
Lazy SETL Debugging
with Persistent Data Structures

by

Zhiqing Liu

A dissertation submitted in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

Computer Science Department

New York University

November, 1994

Approved:

Professor Jacob T. Schwartz

 Zhiqing Liu

All Rights Reserved 1994

To my parents

 and

v

Acknowledgments

This is a good opportunity for me to thank the people who have contributed to the thesis.

It is difficult to imagine that I could complete my research work without the

contributions of these people.

I am greatly indebted to my research advisor, Jack Schwartz. He has been my mentor

and motivator since I started to work with him three years ago. His interest, insight,

inspiration, enthusiasm and encouragement have long been part of the driving force of

my research work. He has made detailed comments of this thesis, from wording to its

overall structure.

I would like to thank David Bacon. He was very kind in explaining to me the details of

his SETL quadruples upon which my system is built, and answered many of my

questions about and beyond the language. Most importantly, due to his passion to

SETL, I have come to share his belief that SETL is a most wonderful programming

language.

I would like to thank many people who have commented or criticized my research and

thesis. Ed Schonberg, who has encouraged and supported me during my stay at NYU,

carefully examined my work and provided invaluable input. Bob Paige, another reader,

suggested many improvements in a short period. Ken Perlin discussed with me many

interface issues and served on my committees in various occasions. I would also like to

thank Robert Dewar, Malcolm Harrison, Alan Siegel, Ben Goldberg, Jiawei Hong, and

Xiaonan Tan for their comments about my work.

Finally, I would like to thank the support from my family over the difficult period of the

last five years. This thesis is dedicated to them.

vi

Table of Contents

Acknowledgments v

Table of Contents vi

List of Figures vii

List of Tables x

CHAPTER 1 Introduction 1
1.1 The Problem 1

1.2 Summary of Research 3

1.3 Overview of Dissertation 5

CHAPTER 2 Debugging Issues 6
2.1 General Debugging Issues 6

2.2 Related Research 8

2.3 Lazy Debugging 19

CHAPTER 3 A LSD Debugging Example 22
3.1 Using the Debugger 22

3.2 The Main Window 23

3.3 Loading a Debugging Target 24

3.4 Program Execution 25

3.5 The Input and Output Streams 26

3.6 The History Window 26

3.7 The Stack Window 28

3.8 Printing Variable Values 30

3.9 Program Animation 32

3.10 Simulation of Conventional Debugging Facilities 35

3.11 Debugging Example, Continued 36

3.12 Condensed Execution Histories 37

vii

CHAPTER 4 Persistent Runtime System 40
4.1 General Ideas of Persistent Runtime Systems 40

4.2 System Design 44

4.3 Implementation 50

CHAPTER 5 More on User Interface Design 57
5.1 Overall Design Principles 57

5.2 Execution Information Structures 58

5.3 Execution Trace Display 59

5.4 Interactive Display 60

CHAPTER 6 Internal Structure of the System 63
6.1 Design Considerations 63

6.2 Communication Protocol 64

6.3 Implementation Issues 67

CHAPTER 7 Performance 71
7.1 Performance Analysis 71

7.2 Usability Evaluation 79

7.3 Summary 81

CHAPTER 8 Open Issues 82
8.1 Current Limitations and Possible Solutions 82

8.2 Summary and Comments on Open Research Issues 87

Appendix A References 90

Appendix B Test Programs 97

viii

List of Figures

FIGURE 2-1: A detailed debugging model 7

FIGURE 2-2: A debugging model for use of print statements 10

FIGURE 2-3: A debugging model for breakpoint debugging 11

FIGURE 2-4: Lazy debugging separates debugging from program execution 19

FIGURE 3-1: The main window 23

FIGURE 3-2: Load file 24

FIGURE 3-3: Run program 25

FIGURE 3-4: The input and output streams, showing a normal program
termination 27

FIGURE 3-5: The history window, showing an execution history 28

FIGURE 3-6: Zoom effect in the history window 29

FIGURE 3-7: The stack windows, showing program variables 30

FIGURE 3-8: SETL values are treated as trees in printing 31

FIGURE 3-9: Interactive displaying 32

FIGURE 3-10: Examples of variable printing 33

FIGURE 3-11: Animation snapshot 34

FIGURE 3-12: Animation of the SETL expression data*3 35

FIGURE 3-13: Locating a bug 37

FIGURE 3-14: A portion of a coarse execution history 38

FIGURE 3-15: Refining a coarse history 39

FIGURE 4-1: Structures of the SETL persistent runtime system 48

FIGURE 4-2: Breaking a large data object into several pieces 49

FIGURE 4-3: Data representation of stack nodes and their major methods 51

FIGURE 4-4: Data representation of frame nodes and their major methods 52

FIGURE 4-5: Data representation of heap nodes and their major methods 53

FIGURE 4-6: Data representation of variable nodes and their major methods 54

FIGURE 4-7: Structures of the memory management component 55

FIGURE 5-1: Organization of execution history 58

FIGURE 5-2: Efficient execution trace display algorithm 59

FIGURE 5-3: Data representations of variable values 61

FIGURE 6-1: Debugging routines layer as a stub in persistent runtime system 64

FIGURE 6-2: Command protocol 65

FIGURE 6-3: Response protocol 66

FIGURE 6-4: Communication protocol implemented using three pairs of pipes 68

ix

FIGURE 7-1: Time performance for test programs 76

FIGURE 7-2: Memory performance for test programs 78

FIGURE 7-3: Scalability in time and space 79

x

List of Tables

TABLE 7-1: Total execution time of test programs (in milliseconds) 72

TABLE 7-2: GC time of test programs (in milliseconds) 73

TABLE 7-3: Actual execution time of test programs (in milliseconds) 74

TABLE 7-4: Number of CONS operations performed of test programs 75

TABLE 7-5: Virtual memory size for test programs (in kilobytes) 77

TABLE 7-6: Time and memory consumed using different recording granularities 77

TABLE 8-1: Comparisons among four methods of making data objects persistent 84

1

CHAPTER 1 Introduction

This thesis describes a technique of lazy debugging using persistent data structures.

Lazy debugging is a new and powerful approach to debugging programs written in high

level programming languages. We begin by reviewing previous and current research

work related to our subject, go on to describe ideas leading to the development of our

incremental debugging model and lazy debugging approach, and discuss a lazy debugger

prototype designed and implemented for the SETL programming language. This chapter

notes some major problems with current program debugging tools, summarizes the work

reported in the remainder of the thesis, and gives an overview of its organization.

1.1 The Problem

Debugging, as defined in the current ANSI/IEEE standard glossary of software

engineering[33], is the process that serves “to detect, locate, and correct faults in a

computer program”. A fault, generally referred to as a bug, is a condition causing the

computer program to fail to perform its required function. Among the three main

purposes that debugging may address, systematic detection of the presence of bugs

forms a self-contained research area called program testing, and is not at issue in our

research. We focus our effort on the way that program bugs are located once known to

Introduction The Problem

2

be present instead, because locating bugs in a program is generally more difficult than

correcting them, and because bugs are often easily corrected once they are precisely

located[53].

We refer to the computer program to be debugged as the debugging target. Program

debugging tools, generally referred to as debuggers, are software systems that help

people locate program bugs by making it easier to investigate the execution history of a

debugging target. The execution history of a program, also known as the runtime

history, refers to the sequence of operations that occur during the program’s execution,

as defined by the programming language in which the program is written. To debug a

program is in part to explore its execution history, proceeding on an ad hoc basis that

evolves during the course of debugging itself. The problem on which we will focus is how

to cope with the limited accessibility of this history in debugging as ordinarily

conducted.

Despite the high cost of program debugging and its known difficulty, debuggers are

much less used in software development than might be expected[60]. Several factors

contribute to their limited use. Debuggers are complex systems that are difficult to

design and implement well. Their success is heavily dependent on their interaction with

many underlying system components, e.g., compilers, operating systems and user

interfaces. Debugging has traditionally used crude tools such as core dumps and

breakpoints, which are highly driven by efficiency considerations. Current debuggers are

often difficult to use, and people often have to adjust their debugging style in

uncomfortable ways to use them, as in the old Chinese saying: “Cutting off the feet to fit

the shoes”.

Before summarizing our research, we should point out that quality software depends

more on formal design methods than on frequently uses of debugging tools. Debuggers

are complement rather than substitute to formal design. We believe that programmers

should not resort to debuggers whenever a bug occurs, and that use of debuggers is not

an excuse for hacking.

Introduction Summary of Research

3

1.2 Summary of Research

Our research aims to provide an improved debugging tool via a new debugging model

that supports powerful and high-level forms of program debugging. We aim to create a

program debugger that is:

1. Powerful in functionality, in that it

• Provides a static view of the whole of program execution history,

• Allows easy, quick and systematic examination of large masses execution

information, and

2. Easy to use, in that it

• Helps users locate bugs without requiring multiple debugging runs,

• Provides a simple, consistent, and efficient graphical user interface,

• Promotes a new debugging strategy independent of conventional debugging

command languages.

To this end, we introduce an incremental debugging model based on a lazy debugging

approach. This provides an alternative to current models and approaches, which are

most commonly based on the breakpoint technique.

Our incremental debugging model recognizes that it is very unlikely that people can

locate program bugs without doing a lot of data examination. Thus we view debugging as

an iterative and incremental process, and accordingly aim to support easy and quick

exploration of large amounts of execution history, and ease the detection of relations

among data views.

Our lazy debugging approach reflects this incremental view of debugging. It gives

debugger users access to a program’s full execution history and a powerful set of data

browsing and investigation tools. We achieve this by postponing investigation of the

internal behavior of a debugging target until its execution is complete and the debugger

has recorded its complete execution history. Execution history is then viewed through

an easy-to-use graphical user interface. One of the major innovations of this approach is

Introduction Summary of Research

4

use of a runtime system implemented by means of persistent data structures, which can

record execution history efficiently. Because of recent advances in the methods available

for making data structures persistent, the accrued amortized time and space costs for

the required information recording are low enough that they are tolerable for debugging

of substantial systems.

The post-mortem debugging style and the availability of a program’s complete execution

history make it possible to build a powerful user interface supporting our incremental

debugging model. This helps users locate program bugs naturally and efficiently. A

primary design concern in building such a user interface is to make the execution

history accessible to users at multiple levels of detail. We have developed several

graphical techniques to this end. These include multiple views of execution information,

data browsing and traversal using direct manipulation, automatic update, animation of

text and graphics, and others. This makes our user interface transparent and also

supports new debugging functions, such as forward and backward control breakpoints,

and forward and backward data breakpoints. Conventional techniques such as single

stepping, memory dumps, and tracing are also easy to support.

To demonstrate our approach, we have implemented a visual debugger prototype for the

SETL programming language. This includes a SETL runtime system that can record the

complete execution history of a debugging target, an innovative graphical user interface

that allows users to browse and examine the recorded information easily and quickly,

and a set of debugging routines.

Overall, the primary contributions of our research are:

1. Definition of an incremental debugging model and lazy debugging approach, which

together define a powerful paradigm for building highly usable debugging tools.

2. Construction of a SETL debugger prototype, which demonstrates that the lazy

debugging approach can be implemented efficiently using persistent data structures.

Introduction Overview of Dissertation

5

3. Our SETL debugger prototype also demonstrates the value of a powerful graphical

user interface for debugging, and shows how much the incremental debugging style

can improve debugger usability.

1.3 Overview of Dissertation

This chapter briefly notes some major problems of current debuggers and outlines the

debugging approach we propose.

Chapter 2 discusses general debugging issues, reviews research directly relevant to our

work, and describes our new debugging approach.

Chapter 3 contains a detailed debugging example which illustrates key features of the

SETL debugger that we have implemented.

Chapter 4 details the design and implementation of a major component of our SETL

debugger. It describes the specially designed runtime system used to store multiple

runtime states of SETL program executions efficiently. Chapter 5 describes the design

and implementation of our debug interface in more detail. Chapter 6 explains the

internal structure of the system.

Chapter 7 summarizes the results of our research, which include a performance

analysis of the runtime system implemented and a discussion of usability issues of our

debugger’s interface. Chapter 8 reviews our research in the light of these results. It

addresses some of the limitations in our current design and implementation, considers

possible improvements, and sums up our research.

6

CHAPTER 2 Debugging Issues

This chapter begins with a general discussion of program debugging issues, goes on to

review related work directly influencing our research, and finally describes our

debugging model and approach.

2.1 General Debugging Issues

Program debugging has been studied since the introduction of electronic computers and

programming. People have since developed various models to abstract the debugging

process. These debugging models embody views of the way in which program bugs are

located, and hence implicitly influence debugging tools design. Debugging models also

affect the way in which debugging tools come to be supported by underlying systems and

the way they are used. All this directly affects debugger usability.

Figure 2-1 details a typical current debugging model[8]. Starting with the error report

and initial data gathering stages, this model views program debugging as a process

consisting of two loops. The inner loop has three stages: a hypothesis formation stage

generates hypotheses concerning error locations from the data gathered up to a given

point; a data gathering stage collects the data necessary to verify the hypotheses formed;

and the data gathered are examined in the following data examination stage. After

Debugging Issues General Debugging Issues

7

verifying or refuting a hypothesis concerning the source of a problem, one can continue

with new hypotheses verification, or attempt to fix the bugs that have been located,

possibly leading to further examinations of the target program.

We can make several remarks on this model. First, it reflects the idea that debugging is

an iterative process. It is very hard to locate a bug from an initial error report directly.

One must repetitively form hypotheses concerning what have gone wrong and gather

additional execution information to verify or refute these hypotheses. Initial

investigations often fail to pinpoint bugs; instead they serve to clarify underlying

problems, so that following investigations can achieve better focus, reflecting from the

FIGURE 2-1: A detailed debugging model

Data examination

Data gathering

Hypothesis formation

Initial data gathering

End

Error report

Repair attempt

Re-examination

Debugging Issues Related Research

8

better understanding accumulated. In this sense, debugging is also an incremental

process.

The better understanding accumulated as the debugging proceeds gradually reveals the

importance of implicit relations and/or constraints among data items and structures

used in the debugging target. It progressively reduces the space in which bugs must be

sought until it is small enough for one or more bugs to be easily pinpointed.

An important consequence of the above remarks is that debugging is a manual process,

likely to defeat all attempts to design the automatic debugging tools that have been

studied so far[69][19][27]. A primary concern in designing highly usable debugging tools

is to improve the limited accessibility to execution history, which is the most significant

drawback of existing systems. In other words, debuggers must aim to provide the most

effective possible support for the three middle, most frequently traversed debugging

stages of debugging, as depicted in the preceding model.

2.2 Related Research

This section reviews research in four areas related to our work, in the light of the

debugging issues discussed above. These areas include design of program debugging,

program monitoring, debugging user interfaces, and design of persistent data

structures.

2.2.1 Program Debugging
It is well known that current program debugging tools are hard to use well. In the

following sections we discuss ways in which the key stages of the debugging process are

customarily handled.

2.2.1.1 Print Statements
Inserting print statements is the most primitive way of debugging a program.

Nevertheless, this very primitive technique is hard enough to improve upon, and

remains in very wide use. For example, Wisenstadt reports that print statements and

Debugging Issues Related Research

9

hand-simulation are primary debugging techniques used in 80% of the debugging

attempts he gathered[24].

Nevertheless, this elementary technique does not serve debugging very well. Its first and

most serious shortcoming lies the high cost it incurs to examine program data, and the

relatively fragmentary data it generates[66]. For each error hypothesis formed

concerning a debugging target, users have to augment the target program with

appropriate print statements and execute this augmented program. It is generally very

hard to predict the locations in which print statements should be inserted until users

have achieved a fairly good understanding of the internal behavior of their debugging

target. This may only be achieved after many unsuccessful debugging executions with

different debugging printouts. Another shortcoming is that users need to modify their

debugging target to insert debugging print statements and delete or comment them out

after debugging, a process that is annoying and may also affect the behavior of the

recompiled code. Finally, print statements do not easily support correlation of debugging

output results to program source lines. Therefore debugging using print statements

generally requires multiple predict-modify-run-print-examine cycles to locate a bug,

creating server inefficiencies that are well known[66].

Put into the perspective of the debugging model discussed above, debugging using print

statements does not support the data gathering stage well. It adds two additional stages

to the inner loop of the debugging process, as shown in Figure 2-2.

2.2.1.2 Breakpoint Debuggers
More sophisticated current debuggers, such as dbx[42] and gdb[75], are often breakpoint

debuggers. These debuggers allow users to halt execution of their debugging target at

specific execution points and examine the data objects as they stand at those points.

Such an execution point is generally referred to as a breakpoint. Breakpointing can be

triggered either by execution of a source line or procedure invocation (control breakpoint),

or by modification of specific program variables (data breakpoints). When they correlate

breakpoints to source lines and/or variables, breakpoint debuggers are called source-

level debuggers.

Debugging Issues Related Research

10

Although they only give intermittent views of a program execution, breakpoint debuggers

allow dynamic exploration of execution information. In contrast to simple use of inserted

print statements, breakpoint debuggers avoid examination of data objects until an

execution reaches a breakpoint. Once at a breakpoint, users can issue as many output

commands as desired. This gives users a more flexible way of exploring an hypothesis

than simple print statements do. Moreover, the source code of the debugging target

remains unchanged when using breakpoint debuggers.

Unfortunately, breakpoint debuggers only respond when an execution stops at a

breakpoint. This leaves their users with the task of predicting which execution points are

worth examining. Wrong predictions result in breakpoints at which nothing useful is

revealed. Even worse, if users miss the right execution cycle for examining program data,

they may have to re-execute the debugging target after setting different, possibly earlier,

breakpoints; or possibly the right cycle is still to come, in which case they must either

step through the execution tediously till reaching the right point, or make another

chancy prediction.

FIGURE 2-2: A debugging model for use of print statements

Data gathering

Hypothesis formation

Program augmentation

Bug location prediction

Data examination

Debugging Issues Related Research

11

For these reasons, debugging with breakpoint debuggers is of limited effectiveness and

generally requires multiple debugging sessions to locate a bug. That is, multiple predict-

run-print-examine cycles are required, as shown in Figure 2-3. However, the technique of

postponing data examination until program execution reaches a breakpoint does make

breakpoint debuggers considerably more flexible and useful than simple use of print

statements.

2.2.1.3 Reversible Execution and Dynamic Slicing
Both breakpoint debuggers and print statements require multiple executions of a

debugging target to locate a bug, and neither of them supports flexible data examination

at arbitrary execution cycles. These problems have been recognized in prior

research[5][71] and can be characterized as low functionality and high complexity.

Various possible improvements have been described[5][80], e.g., reversible execution and

dynamic slicing. Both these methods allow execution information to be collected only

after it is known to be useful to current hypothesis verification at a given breakpoint.

These approaches have direct influenced described in this thesis.

In order to collect prior execution information, reversible execution checkpoints a

program execution by recording its execution state periodically. It can therefore roll back

FIGURE 2-3: A debugging model for breakpoint debugging

Data examination

Hypotheses formation

Data gathering

Breakpoint selection

Debugging Issues Related Research

12

and re-execute a program from an earlier checkpoint to generate necessary information

when required. Checkpoint selections and recording of associated data can be done

automatically by instrumenting a source program with special event recording routines

at crucial execution points, e.g., the beginning of functions or the head of conditional

branches. Design of systems of this sort must aim at reducing the re-execution cost by

providing enough checkpoints to make the execution interval of any two consecutive

checkpoints small enough that any necessary re-execution is small and quick. Although

powerful, this approach has often been avoided because numerous execution state

checkpoints can consume huge amounts of memory space and significantly degrade

system performance[11]. One of the few successful exceptions to this assessment is a

debugger developed for the ML programming language[80]. As a functional language,

ML[47] has only a few non-functional effects (mutable store and I/O operations). The

functional part of ML execution can therefore be captured completely in a

continuation[26], a feature supported directly by the language and by the SML-NJ

compiler[7]. Continuation recording is much more efficient than raw memory dumping.

However, continuation recording has limited applicability, in the sense that only sparse

use is possible. Another problem with this method is that it is restricted to functional

programming languages and not applicable to imperative programming languages such

as Ada, Pascal, C, or SETL.

Debugging using dynamic slicing[4][5][44] employs a different approach to support

examination of prior execution information. Instead of checkpointing every important

execution point, this method performs a separate step of program dependency analysis,

and checkpoints only those points which are directly or indirectly relevant to a given set

of breakpoints with respect to a specific execution input. A point is relevant if and only if

its execution affects the runtime state of the breakpoints given. These points constitute

what is called dynamic slice[37], which is “a subset of the statements and control

predicates of the program which directly or indirectly affect the values computed at a

given [breakpoint] criterion”[79]. Dynamic slicing checkpoints only a portion of execution

but still provides complete history for verifying a specific hypothesis during debugging.

Unfortunately, the presence of function calls, pointer and procedure aliasing, and even

Debugging Issues Related Research

13

loops in a debugging target forces dynamic slicing to take numerous checkpoints and

degrades performance significantly.

Each of these two approaches instruments a debugging target with checkpoints that

record snapshots of its execution state so that users can go back to examine prior

information at lower cost than full re-execution would require, even though a small

amount of re-execution may be necessary. Still the high overhead of repeated

checkpointing severely limits the use of these approaches in practice.

2.2.2 Program Monitoring

Program monitoring[62] usually employs software or hardware packages that view

program execution as a sequence of events, which are accumulated as an execution

event history. This event history can be analyzed subsequently to a run. Program

debuggers based on program monitoring techniques are known as event-based

debuggers. This style of event-based debugging formerly lay somewhat outside the

mainstream of debugging research, but it is getting more popular, especially in

concurrent program debugging[46].

Execution event history can be used in various ways:

1. Browsing. Users can browse an execution event history through a text editor or other

graphical utility. McDowell and Helmbold summarize four basic techniques that are

commonly used to display event history information:

• Textual and graphical presentation of a snapshot of data objects at an execution

moment, which may involve color, highlighting, etc.

• Time-based diagrams presenting a program history in a two-dimensional display in

which time is one axis and some aspect of execution events (e.g., the execution

stack level) is shown on the other axis[28][31].

• Animation by displaying snapshots one after another, to show the dynamic

properties of program data objects[16][48].

Debugging Issues Related Research

14

• Multiple and simultaneous views of program execution information using multiple

windows[34].

2. Replay and Simulation. A program execution can be replayed, and at least in some

simulated approximation, using the events recorded[40][56].

3. Filtering. Parts of an execution event history can be selected by applying appropriate

filtering predicates, allowing users to find useful information more easily in a reduced

event space[74][41].

However, event-based software systems have severe limitations. The most important

drawbacks are performance related, including excessive memory space consumption

and significant execution speed degradation. These limitations result from the efficiency

sacrificed by prior technical methods of recording and storing event history. These

methods ranges from combining breakpoint techniques with automatic printing and

resumption[11][46], copying main memory repeatedly[82], linking to special monitoring

routines that are a modified version of system routines[28], and inserting additional

monitoring statements in source programs or object code[45]. These methods record

execution state explicitly and result in substantial overhead. Performance degradation is

increased by the primitiveness of the forms in which event history has been stored,

varying from plain text files[11] to relational databases[74] to Prolog programs[41][78].

Partial recording schemes, which record only selected events, are therefore almost

always adopted to make event-based debuggers practical. But this causes problems

similar to those of breakpoint debuggers. Instead of predicting the data or statements at

which to break, users of these event-based systems must predict which events to record.

Since the partial histories collected are often incomplete in crucial regards, additional

executions of a debugging target then become unavoidable.

2.2.3 User Interfaces for Debugging

The facts that debugging is a challenging human task and that computer software must

basically play a supportive role make human-debugger interaction considerations

Debugging Issues Related Research

15

crucial in debugging. Thus, the user interface that a debugger provides has a great effect

its usability.

2.2.3.1 Interaction Style
The term of interaction style refers to the way that people are encouraged use a debugger.

Despite the obvious significance of this question, debugger interaction style issues have

been largely neglected in program debugging research. In consequence, most current

debuggers (e.g. dbx and gdb) provide an interface that still employs simple text windows

into which debugging commands must be typed. Thus turns the interaction between

debuggers and users into a kind of dialogue, in which users type in commands and

debuggers execute them and display some output in reply. This kind of dialogue tends to

be too specific and too low-level to be ideal, simply because debugging actions are often

too subtle to be readily stated formally. Furthermore, use of a text-oriented command

language introduces an unnecessary indirection in naming program data, which slows

the debugging process.

Most available improvements merely provide favorable command structures and

improved command names or abbreviations. Even if up-to-date graphical displays are

used to relieve users of typing work, the situation improves only marginally. This is

because most current debugging user interfaces are designed on the top of command

language based debuggers that already exist and few of them are built from

scratch[3][34].

One of the interesting existing works on debugger interaction style issues discusses

UPS[13]. Although a conventional breakpoint debugger, UPS provides a graphical user

interface that supports a number of unusual features. In particular, it manages its

display by making use of a hierarchical structure to hide information within higher-level

objects. It also supports an editable workplace for inserting of breakpoints and display of

variable values. Another example is the visual debugger of Smalltalk/V[64], which also

supports hierarchical view of runtime information based on current window-based user

interface techniques.

Debugging Issues Related Research

16

2.2.3.2 Program Visualization and Animation
Recent advances in computer graphics and visualization/animation techniques are also

relevant to the design of debugging interfaces. As observed by Schwartz, textual printout

in debugging is often not quite desirable: “the abstract objects basic to the program’s

logical performance may not be represented in any very explicit manner in the data

printed, making it necessary to reckon back, often very tediously by hand, from this data

to the more abstract structures on which the mind’s eye needs to focus”[68]. Proper

visual presentation of information often improves access and comprehension because it

can be simple, succinct and easy to interpret. Commonly used techniques include use of

color, special computer graphics, animation, and facilitates direct user

manipulation[73].

Many different approaches have been described. For example, program data objects can

be mapped into some graphical primitives such as points or shapes. BALSA[16] allows

arrays of data items to be easily mapped into various graphic forms. PROVIDE[48] allows

sets of data to be mapped into boxes, bar-charts or pie-charts. KAESTLE[14][15]

displays LISP data structures in a window system which supports representation

changes and graphical layout rearrangement. VIPS[34][70] displays linked data

structures in programs written in Ada or C in a manner supporting both overview and

selective displays. It also associates these displays with a debugger.

Program visualization techniques for displaying program execution traces have often

been described. (This is particularly useful in understanding the execution of concurrent

programs[46].) An execution trace display is usually displayed in a two-dimensional

diagram, in which one axis represents time and the other axis represents program

entities varying over time (e.g., processes or messages). Two examples are mtdbx[28],

which displays events over time and IDD[31], which displays the messages passed

between processes.

Program animations are produced by displaying execution snapshots (e.g., visual

representations of program data objects or data structures) one after another in time

order. Program animations can be viewed during program execution or afterward. In

Debugging Issues Related Research

17

either case, the advantage of program animation is to highlight potentially revealing

aspects of the dynamic change of program objects. But because of the lack of efficient

methods for recording program execution, use of program animation for debugging has

till now been limited.

2.2.3.3 Hypertext
Research on hypertext has influenced the way in which the debugger presented in this

thesis provides access to a potentially large mass of execution historical information.

The term “hypertext” refers to the non-sequential organization of information fragments

that are connected through non-sequential links[18][57]. Unlike conventional,

sequential forms of information such as books or reports, hypertext serves well for

information presentation on computers, and is strong in organizing large amounts of

information if (see [72]):

1. One deals with a large body of information organized into numerous fragments.

2. The fragments relate to each other.

3. Only a small fraction needs to be examined at any time.

A well-designed hypertext enables users to move freely through the information space,

while bringing any information to screen as soon as users request it. Quick response

and small navigation overhead keep users’ cognitive load low and allow them to

concentrate on their higher-level task. Although not fully implemented, Nelson’s Xanadu

project[55] provides a good example of this approach.

2.2.4 Persistent Data Structures

Work on persistent data structures (see Driscoll, Sarnak, Sleator, and Tarjan[23]) is the

last, but perhaps the most critical, research area influencing the design of our debugger.

The efficient method of making data structures persistent which is described below plays

a crucial role in our effort to build practical and high-level event-based debuggers.

Debugging Issues Related Research

18

Unlike ordinary data structures, which are ephemeral in the sense that only the newest

version of the structures are available for use and the old versions are destroyed by any

change to the structures, persistent data structures allow access to multiple versions of

changing data structures. Partially persistent data structures support access operations

on all data versions while allowing update operations on the newest version. Totally

persistent data structures support both access to and update on all versions of historical

data. The following discussion focuses on partially persistent data structures. Hereafter,

since these are all we need, they are simply referred to as persistent data structures.

There are three basic methods of making data structures persistent. The most naive one

is checkpointing, which copies all the data each time any data item is changed. The

evident disadvantage of this method is that it requires a lot of memory and is also

expensive to perform. Denoting the number of nodes in an ephemeral data structure by

m and the number of update operations performed on the structure by u, checkpointing

requires time and space for each update are required. Nevertheless, it is used in

many systems (e.g. in [80]) despite its expense.

Instead of storing the whole of a large linked structure when one data item changes, the

improved fat node method only stores the change[23]. The new value is stored with

previous values, which results in development of fat nodes holding an arbitrary number

of pointer values. This approach takes O(1) to record an update and O(log u) for an

access operation. (Wilson and Moher proposed this kind of an approach to make

persistent memory (or demonic memory in their terms), which is in effect the fat node

method as applied to memory pages[82].)

The technique of Driscoll et al[23] reduces this prohibitive cost drastically. The further

improved node splitting method described in [23] splits fat nodes for efficient access. It

accrues an amortized cost no greater than O(1) both in time and in space for each

update and access operation, as long as each node in the original ephemeral data

structures has a fixed finite number of predecessors. This restriction results from the

consideration that an update in a persistent node may cause cascading update in its

predecessors, and only with constant-bounded number of predecessors can this method

Ω m()

Debugging Issues Lazy Debugging

19

achieve the stated efficiency, as we will see in more detail in Chapter 4. It is this

improved method on which the design of our debugger is based.

2.3 Lazy Debugging

Our debugging approach is a natural extension of the debugging approach based on

program monitoring. It differs from current event-based techniques mostly in terms of

the way execution events are recorded and stored. Our approach uses efficient

persistent data structures to record execution events and keep them in memory. We call

this lazy debugging, because its main idea is to postpone investigation of debugging

hypotheses until complete execution information of a debugging target is available to a

debugger. Given complete execution histories, users can then debug a program without

requiring multiple executions.

We call a debugger built upon this approach a lazy debugger. Such systems first record

the complete execution history of a debugging target, and then allow users to examine

the recorded information in a post-mortem fashion. These two steps can be viewed as

execution videotaping and execution review, respectively. During execution videotaping,

execution is divided into timeslices of runtime state and recorded accordingly. Each

runtime state recorded is therefore associated with a timestamp. These runtime states

together form a persistent core dump.

One of the benefits of our lazy debugging approach is that it separates debugging actions

from program execution, as shown in Figure 2-4. As we have seen from Figure 2-1, a

central debugging cycle consists of three stages: hypothesis formation, data gathering,

and hypothesis verification. In lazy debugging systems, these steps can be performed

FIGURE 2-4: Lazy debugging separates debugging from program execution

Execution Debugging

Debugging Issues Lazy Debugging

20

wholly in the debugging stage, simply because of the availability of complete execution

histories.

Our debugging approach also encourages a systematic approach to debugging.

Generally, as long as a debugging target is well designed (i.e., conforming to structured

or object-oriented design principles), it can be partitioned reasonably into several data or

functional components connected by shared data objects. Program execution can thus

be viewed as a sequence of component executions. Originally, the bug search space is

this whole sequence. Examination of any of the data objects through which these

components communicated is crucial. By examining such a data object, we can divide

the bug search space in half, depending on whether an error is seen in the data object or

not. The second half can be discarded if an error occurs in the object, or the first half

otherwise. We can then iteratively partition the reduced space, and eventually locate

program bugs by repeated narrowing of focus and data examination.

Even though the lazy debugging approach has great potential for building debugging

tools, the debugging process does not necessarily become easier for its end-users unless

complete execution histories can easily be examined by them. Just like the printout from

a conventional use of debugging print statements, the execution history accumulated by

a lazy debugger will generally be voluminous. In this regard, our lazy debugging

approach is subject to the objection that the information it accumulates can be larger by

orders of magnitude than that produced by the conventional “print-statement”

approach.

To deal with this issue, we have developed ways of making historical execution

information easy to use, under what we call the incremental debugging model. This

model organizes execution historical information using structures, which allows users to

explore the information organized incrementally, and supports step by step data

examination from general information (e.g., execution traces) to more specific

information (e.g., variable values at given execution moments). The data examination

tools we provide have several aspects:

Debugging Issues Lazy Debugging

21

1. They ease specification of the data object to be examined,

2. They make it easy to specify the execution moment at which this data object is to be

examined,

3. They respond promptly to arbitrary data examination requests by users, and

4. They help users detect data constraint violations.

This reduces user data examination expense, allowing them to concentrate more on

high-level debugging issues.

22

CHAPTER 3 A LSD Debugging
Example

We have designed and implemented a system called LSD (Lazy SETL Debugger), which is

a debugger prototype for the SETL programming language[67], to demonstrate our

approach. This chapter presents a debugging example to show various features of this

system. Although we give a fairly detailed description of the way our debugger works, a

much easier and better way of understanding the system is through a live

demonstration. We ask the readers of this chapter who are unable to examine the

software to imagine the dynamic graphics employed from the snapshots given.

3.1 Using the Debugger

To work with our debugger, users must employ a sequence of debugging actions, which

differ significantly from the actions employed in using conventional debugging

approaches. LSD debugging normally employs three explicit steps:

1. Load a debugging target,

2. Execute the debugging target in its special runtime system, and

3. Locate bugs by exploring the recorded execution history using LSD’s graphical user

interface.

A LSD Debugging Example The Main Window

23

3.2 The Main Window

Figure 3-1 shows the main window of our debugger after it is first started. On the left is

the source code window, which will show the source code after a SETL debugging target

is loaded. On the right is the history window, which will show the execution trace of the

debugging target after its execution is complete. Users can adjust the two windows by

manipulating associated scrollbars. At the top of the main window there appears a list of

menus that controls the primary actions of our debugger, including program load,

execution, and execution history update.

FIGURE 3-1: The main window

A LSD Debugging Example Loading a Debugging Target

24

3.3 Loading a Debugging Target

Once the main window appears, users can load a debugging target by popping up a load-

file window and selecting the Load menu button in its File menu, as shown in Figure 3-2.

The load-file window has two parts: at the top is a scrolling list showing the directories

and SETL files that are available in the current working directory; at the bottom are two

text fields specifying the current working directory and the SETL file selected, and two

buttons for loading the selected file (the Load button) or canceling the load file action (the

Cancel button). In this example, we load file heap_sort.setl, a buggy heap-sort program

that should, but does not successfully, sort a tuple of integers into non-descending

order. The source code is seen in the source code window, once loaded (see Figure 3-3).

For brevity, we have omitted program comments.

FIGURE 3-2: Load file

A LSD Debugging Example Program Execution

25

3.4 Program Execution

To debug a program, users of LSD must run the program first, and then come back to

examine the source code and its execution history in a post-mortem debugging style.

Our debugger has three options controlling the granularity of execution history

recording. They are chosen by popping up a preferences window from the Preferences

menu button of the Control menu, as shown in Figure 3-3. In this example, we select the

default single line granularity.

Figure 3-3 also shows the other four menu buttons of the Control menu, which allow

users to control execution by stepping through the following four run modes:

1. Before run. This is the initial execution mode after a debugging target is loaded. Users

can start executing the program by clicking a Run or a Step menu button. Clicking

FIGURE 3-3: Run program

A LSD Debugging Example The Input and Output Streams

26

Run starts execution and enters the running mode (see below), while clicking Step

starts an execution and stops it after its first execution step is complete. The size of

execution step varies depending on the selected recording granularity.

2. Running. This is the normal execution mode during which a debugging target runs in

the persistent runtime system until it stops or after a Stop menu button is pressed. If

execution finishes normally or on encountering a runtime error, it enters the after run

mode. Otherwise, a Stop button has been pressed and the execution enters the run

stopped mode. When an execution stops, its execution trace up to the last execution

moment is shown in the history window.

3. Run stopped. An execution stopped by Stop enters this mode. A stopped execution can

always be resumed using a Continue or a Step buttons, which are self explanatory. The

run stopped mode is the same as the after run mode in other aspects.

4. After run. A completed execution reaches this mode. Its execution trace is displayed in

the history window. This mode is the normal starting point for debugging.

3.5 The Input and Output Streams

Once execution starts, our debugger pops up a separate window that simulates the

program’s input and output streams (see Figure 3-4). This window reads user input,

displays output, and prints out any runtime error messages generated, or prints “OK” if

it terminates normally. Figure 3-4 shows a normal termination. Plainly, however, the

defective heapsort program chosen for the present illustration did not sort those

numbers correctly.

3.6 The History Window

Figure 3-5 shows the execution trace displayed in the history window after execution is

complete. The horizontal axis of the history window represents execution time, which is

divided into many slices (timeslices) by different execution events, while its vertical axis

represents program source lines. This window shows the complete trace information of

A LSD Debugging Example The History Window

27

program execution: a mark is placed at location (x, y) if the yth line of the program

source code is executed at the xth timeslice. For example, it is easy to see from Figure 3-

5 that procedure heapify and procedure swap were activated throughout the execution,

procedure buildheap was only touched at the beginning, and that a loop occurred in the

main procedure after buildheap was complete.

Because of screen space limitations, the execution trace shown in the history window

can not usually be complete and detailed at the same time. The history window is about

500 pixels wide while a program execution trace usually has more than 500 timeslices.

For example, the execution trace in the current example has 1106 timeslices, which

means that less than half of the execution timeslices can be shown in the history

window, even if the mark shown for each timeslice is only one pixel wide.

Users can adjust their view of the history window by dragging the three scrollbars

located below it. The second and third scrollbars are called the starting bar and ending

bar, respectively, and each is associated with a text field specifying the timeslice to which

it points. The timeslice specified by the starting bar is always no later in time than that

of the ending bar, so that the two bars together specify a portion of the full execution

trace that can be shown in the history window. Initially, the starting bar points to the

first timeslice and the ending bar to the last timeslice, so that the whole execution trace

is shown. Figure 3-6 shows that dragging the two bars closer effects a zoom along the

temporal dimension, i.e., shows a smaller portion of the history in a more detailed view.

FIGURE 3-4: The input and output streams, showing a normal program termination

A LSD Debugging Example The Stack Window

28

The first one of these three scrollbars is called the focus bar, since it specifies the

timeslice of current interest. This timeslice is called the current timeslice, and is always

displayed and highlighted in the history window. The source code window then

highlights the corresponding program source line. In Figure 3-6, for example, the focus

bar points to the source line buildheap (n); and the history window shows a small portion

of the execution trace (31 timeslices) close to the execution of this source line.

3.7 The Stack Window

To examine more detailed execution information available at the current timeslice, users

can pop up the stack window, by selecting the Popup Stack Window menu button from

the history window’s popup menu, or by double-clicking the timeslice. As shown in

part (a) of Figure 3-7, the stack window has two parts: at the top is a list of menus and

FIGURE 3-5: The history window, showing an execution history

A LSD Debugging Example The Stack Window

29

three text fields specifying the depth of the execution stack, the stack level shown, and

the procedure name of the stack frame being examined. The bottom of the stack window

is a display area showing a list of program variables that are accessible in the current

timeslice, including both the local variables on the current stack frame and the global

program variables. Using the Stack menu, users can walk through the execution stack,

examining arbitrary stack frames. Following the convention of compiler and debugger

design, the execution stack in LSD increments downward, and so does its stack pointer.

Initially our debugger selects the innermost stack frame pointed to by the stack pointer.

Users can select the enclosing frame selecting the Up menu button, the enclosed frame

selecting the Down button, the outermost frame selecting the Top menu button, and the

innermost frame selecting the Bottom menu button. Changing the stack frame displayed

automatically updates the list of accessible variables shown.

FIGURE 3-6: Zoom effect in the history window

A LSD Debugging Example Printing Variable Values

30

3.8 Printing Variable Values

To print the value of a variable listed in the stack window, users need to select its name

and a printing mode from the Print menu. Our debugger provides three printing modes:

Print prints the value of a variable; Display shows the same value as a tree-like structure

with proper indents and thus produces a attractive print; Zoom In can show the value

step-by-step from the beginning to the complete result obtained from Display. Unlike Print

or Display, which treat a SETL variable as a single object, Zoom In views the variable as a

value-tree, in which a simple value is a leaf node and a compound structure is an

internal node, as shown by an example in Figure 3-8. When the Zoom In printing mode is

applied to an internal node of a value, the sub-value tree rooted by the internal node is

FIGURE 3-7: The stack windows, showing program variables

(b)(a)

A LSD Debugging Example Printing Variable Values

31

elided using a zoom mark (…). For example, an elided non-empty set is displayed as

“{…}”, and an elided non-empty tuple is displayed as “[…]”. A further printing on an elided

value is applied to each of its sub-values. Therefore, Zoom In allows users to examine a

complex value interactively and incrementally, and is naturally called interactive

displaying. Finally, printing operations by Print, Display and Zoom In are always reversible

by Zoom Out. Part (b) of Figure 3-7 shows, in simple Print form, the values of our

debugging target’s variables at the execution moment when the procedure call buildheap

(n) has just returned.

Zoom In printing mode is a very useful way of printing complex SETL values. SETL allows

two kinds of data values: simple data values (integer, real, string, boolean and atom) and

compound data values (tuples and sets). SETL compound values are very flexible and

can have elements which are themselves (simple and compound) values. This can result

in very complex values that are hard to examine using conventional print facilities. Two

typical examples are compiler parse trees and symbol tables. Using the interactive

displaying, users do not have to print a complex value all at once. Instead they can start

data examination from top-level data and explore any further details of values if

necessary. Even though in our heap-sort example there is no very complex data object,

we can still get the flavor of interactive displaying by applying Zoom In to the tuple-valued

variable data. Figure 3-9 shows the results: Part (a) of Figure 3-9 shows the result when

FIGURE 3-8: SETL values are treated as trees in printing

{ }

[] [][]

{ } 2

a c

{ } 3

b c

{ } 1

a b

Value tree for SETL value {[{a b} 1] [{a c} 2] [{b c} 3]}

A LSD Debugging Example Program Animation

32

applying Zoom In to the variable data, indicating that it is a tuple; Part (b) of Figure 3-9

shows the result by applying Zoom In to the zoomed value in Part (a), giving a final result

as it reaches the deepest level of the value tree. A more complete illustration is shown in

Figure 3-10, using a SETL variable graph = {[{a b} 1] [{a c} 2] [{b c} 3]}, which is not

available from the current debugging target.

3.9 Program Animation

As we have seen so far that our interface has multiple windows. A crucial property of

these windows is that they are well coordinated in the interface. The key aspect of

window coordination is the commonality of execution time, as represented by the notion

of a current timeslice. When an update in the current timeslice occurs in one window,

FIGURE 3-9: Interactive displaying

(b)(a)

A LSD Debugging Example Program Animation

33

other related windows are updated simultaneously and automatically. Among other

things, this coordination naturally supports program animation.

To animate values of variables, for example, users can change the current timeslice (e.g.,

by dragging the focus bar) while showing these variables in the stack window. Printing

generates snapshots while the value changes with the current timeslice. Program

animations are also available from the source code window and history window.

Similarly, users can show the animation of source code execution in the source code

window, which highlights current source lines at each execution moment in the context

of the source program; while they can also show a similar animation in the history

window, which highlights current trace marks in the context of program execution trace

history.

FIGURE 3-10: Examples of variable printing

graph
 {[{a
 b}
 1]
 [{a
 c}
 2]
 [{b
 c}
 3]}

graph
 {...}

graph
 {[{a b} 1] [{a c} 2] [{b c} 3]}

Print Display Zoom In

graph
 {[{a
 b}
 1]
 [{a
 c}
 2]
 [{b
 c}
 3]}

graph
 {[...]
 [...]
 [...]}

graph
 {[{a b} 1]
 [{a c} 2]
 [{b c} 3]}

Zoom In + Print Zoom In +Display Zoom in + Zoom In

A LSD Debugging Example Program Animation

34

Other graphical forms are also available for some SETL values that can be mapped

directly into graphical primitives such as points or lines. In this debugging example, we

can map the tuple-valued variable data into a set of points, where a point is a tuple of

two integers (an integer item and its index in the tuple)[16]. Figure 3-11 shows a

snapshot of this graphical representation.

One can also animate any SETL expressions having appropriate graphical

representations. For example, users can animate the expression data*3 instead of the

simpler data, if there is any reason to do so (see Figure 3-12). This is achieved by an

internal animation routine that can evaluate SETL expressions during debugging. The

implementation of this will be discussed in more details in Chapter 6.

FIGURE 3-11: Animation snapshot

A LSD Debugging Example Simulation of Conventional Debugging Facilities

35

Users control program animations by changing the current time slice, from one of three

windows in the debugging interface: selecting source lines in the source code window,

selecting trace marks or manipulating the focus bar in the history window, or clicking

variable names in the stack window. and having some variables printed, users can also

animate the change of these variable values. They can also control animation speed and

direction. However, the animations concerning variables values are restricted by a same

scoping restriction, which requires that the animations are performed in a same scoping,

and therefore on same variables. This assures that program animations are coherent

and meaningful in the interface. The textual variable animation is also restricted such

that the animation can only use the top-level printing mode, because SETL is a dynamic

typed language and lower level printing modes may become obsolete due to an

assignment.

3.10 Simulation of Conventional Debugging Facilities

LSD can simulate many conventional debugging facilities and also support a number of

new ones which are usually not available or difficult to implement in conventional

debuggers. Users can click the forward button (i.e., the right arrow) of the focus bar to go

to the following timeslice, which is forward stepping. They can also click the back arrow

to go to the preceding one, giving backward stepping. Clicking the forward mouse button

(i.e., the right button) on a source line in the source code window goes to the next

timeslice in which this line is executed (forward control breakpoint); clicking the

backward button goes to the previous one (backward control breakpoint). Similarly,

clicking the forward mouse button on a variable name in the stack window goes to the

FIGURE 3-12: Animation of the SETL expression data*3

A LSD Debugging Example Debugging Example, Continued

36

next timeslice in which this variable has a different value (forward data breakpoint);

while clicking the backward button goes to the previous one (backward data breakpoint).

3.11 Debugging Example, Continued

We now go on to debug our example program. We know that it has a bug, since the

program did not sort correctly. We know that the bug is located at some program point in

which a correct execution state is immediately followed by an incorrect execution state.

Using the debugger, we systematically narrow down the search space until we have

pinpointed statements in which a bug can be easily recognized.

Recall that the heap-sort algorithm sorts a tuple of numbers by first building a heap on

them, then swapping the maximum element into its correct position at the end of the

tuple, restoring a smaller heap, and repeating these steps until all the numbers are

sorted. The first timeslice we want examine is naturally that in which the heap is first

built. Part (b) of Figure 3-7 shows the variable values at this moment: variable i was not

initialized and had the value <OM>; variable n was 20, which was the size of variable

data; data were indeed organized as a heap, which is easiest to see in the animation

window. Execution was correct up to this execution point. We therefore proceed to the

last part of the execution, which consists of a loop. We can either jump into the middle

iteration or step through them, as there are only 20 iterations, to locate the first iteration

at which the program “has run off the rails”. With the help of the stack window and

animation window shown in Figure 3-13, we find that the heap was not restored

correctly by the heapify (1, i) statement in the 10th iteration. Knowing this, we go back

and step through the procedure call heapify(1, i), with i = 10, and eventually find out that

data item 10 was unexpectedly swapped with item 1. After reexamining the parameters

passed to this procedure, we find that the heap size parameter was off by 1 and it should

have been heapify(1, i-1). After this correction, this program sorts correctly.

A LSD Debugging Example Condensed Execution Histories

37

3.12 Condensed Execution Histories

Although not illustrated by in this small example program, memory consumption can be

a serious problem when debugging a long-run program using LSD, due to the amounts

of execution history that are recorded.

Our debugger allows refinement of coarse execution histories to support debugging of

long-run programs, whose execution histories can not be recorded completely due to

memory restrictions. This allows users to record a coarse-grained history first and refine

any interesting part later.Figure 3-14 shows a part of the execution history produced by

a coarse-grained recording (runtime state was recorded in every 10 source lines). If users

FIGURE 3-13: Locating a bug

before the error occurs after the error occurs

A LSD Debugging Example Condensed Execution Histories

38

have located an interesting portion of the execution history (shown in the history

window) and need more detailed information, they can focus down to the execution

history selected by clicking the Collapse menu button from the History menu. This causes

LSD to discard the unselected history portion and expand the interesting part, by re-

executing it with a new, finer-grained recording granularity. Figure 3-15 shows the

result of such an refinement in which the single source line recording granularity is

used. Comparing to the 52 timeslices over this execution period (see Figure 3-14), we

now have 520 timeslices (see Figure 3-15), which provide much more detail.

FIGURE 3-14: A portion of a coarse execution history

A LSD Debugging Example Condensed Execution Histories

39

FIGURE 3-15: Refining a coarse history

40

CHAPTER 4 Persistent Runtime
System

This chapter describes the design and implementation of the persistent runtime system

for the SETL programming language, which provides the execution historical

information used by our debugger. We begin by describing general ideas of persistent

runtime systems, discussing the complexity issues and key assumptions. We then go on

to describe design considerations for the system implemented and to detail the

implementation techniques used, with an emphasis on the persistent data

representations.

4.1 General Ideas of Persistent Runtime Systems

As we have seen from the preceding chapter, use of a persistent runtime system is key to

the implementation of our Lazy SETL Debugger. A persistent runtime system supports

entirely normal execution of valid programs written in the programming language for

which the system is designed. However, unlike an ordinary runtime system (ephemeral

runtime system), which keeps only its most recent runtime state, and destroys old states

as execution proceeds, a persistent runtime system keeps multiple runtime states so

that execution history can be accessed rapidly even after execution is complete. The

runtime state record kept gives a complete account of program execution history.

Persistent Runtime System General Ideas of Persistent Runtime Systems

41

A program execution history recorded by a persistent runtime system includes each

piece of subsequently visible information generated during program execution. Note that

different programming languages will require somewhat different kinds of execution

histories, due to their different execution models. For example, the execution model of

imperative languages such as Ada, Pascal and SETL employs explicitly an execution

state, updated by successive assignment statements. The execution history for a

program written in such an imperative language must include control flow information,

variable value update and execution stack updates along with procedure activations and

returns. (Finer, implementation-dependent details can be omitted, as they are not

defined by the language and users should not rely on these details to debug their

programs. Such details include, for example, heap management and garbage collection

methods.) Similar notions of execution history also apply to functional languages such

as ML or Scheme and logic languages such as Prolog.

An important property of a persistent runtime system is that an execution history it

records should be complete, in the sense that the history is sufficient enough that

execution can backtrack to any previous moment and re-execute, even after initial

execution is complete. This property normally guarantees that enough information is

available for debugging so that no re-execution is necessary, and allows an execution

history to be refined if it is incomplete. As we will see shortly, this property improves

debugger scalability.

4.1.1 Complexities of Persistent Runtime Systems

One might fear that use of a persistent runtime systems might result in overwhelming

program execution time and memory usage overhead. However, this overhead can be

made manageable by using node splitting persistent data structures.

To enlarge upon this remark, we introduce some notations. We denote by ERS an

ephemeral runtime system, and by PRS a corresponding persistent runtime system

implemented using the corresponding persistent visions of the data structures used in

ERS. We denote by TE the time cost that ERS incurs to run a program A, by TP the time

Persistent Runtime System General Ideas of Persistent Runtime Systems

42

cost incurred by PRS, by To the time cost overhead incurred by one update in PRS, by TO

the total time cost overhead in PRS, by SE the space cost incurred by ERS, by SP the

space cost incurred by PRS, by So the space cost overhead incurred by one update in

PRS, by SO the total space cost overhead of PRS, and by m the number of update

operations performed during an execution of program A. All of the above notations are of

the worst case.

4.1.1.1 Time Complexity

For any no-nonsense program, it is reasonable to assume that its execution time is

asymptotically proportional to the number of update operations performed in its

execution, i.e., . We already know that . It is then easily seen that

TP is also asymptotically proportional to m:

(Eq 4.1)

which yields:

(Eq 4.2)

Thus we can expect the time cost of program execution in a persistent runtime system is

in the same asymptotic order as that of a similar ephemeral runtime system.

4.1.1.2 Space Complexity

The cost of memory space usage does not behave as favorably as the execution time cost.

However, the memory space used by a program execution has an asymptotic order no

more than that of the number of update operations performed during the execution, i.e.,

. Since , this gives:

(Eq 4.3)

which yields:

TE Θ m()= To Θ 1()=

TP TO TE+ To
m
∑ Θ m()+ Θ 1() Θ m()+

m
∑ Θ m()= = = =

TP

TE

Θ m()
Θ m()-------------- Θ 1()= =

SE O m()= So Θ 1()=

SP Θ SO() Θ So
m
∑ 

  Θ Θ 1()
m
∑ 

  Θ Θ m()() Θ m()= = = = =

Persistent Runtime System General Ideas of Persistent Runtime Systems

43

(Eq 4.4)

Plainly, the space cost behavior of a persistent runtime system are not as favorable as

the time cost considerations. The increase of the memory usage of PRS over that of ERS

can be in the same asymptotic order as program execution time, depending on the

actual value of SE,. In an extreme case, a persistent runtime system will require much

more () memory space if its corresponding ephemeral runtime system can keep on

re-using a constant amount of memory (i.e.,).

4.1.2 Assumptions

We have assumed in the foregoing that the data objects used in a runtime system can be

organized effectively using data structures which allow the efficient node splitting

method to be used to attain persistency. This is the case for most modern programming

languages, specifically which represent their runtime objects using linked structures,

e.g., structures in which local data objects can be accessed from a local environment (or

a local activation record) and other data objects can be accessed from enclosing

environments which themselves are accessible either directly or from the local

environment. However, use of the node splitting method requires two additional

restrictions, which limit the number of programming languages to which our approach is

directly applicable. First, the node splitting method does not directly support randomly

accessed data objects such as arrays: use of persistent data structures introduces

logarithmic overhead for array accesses. Another restriction is that each node in the data

structures to be made persistent must have only a fixed number of access points, which

implies that pointer aliasing cannot be easily supported. However, the logarithmic

overhead incurred to bridge these gaps is generally tolerable. (We will revisit this issue in

Chapter 8.)

However, our approach to building persistent runtime systems is almost perfect for a

number of programming languages, notably SETL[67] and Icon[29][30]. These languages

can be generally characterized as supporting very high-level flexible expressions and

SP

SE

Θ m()
O m()-------------- O m()= =

Θ m()

SE Θ 1()=

Persistent Runtime System System Design

44

having value semantics. High-level expression implies that randomly accessed memory

is seldom required; while value semantics avoids pointer aliasing. As the target language

of our debugger, the SETL programming language is our concern. SETL runtime data

objects are usually organized using trees, hash tables, and Patricia trees in SETL’s two

most efficient current implementations. Therefore, SETL persistent runtime systems

using the node splitting method are readily implemented in a manner guaranteeing

favorable performance.

4.2 System Design

4.2.1 Design Issues
This section describes the design of the persistent runtime system of LSD. As persistent

runtime systems require more execution time and more memory space than ephemeral

runtime systems, keeping the overhead of low is our primary objective. Consequently, we

face two key trade-offs in the system design:

1. The trade-off between time overhead and space overhead, and

2. The trade-off between time/space overhead and the completeness of an execution

information recorded.

Our underlying design principles are: reducing space overhead has priority over

reducing time overhead, and keeping execution histories complete has priority over

reducing system overhead. The justification of these two principles is that space

overhead is usually more significant than time overhead (O(t) versus O(1)), while keeping

a complete execution history is crucial to easy debugging. The following discussion

focuses on these key design issues, and on related functionality, scalability,

transparency, and performance concerns.

4.2.1.1 Functionality
The SETL persistent runtime system is designed with two functional requirements in

mind. We must support full, normal execution of SETL programs, while efficiently

recording prior runtime states as execution proceeds.

Persistent Runtime System System Design

45

The primary execution information that our system records includes a trace of every

source line executed and every update to program variables and execution stack. Some

other information (e.g., information connected with SETL iterator expressions such as

for i in {1..100} loop) is also recorded in order to support full backtracking of the runtime

states recorded. Basically, we design each update operation of SETL execution from its

initial overwrite form to the corresponding persistent form. This persistency

transformation apply both to execution stack and to the heap in which the values of

program variables are stored.

4.2.1.2 Scalability

A second key design issue is scalability. Although our lazy debugging system has

moderate time overhead, its memory space requirements can be proportional to program

execution time, and therefore unbounded. Since the information accumulated in

memory is always historical and does not actually affect current execution, it can always

be moved into larger but slower secondary memory. Thus memory consumption is not

critical from a theoretical point of view. Nevertheless, it is still an important practical

issue, because truly unbounded memory usage must eventually become intolerable.

Without control of memory usage, a persistent runtime system that is successful for 2-

second programs can fail miserably for a 2-hour one.

The concept of recording granularity is therefore important in our persistent runtime

system, which describes a trade-off between the accuracy of the execution history

recorded and the amount of memory space required. The most accurate execution

history would keep the full runtime states at each source line executed. The less

accurate a execution history recorded, the less memory space and time are required.

Therefore, a persistent runtime system can trade execution history accuracy for better

time and memory space performance.

The recording granularities available in our persistent runtime system are defined by

two parameters: the number of runtime states recorded and their distributions. We have

provided three basic recording granularities in the current design:

Persistent Runtime System System Design

46

1. Quadruple recording. This, the finest-grained recording granularity, records

execution history for each quadruple execution. This level of recording tends to

accumulate more information than is defined by the externals of a programming

language, and thus sacrifices system efficiency. On the other hand, it provides

intermediate data not available otherwise.

2. Source line recording. This is the recording granularity that is normally required in

program debugging. It records the runtime state information for each program source

line executed. It is coarser-grained and more efficient than the quadruple recording.

3. Procedure call/return recording. This is the coarsest-grained recording considered. It

has the lowest time and memory space overhead among the three. However, execution

information is not available inside procedure executions. For example, if a procedure

consists of a loop in which there is an assignment to variable x, this recording mode

would only save the last value of x and destroy all of the previous values in the loop.

Each of these basic recording granularity can be applied with an integer parameter n,

which specifies that only one recording is to be made for each n steps. For example,

runtime state can be recorded every other source line, using the source line recording

and parameter 2. This gives us many possibilities for choosing the way that program

execution history is recorded. Nevertheless, multiple recording granularities supported

in our current design just define a starting point in improving the scalability of

persistent runtime systems. More sophisticated options will be discussed in Chapter 8.

4.2.1.3 Transparency
Transparency becomes an issue at two levels. It is easiest to hide execution history

recording from runtime system users. Then only the performance penalty of persistency

will be visible to system users. In other regards, the persistent runtime system will look

just like an ordinary ephemeral runtime system.

The transparency is also available at a lower level in the persistent runtime system. We

separate the memory component of our system from its SETL interpreter, making

persistency confined to the memory component and transparent to the language

Persistent Runtime System System Design

47

interpreter. Thus, changing one part of the system will have minimal impact on the

other.

4.2.1.4 Performance
Performance is always a bottom line issue. Too slow a persistent runtime system would

make our debugging approach impractical, no matter how successful it might be in

theoretical terms. As we have seen in early discussion, one of the major goals of our lazy

debugging system is a persistent runtime system which does not incur excessive in

execution time or memory space overhead. We are therefore concerned to compare the

performance of our persistent runtime system with that of an ephemeral runtime system

of similar design.

But more fundamentally, the persistent runtime system must be kept simple so that we

can concentrate on its innovative aspects without becoming much involved in detail. We

need speed of prototyping and ease in maintenance, so that we can get early feedback to

verify the soundness of the design and make necessary modifications. Thus, many

possible efficiency enhancements have been deferred in the expectation that an

implementation with higher performance can be designed later.

4.2.2 System Design
As Dijkstra remarks, “The technique of mastering complexity has been known since

ancient times: divide et impera (divide and rule)”[22]. In the design of our SETL

persistent runtime system, we have used an object-oriented decomposition[12]. We

decompose the system into smaller and smaller parts, each of which is an autonomous

object supporting some higher level behavior. Figure 4-1 shows the system structures,

which includes a SETL interpreter, a persistent memory component and a global clock.

4.2.2.1 Quadruple Interpreter and System Routines
Our SETL interpreter is conventional[1][6], and consists of a SETL quadruple interpreter

and a library of system routines. Because execution history recording is handled

internally to the persistent memory component, the quadruple interpreter and system

routines closely resemble those used in ephemeral runtime systems: they simply

Persistent Runtime System System Design

48

interpret the quadruples of a SETL program until the execution stops, either normally or

after encountering a runtime error.

4.2.2.2 Timeslice Array
A timeslice array is used in the memory component, serving as the starting reference

points to the valid execution information for each execution moment. The primary

function of the timeslice array is to store execution stack pointers: the stack pointer at

timeslice i is stored in the ith position of this array. This guarantees that any runtime

memory operation can be initiated in O(1) time. It is also used to store some time-related

execution historical information, e.g. the line number of the source line being executed

at a timeslice and the number of quadruples that have been interpreted so far.

4.2.2.3 Persistent Stack
A persistent stack is the first part of the persistent data structures that are used in our

persistent memory component. Like an ordinary execution stack, it keeps track of

procedure activations and provides storage or access for local variable objects.

Conventional compilers or interpreters usually store local variable objects or their

pointers in an array for efficient access*. Although a similar arrangement is possible in

Timeslice Array

FIGURE 4-1: Structures of the SETL persistent runtime system

Persistent Stack

Persistent Heap

SETL Interpreter

Quadruple Interpreter

System Routines

Persistent Memory Component

Global Clock

Persistent Runtime System System Design

49

our persistent runtime system, it would result in activation records of unbounded size,

making persistent update very expensive. Therefore, we chose to break a conventional

activation record into a number of smaller objects, as illustrated in Figure 4-2. We store

local variable values in a persistent heap, and keep their pointers in an activation

record. Although such an arrangement introduces logarithmic time overhead for variable

access, it allows our system to perform persistent updates locally, and thus achieves a

better memory usage performance. This design decision is made solely based on memory

efficiency considerations and somehow arbitrary. We can switch back to the normal

approach if time efficiency is of primary concern.

The persistent stack also needs to keep track of changes in its structure. It records the

result of each push and pop operation, as well as every update of variable value pointers

propagated by variable updates.

*. SETL compilers and interpreters only store pointers because SETL object size can not be determined
statically.

FIGURE 4-2: Breaking a large data object into several pieces

A

B

C

D

X

Y

C

D

X

Y

B

A

Local variables array in an activation record are broken into a tree of smaller chunks

Persistent Runtime System Implementation

50

4.2.2.4 Persistent Heap
Persistent heaps are the second part of the persistent data structures used in our

system. They are more complicated than the persistent stack, because they manage

allocation, storage, and deallocation of the variable values used in a program execution.

They must provide structures for storing and accessing variable values, and also record

variable value history to fulfill its persistency requirement. An update occurring in a

node in persistent heaps may cause cascading updates in nodes of upper levels or of the

persistent stack.

4.2.2.5 Global Clock
We use a global clock to represent the advance of program execution and to signify new

runtime states. It is a logical clock shared by the SETL interpreter and the persistent

memory component. Its value is determined by program execution speed and the

recording granularity selected, and is used by the memory component to access and

update appropriate runtime values.

4.3 Implementation

The implementation of our SETL persistent runtime system starts with the clock and

persistent memory component and is generally straightforward. It uses the node splitting

method with minor extensions. Instead of insisting on a purely persistent system, we

allow each node in the persistent execution stack and persistent heaps to perform both

persistent updates and ephemeral updates, depending on the temporal relation between

the timestamp of the node and the global clock value. A node performs an ephemeral

update (overwrite) if its timestamp is equal to the global clock value, but a persistent

update otherwise. This allows us to vary the granularity of our system recording.

4.3.1 Global Clock
We implement the global clock as a global counter with initial value 0. The value

increases when execution enters a new timeslice. The recording granularity selected

determines the clock speed, which can be as fast as increasing 1 for each quadruple

interpretation, or as slow as remaining 0 for a whole execution.

Persistent Runtime System Implementation

51

4.3.2 Timeslice Array
We implement the timeslice array as a vector of some fixed length (1000 is the current

initial length). Once the capacity limit of the vector is reached, our system allocates a

new vector of double length, copies the values from the old vector, and uses it thereafter

until its capacity limit is reached.

4.3.3 Persistent Stack
We implement the persistent stack using a persistent linear LIFO list, consisting of two

classes of objects: namely stack nodes and frame nodes. A frame node stores the actual

information of an activation record, while a stack node is a persistent node, containing a

frame node and maintaining the structure of persistent linear list.

Figure 4-3 shows the data representation of stack nodes and major methods associated

with them. A stack node is an 8-field vector in Scheme, obtained by augmenting an

ordinary linear list node with some additional fields required by the node splitting

method: a timestamp, an extra pointer, a timestamp for the extra pointer, and a copy

pointer.

FIGURE 4-3: Data representation of stack nodes and their major methods

; data representation of stack node
; #(stack-node-typetag
; timestamp
; head-pointer
; stack-frame
; tail-pointer
; extra-pointer
; timestamp-for-extra-pointer
; copy-pointer)

; major methods on stack node
; make-stack allocate and return a new stack node
; top-stack return the frame of top stack node
; pop-stack! pop top stack node and return its frame
; push-stack! push a stack node
; insert-stack! insert a stack node
; delete-stack! delete a stack node
; update-stack! update a stack node when its frame changes

Persistent Runtime System Implementation

52

Push-stack!, pop-stack! and top-stack are the three key methods. These may invoke insert-

stack! or delete-stack!. The implementation of insert-stack! uses a persistent update of the

node splitting type, while delete-stack! is implemented by inserting an empty stack node

into the parent of the node to be deleted. Update-stack! allocates a new stack node to

accommodate the updated values, and inserts the newly allocated stack node to the

original parent.

Figure 4-4 shows the data representation of frame nodes and major methods associated

with them. A frame node is a vector of 11 fields, storing the actual information of an

activation record, including program counter, procedure name, pointers to global, local,

and temporary variables, pointer to calling parameters, pointer to return parameters,

and an additional field for a set of special quadruple instructions.

FIGURE 4-4: Data representation of frame nodes and their major methods

; data representation of frame node
; #(stack-frame-typetag
; parent-pointer
; pc
; procedure-name
; global-variable-pointer
; local-variable-pointer
; temporary-variable-pointer
; parameters-in
; parameters-out
; return-value
; additional-field)

; major methods on frame node
; make-frame allocate and return a new frame node
; access-frame access a variable on a frame node
; insert-frame! update a variable on a frame node
; update-frame! update a frame node when its variable pointers change

Access-frame and insert-frame! are the two key methods for accessing and updating

program variables respectively. To update a frame node, update-frame! allocates a new

frame node to accommodate the updated values, and invokes update-stack! in the

containing stack node of the frame node.

Persistent Runtime System Implementation

53

4.3.4 Persistent Heap
Persistent heaps can be implemented in several ways, e.g., as persistent linear lists,

persistent binary trees, persistent balanced trees, persistent B-trees, and so on. We have

selected the persistent binary search tree for its simplicity and efficiency. Like the

persistent execution stack discussed in the preceding section, persistent heaps are

implemented using two classes of objects: heap nodes and variable nodes. A variable

node stores the actual information for a SETL variable, while a heap node is a persistent

node, which maintains the structure of persistent binary search trees.

Figure 4-5 shows the data representation of heap nodes and major methods associated

with them. The data representation of a heap node is a 10-field vector, obtained by

augmenting an ordinary binary search tree node with the following additional fields: a

timestamp, an extra pointer, a timestamp for the extra pointer, a state field of the extra

pointer specifying whether the extra pointer is used as a left child or as a right child, and

a copy pointer.

FIGURE 4-5: Data representation of heap nodes and their major methods

; data representation of heap node
; #(heap-node-typetag
; timestamp
; parent-pointer
; variable-pointer
; left-child-pointer
; right-child-pointer
; extra-pointer
; timestamp-for-extra-pointer
; state-for-extra-pointer
; copy-pointer)

; major methods on heap node
; make-node allocate and return a new heap node
; access-node access a heap node in a tree
; insert-node! insert a heap node into a tree
; delete-node! delete a heap node from a tree
; update-node! update a heap node

Insert-node! and delete-node! are the key methods for inserting a heap node and deleting a

heap node respectively. As in the delete-stack! operation for stack nodes, delete-node! is

Persistent Runtime System Implementation

54

implemented by inserting an empty heap node into the parent of the node to be deleted,

after those relevant links are properly updated as required when deleting an ordinary

binary tree node.

Figure 4-6 shows the data representation of variable nodes and major methods

associated with them. A variable node is a 5-field vector, storing the actual SETL variable

information, which includes a pointer to its parent node, plus variable name, variable

type, and variable value fields. Unlike stack nodes and frame nodes, heap nodes and

variable nodes in persistent heaps can be mutually recursive, in the sense that a heap

node always contains a variable node, and a variable node can contain a heap node

when its value is of SETL compound type.

FIGURE 4-6: Data representation of variable nodes and their major methods

; data representation of variable
; #(variable-typetag
; parent-pointer
; variable-name
; variable-type
; variable-value)

; major methods on variable
; make-variable allocate and return a new variable node
; access-variable access a heap node in variable node
; insert-variable! insert a heap node into variable node
; delete-variable! delete a heap node from variable node
; update-variable! update variable node when its type or value changes

Overall, the memory component of our SETL persistent runtime system can be viewed as

a data structure constituting of three levels, as shown in Figure 4-7. The persistent

nodes used in this component are organized in such a way that they satisfy an essential

condition of the “node splitting” method: a node points only to nodes that cover a

subrange of its time range.

Persistent Runtime System Implementation

55

FIGURE 4-7: Structures of the memory management component

…

1 2 3 4 5 6 n

global local temporary

type value

Time-Slice

Persistent
Stack Node

Frame Node

Persistent
Heap Node

Persistent
Heap Node

Variable Node

Array

Persistent Runtime System Implementation

56

4.3.5 Quadruple Interpreter and System Routines

Because execution history recording is designed to be transparent to the SETL

interpreter, its implementation is standard, and closely follows a conventional compiler/

interpreter approach. The interpreter is therefore almost identical to that for an ordinary

runtime system. One interesting difference is so called variable shifting phenomenon in

the persistent runtime system, which caused a very subtle bug during development.

Variable shifting may occur when the interpreter obtains a variable pointer from the

memory component, modifies the variable, and then erroreously retrieves the old

variable value using the same pointer. Actually, the new value is stored correctly, and is

pointed to by a pointer copy, and the current pointer has become obsolete after the

update. We simply added an additional interpreter check to solve this problem.

57

CHAPTER 5 More on User
Interface Design

An overall survey of our debugger’s interface was given in Chapter 3. This chapter

provides more details of interface design and implementation. We begin by describing

general design principles which shaped the interface, and then go on present several of

its key implementation techniques.

5.1 Overall Design Principles

As previously said, its graphical user interface is very important to LSD. The interface is

designed to support the incremental debugging model discussed in Chapter 2. The aim

of the interface is to allow users to explore it freely. Following suggestions derived

from[59], we represent execution history using visual objects and allow users to debug

programs by manipulating these objects. The interface appears to users as a coordinated

collection of objects, each of them can be manipulated by mouse operations, e.g.

“pointing”, “clicking”, and “dragging”. These operations are rapid and reversible. As in

other well-conceived interactive systems, our interface is designed to be simple to use,

easy to comprehend, and consistent and predictable in behavior.

More on User Interface Design Execution Information Structures

58

5.2 Execution Information Structures

As we have seen in Chapter 3, the interface of our debugger provides multiple views of

execution history using multiple windows, in which each window shows a portion of

execution history in a perspective. The organization of these windows reflects the

conceptual organization of our debugging interface, as shown in Figure 5-1. We view

execution history as a three-dimension information space, whose three dimensions are

time, stack, and variable. At the top level, execution time divides execution history into

timeslices. Each timeslice is divided into stack frames, which are then divided into

variable values.

Our graphical user interface keeps overall execution information constantly available to

users through the main window. This information provides a global view of program

execution and serves as a starting point for any further, detailed data examinations. The

interface allows users to examine any portion of this history by zooming into it. More

specific execution information (e.g., execution stack and variable values at each

timeslice) is stored in an underlying persistent runtime system. Most of this information

is shown only when requested explicitly, by popping up the stack window and by

applying interactive display facilities. Our interface focuses on the execution information

relevant one timeslice. This allows users to concentrate on a small portion of whole

execution history at any time.

Time

Stack

Variable

FIGURE 5-1: Organization of execution history

Timeslices

Stack frames

Variable values

More on User Interface Design Execution Trace Display

59

5.3 Execution Trace Display

This section discusses the algorithm that used to display execution trace in the history

window, which must display arbitrary number of trace marks in a limited window space.

We give all trace marks the same height, which is the height of the font used in the

source code window. The trace marks displayed at any given moment have a uniform

width, which varies depending on the number of trace marks to be displayed and the

width of the history window. The more trace marks to be displayed, the smaller their

width. Depending on the number of the trace marks to be displayed, the width of a trace

mark can be arbitrarily small, down to a single pixel. In practice, only a sample of the

complete set of trace marks may be displayed. We distribute trace marks samples

uniformly across whole execution history, and require that the width difference between

any two trace marks displayed does not exceed one pixel, and that the trace marks with

different widths are uniformly distributed in the window.

A straightforward but naive implementation of this algorithm would require O(n)

floating-point multiplications, O(n) floating-point additions, and O(n) floor operations,

which is too expensive for quick update, as often required when a scrollbar is dragged in

procedure DISPLAY_TRACE(W: in WINDOW; M, START, END: in INTEGER; T: in INTEGER_ARRAY) is
var

N, SHORT, LONG, LOC, LOWER, UPPER, I, WID, DELTA: INTEGER;
begin

N := END - START + 1;
SHORT := FLOOR (M/N); LONG := SHORT + 1;
LOWER := N * SHORT; UPPER := LOWER + N;
LOC := 0; DELTA := 0;
for I := START to END loop

if (M + DELTA) - LOWER <= UPPER - (M + DELTA) then
WID := SHORT; DELTA := DELTA + M - LOWER;

else
WID := LONG; DELTA := DELTA + M - UPPER;

end if ;
if LEN > 0 then

DISPLAY_MARK (W, LOC, WID, T[I]);
LOC := LOC + WID;

end if ;
end loop ;

end DISPLAYTRACE;

FIGURE 5-2: Efficient execution trace display algorithm

More on User Interface Design Interactive Display

60

the history window. Figure 5-2 shows pseudo Ada code for the more efficient display

algorithm that we have developed, in which DISPLAY_MARK is a low-level graphical

routine that displays a rectangle of width wid at position (loc, T[i]) in window W. This is an

incremental algorithm, and only requires O(1) fixed-point multiplications, O(n) fixed-

point additions, and O(1) floor operations. For each trace mark to be displayed, this

algorithm computes a location value loc and width value wid by maintaining appropriate

delta, the difference between the location computed and its ideal value in a display space

with infinite precision. The algorithm uses the following three recursive expressions:

 and (Eq 5.1)

 = and (Eq 5.2)

(Eq 5.3)

where start and end are the starting and ending timeslices of the execution history to be

displayed respectively, n = end - start + 1, is the number of trace marks to be displayed,

m is the history window’s width in number of pixels, and start ≤ i ≤ end.

5.4 Interactive Display

Interactive display, an interesting facility supported by our interface, is the most

complex one to implement. This is largely because that interactive display must map

users’ gestures to subvalues of a compound SETL value. Our implementation was

simplified by the fact that SETL values do not have problems of pointer aliasing, so that

each sub-value has a unique access path.

We have implemented interactive display in the following four steps: 1) organizing SETL

variable values as tree-like data structures; 2) mapping display layouts for these values

geometrically into a text window; 3) locating the value that users manipulate by following

these geographical mappings; 4) performing display on the value located.

First, we organize the accessible variables at an current timeslice using a linear list. The

first part of the list consists of local variables and the second part of global variables.

loci 1+ loci widi+= locstart 0=

δi 1+ n⁄ δi n⁄ m n⁄ widi–+ δstart n⁄ 0=

widi m n⁄ δi n⁄ 0.5+ +=

More on User Interface Design Interactive Display

61

Variables in each part of the list are sorted alphabetically by their names. Next, we

organize the value of a variable as a tree of nodes having arbitrary fan-out. Each simple

SETL value is a leaf node in a value tree while each compound SETL value is an internal

node (see Figure 3-8). Each node includes the information necessary for its display,

including its printing mode, tree level, and string representation. Figure 5-3 shows these

data representations in pseudo Ada code.

Geometric mappings of variable values into a text window obey the following rules:

Variable names are listed alphabetically from window top to window bottom, local

variables first and global variables second, and each name occupies one line. A variable

value, when printed, is inserted into the lines below its name. A variable value in Print

mode is shown in one line, as for the SETL print statement. In Display mode, a variable

value is shown as a value tree in which each simple data item occupies one line and has

proper indent, if the value is of compound types, or is the same as that in Print mode

FIGURE 5-3: Data representations of variable values

type SETL_TYPE is (SETL_ATOM, SETL_BOOLEAN, SETL_INTEGER, SETL_OM,
SETL_REAL, SETL_SET, SETL_STRING, SETL_TUPLE);

type PRINT_MODE is (LSD_PRINT, LSD_DISPLAY, LSD_ZOOM_IN, LSD_ZOOM_OUT);

type VARIABLE;
type VARIABLE_POINTER is access VARIABLE;
type VARIABLE_ARRAY is array (NATURAL range <>) of VARIABLE_POINTER;
type VARIABLE is

record
NAME: STRING;
TYPE: SETL_TYPE;
NUMBER_OF_CHILDREN: NATURAL;
CHILDREN: VARIABLE_ARRAY;
LENGTH_OF_VALUE: POSITIVE;
VALUE: STRING;
MODE: PRINT_MODE;
LEVEL: NATURAL;

end record ;

type VARIABLE_LIST;
type VARIABLE_LIST_POINTER is access VARIABLE_LIST;
type VARIABLE_LIST is

record
VAR: VARIABLE;
NEXT: VARIABLE_LIST_POINTER;

end record ;

More on User Interface Design Interactive Display

62

otherwise. A variable value in Zoom In mode is listed as “[...]” or “{...}” in one line if it is a

non-empty compound value, or is the same as that in Print mode otherwise.

These rules potentially allow a variable to be printed in a large number of ways. To

manage its display during user manipulations, the interface maintains two invariant

properties. 1) The place in which a value is printed is determined only by the printing

modes of prior variables and the printing modes of the values of the upper levels in the

same variable. 2) The way that a value is printed is determined by the printing attributes

of the value itself (i.e., its printing mode, its level in the variable tree, and its string

representation). These properties allow the interface to interpret user manipulations

uniquely and correctly.

The implementation uses two principal routines: Locate_Value(Position, Data_Structure)

and Print_Value(Variable, Printing_Mode). Locate_Value takes two parameters: a mouse

clicking position in the stack window and a data structure of accessible variables. It

traverses the variable data structure, and returns the value manipulated by users.

PrintValue is then called with the value located and the printing mode associated. It

preforms the appropriate printing operation.

63

CHAPTER 6 Internal Structure
of the System

This chapter describes the internal routines of our Lazy SETL Debugger, which serve as

a layer connecting the debugger’s graphical user interface and its persistent runtime

system. We describe key design considerations, communication protocols supported,

and some additional implementation issues.

6.1 Design Considerations

The PRS and GUI of our debugger are logically independent processes, designed as two

separate programs. They are only connected in LSD by a communication protocol,

defined by a number of special routines. We refer to these routines as debugging routines

because their primary function is to make the execution history recorded by the runtime

system available to the graphical interface, and to support a variety of debugging

operations, e.g., graphical program animation and execution history refinement.

If we chose to view its persistent runtime system as a debugging target and its graphical

user interface as the whole debugger, LSD would come to have an organizational

structure similar to that of some conventional breakpoint debuggers that operate in the

UNIX environment[9]. These debuggers usually fork their debugging targets as child

processes, which run in debugging mode. The debugger process and debugging target

Internal Structure of the System Communication Protocol

64

process have different name spaces in such an organization, and one must allow the

debugger process to control the execution of debugging target process, which must make

its execution information accessible to the debugger. This is usually accomplished by

using the UNIX ptrace routines[9]. Our LSD approach is much simpler, mainly because

of the interpretive implementation of the persistent runtime system used. Instead of

using general but low-level ptrace routines, we have designed a custom collection of

debugging routines that achieve similar functionality.

Ideally, the debugging routines should be designed as an independent layer between the

runtime system and its interface. In practice, it is more convenient and considerably

more efficient to design these routines as a stub within the runtime system, as shown in

Figure 6-1. Such an arrangement allows the debugging routines to share the same name

space as the persistent runtime system so that we can avoid a costly context switch

during communication. This arrangement does not introduce any serious compromise in

system modularity or information encapsulation, as the debugging routines stub

functions exactly the same way as a separate layer to the debugger’s user interface.

6.2 Communication Protocol

We have designed a protocol to define the communication supported by the debugging

routines. This is a two-way protocol consisting of two parts: a command protocol and a

Debugging Routines

Persistent Runtime System

Graphical User Interface

FIGURE 6-1: Debugging routines layer as a stub in persistent runtime system

Commands Responses

Internal Structure of the System Communication Protocol

65

response protocol. Functionality, reliability, and simplicity are our primary concerns in

design.

Typically, the debugging routines stub receives a command (from the interface) and

responds. Figure 6-2 and Figure 6-3 give a context-free grammar for the command

protocol and corresponding response protocol respectively. The command protocol

currently supports 10 commands. The load command takes a file name parameter,

translates the program into quadruples, and loads these into the persistent runtime

system. The granularity command sets our debugger’s recording granularity. The run, step

and continue commands put the debugging target into execution, and return an

execution trace covering the run up to its last execution moment. The stop command

stops the debugging target’s execution and also returns an execution trace. Detailed

load file_name
run
step
continue
stop
granularity granularity_type granularity_parameter
collapse time_range
stack timeslice frame_level
locate variable_name direction timeslice time_range
animation animation_type expression timeslice

string

quadruple | source line | procedure

number

number

number

string

forward | backward

timeslice timeslice

points | lines | strings

string

FIGURE 6-2: Command protocol

command

file_name

granularity_type

granularity_parameter

timeslice

frame_level

variable_name

direction

time_range

animation_type

expression

→
|
|
|
|
|
|
|
|
|

→

→

→

→

→

→

→

→

→

→

Internal Structure of the System Communication Protocol

66

execution information can be accessed by using the stack, locate or animation commands.

Stack takes a current timeslice and a stack frame level, and returns complete

information for the stack frame specified at the timeslice. This information includes

stack depth, activating procedure name, stack frame level, local and global variable

values. Locate takes a variable name, a search direction, a current timeslice and a

timeslice range. Depending on the search direction, it returns the closest timeslice in the

timeslice range in which the variable’s value changes. Although locate is not essential to

the communication protocol in the sense that we can simulate it by a sequence of stack

commands, it is nevertheless included to reduce communication overhead. Animation

takes an animation type, a SETL expression and a current timeslice, and registers a

graphical program view. Once registered, this view will be activated upon each of

following stack commands. The value returned for the view is the value of the view

expression in ASCII format. Collapse takes a portion of execution history, re-executes it

using the current recording granularity, and returns a new execution trace after re-

execution is complete.

OK
OK
trace_size trace* OK
trace_size trace* OK
trace_size trace* OK
trace_size trace* OK
trace_size trace* OK
stack_depth procedure_name local var* global var* OK
trace OK
animation_value* OK

number
number
number
string
var_name type_value
string
simple_type value | compound_type cardinality type_value_list
atom | boolean | integer | om | real | string
string
set | tuple
number
ε | type_value type_value_list
string

load
granularity

run
step

continue
stop

collapse
stack

locate
animation

trace_size
trace

stack_depth
procedure_name

var
var_name

type_value
simple_type

value
compound_type

cardinality
type_value_list

animation_value

::
::
::
::
::
::
::
::
::
::

→
→
→
→
→
→
→
→
→
→
→
→
→

FIGURE 6-3: Response protocol

Internal Structure of the System Implementation Issues

67

6.3 Implementation Issues

6.3.1 Implementation Overview
The persistent runtime system was implemented on a Sun SPARCstation using Scm, a

public-domain interpretive Scheme implementation with a conventional mark-sweep

garbage collector[81]. The runtime system supports a full SETL implementation

including backtracking, with a few simplifications and modifications in I/O operations.

The implementation consists of approximately 7000 lines of Scheme code.

The starting point for the implementation was the SETL translator written by David

Bacon. This translates a SETL program into a sequence of quadruples for interpreted or

compiled execution. Translations are basically done line by line and use few local or

global optimizations. Although the quadruples generated do not attain high execution

speed, they are perfect for debugging purposes because the quadruples preserve full

symbolic information from the original SETL program. Another useful feature of the

translator used is that it does not require its input to be a complete program, but it can

translate even a single valid SETL source line. This allows us to evaluate (animate)

arbitrary SETL expressions during debugging. This translator is used as the front end of

our persistent runtime system, which reads, parses, links, and interprets the

quadruples generated.

The graphical user interface of our debugger was implemented using C and the OPEN

LOOK widget set (also known as OLIT, Open Look Intrinsic Toolkits) developed by AT&T

and Sun Microsystems[76]. Like other professional level user interface toolkits such as

Motif[25], OPEN LOOK provides a set of graphical widgets with which programmers can

implement attractive and consistent graphical user interfaces without worrying much

about X window details. The OPEN LOOK widgets used in our system include text

windows, draw windows, popup windows, pulldown menus, popup menus, scrollbars,

scrolling lists, buttons, text fields, cursors, as well as many invisible manager widgets

that control the layout of visible objects. The implementation requires approximately

7000 lines of C code.

Internal Structure of the System Implementation Issues

68

6.3.2 Communication Support

The communication protocol supported by the debugging routines was designed to be

based on standard communication channels, e.g., UNIX pipes, message queues,

semaphores, shared memory, sockets, etc. Deferring many engineering considerations,

we implemented our communication protocol using pipes. More specifically, we

implemented the graphical user interface of LSD as a child process of the debugging

routines stub, and connected to it using three pairs of pipes, as shown in Figure 6-4.

Commands and responses are transmitted over the pipes as byte streams, which are

parsed at both ends using predictive parsers. We implemented the pipe connections by

adding two C routines into the Scm environment, which can be used as Scheme’s

essential procedures[2]:

(open-rw-pipes string) procedure

(close-rw-pipes pipe-pair) procedure

Open-rw-pipes takes a string argument that specifies an object code, creates a pair of

pipes, forks the object code as a child process, redirects its standard input and standard

output to the pipes created, and returns them as a pipe-pair on success. We can close

such a pipe-pair by using close-rw-pipes.

O
ut

pu
t S

tr
ea

m

In
pu

t S
tr

ea
m

C
om

m
an

ds

R
es

po
ns

es

A
ni

m
at

io
n

(u
nu

se
d)

Debugging Routines

Graphical User Interface

I/O Simulator Navigation Tool Animation Window

FIGURE 6-4: Communication protocol implemented using three pairs of pipes

Internal Structure of the System Implementation Issues

69

6.3.3 Program Animation
As we have seen from the preceding chapter, our debugger can graphically animate SETL

expressions during program debugging. Program animation is supported primarily by

the animation and stack debugging routines. For an expression E to be animated,

animation creates a one-line SETL program “print (E)”, translates this program into

quadruples, registers the quadruples for animation, and pops up a corresponding

animation window. Whenever the current timeslice changes, the debugger’s interface

activates the stack routine to fetch stack and variable information at the new timeslice.

This routine also checks before return to determine if there is an animation view

registered. If so, stack saves the context of debugging target’s execution and evaluates

the animation view quadruples in a new execution context (animation view context). A

program execution context includes quadruples, symbol table, execution recording

granularity, program counter, runtime memory, and so on. Animation view evaluation

uses single source line recording granularity to assure that the values used in the

evaluation come from the desired timeslice. During animation evaluation, any symbol

used in animation view quadruples is first checked against debugging target’s symbol

table. If there is a match, the value is fetched from the execution context; if not, the

value is fetched from the animation view context. Finally, the value produced by

evaluation is sent to the animation view context’s output, which connects to the

standard input of the animation window.

6.3.4 Program Re-execution
As we saw from the debugging example in Chapter 3, execution history collapsing

supports re-execution of program, starting from an arbitrary timeslice. Re-starting

execution from a recorded runtime state is not hard. As in backtracking, we simply

restore the runtime state at the desired timeslice as a starting runtime state and

continue quadruple interpretation. Stopping re-execution at a specified timeslice is not

quite so simple. Simply checking by comparing runtime states to determine whether re-

execution has reached its stopping moment is complex and time-consuming. Moreover,

this method may not uniquely identify this moment, because two different timeslices

Internal Structure of the System Implementation Issues

70

may have identical runtime states. The technique we have developed for this is to

enhance the persistent runtime system with a quadruple counter, which records the

total number of quadruples interpreted from the beginning of execution. Given this

information, re-execution only needs to interpret a number of quadruples equal to the

difference between the number of quadruples that have been interpreted at the ending

timeslice and the number at the starting timeslice.

71

CHAPTER 7 Performance

This chapter describes the performance of the system designed and implemented. We

analyze the time and space performance, and the scalability of the persistent runtime

system, and evaluate the debugging system using various usability issues.

7.1 Performance Analysis

This section analyzes the performance of our SETL persistent runtime system, focusing

on three primary criteria: execution time, memory space usage, and scalability. We are

interested in comparative performance of our system against a similar ephemeral

runtime system, rather than in absolute figures. The ephemeral runtime system used in

comparison was implemented using ephemeral linear FIFO list and ephemeral binary

search trees. Actually this system was implemented first, from which our persistent

runtime system was then obtained by switching to the corresponding persistent data

structures.

We tested both the systems using a test set consisting of three SETL programs with

different time and space complexities (see Appendix B). The first program is a text

scanner that reads and prints SETL quadruples from a text file. This has a time cost of

 and a space cost of , in which n is the number of quadruple lines in the textΘ n() Θ 1()

Performance Performance Analysis

72

input file. The second program computes prime numbers up to n, and has a time cost of

 and a space cost of . Our last test program is an all-solution n-queens

program, having an exponential time cost and a space cost. Performance figures

are measured on a SUN SPARC 10 with 64 megabytes of main memory.

7.1.1 Time Performance
The figures measured for time performance include total execution time, garbage

collection (GC) time, and the numbers of CONS operation performed by Scheme. These

figures are provided by Scm, the implementation environment of our runtime systems.

Table 7-1 shows the total execution time figures in milliseconds of both the persistent

runtime system and the ephemeral runtime system. In spite of relatively low execution

speed, the results are encouraging when we compare the two runtime systems.

Apparently the ratios of the total execution time between the persistent runtime system

and the ephemeral runtime system are not high, ranging from 1.78 to 4.33. We also see

that the ratios grow moderately when program input size increases.

O n nlog() Θ n()

Θ n()

TABLE 7-1: Total execution time of test programs (in milliseconds)

Scanner 249 453 967 2672 4315

ephemeral 5750 10316 21100 57966 91133

persistent 12850 28916 69800 190766 394900

pers / ephe 2.23 2.80 3.31 3.29 4.33

Prime Numbers 100 200 300 400 500

ephemeral 2183 5900 10750 17800 25200

persistent 4533 14766 32033 48666 74233

pers / ephe 2.08 2.50 2.98 2.73 2.95

N-Queens 4 5 6 7 8

ephemeral 4183 13150 44450 172200 729416

persistent 7450 31900 121783 605150 2892466

pers / ephe 1.78 2.43 2.74 3.51 3.97

Performance Performance Analysis

73

The next important measurement for time performance is the GC execution time, which

is shown in Table 7-2. Garbage collection in Scheme can consume a substantial portion

of the total execution time. Compared to the total execution ratios, the GC time ratios

between the two runtime systems are more significant, ranging from 2.17 to 10.07, and

show a more rapid growth as input size increases.

Mark and sweep, the GC method used by Scm, when invoked, suspends program

execution temporarily, traverses and marks every memory block in use, and scans the

entire memory to deallocate any unused ones. This approach is not effective in the case

of the persistent runtime system implemented, and can consume approximately 30% -

70% of the total execution time on GC. Because persistent runtime systems use a lot of

memory space to record execution history, this method often traverses a lot memory but

can collect only very little garbage. Taking into account of the execution pattern of

persistent runtime systems, we believe that using a custom GC routine or a reference

count method would significantly reduce the GC time, and thus the total execution time

as well.

Since it includes a very significant but largely avoidable portion of GC execution, the

total execution time clearly does not accurately reflect the time performance attainable

TABLE 7-2: GC time of test programs (in milliseconds)

Scanner 249 453 967 2672 4315

ephemeral 1633 3033 6450 16283 25000

persistent 5316 14300 39533 106533 251666

pers / ephe 3.26 4.71 6.13 6.54 10.07

Prime Numbers 100 200 300 400 500

ephemeral 650 1983 3583 6333 9033

persistent 1783 7016 18900 25283 42900

pers / ephe 2.74 3.54 5.27 3.99 4.75

N-Queens 4 5 6 7 8

ephemeral 1350 4316 15516 62400 295800

persistent 2933 16633 71783 411350 2065266

pers / ephe 2.17 3.85 4.63 6.59 6.98

Performance Performance Analysis

74

by our approach. A more accurate measurement in this regard is actual execution time,

defined as the difference between total execution time and GC time. Table 7-3 shows the

actual execution time figures for our test programs. We can see that these ratios are low

and stable, ranging from 1.59 to 2.17.

The accuracy of this production of actual execution time is further supported by the

numbers of CONS operations performed by the Scheme interpreter, which are shown in

Table 7-4. CONS is the most important and fundamental operation in Scheme, upon

which many other essential functions easily can be simulated or are actually

implemented. Numbers of CONS operations performed are good approximations of

actual execution time. We can see that the ratios of the number of CONS operations

performed, ranging from 1.63 to 2.09, match closely to those of the actual execution

time computed.

In sum, Figure 7-1 depicts the four time performance ratios that we have discussed so

far. It is easy to see that our SETL persistent runtime system is approximately half the

speed of the ephemeral runtime system, which supports the time complexity results we

obtained earlier in Chapter 4.

TABLE 7-3: Actual execution time of test programs (in milliseconds)

Scanner 249 453 967 2672 4315

ephemeral 4117 7283 14650 41683 66133

persistent 7534 14616 30267 84233 143234

pers / ephe 1.83 2.01 2.07 2.02 2.17

Prime Numbers 100 200 300 400 500

ephemeral 1533 3917 7167 11467 16167

persistent 2750 7750 13133 23383 31333

pers / ephe 1.79 1.98 1.83 2.04 1.94

N-Queens 249 453 967 2672 4315

ephemeral 2833 8834 28934 109800 433616

persistent 4517 15267 50000 193800 827200

pers / ephe 1.59 1.73 1.73 1.77 1.91

Performance Performance Analysis

75

7.1.2 Space Usage
The space performance figures are measured by the virtual memory consumed by the

runtime systems, which includes the memory used for SETL source programs,

quadruple codes, and runtime data structures. They are measured using a UNIX facility

vmstat. Table 7-5 shows the figures and Figure 5-9 plots the ratios of these figures

between the persistent runtime system and the ephemeral runtime system. Due to

limitations of the measurement method used, these figures are not very precise (4-Kbyte

is the smallest memory chunk that vmstat can measure). Nevertheless, they do give us a

rough approximation of the memory usage. Figure 7-2 shows that there are moderate to

substantial increases in the memory usage ratios. The exact figures vary from program

to program, but apparently they do not have a sharper increase than O(t), where t is a

program’s execution time. According to the complexity analysis we obtained earlier, the

space costs of the three test programs would be for the text scanner program,

O(log t) for the prime numbers program and for the n-queens program. These

productions closely match the figures measured.

TABLE 7-4: Number of CONS operations performed of test programs

Scanner 249 453 967 2672 4315

ephemeral 1182207 2194171 4317815 11568840 19103793

persistent 2359654 4445765 8930010 24161731 39850250

pers / ephe 2.00 2.03 2.07 2.09 2.09

Prime Numbers 100 200 300 400 500

ephemeral 476202 1136658 2048471 3260787 4796062

persistent 817175 2141119 3998075 6492086 9658017

pers / ephe 1.72 1.88 1.95 1.99 2.01

N-Queens 4 5 6 7 8

ephemeral 966182 2858348 9307363 34447017 137047950

persistent 1578271 4984050 16586913 62415686 252876407

pers / ephe 1.63 1.74 1.78 1.81 1.85

Θ t()

Θ t tlog⁄()

Performance Performance Analysis

76

7.1.3 Scalability
We are aware of the fact that the space overhead of our persistent runtime system can be

substantial (e.g., the memory consumed by the text scanner program in the persistent

runtime system is 2484 times larger than that used in the ephemeral runtime system).

Therefore, we also test our system’s scalability using different recording granularities.

The text scanner program is used to study this issue because of the large memory

requirement of its persistent version. The recording granularities used in testing are

source line granularities with different parameters. Table 7-6, in which n is the

granularity parameter, shows the actual execution time, the number of CONS operations

FIGURE 7-1: Time performance for test programs

1000 2000 3000 4000
0

2

4

6

8

10

n

P
R

S
/E

R
S

Text Scanner Program

4 5 6 7 8
0

2

4

6

8

n
P

R
S

/E
R

S

N-Queens Program

100 200 300 400 500
0

2

4

6

n

P
R

S
/E

R
S

Prime Numbers Program

total execution time
GC execution time
actual execution time
number of CONS performed

Performance Performance Analysis

77

performed and the memory space figures measured. For example, n = 4 represents the

result recording one runtime state for the execution of 4 SETL source lines, and

n = 65536 represents the coarsest-grained recording granularity, because only 23077

source lines are executed in the whole program.

TABLE 7-6: Time and memory consumed using different recording granularities

n time (ms) PRS/ERS CONS PRS/ERS memory (kb) PRS/ERS

1 143234 2.17 39850250 2.09 9936 2484.0

2 127330 1.93 37903239 1.98 5776 1444.0

4 121764 1.84 37155519 1.94 5468 1367.0

8 111647 1.69 33912917 1.78 4220 1055.0

16 97233 1.47 30270232 1.58 2692 673.0

32 93996 1.42 28405127 1.49 788 197.0

64 93058 1.41 27471597 1.44 384 96.0

128 90354 1.37 27004978 1.41 184 46.0

256 86084 1.30 26771821 1.40 84 21.0

512 83943 1.27 26652495 1.40 36 9.0

1024 91620 1.39 26593588 1.39 16 4.0

65536(∞) 85491 1.29 26459552 1.39 4 1.0

TABLE 7-5: Virtual memory size for test programs (in kilobytes)

Scanner 4117 ms 7283 ms 14650 ms 41683 ms 66133 ms

ephemeral 4 4 4 4 4

persistent 260 536 2312 4356 9936

pers / ephe 65.0 109.0 578.0 1089.0 2484.0

Prime Numbers 1533 ms 3917 ms 7167 ms 11467 ms 16167 ms

ephemeral 4 20 44 68 80

persistent 152 604 2464 3428 4684

pers / ephe 38.0 30.2 56.0 50.4 58.6

N-Queens 2833 ms 8834 ms 28934 ms 109800 ms 433616 ms

ephemeral 8 12 36 100 236

persistent 44 548 3044 11744 43632

pers / ephe 5.5 45.7 84.6 117.4 184.9

Performance Performance Analysis

78

These figures show that our persistent runtime system can improve its both time and

memory space performance gracefully by using coarse-grained recording granularities.

For example, when a source line granularity of 64 is used, time overhead decreases from

2.17 to 1.41, and memory space overhead decreases from 2484 to 96. Nevertheless, in

this case, we have still recorded 360 complete runtime states, and any possible re-

execution is about 1/360 of a complete one. Figure 7-3 depicts these figures on a log

scale of n. We can see that the memory space overhead diminishes rapidly as recording

granularity parameter increases.

FIGURE 7-2: Memory performance for test programs

0 20 40 60
0

500

1000

1500

2000

2500

execution time (s)

P
R

S
/E

R
S

Text Scanner Program

0 100 200 300 400
0

50

100

150

execution time (s)

P
R

S
/E

R
S

N-Queens Program

0 5 10 15
0

20

40

60

80

execution time (s)

P
R

S
/E

R
S

Prime Numbers Program

Performance Usability Evaluation

79

7.2 Usability Evaluation

We now evaluate the usability of the debugging user interface implemented, employing

the five usability attributes stated in [58]: learnability, memorizability, error rate,

efficiency, and user satisfaction. Due to the prototype nature of the current

implementation, thorough and complete evaluation of our system is hardly possible. The

following discussion largely reflects comments gathered during several demonstrations

rather than from a real testing environment.

1. Learnability. This graphical user interface is easy to learn. New users can usually

start using it after 5 to 8 minute of explanation, although we do expect longer

learning period when only a manual is available. In any case, all users have to learn

are the operations for controlling objects in the interface, which includes five

windows, approximately half dozen scrollbars, and several menus. In contrast, gdb

has 160 commands falling into 10 categories, and dbx 52 commands falling into five.

2. Memorizability. The graphic nature and simplicity of our interface implies that it

should be easy to remember. In fact, very little needs to be memorized, because the

interface is simple, intuitive and self explanatory. Even its most innovative features

FIGURE 7-3: Scalability in time and space

0 5 10 15
1

1.5

2

2.5

log n

P
R

S
/E

R
S

Time Scalability Performance

number of CONS performed
actual execution time

0 5 10 15

500

1000

1500

2000

2500

log n
P

R
S

/E
R

S

Space Scalability Performance

Performance Usability Evaluation

80

(i.e., its execution trace display and incremental printing) are straightforward and

obvious, after initial explanation.

3. Error rate. Errors in using the interface often result from obvious mistakes such as

trying to run a unloaded program. These errors are generally avoided by users with

some experience of the system; novice users are provided with error messages. Once

execution history has been recorded and our debugger enters the debugging stage,

few errors are possible. Although a specific operation in data browsing or examination

may not reveal any useful clue to bug location, it is harmless and trivially reversible

in the interface.

4. Efficiency. The overall performance of the interface is very encouraging. The interface

provides many powerful debugging functions not available or difficult to implement in

conventional debuggers. These functions include backward stepping, backward

control breakpoints, backward data breakpoints, and flexible data examination at

arbitrary execution moments. Programs containing the common runtime errors (e.g.,

illegal operands) can usually be debugged very quickly. Even for programs having

subtle bugs, our debugging interface helps users make progress naturally and easily.

Our experience shows that a large portion of bugs can be found in constant time

while others can be found in a length of time proportional to the program execution

time. The efficiency of the operations supported in the interface is also good. Users

normally receive feedback within a half second after issuing an operation. The

primary bottleneck factors for higher debugging efficiency are the performance of the

underlying persistent runtime system, communication delays, and the speed of

typical user operations (e.g., moving mouse or clicking).

5. Satisfaction. Satisfaction ratings are particularly subject to users’ non-objective

judgement. Nevertheless, most people who have used or seen the debugger think that

it is “very useful”, “appealing”, “impressive”, etc.

Performance Summary

81

7.3 Summary

The results we have described of our debugger are quite encouraging, taking into

account of its prototype nature. It imposes only a modest slowdown in execution time

and its memory requirements are manageable. A usability evaluation of the debugger

interface gives promising conclusions since the system provides a number of easy to use,

high-level facilities. All this indicates the practicality of our debugging approach.

82

CHAPTER 8 Open Issues

In this last chapter, we review several issues in the light of the results obtained in the

preceding chapters. We begin by describing some limitations of our paradigm and the

current implementation, and go on to suggest some extensions. We summarize our

research by comparing our debugging system with conventional debugging approaches,

and list some open issues for future work.

8.1 Current Limitations and Possible Solutions

Although the conclusions arrived at in the last chapter are encouraging, our approach

has some significant limitations. Some of these limitations will become especially

important when one attempts to build “industrial strength” lazy debuggers.

8.1.1 Theoretical Limitations

Although many of the limitations that we are going to discuss result from our design and

implementation simplifications, and can usually be solved by putting in more

engineering effort, some of them stem more fundamentally from our lazy debugging

paradigm (i.e., the techniques used of making data objects persistent). Solutions of these

Open Issues Current Limitations and Possible Solutions

83

limitations will therefore depend on theoretical breakthroughs. These limitations

include:

1. The node splitting method cannot efficiently implement all data structure operations.

One example is the cardinality operation, which returns the number of nodes in a

tree. Using ephemeral data structures, one can easily implement the cardinality

operation in time complexity O(1), by augmenting each node of the original data

structures with a cardinality field and slightly modifying the update operation.

However when node splitting persistent data structures are used, the time complexity

of the cardinality operation is O(n) instead of O(1), where n is the number of nodes in

the tree. The reason is that a persistent node can link to an arbitrary number of

versions of data structures, so that the cardinality operation thus has to traverse the

complete tree for a given timeslice. As it is an important operation in a SETL runtime

(e.g., to access an indexed entry in a tuple or to compare two set values), this

overhead is quite undesirable.

2. One of the key assumptions of the node splitting method is that each node in the data

structures to be made persistent has only a fixed number of access points. This

restriction does not affect SETL runtime systems because of SETL’s value semantics.

However, this nice property fails for a number of other programming languages that

support pointer semantics, such as Ada, Pascal, and Scheme, for which the node

splitting method is therefore not directly applicable. This major problem needs to be

solved in trying to extend the lazy debugging paradigm to these languages.

3. All the above limitations could have been easily eliminated if arrays had efficient

persistent representations (i.e., persistent access and persistent update operations in

O(1) time and space). The best results we know concerning persistent arrays is that

reported by Dietz[21]. Dietz’s method uses a context tree representation and has O(log

log m) overhead in both time and space, where m is the number of update operations

performed on an array. It seems to us however that this method is very complicated

and has a large constant factor, so it might not be a practical way of building efficient

persistent runtime systems.

Open Issues Current Limitations and Possible Solutions

84

Having pointed out these limitations, we would like to revisit the four most important

methods of making data objects persistent, and compare them using several important

criteria as means for designing general-purpose and efficient persistent runtime

systems. Table 8-1 summarizes an analysis of this issue. In the table, n is the size of the

data objects to be made persistent; m is the number of update operations performed on

the data objects; last is the newest version of the data objects; and prev is any of the

previous versions. The most important point in this summary is the distinction made

between the last version and previous versions of data object, because program

execution takes place only in its execution wave front consisting of the last version of

data objects. We notice that the node splitting method is the best one in terms of time

and space overhead, but imposes strict requirements, such as the bounded number of

access points and the data structures organization. However, the fat node method is

more flexible and has the same performance results except for its O(log m) overhead in

accessing previous versions of data objects. Thus suggests that a combination of the

node splitting method and the fat node method may be superior to our current

implementation.

8.1.2 Limitations of the Current Implementation
Ineffective garbage collection is the first and perhaps the most severe weakness of the

current implementation of our Lazy SETL Debugger. Some mechanism for automatic

reclamation of computer storage is always required in a SETL runtime system. For

simplicity, the persistent runtime system of our debugger uses Scheme’s runtime heap

TABLE 8-1: Comparisons among four methods of making data objects persistent

Check-
pointing

Fat
Node

Node
Splitting

Persistent
Array

Space requirement O(mn) O(m+n) O(m+n) O(m+n)

Time requirement (access last) O(1) O(1) O(1) O(1)

Time requirement (access prev) O(log m) O(log m) O(1) O(log log m)

Time requirement (update last) O(1) O(1) O(1) O(log log m)

Number of access points unbounded unbounded bounded unbounded

Organized as data structures not required not required required not required

Open Issues Current Limitations and Possible Solutions

85

as its heap, so that SETL runtime objects can always be garbage-collected by Scheme’s

garbage collector. This arrangement eliminates any need for a separate SETL garbage

collector. The price we pay is that Scheme’s garbage collector is very inefficient for our

purposes (see Chapter 7). A major assumption of most current garbage collection

methods is that “most objects live a very short time, while a small percentage of them

lives much longer”[81]. Unfortunately, this assumption is completely wrong in the case

of a persistent runtime system, which uses a major portion of its memory to hold

execution history. Potentially better candidates include reference counting and

generational garbage collectors.

The execution speed of our SETL persistent runtime system is not entirely satisfactory

(see Chapter 7). Our system is slowed down by its interpretive implementation using

Scheme, which is itself interpreted. This two-level interpretation is very expensive and

should be avoided. There are two possible solutions: compiling SETL programs into

object code[10] or interpreting them using compiled programs. The data structures used

in the SETL persistent runtime system (e.g., binary search trees) can perform very poorly

when data values are large. Better choices include balanced trees and trees with larger

fan-out[67]. However, due to the tradeoff between time overhead and space overhead, we

face a limit in increasing tree fan-out, beyond which fan-out increases will damage the

effectiveness of space usage.

One interesting phenomenon in our persistent runtime system is that the execution

stack can be totally eliminated. This would presumably save some memory space. An

execution stack is used in normal runtime systems to keep track of the order procedure

activation so that execution can return to appropriate place when current procedure

activation is complete. This information is redundant in persistent runtime systems,

because complete execution history is available so that returns can be made using

information available in previous timeslices. Nevertheless, the current implementation

does use an execution stack. This makes it easier to implement the system, to compare

its performance with normal runtime systems, and to support coarse grained recording.

Open Issues Current Limitations and Possible Solutions

86

It may involve little loss, since our experience indicates that a majority of memory usage

is spent on recording changes of program variables resident in the runtime heap.

Using more sophisticated selective recording techniques can further improve the

performance of our debugger. We know that memory usage of a persistent runtime

system can increase proportionally to program execution time in the worst case. This

will eventually cause memory overflow problems, which selective recording can avoid in

some cases. Selective recording in the current implementation of LSD is supported only

by coarse grained recording granularity. Other, more sophisticated possibilities include:

1. Selective recording at the variable, source line, and/or procedure level[65]. In this

scheme, persistent runtime systems record execution information only for selected

variables, source lines and/or procedures, and discard other information. This

scheme resembles the conventional breakpoint method but tends to be more powerful

and flexible.

2. Recording only most-recent execution history[20]. In this scheme, persistent runtime

systems record only the most-recent execution history (say, the last 2000 execution

timeslices) and discard all previous information. This scheme is justified by the

assumption that bugs are more likely to be located close to the point at which an

error occurs. Although it is hard to characterize the accuracy of this assumption in

quantitative terms, it is a useful heuristic in practice.

3. Nonuniformly distributed recording[32]. To extend our current scheme of uniformly

distributed recordings, we can distribute runtime state recording nonuniformly.

Recording only the most-recent execution history is an extreme case of this scheme.

Many other distributions are possible, e.g., a recording scheme with n recordings r1,

r2, … rn, in which program execution is laid out over the interval [0, 1], ri records

runtime state at the execution moments 1 - 1/2i, where 1 ≤ i ≤ n.

4. Other options are discussed in recent literature: [56][17].

Although the graphical widgets used in our interface are generally appealing, it can be

improved by designing a few custom widgets. One example concerns the three scrollbars

Open Issues Summary and Comments on Open Research Issues

87

of the history window. A constraint among these scrollbars is that the timeslice of the

starting bar is no later than that of the focus bar, which is itself no later than that of the

ending bar. Our current implementation (three scrollbars each having one dragging area)

does not represent this constraint directly. A better candidate would be a custom

scrollbar with three drag areas.

The graphical animation supported by our debugger is confined to a few predefined

cases. That is because a more generic animation facility requires more general,

sophisticated mappings from variable values to graphical primitives, which often needs

additional semantic knowledge at the user level. Thus potential improvement of our

current implementation is customized animation, which allows users to add custom

viewing procedures. This research area deserves future effort.

A last limitation concerns communication overhead. Implementing our debugger’s

interface and its runtime system as two separate processes makes each of them

relatively easy to design, implement, and debug. However, such an arrangement

introduces context switching and communications overhead. This is not a problem of

LSD, as its current debugging targets are relatively small. But context switch and

communication overhead may become a bottleneck to quick system response when

debugging large programs. This limitation must then be alleviated by combining the two

components into a single process.

8.2 Summary and Comments on Open Research Issues

The lazy debugging paradigm described in this thesis offers a promising approach to

building powerful and high-level debugging tools for a number of programming. Our

experience with LSD shows that lazy debuggers will have several major advantages over

conventional debugging tools.

1. Lazy debuggers are well adapted to the fundamental requirements of program

debugging and easy to use. Users of lazy debuggers do not need to modify their

programs. Complete execution histories are available to lazy debuggers so that users

Open Issues Summary and Comments on Open Research Issues

88

can freely examine large amounts of runtime data objects at arbitrary execution

moments. This eliminates a lot of user input, while supporting systematic debugging

very comfortably.

2. Debugging a program using our lazy debugger seems to be more efficient than

debugging using other debugging tools. Dozens of executions are commonly needed to

locate a program bug by conventional means. Lazy debuggers need only one

execution. Although the execution uses more time and more memory space than

conventional debugging, overhead is generally tolerable. Both the complexity analysis

of the lazy debugging paradigm and the actual performance of our lazy debugger

prototype indicate that our approach has acceptable time overhead and that its

moderate space overhead scales predictably. Furthermore, the single program

execution required comprises only a small portion of the complete debugging process.

Also, more computer hardware resources will surely be available in the future.

3. Given the complete execution history of a debugging run, lazy debuggers can support

many powerful, high-level debugging facilities. The graphical user interface of LSD

shows that the innovative visual debugging environments which then become

available can help users examine large volumes of runtime objects and detect their

relations easily and quickly. Although it is hard to quantify the usability of any visual

debugging environment, our experience does indicate that its form of presentation

helps users focus on their task rather than on technical ones, and makes the

debugging process easier.

Nevertheless, the technology is not so mature that this approach can be applied to every

programming language. We now review a few research issues whose answers would

improve our lazy debugging paradigm, either by improving its performance, by making it

easier to use, or by making it applicable to more programming languages. These issues

are:

1. Persistent arrays. Arrays are basic to almost all programming languages. Use of

efficient persistent arrays would naturally solve many of the difficulties discussed

above.

Open Issues Summary and Comments on Open Research Issues

89

2. Persistent data structures allowing an unbounded number of access points. Even if

no efficient persistent array is available, persistent data structures with an

unbounded number of access points would also make the lazy debugging paradigm

easily applicable to the many programming languages that support pointer aliasing.

3. Navigation in a large execution information space. Effective means of navigation in a

very large information space remains an important research area. Even though our

work has developed some techniques for navigating program execution histories,

many questions are still open. For example, scrollbars are only effective within some

limit, as users often find it very difficult to use then to examine a program consisting

of several thousands lines of code. More work needs to be done on strategies for

displaying many coordinated program pieces together. The general question of how to

present and access large volumes of information in a limited and relatively very small

screen space remains critical for many navigation tools, even though some

breakthroughs are emerging (e.g., Perlin and Fox’s “Pad”[61]).

90

APPENDIX A References

[1] H. Abelson, G. J. Sussman and J. Sussman, “Structure and Interpretation of

Computer Programs”, MIT Press, Cambridge, MA, 1985.

[2] H. Abelson, et al, “Revised4 Report on the Algorithmic Language Scheme”, 1991.

[3] E. Adams and S. S. Muchnick, “Dbxtool: A Window-Based Symbolic Debugger for

Sun Workstations”, Software - Practice and Experience, 16(7), 1986.

[4] H. Agrawal, “Toward Automatic Debugging of Computer Program”, Ph.D. Thesis,

Purdue University, 1992.

[5] H. Agrawal, R. A. Demillo, and E. H. Spafford, “Debugging with Dynamic Slicing

and Backtracking”, Software - Practice and Experience, 23(6), 1993.

[6] A. V. Aho, R. Sethi, and J. D. Ullman, “Compilers, Principles, Techniques, and

Tools”, Addison-Wesley, Reading, MA, 1986.

[7] A. W. Appel, and D. B. MacQueen, “A Standard ML Compiler”, in Functional

Programming and Compiler Architecture, in G. Kahn (eds.), LNCS 274, Springer-

Verlag, 1987.

[8] K. Araki, Z. Furukawa, and J. Cheng, “A General Framework for Debugging”, IEEE

Software, 1991.

References

91

[9] M. J. Bach, “The Design of the Unix Operating System”, Prentice Hall, Englewood

Cliffs, NJ, 1986.

[10] D. Bacon, private communication, 1993.

[11] R. M. Balzer, “EXDAMS - Extendable Debugging and Monitoring System”, AFIPS

Proceedings of Spring Joint Computer Conference, 34, AFIPS Press, Montvale, NJ,

1969.

[12] G. Booch, “Object-Oriented Design with Applications”, Benjamin/Cummings,

Redwood City, CA, 1991.

[13] J. D. Bovey, “A Debugger for A Graphical Workstation”, Software - Practice and

Experience, 17(9), 1987.

[14] H.-D. Boecker, and H. Nieper, “Making the Invisible Visible: Tools for Exploratory

Programming”, Proceedings of the First Pan Pacific Computer Conference, The

Australian Computer Society, Melbourne, Australia, 1985.

[15] H.-D. Boecker, G. Fischer, and H. Nieper, “The Enhancement of Understanding

through Visual Representations”, ACM Proceedings of Computer Human Interaction

1986. ACM Press, 1986.

[16] M. H. Brown, “Algorithm Animation”, MIT Press, Cambridge, MA, 1988.

[17] J. Choi and J. M. Stone, “Balancing Runtime and Replay costs in a Trace-and-

Replay System“, Proceedings of the ACM/ONR Workshop on Parallel and Distributed

Debugging, 1991.

[18] J. Conklinm, “Hypertext: An Introduction and Survey”, IEEE Computer, 20(9),

1987.

[19] S. K. Debray, “Static Inference of Modes and Data Dependencies in Logic

Programs”, ACM Transactions of Programming Languages and Systems, 11(3),

1989.

[20] R. K. Dewar, private communication, 1993.

[21] P. F. Dietz, “Fully Persistent Arrays”, Unpublished draft, 1991.

References

92

[22] E. Dijkstra, “Programming Considered as A Human Activity”, Classics in Software

Engineering, Yourdon Press, New York, NY 1979.

[23] J. R. Driscoll, N. Sarnak, D. D. Sleator, and R. E. Tarjan, “Making Data Structures

Persistent”, Journal of Computer and System Sciences, 38, 1989.

[24] M. Eisenstadt, “Tales of Debugging from the Front Lines”, in J. Spohrer and C.

Cook (Eds), Empirical Studies of Programmers: Proceedings of the Fifth Workshop,

Norwood, NJ, 1993.

[25] P. M. Ferguson, “The Motif Reference Manual”, Volume 6B of the O’Reilly Series on

X, O’Reilly Associates, 1983.

[26] D. P. Friedman, C. T. Haynes, and E. Kohlbecker, “Programming with

Continuations”, in P. Pepper (eds.), Program Transformation and Programming

Environments, Springer-Verlag, 1984.

[27] T. Fukaya and M. Nagata, “An Automatic Debugging Approach for Logic

Programming with a Method for Propagating Constraints”, COMPSAC’91, The 15th

Annual International Computer Software and Applications Conference, IEEE

Computer Society Press, 1991.

[28] J. Griffin, “Parallel Debugging System User’s Guide”, Technical Report, Los Alamos

National Laboratory, 1987.

[29] R. E. Griswold, “The Implementation of the Icon Programming Language”,

Princeton University Press, Princeton, NJ, 1986.

[30] R. E. Griswold and M. T. Griswold, “The Icon Programming Language”, Prentice-

Hall, Englewood Cliffs, NJ, 1990.

[31] P. K. Harter Jr., D. M. Heimbigner, and R. King, “IDD: An Interactive Distributed

Debugger”, Proceedings of the 5th International Conference on Distributed

Computing Systems, IEEE, 1985.

[32] J. Hong, private communication, 1993.

[33] IEEE, “IEEE Standard Glossary of Software Engineering Terminology”, IEEE, New

York, NY, 1990.

References

93

[34] S. Isoda, S. Takao and O. Yuji, “VIPS: A Visual Debugger”, IEEE Software, 4(3),

1987.

[35] D. R. Jefferson, “Virtual Time”, ACM Transactions on Programming Languages and

Systems, 7(3), 1985.

[36] G. W. Jones, “Software Engineering”, John Wiley and Sons, New York, NY, 1990.

[37] B. Korel and J. Laski, “Dynamic Program Slicing”, Information Processing Letters,

29(3), 1988.

[38] L. Lamport, “Time, Clocks, and the Ordering of Events in a distributed System”,

Communication of ACM, 21(7), 1978.

[39] S. Lauesen, “Debugging Techniques”, Software - Practice and Experience, 9(1),

1979.

[40] T. J. LeBlanc and J. M. Mellor-Crummey, “Debugging Parallel Programs with

Instant Replay”, IEEE Transactions on Computer, 36(4), 1987.

[41] C. H. LeDous, and D. S. Parker Jr., “Saving Traces for Ada Debugging”, Ada in Use,

Proceedings of the Ada International Conference, ACM, Cambridge University Press,

1985.

[42] M. A. Linton, “The Evolution of Dbx”, Proceedings of the 1990 Usenix Summer

Conference, Anaheim, CA, 1990.

[43] Z. Liu, “Computer Support for Information Exploration and Presentation: A

Survey”, Department of Computer Science, New York University, 1992.

[44] J. Lyle, “Evaluating Variations on Program Slicing for Debugging”, Ph.D. Thesis,

University of Maryland, 1984.

[45] A. Di Maio, S. Ceri and S. C. Reghizzi, “Execution Monitoring and Debugging Tool

for Ada using Relational Algebra”, Ada in Use, Proceedings of the Ada International

Conference, ACM, Cambridge University Press, 1985.

[46] C. E. McDowell, and D. P. Helmbold, “Debugging Concurrent Programs”, ACM

Computing Surveys, 21(4), 1989.

References

94

[47] R. Milner, M. Tofte, and R. Harper, “The Definition of Standard ML”, MIT Press,

Cambridge, MA, 1990.

[48] T. G. Moher, “PROVIDE: A Process Visualization and Debugging Environment”,

IEEE Transaction on Software Engineering, 14(6), 1988.

[49] B. A. Myers, “Displaying Data Structures for Interactive Debugging”, Xerox PARC

Technical Report CSL-80-7, 1980.

[50] B. A. Myers, “Incense: A System for Displaying Data Structures”, SIGGRAPH’83

Conference Proceedings of Computer Graphics, 17(3), 1983.

[51] B. A. Myers, R. Chandhok, and A. Sareen, “Automatic Data Visualization for Novice

Pascal Programmers”, 1988 IEEE Workshop on Visual Languages, 1988.

[52] B. A. Myers, “The State of the Art in Visual Programming and program

Visualization”, in Alistair Kilgour and Rae Earnshaw (Eds.), Graphics Tools for

Software Engineers, Cambridge University Press, Cambridge, Great Britain, 1989.

[53] G. J. Myers, “The Art of Software Testing”, Wiley, New York, NY, 1979.

[54] T. H. Nelson, “Interactive Systems and the Design of Virtuality”, Creative

Computing, 6(11, 12), 1980.

[55] T. H. Nelson, “Computer Lib/Dream Machines”, Rev. ed., Tempus Books of

Microsoft Press, Redmond, WA, 1987.

[56] R. H. B. Netzer, “Optimal Tracing and Replay for Debugging Shared-Memory

Parallel Programs”, ACM/ONR Workshop on Parallel and Distributed Debugging,

San Diego, CA, 1993.

[57] J. Nielson, “Hypertext and Hypermedia”, Academic Press, San Diego, CA, 1990.

[58] J. Nielson, “Usability Engineering”, Academic Press, San Diego, CA, 1993.

[59] D. A. Norman, “The Design of Everyday Things”, Doubleday, New York, NY, 1990.

[60] Panel Session on Debugging Methodology, Proceedings of Symposium on High Level

Debugging, Asilomar, CA, 1983.

[61] K. Perlin and D. Fox, “Pad: An Alternative Approach to the Computer Interface”,

Proceedings of 1993 ACM SIGGRAPH Conference, 1993.

References

95

[62] D. Plattner and J. Nievergelt, “Monitoring Program Execution: A Survey”, IEEE

Computer, 1981.

[63] C. Rutkowski, “An Introduction to the Human Applications Standard Computer

Interface, Part 1: Theory and principles”, BYTE, 7(11), 1982.

[64] D. Savic, “Object-Oriented Programming with Smalltalk/V”, Ellis Horwood, 1990.

[65] E. Schonberg, private communication, 1993.

[66] J. T. Schwartz, “An overview of Bugs”, in R. Rustin (eds.), Debugging Techniques in

Large Systems, 1st Courant Computer Science Composium, Prentice-Hall,

Englewood Cliffs, NJ, 1971.

[67] J. T. Schwartz, R. K. Dewar, E. Dubinsky, and E. Schonberg, “Programming with

Sets: A Introduction to SETL”, Springer-Verlag, 1986.

[68] J. T. Schwartz, “Proposal for Systematic Debugging Technique Using Inductive

Assertions”, Technical Report #320, Computer Science Department, NYU, 1987.

[69] E. Y. Shapiro, “Algorithmic Program Debugging”, MIT Press, 1983.

[70] T. Shimomura, and S. Isoda, “VIPS: A Visual Debugger For List Structures”,

COMPSAC’90, The 14th Annual International Computer Software and Applications

Conference, IEEE Computer Society Press, Chicago, IL, 1990.

[71] T. Shimomura, and S. Isoda, “CHASE: A Bug-Locating Assistant System”,

COMPSAC’91, The 15th Annual International Computer Software and Applications

Conference, IEEE Computer Society Press, 1991.

[72] B. Shneiderman, “Reflections on Authoring, Editing, and Managing Hypertext”, in

Edward Barrett (eds.), The Society of Text, MIT Press, Cambridge, MA, 1989.

[73] B. Shneiderman, “Design the User Interface: strategies for effective human-

computer interaction”, 2nd edition, Addison-Wesley, Reading, MA, 1992.

[74] R. Snodgrass, “Monitoring in A Software Development Environment: A Relational

Approach”, Proceedings of the Software Engineering Symposium on Practical

Software Development Environments, ACM Press, 1984.

References

96

[75] R. M. Stallman and R. H. Pesch, “A Guide to the GNU Source-Level Debuggers”,

Free Software Foundation, 4.01 revision, 2.77 edition, 1992.

[76] Sun Microsystems, Inc., “OLIT 3.0 Widget Set Reference Manual”, Sun

Microsystems, Inc., 1991.

[77] R. E. Tarjan, “Amortized computational complexity”, SIAM Journal on Algebra and

Discrete Methods, 6(2), 1985.

[78] M. Timmerman, F. Gielen and P. Lambrix, “High Level Tools for the Debugging of

Real-Time Multiprocessor Systems”, Proceedings of the ACM/ONR Workshop on

Parallel and Distributed Debugging, 1993.

[79] F. Tip, “A Survey of Program Slicing Techniques”, to be appeared in Computing

Survey, 1994.

[80] A. P. Tolmach and A. W. Appel, “Debugging Standard ML Without Reverse

Engineering”, Proceedings of 1990 ACM Conference on Lisp and Functional

Programming, ACM Press, 1990.

[81] P. R. Wilson, “Uniprocessor Garbage Collection Techniques”, Submitted to ACM

Computing Surveys, 1993.

[82] P. R. Wilson and T. G. Moher, “Demonic Memory for Process Histories”, Proceeding

of SIGPLAN 89 Conference on Programming Language Design and Implementation,

1989.

97

APPENDIX B Test Programs

B.1 SETL Quadruple Scanner
program scanner;
-- This program scans a SETL quadruple file generated by David Bacon’s SETL translator,
-- strips any unnecessary code in the file, and prints its quadruples.

read (file);
open (file, "TEXT");
geta (file, line);
while not eof loop

if line(1) /= "#" then
if line(1) = "%" then

context := line(2..);
elseif context = "CODE" then

print (line);
end if ;

end if ;
geta (file, line);

end loop ;

end scanner;

B.2 Prime Numbers
program primes;
-- This program computes all the prime numbers up to N,
-- using the sieve of Eratosthenes.

read (n);

98

primes := [2];
candidates := {3,5..N};

for num in [3,5..N] | num in candidates loop
primes with := num;
candidates less := num;
for multiple in [num*num,(num+2)*num..N] loop

candidates less := multiple;
end loop ;

end loop ;

print (’Primes in the range 1 to’,N,’:’);
print (primes);

end primes;

B.3 All-Solution N-Queens
program N_Queen;
-- This program computes all the solutions of the N-queens problem,
-- for an arbitrary natural number N.
-- Thank Zhijun Liu for this program.

var n;
read (n);
solve (1,[[1..n]]*n,[]);

procedure solve (index, tab, answer);

var newtab := [];
if index=n+1 then

print (answer);
else

for i in tab (index) loop
for tab_index in [index+1..n] loop

newtab (tab_index) := [x:x in tab (tab_index) | x/=i
and abs (x-i) /= abs (tab_index-index)];

end loop ;
solve (index+1, newtab, answer+[i]);

end loop ;
end if ;

end solve;

end N_Queen;

