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Abstract

We study competitive on-line scheduling in uniprocessor and multiprocessor real-time en-

vironments. In our model, tasks are sporadic and preemptible. Every task has a deadline

and a value that the system obtains only if the task completes its execution by its dead-

line. The aim of a scheduler is to maximize the total value obtained from all the tasks that

complete before their deadline.

An on-line scheduler has no knowledge of a task until it is released. The problem is to

design an on-line scheduler with worst case guarantees even in the presence of overloaded

periods. The guarantee is given in terms of a positive competitive factor. We say that

an on-line algorithm has a competitive factor of r, 0 < r � 1, when under all possible

circumstances (i.e, task sets) the scheduler will get at least r times the best possible value.

The best value is the value obtained by a clairvoyant algorithm. In contrast to an on-line

scheduler, the clairvoyant algorithm knows the entire task set a priori at time zero.

When a uniprocessor system is underloaded there exist several optimal on-line algo-

rithms that will schedule all tasks to completion (e.g., the Earliest Deadline First algo-

rithm). However, under overload, these algorithms perform poorly. Heuristics have been

proposed to deal with overloaded situations but these give no worst case guarantees.

We present an optimal on-line scheduling algorithm for uniprocessor overloaded systems

called D-over. D-over is optimal in the sense that it has the best competitive factor possible.

Moreover, while the system is underloaded, D-over will obtain 100% of the possible value.

In the multiprocessor case, we study systems with two or more processors. We present

an inherent limit (lower bound) on the best competitive guarantee that any on-line parallel

real-time scheduler can give. Then we present a competitive algorithm that achieves a worst

case guarantee which is within a small factor from the best possible guarantee in many

cases.
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1.1 Introduction

In modern life, real-time computer systems are gaining importance at a rapid pace. Once

limited to exotic applications, real-time applications now can be found in many civilian

and military products. These range from multi-million dollar gadgets like (the proposed)

space station to relatively mundane products like cars and airplanes. Real-time systems

control the production and safety in power plants, factories, labs and perhaps soon in our

homes.

1.1.1 Real-Time Systems

A real-time system is usually one that controls and/or monitors a physical (real-world)

process. This means that the system gathers information from external sensors. It pro-

cesses this information and then usually performs some action. The nature of the physical

process might dictate a strict time limit for the system to respond. If this time limit is

passed|for the monitoring functions| then the information from the sensors would be

lost or outdated; for the controlling functions a missed deadline might mean that the action

eventually taken is not appropriate any more.

This leads to the notion of deadline which is a common thread among all real-time

system models and the core of the di�erence between real-time systems and time-sharing

systems. The deadline of a task is the point in time before which the task must complete

its execution.

1.1.2 Scheduling

An essential component of a computer system is the scheduling mechanism, that is the strat-

egy by which the system decides which task should be executed at any given time. The

problem of real-time scheduling is di�erent from that of multiprogramming time-sharing

scheduling because of the role of timing constraints in the evaluation of the system perfor-

mance. Normal multiprogramming time-sharing systems are expected to process multiple

job streams simultaneously, so the scheduling of these jobs has the goals of maximizing

throughput and maintaining fairness. In real-time systems the primary performance is not

to maximize throughput or maintain fairness, but instead to perform critical operations

within a set of user-de�ned critical time constraints [29].
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When a system can meet all its tasks' deadlines we say that this set of tasks is schedula-

ble and the system is underloaded. Otherwise, if at least one task cannot meet its deadline

then the system is overloaded. A common approach, in practical systems, to deal with

overload is to try to prevent it. This is done by ensuring that an abundance of process-

ing power is available and is su�cient to handle the worst possible situation (i.e. load).

The problem with this approach is that such systems are extremely ine�cient and there-

fore expensive. Moreover, overload can still arise either as the result of failures of some

computational resources or as a transient condition (e.g., an overloaded communications

circuit). As a result, some important deadlines might be missed, resulting in unpredictable

failures. We would like to have schedulers that would minimize the need for processing

resources with two properties: (i) in an underloaded environment they would schedule all

tasks to completion and (ii) in the presence of overload, the damage to the overall system

performance will be minimal and predictable.

In addition to its deadline a task can be characterized by the following parameters: its

release time (sometimes referred to as start-time or request time), its computation time, its

period1 for a periodic task and its priority if priorities are used2. Additionally each task

can be associated with some value; this value will be obtained if the task completes prior

to its deadline. A scheduler uses the task's parameters in its decision making, it is said

to be an on-line scheduler if its decisions do not depend on a priori knowledge of future

requests. In other words, the parameters of a task are not known prior to its release time.

Naturally, one cannot predict the entire system behavior at the system design stage.

For that reason on-line scheduling suggests itself as a viable and important �eld of research.

The basic problems that we address in this context are: The feasibility problem: given set

of tasks, how can we test that this set is schedulable? What is the complexity of such

a test? Which on-line schedulers are optimal for overloaded and underloaded systems?

What are the time and storage complexities of these schedulers? And, most important,

what performance guarantees can a scheduler give in a overloaded system? Of course, the

answers to the above-mentioned questions vary greatly depending on the assumptions of

the model under consideration. In the next sections we describe some models that were
1A task is called periodic if it has regular request times i.e. there is a constant time interval between

consecutive request for that task. This interval is the period of this task.
2Another parameter is the laxity of a task (also called the slack time), distance to its deadline minus its

remaining-computation-time. Hence, the laxity of a task is a measure of its urgency| a task with small
laxity would have to be scheduled soon in order to meet its deadline.
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studied, later we present our model.

1.2 Background

The literature presents a wide variety of real-time models corresponding to abstractions

of real-world real-time systems. Di�erent models have di�erent, sometimes contradictory,

assumptions. In the sequel we will list the main characteristics (parameters) of real-time

systems. Di�erent models can be characterized by the choices made for each of these

parameters.

� Hard, Soft and Firm Real-time Systems.

In a real-time system, when a task is requested to do some service there is a time limit

associated with this request. If this time limit elapses before the task completes its

execution, the task has failed. This failure might lead to a total collapse of the system

in which case we say that this is a hard real-time system. For example, in a nuclear

power plant, a delay in the response of the task that is responsible for cooling the

overheated reactor can have catastrophic results. Systems in which deadlines may

occasionally be missed with only degradation in performance of the entire system

but not a complete failure are called soft real-time systems. Sometimes, in a soft

real-time system a task that missed its deadline should nevertheless be completed

i.e. its service though late is still valid and helpful. For example suppose an aircraft's

position must be computed every 100 milliseconds to ensure a positional accuracy of

25 meters. A delayed position update might result in a loss of positional accuracy,

while missing it altogether would exacerbate the loss|Locke [29]. In a special kind

of soft real-time, called �rm real-time3, if a task missed its deadline its response has

no value{it is not helpful at all [4,11]. For example, suppose a task is responsible

for collecting the characters received by an antenna. This antenna has very limited

storage, hence if the task is late some characters would be missed and the transmission

is lost. Our work here assumes �rm deadlines.

In a hard real-time system overload should never occur, hence one must use an

optimal scheduler and supply it with enough processing power for the worst-case

3Other papers [5] denote such deadlines as hard. The reader should therefore be aware of the de�nitional
variations.
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scenario. Optimal schedulers (for the underloaded case) are described in Liu and

Layland [28], Dertouzos [7] and Mok [30]. In a soft real-time system some tasks

might miss their deadlines. The scheduler has the di�cult task of deciding which

tasks should be aborted in order to maximize the overall throughput of the system. In

a system with mixed hard and soft deadlines the tasks with hard deadlines are called

critical tasks [37]. In this case, the scheduler is required to meet the deadlines of

these tasks even in the presence of overload. A scheduler that satis�es this condition

is called stable [33].

� Periodic vs. Aperiodic Tasks.

Periodic tasks are common in many practical real-time systems. If a system is com-

prised of only periodic tasks then the scheduling problem becomes easier because of

the regularity of events. Optimal algorithms for pure periodic systems were the �rst

to be found (Liu and Layland [28]). Unfortunately a purely periodic system is an

unrealistic model|some tasks in any system are non-periodic (such as tasks that

handle emergency situations, operator commands etc.). If the non-periodic tasks

are of low importance (i.e. have soft deadlines) they can be treated as background

tasks. They will be scheduled whenever the processor is not being utilized by the

periodic tasks [28] or will be scheduled using more sophisticated sporadic servers [36].

However, in a realistic system some of the sporadic (aperiodic) tasks will de�nitely

have high importance and hard deadlines, in this case one tries to translate aperiodic

tasks into equivalent periodic tasks based on the worst case frequency and computa-

tion demands of the aperiodic tasks [30]. In this work we assume that all tasks are

aperiodic.

� Preemptive vs. Nonpreemptive Tasks.

We assume that a task can be preempted at any time. This is a realistic assumption

since most real-time operating systems enable preemption. If preemption is not

possible the scheduling problem is easier since there is less the scheduler can do [14].

However, among the studies that assume preemption there are di�erences as to the

treatment of the cost associated with preemption (i.e. task-switching). Some assume

that task-switching takes virtually no time at all (e.g., [8,23,28] and our current work);
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others try to account for the task switching time by adding it to the processing time

of the preempted tasks [8,28,29,37].

� Uniprocessor vs. Multiprocessor Systems

For the uniprocessor system a variety of optimal schedulers were presented as well

as heuristics for scheduling an overloaded system. The problem becomes much more

di�cult in a multiprocessor system (see also sections 1.2.4 and 1.4.1). Mok and

Dertouzos [8] showed that optimal on-line scheduling algorithm does not exist in

multiprocessor environment.

� Knowledge of Task's Parameters Start-time, Computation-time, Deadline, Period

and Value.

Virtually all schedulers assume some knowledge of the task's parameters. This knowl-

edge can be exact or stochastic. If parameters are known a-priori then an optimal

scheduling sequence can be found at compile time (Mok and Dertouzos [8] showed

that this a-priori knowledge is necessary in a multiprocessor system). In practice,

however, there are many occasions where the parameters of the tasks are not known

beforehand. Even if such information is available the computation might be NP-

hard [8].

� Dynamic vs. Static Scheduling.

This dichotomy is manifested in priority-driven algorithms. If static priority assign-

ment is used then once a task is released a priority is assigned to it. This priority

cannot be changed4. If a dynamic scheduler is used, then the priority assignment of

a task can be changed at any time.

Liu and Layland [28] presented a static priority-driven algorithm for a purely periodic

system. They also describe a mixed scheduling algorithm|some priorities are �xed

and some are dynamic. Sha, Rajkumar and Lehoczky [34] study the use of dynamic

priority-driven schedulers for the priority inversion problem. The feasibility and

complexity of �xed [27] and dynamic [23,26] priority scheduling have been studied.

� Independent vs. Dependent tasks.

4In addition, all requests for a speci�c periodic task always have the same priority (Liu and Layland [28]).
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Tasks are said to be independent if the request for a certain task does not depend on

the initiation or completion of requests for other tasks and also no task need wait for

an action to be taken by another task in order to continue its execution. Otherwise,

tasks are said to be dependent. A possible source of dependency between tasks is the

need for synchronization between tasks. For example, suppose a semaphore is used

to force mutual exclusion between tasks making access to some shared data object.

Once one task holds the lock for this semaphore, all other tasks that need access to

this shared data object must wait and are said to be blocked. Another example of

dependency occurs when a task requests some service (e.g. I/O) and this service is

given according to a FIFO queue, hence a task must wait for the completion of all

earlier requests.

Sha, Rajkumar and Lehoczky [34] investigate the priority inversion problem that

arises from the use of semaphores to utilize mutual exclusion. Mok [30] showed

that with mutual exclusion constraints it is impossible to �nd an optimal on-line

scheduler. He also showed that the following problem is NP-hard: deciding whether

a set of periodic tasks that use semaphores is feasible.

We have presented eight parameters in which real-time models can di�er. Of course,

there are other important issues (e.g., fault-tolerance) that are beyond the scope of this

work. For a survey of scheduling issues for uniprocessor and multiprocessor systems see

Audsley and Burns [1] and Cheng et. al. [5].

1.2.1 Optimal Scheduling Algorithms

First, let us describe optimal schedulers for the uniprocessor environment, later we will

discuss multiprocessor scheduling.

1.2.2 Rate Monotonic Scheduling

Liu and Layland [28] presented the rate monotonic priority assignment scheduling algo-

rithm. They assumed the following:

� Uniprocessor environment.

� All tasks are periodic.
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� The deadline for each task coincides with the end of its period.

� Deadlines are hard.

� The computation time for each task is constant for that task and does not vary with

time.

� Tasks are independent.

� Tasks are preemptible and task-switching takes no time.

Recall that a priority-driven scheduler is static if the priority assignment of a task is

�xed throughout its computation. The rate-monotonic (RM) scheduling algorithm is a

static priority-driven scheduler. A task is assigned a priority according to the length of

its period so that tasks with shorter periods are assigned higher priorities. At any given

moment the task with the highest priority is executed. Thus, the priority assignment is

independent of the semantic importance and the computation time of the tasks. Liu and

Layland proved that RM is optimal among all static preemptive scheduling algorithms

for periodic tasks with hard deadlines. This means that a task set which cannot meet its

deadlines with RM will not be able to be scheduled with any �xed priority assignment

scheduler. The work of Liu and Layland has been extended to include:

� Aperiodic tasks [6,24,30,36].

� Deadlines occurs before the end of the period (see the deadline monotonic priority

assignment [36]).

� Dependency between tasks (e.g., using semaphores [30,34]).

� Multiprocessor environments [9,23,31].

1.2.3 Time-driven Optimal Schedulers

Liu and Layland [28] studied a dynamic scheduling algorithm for periodic tasks system -

the earliest-deadline-�rst (D) algorithm. This algorithm schedules at every instant the task

with the nearest deadline. They proved that earliest-deadline-�rst is an optimal scheduling

algorithm in their model (periodic tasks). Note that RM is optimal only among the static
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schedulers so D may schedule all tasks in a case where RM cannot5. Dertouzos [7] showed

that D is optimal even in the presence of non-periodic tasks. He assumed (i) arbitrary

request and deadline times for each task. (ii) arbitrary and unknown to the scheduler

execution time for each request and (iii) underload. Mok [30] proved that the least-slack

(LS) algorithm is also an on-line optimal algorithm. LS schedules at any time the task with

the least slack time (see footnote 2 for de�nition of slack time). However, one additional

assumption is needed - all time parameters are non-negative integers. All requests times,

computation times and deadlines are integers; also, preemption is possible only at integral

time instants6. This assumption is not needed for D.

D has two major advantages over LS. The �rst is that D is driven by deadlines alone

and does not require knowledge of the computation time while LS needs both. The second

is that LS tend to generate frequent preemptions7.

It might be impossible to �nd an on-line optimal algorithm when any of the above

assumptions is relaxed. For example, Mok [30] showed that with mutual exclusion con-

straints (i.e. tasks are not independent) it is impossible to �nd an optimal on-line scheduler

for uniprocessor.

1.2.4 Multiprocessor Optimal Scheduling

D and LS are not optimal in the multiprocessor case. Their optimality proofs do not

transfer from the uniprocessor setting, since they lead to situations in which the same task

is scheduled in two or more processors at one time instant (Dertouzos and Mok [8]).

Multiprocessor real-time scheduling is an active �eld of research. Both shared mem-

ory [23,31] and distributed [30,37,39] architectures have been studied. Static binding of

tasks to processors (i.e., no migration) is assumed in some studies [30,31] while dynamic

binding is assumed in others [8,23].

Dertouzos and Mok [8] proved that for two processors or more, an optimal scheduling

algorithm must have a priori knowledge of the request times, hence no on-line optimal

algorithm is possible in the multi-processor case. They also showed that once a task is

5An example can be found in Liu and Layland's paper [28, p. 188].
6This assumption can be justi�ed since in practice, time parameters are presumably given in integral

multiples of a basic time unit e.g., a processor instruction cycle.
7For example, look at the case where two tasks both have the least laxity. Each task will execute for

one time unit and then will be preempted by the other.
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released an optimal scheduler must know its deadline and computation time. Hong and

Leung [13] showed that for the special case where all tasks share the same deadline an

optimal on-line scheduler exists. Henn [12] studies the problem of scheduling tasks with

precedence constraints in uniprocessor and multiprocessor systems. In his model, all tasks

are released at time zero. Leung [25] and Lawler and Martel [23] studied the feasibility

and complexity of multiprocessor scheduling for periodic task sets.

1.3 Scheduling in the Presence of Overload

Overload is a necessary evil of real-time systems. An ideal scheduler would schedule all

tasks to completion in an underloaded environment and would minimize the overall damage

to the system performance in the presence of overload. Scheduling itself should incur little

overhead.

When overload occurs, a scheduling algorithm must discard some tasks. This should

be done in a way that maximizes the overall value of the system. Locke [29] suggested a

heuristic called best e�ort (BE) in an attempt to approximate such a scheduler.

Locke assumed that tasks are independent, preemptible and have arbitrary arrival

times. The execution time of a task is known only stochastically. Each task has a value

associated with it, which is given as a value function. A value function is a continuous

function of the task's completion time. Value functions can model various kinds of time-

constraints, in particular �rm and soft deadlines8 . The distributions of the task parameters

become known to the scheduler only upon the task release.

When the system is underloaded, BE operates like the earliest-deadline-�rst algorithm;

however, if an overload condition is detected, BE abandons the tasks with the lowest value

density9 in order to bring the system back to normal load. Since the task parameters

are known only stochastically all evaluations are probabilistic (e.g. the probability that

the system is overloaded, the expected value-density of a task etc.). This makes Locke's

algorithm much more complicated than the above description.

To evaluate the performance of BE, Locke executed a battery of elaborate tests. The

8For example, Locke considers value functions that increase to a point (referred to as the critical point)
and then decrease corresponding to tasks for which completion should be delayed.

9The value density of a task is its value divided by its remaining-execution time. Tasks with higher
value density produce more value per execution-time-unit.
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tests concluded that BE performs very well in a wide range of environments and is compa-

rable or better than the other schedulers it was tested against in most cases. The results

suggests that BE is a practical heuristic. However, these are only statistical results and

there are pathological situations where BE performs very poorly. These result brought us

and other researches to study the question of on-line scheduling with worst-case guarantees

even when the system is overloaded.

1.4 Our Model of Real-Time System

Here, we informally describe our assumptions. The formal model de�nitions and assump-

tions will come later in chapter 2.

We study on-line scheduling of systems of sporadic (aperiodic) tasks. Tasks are inde-

pendent (i.e., no precedence constraints) and can be preempted at any time. A preempted

task can later resume its work. We assume that preemption and resumption take no time10

and scheduling algorithm incurs no overhead11. In our basic12 model, the scheduler is given

no information about a task before its release time. When a task is released, its value,

computation time and deadline are known precisely. If a task completes before its deadline,

then the system acquires its value. Otherwise, the system acquires no value for that task.

Hence, we assume a �rm on-line real-time model. The goal of the scheduler is to obtain as

much value as possible.

In the studies of competitive analysis [4,15,35], one can quantify the performance of an

on-line algorithm by comparing it with a clairvoyant (o�-line) algorithm. A clairvoyant

scheduler [30] has complete a priori knowledge of all the parameters of all the tasks. A

clairvoyant scheduler can therefore choose a \scheduling sequence" that will obtain the

maximum possible value achievable by any scheduler13. We say (as in [4,15,35]) that an

on-line algorithm has a competitive factor r; 0 � r � 1, if and only if it is guaranteed

to achieve a cumulative value of at least r times the cumulative value achievable by a

10This is assumed for example by Liu and Layland [28], Lawler and Martel [23] and Dertouzos and
Mok [8]. This is a reasonable assumption since real time kernels are designed to keep all tasks' code and
data in memory thereby avoiding paging-induced faults during context switches; also, such kernels are built
with short code path lengths.

11This can be done be a special dedicated processor for the operating system scheduling activities
12Some extensions are considered, see appendixes C and B.
13Finding the maximum achievable value for such a scheduler, even in the uniprocessor case, is reducible

from the knapsack problem [10]; hence is NP-hard.
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clairvoyant algorithm on any set of tasks. For convenience of notation, we use competitive

multiplier as the �gure of merit. The competitive multiplier is de�ned to be \one over the

competitive factor". The smaller the competitive multiplier is, the better the guarantee

is. Inherent bounds on the best possible competitive multiplier are devised (in Baruah

et. al. [3] and in section 4.1). Our goal is to devise on-line algorithms with worst case

performance guarantees as close as possible to the inherent bounds.

1.4.1 Competitive On-Line Schedulers

We need some terminology in order to state the known results in competitive on-line

scheduling:

Notation 1.4.1

� Value Density The value density of a task is its value divided by its computation

time.

� Importance Ratio The importance ratio of a collection of tasks is the ratio of the

greatest value density to the least value density. For convenience, we normalize the

smallest value density to be 1. When the importance ratio is 1, the collection is said

to have uniform value density, i.e., a task's value equals its computation time. We

will denote the importance ratio of a collection by k.

Koren et. al. [4,16] suggested the �rst on-line scheduling algorithm with a performance

guarantee for an overloaded system. They assumed a simpli�ed variation of the task model

that assumes uniform value density. This algorithm is called D-star (D�) since it behaves

like earliest-deadline-�rst (D) in an underloaded situation. D� executes to completion all

the tasks with deadlines in underloaded intervals14. D� also guarantees that all the tasks

with a deadline in an overloaded interval will achieve a cumulative value of at least one-�fth

of the length of the overloaded interval. However, D� is not competitive (i.e., it has in�nite

competitive multiplier).

Baruah et. al. [4,3] demonstrated, using an adversary argument that, in the uniform

value density setting, there can be no on-line scheduling algorithm with a competitive

multiplier smaller than 4.

14The de�nition of an underload interval appears there [4,16].
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Koren and Shasha described [19] an algorithm called DD-star (DD�), that has a com-

petitive multiplier of 4 in the uniform value density case and o�ers 100% of the possible

value in the underloaded case. This showed that the bound of 4 is tight in the uniform

value density case. Wang and Mao [38] independently reported a similar guarantee.

On the lower bound side, Baruah et. al. [3,4] showed for environments with an impor-

tance ratio k, a bound of (1 +
p
k)2 on the best possible competitive multiplier of an on-line

scheduler. This result and some pragmatic considerations reveal the following limitations

of the competitive scheduling algorithms described above:

1. The algorithms all assume a uniform value density, yet some short tasks may be more

important than some longer tasks.

2. The algorithms all assume that there is no value in �nishing a task after its deadline.

But a slightly late task may be useful in many applications.

3. The algorithms all assume that the computation time is known upon release. How-

ever, a task program that is not straight-line may take di�erent times during di�erent

executions.

Dover, the on-line scheduling algorithm presented in chapter 3 (and its extensions in ap-

pendices B and C) addresses all these limitations.

Multiprocessor Environments

Locke [29, pp. 124-134] presented a simple heuristic extending his best e�ort scheduling

for multiprocessor environments. Ramamritham and Stankovic [37] studied the question

of scheduling �rm deadline tasks in a distributed environment. They proposed a scheduler

that assumes, at the design phase, that the system is underloaded for critical tasks. The

non-critical tasks are scheduled dynamically and heuristically using any surplus processing

power.

Zhou et. al. presented an on-line algorithm [39]15 for distributed real-time systems.

Their model resembles ours but our goal is to give worst case guarantees for value obtained

(even for overloaded systems) while their goal is to generate a schedule e�ciently when

the system is underloaded (i.e, all tasks can be scheduled).

15
And additional references within.
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Wang and Mao [3 38] showed a lower bound of 2 (on the competitive multiplier) and

presented an algorithm that achieved this bound for an arbitrary even number of processors

assuming uniform value density and no slack time.

1.5 Main Results

This dissertation presents results for uniprocessor systems and for systems with two or

more processors.

1.5.1 Uniprocessor Environments

We present an on-line scheduling algorithm called Dover that has an optimal competitive

multiplier of (1 +
p
k)2 for environments with importance ratio k. Hence we show that

the bound of Baruah et. al. [3 4] is tight for all k. Dover also gives 100% of the value

obtainable by a clairvoyant scheduler when the system is underloaded.

Dover can be implemented using balanced search trees and runs at anamortized cost

of O(logn) operations per task wheren bounds the number of tasks in the system at any

instant.

We also investigated two important extensions to the task model presented earlier.

� Gradual Descent:

We relax the �rm deadline assumption. Tasks that complete after their deadline can

still have a positive value though less than their initial value. As in Locke [29] the

task's value is given by a value function which depends on its completion time.

We show that under a variety of value functions an appropriate version of Dover has

a competitive multiplier of (1 +
p
k)2 for environments with importance ratio k.

� Situations in which the exact computation time of a task is not known:

Suppose the on-line scheduling algorithm does not know the exact computation time

of a task upon its release. However for every task T an upper bound on its possible

computation time denoted by cmax is given and the actual computation time of T

denoted by c satis�es:

(1� �) � cmax � c � cmax
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for some 0 � � < 1.

We show that in that case Dover has a competitive multiplier of:

(1 +
p
k)2 + (� � k)(1 +

p
k) + 1

We also show that in this setting no on-line scheduler can guarantee 100% of the

value obtainable by a clairvoyant algorithm for underloaded systems.

1.5.2 Multiprocessor Environments

We present algorithms and lower bound results for multiprocessor scheduling of overloaded

real-time systems. We consider two memory models: a shared memory model where thread

migration is cheap and a distributed memory model where thread migration is impractical.

In both cases we assume a centralized scheduler. In the �rst model tasks canmigrate

cheaply (and quickly) from one processor to another. Hence if a task starts to execute on

one processor it can later continue on any other processor (and migration takes no time).

In the second model (the �xed model) once a task starts to execute on one processor

it cannot execute on any other processor. For both models we assume that preemption

within a processor takes no time.

� Inherent Bound on The Best Possible Competitive Multiplier

For a system with n processors and maximal value density of k > 1 there is no on-line

scheduling algorithm with competitive multiplier smaller than k

(k�1)n(k
1

n � 1).

When n tends to in�nity this lower bound tends to k

(k�1) ln k.

This result holds even when migration is allowed.

� The MOCA Algorithm

We present an algorithm that does not use migration called MOCA: Multiprocessor

On-line Competitive Algorithm. For a system with 2n processors and importance

ratio of k > 1 this algorithm has an algorithmic guarantee of at most



CHAPTER 1. INTRODUCTION 16

1 + 2n min
(0�!<n;n=!+ )

8>>>>>><
>>>>>>:

max
1�i� 

k

i

 

! +
(k

i

 �1)

(k

1

 �1)

9>>>>>>=
>>>>>>;

When n tends to in�nity this bound is at most 2 ln k + 3 which is within a small

multiplicative factor from the lower bound for the same system.

� Scheduling Algorithms for Two-Processor Systems

We present an algorithm called the Safe-Risky algorithm for two-processor systems

with uniform value density (i.e. n = 2 and k = 1) that achieves the best possible

competitive multiplier of 2 even when tasks may have slack time but migration

is allowed16. For the \No-Migration" model a variant of this algorithm called the

Safe-Risky-(�xed) achieves a competitive multiplier of 3.

1.6 Dissertation Overview

In chapter 2 we present some notation as well as formal de�nitions and assumptions of

our model. In chapter 3 we present our uniprocessor results while chapter 4 gives the

multiprocessor results. These chapters correspond to and extend the material in Koren

and Shasha [17 18 20 22]. The main body of the dissertation ends with a short conclusion

chapter. It includes a summary of the current state of the art in real-time on-line scheduling

and a collection of open problems.

The dissertation is supplemented by four appendices. In appendix A we study the

exact guarantee given by Dover for systems with occasional overloaded and underloaded

periods. In appendices B and C we present the gradual-descent and unknown-computation-

time extensions to our uniprocessor model. In appendix D we present our results for two

processor environments.

16This was already known when tasks have no slack-time [3,38].
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We are given a collection of tasks T1; T2 � � �Tn � � � denoted by � For each task Ti its

value is denoted by vi its release time is denoted by ri its computation time by ci and its

deadline by di.

De�nition 2.0.1

� Underloaded and Overloaded Systems: A system is underloaded if there ex-

ists a schedule that will meet the deadline of every task and overloaded otherwise.

� Executable Period: The executable period �i of the taskTi is de�ned to be

the following interval: �i = [ri; di].

By de�nition Ti may be scheduled only during its executable period.

Suppose a collection of tasks is being scheduled by some scheduler S.

� Completed Task: A task (successfully) completes if before its deadline the sched-

uler S gives it an amount of execution time that is equal to its computation time.

� Preempted Task: A task is preempted when the processor stops executing it but

then the task might be scheduled again and possibly complete at some later point.

� A Ready Task:

A task is said to be ready at time t if its release time is before t its deadline is after

t and it neither completed nor was abandoned before t (the current executing task

if any is always a ready task).

The earliest deadline �rst algorithm (hereafter D) is described in �gure 2.

At any given moment
schedule the ready task with the earliest deadline.

Figure 2.1: D The Earliest Deadline First scheduling algorithm.

We shall make the following assumption:

Assumption 2.0.2

� Task Model: Tasks may enter the system at any time; their computation times

and deadlines are known exactly at their time of arrival (we weaken this assumption
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of exact knowledge later in appendix C). Nothing is known about a task before it

appears.

We do assume however that an upper bound on the possible importance ratio is

known a priori and can be used by the on-line scheduler (this bound is denoted by

k). In the uniprocessor case this assumption can be relaxed [32].

� Tasks Switching Takes No Time: A task can be preempted and another one

scheduled for execution instantly.

Suppose that a collection of tasks � with importance ratio k is given.

� Normalized Importance: Without loss of generality assume that the smallest

importance of a task in � is 1. Hence if � has importance ratio of k the highest

possible value density of a task in � is k.

In uniprocessor environments we add the following assumption:

� No Overloaded Periods of Infinite Duration: We assume that overloaded

periods of in�nite duration will not occur. This is a realistic assumption since over-

load is normally the result of a temporary emergency or failure.

Indeed in the uniprocessor case Baruah et. al. [3] showed that there is no competitive

on-line algorithm when overloaded periods of in�nite duration are possible1. Note

that the number of tasks in � may be in�nite as long as no in�nite overload period

is generated2.

In multiprocessor environments we add the following assumption:

� Identical Processors: All processors have the same speed and all tasks can be

scheduled on any of the processors.

1Intuitively, the adversary can generate a sequence of tasks with ever growing values. This will force any

competitive scheduler to abandon the current task in favor of the next one and so on. If the competitive

scheduler attempts to complete a task in favor of a new larger one, then the adversary completes the larger

one. In either case, the on-line schedule will result in a small value compared with an arbitrarily large value

for a clairvoyant scheduler
2For the de�nition of overloaded periods see section 3.3.
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In this chapter we describe Dover an optimal competitive scheduler for uniprocessor envi-

ronments.

3.1 D
over

In the algorithm described below there are three kinds ofevents (each causing an associ-

ated interrupt) considered:

� Task Completion: successful termination of a task. This event has the highest priority.

� Task Release: arrival of a new task. This event has low priority.

� Latest-start-time Interrupt: the indication that a task must immediately be scheduled

in order to complete by its deadline that is the task's remaining computation time is

equal to the time remaining until its deadline. This event has also low priority (the

same as task release).

If several interrupts happen simultaneously they are handled according to their priori-

ties. A task completion interrupt is handled before the task release and latest-start-time

interrupt interrupts which are handled in random order. It may happen that a task com-

pletion event suppresses a lower priority interrupt e.g. the task completion handler

schedules the next task if this task had just reached its LST then the latest-start-time

interrupt is removed.

At any given moment the set of ready tasks1 is partitioned into two disjoint sets.

privileged tasks and waiting tasks. Whenever a task is preempted it becomes a privileged

task. However whenever some task is scheduled as a result of latest-start-time interrupt

all the ready tasks (whether preempted or never scheduled) become waiting tasks.

Dover maintains a special quantity called availtime. Suppose a new task is released into

the system and its deadline is the earliest among all ready tasks. The value of availtime

is the maximum computation time that can be taken by such a task without causing the

current task or any of the privileged tasks to miss their deadlines.

Dover requires three data structures calledQ privileged Q waiting and Qlst. Each entry

in these data structures corresponds to a task in the system. Q privileged contains exactly

1Excluding the currently executing task.
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the privileged tasks and Q waiting contains the waiting tasks. These two structures are

ordered by the tasks' deadlines. In addition the third structure Qlst contains all tasks

(again not including the current task) but this time they are ordered by their latest-start-

times (LST ).

These data structures support Insert Delete Min and Dequeue operations.

� The Min operation for Q privileged or Q waiting returns the entry corresponding to

the task with the earliest deadline among all tasks in Q privileged or Q waiting. For

Qlst the Min operation returns the entry corresponding to the task with the earliest

LST among all tasks in the queue. The Min operation does not modify the queue.

� A Dequeue operation on Q privileged (or Q waiting) deletes from the queue the ele-

ment returned by Min in addition it deletes this element from Qlst. Likewise a De-

queue operation on Qlst will delete the corresponding element from either Q privileged

if it is a privileged task or from Q waiting if it is anwaiting task.

An entry of Q waiting and Qlst consists of a single task whereas an entry of Q privileged

is a 3-tuple (T Previous-time Previous-avail) where T is a task that was previously pre-

empted at time Previous-time. Previous-avail is the value of the variable availtime at time

Previous-time. All of these data structures are implemented as balanced trees (e.g. 2-3

trees).

Dover's code is depicted in �gures 3.1-3.4. The following is an intuitive description

of the algorithm: as long as no overload is detected (i.e. there is no lst interrupt) Dover

schedules in the same way as D. Tasks that are preempted during this phase in favor of a

task with an earlier deadline become privileged tasks. The task with the earliest deadline

(either a newly released task or a waiting task) will be scheduled provided it does not

cause overload when added to the privileged tasks. This proviso is always met in situations

of underload.

During overload when awaiting task reaches its LST it will cause a latest-start-

time interrupt. This means that some task must be abandoned: either the task that

reached its LST or some of the privileged tasks. The latest-start-time interrupt routine

compares the value of that task against the sum of the values of all the privileged tasks.

If its value is greater than (1 +
p
k) times that sum then this task will execute on the

processor while all the privileged tasks will lose their privileged status to become waiting
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In the following code Now() is a function that returns the current time. Schedule(T )
is a function that gives the processor to task T . Laxity(T ) is a function that returns
the amount of time the task has left until its deadline less its remaining computation
time. That is laxity(T ) = deadline(T )� (now()+ remaining computation time(T )).
� denotes the empty set.
This code includes lines manipulating intervals. The notion of an interval is needed for
purpose of analysis only so these lines are commented.

1 recentval := 0 (� This will be the running value of privileged tasks. �)
2 availtime := 1

3
(� Availtime will be the maximum computation time that can

be taken by a new task without causing the current task or

the privileged tasks to miss their deadlines. �)

4 Qlst := �
(� All ready tasks, ordered according to their latest start time.

�)
5 Q privileged:= � (� The privileged tasks ordered by deadline order �)
6 Q waiting := � (� All the waiting tasks ordered by their deadlines. �)
7 idle := true (� In the beginning the processor is idle �)

8 loop

9 task completion :
10 if (both Q privileged and Q waiting are not empty) then

11

(� Both queues are not empty and contain together all the ready tasks.

The ready task with the earliest deadline will be scheduled unless it is a

task of Q waiting and it cannot be scheduled with all the privileged tasks.

The �rst element in each queue is probed by the Min operation. �)
12
13 (TQ privileged; tprev; availprev) := Min(Q privileged);
14

15

(� Next, compute the current value of availtime. This is the correct value

because TQ privileged is the task last inserted of those tasks currently in

Q privileged. The available computation time has decreased by the time

elapsed since this element was inserted to the queue. �)
16
17 availtime := availprev � (now()� tprev);

18
(� Probe the �rst element of Q waiting and check which of the two tasks

should be scheduled. �)

Figure 3.1: Dover- A Competitive optimal on-line scheduling algorithm.
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19 TQ waiting := Min(Q waiting);
20 if dQ waiting < dQ privileged and

availtime� remaining computation time(TQ waiting) then

21 (� Schedule the task from Q waiting. �)
22 Dequeue(Q waiting);
23 availtime:= availtime � remaining computation time(TQ waiting);
24 availtime:= min(availtime laxity(TQ waiting));
25 Schedule TQ waiting;
26 else

27 (� Schedule the task from Q privileged. �)
28 Dequeue(Q privileged);
29 recentval := recentval � value(TQ privileged);
30 Schedule TQ privileged;
31 endif (�which task to schedule. �)
32 else if (Q waiting is not empty) then

33
(� Q privileged is empty. The current interval is closed here, tclose =
now(). The �rst task in Q waiting is scheduled �)

34
35 Tcurrent := Dequeue(Q waiting);
36 availtime:= laxity(Tcurrent);
37 (� A new interval is created with tbegin = now().�)

38
39 Schedule Tcurrent;
40 else if (Q privileged is not empty)
41 (� Q waiting is empty. The �rst task in Q privileged is scheduled �)
42
43 (Tcurrent; tprev; availprev) := Dequeue(Q privileged);
44 recentval := recentval � value(Tcurrent);
45 availtime := availprev � (now()� tprev);
46 Schedule Tcurrent;
47 else

48 (� Both queues are empty. The interval is closed here, tclose = now(). �)
49
50 idle := true;
51 availtime:= 1;
52 endif

53 end (�task completion �)

Figure 3.2: Dover (cont.)
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54 task release : (� Tarrival is released. �)
55 if (idle ) then
56 Schedule Tarrival;
57 availtime:= laxity(Tarrival);
58 idle := false;
59 (� A new interval is created with tbegin = now().�)
60 else (�Tcurrent is executing �)
61 if darrival < dcurrent and

availtime� computation time(Tarrival) then
62 (� No overload is detected, so the running task is preempted. �)
63 Insert Tcurrent into Qlst;
64 Insert (Tcurrent; now(); availtime) into Q privileged;

65
(� The inserted task will be, by construction, the task with the earliest

deadline in Q privileged�)
66 availtime:= availtime � remaining computation time(Tarrival);
67 availtime:= min(availtime laxity(Tarrival))
68 recentval := recentval + value(Tcurrent);
69 Schedule Tarrival;
70 else (� Tarrival has later deadline or availtime is not big enough.�)
71 (� Tarrival is to wait in Q waiting �)
72 Insert Tarrival into Qlst and Q waiting;
73 endif

74 endif (�idle �)
75 end (�release �)

76 latest-start-time interrupt :

77
(� The processor is not idle and the current time is the latest start time

of the �rst task in Qlst. �)
78
79 Tnext = Dequeue(Qlst);

80 if (vnext > (1 +
p
k) (vcurrent + recentval)) then

81 (�vnext is big enough; it is scheduled. �)
82 Insert Tcurrent into Qlst and Q waiting;
83 Remove all privileged tasks from

Q privileged and insert them into Qlst and Q waiting;
84 (� Q privileged = � �)
85 recentval := 0;
86 availtime:= 0

Figure 3.3: Dover (cont.)
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87 Schedule Tnext;
88 else (�vnext is not big enough; it is abandoned. �)
89 Abandon Tnext;
90 endif

91 end (�LST �)
92 endfloop g

Figure 3.4: Dover (cont.)

tasks (these tasks might later be successfully rescheduled). Otherwise the task reaching

its LST is abandoned. A task T that was scheduled by a latest-start-time interrupt can

be abandoned in favor of another task T
0

that reaches its LST but only if T
0

has at least

(1 +
p
k) times more value than T . Dover returns to schedule according to D when some

task scheduled by its latest-start-time interrupt completes.

The reader may be curious to know why Dover compares values rather then value

densities and why the values are compared using the magic factor of (1 +
p
k)? The lower

bound proof [3 4] shows why value density cannot be a good criterion for choosing which

task to abandon2. The factor of (1 +
p
k) happened to be the one that gave the desired

result since it yields the correct ratio between the minimal value gained by Dover and the

maximal value that might have been missed.

3.2 Analysis of Dover

In order to facilitate the analysis of Dover it is convenient to introduce the notation of

intervals.

De�nition 3.2.1

� Intervals: The intervals are created (opened) and closed according to the schedul-

ing decisions of Dover and this process is depicted in the code of Dover in section 3.1.

2In that proof going after high value density tasks (the short teasers) will give the on-line scheduler
minuscule value compared to the clairvoyant scheduler that will schedule a low value density task that has
long computation time and hence big value.
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When an interval is created (comments 37 and 59 of Dover) it is considered open

meaning that it may be extended it is closed when a task completes whileQ privileged

is empty (comments 33 and 48). A new interval would be opened when the next task

is scheduled. Initially there is no open interval. Hence the �rst interval is opened

when the processor �rst becomes non-idle.

The interval consists of the time between the point it was opened and the point it

was closed. We will denote by I = [tbegin; tclose] an interval I that was opened at

tbegin and closed at tclose .

Note: Two intervals may overlap only at their end points.

� BUSY: Suppose Dover schedules a collection of tasks. Let BUSY denotes the time

during which the processor is not idle during the execution of these tasks. For

simplicity the length ofBUSY will also be denoted by BUSY .

Note that BUSY equals the union of all intervals created by Dover.

Suppose that a collection of tasks � with importance ratio k is given. and Dover

schedules this collection. When a task is scheduled it can have zero or positive slack

time. A task may be preempted and then re-scheduled several times. We will be mainly

concerned with the last time a task was scheduled. For the purposes of analyzing Dover

we will partition the collection of tasks according to the question of whether the task had

completed exactly at its deadline or before its deadline or failed.

� Let F (for fail) denote the set of tasks that were abandoned.

� Let Sp (for successful with positive time before the deadline) denote the set of tasks

that completed successfully and that ended some positive time before their deadlines.

� Let S0 (for successful with 0 time before the deadline) denote the set of tasks that

completed successfully but ended exactly at their deadlines.

Call a task order-scheduled if it was scheduled by the task completion or task release

handlers. Call a task lst-scheduled if it was scheduled as a result of a latest-start-time

interrupt. (As mentioned above a latest-start-time interrupt is raised on a waiting task

when it reaches its latest start time (LST ) i.e. the last time when it can start executing

and still complete by its deadline).
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The �rst task in each interval is order-scheduled. The subsequent tasks (if any) in

this interval may be order-scheduled or lst-scheduled. Proposition 3.2.1 shows that once a

task is lst-scheduled all subsequent tasks of this interval must be lst-scheduled. During an

interval several order-scheduled tasks may complete but only one lst-scheduled task can

complete (this task will also be the last task that executes in the interval).

Proposition 3.2.1 According to the scheduling of Dover once a task is lst-scheduled, then

all subsequent tasks, in the current interval, are lst-scheduled.

proof.

Suppose the current task Tcurrent is lst-scheduled and a task Tarrival is released.Tarrival

will not be scheduled by the task release handler because when the current task is lst-

scheduled availtime equals zero (see statement 86 of Dover) hence no task can be scheduled

by the task release handler (see statement 61 of Dover).

Let recentval(t) denote3 recentval at time t and achievedvalue(t) denote4 the value

achieved during the current interval before t. For an interval I achievedvalue(I) is the

total value obtained during I .

We partition the value obtained during I in two di�erent ways:

� ordervalue vs. lstvalue: ordervalue(I) is the total value obtained by order-scheduled

tasks that completed during I . The value obtained by lst-scheduled tasks is denoted

by lstvalue(I) (there is at most one such task in any interval I).

� zerolaxval vs. poslaxval: zerolaxval(I) denotes the total value obtained by tasks that

completed at their deadlines during I (tasks in S
0). The value obtained by tasks

that completed before their deadlines is denoted by poslaxval(I).

Hence for every interval

achievedvalue(I) = ordervalue(I) + lstvalue(I) = zerolaxval(I) + poslaxval(I)

When the index (I) is omitted we refer to the entire execution. For example ordervalue

denotes the total value obtained by order-scheduled tasks summing over all intervals.

3In the following only recentval is a variable explicitly manipulated by Dover. All the others:

zerolaxval; poslaxval; ordervalue and lstvalue are introduced here to facilitate the analysis. This

is why they do not reference algorithm statements.
4See statements 1,29,44,68 and 85.
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Example 3.2.2 Before the detailed analysis let us �rst study an example of Dover 's

scheduling. Consider the overloaded collection of six tasks depicted in table 3.1. For

notational convenience we will denote the tasks by their deadlines hence for exampleT20

is a task with deadline at time 20. In this example we assume uniform value density (i.e.

k = 1). Dover schedules the above collection as follows: In the beginning availtime is 1

Task Release-Time Computation-Time Deadline �i

T20 0 6 20 [0; 20]
T34 1 26 34 [1; 34]

T24 1 20 24 [1; 24]
T18 2 5 18 [2; 18]

T17 3 2 17 [3; 17]
T5 4 1 5 [4; 5]

Table 3.1: The tasks for example 3.2.2.

and Q privileged is empty. First Dover schedules T20 to run at time 0. Availtime is set to

14 since this is T20's laxity.

At time 1 T34 is released into the system. Since T34's deadline is not earlier than the

current task's (T20) T34 is inserted into Q waiting (and Qlst with LST equal 8). Also

at time 1 T24 is released. Again since its deadline is after 20 this task is inserted into

Q waiting and Qlst with LST equals 4.

At time 2 T18 is released. This time the current task is preempted. T20 is inserted into

Q privileged and Qlst with LST equals 16. Availtime is decremented by the computation

time of T18. Its new value is 9. The value of recentval is set to the value of T20 (6).

T18 executes for one time unit until time 3 whenT17 is released. T17 is scheduled since

its computation time (2) is smaller then availtime (9). Availtime is decremented by the

computation time of T17. Its new value is 7. The value the value of T18 (5) is added to

recentval which becomes 11.

At time 4 two events occur: T24 reaches its LST and T5 is released. These events can be

handled in any order and we choose to handle the latest-start-time interrupt �rst. T24

reaches its LST but its value is smaller than twice (1 +
p
k = 2) the value of the current

task plus recentval (2 + 11). Hence T24 is abandoned. T5 is released and its deadline is

earlier than the current task's (T17). T5 is scheduled since its computation time is smaller

then availtime(1 < 7). T5 has laxity of zero which is smaller than the current availtime
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minus the computation time of T5 (6). Hence availtime is now set to 0 and recentval

becomes 11 + 2 = 13.

At time 5 T5 completes and since T17 is the task with the earliest deadline it is scheduled.

Availtime is now 6 because this the value of availtime when T17 was executing (7) minus

the time elapsed since it was inserted to Q privileged (1). The value of T17 is subtracted

from recentval which becomes 13� 2 = 11.

The remaining computation time of T17 is one unit hence at time 6 it completes. The next

task in Q privileged is T18 which has a remaining computation time of 4 units. Availtime

is set to 6 which is value of availtime when T18 was executing (9) minus the time elapsed

since it was inserted to Q privileged ((6 � 3) = 3) (the value of T18 is subtracted from

recentval which becomes 11 � 5 = 6). However T18 will execute only until 8 when T34

reaches its LST . The value of T34 is big enough to preempt the current task. All tasks

from Q privileged are moved to Q waiting and availtime as well as recentval are reset to

zero.

The LST of T18 is 16 and of T20 (the only other task in Qlst) is 15. These tasks will

generate latest-start-time interrupt in these respective times both will be abandoned.

At time 34 T34 completes its execution and Dover �nished scheduling this history. Table 3.2

summarizes the scheduling decisions of Dover. In this example S0 = [T5; T34]; S
p = [T17]

and F = [T18; T20; T24]. Only three tasks complete their execution and the total value

obtained by Dover is 29. A clairvoyant scheduler can achieve a value of 34 by scheduling

T17; T20 and T34. Also notice that the system is already overloaded at time 1 but the �rst

time an overload is \detected" by Dover is at time 4.

3.2.1 Proof Strategy

Our goal is to show that Dover has a competitive multiplier of (1 +
p
k)2 for every collection

of tasks with importance ratio of k. We will start by proving some lemmas about the

behavior of Dover . Then we will try to estimate the best possible behavior of a clairvoyant

algorithm by comparison to Dover . Our basic strategy is to bound from below what Dover

achieves during each interval. This will lead to a global lower bound over the entire

execution. Then we bound from above what a clairvoyant scheduler can achieve during

the entire execution.
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re- pre- com- sch- rec-
t lea- empted ple- edu- availtime Q priv- ent- Q wait comment

sed (LST ) ted led ileged val ing
0 1 [] 0 []
0 T20 T20 laxity(T20) [] 0 [] new interval
1 T34 14 [] 0 [T34] T34's LST is 8
1 T24 14 [] 0 [T24; T34] T24's LST is 4
2 T18 T20 (16) T18 min(14� 5; 13) [T20] 6 [T24; T34]
3 T17 T18 (14) T17 min(9� 2;12) [T18; T20] 5 + 6 [T24; T34]
4 min(9� 2;12) [T18; T20] 11 [T34] T24's LST , it

is abandoned
4 T5 T17 (16) T5 min(7� 1;0) [T17; T18; 2 + 11 [T34] T5 has no

T20] no laxity
5 T5 T17 7� (5� 4) = 6 [T18; T20] 5 + 6 [T34]
6 T17 T18 9� (6� 3) = 6 [T20] 6 [T34]
8 T18 (15) T34 0 [] 0 [T18; T20] T34`s LST
15 0 [] 0 [T18] T20's LST
16 0 [] 0 [] T18's LST
34 T34 0 [] [] interval closed

Table 3.2: Dover's scheduling for example 3.2.2.

3.2.2 Some Lemmas about Dover's Scheduling

In this section we present some technical lemmas about the behavior of Dover. These

lemmas will be used in the next section when comparing Dover 's performance with that of

a clairvoyant scheduler. These lemmas concern the relationship between the interval length

and the value achieved by Dover in that interval (lemma 3.2.3). As well as the relationship

between the computation time and value of tasks abandoned in an interval with respect to

the value achieved in the interval (lemma 3.2.4 and 3.2.5). Recall that BUSY is the union

of all intervals (de�nition 3.2.1).

Lemma 3.2.2

1. For any task Ti in S0, �i = [ri; di] � BUSY

2. For any task Ti in F . Suppose Ti was abandoned at time taban, then

[ri; taban] � BUSY

proof.

A processor is idle under Dover scheduling only if there is noready task.

� A task Ti of S
0 does not complete before its deadline hence it is a ready task during

all its executable period. This implies that there is no idle time during the executable

period of Ti.
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� Similarly a task ofF is a ready task from its release time to the point at which

it is abandoned. Therefore there is no idle time between its release point and its

abandonment point.

Lemma 3.2.3 For any interval I = [tbegin; tclose], the length of I, tclose� tbegin will satisfy

tclose � tbegin � ordervalue(I) + (1 +
1p
k
) � lstvalue(I)

= achievedvalue(I) +
1p
k
� lstvalue(I)

Recall that ordervalue(I) and lstvalue(I) are the values obtained by Dover from the order-

scheduled and the lst-scheduled tasks respectively during I.

proof.

An interval I = [tbegin; tclose] has the following two sub-portions the second of which may

be empty:

1. [tbegin; tfirst lst]

From the beginning of I to the point in time tfirst lst in which the �rst lst-scheduled

task is scheduled. During this period all tasks are order-scheduled and some may

complete their execution.

If no task is lst-scheduled in I then de�ne tfirst lst to be tclose . In this case the second

sub-portion is empty.

2. [tfirst lst; tclose]

During this period all tasks are scheduled and preempted by latest-start-time in-

terrupt. Only the last task to be scheduled completes.

If there are no lst-scheduled tasks in I then all tasks that executed from tbegin to tclose

completed successfully. The value achieved is ordervalue(I) and is at least as big as the

duration of execution5. Hence the lemma is proved in this case.

Otherwise suppose thatT1; T2; � � � ; Tm (m � 1) are the tasks that were lst-scheduled in

I . Hence T1 was scheduled at tfirst lst later it was preempted (and abandoned) by T2 and

so forth. Eventually Tm preempts Tm�1 and completes at tclose its value vm is lstvalue(I).

5Recall that a value density is always equal or greater than 1, by assumption 2.0.2 above.
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Denote by li the length of the execution of Ti during the process above. Tm preempted

Tm�1 hence vm > (1 +
p
k)vm�1. Which yields6

lm�1 < vm�1 <
vm

(1 +
p
k)

=
lstvalue(I)

(1 +
p
k)

Going backward along the chain of preemptions we get:

li < vi <
vi�1

(1 +
p
k)

<
lstvalue(I)

(1 +
p
k)m�i

for all 1 � i � m� 1 (3.1)

T1 preempted the last order-scheduled task hence (see statement 80 of Dover)

v1 > (1 +
p
k)frecentval(tfirst lst) + value(current task at time tfirst lst)g (3.2)

Also

tfirst lst � tbegin � ordervalue(I) + recentval(tfirst lst)+

value(current task at time tfirst lst) (3.3)

This holds because the processor is not idle between tbegin and tfirst lst (as part of BUSY )

and the right hand side above represents the sum of the values of all the tasks that were

scheduled between tbegin and tfirst lst. This sum must be greater than or equal to their

period of execution by the normalized importance assumption (assumption 2.0.2). Inequal-

ities 3.1 3.2 and 3.3 imply

tfirst lst � tbegin < ordervalue(I) +
v1

(1 +
p
k)

< ordervalue(I) +
lstvalue(I)

(1 +
p
k)m

We have produced the following bound on the distance between tbegin and tclose:

tclose � tbegin = (tfirst lst � tbegin) + (tclose � tfirst lst)

= (tfirst lst � tbegin) + (l1 + l2 + � � �+ lm)

� ordervalue(I) +

lstvalue(I) �
 
1 +

1

(1 +
p
k)

+
1

(1 +
p
k)2

+ � � �+ 1

(1 +
p
k)m

!

� ordervalue(I) + lstvalue(I) �
1X
i=0

1

(1 +
p
k)i

= ordervalue(I) + lstvalue(I) � (1 + 1p
k
)

= achievedvalue(I) +
1p
k
� lstvalue(I)

6Note that always li � vi. However, for a task that was abandoned a strict inequality li < vi holds.
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The last equality follows from the fact that achievedvalue(I) = ordervalue(I) + lstvalue(I)

by de�nition.

Lemma 3.2.4 Suppose Ti was abandoned during the interval I. Then

vi � (1 +
p
k) � achievedvalue(I)

Recall that achievedvalue(I) is the total value obtained during I.

proof.

Let I = [tbegin; tclose] be an interval. De�ne the Prospective Valuemap of I PVI as follows:

PVI(t) = ordervalue(t) + recentval(t) + value(current task at time t)

where tbegin � t � tclose

Claim For every interval I = [tbegin; tclose]

1. PVI is monotone non-decreasing.

2. PVI reaches at the end of the interval the total value obtained in I i.e

PVI(tclose) = achievedvalue(I)

Note: PV is not a function because it might have several values for one time instance

since Dover can make several scheduling decisions at one time instance (assumption 2.0.2).

However as a map with the ordered sequence of scheduling decisions as its domain PVI

is a function.

Proof of claim.

There are two cases. The �rst applies when there are no lst-scheduled tasks in I the other

applies when such tasks exist.

Case 1: Suppose that there are no lst-scheduled tasks in I . Then every task that was

scheduled does complete. Let S(t) be the set of tasks that were scheduled (not necessary

completed) up to t. One can verify by induction that

PVI(t) =
X

Ti2S(t)

vi

The reason is that no scheduled task is abandoned hence at each moment a task is either

the current task or in Q privileged or had completed. At the closing of I all tasks have
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completed. Hence

PVI(tclose) =
X

Ti2S(tclose)

vi = achievedvalue(I)

PVI is monotone (when there are no lst-scheduled tasks) because S(t) is a monotone

increasing set of tasks.

Case 2: Suppose there were lst-scheduled tasks. Assume that the �rst lst-scheduled task

T1 was scheduled at time tfirst lst. Let t be a time instance just before the scheduling of

T1 then by de�nition:

PVI(t) = ordervalue(t) + recentval(t) + value(current task at time t)

T1 is scheduled only if

v1 > (1 +
p
k) � (recentval(t) + value(current task at time t))

When T1 is scheduled recentval is set to zero hence we can conclude that

PVI(tfirst lst) = ordervalue(tfirst lst) + recentval(tfirst lst) + value(T1)

= ordervalue(t) + 0 + value(T1)

> ordervalue(t) + (recentval(t) + value(current task at time t))

= PVI(t)

Thus PVI is monotone from tbegin to tfirst lst (as in the case when there are no lst-scheduled

tasks). It is left to show that PVI continues to be monotone. After tfirst lst PVI equals

to

ordervalue(I) + value(current task at time t)

because recentval remains equal to zero. This is a monotone increasing value since ordervalue(I)

is �xed and a task T will preempt the current task only if it has a larger value than the

current task's value. In particular if Ti is the last task to be scheduled in I then

PVI = ordervalue(I) + vi

= ordervalue(I) + lstvalue(I) = achievedvalue(I)

So the claim is proved.
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End of proof of claim

We return to the proof of lemma 3.2.4. There is only one way a task Ti can be

abandoned at time t:

� Ti reaches its LST at t. A latest-start-time interrupt is generated. However Ti has

insu�cient value to preempt the task executing at time t.

Hence if Ti was abandoned then

vi < (1 +
p
k) � frecentval(t) + value(current task at time t)g

� (1 +
p
k) � PVI(t) ; by de�nition of PV

� (1 +
p
k) � achievedvalue(I) ; by the claim

Lemma 3.2.5 Suppose Ti was abandoned at time t in I = [tbegin; tclose]. Then,

ci � di � tclose

proof.

A task Ti can be abandoned at timet only when:

� It reaches its LST at t. A latest-start-time interrupt is generated. However the

current task is not preempted.

Ti reached its LST hence its remaining computation time is di � t. Also t � tclose by

assumption. Hence the (initial) computation time of Ti is at least di � tclose .

3.2.3 How Well Can a Clairvoyant Scheduler Do?

Given a collection of tasks � our goal is to bound the maximum value that a clairvoyant

algorithm can obtain from scheduling �. We do it by observing the way Dover schedules

�. From Dover 's scheduling we get the partitioning of the tasks to S0; Sp and F we also

take notice of the time periods in which the processor was not idle in this scheduling. As

de�ned earlier the union of these periods is calledBUSY .

In order to bound the value that can be achieved from scheduling � we will o�er the

clairvoyant algorithm two gifts that can only improve the value it can obtain. We will
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show an upper bound on the value the clairvoyant algorithm can get with these gifts hence

bounding the value it can achieve from the original collection.

� As a �rst gift we will give the clairvoyant algorithm the sum of the values of all tasks

in S
p at no cost to it (i.e. it will devote no time to these tasks). Then we will see

what the clairvoyant algorithm can achieve on F [ S
0.

� As a second gift suppose that in addition to the value achieved from scheduling the

tasks F[S0 the clairvoyant scheduler can get an additional value called granted value.

The amount of granted value depends on the schedule chosen by the the clairvoyant

scheduler: A value density of k will be granted for every period of BUSY that is not

used for executing a task.

The clairvoyant scheduler must consider that scheduling a task might reduce the granted

value (since time in BUSY is used). Of course when this reduction is bigger than the

value of a task then the task should not be scheduled. Suppose the clairvoyant algorithm

had chosen a scheduling for F [ S0. We can assume that no task was scheduled entirely

during BUSY because the granted value lost would be greater or equal to the value gained

from scheduling the task. We will show that tasks of S0 can execute only during BUSY

hence this leaves only tasks of F that were scheduled partially7 outside BUSY . Executing

T results in a gain of value(T ) but entails a loss of the granted value for the time that T

executed in BUSY .

The clairvoyant scheduler has now two options. It can schedule no task during the

entire BUSY period and get only (the whole) granted value or it can use some of BUSY

in order to schedule some of F tasks. We will show that the maximal possible gain from

choosing the second option over the �rst is bounded by (1 +
p
k) � achievedvalue. Putting

this altogether will give the desired result (theorem 3.2.12).

Example 3.2.3 To see the possibilities opened to the clairvoyant algorithm by intro-

ducing the granted value consider the following example: The length of BUSY is 5 and

the importance ratio k is 4.F contains only one task T with computation length 3 and

value density 2. Without scheduling T the value obtained by the clairvoyant algorithm

7When the computation time of a task is known precisely when it is released, a task T 2 F cannot be
scheduled completely outside BUSY (see lemma 3.2.2). However, if the computation time of a task is not
exactly known (appendix C), then a failed task T may be scheduled completely outside BUSY .
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only from the granted value is 5 � 4 = 20. If T could have been scheduled without using

any of BUSY time then its value will be added to give 20 + 2 � 3 = 26. However if the

clairvoyant algorithm must use 2 units of BUSY 's time in order to schedule T then the

total value will be only (5� 2)� 4 + 6 = 18 hence it is better not to schedule T in this

case. As a matter of fact whenever T has to use more than 1:5 units of BUSY 's time it

should not be scheduled.

In the scenario above the clairvoyant scheduler can achieve (using the gifts) the maximal

value of the sum in equation 3.4 below ranging over all possible schedulings8 of F .

value obtained from those

tasks of F that were scheduled
+ k �

length of time in BUSY not utilized to

schedule the tasks of F
(3.4)

Denote by C(�) the value that a clairvoyant algorithm can achieve from a collection of

tasks. We would like to show that C(F [ S0) cannot be greater then this maximal value.

This will then give us an upper bound on what a clairvoyant algorithm can achieve.

Lemma 3.2.6

C(F [ S
0) � max

possible

scheduling

of F

8>>>>><
>>>>>:

value obtained by

scheduling tasks of

F

+ k �
length of time in BUSY not

utilized by tasks of F

9>>>>>=
>>>>>;

proof.

C(F [ S
0) = max

8>><
>>:

value obtained from

scheduling tasks of F
+
value obtained from scheduling tasks of S0

during the time not used by tasks of F

9>>=
>>;

8Suppose a clairvoyant scheduler has to schedule a collection of tasks A. We can assume that it schedules

a task only if that task eventually completes. Hence the work of a clairvoyant scheduler is �rst to choose

the set of tasks A0
� A that will be scheduled and then to work out the details of the processor allocation

among the tasks of A0. We will call all possible selections of A0 and processor allocation a scheduling of A.
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S0 tasks can be scheduled only during BUSY (lemma 3.2.2) hence

value obtained from

scheduling tasks of F
+

value obtained from scheduling tasks of S0

during the time not used by tasks of F

�
value obtained by

scheduling F
+ k � length of time in BUSY not utilized

by tasks of F

The lemma is proved.

With the above gifts the clairvoyant scheduler can maximize the sum in 3.4 above

and hence obtain a value of at least C(F [ S0).

Suppose a task Tf 2 F is scheduled to completion by the clairvoyant algorithm. If Tf

executes entirely during BUSY then the left hand factor of the sum is increased only by

vi which is smaller than or equal to k � ci while the right hand factor is decreased by k � ci
giving zero or negative net change. Thus we assume that Tf executes (at least partially)

outside BUSY .

Lemma 3.2.7 Suppose Tf is abandoned (by Dover) at time taban and that I = [tbegin; tclose]

is the interval in which Tf is abandoned. Then, if Tf is to be executed (by the clairvoyant

algorithm) anywhere outside BUSY it must be after tclose.

proof.

�f = [rf ; taban][ [taban; df ]. The �rst portion of �f is contained in BUSY (lemma 3.2.2).

[taban; tclose] � I � BUSY hence ifTi is to be scheduled anywhere outside BUSY it must

be after tclose 9.

Now we are ready to give an upper bound on how much additional value can the clairvoyant

algorithm achieve by scheduling tasks of F compared with collecting only the granted

value without scheduling any tasks. We make strong use of the fact that when a task T is

abandoned during I T 's value cannot be too large with respect to achievedvalue(I).

Lemma 3.2.8 With the above gifts, the total net gain obtained by the clairvoyant algo-

rithm from scheduling the tasks abandoned during I is not greater than

(1 +
p
k) � achievedvalue(I)

9Note that parts of [tclose; df ] might be included in BUSY as a new interval may be opened before df
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proof.

Assume that a clairvoyant scheduler selected a scheduling for the tasks of F considering

the value that can be gained from leaving BUSY periods idle. We can assume that a clair-

voyant algorithm executes a task only if this task eventually completes. If the clairvoyant

algorithm does not schedule any of the tasks abandoned during I the lemma is proved.

Hence assume that of all the tasks abandoned inI = [tbegin; tclose] the clairvoyant sched-

uler schedules T1; T2; � � �Tm (in order of completion). These tasks execute for l1; l2; � � �lm
time after tclose (hence maybe outside BUSY ). We know that all the li's are greater than

zero (otherwise there is no net gain).

Lemma 3.2.4 ensures that the biggest possible value of a task to be abandoned during

I is (1 +
p
k) � achievedvalue(I). If such a task has value density k its execution time

is
(1+

p
k)�achievedvalue(I)

k
. Denote by L the maximal value of this execution time and the

length of l1

L = maxf(1 +
p
k) � achievedvalue(I)

k
; l1g (3.5)

Let j be the index less than to m such that

X

i�j

li � L <
X

i�j

li + lj+1

If no such j exists de�ne j to be m.

First assume that we have an equality
P

i�j li = L. The
P

i�j li < L case is a little

more complicated and will be treated later.

We will show that the net gain from scheduling tasks within a period of L after the

end of the interval cannot be greater than (1 +
p
k) � achievedvalue(I).

� Suppose that in equation 3.5 the maximum is the �rst term. Then the total net gain

from T1; T2; � � �Tj is not greater than

k �
X

i�j

li = k � L = (1 +
p
k) � achievedvalue(I) (3.6)

� If on the other hand the second term is maximal in equation 3.5 then the value

obtained by scheduling T1 is at most (1 +
p
k) � achievedvalue(I) (lemma 3.2.4).

Now we will show that the net gain from scheduling tasks \after" L is never positive.
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Every task Ti that executed at a time of at least L after the end of the interval where

j < i � m has an execution timeci of at least di � tclose (see lemma 3.2.5).

ci � di � tclose

� \the point at which Ti completes (according to the clairvoyant)"� tclose

� (tclose +
X

g�i

lg)� tclose =
X

g�i

lg

� li +
X

g�j

lg = li + L

For i > j Ti was scheduled by the clairvoyant scheduler but used only li time after tclose .

Hence Ti executed at least L time before tclose that is to say in BUSY by lemma 3.2.7.

The \loss" from scheduling Ti during BUSY is at least k � L. The value obtained by

scheduling Ti is at most (1 +
p
k) � achievedvalue(I) (lemma 3.2.4). Hence the net gain is

less than or equal to

(1 +
p
k) � achievedvalue(I)� k � L

� (1 +
p
k) � achievedvalue(I)� (1 +

p
k) � achievedvalue(I) = 0

We conclude that the clairvoyant algorithm is better o� not scheduling any task Ti; j <

i � m. Hence the lemma is proved for the case that
P

i�j li = L.

What if L does not equal any of the partial sums? That is if
P

i�j li < L <
P

i�j+1 li.

We will augment the total value given to the clairvoyant by some non-negative amount.

Then we will show that even with this addition the net gain achieved by the clairvoyant

algorithm is bounded by (1 +
p
k) � achievedvalue(I) hence proving the lemma.

First we will take the value density of Tj to be k. This move can only increase the

overall value achieved by the clairvoyant algorithm. We will also \transfer" some execution

time (and hence also value) from Tj+1 to Tj . We will transfer exactly L�Pi�j li execution

time. There will be a non-negative net increase of (k� value density(Tj+1)) � (L�
P

i�j li)

in the overall achieved value of the clairvoyant algorithm and we are back in the case of

L =
P

i�j li. The total net gain from T1; � � � ; Tj is bounded by (1 +
p
k) � achievedvalue(I)

while the net gain from all other tasks is zero or negative.

Our strategy thus far has entailed partitioning the problem into what the clairvoyant

can obtain with respect to a given interval. We now compute an upper bound for what the
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clairvoyant algorithm can obtain over all intervals. Note that this may overestimate what

the clairvoyant algorithm obtains because the time periods that the clairvoyant algorithm

uses on the tasks of two neighboring intervals may overlap.

Corollary 3.2.9 With the above gifts, the total net gain (over the entire execution) ob-

tained by the clairvoyant algorithm from scheduling the tasks of F is not greater than

(1 +
p
k) � achievedvalue

proof.

Lemma 3.2.8 measured the maximum net gain per interval. By construction each task is

accounted for in exactly one interval. Therefore summing over all intervals we conclude

that the total net gain during the entire execution is less than or equals to

(1 +
p
k) � achievedvalue.

The previous corollary bounds the value the clairvoyant algorithm could obtain beyond

the granted value which equals k � BUSY . Now we will estimate the granted value (by

bounding the length of BUSY ) to get an upper bound on C(S0 [ F ).

Lemma 3.2.10

C(F [ S0) � k � (achievedvalue + 1p
k
� zerolaxval) + (1 +

p
k) � achievedvalue

= (k + 1+
p
k) � achievedvalue +

p
k � zerolaxval

proof.

Lemma 3.2.6 shows that C(S0 [F ) is bounded by the maximum ranging over all possible

schedulings of the tasks of F of the following sum:

(value obtained by scheduling F ) +

k � (length of time in BUSY not utilized by F tasks):

Corollary 3.2.9 above shows that this sum is less than or equal to

(1 +
p
k) � achievedvalue + k �BUSY

Lemma 3.2.3 summed over all intervals yields:

BUSY � achievedvalue +
1p
k
� lstvalue
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lstvalue(I) � zerolaxval(I) always holds because every task that is lst-scheduled must have

completed at its deadline. This implies that

BUSY � achievedvalue +
1p
k
� zerolaxval

Hence

C(S0 [ F ) � k � (achievedvalue + 1p
k
� zerolaxval) + (1 +

p
k) � achievedvalue

= (k + 1+
p
k) � achievedvalue +

p
k � zerolaxval

Which proves the lemma.

We gave the clairvoyant algorithm the value of all tasks in Sp. We also got a bound

on C(S0 [ F ). The following lemma shows that the sum of these two values bounds the

value the clairvoyant can get from the entire collection.

Lemma 3.2.11

C(F [ S0 [ Sp) � C(F [ S0) + C(Sp) = C(F [ S0) +
X

Ti2S
p

vi

proof.

The �rst inequality is due to the fact that C(�) is a sub-linear function. The reason is that

executing tasks of Sp might interfere with tasks of F [ S0 and vice versa. Therefore the

value of the union may be less than the sum of the values of the individual sets. Dover

schedules to completion all the tasks of Sp henceC(Sp) equals the sum of the values of

all these tasks. This yields the desired result.

Given a collection of tasks � lemmas 3.2.10 and 3.2.11 give an upper bound on the

value the clairvoyant algorithm can obtain from � in terms of the value obtained by Dover

(achievedvalue zerolaxval and poslaxval). The next theorem puts these results together.

Theorem 3.2.12 Dover has a competitive multiplier of of (1 +
p
k)2. That is, Dover ob-

tains at least 1
(1+

p
k)2

times the value of a clairvoyant algorithm given any task collection

�.

proof.

In the notation of the lemmas above we got from lemma 3.2.10 that

C(S0 [ F ) � (k + 1+
p
k) � achievedvalue +

p
k � zerolaxval
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We will bound
p
k � zerolaxval in the above equation.

p
k � achievedvalue =

p
k � zerolaxval+

p
k � poslaxval �

p
k � zerolaxval+ poslaxval

)
p
k � zerolaxval �

p
k � achievedvalue � poslaxval

Hence replacing (
p
k � zerolaxval) by (

p
k � achievedvalue � poslaxval) yields:

C(S0 [ F ) � (k + 1+
p
k) � achievedvalue +

p
k � achievedvalue � poslaxval

= (1 +
p
k)2 � achievedvalue � poslaxval

Using lemma 3.2.11 we get:

C(F [ S0 [ Sp) � C(F [ S0) + C(Sp)

= C(F [ S0) + poslaxval

� ((1 +
p
k)2 � achievedvalue � poslaxval) + poslaxval

= (1 +
p
k)2 � achievedvalue

3.2.4 The Running Complexity of Dover

In the previous section we analyzed the performance of Dover in the sense of what value

it will achieve from scheduling tasks to completion. In this section we study the cost of

executing the scheduling algorithm itself.

Theorem 3.2.13 If n bounds the number of unscheduled tasks in the system at any instant

then each task incurs an O(logn) amortized cost.

proof.

Dover requires three data structures calledQ privileged Q waiting and Qlst all of them

priority queues implemented as balanced search trees e.g. 2-3 trees. They supportInsert

Delete Min and Dequeue operations each taking O(logn) time for a queue with n tasks.

The structures share their leaf nodes which represent tasks.

Dover consists of a main loop with three \interrupt handlers" within it. The total

number of operations is dominated by the number of times each of these handler clauses

is executed and the number of data structure operations in each clause.
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Suppose a history of m tasks is given. First let us estimate the number of times each

handler clause can be executed. A task during its lifetime causes exactly one task release

event and at most one task completion event as well as at most one latest-start-time

interrupt event. Hence while scheduling m tasks the total number of events is bounded

by 3m.

Now we will bound the number of queue operations in each handler clause.

� In the handler for the task release event (statement 54) there is a constant number

of queue operations. Hence this contributes a total of O(m) queue operations during

the entire history.

� In the handler for the task completion event (statement 9) there is a constant number

of queue operations. Hence this contributes a total of O(m) queue operations during

the entire history.

� In the handler for latest-start-time interrupt event (see statement 76) the number

of queue operations is proportional to the number of tasks in Q privileged plus a

constant (because the privileged tasks are all inserted into Q waiting statement 83).

How many tasks can be in Q privileged throughout the history? A task can enter

Q privileged only as a result of task release event (statement 64) there are at most

m such events. Hence the total number of tasks in Q privileged is at most m which

means that the total number of queue operations is O(m) during the entire history.

We conclude that the total number of operations for the entire history is O(m logn) and

the theorem is proved.

3.3 Underloaded Periods: Conicting Tasks

Intuitively Dover is an optimal scheduler during underloaded periods because it mimics the

earliest-deadline-�rst algorithm during those periods. It gives its non-trivial competitive

guarantee during overloaded periods.

To make these statements precise we must de�ne what underloaded and overloaded

mean. Informally underload means a situation in which all tasks can be scheduled to

completion by their deadlines. Such tasks are designated as conict-free. The following

algorithm (�gure 3.5) gives a precise de�nition of conict-free and their antithesis |
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1 Function Remove Conicts ( � ) ;
2
3 if num of tasks(�) == 1 then
4 return(�);
5 endif;
6
7 collection num of tasks :=2;
8 repeat

9
(� Finds a collection of tasks that their combined computation time is
longer than their combined executable periods �)

10 select a collection of tasks S = Ti1 ; Ti2; � � � ; Ticollection num of tasks
of size

collection num of tasks such that
r = MinTi2Sfrig and d = MaxTi2Sfdig and
ci1 + ci2 + � � �+ cicollection num of tasks

> (d� r);
11 if (such a collection is found) then
12 mark all the tasks in S as conicting tasks;
13 create a task T with release time r and deadline d

and with no slack time;
14 (� T is an aggregated task �)
15 return( remove conicts( � � S + fTg));

16

(� Start again with the new collection of tasks. The new collection has
a smaller number of tasks. When the recursive calls reach the bottom
of the recursion (that is when � has no conicting tasks) the result is
propagated upwards (tail recursion). �)

17 else

18 collection num of tasks := collection num of tasks + 1;
19 endif;
20 until collection num of tasks > num of tasks(�);
21 return(�) (�In case that no conict was found �)

Figure 3.5: The Remove Conicts algorithm.
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conicting tasks10.

Dover schedules to completion all conict-free tasks (thus all tasks in an underloaded

system) and also obtains at least 1
(1+

p
k)2

times the value a clairvoyant algorithm can get

from the conicting tasks. The proof rests on the proof of the competitive guarantee given

in this chapter and can be found in appendix 3.3.

10Note that the purpose of this algorithm is to de�ne conicting and conict free tasks. No scheduler

needs ever to execute it.
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4.1 The Lower Bound

We would �rst like to show that every on-line algorithm has a competitive multiplier of at

least k

(k�1)n(k
1

n
� 1) for a system with n processors and importance ratio of k. As usual in

proofs of this kind we assume that a game is played between an adversary and the on-line

scheduler.

We consider n+1 possible levels of value density 1; k
1

n ; k
2

n ; � � � ; k
n

n = k call them levels

0; 1; � � � ; n. With each level we associate a period. A task of some value density level will

have a computation time and deadline equal to the corresponding period. Hence the value

of a task of level i equals the length of the i'th period times the i'th value density. The

length of the 0'th level's period is set to 1. We choose all other periods in such a way that

the value of an i + 1'th level task is only a small fraction of the i'th level task's value. In

fact we choose it so the i+1'th task's e�ective value density1 taken over the i'th period is

arbitrarily small (say � for some small �). A collection of tasks that has n identical tasks

for each level where all are released at the same time is called acomplete set2. Figure 4.1

shows a complete set for a system with 3 processors and value density of 8.

The adversary controls the release of tasks making decisions after observing the actions

(schedule) of the on-line algorithm so far. In the following we describe the game played by

the adversary and the on-line scheduler.

The game is played by stages the �rst one beginning at time 0. At the beginning of

each stage the adversary releases a complete set of tasks. The adversary releases tasks only

in complete sets and only in the beginning of a stage. The behavior of the on-line scheduler

dictates when the next complete set is to be released (i.e the beginning of the next stage).

Denote by tl the beginning of the l'th stage. At time tl (in particular at time 0) the on-

line algorithm has to schedule a new complete set and possibly some previously released

tasks. The number of possible scheduling decisions is vast. However since the number of

processors is smaller than the number of levels at least one level is not represented in the

on-line schedule (at time tl). Let i0 be an index of some level (to be speci�ed later) that

is not represented. Then tl+1 is set to be the end of the current i0'th level period. This

means that up to that time there will be no new task releases. We will say that the stage

starting at tl is associated with level i0. The game goes on in that manner for a big enough

1See de�nition 4.1.1.
2Hence, a complete set has n(n+ 1) tasks.
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Figure 4.1: A complete set for n = 3 and k = 8.

Note that there is one more level than processors and the levels correspond to value

densities k0 k1=3 k2=3 andk3=3. Each level has as many tasks as processors. Finally

each lower value density task T is so much longer than any higher value density task T
0

so that the value of T is much greater than the value of T
0

.
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number of stages (see proof of theorem 4.1.3).

Suppose that the stage starting at tl is associated with level i0 then what can the

clairvoyant scheduler do? One possibility is to execute n tasks of level i0 to completion

between tl to tl+1. In this scheme the clairvoyant scheduler schedules all the processors in

the same way no processor is ever idle and all current tasks complete immediately before

a new set is released.

The idea behind the lower bound game is that while the clairvoyant scheduler gets a

value density of k
i0

n for the duration of the entire stage on all the processors. The on-line

scheduler utilizes its processors either with lower value density tasks or with higher value

density tasks that have very short duration (hence have little value). After the completion

of these short high value density tasks the associated processors will be left idle because

no more tasks are released before the end of the stage.

The question is how to choose the level associated with a given stage. In the case that

only one value density is missing from the on-line schedule then this level is the one. We

will start by proving results assuming that only one level is missing. Later we will show

that these results hold in the general case when more than one level of value density is

missing.

De�nition 4.1.1 Effective Value Density

The e�ective value density obtained by a scheduling algorithm A at the period between

time t1 and t2 is the sum of value densities scheduled during this period weighted according

to their length of execution during the period. Formally for any task T letduration(T )

denote the duration for which T was scheduled (by A) between time t1 and t2. Then the

e�ective value density of the algorithm A between t1 and t2 is:

X value density(T )� duration(T )

t2 � t1

The sum is taken over all T such that T was scheduled for execution between t1 and t2.

We will say that the the e�ective value density of a task T between t1 and t2 is its

contribution to the above sum. I.e.

value density(T )� duration(T )

t2 � t1

Lemma 4.1.1 If only one density level, i0, is missing from the on-line schedule at the

beginning of some stage, S, then the e�ective value density obtained by the clairvoyant
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scheduler during stage S is at least k

(k�1)n(k
1

n � 1) times bigger than the e�ective value

density obtained by the on-line scheduler for the same period.

proof.

An easy lower bound on the value achieved by the clairvoyant algorithm is obtained by

scheduling to completion n tasks of level i0. This corresponds to an e�ective value density

of nk
i0

n .

During stage S the on-line scheduler did not execute any task of level i0 because no task

of that level was scheduled at the beginning of the stage and no new tasks are released

before the end of the stage. Instead it scheduled tasks of lower or higher levels. The

e�ective value density of any task of higher level is much smaller than its value density

because of its short period. In fact all such tasks have e�ective value density of at most �

during S. Hence the e�ective value density achieved by the on-line scheduler is at most

1 + k
1

n + k
2

n + � � �+ k
i0�1

n + � + � � �+ �
| {z }

n�i0 times

We are looking for the smallest possible ratio between the e�ective value densities of the

clairvoyant and the on-line scheduler. That is

min
0�i0�n

nk
i0

n

(1 + k
1

n + k
2

n + � � �+ k
i0�1

n + (n � i0)�)

The above term monotonically decreases when i0 increases hence the minimum is obtained

when i0 = n and its value is

nk

1 + k
1

n + k
2

n + � � �+ k
n�1

n

=
k

k � 1
n(k

1

n � 1)

and the lemma is proved.

The preceding lemma dealt with the special case that only one value density level is

missing from the on-line schedule. But what will happen if more than one level is missing?

In the following we show that this cannot bene�t the on-line scheduler (for a \good" choice

of i0). Hence the lower bound holds in the general case.

Actually we look for a value density level (at time tl) that has the following single

representative property: No task of that level is currently executing and all lower levels
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have only one representative in the on-line schedule3 (recall that each level can have up to

n representatives). This level will give us the desired result.

Still it is possible that no such level exists. That is it may be that some levels lower

than the missing one have more than one representative. In that case we show that we

always can help the on-line scheduler by the following gift: we promote some tasks upwards

to higher value densities i.e. giving them an additional value density during one stage.

We choose the promotion in such a way that it leads to a situation that satis�es the above

property. Then we obtain the lower bound taking the gift into consideration. This bound

surely applies for the weakened on-line scheduler (i.e. without the gift).

Here are the details of the promotion procedure. At the beginning of the stage the

on-line scheduler executes up to n tasks. The promotion works as follows: group the tasks

currently executing according to their value density levels. Now starting from level zero

go up the levels until a level having the single representative property is found. If there is

no task at level zero then level zero has the desired property. Otherwise promote allbut

one of the tasks one level up to level one. Now we repeat this procedure for level one: if

there are no tasks at level one (taking into consideration tasks that were just promoted)

then level one satis�es the desired property. If level one is not empty then we promote all

but one of the tasks (if any) to the next level and repeat this process.

There are n + 1 value density levels but only n (or less) tasks hence this process

must terminate producing a \promoted" schedule with a level that has the the single

representative property.

Now we are ready to state and prove the version of lemma 4.1.1 for the general case

(i.e. when more than one level is missing).

Lemma 4.1.2 For any stage S, the e�ective value density obtained by the clairvoyant

scheduler during S is at least k

(k�1)n(k
1

n � 1) times bigger than the e�ective value density

obtained by the on-line scheduler for the same period.

proof.

Suppose i0 is the level having the single representation property for the period in question

possibly after performing the promotion procedure.

An easy lower bound on the value achieved by the clairvoyant algorithm is obtained by

3If only one level is missing from the schedule then the single representative property is satis�ed for that

level.
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scheduling to completion n tasks of level i0. This corresponds to an e�ective value density

of nk
i0

n .

Suppose T1; T2; � � �Tm with value densities i1 � i2 � � � � im < i0 are the tasks that were

executing at the beginning of stage S 4. There are no more tasks releases until the end of

i0's period. Hence the ratio between the e�ective value densities is at least:

nk
i0

n

(k
i1
n + k

i2
n + � � �+ k

im

n + (n�m)�)

But if we replace the value density of a task T by its promoted value density (denoted by

P (�)) then the denominator does not decrease hence the ratio does not increase.

nk
i0
n

(k
i1
n + k

i2
n + � � �+ k

im

n + (n�m)�)

�
nk

i0
n

(k
P (i1)
n + k

P (i2)
n + � � �+ k

P (im)
n + (n�m)�)

�
nk

i0
n

(k
1
n + k

2
n + � � �+ k

m

n + (n�m)�)

The last equality is due to the fact that P is a one to one function from fi1; i2; � � � img onto

f1; 2; :::mg. We saw in lemma 4.1.1 above that the above ratio is not smaller than

k

k � 1
n(k

1
n � 1)

and the lemma is proved.

The lemma above demonstrates a ratio between the e�ective value density of any on-line

scheduler and that of the clairvoyant scheduler during every stage. For an in�nite game

this translates to a ratio between the values obtained by the algorithms during the entire

game. However we are interested in �nite games: a problem arises with the end of the

last stage. At the end of the last stage the on-line scheduler may still execute tasks from

previous stages while the clairvoyant (according to our scenario) leave all the processors

idle. The following theorem proves that after su�cient number of stages these \residual"

tasks can be ignored.

4It is possible that some of these tasks were released in previous stages.
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Theorem 4.1.3 For a system with n processors and maximal value density of k, there is

no on-line scheduling algorithm with competitive multiplier smaller than k

(k�1)n(k
1

n � 1).

proof.

Fix an on-line scheduling algorithm. Recall that tl the beginning of the l'th stage denote

by V (tl) the value obtained by the on-line scheduler until time tl. The ratio between the

e�ective value densities as appears in lemma 4.1.2 becomes a lower bound on the ratio

between values because the clairvoyant scheduler never abandons a task that started its

execution while the on-line algorithm might. Hence lemma 4.1.2 shows that the value

obtained by the clairvoyant algorithm is at least k

(k�1)n(k
1

n � 1)V (tl).

Note that tl tends to in�nity as l goes to in�nity. If V (tl) does not tend to in�nity as

l goes to in�nity then the competitive multiplier of the on-line algorithm is not bounded

(because the clairvoyant algorithm gets a value of at least ntl !1). Hence we can assume

that V (tl) tends to in�nity. For arbitrarily small � > 0 there is a big enough l0 such that

V (tl0) �
1

�
kn) kn � �V (tl0)

Suppose the game ends at tl0 (i.e. no more task releases). The total value obtained by the

on-line scheduler is not greater than V (tl0) + kn (because all the tasks not yet completed

have length at most 1 and value density at most k). The clairvoyant scheduler gets a value

of at least k

(k�1)n(k
1

n � 1)V (tl0).

Hence

value obtained by the clairvoyant scheduler

value obtained by the on-line scheduler

�

k

(k�1)n(k
1

n � 1)V (tl0)

V (tl0) + kn

�

k

(k�1)n(k
1

n � 1)V (tl0)

V (tl0) + �V (tl0)

�

k

(k�1)n(k
1

n � 1)

1 + �

This holds for every positive � hence the Theorem is proved.

Corollary 4.1.4 As the number of processors n tends to in�nity, no on-line algorithm

can have a competitive multiplier smaller than ln k (natural logarithm).
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Remark 4.1.2 For n = 1 the lower bound is k which is not as good as the already known

tight lower bound of (1 +
p
k)2 (chapter 3). For k = 1 a di�erent treatment is needed.

In the next section we introduce our competitive scheduling algorithm for multiproces-

sor environments.

4.2 Algorithmic Guarantees

Having proved the lower bound on the best possible competitive multiplier we would like

to devise an on-line scheduler that achieves this bound. In the following we describe an

algorithm that does so (up to a small multiplicative factor) in many cases.

We break the processors into bands (of 2 processors each) and one central pool. The

main idea of the algorithm is to assign a task upon its release to the band corresponding to

its value density. Tasks that are assigned to a band are guaranteed to complete and can all

complete on a single processor. This means that they constitute a uniprocessor underloaded

system and can be scheduled according to the earliest-deadline-�rst algorithm [7]. Suppose

the new task cannot be added to the band that corresponds to its value density (because

it will cause overload at that band). Then the scheduler will determine whether the new

task can be scheduled on the next band below (i.e a band corresponding to lower value

density). If the band below cannot accept the new task the task will continue to cascade

downwards. If a task cascades to the lowest band but still cannot be scheduled there it

can go into the central pool.

If a newly released task is accepted by one of the bands or by the central pool it is

guaranteed to complete before its deadline (these tasks are called \privileged"). If it is

not it awaits its LST (Latest Start Time)5 at which time it tries again to be scheduled

(details to follow).

Throughout this section we assume a system with 2n processors. We break the pro-

cessors into two disjoint groups: 2 processors will constitute a \band structure" and the

other 2! processors will constitute a \central pool" as described below (n =  + !; and

n > ! � 0).

5Recall the de�nition of LST (section 3.1): LST = (deadline - remaining computation time). If a task
is not scheduled at its LST, it will not complete.
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We consider  intervals6 (levels) of value density [1::k
1

 ); [k
1

 ::k
2

 ); � � � ; [k
 �1
 ::k] call

these levels 1; � � � ; respectively. The i'th band is said to be \lower" than the i + 1'st

band.

Suppose the entire set of tasks to be scheduled is �. We partition this set according

to the value density of the tasks: � = �1 [ �2 � � � [ � where �i contains all tasks with

value density in the range [k
i�1

 ; k
i

 ). We allocate 2 processors (a band) for each of the

 value density levels. In addition the remaining 2! processors are allocated as a central

pool that will be used by tasks of all levels.

The algorithm has three major components:

1. Upon task release assign a task to a band (possibly after cascading).

2. At LST (of a non-privileged task) decide whether and where a task should be sched-

uled or maybe abandoned.

3. The method used in scheduling each band (and the central pool).

Di�erent choices for these three components would create di�erent variants of the algo-

rithm. In this paper we describe one speci�c variant that we call the MOCA Algorithm.

In this variant the central pool is also broken into bands of two processors each7. The

MOCA Algorithm schedules according to the following rules:

� At each moment every band has one of its processors designated as the Safe Processor

(SP) and the other as the Risky Processor (RP). Each band has its own queue called

Q privileged the tasks inQ privileged are guaranteed to complete. In addition to

the local Q privileged queues there is one global queue called Q waiting . This queue

includes all the ready tasks that are not privileged.

� When a new task T is released it is assigned to a band as follows:

6All but the last interval is half open half closed. The last level corresponds to the closed interval

[k

 �1
 ; k].
7The bands of the central pool are ordered so that a task that reaches the pool start with the �rst band

in the pool and if not accepted it cascades to the second band and onwards. If the task is not accepted by
the last band in the pool it awaits its LST.
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1. It is added to the Q privileged of its own band if this does not create overload

(i.e all tasks including the new task can complete on SP). Otherwise T cascades

downward as described above.

2. If T was not accepted by any band (including all the bands in the central pool)

it enters Q waiting where it waits until its LST occurs.

So at release time only the SPs are examined. A task might not be scheduled even

if an RP is idle8.

� A task T that reached its LST is assigned to a processor as follows:

1. If there is any idle RP among all the lower level bands (including T 's own level)

then schedule T on one of these processors9.

2. If there is no idle RP among lower level bands we might abandon a task exe-

cuting on one of these RPs in order to schedule T depending on the following

rule:

Let T � be the task with earliest deadline among all the tasks executing on these

RPs.

If T has a later deadline than T
� then abandon T

� and schedule T in its place;

otherwise abandonT 10.

� If at task completion event SP of a band becomes idle then the two processors

should switch roles; the safe-processor becomes the risky-processor and vice versa11.

This does not require task migration.

Figure 4.2 is a schematic description of the MOCA Algorithm. The bands structure as

described above prioritize high value density tasks over low value density tasks. Higher

value density tasks start their cascading at a higher point and cascading is possible in only

one direction - downwards12. However an algorithm that uses the \pure" bands structure

8Using idle RPs and scheduling tasks of Q waiting before they reach their LST is a heuristic that can
improve the average case behavior of the scheduler.

9Heuristics can be used to choose the processor in case more than one RPis idle.
10If T is to be abandoned while there is an idle processor (above T 's own band), scheduling T on an idle

processor (with or without guaranteeing its completion) can only improve the average case behavior of the
scheduler.

11The current task on SP (that was RP) becomes privileged.
12Hence, higher value density tasks have more bands that can possibly accommodate them.
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Figure 4.2: A schematic description of the MOCA Algorithm.

In this �gure the system has 10 processors divided into 3 bands and a central pool. At

release time a task tries to be scheduled on one of the SPs starting with its own value

density band. If unsuccessful it awaits its LST in Q waiting . At LST the task tries to be

scheduled on one of the RPs again starting from its own value density band.
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Task T1 T2 T3 T4 T5 T6 T7 T8 T9 T10

Release Time 0 0 1 1 1 2 2 3 3 6

Computation Time 5 5 5 5 1 4 3 2 2 1

Slack Time 0 0 0 0 0 2 2 1 0 1

Deadline 5 5 6 6 2 8 7 6 5 8

Value Density 1 2 3 3 3 16 10 10 10 16

Table 4.1: The tasks for example 4.2.1.

(i.e. with no central pool) can be crippled when the task set consists of mostly low value

density tasks since all the higher bands will be left idle. In order to minimize the loss of

such cases we add the central pool to the bands structure. If all the tasks are of low value

density then all high bands would still be left idle but the bands in the central pool would

be utilized.

A big enough central pool will o�set the damage caused by higher idle bands. However

making the central pool too big can cause another problem|weakening the advantages of

the higher value density tasks. We conclude that choosing the right size of the central pool

is a delicate and important aspect of the the MOCA Algorithm. An intuitive analogy is

to a well-balanced corporate research and development policy: a few researchers should

work on high risk/high value research whereas most employees should work on bread and

butter concerns.

Example 4.2.1 The following is a small example of the MOCA Algorithm`s scheduling.

Assume that the highest possible value density is 16 number of processors is 6 from which

2 are allocated as a central pool and the rest constitute 2 bands (i.e. k = 16; 2n = 6; = 2

and ! = 1). The �rst band will be for tasks with value density below 4 and the second for

tasks with value density of 4 and above. For this example consider the tasks depicted in

table 4.1. Figure 4.3 shows the schedule created by the MOCA Algorithm.

The �rst two tasks to be released are scheduled on the SP of the �rst band and the

central pool (T2 cascades into the central pool). When T3 is released it cannot be scheduled

on an SP so it is inserted into Q waiting only to create an LST interrupt immediately.

Then it is scheduled on the RP of the �rst band. In the same way T4 is scheduled on

the RP of the central pool. But when T5 arrives it can be scheduled neither on any of



CHAPTER 4. MULTIPROCESSOR ENVIRONMENTS 61

T10

SP

RP
2’nd band

Central  Pool

SP

RP

RP

0 2 4

T6 T8

T4

T9 T7

T1

6 8

T6

T3

T2

a task on RP

a task on SP

legend

time axes

SP

SP, RP  initial assignment as safe or risky in each band

1’st  band

Figure 4.3: The MOCA Algorithm scheduling for example 4.2.1.
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the SPs nor on any of the RPs hence is abandoned (in the LST routine). Note thatT5 is

abandoned even though the second band is idle (a task can cascade only downwards).

All the remaining tasks have value density high enough to be scheduled on the second

band. T6 is scheduled on the SP. T7 cannot be scheduled on any of the SPs and it enters

Q waiting (with LST at 4). T8 can be added to the SP of the second band preempting T6

(which has a latter deadline). T9 cannot be scheduled on any of the SPs; it reaches its LST

and is scheduled on the RP of the second band but at time 4 it is abandoned in favor of

T7 which arrived to its LST and has a later deadline.

At time 5 the SP of the �rst band becomes idle which creates a switch of roles between

the SP and RP of that band. Later at time 6 T10 is released; it cannot be scheduled on

its own band's SP but after cascading it is scheduled on the (new) SP of the �rst band.

All in all theMOCA Algorithm completed all the tasks but T5 and T9. A clairvoyant

scheduler could schedule all the tasks (T5 can be scheduled on the idle SP and T9 can be

scheduled before its LST on the same processor).

4.3 The Algorithm's Competitive Multiplier

In this section we would like to study the behavior of theMOCA Algorithm and to compute

its competitive multiplier. The �nal result is stated in theorem 4.3.3. Before we start we

must introduce the lost value lemma as well as some notation and de�nitions.

Let A be an on-line scheduler and � a set of tasks to be scheduled. We can partition

the tasks of � according to the behavior of A

1. Tasks that never completed (F ) the \lost" ones.

2. Tasks that completed successfully (S)

� = F [ S

Denote by V (�) and C(�) the value achieved by A and the clairvoyant scheduler from the

tasks of � respectively.

Lemma 4.3.1 The Lost Value Lemma
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If for some constant c and every set of tasks �,

C(F ) � cV (�)

Then,

C(�) � (c+ 1)V (�)

proof.

C(�) = C(F [ S) � C(F ) + C(S)

= C(F ) + V (S) = C(F ) + V (�)

� (c+ 1)V (�)

De�nition 4.3.1

� Productive Band: A band is said to be productive at time t if at that time its

SP is not idle.

Recall that tasks that start executing on SP are never abandoned. This mean that

whenever SP is not idle it \generates" value (i.e. productive).

� Cumulative Value Density (CVD): Suppose some schedule is chosen thecu-

mulative value density at time t is the sum of the value densities of all tasks executing

at time t 13 .

Recall that � is the entire set of tasks to be scheduled. We partition the tasks of �

according to the behavior of the MOCA Algorithm: tasks that never completed (F ) and

tasks that completed successfully (S). Denote by V (�) the value achieved by the MOCA

Algorithm.

We would like to show that for any task that was abandoned by the MOCA Algorithm

there are other tasks with \enough value" that were completed. This will show that

13For example, for a system with 2n processors, if all processors are idle at time t then CV D(t) = 0. If
half of the processors (i.e, n) execute tasks with unit value density and the others execute tasks of value
density k then the cumulative value density is n+ kn. In no case can CV D(t) be bigger than 2nk.
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C(F ) � �C(�) (for some constant �). Using the Lost Value Lemma (4.3.1) we will get a

competitive multiplier of � + 1.

First we note that only tasks of level i or higher can be scheduled on band i. Suppose

a task T was abandoned by the MOCA Algorithm we will show that this implies that all

the bands corresponding to the value density of T or lower were productive during the

entire executable period14 of T . If a band was productive during the executable period of

T then theMOCA Algorithm gains a value of at least the band's value density times the

length of the period. In this way we get a lower bound on the value gained by the MOCA

Algorithm (i.e. the \enough value" mentioned above).

The following technical lemma is used in item 2 below.

Lemma 4.3.2 If at time t a task with deadline d is executing on RP of a band (i.e this

task was scheduled by an LST interrupt) then that band will be productive between t and

d.

proof.

If SP does not become idle before time d then by de�nition the band is productive between

t and d. Otherwise suppose SP becomes idle at times t < s < d then there must be a

task executing on RP at time s (because a task on RP can be abandoned only in favor of

another task with a later deadline and no slack time). So at times RP becomes SP and

it would not become idle before time d because the deadline of the current task is at least

d (and it has no slack time).

Here are a few things to notice about the MOCA Algorithm:

1. At any band i only tasks of level i or higher can be executed.

2. If a task T of level i is abandoned then band i and all lower bands (including the

central pool) are productive during the entire executable period of T .

proof.

Let T be T (r; c; d)15. Upon T 's release it was not accepted by any of the levels on or

below i. This means that for each of these bands the tasks currently in (the local)

14Recall the de�nition of executable period (2.0.1).
15I.e., released at time r with deadline d and computation time c.
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Q privileged will execute at least until d� c (otherwise T could become privileged).

This proved that all bands are productive between r and d� c.

However d� c is the LST of T . At its LST T would not be scheduled only if every

band (on or below the i'th) has a task currently executing on its RP with deadline

after d. This means that all bands are productive between d�c and d (lemma 4.3.2).

Combining the two gives the desired result.

3. Once a task starts to execute on some processor it will never migrate to another

processor.

At any given time t consider all the tasks ofF for which t is in their executable period.

Let high(t) be the value density level corresponding to the task with the highest value

density among all these tasks.

Suppose the clairvoyant scheduler has to schedule only the tasks of F and suppose

it had chosen some optimal schedule for these tasks. At time t the best the clairvoyant

scheduler can hope for (looking only at time t) is to have all 2n processors executing tasks

of level high(t) i.e with value density not greater than k

high(t)

 . We conclude that the

cumulative value density of the clairvoyant schedule at time t is bounded by 2nk
high(t)

 .

The facts that a task of level high(t) was abandoned and that t is in its executable

interval imply that at time t all bands up to (and including)high(t) were productive.

This means that the on-line scheduler has a cumulative value density of at least16:

! + 1 + k
1

 + k
2

 + � � �+ k

high(t)�1

 = ! +
(k

high(t)

 
� 1)

(k
1

 
� 1)

This leads to the following theorem.

Theorem 4.3.3 For a system with 2n processors and maximal value density of k > 1 the

MOCA Algorithm has a competitive multiplier of at most

1 + 2n min
(0� �n;n=!+ )

8>>>>>><
>>>>>>:

max
1�i� 

k
i

 

! + (k
i

 �1)

(k
1

 �1)

9>>>>>>=
>>>>>>;

(4.1)

16For the case k = 1, the uniform value density case, see remark 4.3.2 below.
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proof.

The discussion above demonstrated that

C(F )

V (�)
� max

1�i� 

2nk
i

 

! + (k

i

 �1)

(k

1

 �1)

= 2n max
1�i� 

k

i

 

! + (k

i

 �1)

(k

1

 �1)

(4.2)

Since this is true for any setting of  (provided that n = ! +  ) hence we get

C(F )

V (�)
� 2n min

(0� �n;n=!+ )

8>>>>>><
>>>>>>:

max
1�i� 

k

i

 

! + (k

i

 �1)

(k

1

 �1)

9>>>>>>=
>>>>>>;

Using the Lost Value lemma we get the desired result.

Remark 4.3.2

� Note that the MOCA Algorithm does not use migration hence the previous result

holds both whether migration is allowed or not.

� When k = 1 there is no need for the bands structure hence the central pool consists

of all the processors (in our notation ! = n�1 and  = 1). This leads to a competitive

multiplier of 2+1 (when some tasks may have slack time). For n = 2 this corresponds

to our results for two processor systems (in appendix D).

� When the number of processor is odd a similar result can be obtained. For a system

with 2n+ 1 processors create bands and pool from the �rst 2n processors. The left

over processor can be used for example as a second SP for one of the bands. This

leads to a bound of:

1 + (2n+ 1) min
(0� �n;n=!+ )

8>>>>>><
>>>>>>:

max
1�i� 

k

i

 

! + (k

i

 �1)

(k

1

 �1)

9>>>>>>=
>>>>>>;

However this result does not specialize to a uniprocessor system because at least two

processors are needed to create a band.
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4.3.1 Setting  

We will estimate the complex expression for the upper bound on the competitive multiplier

given by theorem 4.3.3 by setting17 18  = n
lnk

ln k+1
. (hence ! = n

1
ln k+1

=  
ln k

) The bound

in (4.2) above becomes:

2n max
1�i� 

k

i

 

 
ln k

+ k

i

 �1

k

1

 �1

= 2n(k
1

 
� 1) max

1�i� 

k

i

 

 
ln k

(k
1

 
� 1) + (k

i

 
� 1)

The left hand side is obtained by multiplying both numerator and denominator by (k
1

 
�1).

The maximum19 denoted by the equation above is attained at i =  and the upper bound

(equation 4.2) is:

2n(k
1

 
� 1)

k

 
ln k

(k
1

 
� 1) + (k � 1)

< 2n(k
1

 
� 1)

k

1 + (k� 1)
= 2n(k

1

 
� 1) (4.3)

We have just proved the following lemma:

Lemma 4.3.4 The MOCA Algorithm has a competitive multiplier of at most

1 + 2n(k
1

 
� 1) (4.4)

where  = n
ln k

ln k+1

(recall that the lower bound is bigger than 2n(k
1

2n
� 1))

Recall that  (k
1

 
� 1) tends to ln k as  approaches in�nity. Hence when the number

of processors tends to in�nity equation (4.4) above tends to

1 + 2 lim
 !1

 
ln k + 1

ln k
(k

1

 
� 1) = 1+ 2

ln k + 1

ln k
ln k = 2 ln k + 3 (4.5)

17ln is the natural logarithm
18Numerical experiments have shown that this setting of  is a close approximation to the optimal

setting.
19De�ne fa(x) to be x

a+(x�1)
. When a > 1, this function is monotone increasing with x (x � 0). Let a

be
 
ln k (k

1

 � 1). Then a is bigger than 1, because  k
1

 
�1

ln k is a monotone decreasing function of  tending
to 1 when  goes to in�nity.
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Corollary 4.3.5 For given n and k, the ratio between the lower bound and the algorithmic

guarantee is at most

1 + 2n(k
1

 
� 1)

k

k�1
2n(k

1

2n
� 1)

; where  = n
ln k

ln k + 1
(4.6)

When k is held �xed and n tends to in�nity this ratio tends to k�1

k

�
2 + 3

ln k

�
. Which, is

less then 3:2 for all k > 1 and tends 2 as k tends to in�nity.

proof.

Recall our lower bound of 2n k

k�1
(k

1

2n
� 1). This bound tends to k

k�1
ln k when n tends to

in�nity. The limit of the ratio is the ratio of the limits which is:

2 ln k + 3
k

k�1
ln k

=
k � 1

k

�
2 +

3

ln k

�
(4.7)

Which gives the desired result.

Figure 4.4 gives a graphical representation of the above result.

Remark 4.3.3 In the discussion above we have chosen to ignore the fact that ! and  

must be integers. We can take care of that by setting  as the nearest integer to n lnk
lnk+1

4.3.2 Distributed vs. Centralized Scheduler

We discuss here architectures with large number of processors. Hence it is necessary to

see which portions of the scheduler are centralized and which are distributed. The MOCA

Algorithm uses a central scheduler in order to assign a task to a band (at task release time

and LST). This means that the centralized scheduler has all the information regarding

tasks assigned to each band and their parameters20. Once a task is assigned to a band it

is left in the hands of the local scheduler (which basically employs earliest-deadline-�rst).

It is desirable for reasons of fault-tolerant and e�ciency [39] to distribute the func-

tionality of the centralized scheduler among the processors. This is an interesting and

important extension to the work presented here.

20Since all the tasks go through the central scheduler this is not di�cult to do.
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Figure 4.4: The ratio between the value guaranteed to be obtained by the algorithm and
the lower bound for varying number of processors and importance ratios.
The upper graph shows the ratio (equation 4.6 above) for k = 2 (the `x's) and k = 256
(the `o's) for varying number of processors.
The lower graph shows the limit as n tends to in�nity of the ratio between the algorithmic
guarantee of the MOCA Algorithm and the lower bound (equation 4.7 above) for varying
importance ratios.
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4.3.3 The Scheduling Overhead

In the previous sections we analyzed the performance of our algorithm in the sense of

their competitive multipliers. In this section we study the cost of executing the scheduling

algorithm itself.

What is the cost of testing whether a newly arriving task can be added to Q privileged

containing N tasks with out causing overload? This can be done in O(logN) operations

using a 2-3 tree that holds slack times with sums of the slack times from left siblings held

in interior nodes. If the task is to be added to Q privileged the updating of the 2-3 trees

involved takes also O(logN) time.

Let M be a bound on the the total number of ready tasks at any given moment in

Q waiting and any of the local queues. When a task is released it may have to be checked

against all bands (suppose the task cascades from the highest band all the way to the

lowest) with a total cost of O(n logM).

A task in Q waiting awaits its LST. Hence Q waiting is a 2-3 tree organized according

to Latest Start Time. Inserting and removing a task from this queue costs O(logM)

operations.

A task during its lifetime causes exactly one task release event and at most one LST

interrupt. Hence the scheduling overhead per task is O(nlogM).
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number of importance bounds
processors ratio lower bound algorithmic bound comments

1 : any k � 1 (1 +
p
k)2 [3 4] tight z 1

2 : 1 2 tight no slack2 [3 38]
: (uniform)

2 : 1 2 3 z with slack
: (uniform) no migration3

2 : 1 2 tight z with slack
: (uniform) and migration 4

n � 2 : k > 1 k

(k�1)n(k
1

n � 1) z 1 + n(k
1

 � 1) z 5

: where  = n

2
lnk

lnk+1

n >> 2 : k > 1 k

(k�1) ln k
z 2 ln k + 3 z 6

Table 5.1: State of the art of competitive real time scheduling.

The above table summarizes the current state of the art of competitive real time scheduling.

Here n is the number of processors in the system; k is the importance ratio that is the

highest possible value per unit of computation time that any task can possibly obtain

(normalizing the lowest to 1). The bounds are expressed in terms of competitive multipliers.

Results marked with z are part of this dissertation.
This work has presented an optimal on-line scheduling algorithm for uniprocessor over-

loaded systems. It is optimal in the sense that it gives the best competitive factor possible

relative to a clairvoyant scheduler. It also gives 100% of the value of a clairvoyant scheduler

for underloaded systems. In fact the performance guarantee of Dover is even stronger: Dover

schedules to completion all tasks in underloaded periods and achieves at least 1
(1+

p
k)2

of

the value a clairvoyant algorithm can get during overloaded periods7. The model accounts

for di�erent value densities and generalizes to soft deadlines.

1tight bound achieved by Dover .
2tasks have no slack time and may not migrate between processors.
3tasks may have slack time but may not migrate between processors.
4tasks may have slack time and may migrate between processors.
5bounds are tight within constant coe�cient for many cases. The exact algorithmic

guarantee can be seen in theorem 4.3.3.
6asymptotic behavior.
7The de�nitions of underloaded and overloaded periods and the proof for the above claim can be found

in section 3.3.
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For multiprocessor environments a gap remains between the guarantees achieved by

the MOCA Algorithm and the lower bounds we have proved. The algorithmic guarantee

is within a small multiplicative factor from the lower bound for large enough n and k

(�gure 4.4 and �gure 5.1 show that the asymptotic behavior is attained even for small

values of n). When the importance ratio of a system (i.e. k) is close to 1 a di�erent

treatment is needed. Some work in this direction has been done by Bar-Noy et. al. [2].

It is possible that a better choice of  will lead to a better exact expression of the

algorithmic guarantee for our algorithm. But it seems that asymptotically we cannot

do better without changing our algorithmic techniques. The reason is that our basic

block the scheduling algorithm for a 2-processor band concentrates its e�orts on one

processor at a time (SP); the other processor RP is essentially left idle. Hence the

MOCA Algorithm automatically loses a factor of 2 compared to a clairvoyant scheduling

algorithm that utilizes all the processors concurrently. Of course one can suggest heuristics

that will use a processor whenever possible8 the true challenge is to show that such a

heuristic achieves a better worst case performance guarantee. Another way to improve the

algorithmic guarantee will be to come up with a better algorithm for an m-processor band

(for some m � 2).

Our adversary arguments and algorithms o�er two useful insights:

1. A parallel on-line scheduling algorithm achieves a competitive guarantee by allocat-

ing some processing resources according to tasks' value density. This is a qualitative

di�erence from our uniprocessor scheduling algorithm Dover which made its decisions

based on total value only. Moreover high value density tasks in the MOCA Algo-

rithm have priority over lower value density tasks in the sense that they have more

processors on which they can be scheduled due to the cascading.

2. The lower bound on the best possible competitive multiplier (as measured by our

adversary arguments) converges to k

k�1
ln k as the number of processors approaches

in�nity. Our current algorithm gives a guarantee that converges to 2 ln k + 3 as

the number of processors approaches in�nity. The ratio between the algorithmic

guarantee and the lower bound is less then 3:2 for all k > 1 and a large enough n.

8Heuristic improvements can be obtained for example scheduling tasks on the Risky Processor before

tasks arrive at their latest start times.
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Figure 5.1: Comparison of competitive multipliers of lower bounds (o's) and algorithmic
bounds (x's) for �x k's and varying number of processors.
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This shows that the current algorithms are tight for large numbers of processors

but that work remains to be done for small numbers of processors (see �gures 4.4

and 5.1).

This work leaves many problems open. Here is a small sample.

� We assume that k is given and known in advance. It is interesting to know if this

assumption can be relaxed. Recently in an unpublished result Schieber [32] devised

a variant of Dover that gives the optimal guarantee even when k is not known in

advance. Can the same be done for multiprocessor environments?

� What guarantees can be given when tasks are not independent e.g. for systems with

locks or precedence constraints? What if some characteristics of the task set are

known a priori (e.g. periodic tasks)?

� What guarantees can be given when not all tasks can be scheduled on all processors?

What if not all processors have the same speed?

� What guarantees can be given when a penalty (i.e. a negative value) is incurred for

every task that does not complete.

� In practice real-time systems have some periodic critical tasks and other less critical

tasks which may be aperiodic. A typical solution (as taken in the Spring Kernel

for example [37]) is to devote certain intervals to the critical tasks and to allow the

less critical tasks to run during the rest of the time. Dover gives its usual guarantee

with respect to the less critical tasks in this situation (the accounting is a little more

di�cult since useful time has \holes" in it corresponding to subintervals allocated to

critical tasks). A much more subtle question is what is a good competitive algorithm

that can take advantage of the cases when a given critical task executes in less time

than is allocated for it. We suspect the competitive guarantee may be worse since

the clairvoyant algorithm might then execute a task that Dover had prematurely

abandoned.

� An important issue is how to account for migration overhead in multiprocessor envi-

ronments. For example we modeled distributed memory architectures by forbidding

migration but that is clearly too strong a restriction.
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Permitting migration but at a cost would have been much more reasonable.

� There are many other open issues that must be addressed for overloaded systems in

a fault-tolerant context. An important issue is how to reallocate processors when

a failure occurs. The MOCA Algorithm is described as a multiprocessor algorithm

with a static number of processors. Fault tolerance issues can be addressed by the

following techniques:

First one can keep some processors in reserve and introduce them as other ones fail.

While in reserve the processors can be used as a secondary pool for tasks that were

not accepted by the primary structure of bands and pool. Another way to utilize

additional reserve processors is to add a third processor to a two-processor band.

The third processor can be a mirror processor for the safe processor waiting to take

over in case that one of the band's processor fails.

Second as processors fail one can statically reset the algorithm to have a di�erent

number of bands and/or pool of shared processors. Combinations of these techniques

and additional heuristics may give rise to promising algorithms.
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What if the collection of tasks to be scheduled is underloaded that is to say that all tasks

can be scheduled to completion? We would like the on-line scheduler to be optimal in this

case.

Dover is optimal for underloaded systems. In fact it has an even stronger performance

guarantee: We devise a procedure (Remove Conflicts see �gure 3.5) to partition the

tasks into two classes. The conict-free tasks are those that can be scheduled to completion

without preventing any other task from completing (in a sense to be made precise in the

algorithm below). A task is conicting otherwise.

A.1 The Remove Conict Procedure

We will show that Dover schedule to completion all conict-free tasks (in particular all

tasks in an underloaded system) and also obtains at least 1

(1+
p
k)2

the value a clairvoyant

algorithm can get from the conicting tasks.

The de�nitions of underloaded and overload systems in section 2 are natural and widely

accepted. However even when a system is overloaded it is possible that some periods are

\underloaded" i.e. it is possible that some tasks will be scheduled to completion by all

clairvoyant algorithms since they do not prevent any other task from completion. One

can de�ne the periods occupied by the aggregated tasks (de�nition A.1.2) as overloaded

intervals. We prefer this de�nition to the one we used earlier [4 16] because it does not

depend on the behavior of D 1.

Example A.1.1 To see how remove conicts works2 consider the following example.

Suppose we are given the collection of tasks depicted in table A.1.

In the beginning remove conicts is invoked with the above collection. The algorithm

seeks a conicting collection S starting with collections of size two. S = fT1; T2g is such

a collection since the computation time of these tasks (combined) is 8 but their combined

1Also in [4 16] a task is \overloaded" if and only if its deadline is in an overloaded interval. This is
not reasonable because even tasks that have enough slack time to complete "safely" before the overloaded
interval starts will be considered as \overloaded".

2Another version of this algorithm is an iterative algorithm that at each iteration selects non-
deterministically a minimal set of conicting tasks and replace them by an aggregated task. A collection is
minimal in the sense that removing any one task will make the remaining tasks schedulable. Our algorithm
always selects a minimal collection with the smallest possible number of tasks. Note that the purpose of
this algorithm is to de�ne conicting and conict free tasks. No scheduler needs ever to execute it.
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Task Release-Time Computation-Time Deadline

T1 0 4 6

T2 2 4 6

T3 0 2 8

T4 6 2 8

T5 0 1 9

Table A.1: Tasks for example A.1.1.

execution periods has only a length of 6. Hence these tasks are conicting tasks and an

aggregated task Ta is created with release time 0 computation time 6 and deadline 6.

The aggregated task replaces T1 and T2 and remove conicts is invoked with the new

collection. This time there is no conicting collection of size 2 but there is one of size

3 namelyfTa; T3; T4g. This is true since the combined computation time is 10 while the

length of the combined execution periods is only 8. These tasks are replaced by a new

aggregated task Tb which is created with release time 0 and computation time 8.

The new aggregated task replaces Ta T3 and T4. remove conicts is invoked again but

this time there are no conicts. The process terminates. Table A.2 summarizes the results.

Task Release-Time Computation-Time Deadline Final Status

T1 conicted

T2 conicted

T3 conicted

Ta 0 6 6 aggregated task

T4 conicted

Tb 0 8 8 aggregated task

T5 conict-free

Table A.2: Aggregated tasks for example A.1.1.

De�nition A.1.2

� Conflicting and Conflict-Free Tasks; Aggregated Tasks: We are given

a set � of original tasks. A task T is said to be conicting if it was \marked" as such

by the initial or any recursive call of remove conicts (statement 12). Conicting

tasks are merged into aggregated tasks. A task (original or aggregated) that is not
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conicting is said to be a conict-free. When all the tasks (original or aggregated)

of a collection are conict-free the collection is conict-free and otherwise conicting.

A.1.1 The Performance Guarantee of D
over

In the following assume that a collection � is given.

Lemma A.1.1 � is overloaded if and only if it is conicting.

proof.

Assume � is conicting we will show that � is overloaded. Let T be the �rst aggregated

task to be created by remove conicts when invoked with � as its input. T is an aggregate

of original tasks. This means that the sum of the computation times needed for these tasks

is greater than the time between their earliest release and latest deadline (see statement

10 of remove conicts). Hence these tasks cannot be all scheduled. We conclude that � is

overloaded.

Assume � is overloaded we will show that � is conicting. Let � be a minimal set of

tasks in � that cannot be scheduled. � is minimal in the sense that removing any one task

will make the rest of the tasks in � schedulable3 . Let r be the earliest release time and d

the latest deadline among all tasks in � . Let � be scheduled by D.

Claim When D schedules � , there is no idle time between r and d.

Proof of claim.

Suppose the system is idle time at time t then at that time there is no ready task. This

means that � can be partitioned into two non-empty sets (one with all tasks with deadline

before t and the other with deadline after t). At least one of these sets cannot be scheduled4

contradicting the minimality of � .

End of proof of claim

Since the claim shows that there is no idle time and that D could not schedule all the

tasks even while executing continuously we conclude that the sum of computation times

needed for the tasks of � is greater than the time that can be possibly allotted to them.

Remove conicts must have found a conict in �. To see this notice that as long as no

conict is found the value of the variable collection num of tasks is advanced and is bound

3Such a minimal set must exists since the entire set of tasks � cannot be scheduled but every singleton
set of tasks can be scheduled.

4Recall that D is an optimal scheduler for underloaded systems [28 7].
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to reach the value of num of tasks(�). At that point all the tasks of � are still present (i.e.

were not merged into an aggregated task) and satisfy the condition of statement 10.

Hence � is conicting.

Lemma A.1.2 When scheduling �, D|the earliest-deadline-�rst algorithm| will sched-

ule to completion all conict-free tasks.

proof.

Let C be the time that can be \occupied" by the aggregated tasks that is the pointwise

union of all their executable periods.

C = [Ti is an aggregated task[ri; di] (A.1)

One can verify (see statement 13 of remove conicts) that

C = [Ti is an (original) conicting task[ri; di] (A.2)

Remove conicts(�) contains all the conict-free tasks. It is conict-free otherwise re-

move conicts would not have halted. Hence by lemma A.1.1 all the tasks in

remove conicts(�) can be scheduled by D. The aggregated tasks of remove conicts(�)

cannot be scheduled outside C. Moreover all ofC must be occupied by aggregated tasks

since they have no slack time. Hence the conict-free tasks are scheduled by D using only

time that lies outside C.

We showed that D schedules all the conict-free tasks when the collection to be sched-

uled is remove conicts(�) but does this hold when D schedules the original set of tasks �?

The answer is yes. When scheduling � equation A.2 above shows that all the time outside

C is available to the conict-free tasks hence by the previous paragraph all conict-free

tasks complete their execution when � is scheduled by D.

Corollary A.1.3 D can schedule all the conicting-free tasks using only time outside C.

Lemma A.1.4 Suppose T is not the current executing task and is not in Q privileged. If T

has an earlier deadline than all the tasks in Q privileged and the current executing task (if

any), then T , the current executing task, and all the tasks in Q privileged can be scheduled

by D.



APPENDIX A. UNDERLOADED PERIODS: CONFLICTING TASKS 86

if and only if

availtime � remaining computation time(T )

proof.

The proof is by induction on the scheduling decisions of Dover. The induction is done

separately on each interval.

De�nition A.1.3

� Real LST Event : According to Dover scheduling when a task completion event

occurs the next task to be scheduled is the ready task T with the earliest-deadline.

It is possible that the slack-time of T reached zero exactly when a task completion

event occurred thus creating an LST event for T . We will call this LST event a

false event since T would have been scheduled even without the interrupt. All other

LST events will be called real.

In all of the following we ignore the false events. Only real LST events are considered.

Lemma A.1.5 1. Let C be the time that can be occupied by the aggregated tasks,

C = [Ti is an aggregated task[ri; di]

then, outside C, Dover schedules according to earliest-deadline-�rst (D).

2. Under Dover scheduling a conict-free task will never generate a (real) latest-start-

time interrupt.

3. Let A be an aggregate task in remove conicts(�) with parameters (ra; da), then Dover

will complete on or before ra all conict-free tasks with deadline on or before da.

proof.

Recall that the aggregated tasks in remove conicts(�) are those tasks that were created

\from" conicting tasks. List all the aggregated tasks according to deadline order

Ta1; Ta2; Ta3; � � �

By the construction of these tasks we know that

ra1 < da1 < ra2 < da2 < ra3 � � �
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(Actually fromremove conicts one can infer only that da1 � ra2 but if it happens that

da1 = ra2 we can for the purpose of the the following proof merge Ta1 and Ta2 into one

aggregated task with parameters r
a1

and d
a2
)

Dover departs from the earliest-deadline-�rst scheduling policy only when one of the

following events occurs:

� The current task is lst-scheduled i.e. it was scheduled as the result of a latest-start-

time interrupt.

� At a task release event or at a task completion event the task with the earliest

deadline among all ready tasks is not scheduled because availtime is too small (see

statement 61 and 72 of Dover).

Dover starts to schedule according to earliest-deadline-�rst. Before ra1 there is no

conict hence by lemma A.1.1 there is no overload. This means that neither of the above

conditions occurs (lemma A.1.4). Hence before the �rst aggregated task (up tor
a1
) Dover

schedules in the same way as D. Also from corollary A.1.3 we conclude that all conict-free

tasks with deadline on or before da1 completed on or before ra1 .

Between the �rst and second aggregated task i.e. between d
a1

and r
a2

there cannot be

any ready conicting tasks because all conicting tasks have their deadlines before da1 or

release time after r
a2
. So during this time only conict-free tasks are scheduled. Moreover

they will be scheduled according to earliest-deadline-�rst. We will show this by showing

that neither of the two cases above can hold. A conict-free task would not create a real

LST event (corollary A.1.3 5). Also a task with the earliest-deadline will be immediately

scheduled. This holds because if it is delayed then D encounters an overloaded situation

while executing the conict-free tasks outside C. This contradicts corollary A.1.3.

We conclude that up to ra2 Dover acts like D and all the conict-free tasks with

deadline before da2 complete before ra2 . The induction can proceed through the entire list

of aggregated task and the lemma is proved.

Corollary A.1.6 Dover will schedule to completion all conict-free tasks.

5As a matter of fact the conict-free tasks might have even used some of the time of C (when scheduled
by Dover).
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Lemma A.1.7 Let A be an aggregate task in remove conicts(�) with parameters (ra; da),

then during (ra; da) a conict-free task will be scheduled by Dover only if there are no ready

conicting tasks.

proof.

Lemma A.1.5 states that a conict-free task with deadline on or before da would complete

before ra. So if any conict-free task T with release time r and deadline d is to be scheduled

during A it must satisfy d > da.

Suppose at time t 2 (ra; da) there is a ready conicting task Ti. Then di < da must

hold becauseTi must be a part of the aggregated task A 6 7.

Hence at timet all ready conicting tasks have deadlines before the deadline of any

conict-free task. A conict-free task can be scheduled in these circumstances only by a

latest-start-time interrupt. This cannot occur because a conict-free task will not generate

a (real) latest-start-time interrupt (lemma A.1.5)

Theorem A.1.8 Dover schedules to completion all conict-free tasks and obtains at least
1

(1+
p
k)2

the value a clairvoyant algorithm gets from all other (i.e., conicting) tasks.

proof.

The �rst part of this lemma is merely a repetition of corollary A.1.6. From lemma A.1.7 we

conclude that Dover schedules the conicting tasks regardless the presence of the conict-

free tasks. Suppose the clairvoyant algorithm has to schedule only the conicted-tasks. It

can schedule this tasks only during C. But we have just shown that Dover schedules the

conicted tasks as if the conict-free tasks do not exist. Since Dover has a competitive

multiplier of (1 +
p
k)2 it is guaranteed to achieve at least 1

(1+
p
k)2

of what a clairvoyant

algorithm can achieve from all conicting tasks.

6We say that a taskT is a part of an aggregated task A if it is one of the tasks that were \merged" to
create A.

7
Ti is a conicting task hence it is a part of some aggregated task B if this task is notA then the

two aggregated tasks should be merged contradicting the fact that A is a task in remove conicts(�) hence
A = B.
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In the previous sections we assumed �rm deadlines. That is a task has zero value if it

misses its deadline. We would like to generalize to soft deadlines which means that a task

may have some value even after its deadline.

We assume here a soft deadline scheme called gradual descent and show that a suitable

variant of Dover is (1 +
p
k)2 competitive in this case. Dover is also (1 +

p
k)2 competitive

in some possible generalizations of this scheme. We discuss these generalizations at the

end of this appendix.

B.1 Exponential Gradual Descent

Consider the following \exponential" value assignment for gradual descent. If a task Ti

with computation time ci and value vi does not complete by its deadline di (we call this

deadline thezeroth deadline and denote it by d0i ) then a value of vi
2 can be obtained if

it completes by di +
ci
2 . This \deadline" is denoted by d1i . In general a value of vi

2y is

obtained the task completes by its y'th deadline d
y
i = di +

ci
2 + ci

4 + � � �+ ci
2y . We keep

the list of deadlines �nite by postulating that a task's value density cannot go below 1.

This means that the index of the last deadline after which the tasks has zero value is

blog2(value density(Ti))c � 1 = blog2(vici )c � 1.

For notational convenience any task Ti will have associated descending tasks denoted

by

T 0
i ; T

1
i ; T

2
i ; � � � ; T blog2(imp(Ti))c�1

i

where the release times and the computation times of all these tasks are equal to the

release time and the computation time of Ti. T
y
i has a �rm deadline at d

y
i and a value of

vi
2y . Only one of the tasks associated with Ti can possibly complete. That is if we say that

an algorithm executes T
y
i we mean that Ti completes by deadline d

y
i but after deadline

d
y�1
i .

B.2 A Variant of Dover for Gradual Descent

We modify the latest-start-time interrupt handler of Dover in such a way that when T 0
i

is to be abandoned because it reached its LST but does not have enough value to be

scheduled (see statement 89 of Dover) T 0
i is indeed removed from all the data structures
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but in addition a task release for T 1

i is simulated. T 1

i 's remaining computation time is set

to the remaining computation time of T 0

i . In the same way ifT 1

i is to be abandoned then

a third task is \released". This process continues as long as the value density does not go

below 1.

B.3 Analysis of Dover in the Gradual Descent Model

The analysis is similar to one in section 3.2. We will discuss the di�erences only. Suppose

that a collection of tasks � with importance ratio k is given and that Dover schedules

this collection. We partition the collection of tasks according to the question of which

associated tasks (if any) completed.

� Let Sp denote the set of tasks that completed successfully and that ended some

positive time before their zeroth deadline.

� Let S0 denote the set of tasks that completed successfully but ended exactly at their

zeroth deadline.

� For 1 � y � blog2kc � 1 letSy denote the set of tasks that completed successfully

after their (y�1)'th deadline but not after their y'th deadline (i.e. they'th associated

task completed).

� Let FAIL denote the set of tasks that never completed.

We will start by modifying the technical lemmas of subsection 3.2.2 to the new setting.

B.3.1 Lemmas about Dover's Scheduling

For notational convenience we de�ne a minus one deadline d�1i which equals to the zeroth

deadline d0i .

�In this setting lemma 3.2.2 reads

Lemma B.3.1

1. For any task Ti in Sy (with y � 0). Suppose T
y
i completed at time tcomplete � d

y
i ,

then

[ri; d
y�1
i ] � [ri; tcomplete] � BUSY
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2. For any task Ti in FAIL. Suppose Ti was abandoned at time taban, then

[ri; taban] � BUSY

proof.

The proof is similar to that of lemma 3.2.2.

�Lemma 3.2.3 holds without change. Note that we continue to make the normalized

importance assumption because we never allow the value density to fall below 1.

�Lemma 3.2.4 holds without change.

�Lemma 3.2.5 reads:

Lemma B.3.2 Suppose T
y
i was abandoned at time t in I = [tbegin; tclose]. Then,

ci � d
y
i � tclose

proof.

The proof is the same as the proof of lemma 3.2.5.

B.3.2 How Well Can a Clairvoyant Scheduler Do?

As in subsection 3.2.3 given a collection of tasks � our goal is to bound the maximum value

that a clairvoyant algorithm can obtain from scheduling �. We observe the scheduling of

� by Dover which gives rise to the de�nition of Sp theSy 's and FAIL. As before BUSY

is de�ned to be the union of the periods in which the processor was not idle (under Dover 's

scheduling).

The clairvoyant algorithm is o�ered the same two gifts as before. The �rst is the sum

of the values of all tasks in Sp at no cost to it. The second gift is the granted value. That

is in addition to the value obtained from scheduling

LATE = (S0
[ S1

[ � � �Sblog2kc�1 [ FAIL)

a value density of k will be granted for every period of BUSY that is not used for executing
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a task of LATE. By a similar argument to lemma 3.2.6 we can see that1

C(LATE) � max

possible

scheduling

of LATE

8>>>>><
>>>>>:

value obtained by

scheduling tasks of

LATE

+ k �
length of time in BUSY not

utilized by tasks of LATE

9>>>>>=
>>>>>;

In lemma 3.2.8 we bounded the net gain that the clairvoyant algorithm could get from

scheduling tasks of F 2. This was done by examining each interval separately. If T 2 F is

scheduled then its value is accounted for in the interval in which T was abandoned by Dover .

Here the method of relating the value of a task T 2 LATE to the interval in which it is

accounted for is more complicated. Suppose the clairvoyant algorithm chose to execute the

z'th task of Ti to completion. Dover could have chosen to complete any of the associated

tasks of Ti (Ti 2 Sy for some y) or none (Ti 2 FAIL). In the �rst case we account for

T z
i in the interval in which Dover completed Ti; in the second case in the interval during

which T z
i was abandoned.

Assume that a clairvoyant scheduler selected an optimal scheduling for the tasks of

LATE considering the value that can be gained from leaving BUSY periods idle. The

execution of a task can give a positive net gain only if the task executed (at least partially)

outside BUSY . The following lemma shows that such execution may take place only after

tclose.

Lemma B.3.3 Suppose the associated task T z
i of Ti 2 LATE is scheduled to completion

by the clairvoyant algorithm. Suppose that Ti is accounted for in I = [tbegin; tclose]. Then,

if Ti is to be executed (by the clairvoyant algorithm) anywhere outside BUSY it must be

after tclose.

proof.

There are two cases:
1Recall that C(FAIL) denotes the value that a clairvoyant algorithm can achieve from scheduling

LATE.
2Note that in section 3.2 the clairvoyant scheduler could not make any net gain from tasks of S0 that

completed in I because they can be executed only during BUSY . This is not the case here because if
T
y
i completed in I the clairvoyant algorithm could choose a di�erent completion point for T y

i or even to
abandon it in favor of another associated task T z

i with z 6= y.
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� Dover never completed Ti (Ti 2 FAIL). In this case let t be the time when Dover

abandoned T z
i .

T z
i can be executed only during �T z

i
which is is [ri; t] [ [t; dzi ]. The �rst portion of

�T z
i
is contained in BUSY (lemma B.3.1). The second portion is contained in I .

Hence [ri; tclose] � BUSY .

� Dover completed T
y
i for some y. Let t be the completion time of T y

i .

A similar argument as above for �T
y
i
= [ri; t][ [t; dyi ] shows that [ri; tclose] � BUSY .

Hence in both cases ifT z
i is to be executed outside BUSY it must be after tclose .

�Lemma 3.2.8 has to be replaced by the following

Lemma B.3.4 With the above gifts, the total net gain obtained by the clairvoyant algo-

rithm from scheduling the (associated) tasks accounted for in I is not greater than

(1 +
p
k) � achievedvalue(I)

proof.

Let T1; T2; � � �Tm be those tasks that are accounted for in I = [tbegin; tclose] and that the

clairvoyant algorithm scheduled after tclose (in order of completion). These tasks execute

for l1; l2; � � � lm time after tclose (hence maybe outside BUSY by the above lemma).

Denote by L the following value

L = maxf(1 +
p
k) � achievedvalue(I)

k
; l1g (B.1)

Let j be the index less than or equal to m such that

X

i�j

li � L < lj+1 +
X

i�j

li

If no such j exists de�ne j to be m.

First assume that we have an equality
P

i�j li = L.

The proof now has two parts.

}Part 1 :

We will show that the net gain from scheduling tasks within a period of L after the end of

the interval cannot be greater than (1 +
p
k) � achievedvalue(I).



APPENDIX B. D
OVER

: GRADUAL DESCENT 95

� Suppose that in B.1 the maximum is the �rst term. Then the total net gain from

T1; T2; � � �Tj is not greater than
k �
X

i�j

li = k � L = (1 +
p
k) � achievedvalue(I) (B.2)

� Suppose the second term is maximum in B.1 and that the z'th associated task of T1

was scheduled by the clairvoyant algorithm. If T z
1
was abandoned in I (by Dover) then

lemma 3.2.4 ensures that its value is bounded by (1+
p
k)�achievedvalue(I). The other

possibility is that Dover completed T
y
1
in I . If z � y then value(T z

1
) � value(T y

1
) but

value(T y
1
) is a component of achievedvalue(I) so must be less or equal to it. z < y

implies that T1 executed to completion (by the clairvoyant algorithm) before tclose

since dzi < d
y
i � tclose | a contradiction.

Hence in any case the value obtained by scheduling T1 is at most

(1 +
p
k) � achievedvalue(I).

}Part 2 :

Now we will show that the net gain from scheduling a task Ti (j < i � m) L time after

the end of I is never positive. Here we have to distinguish between two cases depending

on whether Dover completed or abandoned Ti in I .

� Dover completed Ti

Suppose that Dover completed T
y
i at tcomplete 2 I and that the clairvoyant algorithm

chose to schedule T z
i .

There are two possible cases:

{ z < y:

Lemma B.3.1 shows that

[ri; d
z
i ] � [ri; tcomplete] � BUSY

This means that T z
i executes during BUSY a contradiction.

{ z � y:

The gradual descending scheme ensures that

dzi = d0i +
ci

2
+

ci

4
+ � � �+ ci

2z

= d0i + (ci � ci

2z
)
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From lemma B.3.1 we see that

d0i � d
y�1
i � tcomplete � tclose 2 BUSY

Hence we conclude that

dzi � tclose + (ci �
ci

2z
)

T z
i must complete at or before dzi implying that the clairvoyant algorithm sched-

ules T z
i for at least ci

2z
time before tclose hence in BUSY . The loss from the

execution during BUSY is at least ci
2z
�k while the value of T z

i is at most ci�k
2z

.

Hence the net gain is not positive.

� Ti 2 FAIL

Suppose that the y'th associated task of Ti was scheduled by the clairvoyant algorithm

and that T
y
i was abandoned by Dover in I = [tbegin; tclose]. T

y
i has an execution time

of at least dyi � tclose by lemma B.3.2.

d
y
i � tclose

� \the point at which T
y
i completes (according to the clairvoyant)"� tclose

� (tclose +
X

g�i

lg)� tclose

� li +
X

g�j

lg = li + L

T
y
i was scheduled by the clairvoyant scheduler but used only li time after tclose .

Hence Ti executed at least L time before tclose that is to say in BUSY (lemma B.3.3).

The \loss" from scheduling Ti during BUSY is at least k � L. The value obtained

by scheduling Ti is at most (1+
p
k) � achievedvalue(I) (lemma 3.2.4). Hence the net

gain is less than or equal to

(1 +
p
k) � achievedvalue(I)� k �L

� (1 +
p
k) � achievedvalue(I)� (1 +

p
k) � achievedvalue(I)

= 0

What if L does not equal any of the partial sums? That is if
P

i�j li < L <
P

i�j+1 li. As

in the proof of lemma 3.2.8 we augment the total value given to the clairvoyant by some
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non-negative amount. Even with this addition the net gain achieved by the clairvoyant

algorithm is bounded by (1 +
p
k) � achievedvalue(I) hence proving the lemma.

�Corollary 3.2.9 holds with LATE replacing F .

Before we continue we must clarify the meaning of poslaxval and zerolaxval in this

setting. poslaxval denotes the value obtained by tasks that completed before their zeroth

deadline (tasks in Sp). zerolaxval denotes the total value obtained by tasks that completed

at or after that deadline (i.e. tasks inS0 [ S1 [ � � �Sblog2kc�1).
�Lemma 3.2.10 holds without change given these new de�nitions of poslaxval and zerolaxval.

�Lemma 3.2.11 holds with LATE replacing F [ S0.

Theorem B.3.5 In the exponential gradual descent model, Dover has a competitive mul-

tiplier of (1 +
p
k)2.

proof.

Proof as in theorem 3.2.12.

B.4 Inherent Bounds

The inherent bound given by Baruah et. al. [4 3] cannot be directly applied here. Hence

it is not clear whether Dover is optimal in this setting. It might very well be that the

introduction of descending value schemes helps the on-line scheduler more then it helps

the clairvoyant one. Thus the question of �nding the inherent bounds in this case is open.

B.5 Performance Guarantee for Underloaded Periods

In the gradual descent model we de�ne an underloaded collection of tasks as a collection

such that all its tasks can be scheduled by the zeroth deadline (i.e. with their full value).

It is clear that Dover will get 100% of the value for such a collection since it will execute

according to earliest deadline �rst scheduling.

B.6 Other Gradual Descent Schemes

In this section we presented a speci�c scheme of gradual descent. In fact the current

argument can provide the same result for more general schemes of descending value.
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All schemes must have the following properties:

� The value density of a task must not go below 1 (used in lemma 3.2.3).

� For every possible associated task T z
i
of Ti

d
z

i < d
0

i + ci

and

(dzi � d
0

i )� k � \the value of T z
i
"

(used in part 2 of lemma B.3.4)

Within these constraints many schemes are possible. Some tasks can have �rm dead-

lines; others obtain values that decrease monotonically as the distance from the deadline

increases. The base of the exponent (Base 2 used here is an arbitrary choice) can be

di�erent for di�erent tasks.



Appendix C

Dover: Exact Computation Time

Is Not Known

99



APPENDIX C. D
OVER

: EXACT COMPUTATION TIME IS NOT KNOWN 100

Suppose the on-line scheduling algorithm is not given the exact computation time of a task

upon its release. However for every task Ti an upper bound on its possible computation

time denoted by ci;max is given. Also the actual computation time ofTi denoted by ci

satis�es:

(1� �) � ci;max � ci � ci;max

Where 0� � < 1 is a given error margin which is common to all the tasks. We make

the following additional assumptions:

Assumption C.0.1

� The Actual Computation Time Is Environment-Invariant: The actual com-

putation time of a task does not depend on the point in time in which it was scheduled

the number of times it was preempted and rescheduled etc.

� The Actual Computation Time Is Not Known Before The Completion

Point: An on-line scheduler cannot know the exact computation time of a task

until it completes.

Some terms has to be rede�ned in the new set up:

De�nition C.0.2

� Underloaded Collection of Tasks: A collection of tasks is underloaded (in

this setting) if the actual computation times enable execution of all the tasks to

completion.

� Importance Ratio: The importance ratio k of a collection with an error margin

of � is de�ned to be the ratio of the largest possible value density to the smallest

possible value density.

k =
maxi

vi
(1��)�ci;max

mini
vi

ci;max

=
1

(1� �)
�
maxi

vi
ci;max

mini
vi

ci;max

(C.1)

Here thenormalized importance assumption (assumption 2.0.2) means that

min
i

vi

ci;max

� 1
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C.1 An Inherent Bound On The Competitive Multiplier

The inherent bound proof of Baruah et. al. [4 3] can be applied here as well. In the notation

of those references all themajor tasks execute at their longest possible computation time

with an actual value density 1 while all the associated tasks execute at their shortest possible

computation time and value density k. This argument shows that no on-line scheduler can

achieve a competitive multiplier smaller than (1 +
p
k)2.

C.2 Underloaded Systems

Example C.2.1 Suppose we are given the following collection of two tasks:

Task Release-Time Max. Computation-Time Value Deadline

T1 0 1 1 1

T2 0 200 200 200

For an error margin � < 1

201
this collection will always constitute an overloaded system.

However if� � 1

201
then depending on the actual computation times the system may be

either underloaded or overloaded.

Theorem C.2.1 An on-line scheduler that guarantees 100% of the value for an under-

loaded system is not competitive.

proof.

Suppose an on-line scheduler S guarantees 100% of the value for underloaded systems.

Suppose the tasks of example C.2.1 with error margin of � = 1

200
are scheduled by S.

Consider the following possible cases:

1. The actual executing time of T1 is the maximum possible | 1 while that of T2 is the

minimum possible | 199. In this case the system is underloaded and S should be

able to schedule both tasks to completion. That is schedule T1 between 0 and 1 and

T2 from 1 to 200.

2. The actual executing time of both T1 and T2 are the maximum possible. In this case

the system is overloaded and only one of the tasks can possibly complete. However

S cannot distinguish between case 1 and case 2 (not before time 200). Hence S will
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schedule T1 between 0 and 1 and T2 will reach its deadline without completing its

execution.

In the second case S obtains a value of 1 out of the possible value of 200. Hence S has a

competitive multiplier of at least 200. Of course 200 is an arbitrary number and can be as

large as wanted which gives the desired result.

C.3 Overloaded Systems

Theorem C.2.1 shows that we cannot guarantee both a �nite competitive multiplier and a

100% the value for an underloaded system.

The earliest-deadline-�rst algorithm is an optimal on-line scheduler for underloaded

systems. We will show that a version of Dover can achieve a competitive multiplier of

(1 +
p
k)2 + (� � k)(1 +

p
k) + 1.

We utilize the following version of Dover :

� k is taken to be as in equation C.1.

� Dover assumes that the computation time of a task to be the maximum possible |

c�;max. This a�ects the values of remaining computation time availtime laxity and

the LST point of a task (statements 20 23 24 36 57 61 66 67 and 77).

Theorem C.3.1 Dover has a competitive factor of 1
(1+

p
k)2+(��k)(1+

p
k)+1

proof.

The proof will be an adaptation of the analysis for the case of exact knowledge of compu-

tation time in section 3.2. The following is a list of modi�cation that are needed in that

analysis:

1. Lemma 3.2.5 should read :

ci;max � di � tclose

Hence

ci � ci;max � (1� �) � di � tclose � � � ci;max

2. In this set up lemma 3.2.8 should be replaced by:
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Lemma C.3.2 The total net gain from scheduling the tasks abandoned during I is

not greater than

(1 +
p
k)(1 + � � k) � achievedvalue

The proof is essentially the same as in the proof of lemma 3.2.8 but here the value

of L is taken to be1:

L = maxf(1 +
p
k) � (1

k
+ �) � achievedvalue(I); l1g

� The total net gain from those tasks of F T1; T2; � � �Tj whose total computation

time after tclose equals L is not greater than

k � L = (1 +
p
k)(1 + � � k) � achievedvalue(I)

� Every other task Ti where j < i � m has an execution time of at least

di � tclose � � � ci;max � L+ li � � � ci;max

Ti was scheduled by the clairvoyant scheduler but used only li time after tclose .

Hence Ti executed at least L � � � ci;max time before tclose that is to say in

BUSY .

L� � � ci;max

� L� � � vi ; by assumption 2.0.2 ci;max � vi

� L� � � (1 +p
k) � achievedvalue(I) ; by lemma 3.2.4

� (1+
p
k)�achievedvalue(I)

k

The \loss" from scheduling Ti during BUSY is at least k � (1+
p
k)�achievedvalue(I)

k
.

The value obtained by scheduling Ti is at most (1 +
p
k) � achievedvalue(I)

(lemma 3.2.4). Hence the net gain is less than or equal to zero.

1
Instead of L = maxf (1+

p
k)�achievedvalue(I)

k
; l1g in section 3.2
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3. Lemma 3.2.10 should state that

C(S0
[ F ) � (1 +

p
k)(1 + � � k) � achievedvalue + k �BUSY

� (1 +
p
k)(1 + � � k) � achievedvalue

+k � (achievedvalue + 1p
k
� lstvalue)

= (1 +
p
k + k + (� � k)(1 +

p
k)) � achievedvalue +

p
k � lstvalue

� ((1 +
p
k)2 + (� � k)(1 +

p
k)) � achievedvalue

The �rst inequality follows from the fact that lemma 3.2.3 holds without change. The

last inequality is due to the fact that lstvalue is always less or equal to achievedvalue.

Finally we can prove the theorem:

C(�) = C(F [ S0 [ Sp) � C(F [ S0) + C(Sp)

� C(F [ S0) + poslaxval

� ((1 +
p
k)2 + (� � k)(1 +

p
k)) � achievedvalue + poslaxval

� ((1 +
p
k)2 + (� � k)(1 +

p
k) + 1) � achievedvalue

The last inequality is due to the fact that poslaxval is always less or equal to achievedvalue.
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This appendix deals with systems having only two processors. We also assume uniform

value density (i.e. n = 2; k = 1). With out loss of generality we can assume that the value

density is normalized to 1. We consider two possible models of multiprocessor systems.

In the �rst model tasks canmigrate cheaply (and quickly) from one processor to another.

Hence if a task started to execute on one processor it can later continue on any other

processor (and migration takes no time). We present a scheduling algorithm called the

Safe-Risky algorithm for this model. In the second model (the �xed model) once a task

starts to execute on one processor it cannot execute on any other processor. An on-line

scheduler can do better when migration is possible.

D.1 The Safe-Risky Algorithm

In this algorithm one processor is designated as theSafe Processor (SP) and the other

as the Risky Processor (RP). A task that started to execute on SP is called \privileged"

because it is guaranteed to complete (Q privileged is a queue containing these tasks).

Ready tasks that are not privileged wait in Q waiting until they become privileged

or they reach their LST at that point the LST task tries to be scheduled on RP. It will

be scheduled if it has a bigger value than the task currently executing on RP. A task

that started to execute on RP can be preempted and then resume on SP (i.e. migrate to

SP). In this version of the algorithm the designation as safe or risky processor is �xed. In

the no-migration version (the Safe-Risky-(�xed)) the processors may switch roles. The

following few boxes (�gures D.1- D.2) depict the code of the Safe-Risky algorithm:

Remark D.1.1 All privileged tasks should be able to complete using only a single proces-

sor at a time. This mean that the privileged tasks constitute a uniprocessor underloaded

system. A new task is accepted to Q privileged only if it does not create an overload when

added to the tasks already in Q privileged .

Note an important di�erence between the above algorithm (and for that matter also

Dover and the version of theMOCA Algorithm presented earlier. In the task release routine

a newly arrived tasks will be added to Q privileged only if its deadline is earlier than the

currently executing task and also it can be added toQ privileged without creating overload

(we call that a local schedulability test). This stands in contrast to the global schedulability
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(� the Safe-Risky algorithm: a competitive scheduling algorithm for two
processors systems in the uniform value density case �)
22
23 Initilzation :

(� Q waitingand Q privilegedare initialized to the empty queue. One
processor is designated as the safe processor (SP) and the other one is
designated as the risky processor (RP).
In the beginning both processors are idle. �)

24
25 Q privileged := �;
26 Q waiting := �;
27
28 loop :
29 task release : (� T is released �)
30 if (SP is idle ) then
31 schedule T on SP;
32 else if ( T has earlier deadline than the current task on SP

and can be scheduled to completion with the current task
as well as with all other privileged tasks) then

33 preempt current task;
34 add the current task to Q privileged ;
35 schedule T on SP;
36 else (�SP is not idle and T cannot be scheduled on SP �)
37 add T to Q waiting ;
38 endif

39 end (�task release �)

Figure D.1: The Safe-Risky algorithm- a scheduler for two processors systems.
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40 LST :
(� T reached its LST; LST denotes the latest start time of T, i.e., the moment
when the computation time remaining for T equals the time to its deadline
Note that scheduling T on SP will cause overload (with all the other privileged
tasks) �)

41 42 if (RP is idle) then
43 schedule T on RP;

else (�RP is not idle and T can not be scheduled on SP �)
44 let TRP be the current task on RP;
45 if (value(T ) > value(TRP )) then
46 abandon TRP ;
47 schedule T on RP;
48 else

49 abandon T ;
50 endif (�comparing values �)
51 endif (�RP is not idle �)
52 end (�LST �)

53 task completion :
(� on SP; There is no special event when a task completes on RP �)

54
55 let T be the task with earliest deadline in Q waiting ;
56 if (T has earlier deadline than the current task on SP

and can be scheduled with all other privileged tasks) then
57 remove T from Q waiting ;
58 add T to Q privileged ;
59 (� which amounts to scheduling T on SP �)
60 endif (�T can be added to Q privileged �)
61 if (all the privileged tasks can complete with the

task currently executing RP) then
62 preempt the current task on RP;
63 add it to Q privileged ;

64
(� this task will be scheduled on SP by the following piece of code. This
is the only place where migration is used �)

65 endif

66 schedule on SP the task with earliest deadline in Q privileged

(if any);
67 end (�task completion �)
68 end floopg

Figure D.2: The Safe-Risky algorithm- the Latest Start Time and the Task Completion
routines.
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task used by the MOCA Algorithm. That is: a new task enters Q privileged if and only if

it does not create overload irrespectively of its deadline.

D.2 The Competitive Multiplier of the Safe-Risky algo-

rithm

In this section we show that the Safe-Risky algorithm has a competitive multiplier of

2. Our approach is to partition the execution into disjoint intervals the Safe-Risky

algorithmgets at least half the optimal value in each interval. This is proved by means

of \covering". We show that all intervals are covered; if a period is covered then the

Safe-Risky algorithmuses at least one processor productively during all that period. The

clairvoyant scheduler could gain a factor of two by utilizing both processors.

De�nition D.2.1

� earliness, latest affected, cover end: By de�nition the tasks of Q privileged

constitute an underloaded subsystem (i.e all these tasks can complete onone pro-

cessor).

Now let us consider one additional task T which has a deadline earlier than all the

tasks in Q privileged . Suppose that the system comprised of Q privileged plus T is

overloaded. We want to know which of the tasks of Q privileged conict with T .

Compute the earliness of all the tasks in Q privileged . That is suppose the tasks are

scheduled according to the earliest-deadline-�rst scheduling algorithm the earliness

of a task is how much before its deadline it completes (i.e its deadline minus its

completion time). Any task with earliness smaller than T 's computation time in

Q privileged prevents T from being added to Q privileged .

De�ne latest a�ected(T ) to be the latest deadline of any such task (i.e a tasks whose

earliness is smaller than T 's computation time) and de�ne cover end(T ) to be

cover end(T )
def
= maxfdeadline(T ); latest a�ected(T )g

� interval: An interval starts when a task is released to an idle system (the system

becomes non-idle) and ends when the system becomes idle again (both processors

are idle).
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In the following we are going to analyze the Safe-Risky algorithm interval by interval.

For the sake of notational convenience let us assume that there was only one interval (call

it I) and it started at time 0.

Lemma D.2.1 The value obtained by the Safe-Risky algorithm from tasks executed on

SP during an interval is at least the interval length (duration).

proof.

From the beginning of the interval to its end SP is never idle (when SP is idle so is RP

which means that the interval ends). A task that was scheduled on SP is guaranteed to

complete. We conclude that at any given moment at least one processor is working on a

task that will eventually complete. This proves the lemma.

Notation D.2.2

� C(I), V(I)

For an interval I letC(I) and V (I) denote the value obtained by the clairvoyant

algorithm and the Safe-Risky algorithm (respectively) from tasks released during I .

De�nition D.2.3

� conflicted task, max cover: We say that T is a conicted task if it conicts

with the tasks of Q privileged (when considered for execution at the task release

routine, task completion routine or the LST routine, see statements 32, 56 and 41)

and hence was diverted to RP (and later was either scheduled to execution or was

abandoned).

De�ne max cover as,

max cover = max cover(I)
def
= max

T is a

conicted task

cover end(T )

If there is no conicted task this max equals 0.

We are going to show that for every task that was abandoned1 SP was productive during

its entire executable period. This is true for all the tasks that were abandoned during some

1Every task that was abandoned is a conicted-task.
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interval. Hence the Safe-Risky algorithm gets a value of at least the union of all these

periods that is max cover.

Lemma D.2.2 For every task T , if T is a conicted task (i.e, was diverted to RP by the

Safe-Risky algorithm) then2, the total value obtained by the Safe-Risky algorithm is at

least cover end(T ).

proof.

Recall that cover end(T ) = maxfdeadline(T ); latest a�ected(T )g

� First let us show that V (I) � deadline(T ).

T is diverted to RP at its latest start time which is at deadline(T )

�computation time(T ). This means that the interval length is at least deadline(T )�

computation time(T ) (recall that the interval starts at time 0). Lemma D.2.1 says

that the value obtained by the Safe-Risky algorithm on SP is at least deadline(T )�

computation time(T ).

If T does not complete it can be abandoned only in favor of a bigger valued task

(scheduled on RP) hence the value obtained is at least value(T ). Hence

V (I) � (deadline(T )� computation time(T )) + value(T )

= (deadline(T )� computation time(T )) + computation time(T )

= deadline(T )

� Now we are going to show that V (I) � latest a�ected(T ).

By de�nition latest a�ected(T) is the deadline of some privileged task Taffected. Let

tactual be the time when Taffected completed (according to the Safe-Risky algorithm).

tactual cannot be any earlier than the estimated completion time of Taffected computed

when T was considered for execution (the actual time can be in fact later than the

estimated time if some tasks were later added to Q privileged). The length of the

interval is at least tactual. Lemma D.2.1 shows that the value obtained on SP is at

least this length.

As mentioned before the Safe-Risky algorithm an additional value of at least

value(T ). Hence

V (I) � tactual + computation time(T )

2
Recall that the interval starts at time 0.
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� deadline(Taffected)

= latest a�ected(T )

The second inequality restates the de�nition of latest a�ected(T).

Corollary D.2.3 The value obtained by the Safe-Risky algorithm during an interval is

at least

maxfthe interval length;max coverg

De�nition D.2.4

� covered, uncovered, atomic interval: For any interval I letuncovered =

uncovered(I) be the set of tasks (released in I) with deadlines after max cover(I).

Denote the remaining tasks by covered = covered(I). I is called an atomic interval

if uncovered(I) = � (the empty set).

We will show that during the �rst portion of an interval (from 0 tomax cover) the Safe-

Risky algorithm gets a value of at least one half the value obtainable from the tasks of

covered. If there are other tasks (i.e. tasks ofuncovered) then they are all going to complete

successfully without competing with covered tasks (either before or after max cover).

Lemma D.2.4 For an atomic interval I,

C(I) � 2V (I)

proof.

All tasks have deadlines before max cover. So the best the clairvoyant algorithm can do is

to schedule tasks on both processors from time 0 tomax cover to get a value of 2�max cover.

Corollary D.2.3 ensure that the Safe-Risky algorithm gets a value of max cover at least.
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Now we are ready to extend the above lemma to a general interval. We are going to

use induction. The result is already given for atomic interval. We will show that a general

interval can be broken into atomic intervals and \uncovered" periods between them. The

covered tasks \cover" the atomic intervals. That is they generate value of at least the

combined length of these intervals. The tasks of uncovered execute without interfering

with the covered task and generate value of at least the length of the uncovered periods.

Lemma D.2.5 For every non atomic interval, I,

� All the tasks of uncovered are executed to completion on SP.

� When a task of uncovered is executing on SP, RP is idle.

� Suppose the tasks of uncovered were never released (i.e, only the tasks of covered were

released). Then, the tasks of covered will be scheduled (on SP or RP), preempted,

and completed or abandoned at exactly the same times as if the tasks of both covered

and uncovered were released.

� Removing the tasks of uncovered from the original set of tasks will break the interval

into one or more sub-intervals separated by idle time.

proof.

� A task T is diverted to RP (and possibly abandoned) only if it is involved in a

conict with the tasks of Q privileged . A task T of uncovered cannot be involved in

any conict (otherwise max cover will be at least deadline(T ) which contradicts the

fact that T is in uncovered). We conclude that T was scheduled on SP (hence also

completed).

� Suppose that Trp is executing on RP. Trp was scheduled at its latest start time. Let

T be the �rst task of uncovered to be executed (on SP) concurrently with Trp. Note

that all the tasks in Q privileged (at that point) must be of uncovered because these

tasks are scheduled on SP according to deadline order and the tasks of covered have

earlier deadlines.

When was T scheduled? It could not be before LST (Trp) because this means that

(at its latest start time) Trp had a conict with tasks of uncovered. So T must have
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been scheduled after LST (Trp) as a consequence of a task completion event3. But

if this is the case all the tasks ofQ privileged could be scheduled on one processor

along with Trp. Hence Trp would have migrated to SP a contradiction to the fact

that Trp is still executing on RP. Note that the ability to migrate (in statement 61)

is used to get the contradiction (Trp could have and was supposed to migrate but it

didn't). This is the only place in the analysis where migration is used.

� The execution of a task of covered on SP can be delayed or interrupted (i.e pre-

empted) only by tasks of covered (because all the tasks of uncovered have later

deadlines). Hence the execution ofcovered tasks on SP is not a�ected by uncovered

tasks.

A task of covered cannot be diverted to RP as a consequence of a conict with a

task of uncovered (because the tasks of uncovered had no conicts). Also no task of

uncovered will be scheduled on RP. This implies that the execution of covered tasks

on RP is not at all a�ected by uncovered tasks.

� We saw above that removing the tasks of uncovered will not change the execution

history of all other tasks. Also when a task ofuncovered is executing on SP RP

is idle. Hence periods in which only tasks of uncovered execute in the execution of

(covered[ uncovered) will correspond to idle periods in the execution of covered.

Lemma D.2.6 For any interval I,

C(I) � 2V (I)

proof.

The proof is by induction on the structure of the interval.

Basis: If the interval is atomic interval then lemma D.2.4 ensures that the induction

hypothesis holds.

3It cannot be a consequence of a task release event because a task of uncovered can preempt only tasks

of uncovered, in which case the task that precede T , on SP, is the �rst task of uncovered to coincide with

Trp.
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Induction step: Suppose the induction hypothesis is known for all the sub-intervals

I1; I2; � � � ; Im of I (after removing the tasks of uncovered(I)). By the induction hypothesis

C(Ij) � 2V (Ij) for all j. But
4

C(I) = C(I1 [ I2 [ � � � [ Im [ uncovered(I))

� C(I1) + C(I2) + � � �+ C(Im) [ C(uncovered(I))

� 2V (I1) + 2V (I2) � � �+ 2V (Im) + C(uncovered(I))

= 2V (I1) + 2V (I2) � � �+ 2V (Im) + value(uncovered(I))

Lemma D.2.5 shows that the tasks of uncovered(I) do not a�ect the scheduling of tasks in

the sub-intervals (by the Safe-Risky algorithm). Hence

V (I) = V (I1) + V (I2) � � �+ V (Im) + value(uncovered(I))

This shows that the induction hypothesis holds for I hence the theorem is proved.

We are ready to state the main theorem of this section.

Theorem D.2.7 For a system of uniform value density and 2 processors, the Safe-Risky

algorithm achieves the best possible competitive multiplier of 2 (when migration of tasks is

permitted).

proof.

The intervals partition the entire set of tasks � into disjoint subsets �1;�2; � � �.

C(�) � C(�1) + C(�2) + � � �

� 2(V (�1) + V (�2) + � � �)

= 2V (�)

The last equality is due the fact that tasks of one interval do not inuence the scheduling

decisions (of the Safe-Risky algorithm) in another interval. This might not be the case

for the clairvoyant algorithm that is why the �rst inequality is not an equality.

4Recall that all the tasks of uncovered(I) are scheduled to completion by the Safe-Risky algorithm.
Hence, C(uncovered(I)) = value(uncovered(I)) = V (uncovered(I)).
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D.3 When Task Migration is Not Allowed

By task migration, we mean moving a task that has already partially executed from one

processor to another. In the case that task migration is not allowed, we can use a simple

variant of the Safe-Risky algorithm to get a competitive multiplier of 3 for tasks with

slack time5. We call this variant the Safe-Risky-(�xed).

D.3.1 The Safe-Risky-(�xed) Algorithm

The only place that the Safe-Risky algorithm used the possibility of task migration is

in the task completion routine. For that reason, the Safe-Risky-(�xed) di�ers from the

Safe-Risky algorithm only in this routine (see �gure D.3).

69 task completion :
(� on SP; There is no special event when a task completes on RP �)

70
71 let T be the task with earliest deadline in Q waiting ;
72 if ( T has earlier deadline than the current task on SP

and can be scheduled with all other privileged tasks) then
73 remove T from Q waiting ;
74 add T to Q privileged ;
75 (� which amounts to scheduling T on SP �)
76 endif (�T can be added to Q privileged �)
77 schedule on SP the privileged task with earliest deadline (if any);
78 if (SP is idle) then
79 switch roles between the SP and RP processors;
80 endif (�SP is idle �)
81 end (�task completion �)

Figure D.3: The Safe-Risky-(�xed) algorithm.

5When tasks have no slack time an optimal algorithm with competitive multiplier of 2 is known [38,3].
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D.3.2 Analysis

We de�ne latest a�ected and all the other de�nitions as before. Observe that lemmas D.2.1

and D.2.2 hold for the new algorithm as well.

Recall, that F denotes the set of tasks abandoned by the on-line algorithm

Lemma D.3.1 For every interval, I,

C(F ) � 2V (I)

proof.

All tasks that were abandoned by the Safe-Risky-(�xed) were diverted to RP. Let d be

the maximal deadline among all tasks of F 6. The best the clairvoyant can do, with tasks

of F , is to schedule both processors continuously to get a value of 2d. Lemma D.2.2 shows

that the Safe-Risky-(�xed) gets a value of at least d.

Theorem D.3.2 For a system of uniform value density and 2 processors, the Safe-Risky-

(�xed) achieves a competitive multiplier of 3 (when migration of tasks is not permitted).

proof.

This follows from lemma D.3.1 and lemma D.2.5 (applied to the no migration case) and

the Lost Value Lemma (lemma 4.3.1).

D.4 Scheduling Overhead

In this section we study the cost of executing the scheduling algorithms themselves. What

is the cost of testing whether a newly arriving task7 can be added to Q privileged without

causing overload? This test can be done in a constant number of operations (as in Dover).

Q waiting is a 2-3 tree organized according to Latest Start Time. Hence, inserting and

removing a task from this queue costs O(logM) operations. Where, M is a bound on the

total number of ready tasks at any given moment in Q waiting .

During its lifetime, a task causes exactly one task release event and at most one LST

interrupt. Hence, the scheduling overhead per task is O(logM).

6If there is no such maximal deadline, then the supremum is either �nite or in�nity. If it is �nite a

similar proof will work. If it is in�nity, then the interval is in�nitely long, in which case the value obtained

by the on-line algorithm is in�nity.
7With an earlier deadline then all the tasks in Q privileged .




