vertical) half-split areB12, B34 (resp.,B14, B23), whereBij = Bi∪Bj.

We use the edge/corner terminology for boxes, but reserve the arc/vertex terminology

for the approximation straightline graphsG.

right

x

top

bottom

left

y

Figure 2.1: Convention and terminology for the edges of a2D box

¶1. Our Computational Model To see why our algorithms are free of implemen-

tation gaps, we take a closer look at the computational modelwe need. Bigfloats or

dyadic numbers is the setF = Z[1/2] = {m2n : m,n ∈ Z}. All numerical computa-

tions in our algorithms will be reduced to exact ring operations (±,×) and comparisons

on bigfloat numbers. Bigfloat number packages are efficient andwidely available (e.g.,

GMP, LEDA or Core Library). More generally,F can be replaced by any “computa-

tional ring” [54, 53] satisfying some basic axioms to support exact real approximation.

Moreover, machine arithmetic can also be used in place of BigFloats, as long as no
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overflow or underflow occurs; in most of our examples, this is the case. Even when high

precision is needed, machine arithmetic can be exploited asfilters.

We also use interval arithmetic [28]. The main tool is inclusion functions ([34]).

An inclusion function forf(X,Y ) is a function f(Ix, Iy) = f(B) that takes input

intervals and returns an interval that satisfies the inclusion property:f(B) ⊆ f(B)

wheref(B) = {f(x, y) : (x, y) ∈ B}. We call f a box function for f if, in addition,

it is point convergent, i.e., for any strictly decreasing sequenceB0 ⊃ B1 ⊃ · · · of boxes

that converges to a pointp, we have f(Bi) → f(p) asi → ∞. For our computational

model, it is assumed that the input arguments tof are dyadic boxes, and it returns a

dyadic interval. We also need box versions of the derivatives,fx, fy.

As in [9], we callf a PV function if f : R
2 → R is C1, and there exist computable

box functions f, fx, fy and the sign off at dyadic pointsp ∈ F
2 is computable. It will

be clear that the algorithms of this thesis can be easy to implement with no numerical

errors when the inputf is a PV function, and all numerical inputs are dyadic. Therefore,

nonrobustness issues are moot. See [9, 34] for additional information.

In contrast to our computational model, the standard model of numerical analysis

only supports inexact arithmetic (up to unit round-off error). This leads to the im-

plementation gap issues mentioned in the introduction. Such a model is assumed by

Ratschek and Rokne, and even though they have the similar basicapproach as ours, they

had to discuss rounding errors [35,§2.5]. Moreover, in their model, computing the sign

of f(X,Y ) at a pointp = (x0, y0) is problematic.

¶2. Generic Subdivision Algorithm The subdivision algorithms in this thesis have

a simple global structure. Each algorithm has a small numberof steps calledphases.

Each phase takes an input queueQ and returns some output data structure,Q′. Note that
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Q′ need not be a queue, butQ is always a queue of boxes. Each phase is a while-loop

that extracts a boxB from Q, processesB, and possibly re-insert children ofB back

into Q. The phase ends whenQ is empty. IfQ′ is a queue of boxes, it could be used

as input for the next phase. We next describe a generic algorithm with three phases:

Subdivision, Refinement and Construction.

For the Subdivision Phase, the inputQin and outputQout are both queues holding

boxes. The idea is to keep subdividing boxes until they satisfy certain predicates. The

subdivision depends on two box predicates: anexclusion predicateCout(B) and an

inclusion predicate Cin(B). For each boxB extracted fromQin, we first check if

Cout(B) holds. If so,B is discarded. Otherwise, ifCin(B) holds, then insertB intoQout.

Otherwise, we full-splitB and insert the children back intoQin. Next, the Refinement

Phase takes the output queue from the Subdivision Phase, andfurther subdivides the

boxes to satisfy additional criteria – these refined boxes are put in an output queueQref .

Finally, the Construction Phase takesQref as its input and produces an output structure

G = (V,E) representing a planar straight line graph. As we process each boxB in the

input queue, we insert vertices and arcs intoV andE, respectively.

GENERIC SUBDIVISION ALGORITHM

Input: CurveS given byf(X,Y ) = 0, boxB0 ⊆ R
2 andε > 0

Output: GraphG = (V,E) as an isotopicε-approximation ofS ∩B0.

0. LetQin ← {B0} be a queue of boxes.

1. Qout ← SUBDIV IDE(Qin)

2. Qref ← REFINE(Qout)

3. G← CONSTRUCT (Qref )

13



¶3. Example: Crude Marching Cubes Let us instantiate the generic algorithm just

described, to produce a crude but still useful algorithm for“curve tracing” (cf. [26]).

For the Subdivision Phase, we must specify two box predicates: let theCout predicate

be instantiated as

C0(B) : 0 /∈ f(B) (2.2)

If C0(B) holds, clearly the curveS does not pass throughB, andB may be discarded.

Let Cin predicate be instantiated byCε(B) which states that the edges ofB have lengths

less than someε > 0. Thus, all the boxes in outputQout have width6 ε. The current

Refinement Phase does nothing (soQref = Qout). For the Construction Phase, we must

specify how to process each boxB ∈ Qref . The goal is to create vertices to be inserted

into V , and create arcs (which are straightline segments joining pairs of vertices) to be

inserted intoE. The output is a straightline graphG = (V,E).
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+
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KEY:

+
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Figure 2.2: Components Types: (A) corner, (B) cut, (C) incursion. Simple Connection
Rules: (a,b) corner and cut arc; (c,d) double corner arcs.

We constructG as follows: for eachB ∈ Qref , we evaluate the sign off at each of

the four corners ofB. If the endpoints of an edge ofB have different signs, we introduce

a vertexv ∈ V at the the mid-point of the edge. Of course, ifv has already been created
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while processing a neighboring box ofB, we do not duplicatev. Clearly,B has0, 2 or

4 vertices on its edges. IfB has two vertices, we introduce an arc to connected them

(see 2.2(a),(b)). These arcs represent two types of connected components ofS∩B: cor-

ner andcut components(respectively) as illustrated in Figure 2.2(i),(ii). A third type

of connected component is anincursion (or B-incursion) (Figure 2.2(iii)) is not repre-

sented, but omission can be justified by isotopy (the reduction step in Figure 3.1(i,ii)).

If B has4 vertices, we introduce two pairs of non-intersecting arcs to connect them

(see Figure 2.2(c,d)); there are two ways to do this, but we choose either one arbitrarily.

In general, the corners ofB may have a zero sign. But henceforth, we give them an

arbitrary sign (say, positive). This can be justified by isotopy, as [32].

This completes our description of a crude Marching Cubes algorithm. Other subdi-

vision algorithms to be discussed will be seen as refinementsof this crude algorithm.

The output graphG = (V,E) is an approximation toS∩B0, up to “ε resolution”. Ifε is

screen resolution, this is adequate for the purposes of graphical display. Martin et al [26]

gave a comparative study of various numerical implementations of the box predicates

Cout, Cin.

Our crude Marching Cubes makes no claims on topological correctness. Until re-

cently, no numerical subdivision algorithms can promise much better. In particular, the

ability to handle singularities is regarded as an open problem for numerical methods [3,

p. 182]. But many papers assume manifolds in order to avoid singularity. In this thesis,

we only assume thatthe curveS has no singularities in the regionR0 of interest. More

precisely,f 2 + f 2
x + f 2

y does not vanish at any point inR0. Our main issue is to ensure

isotopy in such a situation. In domain subdivision, two related approaches have been

introduced by Snyder [44] and Plantinga & Vegter [32].
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¶4. Snyder’s Parametrizability Approach In Snyder’s approach, the predicateCin

is chosen to be

Cxy(B) : Cx(B) ∨ Cy(B) (2.3)

whereCx(B) is the predicate0 /∈ fx(B), and similarly forCy(B) with respect tofy. A

curveS is said to beparametrizable in the x-direction (or, x-parametrizable) in a box

B if each vertical line intersectsS ∩ B at most once. Clearly,Cy(B) implies thatS is

x-parametrizable inB; this is illustrated in Figure 2.3. During the Construction Phase,

we isolate the intersections ofS with the boundary∂B of each boxB ∈ Qref (this

amounts to root isolation). With sufficient root refinement,we would be able to cor-

rectly construct the isotopy type ofS ∩B. Note that this isotopy type can be arbitrarily

complex, as seen in Figure 2.3.

I7

−

+

−−

++

−

+

I5 I6I1 I2 I3 I4

Figure 2.3: The box components of aCy-box

¶5. Plantinga & Vegter’s Small Normal Variation Approach Unfortunately, Sny-

der’s algorithm (assuming that the method is recursively applied to the boundary of

B) may not terminate1 if the curve intersects∂B tangentially [3, p. 195] (e.g.,f =

x2 +y2−1, andB0 := [(−2,−2), (2, 2)]; Snyder’s algorithm would keep subdividing in

boxes containing the point(1, 0)). In view of this, the credit for the first complete subdi-

vision algorithm to achieve isotopic approximation of nonsingular curves and surfaces

1 In meshing curves, one can handle this problem by some root isolation method that handle multiple
roots, but the problem is more serious in meshing surfaces.
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belongs to Plantinga & Vegter [32]. In place ofCxy(B), the Plantinga & Vegter (or PV)

algorithm uses a stronger predicate that we denote byC1(B):

C1(B) : 0 /∈ ( fx(B))2 + ( fy(B))2. (2.4)

It is important that the operation[a, b]2 of squaring an interval[a, b] = fi(B) (i ∈

{x, y}) in (2.4) is defined as[min{a2, ab, b2}, max{a2, ab, b2}] and not as[0, max{a2, b2}].

This predicate is called the “small normal variation” condition in [3]. To see thatC1(B)

impliesCxy(B), we can follow [32] by rewriting (2.4) as

0 /∈ 〈 ∇f(B), ∇f(B)〉

where∇f(p) := (fx(p), fy(p)) denotes the gradient at a pointp, and ∇f(B) :=

( fx(B), fy(B)), and〈·, ·〉 is just the scalar product of two vectors. This shows that if

p, q ∈ B, then〈∇f(p),∇f(q)〉 > 0. Suppose somep ∈ B has a vertical gradient (there

are two choices, up or down). Then noq ∈ B can have a horizontal gradient (there

are two choices, left or right). We conclude thatf−1(0) ∩ B is parametrizable in the

x-direction. There is a symmetric argument in which the rolesof horizontal and verti-

cal directions are inter-changed. The PV algorithm has a remarkablenonlocal isotopy

property :

It does not guarantee isotopy of the approximationG with the curveS within each boxB.

(2.5)

We view this property favorably because local isotopy in each B is seen as an artifact

of the subdivision scheme, and could greatly increase the number of subdivisions. The

non-termination of Snyder’s algorithm is precisely because it insists on local isotopy.
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The processing ofC1-boxes is extremely simple as compared to Snyder’s approach. In

fact, it is a slight extension of the connection rules in our crude Marching Cubes above

(see Figure 3.4). This advantage shows up even more in3D, where Snyder’s algorithm

must recursively solve the2D isotopy problem on the boundary ofeachsubdivision

box. On the negative side,C1(B) is a stronger predicate thanCxy(B) and may cause

more subdivisions thanCxy(B). In view of these tradeoffs, it is not immediately clear

which approach is more efficient.

¶6. MC-like The conceptual question is:what kind of stopping and refinement crite-

ria do we need in order to ensure that the Construction Phase hassufficient information

to construct an isotopic approximationG? This question is ill-formed unless we con-

strain the Construction Phase. Marching Cubes [25] gives us a clue: for each boxB, the

Marching Cubes algorithm computes a small surface patchGB ⊆ B basedonly on the

signs off at the corners ofB. This isO(1) work per box, andG is defined to be union

of all these patchesGB. Such a Construction Phase is said to beMC-like or “March-

ing Cubes like” ([49] uses the same terminology for Marching Cube algorithm and its

variants). The achievement of Plantinga & Vegter (PV) [32] is that, by using the “small

normal variation” predicate, they could ensure correct isotopy with a MC-like construc-

tion2. In contrast, the construction phase in Snyder’s algorithm[44] is not MC-like, but

requires highly nontrivial processing (e.g., root isolation).

¶7. Other MC-like Approaches Most MC-like approaches can be formulated using

our Generic Subdivision Algorithm. Schaefer and Warren [38] use quadratic error func-

tions (developed in [18]) and some user defined toleranceǫ asCin predicate. This dual

approach produces a crack free, adaptive approximation of the surface that reproduces

2 The simplicity of the PV algorithm makes it a textbook case study, alongside the Marching Cubes.
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sharp features, but it does not have any topological guarantee. Another example is from

Varadhan et al. [49]. They use two criteria as theCin predicate: a complex cell criterion

and a star-shaped criterion. Similar to Snyder’s algorithm, they require the mesh to be

homeomorphic to the original surface within each box. They proved that the mesh pro-

duced by their approach is homeomorphic to the original surface, and provided the detail

for the case that the input is a triangulated model. But if the input is a function, their

approach is not so clear (e.g., kernel computation), and might require time consuming

computation (the first criterion requires computation of the Max-Norm Distance [48] for

each corner, edge and face of each box by solving equation systems). This approach has

implementation gaps in many places, and also requires crackpatching efforts.

¶8. Quadtrees Instead of queues, we prefer to work with a slightly more elaborate

structure: aquadtree is a rooted treeT whose nodesu are associated with boxesBu and

if u is an internal node then it either has four or two children whose associated boxes

are obtained by full- or half-splitting ofBu. Two nodesu, v are said to beadjacent

(or neighbors) if the interiors ofBu andBv are disjoint, but their boundary overlap.

Overlapping meansBu ∩ Bv is a line segment, not just a point or empty. In order for

T to represent regions of fairly complex geometry, we assume that each leaf ofT is

tagged with a Boolean flag, “on” or “off”. The associated boxesare calledon-boxesor

off-boxes. The quadtreeT represents aregion denotedR(T ) ⊆ R
2 which is just the

union of all the on-boxes. Following [9], we callR(T ) a nice region. A nice region is

a closed subset ofR2, but it need not be connected. Intuitively, we can substitute the

queues with quadtreesT in our generic subdivision algorithm. Each phase accepts an

input quadtreeT , extend it, and outputs an quadtreeT ′ (except in the last phase, when

the output is the combinatorial representation of the surface).
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In the subdivision phase, theCout predicate is always the predicateC0 above; it

ensures that out-boxes can safely be omitted in our approximation of the curveS. This

exclusion predicate is more or less universal among subdivision methods, so we only

focus onCin. Different subdivision methods are distinguished by theirapproach to

inclusion predicates. Snyder’s inclusion predicate is given byCxy(B), and Plantinga &

Vegter uses a stronger inclusion predicateC1(B).

We repeatedly extend an quadtreeT by splitting its on-boxes. The on-boxes ofT

are classified into three mutually exclusive categories:

• Discarded Boxes: these are on-boxes that satisfy the exclusion predicateCout

• Candidate Boxes: these on-boxes do not satisfy the exclusion predicateCout, but

satisfyCin.

• Inconclusive boxes: these on-boxes do not satisfyCout or Cin.

No further processing is done on the discarded boxes (so theyremain as leaves ofT

from now on). In the subdivision phase, we only split the Inconclusive boxes until

every on-box is either discarded or candidate. For the refinement phase, no Inconclusive

boxes remain. So we only split candidate boxes. A subtle point arises: we would like to

assume that

the children of candidate boxes are either candidate or discarded. (2.6)

Property (2.6) would hold if the notion of an “Cin box” is hereditary, meaning that the

children of aCin box will remainCin. Unfortunately, this is not guaranteed because

our definition ofCin predicates are based on box functions, which is implementation-

dependent. If the box functionf is “isotonic”, the hereditary is automatic. To fix this,
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we redefine the concept of a candidate box:(i) it does not satisfyCout, and (ii) either its

parent is a candidate box or it satisfiesCin.

A refinement of T is obtained by a sequence of refinement steps. Note that ifT ′ is

a refinement ofT , thenR(T ′) ⊆ R(T ). We are interested in two properties of quadtrees

T , each obtained by successive refinements:

• REGULARIZE(T ) returns aregularized quadtree, i.e., any two adjacent can-

didate boxes have the same depth. Thus,

REGULARIZE(T ) ≡ SPLITCreg
(T )

whereCreg(B) ≡ all candidate boxes adjacent toB have width> w(B). Note that

we must not replace the condition “width> w(B)” by “width = w(B)” because

this can cause the smallest square to split and possibly leadto non-termination. In

contrast to Plantinga & Vegter’s notion of regularity whichrequires all the leaves

to have the same depth, ours allow the leaves of different connected components

of R(T ) to have different depths.

• BALANCE(T ) returns abalanced quadtree, i.e., one where the depths of any

two adjacent candidate boxes differ by at most one. Thus,

BALANCE(T ) ≡ SPLITCbal
(T )

whereCbal(B) ≡ all candidate boxes adjacent toB have width≥ 1
2
w(B).

A useful terminology is the notion of “segments” of a quadtreeT . Roughly speaking,

segmentsare the units into which an edge of a box is subdivided. There are two types

of segments: aboundary segmente is an edge of an candidate box ofT such that

21



e ∈ ∂R(T ); otherwise, it is aninternal segment. An internal segmente has the form

e = B ∩B′ whereB,B′ are adjacent candidate boxes ofT . Thus each edge of a box in

T is divided into one or more segments. IfT is a regularized quadtree, then each edge

of an candidate box ofT is also a segment; ifT is a balanced quadtree, then each edge

of an candidate box ofT is composed of either one or two segments. Aboundary box

is a candidate box that contains a boundary segment.

For now, assume the above subroutines use only full-splits;the general case where

we also allow half-splits is treated in our Rectangular Algorithms.

¶9. Perturbation The correctness statements of geometric algorithms can be quite

involved in the presence of degeneracy. To avoid such complications, and in the spirit of

exploiting nonlocal isotopy, we exploit perturbations off (for more details for treatment

of geometric degeneracies, see [50]). We callf̃ : R
2 → R a nice perturbation of

f : R
2 → R relative to T if

i) f̃−1(0) ∩ Interior(R(T )) ≈ f̃−1(0) ∩R(T ).

ii) ∀ǫ > 0, ∃fǫ : R
2 → R such that (a)|f(q) − fǫ(q)| < ǫ for ∀q ∈ R

2, and (b)

f̃(p)fǫ(p) > 0, for any cornerp of T .

An intuitive way to get a nice perturbation off is to slightly shift theS = f−1(0) so

that the resulting curve does not pass any of the corners of the boxes inT .

LEMMA 2. For any givenf andT , there exists an nice perturbatioñf of f relative to

T .

We do not need an explicit̃f (which depends onT which is being expanded during

the algorithm). Instead, each time we evaluatef at a cornerp of a subdivision box, if

f(p) = 0 then we simply declare the sign to be positive. We justify this by saying that

we are really using a nice perturbatioñf instead off . Of course, we could givef any
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non-zero sign at eachp, as long as the sign is treated consistently for eachp. This use of

f̃ incurs no additional cost or complexity for our algorithm. For notational simplicity,

we simply refer to the some nice perturbationf̃ asf .
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Chapter 3

Isotopic Meshing of Curves

In this chapter, we will describe three increasingly sophisticated subdivision algo-

rithms for curves. They all based on theCxy predicate and will be known as the Regular-

ized Cxy, Balanced Cxy and Rectangular Cxy Algorithms. For the first two algorithms,

we only perform full-splits of boxes. We now present the firstof these three algorithms.

3.1 Regularized Cxy Algorithm

Our initial goal is to replace theC1-predicate in the PV Algorithm by the parametriz-

ability condition of Snyder. As in Plantinga & Vegter [32], we first consider a simplified

version in which we regularize the quadtree, i.e., reduce all adjacent candidate boxes to

the same depth. This is ourRegularized Cxy Algorithm, which has this form:
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Regularized Cxy Algorithm:

Input: Nice region given by a quadtreeT0 and curveS = f−1(0)

Output: Isotopic approximationG for S ∩R(T0)

0. T1 ← BOUNDARY (T0)

1. T2 ← SUBDIV IDECxy(T1)

2. T3 ← REGULARIZE(T2)

3. G← CONSTRUCT (T3)

Note that there are four phases (Phases 0 to 3) and only Phase 0remains to be

clarified. Suppose we ignore Phase 0 (treating the operationBOUNDARY (T0) as a

no-op). Then the algorithm is just an elaboration of the CrudeMarching Cubes, in

which we replace its (empty) Refinement Phase by a Regularization Phase, and replace

the predicateCε by Cxy. The Construction Phase here is simpler than in the Crude

Marching Cubes because we never have4 vertices on the edges of an candidate box in

view of conditionCxy(B). Thus, the only connection rules we need are Figure 2.2(a,b)

(i.e., Figure 2.2(c,d) are excluded).

The naive correctness statement is this: “S ∩R(T0) is isotopic toG”. But this naive

statement may fail because of “incursions” or “excursions”at boundary boxes. More

precisely, supposeB is a boundary box and lete ⊆ ∂R(T0) be a boundary segment ofB.

We sayS makes anincursion (resp.,excursion) ate if S∩B (resp.,S∩(R2\R(T0))) has

a connected componentC with both end points ine (Figure 2.2(iii) shows an example

of incursion). Thus,C enters and exitsB (resp., exits and re-entersB) at e. Such

incursions/excursions are not captured by our output graphG. So a non-trivial Phase

0 is necessary to fix this problem. There is an important situation where boundary

processing requires no effort at all: whenS is fully contained inR(T0). Note that this

was the assumption in Plantinga & Vegter’s algorithm.
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¶10. Boundary Processing The role of Phase 0 is to “secure” the original boundary

of R(T0). This basically amounts to isolating all the intersectionsof S with ∂R(T0).

In principle, we could invoke any exact root isolation algorithm for this purpose. How-

ever, we prefer to apply the same subdivision method, albeitapplied recursively to one

dimension lower. In general, for ad-dimensional subdivision algorithm, we want to

recursively use the(d − 1)-dimensional analogue for processing its boundary. For1D,

this algorithm is essentially the EVAL algorithm for real root isolation [27, 11, 10].

The basic idea is to keep splitting any boundary box that has apotential incursion or

excursion. Initially place all the boundary boxes ofT0 into a queueQ0, and whileQ0

is non-empty, we remove a boundary boxB and “tests” each of its boundary segmente

(there may be one to four such segments). Ite fails the test,B is split and its boundary

children is put back intoQ0. If each boundary segment ofB passes the “test”, we discard

B (i.e., it does not have to be split). But this amounts to doing nothing.

Let us now clarify the “test” on a boundary segmente. The1D analogue ofC0 and

Cxy predicates are (respectively)

C ′

0(e) : 0 /∈ f(e), C ′

xy(e) : 0 /∈ fi(e)

wherei = x if e is horizontal, andi = y if e is vertical. IfC ′
0(e) holds, the curve does

not intersecte. If C ′
xy(e) holds then there can be no incursion/excursion curve ate. We

say thate fails the test if eitherC ′
0(e) or C ′

xy(e) does not hold. WhenQ0 is empty, we

terminate Phase0. The output from this Phase is a quadtreeT1 that refines the boundary

boxes ofT0 so that the curveS intersects each boundary segment ofR(T1) at most once.

In this case, we sayS intersects the boundary ofR(T1) cleanly.

There are still problems: if the curve intersects the boundary of R(T0) tangentially,
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this method does not terminate. This problem was addressed by [9], using a weakened

correctness statement and a more elaborate algorithm. Also, if the curve has an end point

in the interior ofR(T0), our algorithm might not terminate as well. For this thesis,we

shall be contented with the above simple method of boundary processing, but we need to

make two strong requirements: (1) the input curveS intersects the boundary ofR(T0)

generically, i.e., any intersection ofS with the boundary ofR(T0) is transversal;and

(2) S ∩R(T0) is compact, and any end point ofS ∩R(T0) lies on the boundary∂R(T0).

By definition, transversal intersection does not allow the curve to just touching a corner

of R(T0) without entering the interior ofR(T0). From now on, we assume the above

two requirements always hold.

¶11. Correctness It is perhaps surprising that this simple algorithm, only a small

extension of Crude Marching Cubes, already produces the correct isotopy. Because it is

easy to implement, it may have credible practicality.

THEOREM 3 (Correctness of Regularized Cxy Algorithm).The algorithm terminates

provided thatS intersects∂R(T0) generically andf is nonsingular insideR(T0). More-

over, the output graphG is isotopic toS ∩R(T0).

The proof will be spread over several steps. We first prove termination. Only the

boundary and subdivision phases have the potential for non-termination. The following

lemma provides the condition to guarantee their termination.

LEMMA 4.

(i) If S = f−1(0) intersects the boundary ofR(T0) generically, then the Boundary Phase

will terminate.

(ii) If f has no singularities inR(T0) then the Subdivision Phase will terminate.
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Proof.(i) If the Boundary Phase does not terminate, then there is an infinite decreas-

ing sequence of edges,e0 ⊃ e1 ⊃ · · · , such that eachC ′
0(ei) andC ′

xy(ei) fail. Wlog,

let e0 be horizontal andei → p asi → ∞. ThenC ′
xy(ei) failing means0 ∈ fx(ei).

Since fx(ei) → fx(p), we conclude thatfx(p) = 0. Similarly, C ′
0(ei) failing implies

f(p) = 0. This shows thatf−1(0) intersectse0 tangentially.

(ii) If the Subdivision Phase does not terminate, then thereis an infinite decreasing

sequence of boxesB0 ⊃ B1 ⊃ · · · such that eachC0(Bi) andCxy(Bi) fail. Thus:

0 ∈ ( f(Bi) ∩ fx(Bi) ∩ fy(Bi)). (3.1)

The boxesBi must converge1 to some pointp ∈ R(T0) asi → ∞. Since f is a box

function for f , we conclude that f(Bi) → f(p). Then (3.1) implies0 = f(p) =

fx(p) = fy(p). Thus,f is singular inR(T0). Q.E.D.

3.2 Partial Correctness of Regularized Cxy Algorithm

The basic partial correctness technique in Plantinga & Vegter [32] is to apply iso-

topies which remove any excursion of the curveS = f−1(0) from a boxB to its neigh-

boring boxB′. Such isotopies are not “local” to any single box, but it is nevertheless

still fairly local, being restricted to a unionB ∪ B′ of two adjacent boxes. But in our

algorithm, an excursion fromB can pass through a sequence of boxes, so we need a

more global view of how to apply such isotopies.

We next prove partial correctness: if the algorithm terminates, the outputG is iso-

topic toS ∩ R(T0). The key idea in the proof is to use isotopy to transform the curve

1 The existence ofp depends only on the existence of a boundr on the maximum aspect ratio – so this
proof applies in the more general setting of Rectangular CxyAlgorithm later.
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S ∩R(T0) = S ∩R(T3) repeatedly, until we finally obtain a curveS∗ that we can show

is isotopic toG. Each transformation step removes a pair of intersections betweenS and

the boundary of boxes, as illustrated in Figure 3.1(i,ii): the pair(a′, b′) is eliminated via

the isotopic transformation from (i) to (ii). We say that thepair (a′, b′) is reducible. We

will make this precise.
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Figure 3.1: Reduction step with(a′, b′) ≺ (a, b)

¶12. Partial Ordering of Convergent Pairs To give a structure for our induction,

we need a partial ordering on pairs of intersection points, such as(a, b) or (a′, b′) in

Figure 3.1(i,ii). Ifa = (ax, ay), b = (bx, by) are points, it is convenient to write “a <x b”

to mean thatax < bx. Similarly,a <y b meansay < by. Also,a 6x b meansax 6 bx.

Let e be a segment, soe = B ∩ B′ for some candidate boxesB andB′ (see Fig-

ure 3.1(i)). AssumeCxy holds atB andB′. By symmetry, assumee is a horizontal

segment (the following definitions can be modified ife is vertical).

Consider the setS ∩ e. By nice perturbation, we can assume thatS has no vertical

or horizontal components overlapped with edges of each candidate box (i.e.,S ∩ e is a

finite set). In general,S can intersecte at points with multiplicity greater than1; then, as
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in [12], we can viewS ∩ e as a multiset where each pointp ∈ S ∩ e has multiplicity1 or

2, according asS intersectse with odd or even multiplicity. However, we can avoid this

complication by simple perturbation arguments (this will be noted in the proof below).

Therefore, we assume thatS intersectse transversally. LetS ∩ e = {p1, . . . , pm} where

the points are sorted so thatp1 <x p2 <x · · · <x pm. A pair of the form(pi, pi+1)

is called aconsecutive pairof e. Clearly, e contains a consecutive pair iffm > 2.

Moreover, ifm > 2 andCxy(B) holds, thenS must bex-parametrizable inB.

A consecutive pair(a, b) of a horizontal segmente is said to beupward convergent

if the two portions of the curveS, neara and nearb (respectively), are moving closer to

each other as the respective curve portions move upward acrosse. This is equivalent to

saying that the slope of the curveS is positive ata and negative atb. This is illustrated

in Figure 3.1(i) and (ii).

We have three other related definitions: if(a, b) is a consecutive pair of segmente,

we say(a, b) is downward convergentif e is a horizontal segment and the slope off at

a is negative, and atb is positive. Ife is a vertical segment, we similarly defineleft or

right convergent. A key property is:

LEMMA 5. Lete = B∩B′ be a segment. IfB andB′ satisfiesCxy then every consecutive

pair of e is convergent (upward, downward, left or right).

Proof. Wlog, let e be horizontal and(a, b) be a consecutive pair ofe. We must

show thate is either upward or downward convergent. SinceCxy(B) holds, the fact that

f−1(0) intersectse in two distinct pointsa, b means that, in fact,Cy(B) holds. Wlog,

assumefy(B) > 0. There are two possibilities:f((a + b)/2) > 0 or f((a + b)/2) < 0.

In the former case, we havefx(a) > 0 andfx(b) < 0 and so the slope off−1(0) at a is

negative, and the slope atb is positive. This means(a, b) is downward convergent. The

latter case will imply(a, b) is upward convergent. Q.E.D.
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By symmetry, we mainly focus on upward convergent pair(a, b) of a horizontal

segmente = B∩B′. Because of the presence of(a, b), the curveS isx-parametrizable in

B andB′; soCy must hold atB and atB′. Wlog, we henceforth assume thatfy(B) > 0

andfy(B
′) > 0.

Let P = P (f) be the set of all upward convergent pairs of segments in the quadtree

T3. Note that none of these pairs lies on a boundary segment because of the Boundary

Processing (¶10). LetXa be the connected component ofB∩S that containsa; similarly

for Xb. Let a′ be the other endpoint ofXa; similarly for b′. In caseXa = Xb, we have

a′ = b andb′ = a andXa is a B-incursion. Hence we call(a, b) an incursion pair

(see Figure 3.1(ii)). But supposeXa 6= Xb, thenXa andXb are cut components (see

Figure 3.1(i)) satisfying

a <x a′ <x b′ <x b

becauseCy holds inB. This is illustrated in Figure 3.1(i).

Also, it is easy to see thatfx(a
′) < 0 andfx(b

′) > 0. ClearlyS intersects the relative

interior of the line segment[a′, b′] an even number of times. If there are2k > 0 such

intersections, then we can findk + 1 convergent pairs on[a′, b′]. Suppose these pairs are

(a0, b0), (a1, b1), . . . , (ak, bk)

wherea0 = a′ andbk = b′. Then we define

(ai, bi) ≺ (a, b) (3.2)

for eachi = 0, . . . , k. Let� denote the reflexive, transitive closure of the set of binary

relations defined as in (3.2). It is easy to see that� is a partial order onP . For regu-
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larized quadtrees, the minimal elements of this partial order are those(a, b) for which

Xa = Xb are incursion components or boundary pairs; for balanced quadtrees (next

section), this is no longer true.

¶13. Compatibility So far, our box predicatesC0, C1, Cxy and Phases such as

CONSTRUCT (T ) are implicitly based on some PV functionf . In order to explic-

itly indicate their dependence onf , we putf in the superscript as inCf
0 , Cf

1 , Cf
xy and

CONSTRUCT f (T ).

Let T be a quadtree andf, g be PV functions. If for all cornersu of each candidate

box, we havef(u)g(u) > 0, then we sayf andg arecompatibleonT .

Let us review the process of the Regularized Cxy Algorithm. Therole of the0th

Phase is to construct a quadtreeT such that for each boundary segmente of T , the curve

S intersectse at most once (orS intersects∂R(T ) cleanly). The1st Phase is to make

the curvex- or y-parametrizable inside each box ofT . Recall thatCONSTRUCT f (T )

produces a straightline graphG = (V,E) where, for each segmente of T , we introduce

a vertexv ∈ V iff f has opposite signs at the endpoints ofe, and for each candidate box

with two verticesu, v on its boundary, we introduce an arc(u, v) ∈ E.

LEMMA 6. Letf be a PV function, andT be the quadtree after the Regularization phase

in our algorithm (i.e.,T = T3). If S = f−1(0) intersects the boundary ofR(T ) cleanly

and generically, then the graphG := CONSTRUCT f (T ) is isotopic toS ∩R(T ).

Proof.We will inductively define a sequencef0, f1, f2, . . . , fn of C1 functions such

thatf0 := f and each pairfi−1, fi is compatible overT (i = 1, . . . , n) andSi ≈ Si−1

whereSi := f−1
i (0).

We may assume that eachSi intersects the segments ofT only transversally, and

avoids the corners of candidate boxes. Hence, we can define the partial orderingPi =
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P (fi) of upward convergent pairs (relative to the segments of quadtreeT ). The trans-

formation fromSi to Si−1 is illustrated by the “reduction step” of Figure 3.1(i,ii),and

amounts to the removal of an upward convergent pair which is minimal in the partial

orderPi. No other convergent pairs ofPi−1 are affected by this transformation. It is

then clear thatSi ≈ Si−1. Thus, we have the further property thatPi ⊆ Pi−1 with

|Pi| = |Pi−1| − 1 = |P0| − i. We stop aftern = |P0| transformations, when|Pn| = 0.

We can similarly remove all the downward, left and right convergent pairs, by re-

peating the preceding process three more times. We finally arrive at a functionf such

that there are no consecutive pairs on any segment. According to Lemma 5, this means

the curveS := f
−1

(0) intersects each segment at most once. Moreover, the curvesS

andS = f−1(0) are isotopic.

It remains to show thatS ∩ R(T ) ≃ G whereG = CONSTRUCT f (T ). Let

B be any candidate box ofT . SinceCf
xy(B) holds, our construction ofG ensures that

|G∩∂B| ∈ {0, 2}. Note thatG has a vertex at a segmente iff |S∩e| = 1. Since we may

assume thatS does not intersect the corners ofB, it follows that|G ∩ ∂B| = |S ∩ ∂B|.

In other words,G ∩ ∂B is isotopic toS ∩ ∂B. Moreover, this can be extended into an

isotopy for the entire candidate box:G ∩B is isotopic toS ∩B.

Q.E.D.

The transformation of the functionfi−1 into fi can be made explicit if desired. Sup-

pose the transformation removes the�-minimal upward convergent pair(a, b) on seg-

mente. Let e = B ∩ B′ whereB,B′ are candidate boxes andB lies top ofe. We

emphasize that this transformation is local toB ∪ B′. Let Xa,b denote the connected

component ofSi−1 ∩ B whose endpoints area, b. Let Ba,b denote the smallest rect-

angle that containsXa,b. SupposeBa,b = [x1, x2] × [y1, y2]. For ǫ > 0, let Bǫ
a,b =

[x1−ǫ, x2+ǫ]×[y1−ǫ, y2+ǫ]. Chooseǫ sufficiently small so thatBǫ
a,b∩Si−1 is comprised
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of a unique component, denotedXǫ
a,b. Now definefi : [x1−ǫ, x2+ǫ]×[y1−ǫ, y2+ǫ]→ R

so thatfi is the identity on the boundary of[x1 − ǫ, x2 + ǫ]× [y1 − ǫ, y2 + ǫ], but other-

wisefi(x, y) = fi−1(x, g(x, y)) where the functiong(x, y) has the property thatg(x, ·)

is a piecewise linear shear. Explicit formulas forg can be given if desired. Moreover,

fi(x, y) = 0 impliesy < y1. In other words,f−1
i (0)∩ [x1− ǫ, x2 + ǫ]× [y1− ǫ, y2 + ǫ] =

f−1
i (0) ∩ [x1 − ǫ, x2 + ǫ] × [y1 − ǫ, y1]. Thus the componentXǫ

a,b has moved out of

B into B′. Finally, let extend the functionfi to all of the Euclidean plane by defining

fi(x, y) = fi−1(x, y) for all (x, y) /∈ [x1 − ǫ, x2 + ǫ]× [y1 − ǫ, y2 + ǫ].

COROLLARY 7. Let T be a regularized quadtree. If (i)f, g are compatible onT ; (ii)

Sf = f−1(0) andSg = g−1(0) intersect∂R(T ) cleanly and generically; and (iii) each

box ofT satisfiesCf
xy andCg

xy, thenf−1(0) ∩R(T ) ≈ g−1(0) ∩R(T ).

Proof. Note that compatibility off and g implies thatCONSTRUCT f (T ) =

CONSTRUCT g(T ). By the previous lemma, we also havef−1(0) ∩R(T ) ≈

CONSTRUCT f (T ) andg−1(0) ∩R(T ) ≈ CONSTRUCT g(T ). Q.E.D.

Conclusion of the Proof of Theorem 3.Proof.Termination follows from Lemma 4.

We note how each phase of the Regularized Cxy Algorithm provides the necessary prop-

erties for correctness: Phase 0 convertsT0 to T1 which satisfies the boundary condition

such thatS = f−1(0) intersects∂R(T1) cleanly. Phase 1 convertsT1 to T2 which satis-

fies the box condition for parametrizability betweenT2 andf (the boundary condition is

preserved in this transformation). Phase 2 convertsT2 into a regularized quadtree, again

preserving the boundary condition. Note thatf−1(0) ∩ R(T0) = f−1(0) ∩ R(T3), since

the out-boxes introduced by each of these phases satisfyC0. By Lemma 6, the outputG

from Phase 3 is isotopic tof−1(0) ∩R(T3). Q.E.D.

34



3.3 Balanced Cxy Algorithm

The Regularized Cxy Algorithm is non-adaptive because of regularization. ThePV

Algorithm is similar to the Regularized Cxy Algorithm, except that they replace the

Regularization Phase by a Balancing Phase, and useC1 predicate instead ofCxy. The

connection rules in the Construction Phase will become only slightly more elaborate

(see below and [9, 32]).

y

x

B′1

positive corner

negative corner

KEY:

vertex

(a)

(7, 1)

(−7,−1)

(b)

B2B1B′2

Figure 3.2: (a) Input “flat” hyperbola. (b) Output graph withwrong isotopy type.

¶14. Issue of Ambiguous Boxes We now explore the possibility of using theCxy

predicate in the PV Algorithm. To indicate the critical issue, consider an horizontally-

stretched hyperbola(cY +X)(cY −X) = 1 for somec≫ 1 as in Figure 3.2(a). We run

the PV algorithm on this input hyperbola It is conceivable the Subdivision Phase ends

up with the squares inside[(−7,−1), (7, 1)], as shown in Figure 3.2(b). Moreover, each

of the four larger yellow squares (B1, B2, B
′
1, B

′
2) satisfyCx, while the pink squares

satisfyCy, and blue squares2 satisfyC0. The output graphG obtained by using the

2 Thanks to Prof. Gert Vegter who pointed out that there is a critical pointp in the blue region. So the
subdivision phase will subdivide the blue region to produceC0 boxes that includep.
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connection rules of Figure 3.4 is the graph shown in Figure 3.2(b). SinceG forms a

loop, it is clearly wrong. The error occurred in the boxesB1 (and by symmetry, inB′
1).

If we had splitB1, we would have discovered that there are two, not one components,

in S ∩ B1. The boxB1 (andB′
1) is said to be “ambiguous”. In general, a leaf box

B is ambiguous if it (i) satisfiesCxy; (ii) is monochromatic; and (iii) has exactly two

vertices. The ambiguity classification marksB for a full-split. A slightly more elaborate

definition can be provided to avoid unnecessary splits3.
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Figure 3.3: Ambiguous box (a) and its resolution (b’,c’,c”)

Figure 3.3(a) shows an ambiguous boxB (it satisfiesCx but notCy). Note that our

definition of ambiguity does not depend on whetherB’s top or bottom edges have been

subdivided. If we full-split boxB, the situation resolves into one of two possibilities,

as in Figure 3.3(b) or 3.3(c). In fact, 3.3(c) has 2 subcases,depending on the sign of

the midpoint of the box. In any case, splitting an ambiguous box will “disambiguate”

it. In case of Figure 3.3(b), this might further cause the right neighbor ofB to become

3 I.e., we may require an optional condition: (iv) IfB satisfiesCy (resp.,Cx) and one of its horizontal
(resp., vertical) edges need not to be subdivided.
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ambiguous. This propagation of ambiguity can be iterated any number of times. But

propagation of splitting can be caused also by the need to rebalance boxes. However,

both kinds of propagation will terminate because if a box splits, it is “caused” by a

neighboring box of smaller size.In our hyperbola example in Figure 3.2(b), the splitting

of B1 andB′
1 will causeB2 andB′

2 to become ambiguous and be split. The final output

graph will now be correct.

¶15. The Algorithm We now present the overall algorithm using our (now famil-

iar) 4 Phases. To propagate and resolve ambiguity, we need a slightly more elaborate

Construction Phase, which we callCONSTRUCT+ in the following:

Balanced Cxy Algorithm:

Input: Nice region given by a quadtreeT0 andS = f−1(0)

Output: Isotopic approximationG for S ∩R(T0)

0. T1 ← BOUNDARY (T0)

1. T2 ← SUBDIV IDECxy
(T1)

2. T3 ← BALANCE(T2)

3. G← CONSTRUCT+(T3)

The first three phases are now standard. Our goal in theCONSTRUCT+(T3) is

to do the usual construction of the graphG = (V,E), but also to disambiguate boxes.

As usual, the input quadtreeT3 for CONSTRUCT+ provides a queueQ of candidate

boxes to be processed. However, the queue is now a priority queue. Thepriority of a

boxB is given by the inverse of its width (i.e., smaller width boxes have higher priority),

and among those boxes with the same width, the ambiguous boxes have higher priority.

We may organize this priority queue as a listQ = (L1, L2, . . .) of sublists. Each sublist
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Li contains all the candidate boxes of a given width (boxes inLi has width half of those

in Li+1). In each sublist, the ambiguous boxes appear ahead of the non-ambiguous

boxes. Note that some sublists may be empty. It is easy to manipulate these lists: when

a box is removed fromLi to be split, its children goes into sublistLi+1. If a box in

Li becomes ambiguous because of insertion of two new vertices on one of its edges,

it is moved to the front of its sublist. The top-of-queue is the first element in the first

non-empty listLi.

We need two subroutines called

REBALANCE(B), PROCESS(B).

To “rebalance”B, we split any neighbor ofB whose width is more than twice that

of B, and recursively rebalance the children of its split neighbors. These children are

re-inserted into the queue for future processing. More precisely:

REBALANCE(B):

For each candidate boxB′ that is a neighbor ofB

If w(B′) > 2w(B),

Full-split B′

For each childB′′ of B′

InsertB′′ into Q

REBALANCE(B′′)

To “process”B, we add vertices to the edges ofB (if they were not already added)

and connect them according to the following rules: as shown in the next section,B has

0, 2 or 4 vertices on its boundary. IfB has2 vertices, we connect them as for the crude
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Marching Cubes Figure 2.2(a,b), but reproduced in Figure 3.4(a,b). IfB has4 vertices,

it turns out that two of them will lie on one edge ofB; we connect these two vertices

to the other two in such a way that the arcs are non-intersecting (this connection rule is

unique, unlike Figure 2.2(c,d)). These rules are summarized in Figure 3.4(a–f).
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Figure 3.4: Extended Connection Rules: Cases (c–f) treats two vertices lying on one
side of a box.

Four new cases arise Figure 3.4(c–f). Case (e) does not arise in the original PV

algorithm. Case (f) does arise in PV but it is ambiguous and so will be eliminated by

our algorithm through its disambiguation process. Thus, case (f) does not4 arise in our

current algorithm.

It is easy to see that these cases are exhaustive, and they canoccur. There is an addi-

tional detail: if we add new vertices, we must also update thepriority of any candidate

box neighbor ofB that may become ambiguous as a result. More precisely:

4 Note that case (f) may arise if our definition of ambiguity includes the optional condition (iv).
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PROCESS(B):

For each edge ofB,

If it has not been split, and has not yet been processed,

and has a change in sign at its endpoints

Add a vertex

Update the priority of its neighbors (if candidate) across this edge.

Connect the (at most four) vertices in the edges ofB

using the connection rules of Figure 3.4(a-e).

The correctness ofPROCESS(B) depends on the fact that any smaller boxes has

already be processed. Moreover,B itself is terminal (will not be split in the future).

CONSTRUCT+(T3)

AssumeT3 has a priority queueQ containing all of its candidate boxes

While Q is non-empty

B ← Q.remove() ⊲ SoB has the current smallest width

If B is ambiguous

Split B

For each childB′ of B

PROCESS(B′)

REBALANCE(B′)

Else ⊲ B is unambiguous

PROCESS(B)

3.4 Correctness of Balanced Cxy Algorithm

The statement is similar to that for the Regularized Cxy Algorithm:
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THEOREM 8 (Correctness of Balanced Cxy Algorithm).The algorithm terminates pro-

videdS intersects∂R(T0) generically andf is nonsingular inR(T0). Moreover, the

output graphG is isotopic toS ∩R(T0).

Let us first prove termination: the termination of the Boundary Phase and Subdivi-

sion Phases follows from Lemma 4. But we must also be sure thatCONSTRUCT+(T3)

is terminating because of its splitting of ambiguous boxes and rebalancing. To see that

this is a finite process, we observe that when a boxB is split inCONSTRUCT+, it is

“triggered” by an adjacent boxB′ of smaller width. Thus, the minimum width of boxes

in the quadtree is invariant. This implies termination.

The Construction Phase assumes the following property:

LEMMA 9. Each candidate box has0, 2 or 4 vertices on its edges. If it has4 vertices,

then two of them will lie on a common edge.

We omit the proof which amounts to a case analysis. This is similar to the PV

Algorithm [32], but we actually have a new possibility: it ispossible to have two vertices

on the right and two vertices on the left edge of the candidatebox as shown Figure 3.4(e).

Next, we must show partial correctness. Let us see why the proof for the Regularized

Cxy Algorithm does not work here: in the key lemma there (Lemma6), we transform

the functionfi−1 to fi by a reduction step that removes a convergent pair(a, b) that is

minimal in the partial orderP (fi−1). Now, there can be “obstructions” to this reduction:

in Figure 3.1(iii), the pair(a′, b′) is an upward convergent ofe′. But in the Balanced Cxy

Algorithm, the boxB′ might be split. Saye′ is thereby split into subsegmentse′a ande′b

wherea′ ∈ e′a andb′ ∈ e′b. Thus,(a′, b′) is no longer a consecutive pair on any segment,

and so(a, b) is now the minimal pair inP (fi−1). There are two possibilities: (1) We

might still be able to reduce the pair(a′, b′), but we note that the newfi is no longer
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compatible withfi−1 relative toT3. (2) It might also happen thatB′ was split because

the componentX ′
a of S ∩ B′ with endpointa′ and the componentX ′

b with endpointb′

are different, so we cannot do reduction.

In view of the above discussion, we say that an upward convergent(a, b) ∈ P (f) is

irreducible if it is minimal in the partial orderP (f) but it is not an incursion pair (see

Figure 3.1(iii)).The following lemma is critical in the correctness proof. It says that if

there exists irreducible minimal pairs, then there exists ambiguous boxes:

LEMMA 10. LetT be a balanced quadtree in the Construction phase. LetQu (resp.,Qd)

be the set of all minimal upward (downward) convergent pairs ofT . AssumeQu ∪Qd is

non-empty, and each pair inQu ∪Qd is irreducible.

(i) If a segmente contains a convergent pair ofQu, thene is the entire bottom edge of

an candidate box.

(ii) One of the candidate boxes ofT is ambiguous.

Proof. Let e be a segment containing a pair(a, b) ∈ Qu ∪ Qd. Wlog, (a, b) is an

irreducible upward convergent pair. Assumee lies in the bottom edge of candidate box

B. See Figure 3.1(iii).

(i) First, we show thate is the entire bottom edge ofB. In other words, the bottom

edge ofB is not composed of two segments, one of which ise. SinceCxy(B) holds and

there are two distinct pointsa, b on the bottom edge ofB, it follows that0 6∈ fy(B).

As usual, letXa, Xb be the connected components off−1(0) ∩ B with one endpoint

at a, b (resp.). Clearly,Xa 6= Xb since(a, b) is irreducible. If the other endpoints of

Xa, Xb area′ andb′ (resp.), thena′ andb′ lie on the top edge (call ite′) of B. Moreover,

a <x a′ <x b′ <x b and, by irreducibility of(a, b), we must havea′, b′ lying in different

subsegments ofe′. Then the subsegmente′a containinga′ (resp.,b′) would havew(e′a) 6

w(e)/2. If e is not the entire bottom edge ofB, then this contradicts the assumption that
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T is balanced becausew(B) > 2w(e) > 4w(e′a).

(Of course, an analogous statement is true: ife contains a pair ofQd: in this case,e

must be the entire top edge of an candidate box.)

(ii) We next show thatB must be ambiguous under the additional assumption that

the widthw(e) of e is minimum among all such choices ofe (i.e., the minimum-width

segment which contains a pair of irreducible convergent pair). We now know thate is

the entire bottom edge ofB (Recall the assumption thate lies in the bottom edge of

candidate boxB, and the pair(a, b) is an irreducible upward convergent pair). We will

use Figure 3.1(iv) to illustrate the following arguments. Note thatb lies in the right half

of e anda lies in the left half ofe.

First, we show that all the corners ofB have the same sign underf . Wlog, assume

fy(B) > 0 andf((a + b)/2) < 0. Then we claim that all the corners must be positive.

Suppose the bottomright corner ofB is negative. ThenS = f−1(0) must intersecte

betweenb and the bottomright corner. We may choosec so thatc is closest tob among

all the intersections. We havea <x b <x c and(b, c) is a downward convergent pair

(since(a, b) is an upward convergent pair). Let(b′′, c′′) be the minimal convergent pair

where(b, c) � (b′′, c′′) (note that(b′′, c′′) might beb andc themselves). By assumption,

(b′′, c′′) is irreducible. Say(b′′, c′′) lies in a segmente′′. By part (i), we know thate′′

is the complete top edge of an candidate boxB′′. Let X ′′
b , X ′′

c denote the connected

components ofS ∩B′′ with endpointsb′′, c′′ (resp.). By the irreducibility of(b′′, c′′), the

other endpoints ofX ′′
b andX ′′

c must lie in separate segments. Sinceb lies in the right

half of e andb <x b′′ <x c′′ <x c. This impliesw(e′′) 6 w(e)/2. This contradicts our

choice ofw(e) to be minimal.

Thus we may assume that the bottomleft and bottomright corners of B are both

positive. But the assumption thatfy(B) > 0 implies that the topleft and topright corners
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are also positive. Recall that the top edge ofB is e′ and it is split into two subsegments.

ThusB is ambiguous iff the midpointm(e′) of e′ has negative sign. Note thata′ <x

m(e′) <x b′. Note that if there are any incursions of the curvef−1(0) into box B

betweena′ andb′, then we would have somec′ such that either(a′, c′) or (c′, b′) forms

an upward convergent pair. This would contradict the minimality of (a, b). But if there

are no incursions betweena′ andb′, then the sign ofm(e′) would be negative (same as

f((a + b)/2)). This completes our proof. Q.E.D.

As corollary, if T has no ambiguous boxes, then there can be no convergent pairs

(Qu ∪Qd = ∅).

The following is the analogue of Lemma 6 for the Regularized CxyAlgorithm:

LEMMA 11. LetT be a balanced quadtree in the Construction phase. IfT contains no

ambiguous boxes, then the graphG := CONSTRUCT f (T ) is isotopic tof−1(0) ∩

R(T ).

Proof. This proceed as in the proof of Lemma 6: we can repeatedly reduce each

minimal convergent pair (upward, downward, left or right) by transformingf0 = f to

f1, f2, . . .. Let f be the final function when we cannot further reduce any minimal pair.

According to Lemma 10, this means there are no more convergent pairs (otherwise,

there would be ambiguous boxes). This means the curveS = f
−1

(0) must intersect

each segmente at most once. We conclude thatG = CONSTRUCT f (T ) is isotopic

to S ∩R(T ). Q.E.D.

Conclusion of the Correctness Proof.Proof. The curveS = f−1(0) intersects

∂R(T3) cleanly and generically. The quadtreeT3 is balanced andS is parametrizable

in each candidate box ofT3. When we invokeCONSTRUCT+(T3), T3 is further

transformed by splitting of ambiguous boxes and their rebalancing. LetT4 be the final
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quadtree. It is clear that the output ofCONSTRUCT+ on T3 is the same as what the

originalCONSTRUCT would produce on inputT4:

CONSTRUCT+(T3) = CONSTRUCT (T4).

Clearly,S still intersects∂R(T4) cleanly and generically.. By Lemma 11, the straight-

line graphG = CONSTRUCT (T4) is isotopic tof−1(0) ∩ R(T ). This concludes our

proof. Q.E.D.

3.5 Rectangular Cxy Algorithm

(a) Original Curve

(b) PV (c) Snyder

(d) Balanced Cxy (e) Rectangular Cxy

Figure 3.5: Approximation off(X,Y ) = X2Y 2 − X + Y − 1 = 0 inside the box
[(−2,−10), (10, 2)] using PV, Snyder, Cxy, and Rect.

The recent meshing algorithms [9, 32, 44] all assume full-splits (subdividing a box
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into four subboxes). We now introduce an Cxy algorithm that can do half-splits. The

boxes are no longer squares, and hence the next algorithm is known as theRectan-

gular Cxy Algorithm . This algorithm is even more adaptive than the Balanced Cxy

Algorithm, and this can be illustrated with the curveX2Y 2−X + Y = 1 shown in Fig-

ure 3.5. The boxes with yellow color are discarded boxes, andthe boxes with pink color

are candidate boxes. The curve has preferred directions in the horizontal and vertical

directions. Our algorithm can automatically produce rectangles that are elongated along

the corresponding directions to adapt to the curve — see Figure 3.5(e). As a result, the

number of subdivisions can be drastically reduced as compared to algorithms based on

square boxes. The new algorithm differs from balanced Cxy in three major aspects:

First, we need an arbitrary but fixed parameterr called theaspect ratio bound. For

a boxB, let α(B) := wy(B)/wx(B). Then itsaspect ratio is defined asρ(B) :=

max
{

α(B), 1
α(B)

}
> 1. We require that all boxes in our quadtree satisfyρ(B) 6 r.

This ensures the termination of our algorithm.

Second, we modify the Subdivision Phase as follows: For eachon-boxB in the

queue, we must decide how to tag it, or how to to split and tag its children. This is

accomplished by a newsplitting procedure, which amounts to checking the following

three lists of conditions (in this order):

L0 : C0(B), Cxy(B)

Lout : C0(B12), C0(B34), C0(B14), C0(B23)

Lin : Cxy(B12), Cxy(B34), Cxy(B14), Cxy(B23)





(3.3)

We stop at the first verified condition. If a condition inL0 is verified, we tagB as an

candidate or discarded box, accordingly. If a condition inLout or Lin is verified, we do

a half-split ofB to produce the child that satisfies that condition. That child is tagged
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as discarded (if anLout condition) or candidate (if anLin condition). The other child is

pushed back into the queue. Finally, if no condition is verified, we do a full-split and

push the four children into the queue.

Actually, this splitting procedure must be slightly modified in order to respect the

aspect ratio bound (this amounts to avoid testing the first half of the conditions inLout

andLin if α(B) < 2/r, and to avoid testing the second half ifα(B) > r/2. Note that

there is considerable opportunity for sharing, and thus optimization, when implementing

the arithmetic operations to check the 10 conditions of (4.8).

Third, we must track the “splitting depth” of a node in the quadtree by a pair of

natural numbers, called itsx-depth andy-depth. These count the number of vertical

and (respectively) horizontal splits from the root to the given node. A full-split counts as

both a vertical as well as a horizontal split. We now say a boxB is x-balancedif its top

and bottom neighbors havex-depth at most1 away from thex-depth ofB; similarly for

y-balancedwith respect to its right and left neighbors. The Balancing Phase is easily

modified to only doing half-splits in order to achieve the balance condition for all boxes.

One strategy is to first achievex-balance for all candidate boxes, then to do the same

for y-balance. Finally, in the Construction Phase, we modifyCONSTRUCT+(T3) so

that ambiguity-based priority queue should distinguish between any-ambiguity (e.g.,

Figure 3.3(a)-(c’)) that must be resolved by a horizontal split, or a x-ambiguity that

requires a vertical split.

3.6 Ensuring Geometric Accuracy

So far, we have focused on computing the correct isotopy. We now consider the

process ofrefinement whose goal is geometric accuracy, i.e., to ensure an approxima-
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tion G that isε-close toS ∩ B0. The “small normal variation”C1 predicate is quite

strong, so that it is quite easy to use for refinement in the PV algorithm (this is implicit

in [32, 31]). To see this explicitly, we claim that it sufficesto ensure that for any candi-

date boxB, if it has at least one arc ofG = (V,E), then its diameter is6 ε/4. Then

any neighborB′ of B has diameter at mostε/2. Thus, each arce in B is isotopic to

a curve componentX of S ∩ (B ∪ B′). But the distance between any two points in

B ∪ B′ is 6 ε
√

(1/2)2 + (3/4)2 < ε. With our Cxy predicate, no such bound on ge-

ometric accuracy is possible because our curve could now escape arbitrarily far away

from our constructed approximation via undetected excursions. Below, we develop a

generalization of theC1 predicate to capture geometric accuracy bounds for rectangular

boxes.

¶16. Extending the Buffer Lemma of Plantinga & Vegter It is noted in Plantinga

& Vegter that ifB is a square box, andC1(B) holds, then any “incursion” of the curve

S along an edge ofB cannot leaveB. Thus,B acts as a “buffer” area within which

any isotopic variation of the curveS must lie. Their result is still true ifB is “almost

square”, as captured by our next lemma:

LEMMA 12 (Buffer Property).Let (a, b) be a convergent pair relative to boxB. Wlog,

assume(a, b) lies on the bottom edgee of B. Let Xa andXb (resp.) be the connected

components ofS ∩B with one endpoint ata andb (resp.) If conditionC1(B) holds and

α(B) > 1/2, thenXa = Xb.

Proof. Figure 3.6 illustrates our proof. LetH be the upper halfcircle with diameter

e. Sinceα(B) > 1/2, H must lie completely inside the rectangleB. If Xa 6= Xb, then

the componentXa must leave the interior of the halfcircleH at some first pointa′ ∈ H;

similarly, Xb must leave at some pointb′ ∈ H. By the mean value theorem, there is
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Figure 3.6: Half-circle argument.

a pointp (resp.,q) on Xa (resp.,Xb) whose slope is equal to the slope of the segment

[a, a′] (resp.,[b, b′]). Let the endpoints of the edgee beu,w and pick any pointv ∈ H

betweena′ andb′. Clearly, the slope atp is more than the slope of[u, v], and the slope

at q is more negative than the slope of[v, w]. Thus, the angle between the normals atp

andq must be greater than the angle between the two normals of the segments[u, v] and

[v, w]. But the latter angle is exactly90
◦

(sinceH is a halfcircle). This contradicts the

fact thatC1(B) holds. Q.E.D.

We further loose the constraint onB from “almost square” to a rectangle with arbi-

trary aspect ratioα(B). We also need to do some change on theC1 predicate.

¶17. GeneralizedC1 Predicate We now generalize theC1 predicate of Plantinga &

Vegter so that it guarantees the same buffering effect forany rectangle, not just those

with aspect ratio6 2.

For any boxB, define the linear map

TB : R
2 → R

whereTB(x, y) := (x, y/α(B)). Note thatB′ = TB(B) is a square. Alternatively, the
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inverse ofTB is T−1
B (x, y) = (x, α(B)y). For any functionf : R

2 → R, define

fB : R
2 → R

wherefB(p) = f(T−1
B (p)). It is easy to see that

fB(TB(p)) = f(T−1
B (TB(p))) = f(p)

and hencefB(B′) = f(B). Let C∗
1 denote the “generalizedC1 predicate” which holds

at a boxB provided

C∗

1(B) : 0 6∈ ( fB
x (B′))2 + ( fB

y (B′))2.

We have the following:

LEMMA 13. Let (a, b) be an upward convergent pair of a segmente, wheree is the

bottom edge of a boxB. LetXa andXb (resp.) be the connected components off−1(0)∩

B with one endpoint ata and b (resp.) If conditionC∗
1(B) holds, thenXa = Xb (i.e.,

Xa is aB-intrusion).

Proof. Note thatC∗
1(B) meansCg

1 (B′) holds whereg = fB (see the superscript

notation forCg
1 (B′) in ¶13). Let XTB(a) andXTB(b) be the connected component of

g−1(0) ∩ B′ with one endpoint atTB(a) andTB(b) (resp.). From the previous lemma,

we know thatXTB(a) = XTB(b) = X ′, andX ′ is completely included insideB′. SinceTB

is a bijection that mapsB′ to B, we can conclude thatX = T−1
B (X ′) = T−1

B (XTB(a)) =

T−1
B (XTB(b)) is completely included insideB, i.e.,Xa = Xb. Q.E.D.
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¶18. Refinement based on the GeneralizedC1 Predicate We introduce the concept

of safety of segments. Intuitively, a segments is safe if there can be no incursion or

excursion alongs.

Let T3 be a quadtree from the Subdivision Phase of our Rectangular CxyAlgorithm.

For each (rectangular) boxB in T3, we will classify some of its edges assafe relative

to B:

• If C0(B) holds, then each of its edges is safe relative toB.

• If Cx(B) holds, then its top and bottom edges are safe relative toB. Similarly,

Cy(B) holds implies its right and left edges are safe.

More generally, a segments is safe(not relative to any box) if there existss′ such

thats ⊆ s′ ands′ is safe relative to some boxB′. It is easy to see that we can effectively

know whether a segments is safe from the information derived in constructing the tree

T3. In particular, when we determine that a box satisfiesCxy, we actually know whether

it satisfiesCx or Cy (or even both).

The safety of some (but not all) segments can be deduced by looking at the presence

of vertices along the edges of a box. For instance, in Figure 3.4(a–f), we have indicated

by thickening those edges that we know to be safe because of the presence of vertices.

Note that we do not have any thick edges for Case (a) even thoughwe know at least two

of them must be safe. We could, but need not, exploit such extended notions of safety.

¶19. Exploiting Safe Segments for Refinement

LEMMA 14. Lets be a safe segment.

(i) Then the curveS = f−1(0) intersectss at most once, i.e.,|S ∩ s| 6 1.

(ii) |S ∩ s| = 1 iff f have different signs at the endpoints ofs.
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Proof. (i) If s is safe, thens ⊆ s′ wheres′ is safe relative to some boxB′. If C0(B
′)

holds, then clearly|S ∩ s| = 0. If Cxy(B
′) holds such thatS is parametrizable in the

direction perpendicular tos, then clearly|S ∩ s| 6 1.

(ii) If f has different signs at the endpoints ofe, then|S∩e| is odd. By part (i),|S∩e| =

1. Conversely, iff have the same sign at the endpoints ofe, then|S ∩ e| is even. By part

(i), |S ∩ e| = 0. Q.E.D.

Let s be a segment. We say thats is soft if it is not safe. SupposeB is a terminal box

(i.e., satisfiesCxy but notC0) with at least one soft edge. Then the distance from this soft

edge to the opposite edge is called thesoft distanceof B. Note that this soft distance

is uniquely defined. IfB has no soft edge, then the soft distance is0 by definition. If

the soft distance isd, then any incursion intoB can be removed by modifying the curve

within a Hausdorff distance ofd.

There are three kinds of curve componentC = B ∩ S in box B as illustrated in

Figure 2.2: incursion, cut or corner components. We consider bounds on the dimension

of B in order that our straightline approximations toC is within Hausdorff distanceε/2

from C.

(a) SupposeC is an incursion, i.e., both endpoints ofC lie on one edge ofB. If B

has soft distance at mostε/2, then as noted,C can be removed by perturbing the

curve by a Hausdorff distance ofε/2.

(b) SupposeC is a cut component, i.e., the endpoints ofC lie on opposite edges ofB.

If s is a edge ofB containing an endpoint ofC, then we want the length ofs to be

at mostε. This ensures that our linear approximation is within Hausdorff distance

ε/2 from an actual curve component withinB.

(c) SupposeC is a corner component, i.e., the endpoints ofC lie on adjacent edges of
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B. In this case, we want each edge ofB to have length at most
√

2ε/3. Again it

ensures that our straightline approximation is within Hausdorff distanceε/2 from

an actual curve component withinB.

We now sketch how to incorporateε-refinement into the Rectangular Cxy Algorithm.

The idea is to ensure that each terminal box has dimensions bounded as in (a)-(c) above.

It is easiest to assume that the original subdivision phase has been carried out (so all

boxes are known to satisfyC0 or Cxy). We make another pass through the list of can-

didate boxes.Recall that such a boxB is monochromatic if the functionf has uniform

signs (either all positive or all negative) at the corners onthe boundary ofB; other-

wise it is bichromatic. Note that the approximate curveG passes throughB iff B is

bichromatic. We keepB if the following conditions (a’)-(c’) hold:

(a’) If B is passive and has at least one soft edge, then we check that the generalized

predicateC∗
1(B) hold. Under this condition, any undetected entry of the curve

into B must represent an incursion. We require the soft distance ofB to be at

mostε/2.

(b’) If B is bichromatic and has sign changes on two opposite edges, then we require

the lengths of these edges to be at mostε/2.

(c’) If B is bichromatic and has sign changes on two adjacent edges, then we require

the lengths of all edges to be at most
√

2ε/3.

If any of the above conditions fail, we splitB and put any child that fails theC0 predicate

back into the queue. This completes our description of the modified subdivision phase.

Other phases are unchanged. The correctness follows easilyfrom our discussion.

The above refinement method can also be adapted for the Balanced Cxy algorithm.

If we only have square boxes, it amounts to ensuring that eachpassive boxB with at
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least one soft edge also has width at mostε/2 and satisfiesC1, and each bichromatic

boxB has width at most
√

2ε/3.

3.7 Summary of Experimental Results

We report on our experimental results. Our code is developedin Java on the Eclipse

Platform (SDK Version 3.3.0). The hardware is Dell Laptop Inspiron 6400, with Intel

Core2 Duo Mobile Processor T2500 (2.0Ghz, 667FSB, 2MB shared L2 Cache) and

2.0Gb of RAM. We use the defaultJava heap memory 256MB (some runs result

in OutOfMemoryError (OME)). Note that this implementationis based on machine

arithmetic. But since all arithmetic operations use only ring operations and divide

by 2, there are no round-off errors except for under/overflows. Our examples below

do not reach such limits (except for examples in part (7) of this section, where we

useCore Library based implementation to avoid under/overflows for high degree

curves). The code has been translated intoC++ for distribution with our open source

Core Library. We implemented five algorithms: PV, Snyder, Balanced Cxy, Bal-

anced Cxy with epsilon precision, and Rectangular Cxy. For Snyder’s algorithm, the

boundary root isolation is carried out using the1D analogue, namely the EVAL algo-

rithm (see [11, 27, 10]). For brevity, the Balanced Cxy Algorithm and Rectangular Cxy

Algorithm will be known asCxy andRect, respectively.

We have not yet implemented two concepts discussed in this thesis: Boundary pro-

cessing for arbitrary input geometryR(T0) (Section 3) and exploiting safe segments for

geometric accuracy (Section 8). As stated in our introduction, most of our experiments

are concerned computing the correct isotopy, ignoring geometric accuracy. But we could

easily and cheaply improve geometric accuracy in our approximation graphs by using
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interpolation: instead of choosing vertices at midpoints of segments, we choose some

linearly interpolated point.

We now summarize our main conclusions, based on compare fouralgorithms: Cxy,

Rect, PV and Snyder. We also briefly compare to EXACUS from the Max-Planck Insti-

tute of Computer Science.

(1) Cxy can be significantly faster than PV and Snyder.Figure 3.7 is gotten by run-

ning these algorithms on the curvef(X,Y ) = X2(1−X)(1+X)−Y 2+0.01 = 0 inside

box [(−1.5,−1.5), (1.5, 1.5)]. This example is from [32]. Cxy is twice as fast as PV and

Snyder, and Rect is the fastest: the PV produces196 boxes in31 milliseconds; Snyder

produces112 boxes in37 milliseconds; Cxy produces112 boxes in16 milliseconds; and

Rect produces76 boxes in15 milliseconds.

(b) Snyder (c) PV

(e) Rectangular Cxy(d) Balanced Cxy

(a) Original Curve

Figure 3.7: Domain Subdivision Approaches to approximating the curvef(X,Y ) =
X2(1−X)(1 + X)− Y 2 + 0.01 = 0: comparison of four algorithms.

(2) When we add refinement, the improvement is minimal.We currently use a sim-

plistic approach based on theC1 predicate. We believe this part can be sped up, for
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Table 3.1: Rect> Cxy > PV

#Boxes/Time(ms) s = 15 s = 60 s = 100

PV 5686/157 OME OME
Cxy 2878/125 45790/2750 OME
Rect 288/31 4470/609 13042/4266

Table 3.2: Rect can exploit larger aspect ratio

#Boxes/Time(ms) s = 15 s = 60 s = 100

r = 10 150/16 2242/265 6540/1109
r = 20 82/15 1134/109 3282/406
r = 40 48/15 574/62 1656/172
r = 80 32/0 296/32 842/78

example, by implementing the method from Section 8. The refined curve, with preci-

sion ǫ = 0.005, is shown in Figure 3.7(a). PV produces8509 boxes in219 ms, while

Cxy produces8497 boxes in204 ms.

(3) Rect can be significantly faster than Cxy.E.g., Let the aspect ratio bound be

r = 5. Running the algorithms on the curvef(X,Y ) = X(XY − 1) = 0 in the box

Bs := [(−s,−s), (s, s)] (Figure 3.8(b), (c), (d) and (e) show the cases whens = 4.

Snyder will not terminate when the curve intersects the edges of the boxes tangen-

tially, so we get Figure 3.8(c) by shifting the initial box a little bit). We get Table

3.1 (OME=OutOfMemoryError):

(4) Increasing the aspect ratio bounds can speed up the performance of Rect.Using

the same curve and box as (3), we now look at the performance ofRectangular Cxy

with variable aspect ratio bounds ofr = 10, 20, 40, 80. Figure 3.9 shows the case when

r = 15. Table3.2 shows a proportional speedup (time= 0 means time< 1 ms):

(5) Sometimes Snyder is faster than Balanced Cxy.We now show an example in
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(a) Original Curve

(b) PV (c) Snyder

(d) Balanced Cxy (e) Rectangular Cxy

Figure 3.8: Approximation off(X,Y ) = X(XY − 1) = 0 inside the box
[(−4,−4), (4, 4)]. Figs. (b),(d),(e) is from PV, Cxy, and Rect. Fig. (c) is from Sny-
der (inside the box[(−3.9,−3.9), (4.1, 4.1)]).

which Cxy is slower than Snyder; in turn, Snyder is slower thanRect. When we want

to ensure geometric closeness, it is clear that our new approach is considerably faster

because Snyder is not forced to subdivide the terminal boxesuntil their diameters are

6 ε. In Table3.3, we compare PV, Cxy, Rect (with maximum aspect ratior = 257) and

Snyder on the curvef(X,Y ) = X2 + aY 2− 1 = 0 in the box[(−1.4,−1.4), (1.5, 1.5)]

wherea = 10n for n = 4, . . . , 7 (Figure 3.10 shows the cases whenn = 2).

The curve here is a thin and long oval. so the size of the smallest box would be very

small. Both Cxy and PV need to do balancing and produce more boxes than Snyder, so

they are more time consuming (note that Cxy is significantly (> 50 times) faster than

PV whenn = 7). Rect produces even fewer boxes than Snyder, and Snyder needs to do

root isolation; so it is not surprising that Rect is much faster than Snyder.
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Table 3.3: Rect> Snyder> Cxy > PV

#Boxes/Time(ms) n=4 n=5 n=6 n=7

PV 1825/62 6415/234 20806/1219 65926/9219
Snyder 25/16 31/16 34/31 40/31
Cxy 175/15 769/218 694/172 754/172
Rect 17/0 14/0 25/0 29/0

Table 3.4: Rect> Cxy > Snyder> PV

#Boxes/Time(ms) n = −1 n = 0 n = 1

PV 73/0 4417/516 OME
Snyder 10/15 1306/125 OME
Cxy 13/0 1510/62 OME
Rect 6/0 13/0 255/31

(6) In general, Cxy and Rect have better performance than Snyder.We ran Snyder

on the curvef(X,Y ) = X(XY − 1) = 0. Since Snyder will not terminate when

the curve intersects the edges of the boxes tangentially, wecannot run this example

on the boxBs := [(−s,−s), (s, s)]. Instead, we chose the initial box to beBn :=

[(−14× 10n,−14× 10n), (−15× 10n,−15× 10n)], wheren = (−1, 0, 1). Figure 3.8

(c) shows the case whenB0 := [(−3.9,−3.9), (4.1, 4.1)]. We also tested PV, Cxy, and

Rect (with maximum aspect ratior = 257) in these examples. The results are shown in

Table3.4.

(7) Cxy can work with high degree curves and sometimes improve on EXACUS.The

EXACUS system has a nice web interface accessible from

http://exacus.mpi-inf.mpg.de/cgi-bin/xalci.cgi. EXACUS is based

on strong algebraic methods and can handle singularities. The following examples

show that our algorithm could be much faster than EXACUS. In order to avoid un-

der/overflows, we use theC++ code in theCore Library which supports exact geo-
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metric computation. The hardware is Apple MacBook Pro, with Intel Core2 Duo CPU

2.40 Ghz and 4.0Gb of RAM.

• Approximating the curvef(X,Y ) = X100 + Y 100 − 1 = 0 in the boxB0 :=

[(−2,−2), (2, 2)]: Cxy takes701 milliseconds while EXACUS is timed out.

• Approximating the curve:f(X,Y ) = (X2 + Y 2)k − 4X2Y 2 − 0.01 = 0 inside

the boxB0 := [(−1,−1), (1, 1)]. EXACUS is timed out whenk ≥ 7. Cxy takes

1.589 seconds whenk = 7; 2.312 seconds whenk = 8; 2.334 seconds when

k = 9; and3.439 minutes whenk = 10.

(8) Two more examples.We had already seen Figure 3.5 for the curvef(X,Y ) =

X2Y 2−X+Y −1 = 0 inside the box[(−2,−10), (10, 2)]. PV produces211 boxes in16

milliseconds, Snyder produces139 boxes in31 milliseconds, Cxy produces181 boxes

in 15 milliseconds, and Rect produces54 boxes in< 1 millisecond. Another example in

Figure 3.11 shows the approximation off(X,Y ) = Y 2 −X2 + X3 + 0.02 = 0 inside

the box[(−1.5,−1.5), (1.5, 1.5)]. PV produces154 boxes in15 milliseconds, Snyder

produces106 boxes in31 milliseconds, Cxy produces106 boxes in15 milliseconds, and

Rect produces74 boxes in15 milliseconds.
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(d) r=80

(a) r=10 (b) r=20

(c) r=40

Figure 3.9: Approximation off(X,Y ) = X(XY − 1) = 0 inside the box
[(−15,−15), (15, 15)] using Rect with maximum aspect ratios of10, 20, 40, and80
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(e) Rectangular Cxy

(a) Original Curve

(b) PV (c) Snyder

(d) Balanced Cxy

Figure 3.10: Approximation off(X,Y ) = X2 + 100Y 2 − 1 = 0 in the box
[(−1.4,−1.4), (1.5, 1.5)] using PV, Snyder, Cxy, and Rect.
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(a) Original Curve

(b) PV (c) Snyder

(d) Balanced Cxy (e) Rectangular Cxy

Figure 3.11: Approximation off(X,Y ) = Y 2 − X2 + X3 + 0.02 = 0 inside the box
[(−1.5,−1.5), (1.5, 1.5)] using PV, Snyder, Cxy, and Rect.
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Chapter 4

Isotopic Meshing of Surfaces

In this chapter, we will extend our2D meshing algorithm to3D (i.e., meshing of

surfaces). This extension is by no means routine, as the correctness arguments and

case analysis are more subtle. Also, a new phenomenon arise in which local rules for

constructing surfaces are no longer sufficient. We will describe three subdivision algo-

rithms for surfaces. They will be known as the Regularized Cxyz, Balanced Cxyz and

Rectangular Cxyz Algorithms.

For our3D meshing algorithm, we inherit the terminology and notations used in the

2D algorithm, with some generalization and extension. In our discussions, we fix a real

surface

S := f−1(0) =
{
p ∈ R

3 : f(p) = 0
}

, (4.1)

which is specified by a PV function,f(X,Y, Z) : R
3 → R.

By F we mean the set of all closed intervals with endpoints inF. A 3D box is

given byB = Ix × Iy × Iz ⊆ R
3 whereIi ∈ F (i ∈ {x, y, z}). For a boxB, its

midpoint ism(B) = (m(Ix),m(Iy),m(Iz)), and it will have three widths, calledi-

widths: wi(B) = w(Ii) for i ∈ {x, y, z}. The width and diameter ofB are (resp.)
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w(B) := min {wx(B), wy(B), wz(B)} and d(B) := max {wx(B), wy(B), wz(B)}.

The0-, 1- and2-dimensional features of a box are called itscorners, edges, andfaces.

So there are8 corners,12 edges and6 faces in all. We call the faces that are perpen-

dicular to thei-direction (i ∈ {x, y, z}) thei-faces. Thus there are twoi-faces for each

i. We will name these faces as follows: Thex-face with the smallerx-coordinate is

called theleft face; the other is called theright face. Likewise,y-face with the smaller

y-coordinate is called thebottom face, and the other is thetop face. Thez-face with

the smallerz-coordinate is thefront face and the other is theback face. Figure 4.1

illustrates this terminology.

faces of a cube

y

z

x

top

left
front

bottom

right
back

Figure 4.1: Convention and terminology for the faces of a box.

By making an nice perturbation off , we may assume that every cornerc has only

positive or negative sign. A3D box is monochromatic if the sign at all of its8 cor-

ners are the same. Otherwise, it isbichromatic. A full-split of B is the operation of

subdividingB into eight equal sub-boxes; aquarter-split subdividesB into four equal

sub-boxes; and ahalf-split subdividesB into two equal sub-boxes. There are three

kinds of quarter-splits:x-y split (split B by two planes which are perpendicular tox

andy directions),y-z split andz-x split; and three kinds of half-splits:x split (split B

by a planes which perpendicular tox direction),y split, andz split. We use the cor-

ner/edge/face terminology for boxes, but reserve the vertex/arc/triangle terminology for
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the triangulated surfaceG that we shortly introduce to approximate the surfaceS.

By anoctreewe mean a rooted treeT where each nodeu is associated with a box

Bu, and each non-leafu has2, 4 or 8 children. Moreover, these children are associated

with the set of boxes arising from a half-, quarter- or full-split of Bu. Similar to our2D

Algorithm, Each leaf of our octrees is labeled as “on” or “off”. The union of all these

on-boxes is denotedR(T ): thenice region represented byT , or theregion of interest

(or ROI).

Given an octreeT , we canextend it by taking any on-box and performing a half-,

quarter- or full-split. The newly created children ofT will remain on-boxes, thus the

ROI is preserved by such extensions. Our algorithms amount to repeated extensions of

T .

Similar to the Cxy Algorithm, we also need to discuss the boundary∂R(T ) of R(T ).

A box B in T is called aboundary box if some face ofB is contained in∂R(T );

such faces are calledboundary faces. To avoid extensive discussion of how to process

the boundary of the ROI to ensure correctness of our algorithms (such as in [9]), we

will make two strong requirements about howS intersect the boundary ofR(T ): (1) S

intersects the boundary ofR(T ) generically, which means:

• For each boundary faceF , the surfaceS intersectsF transversally, and does not

pass through any corner ofF .

• The setS∩F is a finite collection of a finite set of closed loops and/or open curves.

By an open curve, we mean one that has two distinct endpoints. The loops lie in

the interior ofF , and the open curves terminate transversally on the edges ofF .

(2) S ∩ R(T ) is compact, and any end point ofS ∩ R(T ) lies on the boundary∂R(T ).

The correctness statement of our algorithm will depend on this assumption. From now
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on, we assume the above two requirements always hold.

¶20. Generic Subdivision Algorithm We review a generic framework of subdivision

algorithms for computing an isotopic approximation to a given surfaceS = f−1(0). The

following is taken from our Cxy Algorithm using the octree notation:

GENERIC SUBDIVISION ALGORITHM

Input: SurfaceS = f−1(0), a nice region represented by an octreeTin, andε > 0

Output: Triangulated SurfaceG = (V, E, T ) representing an isotopicε-approximation

of S ∩R(T )

Phase 1.Tout ← SUBDIV IDE(Tin)

Phase 2.Tref ← REFINE(Tout)

Phase 3.G← CONSTRUCT (Tref )

Let us briefly review the subdivision phase: the idea is to keep subdividing boxes

until they satisfy certain predicates. Similar to the2D algorithms, we need two box

predicates, anexclusion predicateCout(B) and aninclusion predicate Cin(B). If a

box satisfiesCout, it is discarded, and if it satisfiesCin, it is put into the output queue.

Otherwise, it is split and its children are placed back into the input queue. TheCout

predicate is universal:

C0(B) : 0 /∈ f(B) (4.2)

Snyder’s inclusion predicate is given by

Cxyz(B) : Cx(B) ∨ Cy(B) ∨ Cz(B) (4.3)

Note that if Ci(B) holds thenf would be i-monotone inB (but the converse need

not hold). A surfaceS is said to beparametrizable in the x and y directions (or xy-
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parametrizable for short) within a boxB if for each pair(x, y), the equationf(x, y, z) =

0 has at most one solutionz in the boxB. Clearly, if f is z-monotone inB, then the

surfaceS is xy-parametrizable inB. We also sayB is monotone in the z-direction.

Similar definition holds for the2D faces ofB (i.e., the four faces parallel to thez axis

is said to bemonotone in thez-direction). The Plantinga & Vegter (or PV) algorithm

usesC1(B) as the inclusion predicate:

C1(B) : 0 /∈ ( fx(B))2 + ( fy(B))2 + ( fz(B))2. (4.4)

4.1 Regularized Cxyz Algorithm

Our basic goal is to replace theC1 predicate in the PV Algorithm by the parametriz-

ability condition of Snyder. As in Cxy Algorithm, we first consider a simplified version

in which we reduce all adjacent candidate boxes to the same depth. We start with an

octreeT (representing a regionR(T )) and a non-singular surfaceS = f−1(0), where

f : R
3 → R. We full-split the inconclusive boxes until for each leaf box B we have

C0(B) or Cxyz(B). Here is the summary of ourRegularized Cxyz Algorithm.

Regularized Cxyz Algorithm:

Input: OctreeT0 and surfaceS = f−1(0)

Output: Isotopic approximationG for S ∩R(T0)

1. T1 ← SUBDIV IDECxyz
(T0)

2. T2 ← REGULARIZE(T1)

3. G← CONSTRUCT (T2)

This algorithm follows our generic subdivision framework.In the subdivision phase,

we keep subdividing a box until it satisfiesCout = C0 or Cin = Cxyz. Recall that
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candidate boxes are those who do not satisfyCout but satisfiesCin in the hereditary

sense. For a boundary boxB to be candidate, we further require that its boundary faces

satisfy the corresponding2D predicate: more precisely, ifF is a boundaryi-face, then

it must satisfyCjk where{i, j, k} = {x, y, z}. So at the end of the subdivision phase,

every on-box is either discarded or candidate. In the regularize phase, we subdivide any

candidate box that shares a face with a candidate box of smaller width. The children of

the subdivision will satisfy (by hereditary) theCxyz predicate, but we must test if they

areC0. This algorithm is analogous to the Regularized Cxy Algorithm(in 2D) and the

Regularized Plantinga & Vegter Algorithm (in3D). We next describe the construction

phase.

¶21. Sign Types on Box Corners There are 14 cases of the signs off at the corners

of a boxB (Figure 4.2, up to rotation, mirroring and change of sign). This list is taken

from Plantinga & Vegter’s paper [32], but we will use a canonical typing scheme:Sign

type nx (wheren = 0, 1, 2, 3, 4 andx = a, b, c, etc) refers to the sign configuration with

exactlyn positive corners, andx is some additional identifier (if necessary) to uniquely

identify the configuration.

Type 4b

Type 0 Type 1 Type 2a Type 2b Type* 2c Type 3a Type 3b

Type* 3c Type 4a Type 4c Type+ 4d Type* 4e Type* 4f

Figure 4.2: 14 Sign Types off at the corners of a box.
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Of the 14 cases in Figure 4.2, only 9 cases can arise under theC1 predicate. The ex-

cluded 5 cases are indicated by a superscript of asterisk or plus: Types∗2c, ∗3c, +4d, ∗4e

and∗4f . It is easy to check that theCxyz predicate excludes four of these five cases. The

exception is Type+4d. We use a plus superscript instead of asterisk to indicate this. To

summarize, there are a total of 10 sign possibilities under theCxyz predicate – as shown

in Figure 4.3.

¶22. Arc Types on Box Faces From the signs types at box corners, we can introduce

vertices in the middle of those edges whose two end points have opposite signs. Each

face of a box can have0, 2 or 4 vertices. Within the face, we now connect these vertices

by line segments1 which we callarcs. Note that these vertices and arcs form the graph

G(V,E), whereV is the set of vertices andE is the set of arcs (we do not call them

“edges” because that is reserved for our box terminology). The arcs are uniquely de-

termined except in the case of4 vertices. We call a face with4 vertices analternating

face(colored pink) since adjacent corners of such a face must alternate in signs. On an

alternating face, we have two distinct ways to introduce a pair of arcs. In2D, alternating

faces are excluded by theCxy predicate. In3D, alternating faces can arise even when a

box satisfies theCxyz predicate (e.g., see the right face of Figure 4.3(2b)).

The two possible arc types on alternating faces represent a choice (or ambiguity).

This phenomenon was first observed in the Plantinga & Vegter paper. But in the presence

of the strongerC1 predicate, they proved that every choice leads to a correct global

surface. For our weakerCxyz predicate, the ambiguity can become an issue – making

the wrong choice of arc types can lead to the wrong surface.

By introducing arcs to connect pairs of vertices on each face,we determine thearc

1 Calling them ”arcs” is appropriate because in the general case, we may need to introduce non-straight
curves – this will arise when we discuss the balanced algorithm.
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type for each box. For instance, the Type 2b in Figure 4.2 gives rise to two arc types

which we denote as Type 2b(i) and Type 2b(ii) in Figure 4.3. Inall, the 10 possibleCxyz

sign types give rise to 13 arc types as seen in Figure 4.3.

Type 2b(ii)

Type 3b(i)Type 3a

Type 4c Type 4d(ii)Type 4d(i)

Type 0 Type 1 Type 2a Type 2b(i)

Type 3b(ii) Type 4a Type 4b

Figure 4.3: The 10 possibleCxyz sign types give rise to 13Cxyz arc (hence surface)
types.

¶23. Surface Types in Box Interiors After connecting vertices with arcs, we need

to construct a triangulated surface in the interior of each box so that the boundary of

the surface agrees with the arc type on the faces. Fortunately, this presents no further

choices, so the 13 arc types gives rise to 13surface types(colored yellow) as enumer-

ated in Figure 4.3.

A remark about our labeling for these surface types: it refines the typing scheme

from Figure 4.2 by adding (if necessary) subtype indications of “(i)” or “(ii)”. Moreover,

we can always use subtype “(i)” to indicate that the surface in the box has one connected
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component, and “(ii)” to indicate two connected components.

¶24. Global Analysis of Construction Rules By “construction rules” we refer to the

totality of all rules for vertex insertion, arc connection and surface construction. Naively,

we can apply these rules to each box without consideration ofhow the rules are applied

to the other boxes. This naive rule turns out to be sufficient in the2D Cxy Algorithm

and also the3D Algorithm of Plantinga & Vegter. We now show that in our Regularized

Cxyz Algorithm, this is not enough: the counter example is given by Figure 4.4.

(b)(a)

Figure 4.4: Wrong choice of arc types can lead to an impossibleconnection.

In Figure 4.4(a), the two boxes satisfyCx, but the triangulated surface determined

by the indicated arc connections will violate theCx condition. On the other hand, the

triangulated surface determined by the arc connections Figure 4.4(b) satisfiesCx, and

Figure 4.4(a) is topologically different from Figure 4.4(b). In this example, we might

be able to locally ensure that these two boxes are connected in a local consistency man-

ner. But the next example in Figure 4.5 shows that local consistency (i.e., consistency

between adjacent pairs of boxes) is not enough because of thephenomenon of “blocks”.

In Figure 4.5, we have a block of three boxes in which the triangulated surfaces in the

first and second boxes are consistent, and the surfaces in thesecond and third boxes are

also consistent. But the surface in the union of three boxes does not have the correct

topology because it does not respect thex-monotonicity off .
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Type 4d(i)-4d(ii)-2b(i)

Figure 4.5: Local consistency does not imply the global consistency.

We now introduce the notion of blocks. Two boxes arealternating neighbors if they

share an alternating face. Note that in a boxB, if an x-face is alternating, then noy- or

z-face can be alternating because ofCxyz. A maximal set of boxes that are connected by

this alternative neighbor relation is called analternating block. In particular, if a box

has no alternating face, it forms its own alternating block.We call it atrivial alternating

block (otherwise,nontrivial alternating block ). If all the alternating faces of boxes in

an alternating block are normal to thei-direction (i = x, y, z), then we call it ani-block.

Note thatf is i-monotone in thei-block. We say thei-block ismonotonein i-direction.

LetB be an alternating block, we define the boundary ofB: ∂(∪B) = ∂(∪B∈BB).

LEMMA 15. Each alternating block is ani-block for somei = x, y, or z.

So in a regularized subdivision case, thei-block is just a linear sequence of boxes

stacked along thei-direction.

For each alternating face, we will provide global rule for connecting them: the re-

sulting arcs are parallel to one of the three vectors:

(1, 1, 0), (1, 0, 1), (0, 1, 1),

depending on the orientation of the face. E.g., if an alternating face is perpendicular to

x axis, we will connect its four vertices with line segments that are parallel to the vector
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(0, 1, 1), as in Type 2b(ii) of Figure 4.3. We refer to this rule for connecting vertices the

Alternating Faces Ruleor AF Rule for short. We will show that this choice ensures

global consistency and preserves isotopy.

We write “2b(x)” to refer to either 2b(i) or 2b(ii). Note thatboxes of Types 2b(x) and

3b(x) in Figure 4.3 have only one alternating face; the boxesof type 4d(x) in Figure 4.3

has two alternating faces that are parallel to each other. Consider how these types can

be combined in an alternating block: clearly, the block mustbegin and end with Types

2b(x) or 3b(x), and the non-end boxes must be Types 4d(x).

Thus each nontrivial alternating block has one of these three patterns:

(2b, 4d∗, 2b), (2b, 4d∗, 3b), (3b, 4d∗, 3b)

where4d∗ means a sequence of zero or more Type 4d(x) boxes.

We call ‘(x)’ the subtypeof Type 2b(x). Similarly for Type 4(x) and Type 3(x). So

far, we have not concern ourselves with the subtype of our blocks. Locally, the way for

connecting case 4d (Figure 4.3 Type 4d(i) and Type 4d(ii)) will not effect the topological

structure. Different ways of connection result in the moving of critical point (e.g., from

minimum point to saddle point, or from saddle point to maximum point, as shown in the

circled boxes in Figure 4.6). The next lemma shows that this is crucial for blockwise

consistency.

LEMMA 16. In any alternating block, there can have at most one boxB whose subtype

is (i). Thus the surface type ofB is Type 2b(i), Type 3b(i) or Type 4d(i); all the remaining

boxes must have Type 2b(ii), Type 3b(ii) or 4d(ii).

Proof. If we project ani-block to a plane normal toi, we obtain a squares. The

projection of the surface in thisi-block will be a connected region as illustrated in Fig-
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2b(i)-4d(ii)-3b(ii)

2b(ii)-4d(i)-2b(ii) 2b(i)-4d(ii)-2b(ii)

2b(ii)-4d(ii)-3b(i) 2b(ii)-4d(i)-3b(ii)

2b(ii)-4d(ii)-2b(i)

Figure 4.6: Different ways of connection result in the moving of critical point.

ure 4.8. The surface represented in Type 2b(i), Type 3b(i) orType 4d(i) has only one

connected component inside the box. So the projection of thesurfaces represented by

Type 2b(i), Type 3b(i) and Type 4d(i) must pass thought the center of s (as shown in

Figure 4.7 Proj 2b(i), Proj 3b(i) and Proj 4d(i)). If there are two boxes of Type 2b(i),

Type 3b(i) or Type 4d(i), the projection of the surface must pass through the center ofs

more than once, contradicting to the fact that thei-alternating block must be monotone

in i-direction.

Q.E.D.

We compare the triangulated surfaces within the combination of (2b, 4d, 2b) (as

shown in Figure 4.8 Type 2b (ii)-4d (ii)-2b (i) and Type 2b (ii)-4d (i)-2b (ii)). The

different ways of connecting the vertices of Type 4d boxes lead to the same topological
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Proj 4d(i)Proj 3b(i)Proj 2b(i)

Figure 4.7: Examples of projections ofi-blocks (2b(i), 3b(i), 4d(i)).

structure, as long as Lemma 16 is satisfied.

Case 4d (ii) can be viewed as a transitional case, which would not affect the block-

wise topology. For example, we compare the combinations of(2b, 4d, 2b) with (2b, 2b).

One possible mesh is shown in Figure 4.8 (2b (ii)-4d (ii)-2b (i)) and (2b (ii)-2b (i)).

The topology for both meshes are the same. If we connect all the Type 4d boxes with

arc Type 4d (ii), then we only need to consider the three basiccombinations:(2b, 2b),

(2b, 3b) and(3b, 3b) (as shown in Figure 4.8).

For an alternating face, we have two ways to connect the vertices on the edges pair-

wise. Both possibilities are shown in Figure 4.8. We claim that both choices lead to the

same isotopic approximation. E.g., Figure 4.8 Type 2b (ii)-2b (i) and Type 2b (i)-2b (ii)

are meshes constructed by two different connecting methods, and they are isotopic to

each other. By applying the AF rule, we have the following lemma:

LEMMA 17. The reconstructed surfaceS ′ in a y-block B is the graph of a function

whose domain is the projection of the block onto thexz-plane. The possible projections

of S ′ onto thexz-plane are shown in Figure 4.82b-2b (p), 2b-3b (p) and 3b-3b (p). Thus,

S ′ ∩ B is a topological disc.

Proof.SinceB is monotone iny direction, the projection ofS ′ to thexz plane (e.g.,

Figure 4.82b-2b (p)) has a tubular neighborhood of fibers, and each fiber intersectsS ′
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2b(ii)-4d(ii)-2b(i)

2b(ii)-4d(i)-2b(ii)

2b(ii)-2b(i) 2b(ii)-3b(i) 3b(ii)-3b(i)

2b(i)-2b(ii) 3b(i)-3b(ii)2b(i)-3b(ii)

2b-2b (p) 2b-3b (p) 3b-3b (p)

Figure 4.8: The two different triangulations for each of thethree alternating block com-
binations.

in exactly one point2. So different connecting methods lead to the isotopic surfaces. We

could choose either of them, as long as the triangulations for all the boxes fit together.

From the case analysis above, the possible projections ofS ′ onto thexz-plane are Fig-

ure 4.82b-2b (p), 2b-3b (p) and 3b-3b (p). SoS ′ ∩ B is a topological disc. Q.E.D.

2For the surface component onS′ which are parallel to they direction, we view it in the way that it
has been infinitesimally slanted, such that each vertical fiber intersectS′ in exactly one point.
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4.2 Correctness of Regularized Cxyz Algorithm

We address the correctness of the Regularized Cxyz Algorithm.The proof is subtle,

and harder than the2D Regularized Cxy Algorithm or the3D Regularized PV Algo-

rithm. Our previous2D proof for Cxy does not seem easy to generalize to3D, so we

use a different approach. This proof will form the basis for proving the correctness of

the Balanced Cxyz Algorithm in the next section.

First, we will prove the termination of the subdivision phase:

LEMMA 18. If S = f−1(0) intersects the boundary ofR(T0) generically, and iff has

no singularities inR(T0), then the subdivision phase will terminate.

Proof.If the subdivision phase does not terminate, then there is aninfinite decreasing

sequence of boxesB0 ⊃ B1 ⊃ · · · such that eachC0(Bi) andCxyz(Bi) fail. Thus:

0 ∈ ( f(Bi) ∩ fx(Bi) ∩ fy(Bi) ∩ fz(Bi)). (4.5)

The boxesBi must converge3 to some pointp ∈ R(T0) asi → ∞. Since f is a box

function for f , we conclude that f(Bi) → f(p). Then (4.5) implies0 = f(p) =

fx(p) = fy(p) = fz(p). Thus,f has a singular point inR(T0). Q.E.D.

Note that it is possible forfi(p) = 0 (i = x, y, z) wherep lies on the boundary of

a box. Figure 4.9 shows a2D example wherefx = 0 on the edge of the boxesB1 and

B2. In this example,0 ∈ fx(B1) and0 ∈ fx(B2), butCy(B1) andCy(B2) might still

hold.

From now on, letT be the octree at the termination of the Regularized Cxyz Al-

gorithm, andG be the graph constructed by our rules fromT . We want to ensure

3 The existence ofp depends only on the existence of a boundr on the maximum aspect ratio – so this
proof applies in the more general setting of Rectangular Cxyz Algorithm later.
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B2

S

B1

Figure 4.9:2D example wherefx = 0 on the edge of the box.

that G ≃ S (modR(T )). The outline of our proof is: we first transformS so an-

other surfacẽS which has some nice properties (e.g.,S ≃ S̃ (modR(T ))); then we

show thatG ≃ S̃ within each alternating block ofT ; finally, we can conclude that

G ≃ S̃ ≃ S (modR(T ))

¶25. Intuition To understand the proof, it is helpful to be aware of potential issues:

(1) We might gain components: See Figure 4.10 which shows that a componentC of

S ∩ R(T ) might appear as two components ofG. Note that the figure shows a2D

illustration, but one must imagine a thirdz-dimension. This example will not work

in 2D if we assume that candidate boxes satisfyCxy because the middle square is not

monotone in thex or y-directions. But it could arise in3D, where the middle square

might be monotone in thez-direction.

(2) We might lose a component: consider the isotopyI ′ at the top of Figure 4.10(b)

that transforms a componentC to a componentC ′ lying inside a single box. This com-

ponentC ′ is “lost” when we reconstructG. One problem with the isotopyI ′ is it changes

the sign of the functionf at the red cornerp. One way to prevent this from happening

is to require our isotopies to preserve the sign off at vertices. In our previous proof for

Cxy Algorithm, we require that the transformed functionf must remain monotone in

at least one direction in each candidate boxB. This would disallow the isotopyI ′ (no

loop can arise in a box in whichf is monotone in at least one direction). This approach
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1-to-2 p

C1

C2

C
C

(b)

I

I ′

(a)

Figure 4.10: (a) One component is detected as two, (b) Two isotopic transformations.

seems hard to extend to3D, so we introduce the notation of “surface monotonicity” in

the next paragraph.

¶26. Monotone Surfaces Let S ⊆ R
3 be a continuous surface,B ⊆ R

3 be a rectan-

gular box andi ∈ {x, y, z}. An i-line is a straight line that is parallel to thei-axis.

We sayS is i-graph-like in B if |S ∩ B ∩ L| 6 1 for everyi-line L. We sayS is

i-monotonein B if it is i-graph-like and we can assign a plus or negative sign to each

connected component ofB \S so that adjacent components have different signs and for

eachi-line L that is directed in the increasingi-direction, the lineL never pass from a

negative region to a positive region. In2D case, we can similarly definei-monotone

on the facesF of B. 2D examples of graph-like and monotone cases are shown in

Figure 4.11. Note thatL may keep the same sign as it passes throughF/S, or it may

change from a positive to a negative region.

Here is an alternative characterization ofi-monotone:

LEMMA 19. LetB = Ix × Iy × Iz. Thenf is z-monotone inB iff there is a continuous

functionφ : Ix×Iy → Iz such that the graphgr(φ) = {(x, y, φ(x, y)) : (x, y) ∈ Ix × Iy}
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Figure 4.11: (a)S ∩B is graph-like inB but not monotone, (b)S ∩B is monotone.

of φ is equal toS in the interior ofB, i.e.,

gr(φ) ∩ int(B) = S ∩ int(B).

The easy proof is omitted. Note that if(x, y) ∈ Ix × Iy and(x, y, φ(x, y)) /∈ S then

φ(x, y) must be eithermax Iz or min Iz. The continuity of the functionφ is necessary

to ensure monotonicity.

We simply say “graph-like” or “monotone” ifi is understood from the context. For

specificity, we usually leti = y in illustrations. These definitions also make sense in2D

whereS is a curve andB is a planar rectangle.

LEMMA 20. SupposeS = f−1(0) wheref : R
3 → R. For any boxB, if ∂f

∂i
(p) 6= 0 for

all p ∈ B thenS is i-monotone inB.

This lemma shows the origin of our monotonicity concept, andthe proof of it is

immediate. Next, supposeT is the octree produced by our regularized Cxyz algorithm

on the input functionf . Then for each boxB in T which is intersected byS = f−1(0),

there is a directioni = iB ∈ {x, y, z} such thatS is i-monotone inB. Let i : T →

{x, y, z} denote this (canonical) direction. Hence for each candidate boxB ∈ T , we

have a fixed directioni, whereS is i-monotone inB.

S is monotonein T if S is i-monotone in each boxB in T for somei ∈ {x, y, z}.

Let S andS̃ be two surfaces. We saỹS preserves themonotonicity of S in T if for any
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candidate boxB in T , if S is i-monotone inB, thenS̃ is alsoi-monotone onB.

In our proof, we will begin with a surface that is monotone in all the candidate boxes

in T , and we will repeatedly modifyS to someS̃ which preserves the monotonicity of

S in T . What is important is that we can basically “forget” about theoriginal functionf

as we do this modification, and we do not have to produce a suitable f̃ with the property

that f̃−1(0) = S̃.

Relative to a surfaceS, an edgeE is dirty if |S ∩ E| > 2 or S intersectsE tangen-

tially, and a faceF is dirty if S ∩ F contains a loop (i.e., closed curve) orS intersects

F tangentially. The opposite of dirty isclean. A surfaceS̃ is clean if every edge and

face ofT is clean relative tõS.

For the correctness4 of our algorithm, we must modify our algorithm to do special

“boundary processing” so thatT is clean relative toS on the boundary faces. This

processing amounts doing root isolation on the edges on∂R(T ), followed by the2D

Cxy algorithm on the boundary ofR(T ). These1D and2D processing are performed

by splitting boxes in the octree. Boundary processing in the Cxyz Algorithm is similar to

the Cxy Algorithm. For the following part, we will assume thatthe surfaceS intersects

∂R(T ) cleanly.

Note that for a boxB, S ∩B might be comprised of several connected components,

but one can prove that (in the Regularized Cxyz algorithm) all these components must

belong to the same (global) component ofS ∩ R(T ). Note that each component ofS

can give rise to zero, one, or more components ofS ∩R(T ).

4 All our correctness is up to an infinitesimal perturbation off . It means that our algorithms miss
tangential intersections ofS ∩ R(T ), when these components only occur on the boundary ofR(T ). On
the other hand, tangential intersections ofS ∩ R(T ) in the interior ofR(T ) are excluded by explicit
assumption.
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¶27. Partial Order on Pairs We fix the usual octreeT andf that defines the surface

S = f−1(0). LetP(S) denote the set of allpairs of points{p, q} such that there is an

edgeE of T , {p, q} ⊆ E ∩ S and the segment[p, q] intersectsS in an even number

of points. Note that the definition of pair in Cxyz Algorithm is more general than the

definition of convergent pair in Cxy Algorithm.We assume thatP(S) is a finite set.

We also regard the empty setO as a special element ofP(S); all other pairs are called

non-empty pairs. We sayP(S) is trivial if its only member isO.

(d)

z

y

x

B′′

E

B′

B F+y

F−y

F−x F+x

a2a3 a5
(b)

p q

Cp = Cp′ Cq = Cq′

(b)
a4

E

(a)
a1 p q

Cp = Cq

p′ q′

Figure 4.12: (a) Pairs on edgeE, (b) {p, q} ≻ {p′, q′}, (c) {p, q} ≻ O

Example: Figure 4.12(a) shows an edgeE with 5 intersection points withS. There

are6 pairs onE given by

{a1, a2} , {a2, a3} , {a3, a4} , {a4, a5} , {a1, a4} , {a2, a5} .

In general, an edge withn intersection points withS determinesp(n) pairs wherep(0) =

0 and forn > 1, p(n) = p(n − 1) + ⌈(n− 1)/2⌉. So p(1) = 0, p(2) = 1, p(3) =

2, p(4) = 4, p(5) = 6.

We define a relationship between pairs ofP(S). For any faceF of T , we consider

the connected curve components ofF∩S. If o is a point inS∩∂F , letCo denote the con-
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nected component ofF ∩ S that haso as one endpoint. Given two pairs{p, q} , {p′, q′},

we define the relation

{p, q} ≻ {p′, q′} (modF ) (4.6)

if d(p, q) > d(p′, q′) andF has two opposite edges,E andE ′ such that{p, q} ⊆ E and

{p′, q′} ⊆ E ′, and the connected components ofS ∩ F has this property:Cp = Cp′ and

Cq = Cq′. Further define

{p, q} ≻ O(modF ) (4.7)

if {p, q} ⊆ ∂F and Cp = Cq. Both the relations (4.6) and (4.7) are illustrated in

Figure 4.12(b,c).

For pairsA,B ∈ P(S), define the relationA ≻ B if there exists a faceF such that

A ≻ B(modF ). Let� denote the reflexive transitive closure of≻: P � Q iff P = Q

or there is a finite sequence of pairs whereP = P0 ≻ P1 ≻ · · · ≻ Pk = Q.

LEMMA 21. The relation(P(S),�) is a partial ordering onP(S)

Proof. We check three properties. LetA,B,C ∈ P(S). Reflexivity: A � A (by

definition). Symmetry:A � B andB � A impliesA = B. This is true ifA or B is

equal toO. Otherwise, ifA 6= B, we see thatA � B impliesd(A) > d(B). Similarly,

B � A impliesd(B) > d(A), contradiction. Transitivity:A � B � C impliesA � C.

This follows from the definition of�. Q.E.D.

If A � B, we sayB is “smaller” thanA and we are interested in minimal elements

in this partial order.

Intuitively,O is the unique minima inP(S). Towards proving this result, we need a

useful property of our octreeT :

LEMMA 22. Let S be a surface which is monotone inT , andE be any non-boundary
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edge ofT such that|S ∩E| > 2. Assume (wlog) thatE is parallel to thez-axis, and the

four faces bounded byE are Fx, F−x, Fy andF−y, as in Figure 4.12(d). Then eitherS

is x-monotone onFx ∪ F−x, or S is y-monotone onFy ∪ F−y.

Proof.SupposeS is notx-monotone onF−x. Consider the boxB lying aboveF−x.

SinceS cannot bez-monotone inB (becauseE intersectsS in more than one point) and

it cannot bex-monotone (sinceS is notx-monotone onF−x), we conclude thatS must

bey-monotone inB. The same reasoning implies thatS must bey-monotone in the box

B′ belowF−x. This concludes thatS must bey-monotone onFy ∪ F−y. Q.E.D.

LEMMA 23. The empty setO ∈ P(S) is the unique minimal element ofP(S).

Proof. We must show that for any non-empty pair{p, q}, there exists another pair

B ∈ P(S) such that{p, q} ≻ B. That is, either there exists{p′, q′} with {p, q} ≻

{p′, q′} or {p, q} ≻ O.

Use the notations of the previous lemma, letp, q ∈ E whereE is an edge ofT

parallel to thez-axis. Wlog, letS be x-monotone onF−x ∪ Fx. Let Cp/Cq be the

connected component ofS ∩ (F−x ∪ Fx) that passes throughp/q. If Cp = Cq, our

lemma is shown, since{p, q} ≻ O. Otherwise, define thet-distance betweenCp andCq

to be the intersection of these curves with the plane{x = t}. When{x = t} contains

E, clearly thet-distance isd(p, q). As t increases, thet-distance increases or decreases

monotonically. This distance cannot be zero sinceCp 6= Cq. Moving in the direction

where thet-distance decreases, we eventually reach the edgeE ′ of F−x or Fx where the

t-distance is minimal. IfCp ∩ E ′ = p′ andCq ∩ E ′ = q′, then we see that{p′, q′} is a

pair inP(S) and{p, q} ≻ {p′, q′}. Q.E.D.
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¶28. Cleansing Strategy We are going to transformS to another surfacẽS that is

clean relative toT . We do this by transformingS isotopically toS̃. A difficult problem

in this transformation is that it is very hard to keep track ofthe nice properties of the

original f with respect toT . For instance, we know that each candidate boxB of T

must satisfyCf
xyz(B). We first overview the cleansing processes:

1. First, we clean all faces. Here we can exploit the originalproperty off . Becausef

is monotone in some coordinate direction in each boxB, there cannot be loops in

two adjacent faces ofB. Moreover, the set of all such loops has a natural nesting

partial order in each coordinate direction.

2. Next, assuming all the faces are clean, we can clean edges.Actually, we cannot

clean an entire edge at once, but we remove pairs fromP(S), one pair at a time.

Let S = S0 and we construct a new surfaceSi+1 from Si by removing one pair.

The fact thatP(Si+1) is a proper subset ofP(Si) allows us to preserve the partial

order that is induced from the originalP(S) = P(S0). We show that each pair

removal does not introduce any loop. So, at the end of this process, we have a

surfaceSk that is clean, and isotopic toS.

We next give details of these cleansing routines.

¶29. Cleaning Faces Consider the set of loops ofS in faces of our octreeT . Denote

this set byL(S), and as before, introduce an artificial elementO in L(S). We sayL(S)

is trivial if its only member isO. We also assume thatL(S) is a finite set.

Let L,L′ be two distinct loops ofL(S), and they lie on the boundary of a common

boxB. Let CL denote the connected component ofS ∩ B that is bounded byL. Wlog,

let f bey-monotone inB. This implies thatL andL′ can only lie ony-faces ofB. These
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two y-faces can be distinct or the same. We writeL ≻ L′(modB) if CL = CL′ and the

y-projection ofL′ is contained in the interior of they-projection ofL (by y-projection,

we mean the projection onto they = 0 plane). Note that eitherL ≻ L′ or L′ ≻ L must

occur becausef is y-monotone inB. This ensures that we have a global partial ordering

onL(S). This global property is derived from our original functionf , and is critical for

our proof. We must carry some of this information along in theinduction, even after we

have transformedf . Also, observe that the partial ordering can be naturally partitioned

into three subrelationsL(S) = Lx(S) ∪ Ly(S) ∪ Lz(S), corresponding to the three

coordinate directions.

Note that there can be several loopsL(i) (i = 1, 2, . . .) such thatL ≻ L(i). These

L(i) can lie in the same face asL or in the opposite face. A fundamental property of this

relation is this:

LEMMA 24. For each loopL′, there is at most oneL such thatL ≻ L′.

Proof. Say these loops lie ony-faces. IfL ≻ L′(modB), then they-projection of

L′ is in the interior of they-projection ofL. Moreover, the componentCL ⊆ B ∩ S

projects into the interior ofL. If L0 ≻ L′ for some loopL0, then we see thatCL0 = CL

andL0 = L. Q.E.D.

In the special case where the boundary ofCL is connected, then we have∂CL = L.

In this case, we writeL ≻ O(modB). This produces a partial order on the set of all

loops (treatingO as a special loop). Moreover,O is the unique minimum in this partial

order. IfL ≻ O(modB), we callCL ⊆ B acap. Our transformation for loops amounts

to repeated removing caps. Initially, letS0 = S. We will define a sequence of surfaces,

S1, S2, . . . such that the loopsLy(Si+1) is a proper subset ofLy(Si) for eachi.

LetL ≻ O inLy(Si) lies in the faceF and supposeB′ is another box that is bounded

86



by F . We can easily define a(B ∪ B′)-isotopy to transformSi to Si+1 in whichL does

not occur inLy(Si+1), but all the other loops ofLy(Si) remains. Of course, ifL′ ≻ L in

Ly(Si), the removal ofL may induce the new relationL′ ≻ O in Ly(Si+1).

Eventually,Ly(Si) becomes trivial and contains onlyO. We can independently

repeat this argument onLx(Si) andLz(Si). All faces are clean whenL(S) is empty.

¶30. Semi-loops and BasesWe now have clean faces. To discuss the cleansing of

edges, we need some additional concepts. SupposeF is a face and the surface intersects

F in a number of curves, including loops (i.e., curve components with no endpoints). A

non-loop curve componentC whose two endpoints lie on the same edgeE of F is called

a semi-loop(E.g.,C onFy+ or C ′ onFx+ in Figure 4.13). Ifp, q are the two endpoints

of C, we call the line segment[p, q] ⊆ E thebaseof the semi-loopC. SupposeF ′ is

another face that is bounded byE, andF ′ has another semi-loopC ′ sharing the same

base asC. Then we sayC andC ′ are linked by this base. SupposeC,C ′ are linked

semi-loops, there are two possibilities: they could be coplanar (Figure 4.13,C ′ andC ′′)

or they may lie on a pair of perpendicular planes (Figure 4.13, C andC ′). In general,

a base can be shared by up to4 semi-loops. The next lemma shows that this will not

happen.

LEMMA 25 (NO FOURSOMES).Let S be a surface which is monotone inT . Then at

most 3 semi-loops can be linked together.

Proof. If four semi-loops are linked together (as shown in Figure 4.13), sinceC and

C ′′′ are coplanar linked semi-loops sharing the baseb, S can not bey-monotone on both

faces ofFy+ andFy−. Let us assume thatS is not y-monotone onFy+. This implies

thatS must bex-monotone in the two boxes that sharingFy+ (note thatS can not be

z-monotone within the four boxes that sharingb). So S must bex-monotone on the
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facesFx+ andFx−. On the other hand, the fact thatC ′, C ′′ are coplanar linked semi-

loops implies thatS can not bex-monotone on both faces ofFx+ andFx−. This is a

contradiction. Q.E.D.

REMARK: in subsequent transformation ofS, “NO FOURSOMES” property will

be preserved (as we will see).

Fy−

Fx+

C

C ′

Fy+

Fx− C ′′

C ′′′

b

Figure 4.13: Impossibility of 4-linked semi-loops.

LEMMA 26 (NO HOLES).Let S be the surface after the face cleaning process (note

that S is monotone inT ). Let C,C ′ ⊂ S be linked semi-loops on the boundary ofB.

LetP ⊆ S ∩ B be a surface patch inB (i.e.,P is a connected component ofS ∩ B). If

C ∪ C ′ ⊆ ∂P , then∂P = C ∪ C ′. In other words,P is topologically a disc.

Proof. Let B be the box containingC andC ′ in Figure 4.13.S must be monotone

in x or y-direction inB. Wlog, let us assume thatS is monotone iny-direction inB.

SinceP is converging iny+ direction, the projection ofP ∩ int(B) ontoFx+ must lie

within C ′. Also, S ∩ B contains no loop on the faces ofB. So we can conclude thatP

is a topological disc and∂P = C ∪ C ′. Q.E.D.

In other words, this lemma says thatP cannot contain any holes as illustrated in

Figure 4.14.
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(b)(a)

C
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Figure 4.14: Examples of holes.

From the proof of Lemma 26, and the fact that a connected subset of ani-block can

be viewed as a rectangular box in whichS is monotone ini-direction, it is easy to see

that the following lemma is also correct:

LEMMA 27 (NO HOLES 1).Let B be a connected subset of ani-block, andS be

a surface that is monotone inT which intersects the faces ofB ∈ B cleanly. Let

C ⊆ S ∩ ∂(∪B∈BB) be a closed curve, andP ⊆ S ∩ B be a connected component. If

C ⊆ ∂P , then∂P = C. In other words,P is topologically a disc.

REMARK: in subsequent transformation ofS, this property will also be preserved

(as we will see).

¶31. Cleaning Edges via Base Removal OperationsLet us retain the notations of

Figure 4.12 relative to an edgeE containing a pair{p, q}. We call a pair{p, q} penul-

timate minimum (or {p, q} ≻∗ O) if for any pairP , {p, q} ≻ P impliesP = O. If

{p, q} ≻∗ O and for exactlyi of the facesF ∈ {Fx, F−x, Fy, F−y}, {p, q} ≻ O(modF ),

then we say{p, q} ≻i O. Note that if{p, q} ≻i O, then i ≥ 1. In other words,

{p, q} ≻0 O is not possible. We call a baseb = [p, q] a penultimate minimum baseif

{p, q} is a penultimate minimum pair. Clearly, penultimate minimumbase is a base of

some semi-loops.
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We will remove one penultimate minimum pair inP(S) each time. LetS = S0 =

f−1(0) and suppose we construct a new surfaceSi+1 from Si by removing one pair

from P(Si). The fact thatP(Si+1) is a proper subset ofP(Si) allows us to preserve

the partial order that is induced from the originalP(S) = P(S0). Our removing of

penultimate minimum pairs will not change the partial orderin P(S). In each step

P(Si) = P(Si+1) ∩ {{pi, qi}} where{pi, qi} is the penultimate minimum pair which

we remove at stepi. The removing only creates new relations of the form{p, q} ≻ O

where{p, q} ≻ {p′, q′} in P(Si).

The next lemma shows that if a baseb = [p, q] is a penultimate minimum base and

{p, q} ≻2 O, then the two linked semi-loops must lie on a pair of perpendicular planes:

LEMMA 28. Let S be a surface that is monotone inT , and{p, q} be a pair ofS ∩ T .

Consider two distinct facesFs andFv in Figure 4.12 where{s, v} ⊂ {x,−x, y,−y}.

If {p, q} ≻2 O where{p, q} ≻ O(modFs) and {p, q} ≻ O(modFv), then{s, v} 6=

{x,−x} and{s, v} 6= {y,−y}.

Proof. If {p, q} ≻ O(modFx) and≻ O(modF−x), and curvesCp, Cq ⊆ S∩ (F−y ∪

Fy) are the connected components that passes throughp andq, thenCp andCq must be

different components inF−y ∪ Fy. Since{p, q} is a penultimate minimum pair,S can

not bey-monotone inFy ∪ F−y. From Lemma 22, we know thatS is x-monotone in

Fx ∪ F−x, which contradicts the fact that[p, q] is the base of two coplanar linked semi-

loops onFx ∪ F−x. Q.E.D.

SupposeP ≻i O whereP is a pair. We already noted thati = 0 is not possible.

From Lemma 25, if we can preserve the monotonicity ofS during the surface trans-

formation (which will be proven later), theni = 4 is also impossible. So the only
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possibilities fori is 1, 2 and3. Because of Lemma 28, a penultimate minimum baseb

could have three possibilities, as shown in Figure 4.15(I),(II) and (III). Note that ifb is

not a penultimate minimum base, Figure 4.15(III ′′) might arise.

Let b be a penultimate minimum base for some semi-loop. To “remove” b means

to simultaneously remove all the semi-loops that share the baseb. Since there are only

three possibilities, so there are three distinct base removal operations. This is shown in

Figure 4.15. In Figure 4.15(I)→ (I ′), we push down the part of semi-loop component

to form a “tunnel” below the edgeE. In Figure 4.15(II) → (II ′), we push the topo-

logical disc component bounded by the two semi-loops in bothx− andy− directions to

eliminate it. In Figure 4.15(III) → (III ′), we push down the topological disc com-

ponent bounded by the three semi-loops to remove the it. Notethat these operations are

well-defined: this depends on the fact that in each boxB that contains a pair of linked

semi-loopsC andC ′, the surface patch bounded byC ∪C ′ is a topological disc (i.e., the

”NO HOLES” property in Lemma 26 holds as long as we preserve the monotonicity of

the surface during our operations, which will be proven in the following part).

We next describe some properties that our transformation preserves. LetT be an

octree andVT be the set of all corners of the boxes inT . Let S, S ′ be two surfaces. We

sayS is compatiblewith S ′ (respect toT ) iff there exist an isotopyI : R
3×[0, 1]→ R

3,

s.t. I(·, 0) is the identity;I(S, 1) = S ′ and∀t ∈ [0, 1], I(S, t) ∩ VT = ∅.

LEMMA 29. The face cleaning operations and the base removal operations preserve the

compatibility ofS in T .

Proof. The correctness of this lemma is based on the nature of our operations: we

never transform the surface “across” any corners inT . Q.E.D.

91



C1

B′′

E

B′

B F+y

F−y

F−x F+x

B′′

E

B′

B F+y

F−y

F−x F+x

B′′

E

B′

B F+y

F−y

F−x F+x

(I’) (II’) (III’)

B′′

E

B′

B F+y

F−y

F−x F+x

B′′

E

B′

B F+y

F−y

F−x F+x

(I) (II) (III)

B′′

E

B′

B

F−y

F−x F+x

F+y

(III”)

B′′

E

B′

B F+y

F−y

F−x F+x

Pc

Figure 4.15: Three Base Removal Operations.

LEMMA 30 (Surface Monotonicity Preservation).Base removal operations preserve the

monotonicity ofS in T .

Proof. There are three cases to be considered, corresponding to thethree base re-

moval operations. We will analyze each case to show that the monotonicity is preserved

within each box. LetS andS ′ be the surfaces before and after each operation.

Case(III) → (III ′): by symmetry, we only need to consider the monotonicity of the

surface inB′ (the removal of the topological disc component bounded by the two linked

semi-loops does not affect the surface monotonicity inB). There are two possibilities:

S ∩B′ is monotone in thex direction orS ∩B′ is monotone in they direction. IfS ∩B′

is monotone iny direction,S ′ ∩ B′ is also monotone iny direction iff everyy-line L

intersects withint(C1) does not intersectS ∩ B′. Note thatL ∩ S ∩ B′ ≥ 1 iff S inter-

sects theint(C1) with a curveC ′. C ′ can not be a loop since we have already cleaned
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the faces. SoC ′ must intersect withE, which contradicts the fact that we process the

pairs in partial order. IfS ∩B′ is monotone inx direction, we can see that the operation

transforms the surface patch belowF−x to form a “cap”. By carefully transforming the

surface, we can ensure that anyx-line L intersect the “cap” at most once. Note that there

is a curve on the “caps” inB′ ∩ B′′ such that anyx-line passes a point on the curve is

tangent toS ′, so the above monotonicity preservation depends on the factthatS can not

bex monotone in bothB′ andB′′. We can transform the curve to be contained in the

box that is notx monotone.

Case(II) → (II ′): by symmetry, we only need to consider the boxesB and B′.

The monotonicity preservation argument in the boxB is the same as in the boxB′ in

(III) → (III ′). So we only need to analyze the boxB′. Again, by symmetry, we can

assume thatS ∩B′ is monotone iny direction. LetS ∩B′ = S1 ∪S2∪, . . . ,∪Sn, where

eachSi(i = 1, . . . , n) is a connected surface component. Note that(II) → (II ′) con-

nect two surface patchesSu andSv to form one surface patch inB′. Let Pc be a surface

patch inS ′ which connectSu andSv (as shown in Figure 4.15(II) → (II ′)). We will

show how to constructPc. We pick az-line L1 onF−x such that for allSi(i = 1, . . . , n),

if Si does not intersect withF−y, then the distancedis(Si, F−y) of Si andF−y is larger

thandis(Lz, F−y). We can similarly pick anotherz-line L2 on F−y. The examples of

L1 andL2 are shown in Figure 4.16 (including all the points’ and curves’ labels). L1

intersectsC1 andC2 at two points(p1, q1), andL2 intersectsC1 andC2 at two points

(p2, q2). Let they-projections ofp1, q1, p2 andq2 onto the bottom face ofB′ be Pp1 ,

Pq1 , Pp2 andPq2 . Let Sc1 andSc2 be the surface patches bounded byC1 andC2. Then

Sc1 intersects with the rectangle(p, p1, Pp1 , Pp2) in a curveIc1. Similarly, we haveIc2.

There exist a surface patch bounded by the lines[p1, q1], [p2, q2] and the curvesIc1, Ic2

s.t., it has the some monotonicity asS in B′. We definePc to be such a surface patch.
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Let they-projection ofPc be PPc
. S ′ ∩ B′ is also monotone iny direction iff all the

y-line L which intersect withPPc
do not intersectS∩B′. If L∩S∩B′ ≥ 1, thenS∩B′

must contain a surface patchSu which intersects withE, which contradicts the fact that

we process the pairs in partial order.

Case(I) → (I ′): by symmetry, we only need to analyze the boxesB andB′. The

monotonicity preservation argument in the boxB is the same as in the boxB′ in

(III)→ (III ′), and the monotonicity preservation argument in the boxB′ is the same

as in the boxB′ in (II)→ (II ′). Q.E.D.
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q

L1

C1
C2

p2

q2

C1

C2

F−y

Ic1

Ic1

(II’)

q

E

Figure 4.16: Construction ofPc.

The next example shows that if we remove the bases in arbitrary order, we might

create holes within the boxes. Letb1 be the smallest base in the boxB in Figure 4.17(I).

AssumeS is y-monotone inB, since our operation preserves the monotonicity, we

have the length ofb3 is less than the length ofb4.. If we remove the bases in arbitrary

order, we might removeb1 andb4 beforeb2 andb3, which results in a hole as shown in

Figure 4.17(I’).

LEMMA 31. The face cleaning operations do not induce new dirty faces, and the base

removal operations do not induce new dirty edges and dirty faces.
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Figure 4.17: Removing bases in arbitrary order might create holes.

Proof. It is clear that the face cleaning operations do not induce new dirty faces, and

the base removal operations do not induce new dirty edges. Wewill show that the base

removal operations do not induce new dirty faces. LetR be a base removal operation

which removes a penultimate minimum pairb and induces a new loopl on a faceF .

Then before the operation,l was a semi-loop with the baseb. This contradicts the fact

thatR removed all the semi-loops that share the same baseb. Q.E.D.

The above base removal process halts only whenP(S) is empty. At this point, all

faces and edges are clean relative toT . From the analysis above, we have the following

theorem:

THEOREM32. LetT be the octree produced by our Regularized Cxyz Algorithm. There

∃S̃, s.t.

(1) S̃ ≃ S(modR(T )).

(2) S̃ is compatible withS respect toT .

(3) S̃ intersectsT cleanly.

(4) S̃ preserves the monotonicity ofS within each candidate box ofT .

Proof.We first clean the faces, then we clean the edges. From Lemma 29, Lemma 30

and Lemma 31, and the fact that each operation is an isotopic transformation, the result-
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ing S̃ satisfies all the properties in this theorem. Q.E.D.

THEOREM33. LetG be the mesh we construct by the Regularized Cxyz Algorithm, then

G ≃ S(modR(T )).

Proof.Based on the construction phase of our algorithm, for each alternating block

B, S̃ ∩ ∂(∪B) “agrees” withG ∩ ∂(∪B). From Lemma 27, we know that̃S is isotopic

to G within each block. SoG ≃ S̃(modR(T )). From Theorem 32, we haveG ≃ S̃ ≃

S(modR(T )). Q.E.D.

4.3 Balanced Cxyz Algorithm

In the previous section we have shown that the Regularized CxyzAlgorithm can be

used to create an isotopic approximation of an implicit surface. Now we will describe

that how a balanced octree can be used to create an isotopic mesh. The subdivision pro-

cess is the same as in the regularized case. After the subdivision process, we “balance”

the octree. The definition of balance is “edge-balance”, andit is given next.

First, note that we regard the boxes of an octree to be closed subsets ofR3. For the

purposes of balancing the octree after subdivision, we willdefine two boxesB,B′ as

neighbors if the interiors ofB andB′ are disjoint, and their boundaries share an open

line segment:∂B ∩ ∂B′ contains an open line segment. If they only share a corner, they

are not neighbors.

Let i ∈ {x, y, z}. An edge of a box is ani-edgeif it is parallel to thei-axis. An

octree isi-balanced if for all pairs of candidate boxesB,B′ which are neighbors, if

B ∩ B′ contains a open segment of ani-edge ofB or B′, then thei-widths ofB and
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B′ is within a factor of2 of each other. The octree isbalancedif it is i-balanced for all

i = x, y, z.

Recall that the width5 of a boxB is defined asw(B) := min {wx(B), wy(B), wz(B)}.

If all the boxes inT are cubes, then for any boxB ∈ T , thei-widths ofB are the same

for i ∈ {x, y, z}. For any edgee of B, any other box that share part of the interior of

e must have a width at least half the width ofB. Also note that ife is not a boundary

edge, then there are between3 and6 other boxes that share part of the interior ofe.

We will first introduce the Balanced Cxyz Algorithm. We store candidate boxes

from each phase into a priority queue, and pass it into the next phase. The comparator

for the priority queues is the width of the boxes:

Balanced Cxy Algorithm:

Input: Nice region given by an octreeT0 and surfaceS = f−1(0)

Output: Isotopic approximationG for S ∩R(T0)

1. T1 ← SUBDIV IDECxyz(T0)

2. T2 ← BALANCE(T1)

3. G← CONSTRUCT (T2)

The subdivision phase has been described already. We will next describe the balanc-

ing phase. The balancing phase has three sub-phases:

5 Note that the initial ROI might not be a cube (or cubes). So even if we perform full-split for any
boxB in T , thei-widths ofB might still be different. But the minimumi-width is enough to identify the
depth ofB in T .
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BALANCE(T1):

2.1. T ′
1 ← Split(T1)

2.2. For each candidate box inT ′
1, we introduce vertices in the

middle of bichromatic edges.

2.3. T2 ← Disambiguate(T ′
1)

The first sub-phase is based on the definition of balancing, wherew(B) denotes the

width of the boxB:

Split(T1):

AssumeT1 has an associated priority queueQ containing all of its candidate boxes

Let Q1 be an empty priority queue

While (Q is non-empty)

B ← Q.pop()

booleanBalancedBox← true

For each candidate boxB′ that is a neighbor ofB

If w(B′) > 2w(B),

BalancedBox← false

Full-split B′

For each candidate boxB′′ that is a child ofB′

InsertB′′ into Q

If (BalancedBox)

InsertB into Q1

Else

InsertB into Q

Return the extended octreeT ′
1 represented byQ1.
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The third sub-phase is the disambiguation sub-phase. We introduce three ambiguous

cases, which will be described in the following paragraph.

¶32. Disambiguation Phase We indicate the issues that arise if we simply replaceC1

by Cxyz in the Balanced Algorithm. Consider an horizontally-stretched hyperboloid as

in Figure 4.18 (a1). We run the Balanced Cxyz Algorithm on this hyperboloid. If the

subdivision phase ends up with the10 boxes6 shown in Figure 4.18 (a2). Clearly, both

of the two larger boxes (B1 andB3) satisfyCx, while the eight smaller boxes satisfy

Cxyz. The output graphG obtained by using the connection rules (in the regularized

algorithm) is the yellow polytope of Figure 4.18 (a2). SinceG forms a closed surface,

it is clearly wrong. An error occurred in boxB1 (and alsoB3) whereS ∩ B1 is a tube

while G ∩ B1 is a planer surface. If we had splitB1, we would have discovered this

error. In this case we sayB1 (resp.,B3) has “3D ambiguity”. A very similar problem is

seen in Figure 4.18(b1) and (b2), corresponding to “2D ambiguity” in each of the boxes

B1, B3, B4, B6.

From the previous analysis, we can define the first two “ambiguous cases” (by sym-

metry, we may assume thatCy(B) holds):

1. 3D Ambiguity : The interior of the top or bottom face has four vertices. In Fig-

ure 4.18 (a2), the boxesB1 andB3 are both ambiguous by this criterion.

2. 2D Ambiguity: One or more of its vertical faces is monochromatic, and has

exactly two vertices on the same edge. ByCy(B), this edge is not a vertical

6 In the actual subdivision phase, the boxes after subdivision will not end up with these 10 boxes. The
reason is that there exists a critical pointp in boxB2, i.e.,fx(p) = fy(p) = fz(p) = 0. So the subdivision
phase will subdivide some children ofB2 at least one more time to produceC0 boxes that includep. A
similar2D example is shown in Figure 3.2. But it is too complicated to draw such an example in3D, and
Figure 4.18 is enough for us to illustrate the ambiguous cases.
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Figure 4.18: Examples of two kinds of ambiguous boxes.

edge. In Figure 4.18 (b2), the boxesB1, B3, B4 andB6 are all ambiguous by this

criterion.

Unlike the2D case (see¶14), the definition of the3D ambiguity does not require

the box to be monochromatic. Figure 4.19 show an example of the 3D ambiguity7 in

a bichromatic box. Also note that our definition of ambiguityis designed to be simple,

but it does not prevent unnecessary splitting (e.g., if boththe top and bottom faces each

have exactly four vertices in their interiors, then there isreally no need for splitting).

We now describe the third kind of ambiguity. Its motivation will be become clearer

in the construction phase below. Leti ∈ {x, y, z} be the monotone direction of a box

B. We sayB has analternating ambiguity if it properly contains thei-faceF of its

neighbor, and thisF is alternating.

Finally, a boxB is said to beambiguousif it is 2D, 3D or alternating ambiguous.

We splitB into eight sub-boxes, and put the candidate boxes among the children back

7 One might be able to develop a more complicated connection rule for connecting the vertices for the
3D ambiguity in a bichromatic boxB, since we know that theS ∩B will form a cylinder shaped surface
patch withinB. In our algorithm, we just splitB for simplicity.
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Figure 4.19: Example of the3D ambiguity in a bichromatic box.

into the octree.

LEMMA 34. If we split an ambiguous boxB into 8 children, none of these children will

be ambiguous.

Proof.Let B′ be a child of an ambiguous boxB. Because its neighboring boxes can

not have smaller width thanB′ (otherwise, the width of the neighboring box is less than

half of the width ofB). So it is impossible forB′ to have two vertices on one edge or

have four vertices on the interior of one face. It is also impossible forB′ to properly

contains any alternating face of its neighbors. Q.E.D.

Note that splitting of ambiguous boxes might induce its edge-neighbors to become

ambiguous, and also cause the octree to be unbalanced. So we need to re-balance the

octree. But this re-balance procedure is very local, and we only need to propagate the

“modified” boxes. The following is the disambiguation sub-phase (sub-phase2.3 of

BALANCE(T1)).
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Disambiguate(T ′
1):

AssumeT ′
1 has an associated priority queueQ containing all of its candidate boxes

Let Q1 be an empty priority queue

While (Q is non-empty)

B ← Q.pop()

If B is an ambiguous box

Full-split B

For each candidate boxB′ that is a child ofB

Rebalance(B′)

InsertB′ into Q1

Else

InsertB into Q1

Return the extended octreeT2 represented byQ1.

The following is the re-balance routine which is used in the disambiguation sub-

phase. Note that this re-balancing procedure relies on the fact that the octreeT ′
1 has

already been balanced before.

Rebalance(B0):

Priority queueQ is initialized to be{B0}

While Q is non-empty:

B ← Q.pop()

For each on-boxB′ that is a neighbor ofB

If w(B′) > 2w(B)

Full-split B′

For each candidate boxB′′ that is a child ofB′

InsertB′′ into Q
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We will next describe the construction phase for the BalancedCxyz Algorithm.

¶33. Construction Phase Let F be a face of some boxB. Our first goal is to connect

the vertices onF by arcs. LetB′ be a neighbor ofB that shares part ofF as a common

face. There are two possibilities: IfB′ ∩ B = F , thenB′ has width at least that ofB.

This is the case we are interested in: callF active in this case. Otherwise,F is inactive;

this meansB′ must have width that is half that ofB. We are not interested in inactiveF

because we would have processed the faces ofB′ beforeB, and in particular, any vertex

in F would have been processed. Henceforth, we will only focus onarc connections for

active faces.

By anarc loop, we mean a closed curve of arcs on the boundary of a boxB. The

construction phase also has three sub-phases (3.1-3.3).

CONSTRUCT (T2):

3.1. InitialConnect(T2)

3.2. ArcConnect(T2)

3.3. For each candidate boxB in T2, group the arcs onB’s boundary into arc loops.

For each arc loop, form a triangulated surface patch whose boundaryis the arc loop.

Sub-phase 3.3 is straightforward. In the following, we willdescribe how to imple-

ment sub-phase 3.1 and 3.2. In order to introduce our arc connection rule for active

faces, we will first analyze the sign types of the active faces.

¶34. Sign Types of Active Faces Note that each edge of an active face can have at

most two vertices. There might be a neighborB′ of B that shares an edge with an active

F . If B′ has smaller width thanB, then a corner ofB′ would be the midpoint of an
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edge ofF . Therefore, in considering sign types ofF , we need to consider signs of such

midpoints. There can be up to8 signs on the boundary ofF . The possibleSign Types

of such faces are enumerated in Figure 4.20 – there are 13 in number. The sign type

of F will uniquely determine the vertices that are introduced into F (as illustrated in

Figure 4.20).

(4e)∗ (6a)∗

(4c)

(6b)∗ (6c)∗ (8)∗

(2c)(2b)(0) (2a) (4a)∗ (4b)

(4d)

Figure 4.20: Sign Types of active faces. The asterisks indicate the cases that are impos-
sible for the active faces on the boundary of blocks.

¶35. Arc Types of Active Faces The rule for arc connections of active faces depends

on whether the faces are (known to be) “parametrizable” or not.

Let F be an activez-face. F is said to beparametrizable if 0 /∈ fx(F ) or 0 6∈

fy(F ). One problem with this notion is that it is not an effective one – we may not

know that a face is parametrizable even though it is. One computationally checkable

condition which implies the parametrizability ofF is 0 /∈ fx(F ) or 0 /∈ fy(F ). But

for our algorithm, we will define the concept of “known parametrizable” faces using the

information that is already obtained from our subdivision phase. The definition is based

on the fact that each candidate boxB satisfiesCi(B) for somei = {x, y, z}. For every

box B ∈ T , we associate aknown monotone direction (or monotone direction for

short). Now we define the concept of “known parametrizable faces”. LetF be an active
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face, and supposeF bounds two boxesB andB′. SoF = B ∩B′. We sayF is known

parametrizable if F is parallel to the monotone direction ofB or B′. Otherwise,F is

said to benot known parametrizable. Examples of known parametrizable faces and

not known parametrizable faces are shown in Figure 4.21. Letthe known monotone

direction ofB be y in both Figure 4.21(a) and (b). Then the four vertical faces of B

are known parametrizable faces. If the known monotone direction of B′ is alsoy, then

F is a not known parametrizable face; otherwise,F is a known parametrizable face,

which has the same monotone direction asB′. Clearly, ifF is known monotone in some

direction, then it is monotone in that direction (converse is not true).

F

B

B

(a)

B′

F

(b)

=Monotone Direction

B′

Figure 4.21: Examples of known parametrizable faces and notknown parametrizable
faces.

¶36. Connection Rule AssumeB is a Cy box. Then the four faces ofB which

are parallel to they-direction are clearly known parametrizable faces. It follows from

our analysis for curves that each of these faces can have at most 4 vertices. SoB can

have at most16 vertices on its edges. Indeed, it is easy to see that16 vertices can

arise. Our connection rules for any known parametrizable faces can follow the rules
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given in Figure 3.4. For reference, we call them theparametrizable face rule, which is

reproduced in Figure 4.20(2a), (2b), (2c), (4b), (4c) and (4d).

It remains to give the connection rule for the case whereF is not known parametriz-

able. We knew that in the regularized algorithm, the arc connections onF may be

arbitrary, as long as we ensure a certain block-wise consistency. In the Balanced Cxyz

Algorithm, we will need a different approach.

For a boxB, let UFB denotes the number of faces that have not yet been connected.

There are at least four known parametrizable faces, which weknow how to connect.

So we need to connect at most two other faces, i.e.,UFB ≤ 2. We first introduce the

connection rule for boxes where all but one faces have been connected, i.e.,UFB = 1.

We call this rule thematching rule: wlog, letB’s monotone direction bey, and the top

face ofB has been arc connected. LetF be the bottom face ofB, andv1, v2, . . . , v2n

be the vertices onF . For a vertexv ∈ F , if we follow the arcs starting fromv on the

vertical and top faces ofB, the path must end at another vertexv′ on the bottom face

F . We sayv andv′ arematched. It is easy to see that this pairwise relationship forms

a partition of the set of vertices onF . We connectvi andvj iff vi andvj are matched.

Figure 4.22(i), (ii), (iii) and (iv) show some examples of using matching rule to connect

vertices.

We still need the connection rule for the boxesB whoseUFB = 2. We previously

defined the notion of an “i-block (i ∈ {x, y, z})” for a regular octree. We have a sim-

ilar definition for the balanced octreeT (wlog, let i = y): a y-block B is a sequence

B1, . . . , Bt of candidate boxes ofT such that (1) the bottom face ofBj is the top face of

Bj+1 for j = 1, . . . , t− 1; (2) the monotone direction isy for eachBi; and (3) the block

is maximal. Note that this implies that all the boxes in a block have the same width, as

in the regular case. Thewidth of the block is defined as the width of anyBi. We also
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(v) (v’) (v”)

(iii)(ii) (iv)(i)

Figure 4.22: Examples of how to use matching rule ((i), (ii),(iii) and (iv)) and propaga-
tion rule ((v)→(v’)→(v”)) to connect vertices.

define theend boxesof B to beB1 andBt, and theend facesof B to be the top face of

B1 and bottom face ofBt. We also define the boundary ofB to be:∂(∪B) = ∂(∪B∈BB)

(i.e., the union of its end faces and all the vertical faces).

Every candidate boxB ∈ T has been assigned a monotone direction. Then this

partitions the set of candidate boxes ofT into blocks. LetB be ay-block. We can

view B as a single rectangular boxBr. The surfaceS is y-monotone withinBr, soS

intersects each vertical edge ofBr at most once. The top and bottom faces ofBr are the

end faces ofB. For any boxB ∈ B, the connection rule for the vertical faces is uniquely

defined (the parametrizable face rule). So the only not connected faces on the boundary

of B are the two end faces. The following lemma shows that the connection rule for the

active end faces is also uniquely defined.
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LEMMA 35. If F is an end face of a block, and ifF is active, thenF has at most4

vertices. The possible sign types forF are shown in Figure 4.20(0), (2a), (2b), (4b),

(4c) and (4d), and the connection rule for those cases is uniquely defined.

Proof. If F is an end face of ay-blockB, thenF is either (1) the intersection ofB

with another block of larger width (recall that the width of the block is defined as the

width of anyBi in the block), or (2) the intersection ofB with anotherx- or z-block

of the same width. In the first case, the boxes that share any edge of F have either

larger or the same width asF (because of the edge-balance). There is at most one

vertex on each edge ofF , soF has at most4 vertices. By the definition of alternating

ambiguity, Figure 4.20(4a) is excluded. So the possible cases are Figure 4.20(0), (2a)

and (2b). Their connection rule is uniquely defined. In the second case,F is a known

parametrizable face. So there are at most four vertices onF . From the analysis in

our Cxy Algorithm, we know that the possible cases are Figure 4.20(0), (2a), (2b),

(4b), (4c) and (4d), and the connection rule for those cases is also uniquely defined

(the parametrizable face rule). Note that Figure 4.20(2c) is impossible in the 2nd case

because it is a2D ambiguity. Q.E.D.

From the proof of the above lemma, the motivation of the alternating ambiguity is

now clear. LetB be a box with known monotone direction ini andF be ani-face ofB.

It is easy to see that ifB’s neighboring boxB′ that shares part ofF has a smaller width

thanB andF ′ = B′ ∩ B, thenF ′ contains at most two vertices. It is also easy to see

that for the end boxesB of a block,UFB ≤ 1.

We next describe the connection rule for the boxesB whoseUFB = 2: theprop-

agation rule. Wlog, letB be they-block containingB. We search the boxes iny+

direction to find the first boxB′ such thatUFB′ = 1. Note thatB′ exists inB since the

end boxes of a block haveUF ≤ 1. We push each box (fromB to B′) into a stackSB.
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The top of the stack isB′, and we can use the matching rule to connect it. After con-

nectingB′ (nowUFB′ = 0), we pop it from the stack. Then the top boxB′′ of the stack

hasUFB′′ = 1. We keep connecting and popping the boxes until we reachB. Now we

haveUFB = 1, we can use the matching rule to connectB. Figure 4.22(v)→(v’)→(v”)

shows an example of using propagation rule to connect vertices. Similarly, we can define

the arc connection rule for the boxes with known monotone directions inx or z.

Now we are ready to introduce the sub-phase3.1 and3.2 in CONSTRUCT (T2) in

¶33: InitialConnect(T2) andArcConnect(T2).

InitialConnect(T2):

Let Q be a priority queue containing all the candidate boxes inT2

While (Q is non-empty)

B ← Q.pop()

UFB ← 2

Connect the four faces which are parallel toB’s monotone direction

using the parametrizable face rule. For each of the other two facesF

If F is an inactive face

DecreaseUFB by 1

Else ifF = B ∩B′ andB′ has a different monotone direction asB

ConnectF using the parametrizable face rule

DecreaseUFB by 1

Else ifF has less than 4 vertices

ConnectF using the parametrizable face rule

DecreaseUFB by 1

After theInitialConnect(T2) sub-phase,UFB should be equal to 0, 1 or 2 for each

candidate boxB in T2. We next introduce theArcConnect(T2) sub-phase:
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ArcConnect(T2):

Let Q be a priority queue containing all the candidate boxes inT2

While (Q is non-empty)

B ← Q.pop()

If UFB = 0

B is fully connected, and there is nothing to do

If UFB = 1

Use the matching rule to connectB

If UFB = 2

Use the propagation rule to connectB

4.4 Correctness of Balanced Cxyz Algorithm

Let T be the octree produced by our Balanced Cxyz Algorithm. Similarto the

correctness proof of the Regularized Cxyz Algorithm, we will first transform the input

surfaceS = f−1(0) to another surfacẽS which has some nice properties.

In the correctness proof of the Regularized Cxyz Algorithm, weseparately defined

the partial orders for loops and pairs ofS in T . In the Balanced Cxyz Algorithm, we

need to define the partial order for the combination of all loops and pairs. The reason

is that a loop might be “blocked” by pairs (an example is shownin Figure 4.23(I)), and

we need to remove the pairs first in order to remove the loop. Also, a pair might be

“blocked” by loops ,as shown in Figure 4.23(II) (we do not have such problem in the

Regularized Cxyz Algorithm since the loops are removed beforepairs).

We define the new partial order for the set ofP(S) ∪ L(S), whereP(S) is the set

of all pairs ofS ∩ T , andL(S) is the set of all loops ofS ∩ T (see¶27 and¶29). The

partial order between loops and between pairs are the same asthe partial order defined
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Figure 4.23: Partial order between a loop and a pair.

in the Regularized Cxyz Algorithm: let≺P⊆ P(S)×P(S) be the partial order defined

for pairs, and≺L⊆ L(S) × L(S) be the partial order defined for loops. We need to

define a partial order on the setP(S) ∪ L(S).

Let B be a box with monotone directiony. Let L be a loop on the bottom face of

B and{p, q} be a pair on the top face ofB. If the y-projection of{p, q} is contained

within they-projection ofL, we say{p, q} ≺ L (as shown in Figure 4.23(I)). In order

to removeL, we need to remove{p, q} first. We can similarly define such relations inx

andz directions. Let≺PL⊆ P(S)× L(S) be all the relations so defined. Similarly, we

can define≺LP⊆ L(S)×P(S): let {p, q} be a pair, andK be a semi-loop whose base is

[p, q]. If there exist a loopL which lies in the same boxB asK, and thei-projection of

L (for somei ∈ {x, y, z}) lies in the interior of thei-projection ofK, we sayL ≺ {p, q}

(as shown in Figure 4.23(II)).

In the Regularized Cxyz Algorithm, we removed all loops beforewe remove pairs.

But in the Balanced Cxyz Algorithm, we are forced to intermix pair removal with loop

removal because of the relations in≺PL and≺LP . However, if we look at the relation

≺P ∪ ≺L ∪ ≺PL ∪ ≺LP , we do not obtain a partial order onP(S) ∪ L(S) (see

Figure 4.24: the green points form pairs, and the arrows showthe monotone direction

of the boxes. It is possible thatL ≺ P11 ≺ . . . ≺ P1 ≺ L, which forms a loop).
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Figure 4.24: Example of a loop in≺P ∪ ≺L ∪ ≺PL ∪ ≺LP .

Our solution is to define a partial order based only on≺Bal:=≺P ∪ ≺L ∪ ≺PL.

This is clearly a partial order onP(S) ∪ L(S).

LEMMA 36 (DAG). The partial order relationship≺Bal forms a DAGGp where the

pairs and loops are the nodes ofGp and the partial order relations are the (directed)

edges ofGp.

Why is this a solution? As usual, we plan to inductively removeelements from

P(S) ∪ L(S), which are minimal relative to≺Bal. The possible complication arises

when we want to remove a pair{p, q} whereL ≺LP {p, q} for some loopL. It turns

out, we can remove{p, q} without first removingL provided that we generalize our

previous base removal operation as follows: to remove a pair{p, q}, we will remove

all semi-loopsK whose base is[p, q]. There are two possible situations: (A) If there
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Figure 4.25: Universal Base Removal Operations.

is a loopL s.t. L ≺LP {p, q}, then we know that[p, q] is the base of a semi-loopK

where thei-projection ofL (for somei ∈ {x, y, z}) lies in the interior ofK. In this

case, we transform the surfaceS so that{p, q} is removed fromP(S), and a new loop

K ′ appears inL(S). And moreover,L ≺ K ′ ∈≺L. See Figure 4.25(II∗) → (II∗′)

and(III∗) → (III∗′) for the illustration of this operation. Note that there might be

more than one such loopsL. (B) If no such loopL exists, then the operation is defined

as in the Regularized Cxyz Algorithm. Similar to the proof of Lemma 30, we can prove

that those two generalized operations also preserve the surface monotonicity ofS in

T . Based on the correctness analysis in the Regularized Cxyz Algorithm, we have the

following (similar) theorem for the Balanced Cxyz Algorithm:

THEOREM 37. Let T be the octree produced by our Balanced Cxyz Algorithm. There

∃S̃, s.t.
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(1) S̃ ≃ S(modR(T )).

(2) S̃ is compatible withS respect toT .

(3) S̃ intersectsT cleanly.

(4) S̃ preserves the monotonicity ofS within each candidate box ofT .

Proof.The correctness of this theorem follows from the analysis ofthe face cleaning

and edge cleaning processes. Q.E.D.

In the Regularized Cxyz Algorithm, we proved Lemma 27. We have asimilar result

in the balanced algorithm:

LEMMA 38 (NO HOLES 2).Let S̃ be the surface described in Theorem 37 andB be

a connected subset of ani-block. LetC be a closed curve which is the intersection

of S̃ with ∂(∪BB∈B). Let P ⊆ S̃ ∩ B be a surface patch inB (i.e., P is a connected

component of̃S ∩ B). If C ⊆ ∂P , then∂P = C. In other words,P is topologically a

disc.

Proof.The correctness of this lemma follows from the facts thatS̃ ∩ B is monotone

in B, andS̃ intersectsB cleanly. The proof is similar to the proof of Lemma 26.Q.E.D.

From Lemma 38, it is easy to see thatS̃ ∩ B is a set of topological discs for each

candidate boxB.

THEOREM 39. The meshG constructed by our Balanced Cxyz Algorithm is isotopic to

S̃ within eachi-blockB of T . In other words,G ≃ S̃ ≃ S(modR(T )).

Proof.From Theorem 37, it is easy to see thatS̃ intersects the boundary ofB cleanly.

Our construction rule guarantees thatG ∩ ∂(∪B) “agrees” withS̃ ∩ ∂(∪B). And each
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connected component ofG ∩ B is a topological disc. So based on Lemma 38, we have

G ∩ B ≃ S̃ ∩ B. Q.E.D.

4.5 Rectangular Cxyz Algorithm

As in the Cxy algorithm, the ability to have partial splits canbe highly advantageous.

In 3D, this means a box can be half- or quarter-split. Our subdivision boxes will now

have various aspect ratios, where theaspect ratioof a box is defined to be the ratio of

the length of the longest edge to the length of the shortest. In order to prove that such

an algorithm will halt, it is necessary to assume some prioriboundρ > 1 on the aspect

ratio of any subdivision box. In particular, we are not allowed to do those partial splits

that will produce a child with aspect ratio> ρ. Our method for deciding how to do

partial splits is a straightforward generalization of the2D case. We will assume some

fixed convention8 for labeling the 8 orthants of the coordinate system.

We modify the subdivision phase as follows: For each on-boxB in the queue, we

must decide how to tag it, or how to to split and tag its children. This is accomplished

by a new subdivision phase, which amounts to checking the following three levels of

8 Unlike the 2D case, there seems to be no universally accepted convention for this. See, e.g.,
http://godplaysdice.blogspot.com/2007/09/convention-for-quadrantoctantorthant.html. We will use the
gray code to label successive orthants, starting from1 = 000, 2 = 001, 3 = 011, 4 = 010, 5 = 110, 6 =
111, 7 = 101, 8 = 100.
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conditions (in this order):

L0 :

Cout : C0(B)

Cin : Cxyz(B)

L1 :

Cout : C0(B1234), C0(B5678), C0(B1278), C0(B3456), C0(B1458), C0(B2367)

Cin : Cxyz(B1234), Cxyz(B5678), Cxyz(B1278), Cxyz(B3456), Cxyz(B1458), Cxyz(B2367)

L2 :

Cout : C0(B12), C0(B34), C0(B56), C0(B78), C0(B14), C0(B23),

C0(B67), C0(B58), C0(B18), C0(B27), C0(B36), C0(B45)

Cin : Cxyz(B12), Cxyz(B34), Cxyz(B56), Cxyz(B78), Cxyz(B14), Cxyz(B23),

Cxyz(B67), Cxyz(B58), Cxyz(B18), Cxyz(B27), Cxyz(B36), Cxyz(B45)





(4.8)

We stop at the first verified condition. If a condition inL0 is verified, we tagB as

an candidate or discarded box, accordingly. If a condition in L1 (L2) is verified, we do

a half-split (quarter-split) ofB to produce the child that satisfies that condition. That

child is tagged as discarded or candidate. The other children are pushed back into the

queue. Finally, if no condition is verified, we do a full-split and push the children into

the queue.

The balancing phase of the Rectangular Cxyz algorithm is slightly different from the

Balanced Cxyz algorithm. In the splitting sub-phase, we dox-balance first, then balance

along they- andz-direction accordingly (see the definition ofi-balance in 4.3):
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Split(T1):

T1.1=SplitX (T1)

T1.2=SplitY (T1.1)

T ′
1=SplitZ(T1.2)

We definewi(B) to be thei-width of B (i ∈ {x, y, z}), andrx(B) = (max(wy(B),

wz(B)))/wx(B) (similarly for ry(B) andrz(B)). Note thatri(B)(i = x, y, z) might

exceed the bounding aspect ratioρ in the balancing phase. Also note that we only useρ

to guarantee the termination of the subdivision phase. The termination of the balancing

phase is guaranteed by the fact that we never induce a boxB with wi(B)(i = x, y, z)

smaller than the minimumi-width in T1.

After the splitting sub-phase, there are still problems preventing us from adding

vertices correctly: LetA be a box, andB be one ofA’s right neighbors. Ifwy(A) =

2 ∗ wy(B) andwz(B) = 2 ∗ wz(A) (as shown in Figure 4.26), and if pointp3 andp2

have different signs, there is no edge to add a vertex at theirmidpoint. A vertex will be

added atp2 - the midpoint of(p1, p3) when we process the boxA or D, and the vertex is

at the corner of the boxC. There is a simple way to resolve this problem: if we find this

kind of situation, we half-splitB (or A). We have an additional sub-phase for adjusting

such boxes (letQxy be a priority queue which sorts the boxes by theirx-width and then

they-width):

Adjust(T ′
1):

T ′
1.1=AdjustX (T ′

1)

T ′
1.2=AdjustY (T ′

1.1)

T ′′
1 =AdjustZ(T ′

1.2)

WhereAdjusti(i ∈ {x, y, z}) is defined as the following procedure (wlog,i = Z):
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Figure 4.26: Problem of the balancing phase in Rectangular Cxyz algorithm.

AdjustZ(T ′
1.2):

Qxy is a priority queue containing all the candidate boxes inT ′
1,

while Qxy is non-empty:

B ← Qxy.remove()

For each candidate boxB′ that is az-neighbor ofB

If wx(B′) > wx(B) andwy(B
′) < wy(B),

x split B′

For each candidate boxB′′ that is a child ofB′

InsertB′′ into Qxy

Return the extended octreeT ′′
1

The adjust sub-phase might introduce new unbalanced cases,so we need to loop

over the adjust and split sub-phases until there is no further split:
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Split&Adjust(T1):

T ′
1=Split(T1)

Do

T ′′
1 =Adjust(T ′

1)

T ′
1=Split(T ′′

1 )

While there are splits

ReturnT2 = T ′
1

The the complexity of the split and adjust sub-phase might seem overwhelming. But

in the experimental result, the number of splits reduces very fast, and the whole sub-

phase can finish faster than the Balanced Cxyz algorithm. On other words, the number

of boxes after Split&Adjust sub-phase can be less than the number of boxes after the

split sub-phase in the Balanced Cxyz algorithm.

The disambiguation sub-phase is slightly different from the Balanced Cxyz Algo-

rithm too. We need to ensure that the disambiguation phase does not produce boxes

with smalleri-width than the minimumi-width in the octreeT . For the2D ambiguous

box, we do a half split of the box to separate the two vertices which cause the ambiguity.

For the3D ambiguous boxes, we do a quarterly split of the box which splits the face

(whose interior contains four vertices) into four children. For the alternating ambigu-

ous boxB, let F = B ∩ B′ be the face that causes the ambiguity (wlog, letF be a

x-face). We splitB to “fit” F (i.e., the children ofB will have the samey- andz-width

asB′). Note that we might do half- or quarter-split onB in the directions which are

perpendicular toF .

The construction phase of the Rectangular Cxyz Algorithm is similar to the Balanced

Cxyz Algorithm, and so does the correctness proof.
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4.6 Implementation and Software

Our algorithms are implemented inJava on the Eclipse Platform. See 3.7 for

the hardware configuration. The code for2D meshing is available for download at

http://cs.nyu.edu/exact/papers/cxy/, and the code for3D meshing is

available for download athttp://cs.nyu.edu/exact/papers/cxyz/.

Note that this implementation is based on machine arithmetic. Our implementa-

tion is exact (in particular, there is no numerical roundingerror) as long as there is no

underflow or overflow. This is because the only arithmetic operations we use are ring

operations and divide by2. The limitation of machine precision is that, for high degree

polynomials, the code might fail because of under/overflows. Cxy algorithm has been

transformed toC++ based exact computational libraryCore Library by Shuxing

Lu, and improved by Narayan Kamath. We plan to convert otherJava codes toC++

for distribution with our open sourceCore Library.

We use the defaultJava heap memory 256MB (some runs result in OutOfMemo-

ryError (OME)). We implemented four algorithms: PV, Balanced Cxyz, Balanced Cxyz

with epsilon precision, and Rectangular Cxyz. These are abbreviated as PV, Cxyz,

Cxyze, and Rect-n (wheren is the maximum aspect ratio). We did not implement

Snyder’s algorithm in3D since it is relatively complicated.

4.7 Experimental Results

We report some encouraging experimental results. Table4.1 lists11 examples of our

tests. Table4.2 compares the number of boxes and the running time among Cxyz, PV,

and Rect-n (n = 2, 4, 8, 16, 32). The percentages represents the relative running times,

using Cxyz as 100%. Figure 1.1, Figure 4.28, Figure 4.29, Figure 4.30, Figure 4.31,
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Figure 4.32 and Figure 4.33 illustrates the meshes for Eg.1 to Eg.7 in Table 1 respec-

tively, using Cxyze, PV, Cxyz and Rect-n, wheren is selected in a way that Rect-n is

the fastest among all Rect algorithms.

Table 4.1: Equations and input boxes of examples
# Curve name Equationf(x, y, z) = 0 Original Box

Eg1 tangle cube x4
− 5x2 + y4

− 5y2 + z4
− 5z2 + 10 [(−8, −8, −8), (8, 8, 8)]

Eg2 chair (x2 + y2 + z2
− 23.75)2 − 0.8((z − 5)2 − 2x2)((z + 5)2 − 2y2) [(−8, −8, −8), (8, 8, 8)]

Eg3 quartic cylinder y2x2 + y2z2 + 0.01x2 + 0.01z2
− 0.01 [(−8, −8, −8), (8, 8, 8)]

Eg4 quartic cylinder y2(x − 1)2 + y2(z − 1)2 + 0.01(x − 1)2 + 0.01(z − 1)2 − 0.2002 [(−5, −5, −5), (7, 7, 7)]

Eg5 quartic cylinder y2(x − 1)2 + y2(z − 1)2 + 0.01(x − 1)2 + 0.01(z − 1)2 − 1.0002 [(−12, −12, −12), (14, 14, 14)]

Eg6 shrek −x4
− y4

− z4 + 4(x2 + y2z2 + y2 + z2x2 + z2 + x2y2)− [(−8, −8, −8), (8, 8, 8)]
20.7846xyz − 10

Eg7 tritrumpet 8z2 + 6xy2
− 2x3 + 3x2 + 3y2

− 0.9 [(−8, −8, −8), (8, 8, 8)]

Eg8a eclipse x2 + 102y2 + 102z2
− 1 [(−8, −8, −8), (8, 8, 8)]

Eg8b(n) eclipse x2 + 10ny2 + 10nz2
− 1 [(−7, −7, −7), (8, 8, 8)]

(1) Cxyz is at least as good as PV, and is significantly faster than PV in most exam-

ples. In Eg8b(4), Cxyz is7.5 times faster than PV. In Eg8b(6), Cxyz spends1.3 seconds

to construct the mesh, compared to PV which spends more than 70 seconds, and runs

out of memory. Rect is the fastest in both Eg8b(4) and Eg8b(6):Rect-2 spends 141 mil-

liseconds for Eg8b(4), and 172 milliseconds for Eg8b(6). Note that the only exception

is Eg8a, Cxyz and PV produce the same number of boxes, and spendthe same amount

of time. In Eg8b(2), we use the same function as Eg8a, but withan asymmetric original

box. Cxyz is twice as fast as PV. Also note that in the Eg3, Cxyz and PV also produce

the same number of boxes, but Cxyz is faster than PV because thecomputational cost

for theC1 predicate is bigger than theCxyz predicate.

(2) Rect can be significantly faster than Cxyz, but the performance of Rect is incon-

sistent. In Eg3, Rect-32 takes11.8% of Cxyz’s running time; and in Eg8b(6), Rect-2

takes12.8% of Cxyz’s running time. The input surface for these examples are very long

and thin, in which Rect algorithm can take advantage of various aspect ratios. The re-

sults also show that although Rect produces less boxes than Cxyz in all examples but

Eg8b(2), the running time of Rect is not always faster than theCxyz (especially when
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the input surface is squarish, like Eg2). This is because Rectneeds to spend more time

to check the criteria before splitting a box, and needs to process each box in three direc-

tions in Rect.

(3) Increasing the maximum aspect ration in Rect does not necessarily improve the

performance of the algorithm. In Eg3, increasing the maximum aspect ratio directly

improves the performance of Rect; but in Eg8b(6), it causes anopposite effect. This is

because increasing the maximum aspect ratio might cause theboxes to “over split” in

one direction, which is also the reason for the inconsistency of Rect. Another example

for over-splitting in Rect is Eg2, where Rect-n spends more time than Cxyz. Figure 4.27

shows the resulting boxes, meshes, and details by running Cxyz, Rect-8, and Rect-32 on

Eg2.

(4) Figure 4.34 illustrates an example that our algorithms preserve the topology: the

first row of Figure 4.34 shows the approximations of Eg4 usingRect-n (n = 2, 4, 8, 16, 32)

algorithm. It is not clear that the topology of the resultingmeshes is the same by looking

at the squared area. By zooming in the squared area (see the second row of Figure 4.34),

We could see that the topology is preserved in the squared area of the meshes.

Table 4.2: Cxyz vs. PV vs. Rect-n
Box/Time (ms)/% Cxyz PV Rect-2 Rect-4 Rect-8 Rect-16 Rect-32

Eg1 2584/391 5104/718/184% 1096/579/148% 1304/656/168% 1710/781/200% 2081/922/236% 2653/1125/288%
Eg2 26104/4516 106072/15765/349% 13400/7360/163% 19847/10672/236% 25513/13656/302% 30880/16797/372% 36931/20360/451%
Eg3 35792/3437 35792/3843/112% 12056/2812/82% 6264/1625/47% 3328/953/28% 2000/578/17% 1088/407/12%
Eg4 80662/10282 OME>90sec. 43977/17875/174% 32836/13313/129% 27577/10766/105% 29143/11797/115% 26700/10594/103%
Eg5 134163/17187 OME>90sec. 64617/35156/205% 37237/14703/86% 30730/12188/71% 27612/11187/65% 26221/10532/61%
Eg6 31144/4046 99436/11985/296% 13688/5421/134% 16348/6922/171% 19332/8422/208% 21698/10328/255% 23827/11469/283%
Eg7 1688/328 2920/421/128% 796/359/109% 836/390/119% 1028/422/129% 1244/453/138% 1652/578/176%
Eg8a 400/94 400/94/100% 176/125/133% 200/140/149% 232/156/166% 272/156/166% 320/172/183%
Eg8b(2) 274/125 2164/250/200% 149/109/87% 154/109/87% 197/125/100% 225/140/112% 279/140/112%
Eg8b(4) 1247/203 22121/1531/754% 345/141/69% 418/141/69% 484/156/77% 551/172/85% 658/203/100%
Eg8b(6) 15226/1343 OME>70sec. 696/172/13% 733/187/14% 886/203/15% 952/203/15% 1129/219/16%
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(a) Cxyz (b) Rect-8 (c) Rect-32

Figure 4.27: Boxes, meshes, and details of Eg2 using Cxyz, Rect-8 and Rect-32. Note
that the triangles are elongated as the maximum aspect ratioincreases.

(a) Cxyze (b) PV (c) Cxyz (d) Rect-2

Figure 4.28: Approximation of Eg2: chairf(x, y, z) = (x2 + y2 + z2 − 23.75)2 −
0.8((z − 5)2 − 2x2)((z + 5)2 − 2y2) = 0.

(a) Cxyze (b) PV (c) Cxyz (d) Rect-32

Figure 4.29: Approximation of Eg3: quartic cylinderf(x, y, z) = y2x2 + y2z2 +
0.01x2 + 0.01z2 − 0.01 = 0.
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(a) Cxyz (b) Rect-32

Figure 4.30: Approximation of Eg4: quartic cylinder 1f(x, y, z) = y2(x−1)2+y2(z−
1)2 + 0.01(x− 1)2 + 0.01(z − 1)2 − 0.2002 = 0.

(a) Cxyz (b) Rect-32

Figure 4.31: Approximation of Eg5: quartic cylinder 2f(x, y, z) = y2(x−1)2+y2(z−
1)2 + 0.01(x− 1)2 + 0.01(z − 1)2 − 0.1002 = 0.

(a) Cxyze (b) PV (c) Cxyz (d) Rect-2

Figure 4.32: Approximation of Eg6: shrekf(x, y, z) = −x4− y4− z4 +4(x2 + y2z2 +
y2 + z2x2 + z2 + x2y2)− 20.7846xyz − 10 = 0.
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(a) Cxyze (b) PV (c) Cxyz (d) Rect-2

Figure 4.33: Approximation of Eg7: tritrumpetf(x, y, z) = 8z2 + 6xy2− 2x3 + 3x2 +
3y2 − 0.9 = 0.

(a) Rect-2 (b) Rect-4 (c) Rect-8 (d) Rect-16 (e) Rect-32

(a) Rect-2 (b) Rect-4 (c) Rect-8 (d) Rect-16 (e) Rect-32

Figure 4.34: First row(a)-(e): Approximations of a quarticcylinder 1 f(x, y, z) =
y2(x − 1)2 + y2(z − 1)2 + 0.01(x − 1)2 + 0.01(z − 1)2 − 0.2002 = 0 using Rect-
n (n = 2, 4, 8, 16, 32). Second row(a)-(e): Topology preservation in the squared area of
the approximations.
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Chapter 5

Conclusion and Future Works

This thesis introduces a new family of algorithms for isotopic approximation of im-

plicit curves and surfaces that is provably correct, simple, efficient, and easy to imple-

ment exactly. The basic idea is to exploit parametrizability (like Snyder) and nonlocal

isotopy (like Plantinga and Vegter). We also extend these ideas to subdivision boxes of

bounded aspect ratio, and mesh construction within irregular geometries. In2D, our

experimental results which compare four algorithms (PV, Snyder, Balanced Cxy, and

Rectangular Cxy) show that our Balanced Cxy Algorithm is faster than Snyder and PV

most of the time, and Rectangular Cxy Algorithm is the best in all tests and often ex-

hibits great speedup. In3D, our experimental results which compare three algorithms

(PV, Balanced Cxyz, and Rectangular Cxyz) show that our Balanced Cxyz Algorithm

is consistently more efficient than PV and the Rectangular CxyzAlgorithm can exhibit

significant speedup. But the precise way to exploit anisotropy remains a research prob-

lem.

Future work includes extensions to higher dimensions, effective treatment of singu-

larity using numerical methods, more efficient algorithm toachieve geometric accuracy
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(by exploiting parametrizability and boundary information of each box), complexity

analysis of subdivision algorithms, and convertingJava codes of Cxyz algorithms to

C++ for distribution with our open sourceCore Library.

127



Bibliography

[1] N. Amenta and M. Bern. Surface reconstruction by voronoi filtering. In SCG

’98 Proceedings of the fourteenth annual symposium on Computational geometry,

pages 39–48, 1998.

[2] S. Basu, R. Pollack, and M.-F. Roy.Algorithms in Real Algebraic Geometry.

Algorithms and Computation in Mathematics. Springer, 2003.

[3] J.-D. Boissonnat, D. Cohen-Steiner, B. Mourrain, G. Rote, and G. Vegter. Meshing

of surfaces. In Boissonnat and Teillaud [8]. Chapter 5.

[4] J.-D. Boissonnat, D. Cohen-Steiner, and G. Vegter. Isotopic implicit surfaces

meshing. InACM Symp. Theory of Comput., pages 301–309, 2004.

[5] J.-D. Boissonnat and S. Oudot. Provably good surface sampling and approxima-

tion. In SGP ’03 Proceedings of the 2003 Eurographics/ACM SIGGRAPH sympo-

sium on Geometry processing, pages 9–18, 2003.

[6] J.-D. Boissonnat and S. Oudot. Provably good sampling andmeshing of surfaces.

Graphical Models, 67(5):405–451, 2005.

128



[7] J.-D. Boissonnat and S. Oudot. Provably good sampling andmeshing of Lipschitz

surfaces. InProc. 22nd ACM Symp. on Comp. Geometry, pages 337–346, 2006.

Sedona, Arizona.

[8] J.-D. Boissonnat and M. Teillaud, editors.Effective Computational Geometry for

Curves and Surfaces. Springer, 2006.

[9] M. Burr, S. Choi, B. Galehouse, and C. Yap. Complete subdivision algorithms,

II: Isotopic meshing of singular algebraic curves. InProc. Int’l Symp. Symbolic

and Algebraic Computation (ISSAC’08), pages 87–94, 2008. Hagenberg, Aus-

tria. Jul 20-23, 2008. Accepted for Special Issue of ISSAC 2008 in JSC. Also, in

arXiv:1102.5463.

[10] M. Burr, F. Krahmer, and C. Yap. Continuous amortization: Anon-probabilistic

adaptive analysis technique.Electronic Colloquium on Computational Complexity

(ECCC), TR09(136), December 2009.

[11] M. Burr, V. Sharma, and C. Yap. Evaluation-based root isolation, 2011. In prepa-

ration.

[12] J.-S. Cheng, X.-S. Gao, and C.-K. Yap. Complete numerical isolation of real zeros

in zero-dimensional triangular systems.J. Symbolic Computation, 44(7):768–785,

2009. Special Issue of JSC based on ISSAC 2007. Available online at JSC.

[13] S.-W. Cheng, T. Dey, E. Ramos, and T. Ray. Sampling and meshing a surface with

guaranteed topology and geometry. InProc. 20th ACM Symp. on Comp. Geometry,

pages 280–289, 2004.

129



[14] L. P. Chew. Guaranteed-quality mesh generation for curved surfaces. InProc. 9th

ACM Symp. on Comp. Geometry, pages 274–280, 1993. San Diego, California,

United States.

[15] A. Eigenwillig. Real Root Isolation for Exact and Approximate Polynomials Us-

ing Descartes Rule of Signs. Ph.D. thesis, University of Saarland, Saarbruecken,

Germany, May 2008.

[16] A. Eigenwillig, L. Kettner, E. Schmer, and N. Wolpert. Complete, exact, and

efficient computations with cubic curves. In20th ACM Symp. on Comp. Geometry,

pages 409 – 418, 2004. Brooklyn, New York, USA, Jun 08 – 11.

[17] B. Galehouse.Topologically Accurate Meshing Using Spatial SubdivisionTech-

niques. Ph.D. thesis, New York University, Department of Mathematics, Courant

Institute, May 2009. Fromhttp://cs.nyu.edu/exact/doc/.

[18] M. Garland and P. S. Heckbert. Surface simplification using quadric error met-

rics. InSIGGRAPH ’97 Proceedings of the 24th annual conference on Computer

graphics and interactive techniques, pages 209–216, 1997.

[19] M. W. Hirsch. Differential Topology. Springer-Verlag, 1976.

[20] H. Hong. An efficient method for analyzing the topology of plane real algebraic

curves.Mathematics and Computers in Simulation, 42:571–582, 1996.

[21] T. Ju, F. Losasso, S. Schaefer, and J.Warren. Dual contouring of hermite data. In

SIGGRAPH ’02 Proceedings of the 29th annual conference on Computer graphics

and interactive techniques. ACM, 2002.

130



[22] N. Kamath, I. Voiculescu, and C. Yap. Empirical study of an evaluation-based sub-

division algorithm for complex root isolation. In4th Intl. Workshop on Symbolic-

Numeric Computation (SNC), pages 155–164, 2011.

[23] L. Lin and C. Yap. Adaptive isotopic approximation of nonsingular curves: the

parameterizability and nonlocal isotopy approach.Discrete & Computational Ge-

ometry, 45(4):760–795, 2011. Special Issue: 25th Annual Symposium on Compu-

tational Geometry SOCG ’09.

[24] L. Lin, C. Yap, and J. Yu. Adaptive isotopic approximation of nonsingular surfaces,

2011. In preparation.

[25] W. E. Lorensen and H. E. Cline. Marching cubes: A high resolution 3D surface

construction algorithm. In M. C. Stone, editor,Computer Graphics (SIGGRAPH

’87 Proceedings), volume 21, pages 163–169, July 1987.

[26] R. Martin, H. Shou, I. Voiculescu, A. Bowyer, and G. Wang. Comparison of

interval methods for plotting algebraic curves.Computer Aided Geometric Design,

19(7):553–587, 2002.

[27] D. P. Mitchell. Robust ray intersection with interval arithmetic. InGraphics Inter-

face’90, pages 68–74, 1990.

[28] R. E. Moore.Interval Analysis. Prentice Hall, Englewood Cliffs, NJ, 1966.

[29] B. Mourrain and J.-P. T́ecourt. Isotopic meshing of a real algebraic surface. Techni-

cal Report RR-5508, INRIA, Sophia-Antipolis, France, Feb. 2005. Also, electronic

proceedings, MEGA 2005.

131



[30] T. Newman and H. Yi. A survey of the marching cubes algorithm. Computers &

Graphics, 30(5):854–879, 2006.

[31] S. Plantinga.Certified Algorithms for Implicit Surfaces. Ph.D. thesis, Groningen

University, Institute for Mathematics and Computing Science, Groningen , Nether-

lands, Dec. 2006.

[32] S. Plantinga and G. Vegter. Isotopic approximation of implicit curves and surfaces.

In Proc. Eurographics Symposium on Geometry Processing, pages 245–254, New

York, 2004. ACM Press.

[33] F. P. Preparata and M. I. Shamos.Computational Geometry. Springer-Verlag,

1985.

[34] H. Ratschek and J. Rokne.Computer Methods for the Range of Functions. Hor-

wood Publishing Limited, Chichester, West Sussex, UK, 1984.

[35] H. Ratschek and J. G. Rokne. SCCI-hybrid methods for 2d curvetracing. Int’l J.

Image Graphics, 5(3):447–480, 2005.

[36] M. Sagraloff and C. K. Yap. A simple but exact and efficientalgorithm for complex

root isolation. In36th Int’l Symp.Symbolic and Alge.Comp. (ISSAC), pages 353–

360, 2011. June 8-11, San Jose, California.

[37] T. Sakkalis and T. J. Peters. Ambient isotopic approximations for surface recon-

struction and interval solids. InSM ’03 Proceedings of the eighth ACM symposium

on Solid modeling and applications, pages 176–184. ACM, 2003.

132



[38] S. Schaefer and J. Warren. Dual marching cubes: Primal contouring of dual grids.

In PG ’04 Proc. 12th Pacific Conf. Computer Graphics and Applications, pages

70–76, 2004.

[39] E. Schoemer and N. Wolpert. An exact and efficient approach for computing a cell

in an arrangement of quadrics.Comput. Geometry: Theory and Appl., 33:65–97,

2006.

[40] R. Seidel and N. Wolpert. On the exact computation of the topology of real alge-

braic curves. InProc. 21st ACM Symp. on Comp. Geometry, pages 107–116, 2005.

Pisa, Italy.

[41] V. Sharma. Complexity of real root isolation using continued fractions.Theor.

Computer Science, 409(2), 2008. Also: proceedings ISSAC’07.

[42] R. Shekhar, E. Fayyad, R. Yagel, and J. Cornhill. Octree-based decimation of

marching cubes surfaces. InIEEE Visualization ’96, pages 335–344, 1996.

[43] J. M. Snyder.Generative Modeling for Computer Graphics and CAD: Symbolic

Shape Design using Interval Analysis. Academic Press, 1992.

[44] J. M. Snyder. Interval analysis for computer graphics.SIGGRAPH Com-

put.Graphics, 26(2):121–130, 1992.

[45] B. T. Stander and J. C. Hart. Guaranteeing the topology of an implicit surface

polygonalization for interactive meshing. InProc. 24th Computer Graphics and

Interactive Techniques, pages 279–286, 1997.

[46] G. Taubin. Distance approximations for rasterizing implicit curves. ACM Trans-

actions on Graphics, 13(1):3–42, 1994.

133



[47] G. Taubin. Rasterizing algebraic curves and surfaces.IEEE Computer Graphics

and Applications, 14(2):14–23, 1994.

[48] G. Varadhan, S. Krishnan, Y. J. Kim, S. Diggavi, and D. Manocha. Efficient max-

norm distance computation and reliable voxelization. InSGP ’03 Proceedings

of the 2003 Eurographics/ACM SIGGRAPH symposium on Geometryprocessing,

pages 116–126, 2003.

[49] G. Varadhan, S. Krishnan, T. Sriram, and D. Manocha. Topology preserving sur-

face extraction using adaptive subdivision. InSGP ’04 Proceedings of the 2004

Eurographics/ACM SIGGRAPH symposium on Geometry processing, pages 235–

244, 2004.

[50] C. K. Yap. Symbolic treatment of geometric degeneracies. J. Symbolic Computa-

tion, 10:349–370, 1990.

[51] C. K. Yap. Robust geometric computation. In J. E. Goodman and J. O’Rourke,

editors,Handbook of Discrete and Computational Geometry, chapter 41, pages

927–952. Chapman & Hall/CRC, Boca Raton, FL, 2nd edition, 2004.

[52] C. K. Yap. Complete subdivision algorithms, I: Intersection of Bezier curves. In

22nd ACM Symp. on Comp. Geometry, pages 217–226, July 2006.

[53] C. K. Yap. In praise of numerical computation. In S. Albers, H. Alt, and S. N̈aher,

editors,Efficient Algorithms, volume 5760 ofLecture Notes in Computer Science,

pages 308–407. Springer-Verlag, 2009. Essays Dedicated toKurt Mehlhorn on the

Occasion of His 60th Birthday.

[54] C. K. Yap and J. Yu. Foundations of exact rounding. In S. Das and R. Uehara, ed-

itors,Proc. WALCOM 2009, volume 5431 ofLecture Notes in Computer Science,

134



pages 15–31, Heidelberg, 2009. Springer-Verlag. Invited talk, 3rd Workshop on

Algorithms and Computation, Kolkata, India.

135


	Dedication
	Acknowledgements
	Abstract
	List of Figures
	List of Tables
	Overview of Thesis
	What is Meshing?
	Correctness Criteria
	Classification of Meshing Algorithms
	Recent Progress in Subdivision Algorithms

	Overview of Subdivision Algorithms
	Isotopic Meshing of Curves
	Regularized Cxy Algorithm
	Partial Correctness of Regularized Cxy Algorithm
	Balanced Cxy Algorithm
	Correctness of Balanced Cxy Algorithm
	Rectangular Cxy Algorithm
	Ensuring Geometric Accuracy
	Summary of Experimental Results

	Isotopic Meshing of Surfaces
	Regularized Cxyz Algorithm
	Correctness of Regularized Cxyz Algorithm
	Balanced Cxyz Algorithm
	Correctness of Balanced Cxyz Algorithm
	Rectangular Cxyz Algorithm
	Implementation and Software
	Experimental Results

	Conclusion and Future Works
	Bibliography

