
Learning Feature Hierarchies for Object Recognition

by

Koray Kavukcuoglu

A dissertation submitted in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

Department of Computer Science

New York University

January 2011

Professor Yann LeCun



Copyright c© 2011

Koray Kavukcuoglu

All rights reserved.

ii



To my family.

iii



Acknowledgements

I would like to thank my advisor Prof. Yann LeCun for his continuous guidance

during my thesis work. It has been a great privilege to work with and learn from

him. I would also like to thank Dr. Ronan Collobert and Dr. Jason Weston for

providing me the opportunity to work with them. I am grateful to the members of

my thesis committee for their time and comments to improve this thesis. Finally

I would like to mention that the discussions and collaborations at Prof. Yann

LeCun’s lab have contributed a lot to this PhD thesis.

Most importantly, I am indebted to my wife, daughters and all my family,

without their endless support I would not be able to complete this PhD work.

iv



Abstract

In this thesis we study unsupervised learning algorithms for training feature

extractors and building deep learning models. We propose sparse-modeling algo-

rithms as the foundation for unsupervised feature extraction systems. To reduce

the cost of the inference process required to obtain the optimal sparse code, we

model a feed-forward function that is trained to predict this optimal sparse code.

Using an efficient predictor function enables the use of sparse coding in hierarchical

models for object recognition. We demonstrate the performance of the developed

system on several recognition tasks, including object recognition, handwritten digit

classification and pedestrian detection. Robustness to noise or small variations in

the input is a very desirable property for a feature extraction algorithm. In order to

train locally-invariant feature extractors in an unsupervised manner, we use group

sparsity criteria that promote similarity between the dictionary elements within a

group. This model produces locally-invariant representations under small pertur-

bations of the input, thus improving the robustness of the features. Many sparse

modeling algorithms are trained on small image patches that are the same size as

the dictionary elements. This forces the system to learn multiple shifted versions

of each dictionary element. However, when used convolutionally over large im-

ages to extract features, these models produce very redundant representations. To

avoid this problem, we propose convolutional sparse coding algorithms that yield

a richer set of dictionary elements, reduce the redundancy of the representation

and improve recognition performance.
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Chapter 1

Introduction

In this thesis we propose using hierarchical models with multiple stages of

trainable feature extractors (LeCun et al., 1998a, 2004; Serre et al., 2005; Ranzato

et al., 2007b; Larochelle et al., 2009) for object recognition. By adapting feature

extractors to the data at hand, we aim to develop a common architecture that

can be used on different domains. We also propose unsupervised learning methods

for training the stages of the hierarchical model in order to benefit from abundant

unlabeled data available in many domains. Each stage of feature extractor is com-

posed of a filter-bank layer, a non-linear transformation layer and a pooling layer.

A multi-stage hierarchical model stacks several of such stages where the output of

a stage is directly provided as input to the successive one. Figure 1.1 shows a single

stage feature extractor. Convolutional neural networks (ConvNets) (LeCun et al.,

1998a), HMAX model (Serre et al., 2005) and commonly used feature extractors

like SIFT (Lowe, 2004) and Histogram of Gradients (HoG) (Dalal and Triggs, 2005)
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Figure 1.1: A single stage of generic feature extraction model that first applies a

filter-bank to the input, followed by one or more non-linear functions and finally

a pooling operation that provides invariance to local transformations.

also share this same framework. ConvNets train the filter-bank layers, followed by

a sigmoidal non-linear function and trained weighted average pooling function,

HMAX on the other hand, uses Gabor functions in filter-bank layer, followed by

max pooling operation.

Deep architectures can extract gradually more abstract and invariant represen-

tations through multiple levels (Ranzato et al., 2007a; Goodfellow et al., 2009).

Training a deep multi-stage neural network is difficult in general because the prob-

lem is very non-linear and non-convex. There have been successes though, for

example convolutional neural networks (LeCun et al., 1998a) which use weight

sharing to exploit translational invariance in images. Another successful approach

described in (Hinton and Salakhutdinov, 2006) shows that layer wise unsupervised
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training can be used to initialize the parameters of a deep network which improves

the performance significantly. Several authors have also demonstrated that layer

wise unsupervised or semi-supervised learning can be used to train deep archi-

tectures (Hinton and Salakhutdinov, 2006; Bengio et al., 2007; Larochelle et al.,

2009; Ranzato et al., 2006, 2007a; Weston et al., 2008; Collobert and Weston, 2008;

Kavukcuoglu et al., 2010; Qi et al., 2009; Ahmed et al., 2008). Ideally, such an

algorithm should be able to explain its data well with a hidden representation that

is more abstract and less correlated than the input. This hidden representation

can be used as input to the subsequent layers of the architecture.

On the other hand, several successful human-engineered feature extractors for

object recognition have been introduced (Lowe, 2004; Dalal and Triggs, 2005).

These systems share a common architecture composed of a filter bank (generally

using oriented edge detectors), an often sparsifying non-linear operation such as

quantization, winner-take-all, normalization or saturation and a pooling operation

that combines nearby values in either spatial or feature space. A standard archi-

tecture for an object classification system is obtained by extracting features on

a dense, regularly spaced grid over an image followed by a supervised classifier

such as an SVM (Lazebnik et al., 2006; Grauman and Darrell, 2005; Mutch and

Lowe, 2006). Despite being successful on tasks that contain natural images, these

methods perform rather poorly on different types of inputs due to their domain

specific feature extraction stage. Moreover, (Boureau et al., 2010) has shown that

a careful selection of the number of orientations, pooling regions, and the granu-

3



larity of the dense feature extraction can have significant effect on the recognition

performance, however, these considerations are often overlooked.

The models we propose also share the common components explained above,

however, they are adapted to the input data and can be used in a hierarchy. In or-

der for these methods to be applicable on large datasets, it is important to have an

efficient algorithm for computing the hidden representation. For that purpose, we

have developed an unsupervised learning algorithm with efficient inference based

on well known sparse coding methods, named Predictive Sparse Decomposition

(PSD) (Kavukcuoglu et al.). Sparse coding methods deal with finding the sparsest

representation of a signal while achieving best possible reconstruction using a given

overcomplete dictionary.

It is well established that sparse modeling algorithms can learn dictionaries

that represent natural signals (image, audio, ...) quite successfully (Olshausen

and Field, 1997, 1996; Olshausen, 2000). However, for any new input signal, infer-

ence in sparse coding algorithms requires a possibly expensive optimization process

and although many efficient algorithms have been developed (Efron et al., 2004;

Mallat and Zhang, 1993; Chen et al., 1998; Lee et al., 2007; Aharon et al., 2006;

Mairal et al., 2008; Murray and Kreutz-Delgado, 2006; Rozell et al., 2008; Beck

and Teboulle, 2009; Li and Osher), the solution procedures are still too slow for

real-time applications and large-scale object recognition tasks. In addition, sparse

representations can change drastically under small perturbations of the input data

and may not be suitable for object recognition (Kavukcuoglu et al., 2009; Rozell

4



et al., 2008). Another important problem with sparse coding methods is that they

are trained using local patches or parts and when applied on large inputs convo-

lutionally for feature extraction, they produce highly redundant representations.

In this thesis we describe four variants of predictive sparse coding that ad-

dress these issues. In the simplest, originally introduced in PSD, we constructed a

smooth regressor function that can approximately predict optimal feature represen-

tations in a feed-forward manner. We also developed a more principled approach

for achieving stable sparse representations via a variational marginalization ap-

proach that can produce more stable representations than sparse coding solution.

We also describe an extension to PSD that produces locally invariant representa-

tions (Kavukcuoglu et al., 2009), by building upon the idea of complex cells which

was proposed in (Hyvarinen and Koster, 2007), (Osindero et al., 2006; Welling

et al., 2003). In this case, the sparsity penalty is applied on groups of units

rather than each single unit (Kavukcuoglu et al.). Using this modified formulation

and again training a predictor function, we have obtained a feed-forward, locally

invariant feature extractor system named Invariant Predictive Sparse Decompo-

sition (IPSD). Since IPSD is adapted to data it performs similarly to well known

SIFT (Lowe, 2004) features on tasks that use natural images and better than SIFT

on tasks that SIFT is not well suited (like MNIST digit recognition). This work

has shown that it is possible to learn pooling functions in an unsupervised man-

ner. Finally, we introduce a version of PSD that can be trained on large images

convolutionally, producing less redundant dictionaries and improving recognition

5



performance.

Following the unsupervised layer-wise initialization procedure proposed in (Hin-

ton and Salakhutdinov, 2006), we have built a multi-layer object recognition sys-

tem (Jarrett et al., 2009). We have shown that using appropriate non-linearities

can have very significant affect on the performance of multi-stage architectures.

In a multi-layer architecture, the most crucial components were found to be ab-

solute value rectification and Local Contrast Normalization (LCN) (Schwartz and

Simoncelli, 2001; Wainwright et al., 2002; Pinto et al., 2008).

In chapter 2 we explain the unsupervised learning model based on sparse cod-

ing with efficient inference using a predictor function. Chapter 3 introduces the

invariant formulation of the PSD method and chapter 4 explains the importance of

the non-linear functions in a multi-stage system. In chapter 5, we explain the con-

volutional sparse coding model and its advantages as a feature extraction system

for recognition. Finally, in chapter 6 we explain the variational marginalization

method for sparse coding, followed by conclusion and future work.

1.1 Engineered Feature Extraction Systems

The widely used SIFT descriptor of (Lowe, 2004) uses the same basic design

explained above. First oriented edge detectors at several (usually 8) orientations

are convolved with an image, followed by a contrast enhancement operation that

takes each response value to the pth power ( (Lazebnik et al., 2006) uses p = 9)

and then a weighted summation over a local region (4× 4 pixels). The resulting 8
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dimensional histograms are concatenated over 16 pooling regions on a 4 × 4 grid

to produce 128 dimensional SIFT features which are finally normalized to unit L2

norm.

Another popular feature extraction method is the Histogram of Gradients

(HoG) method (Dalal and Triggs, 2005). In this method, the gradient compu-

tation is performed using two centered edge filters, [−1, 0, 1] and its transpose,

followed by the soft binning operation performed at each pixel which accumulates

the magnitude of the gradient that falls into one of 9 orientation bins discarding

the sign information (effectively 18 bins). Finally each local region (or a block),

(generally between 6×6 to 8×8 pixels) is normalized by ℓ2 norm of the descriptor.

The blocks are normalized independently but overlap by half of the size of the block

and the final descriptor is obtained by concatenating the individual descriptors on

a 3× 3 grid.

1.2 Unsupervised Training of Sparse Models

In linear generative models for images, each image (x) is represented as linear

combination of several basis functions (or columns of a dictionary matrix) (Di)

using mixing coefficients (zi) and the aim is to infer the representation z given an

input x and dictionary D.

x =
∑

i

Dizi (1.1)
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If the number of dictionary elements is the same as the size of the input, then one

can obtain the representation (z) by applying the inverse of the dictionary matrix

to the input.

z = D−1x (1.2)

In sparse coding models, the dictionary D is overcomplete (the number of dic-

tionary elements is larger than the dimensionality of the input), thus there are

infinitely many solutions for z and a sparsity regularization term on the repre-

sentation z is used to obtain a unique solution. Different such models have been

proposed in the literature, and one can generally represent the problem as a com-

pound energy function:

Eunsup =M(x,Dz) + s(z) (1.3)

whereM measures the reconstruction accuracy of the model and s measures the

sparsity of the representation z. The almost unanimous choice for the recon-

struction measure is the squared ℓ2 norm of the difference between input and the

model reconstruction ‖x − Dz‖22. The sparsity cost s on the other hand can take

many different forms including ℓ0 norm (Mallat and Zhang, 1993) (s(z) = λ|z|0)

which is the number of non-zero elements in z, ℓ1 norm (Daubechies et al., 2004;

Beck and Teboulle, 2009) (s(z) = λ|z|1), which is the sum of the absolute val-

ues of all elements, or some other form that encourage sparse representations like

s(z) = log(1 + x2).

More important are the models that adopt the dictionary matrix to the data.
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Independent Component Analysis (ICA) (Comon, 1994) model uses an orthonor-

mal dictionary matrix, therefore once the model is trained, inferring the repre-

sentation z requires only a matrix-vector multiplication of the input (x) with the

inverse of the dictionary matrix (D−1). (Olshausen and Field, 1997) is one of the

first models that used sparse coding to adopt an overcomplete dictionary to the

data using ℓ1 norm regularization on z. Learning the parameters of the model,

that is the dictionary matrix D can be done using either online or batch methods.

A common framework for online learning which is used in (Olshausen and Field,

1997; Ranzato et al., 2006, 2007a; Mairal et al., 2009) consists of two main opera-

tions: 1. Minimize Eunsup to obtain the optimal representation z∗. 2. Keeping z

fixed, update the dictionary matrix D.

However inference in sparse coding is considerably costly, since it requires an

iterative optimization process. To overcome this problem, the idea of using a feed-

forward regressor function for predicting sparse representations was first introduced

in (Ranzato et al., 2006). In that work a temporal soft-max function was used to

enforce sparsity on activation of each component of the representation over time

(or equivalently over a series of input samples) as opposed to the ℓ1 penalty used

in sparse modeling that penalizes activations of all code units for a given sample.

In this model, sparsity of the representation was enforced through the following

per component function:

z̄i(k) =
ηeβzi(k)

ζi(k)
(1.4)

ζi(k) = ηeβzi(k) + (1− η)ζi(k − 1) (1.5)
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The sparsity cost was not explicitly included in the energy function, however the

sparsifying logistic was used as part of the reconstruction process. The predictor

function was a linear projection of the input with a matrix WC .

E =
1

2
‖x−Dz̄‖22 +

1

2
‖z −WCx‖22 (1.6)

The learning was performed using the two step process explained above, however

not only the dictionary matrix D, but also the predictor matrix WC was updated.

Following this work, (Ranzato et al., 2007a) introduced the Sparse Encoding

Symmetric Machine (SESM), which used a per sample penalty function, and con-

strained the encoder and decoder to be the transpose of each other. In this work,

a fixed logistic function is used to obtain non-negative representation z, and the

sparsity regularization was enforced through

s(z) =
∑

i

log

(

1 +

[

1

1 + e−gzi

]2
)

(1.7)

The total energy minimized in this model contains three terms, the reconstruction

error, prediction error and the sparsity cost

E =
1

2
‖x−Dl(z)‖22 + αe‖z −WCx‖22 + αss(z) (1.8)

l(z) =
1

1 + exp(−gz) (1.9)

The learning process for this model is the same as the learning process in (Ran-

zato et al., 2006) using stochastic gradient descent.
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Chapter 2

Sparse Modeling for

Unsupervised Training

Sparse coding algorithms represent an input signal x ∈ Rm using a linear

combination of the columns of an overcomplete dictionary matrix D ∈ Rm×n,

with coefficients z ∈ Rn (n > m). In the original sparse coding formulation, the

problem is stated as:

min ||z||0 s.t. x = Dz (2.1)

where the ℓ0 norm is defined as the number of non-zero elements in a given vec-

tor. Unfortunately, the solution to this problem requires a combinatorial search,

intractable in high-dimensional spaces. Matching Pursuit methods (Mallat and

Zhang, 1993) offer a greedy approximation to this problem. Another way to ap-

proximate this problem is to make a convex relaxation by turning the ℓ0 norm
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into an ℓ1 norm (Chen et al., 1998). This problem, dubbed “Basis Pursuit” in

the signal processing community, has been shown to give the same solution to

eq. (2.1), provided that the solution is sparse enough (Donoho and Elad, 2003).

Since this linear system is under-determined, a sparsity constraint is added that

prefers most of the coefficients to be zero for any given input. Furthermore, the

problem can be written as an unconstrained optimization problem, named “Basis

Pursuit Denoising” in (Chen et al., 1998):

EBPDN = min
1

2
||x−Dz||22 + λ

∑

i

|zi| (2.2)

This particular formulation, can be seen as minimizing an objective that penalizes

the reconstruction error using a linear basis set and the sparsity of the corre-

sponding representation. Many recent works have studied this problem given in

eq. (2.2) (Efron et al., 2004; Murray and Kreutz-Delgado, 2006; Beck and Teboulle,

2009; Li and Osher), also extending to the case when the dictionary D is learned,

thus adapting to the statistics of the input. Yet, inference requires running some

sort of iterative minimization algorithm that is always computationally expensive.

Matching pursuit (Mallat and Zhang, 1993) provide a solution for the ℓ0 prob-

lem given in eq. (2.1). It is a greedy method thus it does not find the global

minimum of the objective. On the other hand, matching pursuit is a very intuitive

method, which gradually minimizes the residual reconstruction error by greedly

selecting the best matching dictionary element as given in algorithm 1.

One of the most popular approaches for solving the ℓ1 problem given in eq. (2.2)

is Iterative Shrinkage and Thresholding ALgorithm (ISTA) (Daubechies et al.,

12



Algorithm 1 Matching Pursuit (Mallat and Zhang, 1993)

function MP(x,D, nmax)

Input: x : input, D : dictionary, nmax : number of active elements

Output: z

Initialize: R = x, z = 0, n = 0

repeat

i = maxj DT
j R

zi ← DT
i R

R← R− codeiDi

n← n+ 1

until n = nmax

end function
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2004) and particularly the faster version Fast ISTA (FISTA) (Beck and Teboulle,

2009). The main operation in these algorithms is successive application of the soft-

thresholding operation hλ(x) = sgn(x)(|x|−λ). (Beck and Teboulle, 2009) provides

a derivation for ISTA methods in terms of gradient minimization of a compound

loss function that consists of a smooth convex part and non-smooth convex part.

Additonally it provides an improved step size calculation method (Nesterov, 2007).

The FISTA method is shown in algorithm 2.

Algorithm 2 Fast Iterative Shrinkage Thresholding Algorithm (Beck and

Teboulle, 2009).

function FISTA(x,D, λ, η)

Input: x : input, D : dictionary, λ : sparsity penalty coefficient, η : step size

Output: z

Initialize: k = 1, z0 ∈ R
n, t1 = 1

repeat

zk ← hλ∗η(zk−1 − η(DT (Dzk−1 − x)))

if Fast ISTA then

tk+1 ← 1+
√

1+4t2
k

2

zk ← zk +
(

tk−1
tk+1

)

(zk − zk−1)

end if

k ← k + 1

until Change in energy is less than a threshold

end function
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(Olshausen and Field, 1997) is most probably the first work which extends

eq. (2.2) to adopt the dictionary elements (sparse modeling). The basic idea is to

minimize the same objective in eq. (2.2) alternatively over coefficients z for a given

dictionary D, and then over D for a given set of z (Aharon et al., 2005; Lee et al.,

2007; Ranzato et al., 2006, 2007a; Mairal et al., 2008; Rozell et al., 2008). Note

that each column of D is required to be unit ℓ2 norm (or bounded norm) in order to

avoid trivial solutions that are due to the ambiguity of the linear reconstruction (for

instance, the objective can be decreased by respectively dividing and multiplying

z and D by a constant factor greater than one).

It is well established that sparse modeling algorithms applied to natural images

learn basis functions that are localized oriented edges and resemble the receptive

fields of simple cells in area V1 of the mammalian visual cortex (Olshausen and

Field, 1997). These methods produce feature representations that are sparse, but

not invariant. If the input pattern is slightly distorted, the representation may

change drastically. Moreover, these features represent information about local

texture, and hence, are rather inefficient when used to pre-process whole images

because they do not exploit the redundancy in adjacent image patches. Finally,

most sparse coding algorithms (Olshausen and Field, 1997; Lee et al., 2007; Mur-

ray and Kreutz-Delgado, 2006; Rozell et al., 2008; Efron et al., 2004) have found

limited applications in vision due to the high computational cost of the iterative

optimization required to compute the feature descriptor.
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2.1 Predictive Sparse Decomposition

In order to alleviate these problems, we have introduced an algorithm named

“Predictive Sparse Decomposition”, (PSD), which has the following characteristics:

1. it produces efficient, feed-forward filter banks that include a point-wise non-

linearity; 2. the training procedure is deterministic (no sampling required, as

with Restricted Boltzmann Machines); 3. it learns to produce high-dimensional

sparse features, which are suitable for subsequent pooling, and which enhance class

discriminability. Although the filter banks are eventually applied to entire images,

the PSD algorithm trains them on individual patches (or stacks of patches from

multiple input feature maps) whose size is equal to the size of the filters. The

starting point of PSD is the well-known sparse modeling algorithm proposed by

Olshausen and Field (Olshausen and Field, 1997) which, unfortunately does not

produce “direct” filters, but “reverse” filters (or dictionary elements). To alleviate

the need for an optimization process for obtaining the feature representation, the

PSD method (Kavukcuoglu et al.) trains a simple (feed-forward) regressor (or

encoder) to approximate the sparse solution z∗ for each x ∈ X in the training set.

The regressor Fe(x;K) takes the form of eq. (2.3) on a patch the size of the filters

(K = k, g collectively denotes all the filter coefficients).

Fe(x;K) = g · tanh(kTx) (2.3)

where k ∈ Rn×m and g ∈ Rn. During training of the dictionaryD and the predictor

function parameters K, the optimal feature vector z∗ is obtained by minimizing
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the energy function EPSD(x, z,D, K), defined as follows:

EPSD =
1

2
‖x−Dz‖22 + λ‖z‖1 + α‖z −Fe(x;K)‖22 (2.4)

z∗ = argmin
z

EPSD(x, z,D, K) (2.5)

This augmented energy function, averaged over an input dataset X , is mini-

mized to train the the dictionary D and encoder (Fe) parameters K. Details of

the learning procedure are very similar to conventional sparse modeling algorithms

and are explained in the next section.

2.2 Learning

As with (Olshausen and Field, 1997), learning proceeds by minimizing the loss

over the training set X :

LPSD(D, K) =
1

|X |

|X |
∑

i=1

min
Zi

EPSD(X i,Z i,D, K) (2.6)

The learning procedure simultaneously optimizes D (dictionary) and K (predictor

parameters). The goal is to find the optimal value of the basis functions D, as

well as the value of the parameters in the regressor (K), thus minimizing LPSD in

Eqn. (2.6). Learning proceeds by a stochastic on-line coordinate gradient descent

algorithm, alternating the following two steps for each training sample x ∈ X :

1. Inference: Keeping the parameters K and D constant, minimize EPSD of

eq. (2.4) with respect to z, starting from the initial value provided by the

regressor Fe(x;K), thus obtaining z∗.
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Figure 2.1: Learned dictionary elements D with PSD algorithm on natural image

patches. Each dictionary element is rearranged to match the shape of the input

patch (12× 12). Learned dictionary elements are localized oriented edge detectors

at various scales, positions and orientations. The system is trained on grayscale

natural image patches without any pre-processing. 0 is displayed as mid-gray level

128.
18



2. Update: Using the optimal value (z∗) of the coefficients z provided by the

previous step, update the parameters K and D by one step of stochastic

gradient descent. The update is: U ← U − η ∂LPSD

∂U
, where U collectively

denotes {K,D} and η is the step size. The columns of D are then re-scaled

to unit norm.

We set α = 1 for all experiments. We found that training the set of basis functions

D first, then subsequently training the regressor, yields similar performance in

terms of recognition accuracy. However, when the regressor is trained afterwards,

the overall training time is considerably longer. Learned filters using the PSD

algorithm are shown in Fig. 2.1.

Interestingly, we recover different algorithms depending on the value of the

parameter α:

• α = 0. The loss of eq. (2.6) reduces to the one in eq. (2.2). The learning algo-

rithm becomes similar to Olshausen and Field’s sparse coding algorithm (Ol-

shausen and Field, 1997). The regressor can then be trained separately from

the set of basis functions D.

• α ∈ (0,+∞). The parameters are updated taking into account also the

constraint on the representation, using the same principle employed by SESM

training (Ranzato et al., 2007a), for instance.

• α → +∞. The additional constraint on the representation (the third term

in eq. (2.6)) becomes an equality, i.e. Z = Fe(x;K), and the model becomes

19



similar to an auto-encoder neural network with a sparsity regularization term

acting on the internal representation z instead of a regularization acting on

the parameters K and D. This is equivalent to minimizing the following

energy function:

1

2
‖x−DFe(x;K)‖22 + λ‖Fe(x;K)‖1 (2.7)

Once the parameters are learned, inferring the representation z can be done in

two ways.

1. Optimal inference is defined as obtaining optimal representation z∗ by

solving for eq. (2.5). We perform this step by running an iterative gradient

descent optimization algorithm involving two possibly large matrix-vector

multiplications at each iteration (one for computing the value of the objective,

and one for computing the derivatives through D).

2. Approximate inference, on the other hand sets the representation (z) to

the value produced by Fe(x;K) as given in eq. (2.3), involving only a forward

propagation through the regressor, i.e. a single matrix-vector multiplication.

It can be seen that the optimal inference procedure is significantly more costly

compared to the approximate inference procedure. For recognition purposes, we

only use approximate inference.
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Figure 2.2: Learned encoder filters k (left) and dictionary elements D (right)

obtained using PSD algorithm on the MNIST dataset. Each dictionary element

is rearranged to match the shape of input patch (28 × 28). Learned dictionary

elements are strokes that make up a whole digit. The system is trained on MNIST

training set without any pre-processing. 0 is displayed as mid-gray level 128.

2.3 Experimental Evaluation

First, we demonstrate that the proposed algorithm (PSD) is able to produce

good features for recognition by comparing to other unsupervised feature extrac-

tion algorithms, Principal Components Analysis (PCA), Restricted Boltzman Ma-

chine (RBM), and Sparse Encoding Symmetric Machine (SESM). Then, we com-

pare the recognition accuracy and inference time of PSD feed-forward approxima-

tion to feature sign algorithm (Lee et al., 2007), on the Caltech 101 dataset (Fei-Fei

et al., 2004).

We calculate a 256 dimensional representation for each 28× 28 digit patch us-

ing PSD, RBM, PCA, and SESM and compare the classification error rate using

a regularized linear logistic classifier trained on the corresponding representations.
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We have used the first 20000 training samples for unsupervised training of differ-

ent methods and a variable number of labelled samples for training the classifier.

Fig. 2.2 shows encoder filters k and dictionary D. The system learns localized

strokes detectors so that several of these can be combined linearly to reconstruct

any given digit. Fig. 2.3 shows the classification error comparison between different

methods as a function of the corresponding reconstruction error. It can be seen

that, even though PSD provides the worst reconstruction error, it can achieve

the best recognition accuracy on the test set under different number of training

samples per class.

2.3.1 Comparison with Exact Algorithms

In order to quantify how well our jointly trained predictor given in eq. (2.3) ap-

proximates the optimal representations obtained by minimizing the loss in eq. (2.6)

and the optimal representations that are produced by an exact algorithm minimiz-

ing eq. (2.2) such as feature sign (FS) (Lee et al., 2007), we measure the average

signal to noise ratio1 (SNR) over a test dataset of 20,000 natural image patches of

size 9x9. The data set of images was constructed by randomly picking 9x9 patches

from the images of the Berkeley dataset converted to gray-scale values, and these

patches were normalized to have zero mean and unit standard deviation. The

algorithms were trained to learn sparse codes with 64 units2.

1SNR = 10log10(σ
2

signal/σ
2

noise)
2Principal Component Analysis shows that the effective dimensionality of 9x9 natural image

patches is about 47 since the first 47 principal components capture 95% of the variance in the
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Figure 2.3: Classification error on MNIST as a function of the reconstruction error

using raw pixel values and, PCA, RBM, SESM and PSD features. Left-to-Right :

100-1000 samples per class are used for training a linear classifier on the features.

The unsupervised algorithms were trained on the first 20,000 training samples of

the MNIST dataset (LeCun and Cortes, 1998).
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Comparison (Signal / Approximation) Signal to Noise Ratio (SNR)

1. PSD Optimal / PSD Predictor 8.6

2. FS / PSD Optimal 5.2

3. FS / PSD Predictor 3.1

4. FS / Regressor 3.2

Table 2.1: Comparison between representations produced by FS (Lee et al.,

2007) and PSD. In order to compute the SNR, the noise is defined as (Signal −

Approximation).

We compare representations obtained by “PSD Predictor” using the approx-

imate inference, “PSD Optimal” using the optimal inference, “FS” minimizing

eq. (2.2) with (Lee et al., 2007), and “Regressor” that is separately trained to ap-

proximate the exact optimal codes produced by FS. The results given in table 2.1

show that PSD direct predictor achieves about the same SNR on the true opti-

mal sparse representations produced by FS, as the Regressor that was trained to

predict these representations.

Despite the lack of absolute precision in predicting the exact optimal sparse

codes, PSD predictor achieves even slightly better performance in recognition.

data. Hence, a 64-dimensional feature vector is actually an overcomplete representation for these

9x9 image patches.
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2.3.2 Recognition Performance

We test the performance of using PSD filters in a large-scale object recognition

task using Caltech 101 (Fei-Fei et al., 2004) dataset. The Caltech 101 dataset is

pre-processed in the following way similar to (Pinto et al., 2008):

1) Each image is converted to gray-scale,

2) Down-sampled so that the longest side is 151 pixels,

3) The image is globally normalized by subtracting the image mean and dividing

by the image standard deviation,

4) The image (x) is locally contrast normalized by subtracting the weighted local

mean (µ) from each pixel and dividing each pixel by the weighted local standard

deviation (σ), only if σ is larger than (c = 1) (eq. 2.8-2.11). The weighting w is a

9x9 Gaussian window with standard deviation 1.591.

µjk =
∑

ipq

wpq.xi,j+p,k+q (2.8)

vijk = xijk − µjk (2.9)

σjk =

√

∑

ipq

wpq.v2i,j+p,k+q (2.10)

yijk = vijk/max(c, σjk) (2.11)

where i is the feature map index, j, k are the pixel location indices.

5) The image is 0-padded to 143x143 pixels.

64 feature detectors (either produced by FS or PSD predictor) were plugged into
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Figure 2.4: Object recognition architecture: linear adaptive filter bank, followed

by abs rectification, average down-sampling and linear SVM classifier.

an image classification system that:

1) Used the sparse coding algorithms convolutionally to produce 64 feature maps

of size 128x128 for each pre-processed image,

2) Applied an absolute value rectification,

3) Applied local contrast normalization as explained in eq. 2.8-2.11, this time the

local neighborhood is again 9× 9 but over all 64 features.

4) Computed an average down-sampling to a spatial resolution of 30x30 and

5) Used a linear SVM classifier to recognize the object in the image (see fig. 2.4).

Using this system with 30 training images per class we can achieve 53% accuracy

on the Caltech 101 dataset.

Since FS finds exact sparse codes, its representations are generally sparser than

those found by PSD predictor trained with the same value of sparsity penalty λ.

Hence, we compare the recognition accuracy against the measured sparsity level

of the representation as shown in fig. 2.5(b). PSD is not only able to achieve

better accuracy than exact sparse coding algorithms, but also, it does it much
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Figure 2.5: a) Speed up for inferring the sparse representation achieved by PSD

predictor over FS for a code with 64 units. The feed-forward extraction is more

than 100 times faster. b) Recognition accuracy versus measured sparsity (average

ℓ1 norm of the representation) of PSD predictor compared to the representation

of the FS algorithm. A difference within 1% is not statistically significant. c)

Recognition accuracy as a function of the number of basis functions.

more efficiently. Fig. 2.5(a) demonstrates that our feed-forward predictor extracts

features more than 100 times faster than feature sign. In fact, the speed up is over

800 when the sparsity is set to the value that gives the highest accuracy shown in

fig. 2.5(b).

Finally, we observe that these sparse coding algorithms are somewhat inefficient

when applied convolutionally. Many feature detectors are the translated versions

of each other as shown in fig. 2.4(a). Hence, the resulting feature maps are highly

redundant. This might explain why the recognition accuracy tends to saturate

when the number of filters is increased as shown in fig. 2.5(c).
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Figure 2.6: Conditional probabilities for sign transitions between two consecutive

frames. For instance, P (−|+) shows the conditional probability of a unit being

negative given that it was positive in the previous frame. The figure on the right

is used as baseline, showing the conditional probabilities computed on pairs of

random frames.

2.3.3 Stability

In order to quantify the stability of PSD and FS, we investigate their behavior

under naturally changing input signals. For this purpose, we train a basis set with

128 elements, each of size 9x9, using the PSD algorithm on the Berkeley (Martin

et al., 2001) dataset. This basis set is then used with FS on the standard “foreman”

test video together with the PSD Predictor. We extract 784 uniformly distributed

patches from each frame with a total of 400 frames.

For each patch, a 128 dimensional representation is calculated using both FS

and the PSD predictor. The stability is measured by the number of times a unit of

the representation changes its sign, either negative, zero or positive, between two

consecutive frames. Since the PSD predictor does not generate exact zero values,
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we threshold its output units in such a way that the average number of zero units

equals the one produced by FS (roughly, only the 4% of the units are non-zero).

The transition probabilities are given in Figure 2.6. It can be seen from this figure

that the PSD predictor generates a more stable representation of slowly varying

natural frames compared to the representation produced by the exact optimization

algorithm.
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Chapter 3

Modeling Invariant

Representations

As discussed before, most feature extraction systems contain a pooling stage

for encoding invariance to small translations, and in particular cases (Lowe, 2004),

invariance to rotations can also be hard coded into the architecture of the fea-

ture extractor. Our aim is to learn the filter bank stage and the pooling stage

simultaneously, in such a way that the filters in the same pool extract similar fea-

tures. Rather than learning descriptors that are merely invariant to small shift (a

property that can easily be built by hand), our goal is to learn descriptors that

are also invariant to other types of transformations, such as rotations and certain

distortions. Our solution is to pre-wire (before learning) which filters’ outputs are

pooled together, and to let the underlying filters learn their coefficients by min-

imizing the sparsity criterion on the pooling units. As a result, filters that are
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pooled together end up extracting similar features. A similar approach was also

proposed in (Hyvärinen and Hoyer, 2001) for the special case of square ICA for-

mulation. (Yuan and Lin, 2006) also introduced group lasso formulation for sparse

coding. However, in this case each group is unique, there is no sharing of code

components between groups. In this work, we extend these model to overcomplete

sparse modeling case with overlapping group definitions so that one code compo-

nent can be a member of more than one pooling group and additionally train a

predictor function to approximate pooled coefficients in a feed-forward manner.

In a recent work (Ranzato et al., 2007b) proposed an architecture that en-

codes shift invariance in the pooling stage and the filterbank is learned. On the

other hand, several authors have proposed methods to learn pooled features in the

context of computational models of the mammalian primary visual cortex. These

models rely on imposing some sort of sparsification criteria on small groups of filter

outputs (Kohonen, 1996; Hyvarinen and Hoyer, 2000 Jul; Osindero et al., 2006).

When the filters that are pooled together are organized in a regular array (1D

or 2D), the filters form topographic maps in which nearby filters extract similar

features.

In regular sparse coding, the sparsity penalty has a simple form such as ℓ1 as

shown below. In this form, each component of the representation z is penalized

individually proportional to absolute value of its activation. This property enforces

competition between dictionary elements for representing the input, but at the

same time introduces instability since similar inputs can be represented by different
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dictionary elements.

min
1

2
||x−Dz||22 + λ|z|1 (3.1)

In order to overcome this problem, we have introduced an extension to the

PSD algorithm, named “Invariant Predictive Sparse Decomposition” (IPSD), in our

work “Learning invariant features through topographic filter maps” (Kavukcuoglu

et al., 2009).

We first arrange the z’s into a 2D map (or some other topology) and then

pool the squared coefficients of z across overlapping windows. Then, the square

of the the filter outputs within each sub-window are summed, and their square

roots are computed. More formally, let the map of z contain several overlapping

neighborhoods Pi. Within each neighborhood i, we sum the squared coefficients

zj (weighted by a fixed Gaussian weighting function centered in the neighborhood

that sum to 1) and then take the square root. This gives the activation vi =
√

∑

j∈Pi
wjz2j , where wj are the Gaussian weights. The overall sparsity penalty is

the sum of each neighborhood’s activation:
∑|P |

i=1 vi. Figure 3.1(a) illustrates this

scheme. Thus, the overall objective function is now:

E =
1

2
||x−Dz||22 + λ

|P |
∑

i=1

√

∑

j∈Pi

wjz2j (3.2)

Note that the pooling neighborhoods Pi in eq. (3.2) overlap with others which is

not the case is group lasso formulation (Yuan and Lin, 2006). The modified sparsity
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Figure 3.1: (a): The structure of the block-sparsity term which encourages the

basis functions in D to form a topographic map. See text for details. (b): Overall

architecture of the loss function, as defined in eq. (3.4). In the generative model,

we seek a feature vector z that simultaneously approximates the input x via a dic-

tionary of basis functions D and also minimizes a sparsity term. Since performing

the inference at run-time is slow, we train a prediction function Fe(x;K) (dashed

lines) that directly predicts the optimal z from the input x. At run-time we use

only the prediction function to quickly compute z from x, from which the invariant

features vi can computed.
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term has a number of subtle effects on the nature of z that are not immediately

obvious:

• The square root in the sum over i encourages sparse activations across neigh-

borhoods since a few large activations will have lower overall cost than many

small ones.

• Within each neighborhood i, the coefficients zj are encouraged to be similar

to one another due to the z2j term (which prefers many small coefficients to

a few large ones). This has the effect of encouraging similar basis functions

in D to be spatially close in the 2D map.

• As the neighborhoods overlap, these basis functions will smoothly vary across

the map, so that the coefficients zj in any given neighborhood i will be similar.

• If the size of the pooling regions is reduced to a single z element, then the

sparsity term is equivalent to that of eq. (2.2).

The modified sparsity term means that by minimizing the loss function LI in

eq. (3.2) with respect to both the coefficients z and the dictionary D, the system

learns a set of basis functions in D that are laid out in a topographic map on the

2D grid.

Since the nearby coefficients zj will be similar for a given input x. This also

means that if this input is perturbed slightly then the pooled response within a

given neighborhood will be minimally affected, since a decrease in the response

of one filter will be offset by an increased response in a nearby one. Hence, we
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can obtain a locally robust representation by taking the pooled activations vi as

features, rather than z as is traditionally done.

Since invariant representations encode similar patterns with the same repre-

sentation, they can be made more compact. Put another way, this means that

the dimensionality of v can be made lower than the dimensionality of z without

loss of useful information. This has the triple benefit of requiring less computation

to extract the features from an image, requiring less memory to store them, and

requiring less computation to exploit them.

The 2D map over z uses circular boundary conditions to ensure that the pooling

wraps smoothly around at the edges of the map.

We can introduce a predictor function as given in eq. (2.3) and the overall

invariant energy function becomes:

EIPSD =
1

2
‖x−Dz‖22 + λ

|P |
∑

i=1

√

∑

j∈Pi

wjz2j + α‖z −Fe(x;K)‖22 (3.3)

z∗ = argmin
z

EIPSD(x, z,D, K) (3.4)

By minimizing this energy function, a predictor (Fe(x;K)) can be trained to

produces an approximation to the optimal representation z∗. Learning proceeds

in exactly the same way as for PSD by minimizing the energy function over the

training set X :

LIPSD(D, K) =
1

|X |

|X |
∑

i=1

min
Zi

EIPSD(X i,Z i,D, K) (3.5)

to train the dictionary D and predictor parameters K. Once the parameters are

learned, computing the invariant representation v can be performed by a simple
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Figure 3.2: Topographic map of feature detectors learned from natural image

patches of size 12x12 pixels by optimizing LIPSD in eq. (3.5). There are 400 filters

that are organized in 6x6 neighborhoods. Adjacent neighborhoods overlap by 4

pixels both horizontally and vertically. Notice the smooth variation within a given

neighborhood and also the circular boundary conditions.
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Figure 3.3: Analysis of learned filters by fitting Gabor functions, each dot corre-

sponding to a feature. Left: Center location of fitted Gabor. Right: Polar map

showing the joint distribution of orientation (azimuthally) and frequency (radially)

of Gabor fit.

feed-forward propagation through the regressor Fe(x;K), and then propagating z

into v through vi =
√

∑

j∈Pi
wjz2j .

Fig. 3.2 shows a typical topographic map learned by the proposed method from

natural image patches. Each tile shows a filter in D corresponding to a particular

zi. In the example shown, the input images are patches of size 12× 12 pixels, and

there are 400 basis functions, hence, 400 units zi arranged in a 20 × 20 lattice.

The neighborhoods over which the squared activities of zi’s are pooled are 6 × 6

windows, and they overlap by 4 in both the vertical and the horizontal direction.

By varying the way in which the neighborhoods are pooled, we can change
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the properties of the map. Larger neighborhoods make the filters in each pool

increasingly similar. A larger overlap between windows makes the filters vary

more smoothly across different pools. A large sparsity value λ makes the feature

detectors learn less localized patterns that look like those produced by k-means

clustering because the input has to be reconstructed using a small number of basis

functions. On the other hand, a small sparsity value makes the feature detectors

look like non-localized random filters because any random overcomplete basis set

can produce good reconstructions (effectively, the first term in the loss of eq.( 3.4)

dominates).

The map in Fig. 3.2 has been produced with an intermediate sparsity level of

λ = 3. The chosen parameter setting induces the learning algorithm to produce

a smooth map with mostly localized edge detectors in different positions, orienta-

tions, and scales. These feature detectors are nicely organized in such a way that

neighboring units encode similar patterns. A unit vi, that connects to the sum of

the squares of units zj in a pool is invariant because these units represent similar

features, and small distortions applied to the input, while slightly changing the

zj’s within a pool, are likely to leave the corresponding vi unaffected.

While the sparsity level, the size of the pooling windows and their overlap

should be set by cross-validation, in practice we found that their exact values do

not significantly affect the kind of features learned. In other words, the algorithm

is quite robust to the choice of these parameters, probably because of the many

constraints enforced during learning.
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In the following section, before exploring the properties of the invariant features

obtained, we first study the topographic map produced by our training scheme.

First, we make an empirical evaluation of the invariance achieved by these repre-

sentations under translations and rotations of the input image. Second, we assess

the discriminative power of these invariant representations on recognition tasks in

three different domains: (i) generic object categories using the Caltech 101 dataset;

(ii) generic object categories from a dataset of very low resolution images and (iii)

classification of handwriting digits using the MNIST dataset. In these experiments

we compare IPSD’s learned representations with the SIFT descriptor (Lowe, 2004)

that is considered a state-of-the-art descriptor in computer vision.

3.1 Analyzing Invariance to Transformations

In this experiment we study the invariance properties of the learned representa-

tion under simple transformations. We have generated a dataset of 16x16 natural

image patches under different translations and rotations. Each patch is presented

to the predictor function that produces a 128 dimensional descriptor (chosen to

be the same size as SIFT) composed of v’s. A representation can be considered

locally invariant if it does not change significantly under small transformations of

the input. Indeed, this is what we observe in Fig. 3.4. We compare the mean

squared difference between the descriptor of the reference patch and the descriptor

of the transformed version, averaged over many different image patches. The figure

compares proposed descriptor against SIFT with a varying horizontal shift for 0
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Figure 3.4: Mean squared error (MSE) between the representation of a patch and

its transformed version. On the left panel, the transformed patch is horizontally

shifted. On the right panel, the transformed patch is first rotated by 25 degrees and

then horizontally shifted. The curves are an average over 100 patches randomly

picked from natural images. Since the patches are 16x16 pixels in size, a shift of

16 pixels generates a transformed patch that is quite uncorrelated to the original

patch. Hence, the MSE has been normalized so that the MSE at 16 pixels is the

same for all methods. This allows us to directly compare different feature extrac-

tion algorithms: non-orientation invariant SIFT, SIFT, IPSD trained to produce

non-invariant representations (i.e. pools have size 1x1 and the algorithm becomes

equivalent to PSD), and IPSDtrained to produce invariant representations. All

algorithms produce a feature vector with 128 dimensions. IPSD produces repre-

sentations that are more invariant to transformations than the other approaches.
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and 25 degrees initial rotation. Very similar results are found for vertical shifts

and other rotation angles.

On the left panel, we can see that the mean squared error (MSE) between the

representation of the original patch and its transformation increases linearly as we

increase the horizontal shift. The MSE of IPSD representation is generally lower

than the MSE produced by features that are computed using SIFT, a non-rotation

invariant version of SIFT, and a non-invariant representation produced by the

proposed method (that was trained with pools of size 1x1) (Kavukcuoglu et al.). A

similar behavior is found when the patch is not only shifted, but also rotated. When

the shift is small, SIFT has lower MSE, but as soon as the translation becomes

large enough that the input pattern falls in a different internal sub-window, the

MSE increases considerably. Instead learned representations using IPSD seem to

be quite robust to shifts, with an overall lower area under the curve. Note also that

traditional sparse coding algorithms are prone to produce unstable representations

under small distortions of the input. Because each input has to be encoded with a

small number of basis functions, and because the basis functions are highly tuned in

orientation and location, a small change in the input can produce drastic changes in

the representation. This problem is partly alleviated by our approximate inference

procedure that uses a smooth predictor function. However, this experiment shows

that this representations is fairly unstable under small distortions, when compared

to the invariant representations produced by IPSD and SIFT.
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3.2 Generic Object Recognition

The invariance properties of the IPSD features are even better than the SIFT

features, however more important is the recognition performance using these fea-

tures. For that purpose we have used Caltech-101 (Fei-Fei et al., 2004) dataset.

The Caltech-101 dataset is pre-processed in the same way as previous experi-

ments, by resizing to 151×151 gray scale images followed by contrast normalization

as explained in section 2.3.2. We have then trained IPSD;on 50,000 16x16 patches

randomly extracted from the pre-processed images. The topographic map used

has size 32x16, with the pooling neighborhoods being 6x6 and an overlap of 4 coef-

ficients between neighborhoods. Hence, there are a total of 512 units that are used

in 128 pools to produce a 128-dimensional representation that can be compared

to SIFT. After training IPSD in an unsupervised way, we use the predictor func-

tion to infer the representation of one whole image by: (i) running the predictor

function on 16x16 patches spaced by 4 pixels to produce 128 maps of features of

size 32x32; (ii) the feature maps are locally normalized (neighborhood of 5x5) and

low-pass filtered with a boxcar filter (5x5) to avoid aliasing; (iii) the maps are then

projected along the leading 3060 principal components (equal to the number of

training samples), and (iv) a supervised linear SVM1 is trained to recognize the

object in each corresponding image. The overall scheme is shown in Fig. 3.5.

Table 4.1 reports the recognition results for this experiment. With a linear

classifier similar to (Pinto et al., 2008), IPSD features outperform SIFT and the

1We have used LIBSVM package available at http://www.csie.ntu.edu.tw/ cjlin/libsvm
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Figure 3.5: Diagram of the recognition system, which is composed of an invariant

feature extractor that has been trained unsupervised, followed by a supervised

linear SVM classifier. The feature extractor process the input image through a set

of filter banks, where the filters are organized in a two dimensional topographic

map. The map defines pools of similar feature detectors whose activations are

first non-linearly transformed by a hyperbolic tangent non-linearity, and then,

multiplied by a gain. Invariant representations are found by taking the square

root of the sum of the squares of those units that belong to the same pool. The

output of the feature extractor is a set of feature maps that can be fed as input

to the classifier. The filter banks and the set of gains is learned by the algorithm.

Recognition is very fast, because it consists of a direct forward propagation through

the system.
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Method Av. Accuracy/Class (%)

local norm5×5 + boxcar5×5 + PCA3060 + linear SVM

IPSD (24x24) 50.9

SIFT (24x24) (non rot. inv.) 51.2

SIFT (24x24) (rot. inv.) 45.2

local norm9×9 + Spatial Pyramid Match Kernel SVM

SIFT (Lazebnik et al., 2006) 64.6

IPSD (34x34) 59.6

IPSD (56x56) 62.6

IPSD (120x120) 65.5

Table 3.1: Recognition accuracy on Caltech 101 dataset using a variety of differ-

ent feature representations and two different classifiers. The PCA + linear SVM

classifier is similar to (Pinto et al., 2008), while the Spatial Pyramid Matching

Kernel SVM classifier is that of (Lazebnik et al., 2006). IPSD is used to extract

features with three different sampling step sizes over an input image to produce

34x34, 56x56 and 120x120 feature maps, where each feature is 128 dimensional to

be comparable to SIFT. Local normalization is not applied on SIFT features when

used with Spatial Pyramid Match Kernel SVM.
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model proposed by Serre and Poggio (Serre et al., 2005). However, if rotation

invariance is removed from SIFT its performance becomes comparable to IPSD.

We have also experimented with the more sophisticated Spatial Pyramid Match-

ing (SPM) Kernel SVM classifier of Lazebnik et al. (Lazebnik et al., 2006). In this

experiment, we again used the same IPSD architecture on 16x16 patches spaced

by 3 pixels to produce 42x42x128 dimensional feature maps, followed by local

normalization over a 9x9 neighborhood, yielding 128 dimensional features over a

uniform 34x34 grid. Using SPM, IPSD features achieve 59.6% average accuracy

per class. By decreasing the stepping stride to 1 pixel, thereby producing 120x120

feature maps, IPSD features achieve 65.5% accuracy as shown in Table 4.1. This

is comparable to Lazebnik’s 64.6% accuracy on Caltech-101 (without background

class) (Lazebnik et al., 2006). For comparison, our re-implementation of Lazeb-

nik’s SIFT feature extractor, stepped by 4 pixels to produce 34x34 maps, yielded

65% average recognition rate.

Note that the computation time for each descriptor is a linear function of the

number of features, thus this time can be further reduced if the number of features

is reduced. Fig. 3.6 shows how the recognition performance varies as the number

of features is decreased.

3.2.1 Tiny Images classification

IPSD was compared to SIFT on another recognition task using the tiny im-

ages dataset (Torralba et al., 2008). This dataset was chosen as its extreme low-
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Figure 3.6: The figure shows the recognition accuracy on Caltech 101 dataset as a

function of the number of invariant units. Note that the performance improvement

between 64 and 128 units is below 2%, suggesting that for certain applications the

more compact descriptor might be preferable.

Figure 3.7: Examples from the tiny images. Each image is 32 × 32 pixels and we

use grayscale images in our experiments.
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Performance on Tiny Images Dataset

Method Accuracy (%)

IPSD (5x5) 54

SIFT (5x5) (non rot. inv.) 53

Table 3.2: Results of recognition error rate on Tiny Images dataset. A 128 di-

mensional feature vector is obtained using either IPSD or SIFT over a regularly

spaced 5x5 grid and afterwards a linear SVM is used for classification.

resolution provides a different setting to the Caltech 101 images. For simplicity,

we selected 5 animal nouns (abyssinian cat, angel shark, apatura iris (a type of

butterfly), bilby (a type of marsupial), may beetle) and manually labeled 200 ex-

amples of each. 160 images of each class were used for training, with the remaining

40 held out for testing. All images are converted to grayscale. Both IPSD with 128

pooled units and SIFT were used to extract features over 16x16 regions, spaced

every 4 pixels over the 32x32 images. The resulting 5 by 5 by 128 dimensional

feature maps are used with a linear SVM. IPSD features achieve 54% and SIFT

features achieve a comparable 53%.

3.2.2 Handwriting Recognition

We use a very similar architecture to that used in the experiments above to

train on the handwritten digits of the MNIST dataset (LeCun and Cortes, 1998).

This is a dataset of quasi-binary handwritten digits with 60,000 images in the
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Performance on MNIST Dataset

Method Error Rate (%)

IPSD (5x5) 1.0

SIFT (5x5) (non rot. inv.) 1.5

Table 3.3: Results of recognition error rate on MNIST dataset. A 128 dimensional

feature vector is obtained using either IPSD or SIFT over a regularly spaced

5x5 grid and afterwards a linear SVM is used for classification. For comparison

purposes it is worth mentioning that a Gaussian SVM trained on MNIST images

without any preprocessing achieves 1.4% error rate.

training set, and 10,000 images in the test set. The algorithm was trained using

16x16 windows extracted from the original 28x28 pixel images. For recognition,

128-dimensional feature vectors were extracted at 25 locations regularly spaced

over a 5x5 grid. A linear SVM trained on these features yields an error rate of

1.0%. When 25 SIFT feature vectors are used instead of IPSD features, the error

rate increases to 1.5%. This demonstrates that, while SIFT seems well suited to

natural images, IPSD produces features that can adept to the task at hand. In

a similar experiment, a single 128-dimensional feature vector was extracted using

IPSD and SIFT, and fed to a linear SVM. The error rate was 5.6% for PSD, and

6.4% for SIFT.
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Chapter 4

Multi-Stage Architectures for

Object Recognition

The PSD algorithm can be used to build multi-layer feed-forward object recog-

nition architectures that can be trained in a layer-by-layer fashion as introduced

in (Hinton and Salakhutdinov, 2006). The hierarchy stacks one or several feature

extraction stages, each of which consists of filter bank layer, non-linear trans-

formation layers, and a pooling layer that combines filter responses over local

neighborhoods using an average or max operation, thereby achieving invariance to

small distortions. In order to achieve efficient feature extraction and supervised

fine-tuning, we only use the predictor module Fe(x;K) to build the hierarchy.
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4.1 Modules for Hierarchical Systems

The core component of the feature extraction stage is the filterbank. In con-

ventional systems that contain only a single layer of feature extractor, Gabor func-

tions (Serre et al., 2005; Mutch and Lowe, 2006; Pinto et al., 2008) or oriented

edge detectors (Lowe, 2004; Dalal and Triggs, 2005) are the most common choice.

In other methods where the feature extraction stage is trained (Ranzato et al.,

2007b; Kavukcuoglu et al., 2009; Lee et al., 2009), the first layer filterbank ends up

being similar to Gabor-like features, however these methods also provide a method

to train successive layers. On the other hand, it is not clear how to design higher

level features following Gabor functions.

Another important component of multi-stage architectures is the non-linearities.

Convolutional networks (LeCun et al., 1998a) use a simple point-wise sigmoid or

tanh function following the filterbank, while models that are strongly inspired

by biology have included rectifying non-linearities, such as positive part, absolute

value, or squaring functions (Pinto et al., 2008), often followed by a local contrast

normalization (Pinto et al., 2008), which is inspired by divisive normalization mod-

els (Lyu and Simoncelli, 2008).

The final component of a stage is the pooling function that can be applied over

space (LeCun et al., 1998a; Lazebnik et al., 2006; Ranzato et al., 2007b; Ahmed

et al., 2008), over scale and space (Serre et al., 2005; Mutch and Lowe, 2006; Pinto

et al., 2008), or over similar feature types and space (Kavukcuoglu et al., 2009).

This layer builds robustness to small distortions by computing an average or a max

50



of the filter responses within the pool.

• Filter Bank Layer - FCSG: the input of a filter bank layer is a 3D array

with n1 2D feature maps of size n2×n3. Each component is denoted xijk, and

each feature map is denoted xi. The output is also a 3D array, y composed

of m1 feature maps of size m2 ×m3. A filter in the filter bank kij has size

l1 × l2 and connects input feature map xi to output feature map yj. The

module computes the features as defined by equation 4.1.

yj =
∑

i

gj · tanh(kij ∗ xi) (4.1)

By taking into account the borders effect, we have m1 = n1 − l1 + 1, and

m2 = n2− l2 + 1. This layer is also denoted by FCSG because it is composed

of a set of convolution filters (C), a sigmoid/tanh non-linearity (S), and gain

coefficients (G). In the following, superscripts are used to denote the size

of the filters. For instance, a filter bank layer with 64 filters of size 9x9, is

denoted as: 64F 9×9
CSG. Note that this layer is the predictor function (Fe(x;K))

as defined in chapter 2 applied convolutionally.

• Rectification Layer - Rabs: This module simply applies the absolute value

function to all the components of its input: yijk = |xijk|. Several rectifying

non-linearities were tried, including the positive part, and produced similar

results.

• Local Contrast Normalization Layer - N : This module performs local

subtractive and divisive normalizations, enforcing a sort of local competition
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between adjacent features in a feature map, and between features at the same

spatial location in different feature maps. The subtractive normalization

operation for a given location xijk computes:

vijk = xijk −
∑

ipq

wpq · xi,j+p,k+q (4.2)

where wpq is a Gaussian weighting window (of size 9× 9 in our experiments

with standard deviation 1.591) normalized so that
∑

ipq wpq = 1. The divisive

normalization computes

yijk =
vijk

max(c, σjk)
(4.3)

σjk =

√

∑

ipq

wpq.v2i,j+p,k+q (4.4)

For each sample, the constant c is set to the mean(σjk) in the experiments.

The denominator is the weighted standard deviation of all features over a

spatial neighborhood. The local contrast normalization layer is inspired by

computational neuroscience models (Pinto et al., 2008; Lyu and Simoncelli,

2008).

• Average Pooling and Subsampling Layer - PA: The purpose of this

layer is to build robustness to small distortions, playing the same role as the

complex cells in models of visual perception. Each output value is

yijk =
∑

pq

wpq · xi,j+p,k+q (4.5)
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where wpq is a uniform weighting window (“boxcar filter”). Each output

feature map is then subsampled spatially by a factor S horizontally and

vertically.

• Max-Pooling and Subsampling Layer - PM : building local invariance

to shift can be performed with any symmetric pooling operation. The max-

pooling module is similar to the average pooling, except that the average

operation is replaced by a max operation. In our experiments, the pooling

windows were non-overlapping. A max-pooling layer with 4x4 down-sampling

is denoted P 4×4
M .

4.2 Combining Modules into a Hierarchy

Different architectures can be produced by cascading the above-mentioned

modules in various ways. An architecture is composed of one or two stages of

feature extraction, each of which is formed by cascading a filtering layer with

different combinations of rectification, normalization, and pooling. Recognition

architectures are composed of one or two such stages, followed by a classifier, gen-

erally a multinomial logistic regression. A single stage with filterbank, rectification,

contrast normalization and pooling stages are shown in Fig. 4.1.

• FCSG −PA This is the basic building block of traditional convolutional

networks, alternating tanh-squashed filter banks with average down-sampling

layers (LeCun et al., 1998a; Huang and LeCun, 2006). A complete convolu-
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Figure 4.1: An example of a feature extraction stage of the type FCSG−Rabs−N−

PA. An input image (or a feature map) is passed through a non-linear filterbank,

followed by rectification, local contrast normalization and spatial pooling/sub-

sampling.

tional network would have several sequences of “FCSG - PA” followed by a

linear classifier.

• FCSG −Rabs −PA The tanh-squashed filter bank is followed by an abso-

lute value non-linearity, and by an average down-sampling layer.

• FCSG −Rabs −N−PA The tanh-squashed filter bank is followed by an

absolute value non-linearity, by a local contrast normalization layer and by

an average down-sampling layer.

• FCSG −PM This is also a typical building block of convolutional networks,

as well as the basis of the HMAX and other architectures (Serre et al., 2005;

Ranzato et al., 2007b), which alternate tanh-squashed filter banks with max-
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pooling layers.

4.3 Training Protocol

Given a particular architecture, a number of training protocols have been con-

sidered and tested. Each protocol is identified by a letter R,U,R+, or U+. A single

letter (e.g. R) indicates an architecture with a single stage of feature extraction,

followed by a classifier, while a double letter (e.g. RR) indicates an architecture

with two stages of feature extraction followed by a classifier. R and RR represents

feature extraction using random kernels. U and UU represents feature extraction

using kernels initialized using the PSD algorithm. R and U followed by a su-

perscript + represents supervised training of the combined feature extractor and

classifier.

• Random Features and Supervised Classifier - R and RR: The filters

in the feature extraction stages are set to random values and kept fixed (no

feature learning takes place), and the classifier stage is trained in supervised

mode.

• Unsupervised Features, Supervised Classifier - U and UU. The

predictor (Fe) filters of the feature extraction stages are trained using the

unsupervised PSD algorithm, described in chapter 2, and kept fixed. The

classifier stage is trained in supervised mode.
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• Random Features, Global Supervised Refinement - R+ and R+R+.

The filters in the feature extractor stages are initialized with random val-

ues, and the entire system (feature stages + classifier) is trained in super-

vised mode by gradient descent. The gradients are computed using back-

propagation, and all the filters are adjusted by stochastic online updates.

This is identical to the usual method for training supervised convolutional

networks.

• Unsupervised Feature, Global Supervised Refinement - U+ and

U+U+. The filters in the feature extractor stages are initialized with the

PSD unsupervised learning algorithm, and the entire system (feature stages

+ classifier) is then trained (refined) in supervised mode by gradient descent.

The system is trained the same way as random features with global refinement

using online stochastic updates. This is reminiscent of the “deep belief net-

work” strategy in which the stages are first trained in unsupervised mode one

after the other, and then globally refined using supervised learning (Hinton

and Salakhutdinov, 2006; Bengio et al., 2007; Ranzato et al., 2007a).

A traditional convolutional network with a single stage initialized at random (Le-

Cun et al., 1998a) would be denoted by an architecture motif like “FCSG − PA”,

and the training protocol would be denoted by R+. The stages of a convolutional

network with max-pooling would be denoted by “FCSG − PM”. A system with

two such stages trained in unsupervised mode, and the classifier (only) trained in

supervised mode, as in (Ranzato et al., 2007b), is denoted UU and a two stage
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“deep belief network” is represented as U+U+.

4.4 Experiments with Caltech-101 Dataset

We have used Caltech-101 (Fei-Fei et al., 2004) dataset to compare different

training protocols and architectures. A more detailed study can be found in our

work “What is the best multi-stage architecture for object recognition?” (Jarrett

et al., 2009).

Images from the Caltech-101 dataset were pre-processed with a procedure sim-

ilar to (Pinto et al., 2008). The steps are: 1) converting to gray-scale (no color)

and resizing to 151 × 151 pixels. 2) subtracting the image mean and dividing by

the image standard deviation, 3) applying subtractive/divisive normalization (N

layer with c = 1). 4) zero-padding the shorter side to 143 pixels.

4.4.1 Using a Single Stage of Feature Extraction

The first stage is composed of an FCSG layer with 64 filters of size 9×9 (64F 9×9
CSG),

followed by an abs rectification (Rabs), a local contrast normalization layer (N)

and an average pooling layer with 10 × 10 boxcar filter and 5 × 5 down-sampling

(P 5×5
A ). The output of the first stage is a set of 64 features maps of size 26 × 26.

This output is then fed to a multinomial logistic regression classifier that produces

a 102-dimensional output vector representing a posterior distribution over class

labels. Lazebnik’s PMK-SVM classifier (Lazebnik et al., 2006) was also tested.
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Linear Logistic Regression Classifier

Single Stage [64.F9×9

CSG
−R/N/P5×5]

Rabs/N/PA Rabs/PA N/PM N/PA PA

U+ 54.2% 50.0% 44.3% 18.5% 14.5%

R+ 54.8% 47.0% 38.0% 16.3% 14.3%

U 52.2% 43.3%(±1.6) 44.0% 17.2% 13.4%

R 53.3% 31.7% 32.1% 15.3% 12.1%(±2.2)

Two Stages [64.F9×9

CSG
−R/N/P5×5]− [256.F9×9

CSG
−R/N/P4×4]

Rabs/N/PA Rabs/PA N/PM N/PA PA

U+U+ 65.5% 60.5% 61.0% 34.0% 32.0%

R+R+ 64.7% 59.5% 60.0% 31.0% 29.7%

UU 63.7% 46.7% 56.0% 23.1% 9.1%

RR 62.9% 33.7%(±1.5) 37.6%(±1.9) 19.6% 8.8%

PMK-SVM Classifier

Single Stage: [64.F9×9

CSG
−Rabs/N/P5×5

A
]

U 64.0%

Two Stages: [64.F9×9

CSG
−Rabs/N/P5×5

A
]− [256.F9×9

CSG
−Rabs/N]

UU 52.8%

Table 4.1: Average recognition rates on Caltech-101 with 30 training samples per

class. Each row contains results for one of the training protocols, and each column

for one type of architecture. All columns use an FCSG as the first module, followed

by the modules shown in the column label. The error bars for all experiments are

within 1%, except where noted.
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4.4.2 Using Two Stages of Feature Extraction

In two-stage systems, the second-stage feature extractor is fed with the output

of the first stage. The first layer of the second stage is an FCSG module with 256

output features maps, each of which combines a random subset of 16 feature maps

from the previous stage using 9×9 kernels. Hence the total number of convolution

kernels is 256× 16 = 4096. The average pooling module uses a 6× 6 boxcar filter

with a 4 × 4 down-sampling step. This produces an output feature map of size

256 × 4 × 4, which is then fed to a multinomial logistic regression classifier. The

PMK-SVM classifier was also tested.

Results for these experiments are summarized in Table 4.1.

1. The most astonishing result is that systems with random filters and no fil-

ter learning whatsoever achieve decent performance (53.3% for R and 62.9%

for RR), as long as they include absolute value rectification and contrast

normalization (Rabs −N − PA).

2. Comparing experiments from rows R vs R+, RR vs R+R+, U vs U+ and

UU vs U+U+, we see that supervised fine tuning consistently improves the

performance, particularly with weak non-linearities: 62.9% to 64.7% for RR,

63.7% to 65.5% for UU using Rabs − N − PA and 35.1% to 59.5% for RR

using Rabs − PA.

3. It appears clear that two-stage systems (UU , U+U+, RR, R+R+) are system-

atically and significantly better than their single-stage counterparts (U , U+,
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R, R+). For instance, 54.2% obtained by U+ compared to 65.5% obtained

by U+U+ using Rabs − N − PA. However, when using the PA architecture,

adding a second stage without supervised refinement does not seem to help.

This may be due to cancellation effects of the PA layer when rectification is

not present.

4. It seems that unsupervised training (U , UU , U+, U+U+) does not seem to

significantly improve the performance (comparing with (R, RR, R+, R+R+)

if both rectification and normalization are used (62.9% for RR versus 63.7%

for UU). When contrast normalization is removed, the performance gap

becomes significant (33.7% for RR versus 46.7% for UU). If no supervised

refinement is performed, it looks as if appropriate architectural components

are a good substitute for unsupervised training.

5. It is clear that abs rectification is a crucial component for achieving good

performance, as shown with the U+U+ protocol by comparing columns PA

(32.0%) and Rabs −N − PA (65.5%). However, using max pooling seems to

alleviate the need for abs rectification, confirming the hypothesis that aver-

age pooling without rectification falls victim to cancellation effects between

neighboring filter outputs.

6. A single-stage system with PMK-SVM reaches the same performance as a

two-stage system with logistic regression (around 65%) as shown in the last

two rows of Table 4.1. It looks as if the pyramid match kernel is able to play
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the same role as a second stage of feature extraction. Perhaps it is because

PMK first performs a K-means based vector quantization, which can be

seen as an extreme form of sparse coding, followed by local histogramming,

which is a form of spatial pooling. Hence, the PM kernel is conceptually

similar to a second stage based on sparse coding and pooling as recently

pointed out in (Yang et al., 2009). Furthermore, these numbers are similar

to the performance of the original PMK-SVM system which used dense SIFT

features (64.6%) (Lazebnik et al., 2006). Again, this is hardly surprising as

the SIFT module is conceptually very similar to our feature extraction stage.

When using features extracted using UU architecture, the performance of

PMK-SVM classifier drops significantly. This behaviour might be caused by

the very small spatial density (18× 18) of features at the second layer.

4.5 NORB Dataset

Caltech-101 is very peculiar in that many objects have distinctive textures and

few pose variations. More importantly, the particularly small size of the train-

ing set favors methods that minimize the role learning and maximize the role

of clever engineering. A diametrically opposed object dataset is NORB (LeCun

et al., 2004). The “Small NORB” dataset has 5 object categories (humans, air-

planes, cars, trucks, animals) 5 object instances for training, and 5 different object

instances for test. Each object instance has 972 samples (18 azimuths, 9 elevations,

and 6 illuminations), for a total of 24300 training samples and 24300 test samples
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Figure 4.2: Several examples from NORB dataset.
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Figure 4.3: Test Error rate vs. number of training samples per class on NORB

Dataset. Although pure random features perform surprisingly well when training

data is very scarce, for large number of training data learning improves the per-

formance significantly. Absolute value rectification (Rabs) and local normalization

(N) is shown to improve the performance in all cases.
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(4860 per class). Each image is 96 × 96 pixels, grayscale. Experiments were con-

ducted to elucidate the importance of the non-linearity, and the performance of

random filter systems when many labeled samples are available.

Only the RR, R+R+, UU , U+U+ protocols were used with 8 feature maps and

5×5 filters at the first stage, 4×4 average pooling followed by 24 feature maps with

6× 6 filters, each of which combines input from 4 randomly picked stage-1 feature

maps, followed by 3 × 3 average pooling. The last stage is a 5-way multinomial

logistic regressor.

Several systems with various non-linearities were trained on subsets of the train-

ing set with 20, 50, 100, 200, 500, 1000, 2000, and 4860 training samples per class.

The results are shown in figure 4.3 in log-log scale. All the curves except the

blue curve use represent models using absolute value rectification and contrast

normalization. It appears that the use of abs and normalization makes a big

difference when labeled samples are scarce, but the difference diminishes as the

number of training samples increases. Training seems to compensate for architec-

tural simplicity, or conversely architectural sophistication seems to compensate for

lack of training. Comparing UU and RR, it is apparent that unsupervised learn-

ing improves the recognition performance significantly, however, R+R+ shows that

labeled information is more effective than unsupervised information. Moreover,

comparing R+R+ and U+U+, it can be seen that unsupervised training is most

effective when number of samples is not large (< 100). The best error rate when

trained on the full training set with a model including abs and normalization is
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5.6% and 5.5% for R+R+ and U+U+ respectively, but 6.9% with neither ((LeCun

et al., 2004) reported 6.6%).

More interesting is the behavior of the system with random filters: While its

error rate is comparable to that of the network trained in supervised mode for

small training sets (in the “Caltech-101 regime”), the error rate remains high as

samples are added. Hence, while random filters perform well on Caltech-101, they

would most likely not perform as well as learned filters on tasks with more labeled

samples.

4.6 Random Filter Performance

The NORB experiments show that random filters yield sub-par performance

when labeled samples are abundant. But the experiments also show that random

filters seem to require the presence of abs and normalization. To explore why ran-

dom filters work at all, starting from randomly initialized inputs, we used gradient

descent minimization to find the optimal input patterns that maximize each output

unit (after pooling) in a FCSG − Rabs − N − PA stage. The surprising finding is

that the optimal stimuli for random filters are oriented gratings (albeit noisy and

faint ones), similar to the optimal stimuli for trained filters. As shown in fig 4.4,

it appears that random weights, combined with the abs/norm/pooling creates a

spontaneous orientation selectivity.
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Figure 4.4: Left: random stage-1 filters, and corresponding optimal inputs that

maximize the response of each corresponding complex cell in a FCSG − Rabs −

N − PA architecture. The small asymmetry in the random filters is sufficient to

make them orientation selective. Right: same for PSD filters. The optimal input

patterns contain several periods since they maximize the output of a complete

stage that contains rectification, local normalization, and average pooling with

down-sampling. Shifted versions of each pattern yield similar activations.
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4.7 Handwritten Digits Recognition

As a sanity check for the overall training procedures and architectures, exper-

iments were run on the MNIST dataset, which contains 60,000 gray-scale 28x28

pixel digit images for training and 10,000 images for testing. An architecture with

two stages of feature extraction was used: the first stage produces 32 feature maps

using 5×5 filters, followed by 2x2 average pooling and down-sampling. The second

stage produces 64 feature maps, each of which combines 16 feature maps from stage

1 with 5 × 5 filters (1024 filters total), followed by 2 × 2 pooling/down-sampling.

The classifier is a 2-layer fully-connected neural network with 200 hidden units,

and 10 outputs. The loss function is equivalent to that of a 10-way multinomial

logistic regression (also known as cross-entropy loss). The two feature stages use

abs rectification and normalization.

The parameters for the two feature extraction stages are first trained with PSD

as explained in Section 2. The classifier is initialized randomly. The whole system is

fine-tuned in supervised mode (the protocol could be described as (U+U+R+R+).

A validation set of size 10,000 was set apart from the training set to tune the

only hyper-parameter: the sparsity constant λ. Nine different values were tested

between 0.1 and 1.6 and the best value was found to be 0.2. The system was trained

with stochastic gradient descent on the 50,000 non-validation training samples

until the best error rate on the validation set was reached (this took 30 epochs).

We also used a diagonal approximation to the Hessian of the parameters using

Levenberg-Marquardt method. We updated the Hesssian approximation at every
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epoch using 500 samples. The whole system was then tuned for another 3 epochs

on the whole training set. A test error rate of 0.53% was obtained. To our

knowledge, this is the best error rate ever reported on the original MNIST dataset,

without distortions or preprocessing. The best previously reported error rate was

0.60% (Ranzato et al., 2006).
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Chapter 5

Convolutional Sparse Coding

Although sparse modeling has been used successfully for image analysis (Aharon

et al., 2005; Mairal et al., 2009) and learning feature extractors (Kavukcuoglu et al.,

2009), these systems are trained on single image patches whose dimensions match

those of the filters. In sparse coding, a sparse feature vector z is computed so as

to best reconstruct the input x through a linear operation with a fixed dictionary

matrix D. The inference procedure produces a code z∗ by minimizing an energy

function:

E(x, z,D) = 1

2
||x−Dz||22 + λ|z|1, z∗ = argmin

z
E(x, z,D) (5.1)

As explained in Chapter 2, the dictionary can be learned by minimizing the

energy 5.1 wrt D: minz,D E(x, z,D) averaged over a training set of input samples.

After training, patches in the image are processed separately. This procedure
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completely ignores the fact that the filters are eventually going to be used in a

convolutional fashion. Learning will produce a dictionary of filters that are essen-

tially shifted versions of each other over the patch, so as to reconstruct each patch

in isolation. Inference is performed on all (overlapping) patches independently,

which produces a very highly redundant representation for the whole image.

To address this problem, we apply sparse coding to the entire image at once,

and we view the dictionary as a convolutional filter bank:

E(x, z,D) = 1

2
||x−

∑

i

Di ∗ zi||22 + λ|z|1, (5.2)

where Di is an s × s 2D filter kernel, x is a w × h image (instead of an s × s

patch), zi is a 2D feature map of dimension (w − s + 1) × (h − s + 1), and “∗”

denotes the discrete convolution operator. Convolutional Sparse Coding has been

used by several authors, including (Zeiler et al., 2010).

Utilizing same idea proposed in PSD , we can modify the convolutional sparse

coding formulation in eq. (5.2) to include a trainable feed-forward predictor Fe.

E(x, z,D, K) =
1

2
||x−

∑

i

Di ∗ zi||22 + λ|z|1 + α
∑

i

||zi −Fe(x; k
i, gi)||22 (5.3)

where z∗ = argminz L(x, z,D, K), K = {k, g} and ki is an encoding convolution

kernel of size s×s, gi is a singleton per feature map i and Fe is the encoder function.

Two crucially important questions are the form of the Fe, and the optimization

method to find z∗. Both questions will be discussed at length below.
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Figure 5.1: Left: A dictionary with 128 elements, learned with patch based sparse

coding model. Right: A dictionary with 128 elements, learned with convolutional

sparse coding model. The dictionary learned with the convolutional model spans

the orientation space much more uniformly. In addition it can be seen that the

diversity of filters obtained by convolutional sparse model is much richer compared

to patch based one.

5.1 Algorithms and Method

In this section, we analyze the benefits of convolutional sparse coding for ob-

ject recognition systems, and propose convolutional extensions to the coordinate

descent sparse coding (CoD) (Li and Osher) algorithm and the dictionary learning

procedure.

5.1.1 Learning Convolutional Dictionaries

The key observation for modeling convolutional filter banks is that the convo-

lution of a signal with a given kernel can be represented as a matrix-vector product

by constructing a special Toeplitz-structured matrix for each dictionary element
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and concatenating all such matrices to form a new dictionary. Any existing sparse

coding algorithm can then be used. Unfortunately, this method incurs a cost, since

the size of the dictionary then depends on the size of the input signal. Therefore,

it is advantageous to use a formulation based on convolutions rather than follow-

ing the naive method outlined above. In this work, we use the coordinate descent

sparse coding algorithm (Li and Osher) as a starting point and generalize it using

convolution operations. Two important issues arise when learning convolutional

dictionaries: 1. The boundary effects due to convolutions need to be properly han-

dled. 2. The derivative of equation 5.2 should be computed efficiently. Since the

loss is not jointly convex in D and z, but is convex in each variable when the other

one is kept fixed, sparse dictionaries are usually learned by an approach similar to

block coordinate descent, which alternatively minimizes over z and D (e.g., see (Ol-

shausen and Field, 1997; Mairal et al., 2009; Ranzato et al., 2006, 2007a)). One

can use either batch (Aharon et al., 2005) (by accumulating derivatives over many

samples) or online updates (Mairal et al., 2009; Zeiler et al., 2010; Kavukcuoglu

et al., 2009) (updating the dictionary after each sample). In this work, we use a

stochastic online procedure for updating the dictionary elements.

The updates to the dictionary elements, calculated from equation 5.2, are sen-

sitive to the boundary effects introduced by the convolution operator. The code

units that are at the boundary might grow much larger compared to the middle

elements, since the outermost boundaries of the reconstruction take contributions

from only a single code unit, compared to the middle ones that combine s×s units.
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Therefore the reconstruction error, and correspondingly the derivatives, grow pro-

portionally larger. One way to properly handle this situation is to apply a mask

on the derivatives of the reconstruction error wrt z: DT ∗ (x − D ∗ z) is replaced

by DT ∗ (mask(x) − D ∗ z), where mask is a term-by-term multiplier that either

puts zeros or gradually scales down the boundaries.

Algorithm 3 Convolutional extension to coordinate descent sparse coding(Li and

Osher). A subscript index (set) of a matrix represent a particular element. For

slicing the 4D tensor S we adopt the MATLAB notation for simplicity of notation.

function ConvCoD(x,D, α)

Set: S = DT ∗ D

Initialize: z = 0; β = DT ∗mask(x)

Require: hα : smooth thresholding function.

repeat

z̄ = hα(β)

(k, p, q) = argmaxi,m,n |zimn − z̄imn| (k : dictionary index, (p.q) : location

index)

bi = βkpq

β = β + (zkpq − z̄kpq)× align(S(:, k, :, :), (p, q))

zkpq = z̄kpq, βkpq = bi

until change in z is below a threshold

end function

The second important point in training convolutional dictionaries is the compu-
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tation of the S = DT ∗D operator. For most algorithms like coordinate descent (Li

and Osher), FISTA (Beck and Teboulle, 2009) and matching pursuit (Mallat and

Zhang, 1993), it is advantageous to store the similarity matrix (S) explicitly and

use a single column at a time for updating the corresponding component of code

z. For convolutional modeling, the same approach can be followed with some ad-

ditional care. In patch based sparse coding, each element (i, j) of S equals the dot

product of dictionary elements i and j. Since the similarity of a pair of dictionary

elements has to be also considered in spatial dimensions, each term is expanded

as “full” convolution of two dictionary elements (i, j), producing 2s − 1 × 2s − 1

matrix. It is more convenient to think about the resulting matrix as a 4D tensor

of size d×d×2s−1×2s−1. One should note that, depending on the input image

size, proper alignment of corresponding column of this tensor has to be applied

in the z space. One can also use the steepest descent algorithm for finding the

solution to convolutional sparse coding given in equation 5.2, however using this

method would be orders of magnitude slower compared to specialized algorithms

like CoD (Li and Osher) and the solution would never contain exact zeros. In

algorithm 3 we explain the extension of the coordinate descent algorithm (Li and

Osher) for convolutional inputs. Having formulated convolutional sparse coding,

the overall learning procedure is simple stochastic (online) gradient descent over

dictionary D:

∀xi ∈ X training set : z∗ = argmin
z
L(xi, z,D), D ← D − η

∂L(xi, z∗,D)
∂D (5.4)

The columns of D are normalized after each iteration. A convolutional dictio-
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nary with 128 elements which was trained on images from Berkeley dataset (Martin

et al., 2001) is shown in figure 5.1.

5.1.2 Learning an Efficient Encoder

In (Ranzato et al., 2007a), (Jarrett et al., 2009) and (Gregor and LeCun, 2010)

a feedforward regressor was trained for fast approximate inference. In this work,

we extend their encoder module training to convolutional domain and also propose

a new encoder function that approximates sparse codes more closely. The encoder

used in (Jarrett et al., 2009) is a simple feedforward function which can also be

seen as a small convolutional neural network: z̃ = gi×tanh(x∗ki) (i = 1..d). This

function has been shown to produce good features for object recognition (Jarrett

et al., 2009), however it does not include a shrinkage operator, thus its ability to

produce sparse representations is very limited. Therefore, we propose a different

encoding function with a shrinkage operator. The standard soft thresholding oper-

ator has the nice property of producing exact zeros around the origin, however for

a very wide region, the derivatives are also zero. In order to be able to train a filter

bank that is applied to the input before the shrinkage operator, we propose to use

an encoder with a smooth shrinkage operator z̃ = shβi,bi(x ∗ ki) where i = 1..d

and :

shβi,bi(s) = sign(s)× 1/βi log(exp(βi × bi) + exp(βi × |s|)− 1)− bi (5.5)

Note that each βi and bi is a singleton per each feature map i. The shape of the

smooth shrinkage operator is given in figure 5.2 for several different values of β and
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b. It can be seen that β controls the smoothness of the kink of shrinkage operator

and b controls the location of the kink. The function is guaranteed to pass through

the origin and is antisymmetric. The partial derivatives ∂sh
∂β

and ∂sh
∂b

can be easily

written and these parameters can be learned from data.

Updating the parameters of the encoding function is performed by minimizing

equation 5.3. The additional cost term penalizes the squared distance between

optimal code z and prediction z̃. In a sense, training the encoder module is simi-

lar to training a ConvNet. To aid faster convergence, we use stochastic diagonal

Levenberg-Marquardt method (LeCun et al., 1998b) to calculate a positive diag-

onal approximation to the hessian. We update the hessian approximation every

10000 samples and the effect of hessian updates on the total loss is shown in fig-

ure 5.2. It can be seen that especially for the tanh encoder function, the effect of

using second order information on the convergence is significant.

5.1.3 Patch Based vs Convolutional Sparse Modeling

Natural images, sounds, and more generally, signals that display translation in-

variance in any dimension, are better represented using convolutional dictionaries.

The convolution operator enables the system to model local structures that appear

anywhere in the signal. For example, if m×m image patches are sampled from a

set of natural images, an edge at a given orientation may appear at any location,

forcing local models to allocate multiple dictionary elements to represent a single

underlying orientation. By contrast, a convolutional model only needs to record
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Figure 5.2: Top Left: Smooth shrinkage function. Parameters β and b control

the smoothness and location of the kink of the function. As β → ∞ it converges

more closely to soft thresholding operator. Top Right: Total loss as a function

of number of iterations. The vertical dotted line marks the iteration number when

diagonal hessian approximation was updated. It is clear that for both encoder

functions, hessian update improves the convergence significantly. Bottom: 128

convolutional filters (k) learned in the encoder using smooth shrinkage function.

The decoder of this system is shown in image 5.1.
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the oriented structure once, since dictionary elements can be used at all locations.

Figure 5.1 shows atoms from patch-based and convolutional dictionaries compris-

ing the same number of elements. The convolutional dictionary does not waste

resources modeling similar filter structure at multiple locations. Instead, it models

more orientations, frequencies, and different structures including center-surround

filters, double center-surround filters, and corner structures at various angles.

In this work, we present two encoder architectures, 1. steepest descent sparse

coding with tanh encoding function using gi × tanh(x ∗ ki), 2. convolutional CoD

sparse coding with shrink encoding function using shβ,b(x∗ki). The time required

for training the first system is much higher than for the second system due to steep-

est descent sparse coding. However, the performance of the encoding functions are

almost identical.

5.1.4 Multi-stage architecture

Our convolutional encoder can be used to replace patch-based sparse coding

modules used in multi-stage object recognition architectures such as the one pro-

posed in our previous work (Jarrett et al., 2009). Building on our previous findings,

for each stage, the encoder is followed by and absolute value rectification, contrast

normalization and average subsampling. Absolute Value Rectification is a

simple pointwise absolute value function applied on the output of the encoder.

Contrast Normalization is the same operation used for pre-processing the im-

ages. This type of operation has been shown to reduce the dependencies between
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components (Schwartz and Simoncelli, 2001; Lyu and Simoncelli, 2008) (feature

maps in our case). When used in between layers, the mean and standard deviation

is calculated across all feature maps with a 9 × 9 neighborhood in spatial dimen-

sions. The last operation, average pooling is simply a spatial pooling operation

that is applied on each feature map independently.

One or more additional stages can be stacked on top of the first one. Each

stage then takes the output of its preceding stage as input and processes it using

the same series of operations with different architectural parameters like size and

connections. When the input to a stage is a series of feature maps, each output

feature map is formed by the summation of multiple filters.

In the next sections, we present experiments showing that using convolutionally

trained encoders in this architecture lead to better object recognition performance.

5.2 Experiments

We closely follow the architecture proposed in (Jarrett et al., 2009) for object

recognition experiments. As stated above, in our experiments, we use two different

systems: 1. Steepest descent sparse coding with tanh encoder: SDtanh. 2. Coor-

dinate descent sparse coding with shrink encoder: CDshrink. In the following, we

give details of the unsupervised training and supervised recognition experiments.
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5.2.1 Object Recognition using Caltech 101 Dataset

The Caltech-101 dataset (Fei-Fei et al., 2004) contains up to 30 training images

per class and each image contains a single object. We process the images in the

dataset as follows: 1. Each image is converted to gray-scale and resized so that

the largest edge is 151. 2. Images are contrast normalized to obtain locally zero

mean and unit standard deviation input using a 9×9 neighborhood. 3. The short

side of each image is zero padded to 143 pixels. We report the results in Table 5.1

and 5.2. All results in these tables are obtained using 30 training samples per class

and 5 different choices of the training set. We use the background class during

training and testing.

Architecture : We use the unsupervised trained encoders in a multi-stage

system identical to the one proposed in (Jarrett et al., 2009). At first layer 64

features are extracted from the input image, followed by a second layers that

produces 256 features. Second layer features are connected to fist layer features

through a sparse connection table to break the symmetry and to decrease the

number of parameters.

Unsupervised Training : The input to unsupervised training consists of con-

trast normalized gray-scale images (Pinto et al., 2008) obtained from the Berkeley

segmentation dataset (Martin et al., 2001). Contrast normalization consists of

processing each feature map value by removing the mean and dividing by the

standard deviation calculated around 9 × 9 region centered at that value over all

feature maps.
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First Layer: We have trained both systems using 64 dictionary elements. Each

dictionary item is a 9× 9 convolution kernel. The resulting system to be solved is

a 64 times overcomplete sparse coding problem. Both systems are trained for 10

different sparsity values ranging between 0.1 and 3.0.

Second Layer: Using the 64 feature maps output from the first layer encoder

on Berkeley images, we train a second layer convolutional sparse coding. At the

second layer, the number of feature maps is 256 and each feature map is connected

to 16 randomly selected input features out of 64. Thus, we aim to learn 4096

convolutional kernels at the second layer. To the best of our knowledge, none of

the previous convolutional RBM (Lee et al., 2009) and sparse coding (Zeiler et al.,

2010) methods have learned such a large number of dictionary elements. Our aim

is motivated by the fact that using such large number of elements and using a

linear classifier (Jarrett et al., 2009) reports recognition results similar to (Lee

et al., 2009) and (Zeiler et al., 2010). In both of these studies a more powerful

Pyramid Match Kernel SVM classifier (Lazebnik et al., 2006) is used to match the

same level of performance. Figure 5.3 shows 128 filters that connect to 8 first layer

features. Each row of filters connect a particular second layer feature map. It is

seen that each row of filters extract similar features since their output response is

summed together to form one output feature map.

One Stage System: We train 64 convolutional unsupervised features using

both SDtanh and CDshrink methods. We use the encoder function obtained from

this training followed by absolute value rectification, contrast normalization and
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Figure 5.3: Second stage filters. Left: Encoder kernels that correspond to the

dictionary elements. Right: 128 dictionary elements, each row shows 16 dictionary

elements, connecting to a single second layer feature map. It can be seen that each

group extracts similar type of features from their corresponding inputs.

Logistic Regression Classifier

SDtanh CDshrink PSD (Jarrett et al., 2009)

U 57.1± 0.6% 57.3± 0.5% 52.2%

U+ 57.6± 0.4% 56.4± 0.5% 54.2%

Table 5.1: Comparing SDtanh encoder to CDshrink encoder on Caltech 101 dataset

using a single stage architecture. Each system is trained using 64 convolutional

filters. The recognition accuracy results shown are very similar for both systems.
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average pooling. The convolutional filters used are 9 × 9. The average pooling is

applied over a 10 × 10 area with 5 pixel stride. The output of first layer is then

64× 26× 26 and fed into a logistic regression classifier and Lazebnik’s PMK-SVM

classifier (Lazebnik et al., 2006) (that is, the spatial pyramid pipeline is used, using

our features to replace the SIFT features).

Two Stage System: We train 4096 convolutional filters with SDtanh method

using 64 input feature maps from first stage to produce 256 feature maps. The

second layer features are also 9×9, producing 256×18×18 features. After applying

absolute value rectification, contrast normalization and average pooling (on a 6×6

area with stride 4), the output features are 256 × 4 × 4 (4096) dimensional. We

only use multinomial logistic regression classifier after the second layer feature

extraction stage.

We denote unsupervised trained one stage systems with U , two stage unsuper-

vised trained systems with UU and “+” represents supervised training is performed

afterwards. R stands for randomly initialized systems with no unsupervised train-

ing.

Comparing our U system using both SDtanh and CDshrink (57.1% and 57.3%)

with the 52.2% reported in (Jarrett et al., 2009), we see that convolutional training

results in significant improvement. With two layers of purely unsupervised features

(UU , 65.3%), we even achieve the same performance as the patch-based model of

Jarrett et al. (Jarrett et al., 2009) after supervised fine-tuning (63.7%). Moreover,

with additional supervised fine-tuning (U+U+) we match or perform very close
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Logistic Regression Classifier

PSD (Jarrett et al., 2009) (UU) 63.7

PSD (Jarrett et al., 2009) (U+U+) 65.5

SDtanh (UU) 65.3± 0.9%

SDtanh (U+U+) 66.3± 1.5%

PMK-SVM (Lazebnik et al., 2006) Classifier:

Hard quantization + multiscale pooling

+ intersection kernel SVM

SIFT (Lazebnik et al., 2006) 64.6± 0.7%

RBM (Lee et al., 2009) 66.4± 0.5%

DN (Zeiler et al., 2010) 66.9± 1.1%

SDtanh (U) 65.7± 0.7%

Table 5.2: Recognition accuracy on Caltech 101 dataset using a variety of different

feature representations using two stage systems and two different classifiers.
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to (66.3%) similar models (Lee et al., 2009; Zeiler et al., 2010) with two layers of

convolutional feature extraction, even though these models use the more complex

spatial pyramid classifier (PMK-SVM) instead of the logistic regression we have

used; the spatial pyramid framework comprises a codeword extraction step and an

SVM, thus effectively adding one layer to the system. We get 65.7% with a spatial

pyramid on top of our single-layer U system (with 256 codewords jointly encoding

2 × 2 neighborhoods of our features by hard quantization, then max pooling in

each cell of the pyramid, with a linear SVM, as proposed by authors in (Boureau

et al., 2010)).

Our experiments have shown that sparse features achieve superior recognition

performance compared to features obtained using a dictionary trained by a patch-

based procedure as shown in Table 5.1. It is interesting to note that the improve-

ment is larger when using feature extractors trained in a purely unsupervised way,

than when unsupervised training is followed by a supervised training phase (57.1

to 57.6). Recalling that the supervised tuning is a convolutional procedure, this

last training step might have the additional benefit of decreasing the redundancy

between patch-based dictionary elements. On the other hand, this contribution

would be minor for dictionaries which have already been trained convolutionally

in the unsupervised stage.

85



5.2.2 Pedestrian Detection

We train and evaluate our architecture on the INRIA Pedestrian dataset (Dalal

and Triggs, 2005) which contains 2416 positive examples (after mirroring) and

1218 negative full images. For training, we also augment the positive set with

small translations and scale variations to learn invariance to small transformations,

yielding 11370 and 1000 positive examples for training and validation respectively.

The negative set is obtained by sampling patches from negative full images at

random scales and locations. Additionally, we include samples from the positive

set with larger and smaller scales to avoid false positives from very different scales.

With these additions, the negative set is composed of 9001 training and 1000

validation samples.

5.2.2.1 Architecture and Training

A similar architecture as in the previous section was used, with 32 filters, each

7×7 for the first layer and 64 filters, also 7×7 for the second layer. We used 2×2

average pooling between each layer. A fully connected linear layer with 2 output

scores (for pedestrian and background) was used as the classifier. We trained this

system on 78× 38 inputs where pedestrians are approximately 60 pixels high. We

have trained our system with and without unsupervised initialization, followed

by fine-tuning of the entire architecture in supervised manner. Figure 5.5 shows

comparisons of our system with other methods as well as the effect of unsupervised

initialization.
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Figure 5.4: Results on the INRIA dataset with per-image metric. Left: Comparing

two best systems with unsupervised initialization (UU) vs random initialization

(RR). Right: Effect of bootstrapping on final performance for unsupervised ini-

tialized system.

After one pass of unsupervised and/or supervised training, several bootstrap-

ping passes were performed to augment the negative set with the 10 most offending

samples on each full negative image and the bigger/smaller scaled positives. We

select the most offending sample that has the biggest opposite score. We limit

the number of extracted false positives to 3000 per bootstrapping pass. As (Walk

et al., 2010) showed, the number of bootstrapping passes matters more than the

initial training set. We find that the best results were obtained after four passes,

as shown in figure 5.5 improving from 23.6% to 11.5%.
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Figure 5.5: Results on the INRIA dataset with per-image metric. These curves

are computed from the bounding boxes and confidences made available by (Dollár

et al., 2009b). Comparing our two best systems labeled (U+U+ and R+R+)with

all the other methods.
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5.2.2.2 Per-Image Evaluation

Performance on the INRIA set is usually reported with the per-window method-

ology to avoid post-processing biases, assuming that better per-window perfor-

mance yields better per-image performance. However (Dollár et al., 2009b) empir-

ically showed that the per-window methodology fails to predict the performance

per-image and therefore is not adequate for real applications. Thus, we evalu-

ate the per-image accuracy using the source code available from (Dollár et al.,

2009b), which matches bounding boxes with the 50% PASCAL matching measure

( intersection
union

> 0.5).

In figure 5.5, we compare our best results (11.5%) to the latest state-of-the-

art results (8.7%) gathered and published on the Caltech Pedestrians website1.

The results are ordered by miss rate (the lower the better) at 1 false positive per

image on average (1 FPPI). The value of 1 FPPI is meaningful for pedestrian

detection because in real world applications, it is desirable to limit the number of

false alarms.

It can be seen from figure 5.4 that unsupervised initialization significantly im-

proves the performance (14.8% vs 11.5%). The number of labeled images in INRIA

dataset is relatively small, which limits the capability of supervised learning algo-

rithms. However, an unsupervised method can model large variations in pedestrian

pose, scale and clutter with much better success.

Top performing methods (Dollár et al., 2009a), (Dollár et al., 2010), (Felzen-

1http://www.vision.caltech.edu/Image Datasets/CaltechPedestrians/files/data-INRIA
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szwalb et al., 2010), (Walk et al., 2010) also contain several components that our

simplistic model does not contain. Probably, the most important of all is color

information, whereas we have trained our systems only on gray-scale images. An-

other important aspect is training on multi-resolution inputs (Dollár et al., 2009a),

(Dollár et al., 2010), (Felzenszwalb et al., 2010). Currently, we train our systems

on fixed scale inputs with very small variation. Additionally, we have used much

lower resolution images than top performing systems to train our models (78× 38

vs 128 × 64 in (Walk et al., 2010)). Finally, some models (Felzenszwalb et al.,

2010) use deformable body parts models to improve their performance, whereas

we rely on a much simpler pipeline of feature extraction and linear classification.

Our aim in this work was to show that an adaptable feature extraction system

that learns its parameters from available data can perform comparably to best

systems for pedestrian detection. We believe by including color features and using

multi-resolution input our system’s performance would increase.
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Chapter 6

Sparse Coding by Variational

Marginalization

In chapters 2 and 3, we have shown that the optimal solution for the sparse

coding problem is unstable under small perturbations of the input signal. The pre-

dictor function Fe provides a smooth mapping, and alleviates the stability problem

as shown in chapter 2. Additionally we have developed an extension to learn invari-

ance from data in chapter 3 by extending the sparse coding problem using complex

cell models from neuroscience which is equivalent to the group sparse coding formu-

lation with overlapping pools. However, we have always assumed that the optimal

solution is the minimum of a certain energy function, amounting to finding the

maximum a posteriori (MAP) solution, rather than the maximum likelihood so-

lution. In this chapter, we provide a variational marginalization (MacKay, 2003)

model of the sparse coding problem for finding more stable representations. Very
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similar approaches that use variational formulation for sparse modeling have al-

ready been published in the literature (Girolami, 2001; Wipf et al., 2004; Seeger,

2008). In these works, both the code inference and dictionary update steps are

modeled using variational marginalization, however, we only formulate the sparse

coding using variational methods and keep using stochastic gradient descent for

dictionary updates since the instability of the solution is due to the MAP solution

of code inference using an overcomplete dictionary.

6.1 Variational Marginalization for Sparse Cod-

ing

One can write the probability distribution corresponding to a given energy

function through Gibbs distribution as:

P (x; θ) =
e−βE(x;θ)

Z(β, θ)
(6.1)

Z(β, θ) =

∫

x

e−βE(x;θ)

where Z(β, θ) is the partition function (normalization coefficient). For high di-

mensional problems, computing Z is intractable and Energy-Based Models (LeCun

et al., 2006) avoid computing this term. On the other hand, using variational free

energy minimization techniques (MacKay, 2003), one can find a simpler distribu-

tion Q(x; γ) that approximates P (x) and find a lower bound to Z(β, θ).
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The free energy of a system is:

Fβ = − 1

β
log

∫

x

e−βE(x;θ) (6.2)

and the corresponding variational free energy under the approximating distri-

bution Q(x; γ) is:

βF̃β =

∫

x

Q(x; γ) log
Q(x; γ)

e−βE(x;θ)
(6.3)

F̃β = EQ [E(x; θ)]− 1

β
H(Q) (6.4)

by substituting the probability distribution from equation (6.1):

βF̃β =

∫

x

Q(x; γ) log
Q(x; γ)

P (x; θ)
− logZ(β, θ) (6.5)

βF̃β = DKL(Q||P ) + βF (6.6)

one can see that the variational free energy F̃ is an upper bound on the free energy

and the difference is defined by the KL-divergence between Q and P .

In this section we focus on the ℓ1 minimization sparse coding model without

the predictor term:

ESC(X, z,D) = min
1

2
||x−Dz||22 + λ

∑

i

|zi| (6.7)

and rewriting eq. (6.4), the corresponding variational free energy is:

˜Fβ(X;D) =

∫

z

Q(z)E(X, z;D)− 1

β
H(Q(z)) (6.8)

The above equation is valid for any distribution Q(x) and we assume a Gaussian

with mean m and diagonal variance S (s.t σ2
i = si = Sii, i = 1..d)
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Below we give a detailed expansion of equation (6.8). Expectation of energy

term can be expanded as follows:

∫

z

Q(z)E(X, z;D)

=

∫

z

Q(z)||X −Dz||22 + λ

∫

z

Q(z)||z||1 (6.9)

=

∫

z

Q(z)(X −Dz)T (X −Dz) + λ

∫

z

Q(z)||z||1 (6.10)

=

∫

z

Q(z)
[

XTX − 2X tDz + zTDTDz
]

+ λ

∫

z

Q(z)||z||1 (6.11)

By using linearity of expectation and the fact that zTAz = Tr
[

AzzT
]

, the quadratic

term can be simplified as:

= XTX − 2XTDm+mTDTDm+Tr
[

DTDS
]

+ λ

∫

z

Q(z)||z||1 (6.12)

= ||X −Dm||22 +Tr
[

DTDS
]

+ λ
∑

i

∫

zi

Q(zi) |zi| (6.13)

A random variable (y) such that y = |x| and x ∈ N (µ, σ2) has folded normal

distribution (Leone et al., 1961). The pdf of y is given as:

f(y) =
1

σ
√
2π

[

e−(x−µ)2/2σ2

+ e−(x+µ)2/2σ2
]

(6.14)

The expected value of y is calculated by integration:

E[y] =
1

σ
√
2π

∫ ∞

0

[

e−(x−µ)2/2σ2

+ e−(x+µ)2/2σ2
]

(6.15)
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The first term can be solved by change of variables. Let t = x−µ

σ
√
2
:

= σ

√

2

π

∞
∫

−µ/σ
√
2

e−t2tdt+
µ√
π

∞
∫

−µ/σ
√
2

e−t2dt (6.16)

= σ

√

2

π

[

−1

2
e−t2

∣

∣

∣

∞

−µ/σ
√
2

]

+
µ√
π

µ/σ
√
2

∫

0

e−t2dt+
µ√
π

∞
∫

0

e−t2dt (6.17)

=
σ√
2π

e−µ2/2σ2

+
µ

2

[

1 + erf(µ/σ
√
2)
]

(6.18)

The second term can also be solved by change of variables similarly. In this case,

let t = x+µ

σ
√
2
:

= σ

√

2

π

∞
∫

µ/σ
√
2

e−t2tdt− µ√
π

∞
∫

µ/σ
√
2

e−t2dt (6.19)

= σ

√

2

π

[

−1

2
e−t2

∣

∣

∣

∞

µ/σ
√
2

]

−







µ√
π

∞
∫

0

e−t2dt− µ√
π

µ/σ
√
2

∫

0

e−t2dt






(6.20)

=
σ√
2π

e−µ2/2σ2 − µ

2

[

1− erf(µ/σ
√
2)
]

(6.21)

Therefore, for each i, the expected value of |zi| is given as:

E [|zi|] =
√

2

π
σie

−m2
i
/2σ2

i +mi

[

erf(mi/σi

√
2)
]

(6.22)

where we have used erf(a) = 2√
π

∫ a

0
e−t2dt. This result can also be stated in terms
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of the cdf of standard normal distribution (Φ(a)):

Φ(a) =
1√
2π

∫ a

−∞
e−t2/2dt

Φ(a) =
1

2

[

1 + erf(a/
√
2)
]

E [|zi|] =
√

2

π
σie

−m2
i
/2σ2

i +mi

[

1− 2Φ(
−mi

σi

)

]

(6.23)

Finally, the entropy of a gaussian distribution is given as:

H(Q(z)) =
1

2
ln[(2πe)d|S|] (6.24)

=
1

2
ln[(2πe)d

∏

i

si] (6.25)

Combining equations 6.13, 6.23, 6.25 into 6.8:

F̃β(X;D) = ||X −Dm||22 +Tr
[

DTDS
]

+

λ
∑

i

[

√

2

π
σie

−m2
i
/2σ2

i +mi

[

1− 2Φ(
−mi

σi

)

]

]

+

− 1

2β
ln

[

(2πe)d
∏

i

si

]

(6.26)

At this point, we can solve for mean mi and standard deviation σi from the

derivative of equation 6.26.

∂F̃β

∂mi

=
[

−2DT (X −Dm)
]

i
+

λ

[

√

2

π

mi

σi

e−m2
i
/2σ2

i +

[

1− 2Φ(−mi

σi

)

]

+

√

2

π

mi

σi

e−m2
i
/2σ2

i

]

∂F̃β

∂mi

=
[

−2DT (X −Dm)
]

i
+ λ

[

1− 2Φ(−mi

σi

)

]

(6.27)
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∂F̃β

∂σi

= diag(DTD)i+

λ

[

√

2

π
e−m2

i
/2σ2

i +

√

2

π

m2
i

σ2
i

e−m2
i
/2σ2

i −
√

2

π

m2
i

σ2
i

e−m2
i
/2σ2

i

]

− 1

βσi

∂F̃β

∂σi

= diag(DTD)i + λ

√

2

π
e−m2

i
/2σ2

i − 1

βσi

(6.28)

Using these equations, a standard CG solver can be used to alternatively op-

timize the mean and the standard deviation for each unit. The energy function

can be separated into two parts: first computing the mean of the approximating

distribution Q and second, computing the standard deviation of Q. After conver-

gence, the mean values (mi) are used as the representation (code) instead of z∗

that is obtained from minimizing the ℓ1 energy. The relation between the ℓ1 energy

minimization, given in eq. (6.7), and the variational marginalization in eq. (6.26)

can be better understood from the following equation that only contains the vari-

ational energy terms that depend on the mean of Q. In figure 6.1, a comparison

of the sparsity inducing term in variational minimization and the absolute value

function is compared.

F̃βmean = ||X −Dm||22 + g(m; σ) (6.29)

g(m; σ) = λ
∑

i

[

√

2

π
σie

−m2
i
/2σ2

i +mi

[

erf

(

mi

σi

√
2

)]

]

(6.30)

It can be seen from figure 6.1 that, as the standard deviation decreases, the dis-

tribution becomes tighter around the mean, thus converges to energy minimization

solution. However, since the standard deviation is inferred, the solution procedure
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Figure 6.1: Left: The regularization term g(m; σ) given in equation 6.29 is shown

for σ = 1 together with absolute value function. Right The regularization term is

shown for different values of σ.

chooses how closely it needs to approximate the energy minimization solution.

Having explained the variational formulation for sparse coding, we note that

modeling the dictionary, i.e. updating the parameters of D, can also be formulated

in a similar manner. However, in the following we continue using MAP solution

for adopting D using stochastic gradient descent updates.

The proposed system can also be run convolutionally by using the derivative

mask as explained in chapter 5. In figure 6.2, two convolutionally trained dictio-

naries are shown. On the left, a dictionary trained using sparse coding (Li and

Osher) and on the right, a dictionary trained using the variational free energy

minimization on MNIST handwritten digits dataset.

First we compare sparse coding and variational marginalization methods by
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Figure 6.2: Left: Dictionary trained convolutionally using coordinate-descent

sparse coding (Li and Osher) method on MNIST dataset. Right: Dictionary

trained convolutionally using variational free energy minimization method on

MNIST dataset.
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training on natural images and comparing the reconstruction error vs sparsity be-

haviour. Figure 6.3 shows that the β parameter controls the transition between

energy minimization and variational free energy minimization. As it can be seen

from eq. (6.8), as β increases, the entropy term vanishes, thus variational marginal-

ization solution approaches energy minimization solution.

6.2 Stability Experiments

Next, we compare the stability of representations obtained from sparse coding

solution and variational free energy minimization. We take 60 consecutive frames

from a video and plot the angle between representations for all consecutive pairs

of frames as shown in figure 6.4. It can be seen that, as the sparsity coefficient λ is

decreased the sparse coding solution obtained using coordinate descent method (Li

and Osher) produces less stable representations since the solution will contain many

more active code units to achieve better reconstruction and using an overcomplete

dictionary, there are many similar configurations to achieve same error level. The

curves corresponding to variational free energy minimization are all produced using

λ = 0.5 for varying values of β and it can be seen that even for high values of β,

variational free energy minimization produces more stable representations.

In order to quantify the effect of this stability improvement on recognition per-

formance using variational free energy minimization, more controlled experiments

on recognition and classification tasks should be performed.
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scent sparse coding and variational free energy minimization.
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Chapter 7

Conclusion

In this thesis we have developed unsupervised methods for learning feature

extractors that can be used in deep architectures for visual recognition. We have

1. trained sparse models simultaneously with a feed-forward regressor to achieve

efficient inference, 2. merged complex cell models with sparse models to learn

locally invariant feature extractors, 3. developed convolutional sparse modeling

that learns translation invariant dictionaries over images. 4. shown that the non-

linear functions that are used for building deep architectures have a very significant

effect on the recognition performance.

In chapter 2, we have extended sparse modeling algorithms by jointly training

a feed-forward predictor function. The resulting algorithm was named Predictive

Sparse Decomposition (PSD). The output representations from this predictor func-

tion were then compared with optimal sparse representations on object recognition

task using Caltech 101 dataset and slightly better performance was achieved. This
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modification enabled the use of sparse modeling algorithms for training generic

feature extractors.

In chapter 3, we have shown that modeling invariant representations can be

achieved using group sparsity criterion with overlapping group definitions instead

of per-component ℓ1 sparsity criterion. When the trained feature extractor was

compared with the SIFT feature extractor on the Caltech 101 dataset, it achieved

very similar recognition performance, however, when applied on the MNIST hand-

written digit classification task, the proposed system performed significantly better

since the parameters are adapted to the particular task at hand, rather than being

optimized for only natural images.

We have then used the PSD algorithm to build hierarchical feature extractors

as explained in chapter 4 and tested on three benchmark datasets: Caltech 101,

MNIST and NORB. We have shown that the form of the non-linear functions used

in between stages of a hierarchical system become very important especially when

there is lack of supervised labeled data.

Finally, in order to reduce the redundancy in the dictionary introduced from

training on local image patches, we have developed convolutional sparse model-

ing. A dictionary that is trained convolutionally contains a richer set of features

compared to the same size dictionary trained on image patches and and using the

feature extractors trained convolutionally increases the recognition performance

compared to patch based training.

The unsupervised methods proposed in this thesis are a continuation of a gen-
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eral unsupervised learning framework that contains a feed-forward predictor func-

tion and a linear decoding function which was first proposed in (Ranzato et al.,

2006). (Ranzato et al., 2007b) extended the algorithm proposed in (Ranzato et al.,

2006) to encode translational invariance and to build hierarchical feature extrac-

tion systems for object recognition. In (Ranzato et al., 2007a) a new sparsifying

penalty function was introduced instead of the temporal soft-max used in (Ran-

zato et al., 2006) and the predictor and dictionary parameters were constrained to

be transpose of each other to prevent them from growing. In PSD (Kavukcuoglu

et al.), we used ℓ1 penalty for enforcing sparsity on the representation and also re-

placed the symmetry constraint with a unit L2-norm constraint on the dictionary

elements, which also enabled us to use various different architectures in predictor

function. We have then extended PSD using complex cell models to learn invariant

representations in (Kavukcuoglu et al., 2009) and in (Kavukcuoglu et al., 2010) we

introduced convolutional sparse modeling together with better predictor functions

for sparse representations and efficient convolutional sparse coding algorithms.

In summary, we have developed algorithms and methods to achieve a success-

ful object recognition system that has a hierarchical structure, can be trained

using unlabeled data for improved accuracy, can produce locally invariant repre-

sentations and finally efficient to be used on large datasets and real-time vision

applications. There is much more to be done to achieve this goal, however we be-

lieve the models proposed in this work are valuable contributions towards realizing

this objective. Several interesting problems are left open for future research. In
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particular, rather than using a fixed contrast normalization function, developing

an adaptive function to reduce correlations between features, integrating invariant

models into hierarchical structure and developing integrated learning algorithms

for deep networks to improve on layer-wise training seem like the most important

ones.
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