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Abstract

Go is a game with simple rules but complex strategy requiring ability in almost all

aspects of human reasoning. A good Go player must be able to hypothesize moves and

analyze their consequences; to judge which areas are relevant to the analysis at hand;

to learn from successes and failures; to generalize that knowledge to other “similar”

situations; and to make inferences from knowledge about a position. Unlike computer

chess, which has seen steady progress since Shannon’s [23] and Turing’s [24] original

papers on the subject, progress on computer Go remains in relative infancy. In computer

chess, minimax search with �-� pruning based on a simple evaluation function can beat

a beginner handily. No such simple evaluation function is known for Go. To accurately

evaluate a Go position requires knowledge of the life and death status of the points on

the board. Since the player with the most live points at the end of the game wins, a

small mistake in this analysis can be disastrous.

In this dissertation we describe the design, performance, and underlying logic of a

knowledge-based program that solves life and death problems in the game of Go. Our

algorithm applies life and death theory coupled with knowledge about which moves

are reasonable for each relevant goal in that theory to restrict the search space to a

tractable size. Our results show that simple depth-first search armed with a goal theory

and heuristic move knowledge yields very positive results on standard life and death

test problems – even without sophisticated move ordering heuristics.

In addition to a description of the program and its internals we present a modal

v



logic useful for describing strategic theories in games and use it to give a life and death

theory and to formally state the rules of Go. We also give an axiomatization for this

logic using the modal �-calculus [15] and prove some basic theorems of the system.
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Introduction
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1.1 Introduction

One of the reasons games have been of interest to AI researchers, aside from the popular

belief that they are worthy intellectual pursuits, is the fact that they are usually self-

contained, circumscribed activities not subject to the difficulties associated with the

formalization of many “real-world” problems. Games are micro-worlds with none of

the messiness and unpredictability of the real world but with some very challenging

problems to be solved and strong human intuitions about how to solve them. Also,

unlike in other human domains, it is relatively easy to measure the performance of a

game-playing program on standard problem sets and in competition with other players.

Chess has traditionally been the game of choice for researchers interested in games.

Within the computer chess world some, like Wilkins [26] with his PARADISE chess

program, have pursued the knowledge-based approach, but the incredible success of

big-search programs, like Deep Blue, have all but completely eclipsed these efforts.

Go, on the other hand, has proved much more intractable.

There are really two problems in applying big-search methods to Go. The most

often-cited problem is just the huge size of the search space. As Mechner [17] puts it:

On average, at any given moment in a chess game, a player has twenty-five

legal moves to choose from. Various refinements have enabled the minimax

algorithm to effectively consider only the five or six best choices, pruning

away the rest. In Go, on average, a player can choose from 250 legal moves

per turn. Even if a Go algorithm could prune that number down to fifteen

or sixteen, and consider 200 million positions per second, it would need

seventy years to explore as deeply as Deep Blue does in three minutes.
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But a more subtle and less-often mentioned problem is the quality of static evalua-

tion functions. Mechner [17] continues:

Very well, one might say; computers will get faster soon enough. But the

problem goes deeper than that. Go programs not only fail to evaluate 200

million Go positions a second; they cannot accurately evaluate a single one.

Big-search techniques with sophisticated move-ordering heuristics have been suc-

cessfully applied to solving life and death problems in Go by Wolf [28] and others,

but these programs require very circumscribed positions that occur relatively rarely in

real games. Many of even the simplest life and death problems we consider in this

thesis are not solvable by these programs. All the successful full-playing programs and

open-position life and death problem solvers are knowledge-based to some degree.

1.2 Difficulties in Computer Go

In Chess, a relatively simple positional evaluation function based on a tally of features

like material advantage, while definitely not up to expert standards, provides a suffi-

ciently good measure of the position to allow big-search techniques to work. In Go,

humans evaluate a position by determining the life and death status of the stones on the

board. Since dead stones are removed from the board at the end of the game and leave

the space they occupied as enemy territory, a mistake in life and death analysis can lead

to a big error in positional evaluation. Furthermore, this analysis is not one that can

easily be made statically.

For human players, determining whether stones will live or die requires an under-

standing of which other stones on the board are important to the problem. Once the
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context of the problem is understood, if the position is very simple, it may be possible

to evaluate it statically. More often it requires further search to positions which are

statically determinable. This is not only a limitation of Go programs. No human player

can statically determine the life and death status of stones in all positions; there are too

many subtle variations and interactions for a player to be able to look at an arbitrary

configuration of stones and pronounce them alive or dead. People do, however, have a

lot of knowledge they bring to bear about what is reasonable in a situation that allows

them to limit the amount of reading they perform. By formalizing the techniques and

knowledge Go players apply, we have a useful model for automation. Once it is deter-

mined that a position is unclear and further reading is required, one very strong heuristic

for limiting the moves considered in the search is to try only moves that have worked

for similar goals in similar contexts in the past. This is the basis for our approach.

To illustrate how subtle differences in the position can have dramatic positional

significance consider the position in figure 1.1 taken from a game between two amateur

players. It is White’s turn to move.

In order to evaluate this position, an analysis must be made that is deep enough to

reveal that the Black group on A14 is alive. An intermediate level human player will

see this quite easily by reasoning that the White group on C11 can be captured more

quickly than either of the surrounding black groups (on A14 and A9). Also, the one-

eyed white group at M1 is alive because it can capture the black M5 before it is itself

captured. And therefore the black group at K1 is dead. Such an analysis is beyond

current go-playing programs and is the focus of our research.
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Figure 1.1: Five stone handicap game between David Mechner (white) and Greg Ecker (black)

1.3 Contributions of this thesis

Our work focuses on a number of difficult and important issues in Go and Artificial

Intelligence. First, we have devised a novel algorithm that applies human game knowl-

edge to solve uncircumscribed life and death problems. To implement this algorithm

required finding appropriate knowledge representation and truth maintenance schemes
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and developing a class library of data structures to support incremental update and

reversion in search. Our solutions to these problems are discussed in more detail in

chapter 3.

Our second major contribution is in the development of a modal logic for knowl-

edge representation in games, and the presentation of our program in terms of this logic.

Logic is the lingua franca for researchers in different areas of AI. By casting our prob-

lem and solution in a logical language, we increase the possibility that it will prove

useful to others both in the specifics of the formalization, as well as, more generally, a

template for research in other domains.

We give an axiomatization for our logic and provide semantics in terms of game

tree models. We use the logic to prove some general game theorems, to state a rule set

for Go, and to describe an algorithm for adversarial reasoning. The algorithm we give

applies a strategic theory, to find the relevant context for a given adversarial decision

problem. When the context is known, knowledge about which moves are reasonable

to achieve the required goals is applied to focus the search. This algorithm applied to a

strategic theory of life and death is the basis of our life and death problem solver, but

can more generally be applied to the solution of adversarial reasoning problems in any

domain in which it is possible to state a strategic theory.

1.4 Previous work on computer Go

There have been a number of papers and theses published on computer Go since Zo-

brist’s thesis [29] in 1970. Müller [18] lists among others: Erbach [9], Kierulf [3], and

Ryder [21]. The interested reader will find most of the relevant references and a his-
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tory of computer Go in these documents. Further references are also available from the

American Go Association web page [1].

The best existing full-playing programs perform shallow life and death analysis

through recognition of features associated with life, like eyes1 or surrounding open

space (lots of “friendly” empty space means room to make eyes). This is adequate in

simple positions where the block in question is clearly safe or hopelessly dead, but falls

down in complex situations like the one above, which often occur in real games. Most

current programs also perform some kind of limited, “tactical” reading to determine

whether stones with few liberties can be captured, but this too falls down when the

status of a larger group is in question, or when the stones in question have many liberties

but are still dead.

Relatively little has been written on the problem of life and death in Go. Dave Dyer

and Thomas Wolf [28] have developed life and death problem solvers; however both use

brute-force search and are therefore limited in their application to highly constrained

positions with no access to the center of the board and little empty space allowed within

the confines of the problem. Problems such as these are rare in actual games where the

life and death status of stones must be determined before positions become so well-

defined.

An interesting and relevant recent piece of work that is similar in spirit to our own

is Willmott’s master’s thesis [27]. Willmott’s program is a prototype of a life and death

problem solver based on the notion of hierarchical planning in an adversarial setting.

In this context he represents a theory of life and death somewhat similar to our own and
1An eye is a compartment each point of which is empty or occupied by dead enemy stones. A block of stones

with the ability to form two adjacent disjoint eyes will live, so eyes play a fundamental role in life and death strategy.
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shows how it can be used to solve a small set of problems.

1.5 Previous work on Game Logic

Game semantics has been widely used by researchers in a variety of fields, but the

notion of a game logic, a proof system and semantics for games, is relatively recent and

unexplored. Game logic was first proposed in a paper by Parikh [19] and more recently

considered by Pauly [2]. Both of these papers consider games as atomic entities in

the language. Our interest lies in the analysis of the internal structure and strategies

of games. To accommodate this added expressivity requirement, we have chosen the

first-order modal �-calculus as the basis for our logic.

1.6 Organization of this thesis

In chapter 2 we introduce a modal language useful for adversarial reasoning and use it

to present a theory of life and death, a high-level algorithm for solving life and death

problems, and a detailed example problem. In chapter 3 we present our program’s

structure and algorithms. Chapter 4 gives results on a set of graded Go problems. In

chapter 5 we consider the problem of adversarial reasoning in games like Go from a

logical perspective. We present an axiomatization for the first-order modal logic of

games and prove some basic results.In chapter 6 we use our game logic to provide an

axiomatization of the rules of Go.
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Chapter 2

Adversarial Reasoning
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In this chapter we will describe, at a high-level, our algorithm for analyzing and

solving life and death problems. The basic idea is to define a logical theory of life

and death in Go and use this theory to find the set of goals that are relevant to the

problem at hand. We represent the relevant goals and their logical relationships in an

AND/OR graph and use a knowledge base to find the reasonable moves for each goal

in this graph. With luck, the set of reasonable moves is considerably smaller than the

set of legal moves. The reasonable moves for the root goal are each explored in turn,

and the resulting position analyzed recursively until the problem is solved or we run

out of time. The algorithm may be applied more generally in any domain in which it

is possible to state a strategic theory, though we have implemented it only for life and

death.

2.1 Adversarial Operators

In this section we introduce adversarial operators which augment the first-order lan-

guage presented above to allow statements about strategies. Such statements take the

form:

Player 1 has a move such that

For all Player 2’s moves

� � �

Player 1 has a move such that

For all Player 2’s moves

some goal is true

10



In a first-order notation we could express this as

9m18m29m1 � � � 9mn�18mn�

for some goal � and some number n. However the number n would have to be fixed;

there is no way to quantify over the number of quantifiers in the statement and no

facility for adding a “there exists n” in front of the above statement. To allow this kind

of statement we propose the addition of three new adversarial operators, two of which

are primitive and one which is the composition of the primitive operators. We will not

here explore the logical properties of these operators but refer the interested reader to

Chapter 5 where we provide a proof system and semantics.

� esti(�) (“establishable �”) which means that player i has a legal strategy to make

the goal � true.

� irri(�) (“irrefutably �”) which means � is true now and player i has a legal strat-

egy to maintain its truth until there are no legal moves available (the end of the

game).

� achi(�) (“achievable �”) which is esti(irri(�)) and means player i has a legal

strategy to make � irrefutably true.

If we want to say that there is a strategy to establish � from some particular position

or state s, we write “s j= esti(�)” which is read “s models esti(�)” or “esti(�) is true

in state s.” Similarly with irri and achi.

To illustrate the definitions consider how we could express the fact that black (on

her turn) can capture either a bishop or a knight, in the game of chess:

11



ToP lay(BLACK) ^

estBlack(Captured(bishopQ) _ Captured(bishopK) _

Captured(knightQ) _ Captured(knightK)))

where it is assumed the predicates ToP lay (whose turn it is to play), and Captured

(indicating that a piece has been removed from the board), are already defined. bishopQ

refers to the queen-side bishop; bishopK refers to the king-side bishop; knightQ refers

to the queen-side knight; knightK to the king-side knight.

Note that saying esti(P _ Q) is not the same as esti(P ) _ esti(Q). It is true that

[esti(P ) _ esti(Q)] �! esti(P _ Q), but not conversely in general. The reason for

this is that there may be a situation in which player i a strategy to make either P or

Q true, but which one is up to the opponent. Imagine the case where the player has

simultaneously attacked (forked) a knight and a bishop. It is the opponent’s decision

which one to save. If the player wants to capture a bishop, the opponent denies her by

sacrificing the knight; if the player wants to capture a knight, the opponent denies her

by sacrificing the bishop. Both strategies fail individually but the strategy to capture

either a bishop or a knight is a success.

Another example from chess is the notion of checkmate. A checkmate occurs in

chess when the opponent’s king is in check and has no legal move to escape. The

existence of a strategy for White to checkmate Black from a state s can be expressed in

our language as:

achWhite(Check(Black))

12



where it is assumed that Check has already been defined. This says that it is White’s

turn to play and she has a legal strategy from state s to reach a state in which Black is

in check and there are no legal moves available to escape from it. It must be Black’s

turn in such a state since it is not (legally) possible for Black to be in check on White’s

turn.

As a another example, in the game Othello, we can state the fact that square P is

White at the end of the game:

achi(White(P ))

If we assume that the predicate White has already been defined, this says that player i

can make square P ultimately white (forever after a certain point), even though it may

change color from white to black and back again many times during the course of the

game.

2.2 Game Knowledge

The adversarial operators esti, irri, and achi allow us to talk about legal game strate-

gies in a logical language. However, they do not take into consideration the practical

difficulties in the computation of such strategies. To decide whether White has a forced

win in the game of NxN Go, for instance, is known to be PSPACE complete [16].

In our model we assume non-modal sentences of interest can be statically decided.

Examples (in English) of such sentences for Go include, “How many black stones are

adjacent to the block on point p?” and “How many white blocks are there on the board?”

With a reasonable representation for the board, these kinds of questions are trivial to

answer quickly and efficiently.
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When we allow modal sentences (including sentences with the adversarial opera-

tors) that refer implicitly to other states in the game the decision process is no longer

so simple. Search is generally required and such a search may be intractable without

additional knowledge to limit it in some way. For example, “Does Black have a strategy

to capture the white block on point p?”. Answering this question without any knowl-

edge of which moves are “reasonable” to Go about capturing a block will likely be

intractable.

To combat this difficulty we try to model how humans simplify the problem. Human

players when confronted with a decision problem like s j= achi(�) seem to engage in

several simplifying processes. One is to find the set of goals that have some bearing

on the goal � of interest. If successful, this heuristic may narrow down the set of

possibilities dramatically. We model this human ability in life and death problems

by constructing an AND/OR graph representing the relevant goals or context for the

problem at hand.

In addition to finding the context of a problem, human players seem to have at their

disposal a repertoire of moves that have worked in the past to accomplish similar goals

in similar situations. Sometimes, it is clear that the current situation is similar enough

to one encountered previously that the same move that worked there can be statically

determined to work in the current situation. More often though, finding the set of moves

that have worked in similar situations in the past merely serves as a good heuristic for

focusing on the likely candidates. Combined with knowledge about the set of relevant

goals to the problem goal, a human player can use this heuristic to determine the set of

all relevant moves to try to achieve the problem goal by finding the relevant moves for

each relevant goal. Obviously for such a strategy to be correct with respect to perfect
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Figure 2.1: A reasonable way to connect p to q.

play, the set of moves considered must include at least one move that does in fact work,

when such a move exists.

An example of a rule suggesting a reasonable move for connecting p and q shown in

figure 2.1. This rule states that playing on the point marked “X” is a reasonable way to

connect the p and q stones. It is reasonable because, while it is not guaranteed to work

in every context, there are many contexts in which it will work to connect the stones.

Our program makes use of hundreds of such rules for a number of different strategic

goals. A more detailed discussion of the rule language and goals is provided in chapter

3 section 3.9

The question arises, why break the problem down into these two components: find-

ing the relevant goals, and using rules such as the connect rule in figure 2.1 to generate

moves for each such relevant goal? Why not just “build in” the context into the pre-

conditions of the rules? The answer to this question is that there are so many slightly

different positions where the same goal has very different reasonable moves that try-

ing to capture them in “if-then” rules is very difficult. The structure of a given life and

death problem can be very complex requiring a recursive analysis of the position. Using

a goal theory to model it is a succinct and efficient approach: the goal theory handles

the problem structure while the knowledge base concerns itself only with which moves

are reasonable to achieve a goal in isolation – ignoring its relationships to other goals.
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The strategic goal theory and knowledge base of rules suggesting moves for goals

in that theory form the basis of our approach. However, there are some complicating

subtleties.

One wrinkle is the fact that goals which may be achievable in isolation may not be

in conjunction with other necessary goals; there can be interactions between the two

which allow one or the other to be achieved but not both simultaneously. The most

well-known example of such a situation occurs in Chess when the opponent has two

pieces forked. The player may have one move which is guaranteed to save one of the

pieces, and a different move which is guaranteed to save the other, but no move exists in

common which will save both. Similar examples in Go occur frequently. The question

of whether there is a fork between two goals is really a question of their independence

or, more accurately, their dependence.

Intuitively a goal � is disjunctively independent from a goal  just if whenever it is

possible to achieve � _  , it is possible either to achieve � or to achieve  . In a state s

we write:

s j= achi(� _  ) �! [achi(�) _ achi( )]

A player has a fork attack between two goals � and  if and only if they are not

disjunctively independent. If, for example, the opponent has a fork attack between a

bishop and a knight, then she may capture one or other, but which one is the player’s

choice. In logical terms, there is a fork attack between � and  iff

s j= achi(� _  ) ^ (:achi(�) ^ (:achi( ))

There is a dual notion of conjunctive independence. Two goals are conjunctively
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independent just if whenever they are both achievable individually they are achievable

collectively. In logical terms:

s j= [achi(�) ^ achi( )] �! achi(� ^  )

A player has a fork defense between two goals � and  if and only if they are not

conjunctively independent. For example, after the opponent has played her move to

fork a bishop and a knight, the player has a fork defense. She may save one or the other

piece, but not both. In logical terms, there is a fork defense between � and  iff

s j= achi(�) ^ achi( ) ^ (:achi(� ^  ))

It is a difficult problem to determine independence between goals in a given po-

sition, but there are times when independence assumptions are plausible and seem to

correspond with human intuition as well as leading to the correct result. In the move

generation algorithm presented in the next section, we make independence assumptions

about goals whose value is statically known. These assumptions are heuristic but seem

to work well in practice.

2.3 Solving Life and Death Problems

A life and death problem is a problem that asks whether a point on the board can

be captured (by the opponent) or saved (by the player). A captured point is one that

cannot be occupied by the opponent at the end of the game. Such points may ultimately

be empty or occupied with friendly stones. Dead enemy stones are assumed removed.
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The problem of capturing a point p from state s for player i can be formalized as the

problem of deciding:

s j= achi(TwoEyes(p))

where the predicate TwoEyes(p) will be defined more precisely in section 2.4.

It is possible to show that a block is saved (uncapturable by the opponent) iff it has a

strategy to maintain at least two eyes. This is because capturing a block requires filling

in all adjacent empty points. In theory, it need only have a strategy to maintain a single

eye, but there are no such strategies since it is always legal for the opponent to just fill

the single empty point on his turn, capturing the block.

One way of making two eyes which is sometimes possible is just to play near to

the point to be saved and to build defenses around two empty disjoint points. Such a

strategy is required when the point to be saved is hemmed in by enemy stones. When

there is more space to “run out”, another kind of strategy for making life is to establish

an unbreakable connection between the point to be saved and another friendly point

which can be saved. Ultimately these two strategies amount to the same thing: the point

in question is saved because it can make and maintain two eyes, but the techniques

applied by Go players to pursue one or the other of these strategies are qualitatively

different and knowledge about how to accomplish each of them is quite reasonably

kept separate in the knowledge base.

In the next section we present a simple language for life and death in Go that will

allow us to formulate life and death problems and theories in a logical language. In

section 2.1 we extend this language to include adversarial operators which allow us

to make statements about the existence of strategies to achieve goals. Chapter 5 has a

18



more formal presentation of the adversarial game logic with proofs of some of the basic

properties of the system. Section 2.5 works through a life and death problem in some

detail.

2.4 The language GO

There are really only a handful of predicates necessary to express basic life and death

ideas. We need the primitive concepts of

� occupancy – which points are occupied with black or white stones, and which are

empty.

� adjacency – which points are adjacent on the board.

� nearness – whether two occupied points are close enough together for the life of

one to affect the other.

� turn – whose turn it is to play.

From these, we derive the concepts of

� friendly – whether two stones are of the same color.

� enemy – whether two stones are of different colors.

� block adjacent – there is a path of adjacent stones of the same color from a stone

to a point.

The reader should note that our definition of an “eye” captures the concept of a

potential eye, or a block-adjacent empty point that may or may not remain empty under

19



attack by the opponent. Having two eyes, as we have defined them, does not guarantee

anything about the block’s ability to live. In the next section, we will define operators

which can be applied to our definition of eyes, that say, in effect, “there is a strategy to

make the block have two potential eyes forever.” This statement will be our definition

of “alive”.

Table 2.1 gives the formal definitions in our language for these concepts. As is

usual, free variables are assumed universally quantified.

Ideally, we would define SameBlock as a least-fixpoint of the definition given – in

fact, in chapter 6 that is exactly how we define it. At this point, because we have not yet

discussed fixpoints or the modal �-calculus, we give this less precise characterization.

Figure 2.2 shows examples of BlockAdj, Enemies and :Enemies.

Each of these predicates can be easily and efficiently statically decided using a sim-

ple board representation. Chapter 3 discusses our program’s particular representation

scheme in more detail.

Currently, we define Near(p; q) to be true if p and q are both occupied and within

a Manhattan distance of 3 on the board, with no interposing enemy stones on the path

between them.

This language is useful for stating facts about a particular position, but lacks the

“temporal” operators necessary to describe future or past positions or to talk about

strategies to reach a goal position. These kinds of modal statements require additional

logical machinery. The next section introduces some adversarial operators which allow

us to extend the basic language to handle these kinds of statements.

In the next section we will present our strategic theory for Go. The goals represented

in the theory correspond roughly to human notions of life and death theory though we
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Table 2.1: Definitions of some basic Go concepts

� Occ(p; c) – The point p is occupied with color c, with c 2

fBLACK;WHITE;EMPTY gg.

� Adj(p; q) – The point p is immediately north, south, east, or west of q.

� Near(p; q) – The point q is close enough to p to be of strategic interest.

� ToP lay(i) – It is player i’s turn to play.

� <;�;=;�; > – The relational operators for each sort of interest.

Black(p)  ! Occ(p;BLACK)

The point p is occupied by a black stone.

White(p)  ! Occ(p;WHITE)

The point p is occupied by a white stone.

Empty(p)  ! Occ(p;EMPTY )

The point p is empty.

Enemies(p; q)  ! [Black(p) ^White(q)] _ [White(p) ^Black(q)]

The points p and q are occupied with stones of different colors.

EnemyNbrs(p; q)  ! Enemies(p; q) ^Adj(p; q)

Points p and q are adjacent enemies.

Friends(p; q)  ! [Black(p) ^Black(q)] _ [White(p) ^White(q)]

The points p and q are occupied with stones of the same color.

FriendlyNbrs(p; q)  ! Friends(p; q) ^Adj(p; q)

The points p and q are adjacent friends.
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SameBlock(p; q; i)  ! Occ(p; i) ^ 9r Occ(r; i) ^Adj(p; r) ^

[r = q _ SameBlock(r; q; i)]

Point p is in the same block as point q iff

p and q are the same point, occupied with stones of color i or

p is adjacent to a point r which is itself

in the same block as q.

BlockAdj(p; q; i)  ! 9r SameBlock(p; r; i) ^Adj(r; q)

Point p is block-adjacent to point q iff

it is in the same block as a point adjacent to q.

Liberty(p; q; i)  ! Empty(q) ^BlockAdj(p; q; i)

Point q is a liberty for p iff

p is block-adjacent to q and q is empty.

Atari(p; i)  ! [8q; r [Liberty(p; q; i) ^ Liberty(p; r; i)] �! q = r] ^

9t Liberty(p; t; i)

A point p is in atari if it is has exactly 1 liberty.

Suicide(p; i)  ! Empty(p) ^ 8q Adj(p; q) �! [:Empty(q) ^

[Occ(q; i) �! Atari(q)] ^

[Occ(q;�i) �! :Atari(q)]]

An empty point p is suicide for player i iff all its neighbors

are occupied – the friendly neighbors (of color i)

are in atari, and the enemy neighbors (of color i) are not.
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Eye(p; q; i)  ! Liberty(p; q; i) ^ Suicide(q;�i)

A point q is an eye for point p iff q is a liberty of the block on p and

q is suicide for the opponent.

TwoEyes(p; q; r; i)  ! Eye(p; q; i) ^Eye(p; r; i) ^ q 6= r

Points q and r together give p two eyes iff

they are both distinct eyes.

Point(p; i)  ! Occ(p; i) _ 9q Eye(q; p; i)

The board point p is a point of territory for player i iff

p is occupied with a stone of color i or

p is an eye for a block of color i.1

do not elaborate the goals of saving and capturing into a more detailed theory involving

eyes. Mainly the theory addresses capturing, saving, connecting to points, and severing

from points. The purpose is to explicitly state the logical relationships between these

goals so that we can identify the relevant goals in a particular life and death situation.

2.5 A strategic theory for life and death in Go

There are four basic strategic concepts in our theory: capture, save, connect, and sever.

Capture and Save are the primary goals in the theory. All life and death problems

that we will consider will be framed in terms of deciding whether a given stone can be

captured or saved. When the object block is completely surrounded with (statically)
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Figure 2.2: Some examples of Go concepts.

safe enemy stones (such as in figure 2.10) then it is not necessary to consider other cap-

ture or save goals to analyze the problem. The problem is simply a matter of deciding

whether the object block can make two eyes or not. In figure 2.10, block D1 can make

two eyes by playing on point F1. The resulting shape is shown in figure 2.11. The

goals Capture and Save are defined formally below. The point p is the object block to

be saved or captured. The points q and r refer to eye points.
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1. Save(p; i) � achi(9q; r TwoEyes(p; q; r; i))

2. Capture(p; i) � achi(8q; r :TwoEyes(p; q; r; i))

Note that these goals are about the existence of strategies to make something true.

Capture(p), for instance, is satisfied when there is a strategy to make the point p ir-

refutably a point of territory at some time in the future.

Not all life and death problems are so simple as 2.10. Often the question of whether

a given block can be captured hinges on whether other blocks can be captured or saved.

The purpose of our goal theory is to relate the capturing or saving of an object block to

the other capture and save goals that have some relevance. This is where the secondary

goals, Connect and Sever come into play. Connect is the goal of establishing block-

adjacency and, Sever, its dual, is the goal of preventing block-adjacency.

If a block is to be saved and it is not completely surrounded as in figure 2.10, it may

live if there is a strategy to expand the block until it has enough additional surrounding

empty space, or an increased ability to articulate eyes. As an example, consider figure

2.3. Here the Black stone on F3 is in danger of being cut off by a White move at D2.

To save it, she can play at D2 herself, as part of a strategy to connect it to the other

Black stone on point C2.

The goals Connect, and Sever are formally defined as follows:

1. Connect(p; q; i) � esti(BlockAdj(p; q; i))

2. Sever(p; q; i) � irri(:BlockAdj(p; q; i))

Note that for these goals the point q need not be occupied. This may be confusing for

Go players who typically use the term “sever” when talking about cutting two occupied
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Figure 2.3: Black can connect her stones at C2 and F3 by playing at E2.

stones apart. We use it in that conventional sense, but also to mean keeping an occupied

point p from extending itself to a block which is adjacent to the point q, regardless of

whether q is empty or occupied with an enemy stone.

We now give a strategic theory that relates the goals of capturing and saving, using

Connect and Sever 2.

When reading these axioms be aware of the following subtleties:

1. It is perfectly possible to connect a block to, or sever a block from, an empty

point.

2. In the Capture axiom, the point p is of a different color than the player i so an

enemy of p is actually a friend of the player who is trying to capture p.

3. For axiom 2.5.1 the right-to-left implication is trivial since it includes the case

q = p. Similarly, for the left-to-right implication of 2.5.2. When there are no

points q different from p satisfying the right-hand side of axiom 2.5.2, no other

capture or save goals have relevance to Save(p; i) and we are in a situation like

2The theory is given as a pair of axioms, both of which should, in fact, be theorems derivable from the rules

given in chapter 6 for some fixed definition of Near. We won’t attempt that derivation in this thesis.
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that of figure 2.10 where to live p must articulate eyes internally. Similarly for

Capture(p; i) in axiom 2.5.1.

The axioms and their English meanings are now given below:

Axiom 2.5.1.

Capture(p; i) ! 8q Sever(p; q; i) _

[[(Near(p; q) ^ Enemies(p; q)) �! Save(q; i)] ^

[(Near(p; q) ^ :Enemies(p; q)) �! Capture(q; i)]]

Axiom 2.5.1 gives the complete relationship between capturing and saving. It says

that a point p is captured iff for each point q, either p can be severed from q, or if q is

an enemy stone, near to p then it can be captured, or if q is a friendly stone, near to p,

then it can be saved. As mentioned, the predicate Near is currently defined to mean

“within a Manhattan distance of 3.”

There is a dual axiom relating Save to Capture:

Axiom 2.5.2.

Save(p; i) ! 9q Connect(p; q; i) ^

[[(Near(p; q) ^ :Enemies(p; q)) ^ Save(q; i)] _

[(Near(p; q) ^ Enemies(p; q)) ^ Capture(q; i)]]

Axiom 2.5.2 says that a point p is saved iff it can be connected to a point q, near to

p that is either friendly and saved, or enemy and captured.
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2.6 The goal graph: Using the strategic theory to solve life and

death problems

In this section we show how the strategic theory presented in the previous section can

be applied to find the relevant goals or context of a life and death problem. We begin by

building a model of the theory using an AND/OR graph. The reader should be careful

not to confuse this graph with the graph of the game state space – they are entirely

different. This graph is a model of the strategic theory. The nodes correspond to goals

in the theory; they do not represent positions in the game.

A strategic theory for a particular problem can be modeled as an AND/OR graph

which we call the goal graph. Figure 2.4 shows the AND/OR graph for the goal of

saving point P17. We’ve abbreviated the goals for Capture, Save, Connect, and Sever

as “C” and “S”, “Con”, and “Sev” respectively. The predicate Enemies is abbreviated

“En”.

Each branch from the root goal corresponds to one valuation of the point variable q

in the existential quantifier 9q in the definition of Save(p; i) given in axiom 2.5.2 above.

All points ranging from (1; 1) to (19; 19) are considered in this hypothetical model.

The definitions in the goal theory are recursive so goals can occur as descendants of

themselves in the graph creating cycles.

We originally formulated the question of whether or not a point p could be saved

from a state s as the decision problem s j= Save(p; i). In the goal graph model, the

question of the life of the point p is now whether the root goal of the AND/OR graph is

true or false. In principle, evaluation of a node in the graph just requires searching for

a strategy. For instance, if the node is Save(p) for some point p, we are looking for a
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strategy to achieve TwoEyes(p; q; r; i) for some points q and r. If such a strategy can

be found then the value of the node is true, and if no such strategy exists then it’s false.

However, since, this sort of search is intractable in general (which is why we were led

to this kind of analysis in the first place), we cannot know what the value of the goal

is, unless it can be statically determined. Using the goal graph, we may be able to use

the static determination of other nodes to decide a node of interest. For each node that

is statically unknown, we examine its children in the graph. If they can be statically

determined, then the node itself will be known.

To evaluate a goal graph with root node R, we determine the static value of all the

nodes in the graph and then, starting from the root, recursively evaluate the nodes in

depth-first order. The algorithm is sketched below:

� Initialize the value of each node in the graph to “true”, if it is statically true,

“false”, if it is statically false, and “unknown” otherwise.

� if node N is known, return its value, otherwise mark N “visited” and recursively

evaluate each of N ’s unvisited children.

� If node N is an AND-node, then it is “true” if all children are true, “false” if any

child is false, and “unknown” otherwise.

� If node N is an OR node then it is “true” if at least one child is “true”, “false” if

all children are “false”, and “unknown” otherwise.

In our model we assume that the truth value of non-modal formulas can be decided

quickly. For example, it is easy to check, for any points p and q, if s j= Near(p; q).

Modal, and specifically adversarial, formulas are assumed to be neither true nor false

29



but “unknown”, unless we have specific static knowledge otherwise. This reflects the

fact that it is generally much more computationally involved to determine their truth,

often requiring a search of positions other than the current one for information.

We can use our static knowledge of the truth of predicates such as Near to avoid

having to actually build the full AND/OR graph shown in figure 2.4. We use the fol-

lowing observation to eliminate nodes from the graph which are logically redundant.

Suppose the theory gives us

A ! B ^ C

for some goals A, B, and C. If B is known statically to be false then A is known

statically to be false as well. Similarly, if

A ! B _ C

and B is known statically to be true, then A is known statically to be true as well.

In figure 2.4, for instance, we can safely (without affecting the value of the root of

the tree) remove any subgraph of Save(P17) for which the leaf node Near(P17; q) ^

Enemies(P17; q) is statically known to be false, and similarly for any subgraph with

a leaf node Near(P17; q) ^ :Enemies(P17; q) which is statically known to be false.

The right side of figure 2.5 shows the AND/OR graph (without the redundant nodes)

for the ground goal Save(P17; BLACK) in the life and death problem given on the left

of the figure. The nodes of the graph are labeled with the goal they represent. The player

argument of the goal is omitted in the graph, so, for instance, Save(P17; BLACK) is

written Save(P17). No confusion should result since the player can be determined by

the color of the object – Save and Connect goals have the same player color as their

objects; Capture and Sever have different player colors from their objects. The object
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points are given in the notation <column letter><row number>. The goal whose truth

value is being decided is called the root goal and is identified in the figure by a double

border. In this example, the root goal is “Save(P17)”.

To save space in the diagram we do not always interpret quantified formulas as

AND/OR graphs. Normally, an existential quantifier is interpreted as an OR-node

with children for each possible interpretation of the quantified variable and a universal

quantifier is interpreted as an AND-node similarly. However, if the quantified variable

ranges over points there may be a considerable number of nodes that need to be repre-

sented in the graph. In practice our rules limit the number of points to a small number

but to avoid enumerating all the rules used in the problem we just make one node which

stands for the whole sub-graph in the tree.

Some nodes in the graph are decorated on the top with a “+” or “-”. These are nodes

whose value is known statically to be true or false, respectively. For example, the node

corresponding to Save(O15) ^ Save(P12) ^ Save(Q13) is marked with a “+”. Each

of these three goals is statically known to be true. Recall that static knowledge of a goal

such as Save(O15) means that we are confident that a strategy exists to establish two

eyes for O15. When a goal of the form Save(q) is statically known to be true, or a goal

of the form Capture(q) is statically known to be false, we say q is safe. The safe points

are marked in the Go position on the left with triangles.

We do not show the expansion of nodes whose value is statically known (marked

with a “+” or “-”). Goals whose value is unknown and that have children that are not

shown in the graph are marked on the underside with an ellipsis. The goal,

9q Connect(R14; q) ^ Save(q)
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Figure 2.4: The AND/OR graph for Save(P17)

for instance, has children which are elided.

Cycles in the graph indicate mutual dependency. Mutual dependency among goals

of interest is very common in human analysis of problems. In figure 2.9, for example,

there are only two goals whose value is unknown: Save(D1) and Capture(G2) and

they are mutually dependent. This situation is given the name semeiai in Go terminol-

ogy.

Figure 2.10 shows a position where there is just the goal to save. Black must play

a move to directly save his block by making two eyes. Figure 2.11 shows the position

after black has played. Now the root goal graph is statically known and both the black

and white stones are safe. In this case, the goal theory is not helpful to us since there
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Figure 2.5: A life and death problem Save(P17) on the left; its goal graph on the right.

are no friendly blocks to connect to and no enemy blocks to attack. Axiom 2.5.2 tells

us only that Save(D1) ! Save(D1). In this case the move F1 is generated directly

from the goal Save(D1).

The goal graph represents the universe of relevant goals for solving problem. As

long as the root of the goal graph is not statically known (marked with a “+” or “-”),

the problem’s solution is still unknown and we must continue to search for a strategy to

make it statically true. If no such strategy can be found then it is false. We use the goal

graph to narrow down the set of moves considered in the strategy search by applying

rules from a knowledge base to generate moves for each goal in the graph.

In the starting position, figure 2.5, Black must save her block on P17. To do this,

she may play moves (like liberty extending moves) to directly save the block, but the

goal graph suggests other alternatives too. She might try to connect P17 to something

that is itself safe. This goal is labeled “2” in the diagram. In this case there are no

blocks to connect to and this goal is statically false. Another possibility is to capture

the surrounding White blocks: O17 or O18. This goal is labeled “4” in the diagram
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Figure 2.6: The problem after Black plays at 1 (White’s turn).

and again is recognized statically as being hopeless. The remaining goal, labeled “3”,

to capture P15 or P16 is possible.

When we have analyzed the position fully and determined the statically known
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Figure 2.7: The problem after Black plays at 1, and White responds at 2.

goals, we are ready to generate candidate moves to try to determine if the root goal

is true or false (i.e. if there is a strategy to achieve safety for P17).

The move generation algorithm generates moves for each node in the graph in
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Figure 2.8: Black captures all the White stones, saving P17.

depth-first order starting with the root. No moves are generated for goals which are

statically known.

For example, in figure 2.5, to generate moves for the graph rooted at goal 3, we

would generate moves for goals 3, 5, 6 and 8 but not from goal 7, since that goal is

statically known to be true. No moves would be collected from goal 1 – even though it

is a child node of 3 – since it has already been visited on the way to goal 3. The move

generation algorithm is given below. R is the root of a goal (sub)graph for which we

want to generate moves.
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Figure 2.9: Black can win the race to capture by playing on points G1 or F1.

Figure 2.10: Black can make life by playing on point F1.

Figure 2.11: Black is alive.
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GENERATE MOVES(R)

(1) if R value is statically known

(2) return ;

(3) Mark R as visited

(4) Moves knowledge-base generated moves forR

(5) foreach unvisited child C of R

(6) Moves Moves [Generate Moves(C)

(7) return Moves

After a move is played, the opponent’s goal graph is generated and moves are col-

lected for her to play. When one is selected and played, we generate the player’s goal

graph in the resulting state, and so on, until the problem is determined or we run out

of time. Because positions often do not change radically from move to move, the goal

graph after such an exchange is likely quite similar to its original structure. However,

sometimes – after a big capture for instance – the structure can change radically. We

regenerate the goal graph after each move rather than attempting to update it incremen-

tally.

Continuing with our example, figure 2.6 shows the position after Black tries the

candidate move P13 3. Now it is White’s turn and her root goal is the negation of

Black’s, namely to Capture P17. Her goal graph (shown to the right of the diagram)

dictates that she must try to save P15 and Q16. She chose to play at Q15 and the

resulting position is shown in figure 2.7.

Now it is Black’s turn to play and she must again choose a move that works to
3For illustration we have selected a move that actually works to solve the problem. The move generation algo-

rithm, of course, does not always choose the correct move to try first.
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capture P15 or Q16. Figure 2.8 shows the position after Black plays at S15, White

responds at T18, Black captures the White stones at T16. In this position it is White’s

turn to play and her root goal, to capture P17 is statically determined to be false. At

this point the search algorithm would backtrack to the last choice point and continue

searching for a solution. When it is determined, finally, that White has no means of

preventing Black from saving P17, the problem is over.

2.7 Correctness of the algorithm

There are two important assumptions that underlie the correctness of the move genera-

tion algorithm. First, the knowledge base must be complete in the sense that if there is

a move that is part of a strategy to achieve goal R then it is suggested by the knowledge

base forR or a sub-goal ofR in the goal graph. Second, when a goal is statically known,

it is independent of its siblings in the graph. More specifically, supposeG1 = achi(P1),

G2 = achi(P2), Gk = achi(Pk). If G = AND(G1; G2; : : : ; Gk) is statically known,

then P1 is conjunctively independent of P2^P3^� � �^Pk. IfG = OR(G1; G2; : : : ; Gn)

then P1 is disjunctively independent of P2 _ P3 _ � � � _ Pk.

This assumption comes from the following analysis. Recall, earlier in section 2.2

we discussed conjunctive and disjunctive independence. There we said that a goal P is

conjunctively independent of a goal Q just if whenever it is possible to achieve P and

Q separately, there is a strategy to achieve them jointly. In logical terms,

[achi(P ) ^ achi(Q)] �! achi(P ^Q)

If we have ach(A)  ! ach(B) ^ ach(C) for some goals ach(A); ach(B), and

ach(C), and ach(B) is statically known to be true, then, conjunctive independence

39



of B and C amounts to the statement

achi(C) ! achi(A)

This means that in generating moves to try to achieve and AND node achi(A) we

are justified in considering only moves directly suggested by the knowledge base for

achi(A) and for achi(C) and ignoring moves for achi(B).

Similarly, if we have achi(A)  ! achi(B) _ achi(C) and achi(B) is statically

known to be false then disjunctive independence of B and C amounts to the statement

that

achi(A) ! achi(C)

This justifies ignoring moves generated by statically false subgoals of an OR-node.
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Chapter 3

Program
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3.1 Introduction

In chapter 2 we showed how to use a strategic theory of life and death to find moves

relevant to a given life and death problem. The move generation algorithm we gave

there uses a goal graph of the goals relevant to the problem and a knowledge base of

moves to find reasonable moves for each goal in the graph whose value is not stati-

cally known. The collection of all such moves is the set of moves that are explored to

determine whether the root goal is true or false.

In this chapter we present the data structures and algorithms that are used to stati-

cally decide and generate moves for each of the strategic goals. Many of the structures

we create to do this will be familiar to go players and programmers; they include:

blocks, groups, cores (what some programmers call strings), eyes, and an implementa-

tion of the goal graph discussed in chapter 2.

Figure 3.1 shows a schematic of the program. The major data structures occupy the

left-hand-side of the“State” box. The right-hand-side shows modules used to interface

with the knowledge base and support incremental state update. The Rule Matcher reads

rules from the knowledge base and matches them to the board. Rules that match have

their assertions stored in an (in-memory) Assertion Database. The Constraint Manager

is a truth maintenance system that manages constraints on the board and blocks re-

quired for the validity of assertions in the Assertion Database. The Reversion Manager

interacts with all the incremental data structures in the state to support backtracking.

Since almost every data structure has at least some incremental components, we do not

show the connection between the Reversion manager and the rest of the state (it’s just

marked with a double-line border).
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Outside the State box and to the right are the knowledge base, containing the heuris-

tic rules, and PET, the editor used to enter and maintain them.

At the bottom, there is a box for the search algorithm that interacts with the data

structures in the state to determine which moves to try at each ply of a problem. The

search algorithm is just a standard boolean minimax search with no frills or move-

ordering heuristics.

3.2 The Board

Obviously the starting point for any go program is a representation of the board. The

board records the color of each of the 361 board points. When a legal move is played

on a point, the board is updated to reflect the change. We refer to the color of a point

as its occupancy. When the occupancy of a point is black or white, we refer to it as a

stone.

3.3 Blocks

Two points are adjacent if one is directly north, south, east, or west of the other on the

board; diagonal points are not adjacent. Two points are in the same block if they are

of the same color (black or white) and connected by a path of adjacent stones of that

color. An occupied point p is block-adjacent to an empty point q if q is adjacent to

some stone in p’s block. The set of all such empty block-adjacent points is called the

block’s liberties. The rules of go dictate that when all the liberties of a block are filled,

the block is captured and all its stones removed from the board. All stones in the block

share the same fate – if one is captured they are all captured – so blocks are the basic
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Figure 3.1: The program structure.
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tactical unit in the game.

It is also useful to consider blocks more loosely related than the adjacency required

of the stones in each block.

3.4 Connections

The strategic theory presented in chapter 2 for capturing and saving stones, includes

the two goals:

Connect(p; q; i) ! esti(BlockAdj(p; q; i))

and

Sever(p; q; i) ! irri(:BlockAdj(p; q; i))

To statically decide if Connect(p; q; i) is true, we first search for “connect” rules in

the knowledge base that match between the points p and q. If a connect rule is found,

we create a connection data structure to record this fact. However, the existence of a

move to connect p and q is not itself enough to pronounce Connect(p; q; i) statically

true. The opponent may still have moves to sever them. If a connect rule is found

(and connection structure created) we say that p and q are possibly connected. If, in

addition, the opponent has no moves to sever p and q, then we say that p is unassailably

connected to q and consider Connect(p; q; i) statically true 1.
1By considering opponent moves in a position in which it is the player’s turn to play, we are implicitly assuming

that if the opponent has no moves in this state, she will not have any moves after some move by the player. In go

this is a reasonable assumption since the player may just pass her turn leaving the state unchanged except for whose

turn it is to play.
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Figure 3.2: The black and white stones form a crosscut.

If no connect rule is found in the knowledge base that matches for points p and

q then Connect(p; q; i) is considered statically false and no connection structure is

created. The existence of a connection structure means that Connect(p; q; i) is possible

(i.e. not statically known to be false).

Connection rules are constructed according the heuristic that, in some (usually

many) contexts, the points to be connected must be able to at least form a crosscut.

Figure 3.2 shows a crosscut pattern. Crosscuts are significant because they indicate that

there is some hope that the black or white stones will be able to connect by capturing

one of the adjacent enemy stones. Without the ability to form a crosscut pattern there

is no hope that they will be able to connect if the opponent actively opposes it. Each

connection rule in the knowledge base satisfies the property that, when the stones are

considered in isolation, with no enemy stones nearby, they will at the very least be able

to join in a crosscut pattern.

3.5 Groups

A maximal set of possibly connected blocks is called a group. Groups on a point p are

computed using a standard transitive closure algorithm on the set of connections from

p.

Groups are the “loosest” tactical unit considered in our life and death problem

solver. They represent the most optimistic assessment of which blocks will be able
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to merge (from the owner of the block’s perspective). Very often, however, this assess-

ment is overly optimistic. The opponent may have ways of cutting apart the group by

attacking and severing its connections.

Groups are not very useful for solving life and death problems but they are useful

for getting a reasonable upper bound on the territory to be gained or lost by attacking a

block – something which is necessary for a full-playing go program.

3.6 Cores

The maximal set of blocks that are unassailably connected is called a core. Since it

is possible that the opponent may not be able to sever either of two unassailable con-

nections but may have a fork to sever one of the two, unassailable connectivity is not

transitive. Put another way, even if Connect(p; q; i) and Connect(q; r; i), it is not nec-

essarily the case that Connect(p; r; i).

After all connection structures have been created, we create core structures to record

information about the collection of blocks in the core. Except for the possibility of

forks, all the blocks in the core can be assumed to live or die together. Cores are thus a

sort of natural generalization of the block concept to include stones that are not adjacent

but nevertheless known to be able to connect. The largest possible core for a block is

the whole group, which reflects the most optimistic assessment of connection between

the blocks. Some go programmers call cores, “strings”.

When a core is tightly surrounded by the opponent it must be able to articulate eyes

internally to save itself. When there is a lot of “friendly” space around the core, it has

more options to either articulate eyes if attacked, or connect to another core which has
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Figure 3.3: Two rules for recognizing eyes. Stones marked with a triangle are optional.
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eyes (or friendly space). We call the measure of the amount of friendly empty space

around a core its aura.

The life or death of a core depends on its ability to create eyes, either by making

them, reinforcing existing ones, gaining access to enough friendly space to be guaran-

teed to be able to articulate eyes, or to connect to another friendly core that is able to

do any of these things.

The next two sections describe data structures that, in conjunction with cores, allow

us to statically decide save and capture goals.

3.7 Eyes

Chapter 2 defines an eye for a point p as a liberty point q that is suicide for the opponent.

Such points are necessarily surrounded by stones of the same color as p (since these are

the only points that are suicide for the opponent).

To statically decide if Save(p; i) is true based on its ability to form eyes, we match

eye rules from the knowledge base for the point p. If a rule matches, we create a data

structure called an eye structure to record this fact. Figure 3.3 shows two eye rules.
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The eye rules tell us the border and center of the eye. The border is the set of points

surrounding the space, the center the set of points that are surrounded. We say two eyes

e1 and e2 are disjoint if the border of e1 is disjoint from the center of e2 and the border

of e2 is disjoint from the center of e1. The borders of two disjoint eyes may overlap.

If the core on a point p has two eyes then we say that core is possibly alive. An eye

for which the opponent has no attacking moves is called unassailable.

If the core on a point p has two disjoint unassailable eyes, then Save(p; i) is con-

sidered statically true.

If two disjoint eyes cannot be found for a core, and the core cannot obtain resources

in other ways (see section 3.8 below), then Save(p; i) is statically false.

The following rules determine a minimum (min) and maximum (max) number of

disjoint eyes for a block on point p.

1. if there are two non-overlapping eyes both of which are unassailable, min = 2 and

max = 2.

2. if there are two non-overlapping eyes, exactly one of which is unassailable, min

= 1 and max = 2.

3. if there are two non-overlapping eyes, neither of which is unassailable, min = 0

and max = 2.

4. if there is one eye which is unassailable, min = 1 and max = 1.

5. if there is one eye which is not unassailable, min = 0 and max = 1.

6. if there are no eyes, min = 0 and max = 0.

49



3.8 Aura

Eyes provide one method of statically determiningSave(p; i). However, our eye knowl-

edge is not complete. Sometimes, a core may have no eyes (or just one eye) according

to the knowledge base, yet still be able to make two eyes by virtue of the amount of

empty space surrounding it. Such cases are better characterized algorithmically than by

the kinds of rules we have in our knowledge base.

To determine whether a core has enough surrounding friendly space to articulate

two eyes under alternating play we use a measure called aura. This is a weighted

count of the space surrounding the core. The weights are determined by the presence

of friendly vs. enemy surrounding cores.

The amount of aura a core has is recorded in the core structure directly. A core with

sufficient aura to be able to articulate two eyes (a value determined by trial and error)

is possibly alive.

If the opponent has no attacks to reduce the aura (drastically) then we say the aura

is unassailable.

If a core on point p is possibly alive and the core’s aura is unassailable then we

consider Save(p; i) statically true.

If the core is not possibly alive then we consider Save(p; i) statically false.

Eyes and aura are the only ways a core can be considered possibly alive and

Save(p; i) statically true or false.

If it is player i’s turn and she has a core on point p for which Save(p; i) is statically

true or Capture(p; i) is statically false, then we say the core on point p is safe. In the

examples given in chapter 2, the safe stones were marked with triangles.
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3.9 Knowledge base

Most of the declarative knowledge in our system is knowledge about which moves

are reasonable to establish their goal. This knowledge is broken down into a series of

if -then rules of the form:

If precondition X holds for object p then move M is reasonable to establish

goal �.

The kinds of conditions that X can represent divide naturally into two categories:

strict occupancy constraints, such as “There must be a Black stone on point p” and at-

tribute constraints such as “The Black block must have 2 or more liberties.” In addition

we can have boolean combinations of constraints.

Because board occupancy plays such a central role among the constraints in most of

our rules, we developed a graphical pattern editor called PET that allows the knowledge

maintainer to enter these constraints graphically on rectangular board sections called

“maps”. Figure 3.4 shows a variety of typical pattern maps. Rules may have multiple

maps linked by some attribute constraint that identifies common objects in the two.

The knowledge base currently has 725 rules. Table 3.1 shows the breakdown of

rules by purpose. These purposes are a way of categorizing the knowledge more finely

than the four strategic goals of chapter 2. Each purpose has associated rules that apply

to one of the strategic goals in some particular circumstance. The strategic goal for

each rule type is given in parentheses following the purpose name.

Figure 3.4 shows a variety of different rules.
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Table 3.1: Number of rules for each purpose.

Purpose Number of rules

Enclose (Sever) 8

Escape (Connect) 1

Eye fight (Save, Capture) 229

Eye recognition (Save, Capture) 126

Save and Capture (Save, Capture) 156

Connection recognition (Connect, Sever) 22

Sever/Split/Connect/Join (Connect, Sever) 183

Total 725

3.10 Rule filtering

As often happens in knowledge-based systems one would like to be able to override

general rules when more specific ones apply. To determine a ranking among rules that

match a given position, we assign a specificity to each rule computed as a measure of the

information content of the pattern. This is determined at the time the pattern is created

and stored with the pattern. Among all the patterns that hold in a given state s for a

particular goal and objects, we prefer the most specific, which we call the dominant

pattern. We say the dominant pattern filters the less specific ones.

For example, it is also useful to be able to override general eye knowledge with more

specific knowledge. Figure 3.5 shows a position where Black might have two disjoint

eyes by virtue of two matches in the corner of the rule in figure 3.6. The “B” indicates

a border point, the “C” indicates a center point of the eye. Reading this position out we

would determine that in fact, Black can make only one eye, but reading the situation out
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Figure 3.4: A variety of rules.

takes time. To make a static determination that Black has just a single eye, we need an

additional rule that matches the position and has higher specificity than the rule shown

in figure 3.6. Figure 3.7 shows the occupancy constraints of such a rule. Typically, we

would also require that the surrounding white blocks be safe, so that Black could not

capture them as part of an escape.
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Figure 3.5: Applying rule 3.6 incorrectly gives Black two disjoint eyes (borders marked with

“B”, centers with “C”.).

Figure 3.6: An eye rule.

3.11 Constraint Manager

To maintain the integrity of the data structures representing board knowledge we em-

ploy a constraint manager to propagate board occupancy changes to any data structures

that may be affected.

Each data structure may be either a ward or a support (or both). Wards are objects

Figure 3.7: A more specific eye rule.
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that require notification if some object they depend on changes. Supports are objects

that are depended upon by other objects. When a support object changes (including

possibly when it is created and destroyed) it alerts any wards that have registered them-

selves as dependent. The notification received by the ward includes a message parame-

ter that allows the support to pass information about the nature of the change. The ward

itself may be a support of another ward. In this case when it receives an alert it may in

turn alert another ward. Obviously, support cycles are prohibited.

There are two types of wards that behave differently when alerted: synchronous and

asynchronous. Asynchronous wards respond by alerting their wards immediately upon

receiving an alert themselves. Synchronous wards require a notification to propagate

alerts to their wards.

Synchronous notification is useful in the case where a ward has multiple dependen-

cies and requires knowledge of all of them before making a decision about alerting its

ward. Consider for example an AND-node with two children X and Y whose values

are 0 and 1, respectively. In the asynchronous case, if X changes value to 1, the AND-

node itself changes value from 0 to 1 and anything that depends on it must be notified.

However, if later, Y changes from 1 to 0, the AND-node’s value changes back to 0,

and again anything dependent on it must be notified. Using synchronous notification

instead, we wait until both X and Y are finalized before alerting any wards, avoiding

two potentially expensive updates.

The order in which the data structures of the program are provided synchronous

notification is determined by an update cycle that reflects their natural dependencies:

first the board occupancy, then blocks, relationships, groups etc.

The constraint manager takes board and block changes and notifies anything that
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depends on them through a constraint system. An atomic constraint is an expression of

the form:

htermi hRelOpi htermi

A htermi is

Occ(p) j Libs(p) j number

A hRelopi is

< j <= j = j > j >=

Occ(p) takes values BLACK;WHITE; or EMPTY depending on the occu-

pancy of the point p. Libs(p) is the number of liberties of the block on point p.

Each atomic constraint has a value determined by evaluating its expression. In

addition, we have AND/OR-constraints that can have an arbitrary number of constraint

children. Using AND and OR constraints we can build arbitrary boolean constraints

on the four terms listed above. The constraint manager notifies any constraints whose

terms have changed since the last move and the constraint propagates the notification

up to its parent recursively.

3.12 Assertion Database

The assertion database holds all of the rule-derived facts or assertions about the posi-

tion. Assertions may be of different types; the data for the assertion varies according to

type. Not all assertion purposes have rules associated with them yet in the knowledge

base.

All assertions have the following fields:
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� name – the name or purpose of the assertion. One of

– Defensive purposes: fincrease liberties, break out, escape, connect, join,

increase eyes, reinforce eyes, save, live, increase aura, semeiai increase lib-

erties g

– Offensive purposes: fdecrease liberties, trap, enclose, sever, split, decrease

eyes, destroy eye, capture, kill, decrease aura, semeiai decrease libertiesg

� move number – the move for which this assertion was created.

� specificity – an integer measuring the amount of information in the precondition

of the rule that matched to make the assertion. Used for deciding between con-

flicting assertions of patterns that match the current position.

In addition, assertions have one or more of the following attributes:

� objects – Up to three object points. The objects for which the assertion holds.

� Rx point – The Rx or prescribed point. Where to play.

� color – The color of the player for whom the assertion obtains.

� recommendation – The recommendation value of the suggested move: fGOOD,

BAD, THREAT g.

� strength – An integer value giving a rough measure of the strength of the connec-

tion (not currently used).

� border – the set of points surrounding the eye that would be occupied if the eye

were fully articulated.

� center – the set of points inside the eye.
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3.13 State change – The Reversion Manager

There are really three main options for handling state changes.

1. Redo state each time a move is made or backtracked.

2. Come up with some transparent system for automatically recording and undoing

changes to the data structures.

3. A mixture of 1 and 2.

If the state is small, or there is not much code in the state update then option 1 is

a viable alternative. However, for systems with heavy update requirements option 1

becomes inefficient if most changes to the state are localized; that is if, on average,

more of the state remains unchanged from move to move than changes. This has the

unfortunate side-effect of placing subtle psychological pressure on the programmer not

to add more knowledge. More knowledge means more updating each ply and although

it although it may be easier to program and faster to get up and running, it may become

a bottleneck in the exploration of new ideas.

Options 2 and 3 are really the best choices in our estimation since they are com-

putationally efficient, do not place pressure on the programmer to keep the state small,

and can be implemented at the data structure level making it almost transparent to the

programmer in the implementation of her algorithms.

Our system is based on the following observation: In an object-oriented setting

all access to an object is through the class interface. If some preprocessing must be

performed by the object before actually performing an operation, it can be hidden from

the caller in a “wrapper” function. In our case the preprocessing consists of saving the
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state of the object before any operation that changes it.

There are two key points to observe here. First, when we revert to an object’s previ-

ous state after a backtrack we can copy the old version to the same memory location as

the new version. This ensures that all references to the object remain valid. Second, we

needn’t copy an object every time it is changed, we can construct “frames” that group

together changes to increase the granularity of change. After a backtrack, an object is

reverted to its previous state at the beginning of the last frame. Changes made during a

frame are not recorded and cannot be reverted. For the purposes of our go program we

identify a frame with a state in the game. In this way the first change made to an object

during a state update is recorded but subsequent changes made during the same update

process are not.

3.14 History of the project

David Mechner and I started developing our program in 1992 with a grant from the

Cambridge Center for Behavioral Studies (CCBS). Our initial goal was to develop a full

playing knowledge-based go program. Just getting the infrastructure in place to be able

to work comfortably with the system took a couple of years. We had to decide on an

appropriate scheme for knowledge representation, build a knowledge editor with a GUI

front-end, a truth-maintenance system, revertable 2 class library, board representation

and display, pattern matcher, and many other bits and pieces necessary for a working

system.

It wasn’t until 1997 after several rewrites and platform changes that we had a work-
2We call a data-structure revertable if it supports an “undo” operation which reverts it to its state prior to the last

recorded change.

59



ing problem solver. At that point we turned our attention to improving its knowledge

and testing it on problem sets. We began our project with the idea that it would be a

full go-playing program but quickly became focused on the problem of life and death.

Life and death knowledge is central to accurate positional evaluation so we were deter-

mined to do a good job of it. We imagined we could build a good quality life and death

problem solver and still have time to incorporate it into a playing program. As it turned

out we have only been able to implement the problem solver, a full-playing program

infrastructure, and some pieces of a full-playing program.

We determined that there were three basic kinds of knowledge we would need.

First was state knowledge – the important facts about a position that go into making a

move decision. This includes the standard repertoire of computer go entities such as

stones, blocks, groups, cores (or strings) etc. These entities are computed and stored

in data structures when the position changes. The code for their computation is quite

static – once written it is unlikely to change much – so it makes sense that this kind of

knowledge is essentially procedural rather than declarative.

The second kind of knowledge required was about which moves are reasonable in

a particular situation. This knowledge changes fairly frequently as the rules are refined

in response to testing so recording it in declarative form was important. We built the

knowledge editor PET to make this job easier.

We trained the system on Kano’s Graded go problems for beginners, a series of

four volumes of increasing difficulty. When the program had enough knowledge to

solve many of the training set problems, we tested it on a fresh set of untried problems.

The next chapter discusses our results in more detail.
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Chapter 4

Results
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4.1 Testing and Results

To test the quality of our program’s life and death analysis, we first trained it on the odd

numbered problems in Kano’s [13, 14] Graded Go Problems for Beginners: Volumes 1,

2, and 3, entering knowledge when it failed to see a solution path and filtering generally

good moves that were bad in a particular context. Problems that asked for the best

move or were otherwise not suitable for our use we excluded. Problems that required

the solver to both find the right object and solve the problem were given the object.

For example, if the problem stated “How can Black capture three white stones?” we

would identify the block of three stones that was intended and provide this information

to the problem solver. Guessing the correct object was almost always a trivial part of

the problem.

After training we tested the program on the even numbered problems in volumes 1

and 2. Our hope was that the even problems would cover the same range of material but

would be different enough to test whether we had trained the program with general go

knowledge or just specifically how to solve the odd numbered problems in this book.

The results were encouraging, especially for volume 1; they are summarized below.

It is somewhat difficult to compare results with other programs because of two fac-

tors. First, we are interested in life and death, not middle-game problems, so we focused

on these in our testing. But, more importantly, we required our program to completely

solve the problem by reading it out until a static analysis could be made. The program

hypothesized moves then solved the sub-problems that resulted from playing the moves

at each ply. Mueller [18] and Fotland [11] give their program’s performance on some of

the same problems but define a solution as finding the correct first move, not the correct

62



first move at each ply until the problem is solved.

Table 4.2 gives our results on a series of graded go problems of varying difficulty.

Table 4.5 is a summary. It would be helpful to have the volumes handy as a reference

when examining this data. We obviously cannot reproduce the problems here.

The program was not trained on any of the test problems, so these results – espe-

cially for volume 1 – indicate some degree of true competency at beginner life and

death, not just knowledge of the problem set.

4.2 Two problems: A success and a failure

In this section we briefly examine two problems from the sample set – book 1, problem

24, which the program successfully solves, and book 2, problem 42, which the program

fails to solve.

Figure 4.1 requires black to capture the stone marked P . The goal graph for this

problem suggests 6 initial moves for black (labeled in the order they will be explored).

The correct move is move 2. In this case moves 1 and 2 both have the same rank, but

move 1 is chosen randomly to be first.

Figure 4.2 shows the position after black plays at 1, white responds at 2, and black

connects at 3. At this point, the white block on point P is statically safe and black gives

up backtracking to the choice of move 1 as her first move.

Next, black considers playing at 2. Figure 4.3 shows the position after black plays

at 2, white responds at 5, and black ataris the block on point P . At this point, all the

black stones are statically safe and the block on point P is statically dead. Black has

succeeded and reading backtracks to white’s last choice point. None of white’s other
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Figure 4.1: Correctly solved problem 1-124.

Figure 4.2: Problem 1-124. Black chooses the wrong path.

moves succeed and the problem is declared a success for black.

Black’s other moves at 3-6 are not explored, but it is interesting to see why they

were suggested. The move at 3 is suggested because a subgoal of Capture(P ) in the

goal graph, is the goal Save(Q) and one way to save Q directly is to try to extend its
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Figure 4.3: Problem 1-124. Black chooses the right path.

liberties.

Move 4 is suggested to capture the white block R, which is a subgoal of Save(Q)

(which in turn is a subgoal of the root goal, Capture(P )).

Move 5 is suggested for Capture(P ).

Move 6 is suggested for Capture(S), which is also a subgoal of Save(Q).

Book 2, problem 42, shown in figure 4.4, is a problem that the program solved in-

correctly. The goal is for black to capture the white block P . The only move generated

for this purpose is move 1, which fails. The correct move is atX , since this forces white

into a shape that can only make one eye. Unfortunately, the program was missing an

eye rule. The program failed to recognize that White has two disjoint non-overlapping

eyes (if she gets to play at X herself). No eye attacks were generated, and hence the

correct move was missed. Luckily, this problem required very little time to get wrong.

Missing rules, such as the eye rule for problem 42, were often the culprits in in-

correctly solved problems. Another major source of error, which often led to lengthy
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Figure 4.4: Incorrectly solved problem 2-42.

reading and, ultimately caused the program to run out of time, was overly general pat-

terns in problems with many objects involved (problems with lots of cutting points,

for example). An early mistake in such a problem can mean a tremendous amount of

wasted reading. Figure 4.5 shows an example of a problem which the program was not

able to finish.

In every case though, the program did very well in its analysis of the problem into

goals and the goal relations. Missing rules can be added, overly general rules filtered

and more static knowledge added, but the goal theory is right, the program has the

ability to determine which stones are logically relevant to the problem and that is a big

step forward in reasoning about life and death.
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Figure 4.5: Incorrectly solved problem 2-108 (gets lost).
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Book Problem Result Solution Correct? Num nodes Time (secs)

1 2 S S Y 2 1

1 4 S S Y 2 2

1 6 S S Y 2 1

1 12 S S Y 2 1

1 14 S S Y 2 2

1 16 S S Y 2 2

1 18 S S Y 2 1

1 20 S S Y 2 1

1 24 S S Y 12 16

1 26 S S Y 4 5

1 28 S S Y 14 14

1 32 S S Y 2 1

1 42 S S Y 2 1

1 44 S S Y 2 1

1 46 S S Y 2 1

1 62 S S Y 2 2

1 64 S S Y 2 1

1 66 S S Y 2 2

1 70 S S Y 2 2

1 74 S S Y 4 4

Table 4.1: Results on Kano’s Graded Go Problems for Beginners: vols. 1-2
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Book Problem Result Solution Correct? Num nodes Time (secs)

1 78 S S Y 4 2

1 80 S S Y 6 5

1 80 S S Y 2 1

1 82 S S Y 2 1

1 84 S S Y 14 12

1 90 S S Y 2 2

1 94 S S Y 2 0

1 96 S S Y 4 5

1 102 U S N 1 0

1 104 S S Y 2 1

1 106 S S Y 4 4

1 108 U S N 1 0

1 112 S S Y 2 1

1 116 U S N 2 2

1 122 S S Y 2 1

1 126 S S Y 6 8

1 128 S S Y 4 3

2 2 S S Y 24 23

2 4 S S Y 74 105

2 6 S S Y 2 11

Table 4.2: Results on Kano’s Graded Go Problems for Beginners: vols. 1-2
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Book Problem Result Solution Correct? Num nodes Time (secs)

2 10 S S Y 20 29

2 14 U S N 1 1

2 14 U S N 1 1

2 16 S S Y 2 1

2 18 S S Y 100 125

2 24 S S Y 10 8

2 30 S S Y 2 0

2 34 S S Y 2 1

2 36 U S N 1 0

2 38 U S N 1 1

2 40 U S N 1 1

2 40 U S N 1 1

2 42 F S N 3 1

2 44 F S N 11 16

2 46 S S Y 4 3

2 66 S S Y 2 2

2 70 S S Y 18 24

2 76 U S N 1 0

2 80 S S Y 2 2

2 82 S S Y 2 2

Table 4.3: Results on Kano’s Graded Go Problems for Beginners: vols. 1-2 cont.
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Book Problem Result Solution Correct? Num nodes Time (secs)

2 84 U S N 1 0

2 86 S S Y 56 73

2 88 F S N 249 305

2 108 F S N 1 0

2 110 U S N 15 29

2 112 F S N 1 1

2 116 S S Y 2 1

2 118 S S Y 2 0

2 122 F S N 49 36

2 134 F S N 9 9

2 134 F S N 9 9

Table 4.4: Results on Kano’s Graded Go Problems for Beginners: vols. 1-2 cont.

Text # probs % correct avg. tree size

Kano (vol. 1) 37 90 3

Kano (vol. 2) 34 59 18

Table 4.5: Summary of results on Kano’s Graded Go Problems for Beginners: vols. 1-2
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Chapter 5

Game Logic

72



5.1 Introduction

Until very recently, games have been considered almost exclusively for interpretation

of other kinds of logical systems. In this chapter we go the other way and use logic to

analyze games. This idea was first proposed in a paper by Parikh [19] and more recently

considered by Pauly [2], however both of these papers consider games as atomic enti-

ties; our interest lies in the analysis of the internal structure and strategies of games.

To accommodate this added expressivity requirement, we have chosen the first-order

modal �-calculus as the basis for our logic.

In the next section we briefly introduce modal logic and then consider the models,

axioms, and semantics for our game logic. In the next chapter we will apply this logic

to stating rules for Go.

5.2 Introduction to Modal Logic

Modal logic is a branch of logic originally formulated to characterize the notions of

possibility and necessity but more recently applied to formal reasoning in a variety of

domains including discrete time, computer program execution, action, proof theory,

circuit verification and many others. Any domain in which it is desirable to make state-

ments that are true or false relative to a particular state of affairs (or time, or game

position etc.) is potentially a candidate for description in modal logic. Many of these

applications require only propositional modal logic but some – especially those involv-

ing knowledge representation – need the extra expressivity offered by predicate modal

logic. The standard introductory reference for propositional modal logic is [12]. A very

good recent text is [5]. For first-order modal logics [6] and [10] are good references.
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The �-calculus is a logic of operators on modal sentences which includes � – the

least fixed point – and � – the greatest fixed point operators. Any modal language

can be augmented with axioms for the �-calculus to allow construction of more com-

plex operators from the primitives provided by the basic language. We use the modal

operators to define adversarial operators.

A standard reference paper on the modal �-calculus is [15]. Completeness results

for the propositional modal �-calculus are given in [25].

5.3 Models

The models for our logic are game trees whose nodes represent positions and whose

edges are labeled with the physically possible moves in the game. The fact that our

models are trees and not just rooted graphs means that identical positions reached by

different move sequences have different nodes in the model. The physically possible

moves may include moves that are not legal, such as moving a knight forward one

square in Chess. We could restrict ourselves to only legal moves, with respect to some

atomic definition of legality, but the rules of the game are themselves interesting and

to present these formally requires being able to refer to all the possible moves, not just

the legal ones. For example, in Go the concept of suicide move m is easiest to define

in terms of what happens after a player plays m, regardless of whether m is legal.

Our models specify two opposing players, a predicate to determine which moves

are legal for each player, a turn structure, and a function to determine who has won.

We assume a set of moves from which the players may choose. In Go the set of moves

available to both players is the set of the 361 available board points. Obviously, not all
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of these are legal moves in any given position, but they define the universe from which

the players may choose.

The nodes of the game tree are Tarskian (first-order) models. They have a set of

domains corresponding to the important entities in the game, as well as functions and

predicates over those domains. We assume that the domains are the same for each node

in the tree.

More formally, a game structure is a labeled transition system with the following

components:

� A set of Tarskian models S.

� A finite set of directed labeled transitions (moves)M = fm1; m2; : : : ; mng.

� A set of two players I.

� A set of (partial) “reachability” functionsR. For each m 2 M, there is a partial

functionRm 2 R,

Rm : S �! S

Rm(s) is undefined iff m is not a possible move from s.

� Each reachability functionRm has an inverse function,R�1
m . R�1

m (s) is undefined

iff m is not a move that leads to s.

� A function ToPlay : I �! 2S . For each player this function gives the states in

which it is that player’s turn to play.

� A function Legal : M � I �! 2S . For a given move m and player i, this

function gives the states in which it is legal for i to play move m.
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� A function Win : I �! 2S . For a given player, this function gives the states

which are winning for that player.

We require thatRm andR�1
m be inverse in the following way:

If Rm(s) is defined thenR�1
m is defined onRm(s) andR�1

m (Rm(s)) = s (5.3.1)

If R�1
m (s) is defined thenRm is defined onR�1

m (s) andRm(R�1
m (s)) = s (5.3.2)

We require that it is exactly one player’s turn to play in any given state: For all states

s 2 S, for players i; i0 2 I

[s 2 ToPlay(i) \ToPlay(i0)] implies i = i0 (5.3.3)

We require that if it is not a player’s turn in a state s, then that player has no legal

moves in s: For all states s 2 S, for all players i 2 I, for all moves m 2 M

Legal(m; i) � ToPlay(i) (5.3.4)

To ensure that the structure is a tree, we stipulate the following conditions:

R�1
m (s) defined andR�1

n (s) defined, implies m = n (5.3.5)

and

There is a unique state, s0 , the root state, for whichRm(s0) is undefined for all m

(5.3.6)

We do not make any assumption about whether or not a state can be winning for

more than one player. In games such as Go or chess, the winning states for each player

are disjoint.
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5.4 The first-order modal �-calculus

The predicate modal �-calculus is a predicate modal logic with a least fixpoint operator,

“�.” Propositional modal �-calculus originated with Scott and De Bakker [22] and was

further developed by Hitchcock, Park, De Bakker and De Roever [20], [4], [7]. Kozen

[15] provides the axiomatization we use here.

The variables “X” and “�”, in the examples below are predicate variables not a

first-order domain variables. Predicate variables can be bound or free like first-order

variables. If a predicate variable X occurs within the scope of a �X or �X operator it

is bound, otherwise it is free. Typically bound predicate variables will be denoted by

upper-case letters from the end of the alphabet such as X, Y, or Z. Free variables will

be denoted by lower-case Greek letters such as � or  . If all the predicate variables in

a �-calculus formula are bound then the formula is closed otherwise it is open.

Before we proceed further, it will be useful to define some abbreviations:

� start � [u]?

� term � �?

As usual, ? denotes “falsum” – the proposition that is always false. Observe that

start is only true at the root of the tree and term at its leaves. Also, note that start is

true only in the root state. If there is a sequence of moves that returns the position to

the root position, this node will be a descendant of the root and start will not be true

there.

In a finite model, you may imagine the formula �X:F (X) as standing for the (finite)
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disjunction:

F (?) _ F (F (?)) _ F (F (F (?))) _ � � �F n(?)

This intuition is only valid for finite models. If the models are infinite then there is

no guarantee that the least-fixpoint formula will ”converge” in ! steps. Since we are

primarily concerned with finite models, it does no harm to think about it this way.

Here are some more examples to give the intuition behind the � operator:

1. The statement,

s j= �X:� ^�X

means, for some n,

s j= � ^�(�) ^�(�(�)) ^ � � � ^�n(�)

which in English means that � is true in state s and in all descendants of s.

2. The statement

s j= �X:� _ �X

means, for some n,

s j= � _ �(�) _ �(�(�)) _ � � � _ �n(�)

which means that � is eventually true along some path from s.

3. The statement,

s j= �X:�X
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means, for some n

s j= term _�(term) _�(�term)) _ � � � _�n(term)

which means that the tree rooted at s is finite.

4. The statement,

s j= �X:[u]X

means, for some n

s j= start _ [u]start _ [u]([u]start) _ � � � _ [u]n(start)

which means that every upward path reaches a root.

5.5 First-Order Modal Game Logic

Our modal language consists of the usual first-order logical symbols (with equality)

and the following additions.

� A finite set of constants denoting moves in the game.

� A set of two constants denoting the two players in the game.

� A predicate on player terms, ToP lay(i), intended to mean that it is player i’s turn

to play.

� A predicate on move and player terms, Legal(m; i), intended to mean that move

m is legal for player i.
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� A predicate on player terms, Win(i), intended to mean that player i has won the

game.

We add a family of modal operators – one for each move term in the language – �m

and its dual �m. We read “s j= �m�” as meaning “move m, made from state s, leads

to a state in which � is true”. Dually, “s j= �m�” is taken to mean that “Either, move

m taken in state s, leads to a state in which � is true or m is not a possible move from

state s”. The operators �m and �m are equivalent except at leaf states where �m is true

and �m is false.

The operator �m is a “downward” operator in the sense that it examines the children

of a node in the game tree. It is also useful to have an “upward” operator which checks

the parent of a node. We define an upward version of diamond, huim, which is true for

a formula � at a state s when � is true in a parent of s with a transition labeled m to s.

The angle brackets around the u in huim are meant to evoke a �m operator (split down

the middle). Like �m, huim has a dual [u]m which is identical to hui except at the root

where [u]m� is always true and huim � is always false.

These operators are more primitive than the � and � operators usually considered

primitive in basic modal languages. In fact, we can define � and � in terms of �m and

�m as follows:

�(�) � 9m �m (�)

and

�(�) � : � :�

In this definition, s j= �(�) iff there is some move from s to a state in which � is

true. Similarly, s j= �(�) holds when all moves from s lead to states in which � is true
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(it is vacuously true if there are no moves from s, i.e. s is a terminal state in the game

graph).

5.6 Game Logic

We are now ready to consider extensions to first-order �-calculus that lend it its adver-

sarial flavor.

We propose two new primitive adversarial operators, esti(�), and irri(�). Intu-

itively, esti(�) means that player i has a strategy to make � true in some game and

irri(�) means � is true now and player i has a strategy to maintain its truth until the

end of the game. If i denotes player i’s opponent, then the operators esti and irri

are duals. In English we say a formula � can be established by player i iff :� is not

irrefutably maintained by player i.

From these two primitive operators, we define a derived operator

achi(�) � esti(irri(�)) which means intuitively that player i has a strategy to achieve

�, or establish irrefutably the goal �. Note that esti(irri(�)) and irri(esti(�)) are not

equivalent in all models. The former says that there is a strategy to make � true “for-

ever.” The later says that there is a strategy to perpetually establish �, which admits the

possibility that the opponent can also perpetually deny �, leading to an indeterminate

game. In finite or, more generally, determined, games, the two are equivalent.

In the next section we present a axioms and definitions for our game logic.

5.7 Axioms and Definitions

If i denotes a player, then i denotes the opponent.
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Define,

termLegal � 8m:Legal(m; i) ^ :Legal(m; i)

termLegal is true in any state in which there are no legal moves for either player.

1. ToP lay(i) ! :ToP lay(i)

It is exactly one player’s turn to play in any state.

2. Legal(i;m) �! ToP lay(i)

If move m is legal for player i, then it must be player i’s turn to play.

3.

Causes(i;  ) ! [ToP lay(i) �! 9m Legal(m; i) ^ �m( )]

^ [ToP lay(i) �! (8m Legal(m; i) �! �m( ))]

Player i has a legal move to make  true if it is her turn to play, otherwise player

i makes  true no matter where she plays.

4. esti(�)$ �X:� _ ((:termLegal) ^ Causes(i; X))

A formula � can be established by a player i iff � is true or player i has a move to

establish � or all player i’s moves establish �.

5. irri(�) ! �X:� ^ (termLegal _ Causes(i; X))

A formula � is irrefutable by a player i iff � is true and player i has a move to

maintain its truth, or all player i’s moves maintain its truth.
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6. achi(�) ! esti(irri(�))

A formula � is achievable if it can be established irrefutably.

The next two axioms are the standard axioms for the first-order modal �-calculus.

7. F (�X:F (X)) �! �X:F (X), where �X:F (X) is free for X in F (X).

8. [F (Y )! Y ] �! �X:F (X)! Y , where Y does not occur in F (Y ).

These next two axioms correspond to the converse Barcan axiom.

9. (�X:8A F (X)) �! 8A �X:F (X)

10. (9A �X:F (X)) �! �X:9A F (X)

The next two axioms state that �m and huim are inverse:

11. �m(huim (�)) �! �

12. huim (�m(�)) �! �

Finally, we have the tree axioms:

13. (huim (�) ^ huin (�)) �! m = n

14. �X:[u]X

Axiom 1 corresponds to model condition 5.3.3. Axiom 2 corresponds to model con-

dition 5.3.4. Axioms 7 and 8 come from Kozen (axiom 8 is originally Park’s induction

axiom) who gives them in equational form. We adapt them to our style of presentation.

Axioms 9 and 10 together are correspond to the ‘converse Barcan” axiom. The Barcan

axiom does not hold in general for tree structured models.
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Axiom 11 says that huim is a right-inverse for �m. This corresponds to model condi-

tion 5.3.2. Axiom 12 says that �m is a right-inverse for huim; this corresponds to model

condition 5.3.1. Axiom 13 says that each node has exactly one parent; this corresponds

to model condition 5.3.5. Axiom 14 says that all paths up through the tree lead to a

root; this corresponds to model condition 5.3.6.

5.8 Semantics

The semantics for FOL (first-order logic) and the operators of the modal �-calculus are

standard and not repeated here. In this section we will just give the semantics for our

modal operators and game-specific extensions.

We associate the same set of domains (one for each sort in the language) with each

state. Semantics for non-modal formulas are given as usual for first-order logic with

equality.

Given a game structure with components

� M, a set of moves

� I, a set of two players

� ToPlay(i), a function determining the set of states in which it is player i’s turn

to play (i 2 I).

� Legal(m; i), a function determining the set of states in which move m is legal

for player i (m 2 M, i 2 I).

� Win(i), a function determining the set of states in which player i is the winner

(i 2 I).
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� A set of reachability functionsRm, one for each move m 2 M.

we extend the notion of first-order valuations to map move terms to moves inM,

and player terms to I. The interpretation of a term a under a valuation V is denoted

[a]V . For brevity, we will write “[a]” instead of “[a]V ”, omitting the valuation subscript.

Let s 2 S. The semantics for the ToP lay, Legal, and Win predicates are given in

the obvious way by:

� s j= ToP lay(i) iff s 2 ToPlay([i)

� s j= Legal(m; i) iff s 2 Legal([m]; [i])

� s j= Win(i) iff s 2Win([i])

For a non-modal formula �:

s j= �m(�) iff R[m](s) is defined andR[m](s) j= �

s j= huim (�) iff R�1
[m](s) is defined andR�1

[m](s) j= �

5.9 Some useful theorems

In this section we state a few simple consequences of our definitions.

A formula is positive in variable X iff X within the scope of an even number of

negations in that formula. For example, X _ :((:X) _ Y ) is positive in X , but not in

Y .
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Theorem 5.9.1. The following is a restatement of proposition 5.7 from [15]. For � 2

f�; �g:

1. �X:F (X) ! �Y:F (Y ) where X and Y free for Z in F (Z)

2. [F (X)! G(X)] �! [�X:F (X)! �X:G(X)]

3. [X ! Y ] �! [F (X)! F (Y )] where Z is positive in F (Z)

4. F (�X:F (X)) ! �X:F (X) where �X:F (X) is free for Z in F (Z)

5. (�X:F ) ! F where X is not free in F

6. [G(�X:F ^G(X))! F ] �! [(�X:G(X))! F ] where F is free forX inG(X)

The next theorem shows that irri is monotonic.

Theorem 5.9.2.

(� �!  ) �! (irri(�) �! irri( ))

Proof. Define

Fi(�;X) ! � ^ (termLegal _ Causes(i; X))

So, by definition,

irri(�) ! �X:Fi(�;X)

By theorem 5.9.1 part 3,

(� �!  ) �! (Fi(�;X) �! Fi( ;X))
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So, by theorem 5.9.1 part 2,

(� �!  ) �! [(�X:Fi(�;X)) �! (�X:Fi( ;X))]

Hence the result.

Theorem 5.9.3.

(� �!  ) �! (esti(�) �! esti( ))

Proof. Similar to the proof for irri.

The achi operator is also monotonic as the next theorem shows.

Theorem 5.9.4.

(� �!  ) �! (achi(�) �! achi( ))

Proof. By definition,

achi(�) ! esti(irri(�))

By theorem 5.9.2,

(� �!  ) �! (irri(�) �! irri( ))

And, by theorem 5.9.3

(� �!  ) �! (esti(irri(�)) �! esti(irri(�))

Hence, the result.

Corollary 5.9.5.

ach(� ^  ) �! ach(�) ^ ach( )
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Proof. By FOL, � ^  �!  so, by the monotonicity of esti and irri,

ach(� ^  ) �! ach(�)

Similarly,

ach(� ^  ) �! ach( )

The result then follows by FOL.

Corollary 5.9.6.

[ach(�) _ ach( )] �! ach(� _  )

This theorem allows establishes the duality between esti and irri:

Theorem 5.9.7.

esti(�) ! :irri(:�)

Proof. First observe that Causes(i; �) ! :Causes(i;:�) since,

:Causes(i;:�)  ! :[[ToP lay(i) �! 9m Legal(m; i) ^ �m(:�)] ^

[ToP lay(i) �! (8m Legal(m; i) �! �m(:�))]]

 ! [ToP lay(i) ^ 8m Legal(m; i) �! �m(�)] _

[ToP lay(i) ^ 9m Legal(m; i) ^ �m(�)]

 ! [ToP lay(i) �! (8m Legal(m; i) �! �m(�))] ^

[ToP lay(i) �! 9m Legal(m; i) ^ �m(�)]

 ! Causes(i; �)

88



Now, by the definition of � as :�: and theorem 5.9.1 part 2

:irri(:�)  ! �X:� _ [(:termLegal) ^ :Causes(i;:�)]

 ! �X:� _ [(:termLegal) ^ Causes(i; �)]

 ! esti(�)
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Chapter 6

Rules for Go
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6.1 Introduction

In the previous chapter we presented a proof system and semantics for a modal game

logic. In this section we formally state the rules of the game and provide a motivation

for the life and death strategy presented in chapter 2.

Although we are using game logic with least and greatest fixpoint operators, the

language and rules require not much more than first-order (sorted) modal logic. The

fixpoint operators are required when we want to state strategic theories that require the

adversarial operators. The only additional operator that is required is a kind of quan-

tifier over points, Countq(�), which acts syntactically like a term of sort integer. The

interpretation of the Countq operator is as the cardinality of the extension of its formula

argument. That is, Countq(�) counts the number of points satisfying the formula � (�

is assumed to have q as its only free variable).

All domains of interest to us are finite, so quantifiers can in principle be eliminated.

We use them anyway for conciseness of expression.

Our definition of Legal(m; i) corresponds most closely with Chinese rules. In fact,

there are many different rule-sets for Go with many subtleties (see [1] for more discus-

sion of the rules). We will present a rule-set which is the most amenable to axioma-

tization. The differences between our rules and standard rule-sets are relatively minor

overall and do not affect the character of the game substantially.

6.2 Meta-language conventions

Our language has terms of the following types:

� board points (the 361 intersections on a 19� 19 Go board)
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� moves (the 361 intersections on a Go board where it might be legal to play in-

cluding PASS MOVE which switches players but otherwise leaves the state un-

changed, and NULL MOVE which changes nothing)

� stone colors (BLACK, WHITE, EMPTY)

� players (Black, White)

� integers in the range 1 to 19.

Point variables will typically be denoted p or q, colors c, players i, moves m, and

integers n. Since the number of points on the board is finite (361 in the case of the stan-

dard 19� 19 Go board) we assume we have a constant denoting each point, written in

as (row, column) coordinate pairs: (1; 1); (1; 2); : : : ; (19; 19). Board occupancy colors

are BLACK;WHITE;or EMPTY . Players are Black; or White.

We will sometimes use a variable of sort Player where a variable of sort Color

is required. In these cases what we mean is that if the player is Black we intend

BLACK and if the player is White we intend WHITE. 1 For convenience, if c

is a variable of sort color we use the notation �c to refer to the “opposite” color of c:

BLACK = WHITE, WHITE = BLACK, and EMPTY = EMPTY .

We will also use move and point variables interchangeably since every move in on

some board point and every board point is possibly a legal move. There are two nullary

functions, LastMove and PrevLastMove of type move that we will use to track the last

and previous to last moves. This is necessary to rule out repeated positions and to

determine when there have been two passes in a row (signaling the end of the game).

1Technically, we can introduce a Color-valued function on Players which performs this translation.
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Table 2.1 gives the predicates of the language. When we gave the definitions in

chapter 2 we had not yet discussed the �-calculus, so our definition of SameBlock did

not use the least fixpoint operator. Now we can give a more precise definition:

8p; q SameBlock(p; q; i)  ! �X:Occ(p; i) ^ Occ(q; i) ^

p = q _ 9r Adj(r; p) ^ 9p p = r ^X

In essence, this says that p is in the same block as q iff both p and q are occupied

with stones of color i and either p = q or there is some point r adjacent to p which is

itself in the same block as q. The � operator is used to select the the least solution to

this recursive definition.

The details are a little bit tricky, however. The first part,

Occ(p; i) ^Occ(q; i) ^ p = q _ � � �

simply accounts for the case in which p and q are the same point. The next part handles

the recursive case, but notice that 9p p = r occurs within the scope of the 8p in the

beginning of the definition. This effectively renames the variable p to be the adjacent

point r before recursively applying the definition. It is much the same as the following

recursive algorithm:
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SAME BLOCK(p; q; i)

(1) if Occ(p; i) AND p = q

(2) return true

(3) else

(4) foreach r, such that Adj(p; r)

(5) if SAME BLOCK(r; q)

(6) return true

(7) return false

6.3 Rules of Go

In this section we present a basic set of rules for Go. Our rules correspond most closely

with Chinese rules which count stones and empty space both as territory. Counting

in this way makes the rules easier to state since we do not have to keep track of cap-

tures. The rules presented here are somewhat formal; for a more readable, intuitive

presentation see [1].

The rules below fall into three main categories: rules describing the initial state

of the game, rules describing how the state changes from move to move, and rules

describing how the game ends and who wins. Since all facts of interest in the state can

be described in terms of the primitive predicates Occ(p; c), Adj(p; q), and ToP lay(c),

it suffices to characterize the effects of moves on these three primitive predicates. The

effects on non-atomic formulas involving these three are entirely determined by the

extensionality of the basic move operator �m.

In our rules suicide is illegal.

94



Black plays first.

Rule 6.3.1. start �! ToP lay(Black)

The players alternate turns.

Rule 6.3.2. ToP lay(i) ! 8m �m(ToP lay(i))

The intersection points of the board form a 19 � 19 grid. If we imagine the grid

labeled with board points starting in the upper left corner and progressing left to right

to the lower right corner then points to the North, South, East, and west of each other

are adjacent. The rule below is just English shorthand for the 176 axioms stating which

points are adjacent.

Rule 6.3.3.

for all 1 � i; j; i0; j 0 � 19

If jj � ij = 1 xor jj 0 � i0j = 1 then Adj((i; j); (i0; j 0))

The game begins with the board empty.

Rule 6.3.4. start �! 8p Empty(p)

Initially there is no last move or previous to last move.

Rule 6.3.5.

start �! LastMove = NULL MOV E ^

PrevLastMove = NULL MOV E

After a move m, the last move is now m and the previous to last move is what the

last move was.
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Rule 6.3.6. 9XX = LastMove ^ �m(LastMove = m ^ PrevLastMove = X)

The next three axioms characterize the effects of a move on the primitive predicates

ToP lay, Adj, and the relational predicates.

The adjacency of points on the board is the same for all states.

Rule 6.3.7. Adj(q; q0) ! �mAdj(q; q0)

The relational predicates are the same for all states.

Rule 6.3.8 (schema for each relational operator �). x � y  ! �m(x � y)

The next four axioms describe how moves affect the occupancy of board points.

There are four cases to consider: empty to occupied, occupied to empty, empty to

empty, and occupied to occupied for each of both friendly and enemy play. In each of

the axiom descriptions “friendly” play means the color of the player to play and the

object point are the same; “enemy” play means they are different.

If a point p is a legal move for player i, then playing on point p will cause it to

become occupied with a stone of color i, if it is not suicidal.

Rule 6.3.9 (empty to occupied by friendly play).

CausesOccFriendly(p; q; i) !

Legal(p; i) ^ p 6= PASS MOV E ^ p = q ^ :Suicide(p; i)

A friendly legal play preserves the occupancy of a point if whenever it is block-

adjacent to the point it is not a suicide, or it is a pass move.
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Rule 6.3.10 (occupied to occupied by friendly play).

PreservesOccFriendly(p; q; i) !

Legal(p; i) ^ Occ(q; i) ^ [p = PASS MOV E _

[BlockAdj(p; q) �! :Suicide(p; i)]]

A legal enemy play preserves the occupancy of a point q if it is either on a point not

block-adjacent q, it is a pass move, or the point is not in atari.

Rule 6.3.11 (occupied to occupied by enemy play).

PreservesOccEnemy(p; q; i) !

Legal(p; i) ^ Occ(q; i) ^

[:BlockAdj(p; q) _ p = PASS MOV E _ :Atari(q)]

These cases exhaust the ways in which q will be occupied after a move by player i

on point p.

Rule 6.3.12.

[CausesOccFriendly(p; q; i) _

PreservesOccFriendly(p; q; i)_

PreservesOccEnemy(p; q; i)] ! �pOcc(q; i)

A legal enemy play captures a point q if it is not a pass move, is block-adjacent to q

and the q is in atari.
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Rule 6.3.13 (occupied to empty by enemy play).

CausesEmptyEnemy(p; q; i) !

Legal(p;�i) ^ p 6= PASS MOV E ^

Occ(q; i) ^ BlockAdj(p; q) ^ Atari(q)

A legal friendly play on p captures a point q if it is not a pass move, and p is block-

adjacent to q, and p is suicidal.

Rule 6.3.14 (occupied to empty by suicide).

CausesEmptyFriendly(p; q; i) !

Legal(p; i) ^ p 6= PASS MOV E ^ BlockAdj(p; q) ^ Suicide(p; i)

This axiom combines the cases for the different player’s turns. Playing a legal move

on point p different from an empty point q, or passing a turn, causes q to remain empty

(regardless of which player plays).

Rule 6.3.15 (empty to empty by friendly or enemy).

PreservesEmpty(p; q; i) !

(Legal(p; i) _ Legal(p;�i)) ^ Empty(q) ^

[p = PASS MOV E _ p 6= q _ Suicide(p; i)]

These cases exhaust the ways in which a point will be empty after a move.

Rule 6.3.16.

CausesEmptyEnemy(p; q; i) _

CausesEmptyFriendly(p; q; i) _

PreservesEmpty(p; q; i) ! �pEmpty(q)
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The next five axioms describe which moves are legal and how the game ends.

This rule defines the predicate TwoPasses which is true if the current state is the

result of two consecutive passes. Two passes in a row means the game is over.

Rule 6.3.17.

TwoPasses ! LastMove = PASS MOV E ^

PrevLastMove = PASS MOV E

If player i plays on point p in the current position and the resulting board position

is identical to the board position before current position then it is a repeated position.

Rule 6.3.18.

RepeatedPosition(p; i) !

ToP lay(i) ^ 8q9c (�pOcc(q; c)) ! huiLastMoveOcc(q; c)

A move p by player i is legal iff it is i’s turn to play, the point p is unoccupied, and

playing at p would not lead to a repeated position. A “pass” move is legal so long as

it is not the third pass in a row (the game is over after two consecutive passes). The

requirement that the position not repeat is called the ko rule.

Rule 6.3.19.

Legal(p; i) ! ToP lay(i) ^ :TwoPasses ^

Empty(p) ^ (p 6= PASS MOV E �! :RepeatedPosition(p; i))
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The game is over when a player has no legal moves.

Rule 6.3.20.

EndOfGame ! 9i T oP lay(i) ^ 8m :Legal(m; i)

The player with the most territory at the end of the game wins.

Rule 6.3.21.

Win(i) ! EndOfGame ^ Countp(Point(p; i)) > Countp(Point(p;�i))

If neither player wins at the end of the game, the game is a draw.

Rule 6.3.22. Draw ! :Win(Black) ^ :Win(White)

100



Chapter 7

Conclusion

101



7.1 Conclusions and Directions for Future Work

Computer Go has long been considered an extremely challenging automation problem

because of its resistance to solution by standard game tree search techniques like mini-

max. In fact, closer examination of the problem shows that not only is the game space

huge, it is also difficult to derive simple static evaluation functions for the game, such

as are used in computer chess. No simple tally of positional features suffices to guide

a search engine sufficiently well to make big-search a viable option for computer Go.

Our view is that a successful go program must focus on emulating some of the reason-

ing applied by human beings in their game analysis and couple this with knowledge of

which moves are reasonable in given position.

Initially, we set out to write a full-playing go program that could compete in com-

petition. After pursuing this goal for a number of years we realized that it was overly

ambitious – since we didn’t really understand how to write a program to solve the nec-

essary sub-problem of life and death – and at the same time, emphasized aspects of

tournament game programming (like short-time limits for moves) that were less inter-

esting to us than research on basic algorithms for the problem. We decided to focus

our energies on building a knowledge-based life and death problem solver and trying

to formalize some of the logic of human adversarial reasoning. This dissertation is the

culmination of our work in both of these areas.

In a knowledge-based approach, the traditional view of game search with an integer-

valued evaluation function is somewhat restrictive. In other domains in which we want

to understand human reasoning we have at our disposal the full power of formal logic

in which to develop languages and state theories. Why not in the domain of games as
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well?

The language we developed for the purpose of describing games is a modal game

logic. Using this logic we were able to formally state the rules of go (see chapter 6)

and to develop a strategic theory of life and death (see chapter 2) that makes clear the

relationships between the goals in the theory. Later sections of that chapter showed

how a formal theory of life and death could be put to use in solving life and death

problems by building an appropriate model and using expert heuristic knowledge about

which moves are reasonable. Chapter 5 addressed some of the logical issues of this

language developing formal syntax and semantics and proving some of the basic facts

of the system.

Chapter 3 described how the implementation of a computer program to solve real

life and death problems based on these ideas. Our tests on Kano’s series of graded go

problems yielded very encouraging results. When a problem was solved, the tree of

moves considered was very small in general (on the same order of magnitude as human

solutions) and very much smaller than big-search computer solutions. Furthermore,

when our program was given a problem to solve, we required that it solve that problem

completely, generating moves to try, hypothesizing them on the board, and solving the

sub-problems that resulted, recursively.

There are a number of different directions which would be promising for future

research. One clear path would be to take the life and death solver we have created and

either extend it to a full-playing program or incorporate it as a module of an existing

program. Another interesting project – one which we have looked at a bit – is to study

how the solver could be made to learn, both within the exploration of a given problem,

and from problem to problem.
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Outside of the realm of computer Go there are also a number of potential applica-

tions for our work. The clearest short-term application would be an analysis of another

game, such as chess using our game logic. Some parts of the program are quite spe-

cific to Go, but others, such as the revertable class library, knowledge editor, and truth

maintenance systems are generally useful tools.
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