
Automating Software
Deployment

A Ph.D. Thesis by

Benchiao Jai

New York University

Department of Computer Science

iii

Acknowledgements

There is a phrase widely used in Chinese fortune-telling: “From south-east come
people of great help.” In my limited life experience, helpful people seem to come from
all directions. There are so many people who helped me in so many ways, the
appreciation I can express on paper can only show the tip of the iceberg.

First and foremost, I thank my advisor Alan Siegel for guiding me, both in school
and in real life, through quite a few whimsical years of my life. I often find myself
quoting his words of wisdom to my junior fellows. I also thank Allan Gottlieb, Eric
Freudenthal, and other colleagues in the UltraComputer Laboratory for some very
stimulating research experience; Arthur Goldberg for showing me the way to the world of
GroupWare and the Internet; Malcolm Harrison, Robert Dewar, Benjamin Goldberg,
Edmond Schoenberg, and other knowledgeable minds in the Language Laboratory for
broadening my views; Richard Cole, often through short and wise comments, setting a
vivid example as a research scholar; my dear friends Charlie Repetti, Nai-Wei Hsue,
Hseuming Chen and David Solomon for feeding me mental stimuli and connections to
industry; and last but not least, Peter Barnett for teaching me the responsible perspectives
towards many things.

My parents Shing-Jeng Jai and Chio-Jane Hu brought me into this world and
nurtured me through difficult times. My wife Angela kept me motivated. Without their
love, I would not have lasted so long in this endeavor. My brothers Robin and Jackson
are always setting good examples for me to follow. My admiration toward them can not
be described by words.

iv

Title: Automating Software Deployment
Author: Benchiao Jai
Advisor: Alan Siegel

Abstract

The work users do with an application can be divided into actual work
accomplished using the application and overhead performed in order to use the
application. The latter can be further partitioned based on the time at which the work is
performed: before (application location and delivery), during (installation) and after
(upgrade) the installation of the application. This category can be characterized as the
software deployment overhead. This thesis presents a component architecture RADIUS
(Rapid Application location, Delivery, Installation and Upgrade System) in which
applications can be built with no software deployment overhead to the users. An
application is deployed automatically by simply giving the user a document produced by
the application. Furthermore, the facilities in RADIUS make the applications self-
upgrading. In the end, the users perform no deployment overhead work at all.

The conventional way of using an application is to install the application first,
then start using documents of the application. The object-oriented programming (OOP)
paradigm suggests that this order should be reversed: the data should lead to the code.
However, almost all software fails to meet this model of design at the persistence level.
While modern software often use OOP at the program level, the underlying operating
systems do not support OOP at the document/file level. OOP languages use pointers to
methods to indicate what operations can be performed on the objects. We extend the idea
to include “pointers to applications.” Each document has an attached application pointer,
which is read by RADIUS when the document is opened. This application pointer is then
used to locate and deliver the application module necessary for the document.

RADIUS is designed to be compatible with existing technologies and requires no
extensions to either programming languages or operating systems. It is orthogonal to
programming tools, is language-independent and compatible among operating systems,
and consequently does not impose limitations on which environments the developers can
use. We illustrate the implementations for the two most popular platforms today – C++
on Windows, and Java. RADIUS is also orthogonal to other component systems such as
CORBA or COM and is easy to integrate with them.

v

Table Of Contents

Acknowledgements .. iii

Abstract... iv

List Of Figures... vii

Chapter 1: Introduction ..1

1.1. Motivation ...1

1.2. Design Principles...4

1.3. Extending the Object-Oriented Programming Paradigm ..5

1.4. Related Work...7
1.4.1. Installation Managers..7
1.4.2. Netscape Plug-in Finder and SmartUpdate...7
1.4.3. Marimba Castanet...8
1.4.4. Java Applications and Applets..8
1.4.5. Operating System Facilities..9
1.4.6. Component Systems ...9
1.4.7. Miscellaneous Application-Specific Code ...10
1.4.8. Summary...10

1.5. Thesis Organization...10

Chapter 2: The RADIUS Application Framework...12

2.1. The RADIUS Data Structure and Algorithm ..12

2.2. The Application Server ...15

2.3. Storage Space Management ..16

2.4. Wrapping Existing Applications into RADIUS..17

2.5. Summary ...17

Chapter 3: RADIUS Implementations...19

3.1. The RADIUS Programming Interface...19
3.1.1. The RADIUS Programming Interface in Java..19
3.1.2. The RADIUS Programming Interface in C++..20

3.2. The Application Loader...22
3.2.1. The Application Loader in Java..23
3.2.2. The Application Loader in C++..28
3.2.3. Naming Application Files...31

3.3. The Object Factory..31
3.3.1. The Object Factory in Java ...32
3.3.2. The Object Factory in C++...33

vi

3.4. The Object Browser...33

Chapter 4: Application – Programming in Presentation ...36

4.1. Motivation ...36
4.1.1. Programming Models ...36
4.1.2. Related Work ..37

4.2. The Basic Component ...38
4.2.1. The Data Structure..38
4.2.2. The Data Methods...39
4.2.3. The Visual Interface ...40
4.2.4. The Event Interface...42
4.2.5. The Scripting Interface ...43
4.2.6. Viewing and Editing PIP Objects ...44

4.3. Standard PIP Components...46
4.3.1. The PIP_Text Class ..47
4.3.2. The PIP_Picture Class ..47
4.3.3. The PIP_Page Class..49
4.3.4. The PIP_Presentation Class..50
4.3.5. The PIP_Line, PIP_Shape and PIP_Polygon Classes.......................................50
4.3.6. The PIP_Timer Class..52
4.3.7. The PIP_Media Class ...52
4.3.8. The PIP_Hotspot Class and the PIP_Button Class ...53
4.3.9. The PIP_OLE Class..54
4.3.10. The PIP_Engine Class ..54
4.3.11. The PIP_Table and PIP_Chart Classes...55
4.3.12. The PIP_Database Class ...55

4.4. PIP Script Programs ..55
4.4.1. Security for PIP Objects ...57

4.5. Summary ...58

Chapter 5: Conclusion...59

5.1. Application Areas of RADIUS..59

5.2. Future Directions...60
5.2.1. Generalizing RADIUS..60
5.2.2. Integrating the Object Browser...60
5.2.3. The Storage and Exchange Format...61
5.2.4. COM/CORBA Interfaces..61
5.2.5. Software Licensing ...61
5.2.6. Security and Authentication ...62
5.2.7. RADIUS Applications as Mobile Code..62

BIBLIOGRAPHY..63

vii

List Of Figures

Figure 1: Software Activities and Participants ..1
Figure 2: Analogy between RADIUS and OOPL..6
Figure 3: A Sample RADIUS Document...12
Figure 4: The RADIUS Process...12
Figure 5: Key RADIUS Methods (in Java Notation)...14
Figure 6: Roles of RADIUS Documents ...14
Figure 7: Additional RADIUS Methods (in Java Notation) ..15
Figure 8: RADIUS Interface in Java..19
Figure 9: Standard RADIUS Application in Java..20
Figure 10: Definition of the RADIUS Base Class in C++...21
Figure 11: Sample RADIUS Application in C++..22
Figure 12: Key Portion of Application Loader in Java..23
Figure 13: Dependency among Classes from Different Hosts...26
Figure 14: Caveat in Using the Application Loader in Java..27
Figure 15: Code in Object Browser to Encapsulate the Application Loader.....................27
Figure 16: Simple Meta-Object Class in C++ ..28
Figure 17: Definition of Application Loader in C++...29
Figure 18: Sample Windows Resource Script Specifying DLL Dependency31
Figure 19: Object Factory in Java..32
Figure 20: Definition of Object Factory in C++..33
Figure 21: RADIUS Object Browser in Java...33
Figure 22: RADIUS Object Browser in C++...33
Figure 23: A Directory Window in RADIUS – Java Version ...34
Figure 24: A Directory Window in RADIUS – C++ Version ...34
Figure 25: Code to Display a Document..35
Figure 26: Text Application in Java...35
Figure 27: Text Application in C++ ..35
Figure 28: Picture Application in Java...35
Figure 29: Picture Application in C++ ..35
Figure 30: A Typical Sequential Program ...36
Figure 31: A Typical Event-Driven Program ..36
Figure 32: A Typical Presentation Style Program ...37
Figure 33: PIP File Structure ...38
Figure 34: Data Methods in PIP_Object ..39
Figure 35: Visual Methods in PIP_Object ...40
Figure 36: Event-related Methods in PIP_Object ..42
Figure 37: Other PIP Event Types ...43
Figure 38: The PIP_Script_Engine interface...44
Figure 39: PIP Event Model ..44
Figure 40: Viewing and Editing Methods in PIP_Object ...45
Figure 41: Standard Editing Window for PIP_Object ..46
Figure 42: Customized Standard Editing Window for PIP_Picture46
Figure 43: A PIP_Text Object ...47
Figure 44: Editing a PIP_Text Object..47

viii

Figure 45: A PIP_Picture Object ..48
Figure 46: Editing a PIP_Picture Object ..48
Figure 47: PIP Page Designer ..49
Figure 48: A Curved Frame for a PIP_Line Object...50
Figure 49: Editing a PIP_Line Object..50
Figure 50: Editing a PIP_Shape Object ...51
Figure 51: Editing a PIP_Polygon Object ..51
Figure 52: Editing a PIP_Media Object ...53
Figure 53: Editing a PIP_Button Object...53
Figure 54: Editing a PIP_OLE Object Encapsulating an Excel Spreadsheet54
Figure 55: PIPScript Grammar Rules ..56
Figure 56: Sample PIPScript Program...57
Figure 57: RADIUS Application Areas...59
Figure 58: Current Status of RADIUS Implementations...60

1

Chapter 1: Introduction

Software deployment issues originate from the field of software engineering.
This thesis presents a solution using a technique commonly employed in object-oriented
programming languages. The implementation of the solution makes use of the latest data
communication technologies and is done at a level that can be considered part of the
operating systems. By combining the knowledge from a diversified set of fields, we were
able to find and implement the solution in a clean way with very little coding.

This dissertation describes the RADIUS (Rapid Application location, Delivery,
Installation and Upgrade System) application framework. Two implementations are
presented in detail and sample applications are illustrated. Useful software systems built
from the sample applications are also demonstrated. In this chapter, we review the
motivation, the design principles, the solution, related work, and the organization of the
rest of this thesis.

1.1. Motivation
Using software has become a daily activity of technologically advanced societies

on this planet. Between the point where a software is available and the point where the
software is usable, several steps have to be performed:
• (Software Location.) The user first has to find the software. For example, when the

user downloads a PDF file, he or she needs to find Acrobat Reader™. When a
postscript file is received through email, a postscript viewer has to be located. Even
after the application is installed, the application location process is still performed in
the background by the operating system every time a document is opened.

• (Software Delivery.) The user has to get a copy of the software. Some software can
be downloaded over the Internet, some can be purchased in stores or through mail
order, and some custom-made applications are copied over an internal network within
organizations.

• (Software Installation.) The software has to be loaded on the user’s computer.
Computers that do not have application software stored on them but may have
applications executed on them, such as diskless workstations on a LAN or terminals,
are considered as a part of a larger computer for the scope of this thesis.

• (Software Upgrade.) If there is a newer version of a software, sometimes the users
will like to use the newer version instead of the old one, and therefore the previous
steps need to be repeated and some coordination tasks need to be performed.

We call these collective steps the software deployment process.
Activity Typical Participants
1. Software specification and analysis Project manager, system analyst
2. Software design System analyst, programmer
3. Implementation, testing Programmer, quality manager
4. Documentation System analyst, programmer, technical writer
5. Delivery Project manager or software vender, user
6. Installation, upgrade User, technical support
7. Training, operation User, technical support

Figure 1: Software Activities and Participants

2

Software activities contain many parts performed by different groups of people.
The figure above shows a typical partitioning of software activities. In the past few
decades significant effort has been devoted to reducing the cost of developing (items 1
through 4) and operating software (item 7). Until recently, little attention has been paid
to reducing the cost of deploying software (items 5 and 6) [16]. We conjecture from our
experience that the software deployment issues did not gain recognition due to the
following factors:
• Compared against the thousands or millions of person-hours spent on developing the

software, the few person-hours or person-days spent on deploying the software is just
a tiny fraction of the total time and cost.

• The time and cost associated with the users’ part is relatively small or not visible in
terms of dollar amount. The users’ expense was not in the accounting formula.

• Any effort to make the deployment process easy will be performed by developers,
who tend to put higher priority on their own needs, which is to get the project done.
It is a well-known fact that software projects are more likely to be completed late than
on time, therefore developers are more likely to work on making their own lives
easier than making the users’ lives easier.

• Developers have a mentality that subconsciously says that once the product is
delivered, their duty is over and they don’t want to spend any more time on it.

However, the situation becomes different as the computing environment evolves.
Today’s computing environment is globally connected, distributed, shared, dynamic and
changing rapidly. We are witnessing an evolution where the era of “personal computer”
is being replaced by the era of “the network is the computer” (Sun, 1988) [13]. Studies
on TCO (Total Cost of Ownership) [8, 37] of computers have indicated that software
deployment tasks actually incur a notable cost to the users, therefore the users are
beginning to demand more development effort to reduce their burden. Several new
trends have significantly increased the visibility of software deployment tasks and led to
this awakening of the users:
A. Software reuse technologies, such as component architectures [26, 29, 45], are

reducing the number of applications that have to be developed from scratch.
B. RAD (Rapid Application Development) tools [5, 38, 40] are reducing the

development effort for each application.
C. Easy-to-use programming tools are encouraging the average programmers to develop

applets (tiny applications).
D. The number of software users has increased dramatically.
E. The “release early, release often” practice [39] is becoming commonplace, therefore

is increasing the number of software upgrades.
F. The price of computer hardware has dropped substantially, therefore encouraged

hardware upgrades.
The total effort spent on deploying software is proportional to 1) the number of

software applications to be deployed (trend C), 2) the number of users using the software
(trend D), 3) the number of releases of software (trend E) and 4) the number of times the
same software has to be deployed (trend F). Combined with the relative slowing down of
the growth in software development effort (trends A and B), one can easily visualize the
burgeoning demand on solutions to software deployment issues. A few example
situations can help stress the importance of cutting down the time and effort involved in,

3

or even totally automating, the software deployment process:
• (Insufficient instruction.) Five hundred copies of a powerful mathematics education

system are delivered to the public schools in some state. The installation instruction
is seven pages long. Two semesters later only twenty-five copies are in use because
most elementary school teachers were not able to get everything installed and
configured correctly.

• (Incoherent operations.) A large corporation is upgrading its standard word processor
system. Eight technical support technicians spend two months working through four
thousand workstations installing the upgrade, but missed seventeen notebook
computers used by some travelling salespeople. Six months later some of the
salespeople lost big accounts because they were not able to read a very important
memo from the CEO.

• (Replacement of legacy configuration.) A (non-computer science) professor is using
thirty-eight different software packages to conduct a research. The research group
decides to upgrade all the computers to the new 1-GHz model. The professor can’t
figure out which files to move over since most of the packages were installed by
various research assistants and hardware/software venders. The new machines are
therefore sitting in a corner collecting dust.

• (Failure to locate software.) The same professor uses a very powerful proprietary
software package for processing research data. When the research result is sent out
for peer review, five out of five reviewers do not know how to read and verify the
data. One hundred sixty-two email messages, fifty-eight FTP sessions and four
months later, the reviewers finally figured out what the professor was doing.

We are not claiming that no one has noticed the problem. Indeed, a vast amount
of time and money has been spent on creating installation and upgrade packages (on the
developers’ end) and setting up and maintaining software configurations (on the users’
end). We can see that there is a huge demand by observing:
• The colossal success of InstallShield™. InstallShield simplifies the processes of both

building the deliverable software package and installing the software. It transforms a
major part of the process of creating an installation package into a checklist with fill-
in blanks and some minor scripting, and turns the installation process into mostly a
set of select-and-go steps. At one time, the company that designed InstallShield
claimed that seventy-five percent (75%) of the software in the world is installed by
InstallShield.

• The expanding size of corporate technical support department. As the number of
software packages and users grow, more staff is needed to handle the construction
and maintenance of software configurations. According to a study [54] by
International Data Corp., seventy-five percent (75%) of the lifetime cost of a
computer is spent on staffing while only nine percent (9%) is on software and sixteen
percent (16%) on hardware.

• The rapid growth of software sales and delivery over the Internet [16]. Instead of
having to go from computers to secondary storage media to stores then back to the
computers, software packages can go directly from computers to computers.

These recent developments are dedicated to separating and/or reducing the non-
productive labor involving software deployment that the users have to carry out in order
to use the software. As software deployment gains more visibility, we foresee that more

4

effort will be devoted to reducing the cost associated with it. Therefore, we designed the
RADIUS application framework to make the software deployment process totally
transparent to the users and to impose minimum overhead to the developers.

1.2. Design Principles
In the past few decades, a large amount of research effort in object-oriented

systems was devoted to designing new object-oriented programming languages or new
operating systems. Some high-caliber object systems such as COM [6, 15, 26, 41] or
CORBA [29, 30, 31] offer very powerful reuse mechanisms, but the overhead involved in
starting to use them cannot be justified considering the short lifecycle of many
applications. For simple applications, these tools seem too complicated for programmers
to overcome the initial learning curve. Powerful object-oriented programming tools are
often not quickly accepted because the dominance of the market has very little to do with
technical merit, but very much to do with compatibility. The users tend to pick the ones
that are easy to learn and use, readily available and well supported. A tool can not gain
wide acceptance quickly if it requires massive extensions to the operating system or the
programming language.

Java [11, 14] has been successful so far, but the language design is not the major
reason for its acceptance. It is popular because of the close resemblance to C++, cross-
platform virtual machine, abstract windows toolkit and the class delivery mechanism [21,
22, 50]. We claim that for an object-oriented tool to be practically useful, it is not
necessary to create new languages or operating systems. Novel ways of utilizing existing
technologies will be appreciated far more by the real-world users.

Thanks to the speedy progress in RAD tools, it is becoming cost-effective to write
single-use software. For example, an experimental computer scientist can build small
animated presentations to demonstrate a new algorithm to a special interest group; an
economist can use special software to display a newly found niche market to investment
bankers; a medical scientist facing an epidemic outbreak can construct a program to
analyze the samples collected and communicate the results to the hospital or the Center
for Disease Control. Just like cable television catering to small groups of audiences, we
foresee that software will be rapidly developed for small groups of users and many
applications will undergo frequent, if not continuous, upgrading and refinement. For this
new crop of throwaway applications, the deployment overhead involved in using them
has to be reduced to near zero for them to be economically justifiable. Not only do we
need a system that is lightweight on the users’ side, we also need it to be light on the
programmers’ side because these programmers are not professional software engineers
who are used to handling software deployment.

On the other hand, even software that is designed to be of long-term use can have
a relatively heavy load of deployment tasks. Modern software projects tend to have users
from early on for testing purposes. Many of them also have frequent releases [39] for
bug fixes and feature improvements. The total amount of deployment work involved in
the project is the number of users multiplied by the number of releases multiplied by the
amount of deployment work in each release. For large software projects, a reduction in
the last factor can have a great impact on the development cost and schedule. The author
has first-hand experience with a software project in which a custom-made automatic
upgrade module saved the company about half million dollars over three years.

For the reasons mentioned above, we chose to implement RADIUS with mature

5

technology and made no extensions to either the programming languages or the operating
systems. As long as the target operating system and programming language (and its
compiler) support dynamically linked program modules, the implementation of RADIUS
is very straightforward.

RADIUS is orthogonal to programming languages and tools. The minimal
requirement in our design of RADIUS gives the developers the freedom to choose the
tools to use while implementing their applications in the RADIUS framework. Even the
documents can be easily made binary-compatible among programming languages and
operating systems. Our approach is also orthogonal to other object systems, such as
CORBA or COM, and is easy to integrate with them without conflict. For example, we
can add the standard CORBA core functionality and Internet Inter-ORB Protocol (IIOP)
[31] to a RADIUS system to make it inter-operable with other CORBA-compliant object
systems over the Internet; or add an ActiveX [15] wrapper to the RADIUS Object
Browser to make it function from within the Microsoft Internet Explorer. On the other
hand, the functionality of RADIUS can be modeled as an interface (COM, CORBA and
Java all use the same term) of other object systems and added to them as an enhancement.

In summary, RADIUS has the following attributes:
1. The system is based on a component structure so that the size of applications can be

minimized and reusability can be maximized. New types of documents can be easily
formed by using existing components as building blocks.

2. The system is centered on documents rather than applications. Applications are just
tools to process documents. The users operate on documents and the applications will
be located, delivered, installed and launched automatically on demand. The users
view the system from a document perspective, not an application perspective.

3. The documents carry information about their applications in a canonical form
independent of the underlying system so that the applications can be located even if
they are not yet installed. This is very important for 1) lay users who have no idea
about what kind of files are handled by which applications, and 2) a rapidly changing
computing environment in which new applications and file formats show up at high
frequencies.

4. The human overhead involved in using applications is zero. Applications are
delivered over the network or the Internet and installed automatically when they are
needed. Applications are upgraded automatically when there are new versions
available. The users perform absolutely no work specific for software deployment
unless they choose to.

5. The overhead involved in developing applications is also very light so that developers
are not deterred by a steep learning curve. The users need just a few files to start
using RADIUS, and the developers need just a few more to start developing RADIUS
applications. No extensions are made to either the programming languages or the
operating systems. The developers are not limited by which development
environments they can use. All the developers have to do is to inherit an interface in
the application class. When dealing with object-oriented technologies, very few tasks
can be simpler than this.

1.3. Extending the Object-Oriented Programming Paradigm
The conventional way of using an application is to install the application first,

then start creating, viewing and editing its documents. The code is directing how the data

6

should be arranged. The object-oriented programming (OOP) paradigm suggests that this
order should be reversed: the data should lead to the code. An object has a list of
operations associated with the object. The execution is initiated by the objects, not the
operations. However, almost all the software we see fails to meet this model of design at
the point of invoking applications. While modern software often use OOP at the program
level, the underlying operating system does not have the necessary mechanisms to
support OOP at the document level, and therefore is not capable of locating the
application for the document.

The basic entities in an OOP system are classes and objects. A class is a
collection of declarations of data (a.k.a. fields) and procedures (a.k.a. methods). An
object is an instance of a class. From an abstract point of view, an object can be thought
of as a piece of data with some indications on what operations can be performed on the
data. In most OOP language designs and implementations, these indications are pointers
to methods. A pointer to an array of pointers to methods (virtual table pointer) is
associated with the object in order to locate the methods for dynamic dispatching at
runtime. In RADIUS, we extend this idea to the document level and introduce the idea of
symbolic “pointers to applications” which indicate the location of executable application
files over the Internet. The symbolic application pointers enable RADIUS to locate and
gather the applications necessary for the documents without the need of installing the
applications first, and thereby make software deployment totally transparent to both the
developers and the users.

Memory

Application Module

Internet

Object
pVTable

data
...

Virtual Table
pMethod
pMethod
pMethod

method
method

method

Application File

...
method
method
method

Document

data

Application
Pointer

...

RADIUS

OOPL

Data Code

Figure 2: Analogy between RADIUS and OOPL

We designed the RADIUS application framework as means of automating
software deployment tasks. The key technique in RADIUS is the application pointer.

7

Due to the heterogeneous nature of modern computing environment, we can safely
assume that no hardware-specific or operating system-specific mechanism would be
universal enough to solve the problem once and for all. As a result, we chose to use
Uniform Resource Locators (URLs) to encode application pointers. Each document has
an application pointer to indicate which application should be used to handle the
document. In practice, an application module may be copied and stored in many places
for various reasons. Therefore, we broke the application pointer down into two parts: the
Class Identifier (the name of the class for the data stored in the document) indicating the
type of the document and the Application Locator (a list of URLs paths, without the file
name part) specifying on which servers the application module can be found.

When a document is processed (viewed, edited, etc.), RADIUS uses the Class
Identifier and the Application Locator to find the application, create an appropriate object
from the data contained in the document, and pass the object to the application. If the
application is not found on the local client machine, the “application delivery and
installation” process takes place through an interaction between the client machine using
the document and the server machine specified in the Application Locator. If the
application is found locally, RADIUS initiates the “application upgrade” process instead
of an initial installation.

The machines on which the documents are used are called the RADIUS Clients
and the machines specified in the Application Locators are called the RADIUS
Application Servers. Through the RADIUS software residing on these two ends, the
software deployment problem becomes transparent to developers and users.

1.4. Related Work
There has been some work done on issues related to software deployment [16].

However, none have tackled all the issues at once and none have given an integrated
solution.

1.4.1. Installation Managers
There are quite a few software packages designed to facilitate the installation of

software. InstallShield [10] and PC-Install [1] are the most famous. They provide easy
ways for developers to write installation procedures, but the earlier versions did not
address other aspects of software deployment. Later derivatives such as
InstallFromTheWeb did address the delivery and upgrade issues, but still have not
addressed the location issue.

Linux RPM [3] is a utility for specifying module dependencies of application
packages and performing installation while maintaining the integrity of system setup. It
doe not address the other issues.

The major deficiency of the installation managers is that the users still need to
initiate the deployment operations explicitly. Moreover, they are tightly bound to the
application files rather than the documents/data that need the applications.

1.4.2. Netscape Plug-in Finder and SmartUpdate
Netscape’s Plug-in Finder is a simple search tool and database, which allows the

users to look for plug-in modules that can be used to handle the downloaded content. It
leads the users to the Web site from which the requested plug-in can be downloaded, but
the users have to perform the download (delivery) and installation manually according to
different instructions that come with each plug-in module.

8

SmartUpdate [27, 28] is a newer technique that allows the developers to package
their applications and provide an “installation trigger” in the form of a piece of JavaScript
contained in a Web page. The new Netscape Communicator browser has been designed
to allow SmartUpdate packages to bypass Java Applet security checks in a limited way.

Oil Change™ [25] is a subscription service that allows the subscribers to keep
their software up to date. It is a labor-intensive undertaking to ease the users’ burden on
the upgrade tasks and is not automated on the developers’ end.

NSBD [9] (Not-So-Bad Distribution) is an automated Web-based distribution
system that is designed for distributing free software on the internet, where users cannot
trust the network and cannot entirely trust the maintainers of software. NSBD
authenticates packages with “Pretty Good™ Privacy” (PGP™) or GNU Privacy Guard
(GPG) digital signatures so users can be assured that packages have not been tampered
with. NSBD’s focus is on security, leaving as much control as is practical in the users’
hands. It requires the developers to set up distribution packages manually and the users
to run an update process manually.

1.4.3. Marimba Castanet
Marimba’s Castanet [24] products allow developers to build applications which

are “broadcast” to whoever “tune” into corresponding application “channels.” It provides
a convenient way for application delivery, installation and upgrade. However, a separate
channel needs to be set up for each application and there is no well-defined relation
between documents and applications. Several other systems [16] have been designed to
work in similar ways.

1.4.4. Java Applications and Applets
Java [11, 14] applications are built into class files that are loaded on demand. The

demands are generated by code, not data. The user specifies which application to run,
then he/she can start using the application to process documents. Through the
Serialization Interface [47] an object can be created from a data stream, but the system
requires the class code to have been installed locally in order to de-serialize the
corresponding object. There is no standard way of locating code from data before the
class code is installed.

The Java applet framework [11, 21] is based on the idea of always delivering the
latest version of the software and thus eliminating the need to install and upgrade
applications. However, applets still cannot be located from documents. Furthermore,
without a canonical caching scheme, the performance penalty involved in reloading the
class files over a low-bandwidth connection is high. Applets operate in the same way
applications do and with more security restrictions, which makes it hard to use applet
classes from different sources in the same context.

Nevertheless, the Java class loading mechanism [21] showed us a way of building
a similar technique to make Java applications automatically delivered, installed and
upgraded.

Pal [33] describes an application delivery and upgrade mechanism for Java
applications. It extends the Java class-loading mechanism to enable Java applications to
be loaded in a manner similar to Java applets, yet caching the application files to avoid
the performance penalty associated with reloading. It uses a “drop” mechanism that is in
some way similar to the channels in Castanet. It is different from our approach in several

9

aspects:
• It works with Java applications only. Our approach works with any object-oriented

programming language that produces dynamically linked program modules.
• It needs a special purpose server (one per application) and associated programs to

encode the upgrade information. Our approach uses a simple HTTP server.
• It requires a customized bootstrap program for each application, or the user has to

input a server designator for each application. Our approach uses a unified object
browser for all applications and the application information is encoded in the
documents so that the users need not memorize the information.

1.4.5. Operating System Facilities
While none of the systems mentioned above provides a clear mapping between

documents and applications, many operating systems do. Microsoft Windows and some
Unix shells use a part (usually the suffix) of a document’s file name to “associate” it with
an application. This limits the freedom in naming document files. The MacIntosh
operating system stores the application information with the document and thus does not
post such a restriction on file names. These mappings work at the file level, not the
object level, and thus do not work for compound documents that are assembled from
other documents. The responsibility of digesting compound documents and locating
applications for them are usually left to the applications or the component systems used
to build the applications.

1.4.6. Component Systems
Component systems have become a major trend in software development. COM

[6, 15, 26, 41], CORBA [29, 30, 31] and JavaBean [45] are the best-known ones in use.
These systems provide a common foundation on which the developers can build
interoperable and reusable software artifacts. While the developers can reuse existing
components, the users rely on the developers’ careful work to make available the
components that are being reused. Software deployment is not a part of their standard
services.

COM uses a centralized database (the Windows Registry) to store information
about the installed servers for components [6]. If the server code of an object has not
been installed, the object simply can not be created. The same goes for CORBA systems
that rely on Implementation Repositories [29] to locate the object implementations. The
Management Interfaces [30] specify how installation services should be organized, but
the details about how installation services should be performed are left to the developers.
It is noteworthy that this does leave the possibility for the integration of RADIUS into
CORBA. The JavaBean [45] environment was designed to be a portable guest system
running inside other native component systems. It also requires that the class files of the
beans be installed (in the CLASSPATH) before use. The drawback of these application-
centric designs is that they require applications to be installed before being used.

OpenDoc [2] is a document-centric component system design. It differs from the
systems mentioned above by putting the focus on constructing documents or performing
individual tasks, rather than using any particular application. The software that
manipulates a document is hidden, and users feel that they are manipulating the parts of
the document without having to launch or switch applications. The applications are
considered “part handlers” associated with parts of documents, rather than independent

10

identities. Nevertheless, OpenDoc still requires these part handlers be installed first and
then be located through the Part Handler Registry.

None of these component systems provides a standard way of locating and
delivering applications before they are installed. They all rely on a system-wide
centralized database for component class registration and application location after the
applications have been installed. If the registration database is damaged, the applications
will need to be reinstalled even if the application files are already on the computer.

1.4.7. Miscellaneous Application-Specific Code
Automatic upgrade has been done in some custom software [49], including a

sales-force automation system designed and implemented by the author. Some
commercial software that also performs automatic upgrade has recently appeared on the
market. Examples include Windows 98™ and Norton Utilities™. These upgrade
facilities are proprietary code tailored for their applications and cannot be easily reused
by application developers.

1.4.8. Summary
Compared against the existing systems, the most noteworthy attributes of

RADIUS are:
• Works before the applications are installed.
• Guaranteed mapping from documents to applications.
• Zero-overhead on the user’s end. No need to explicitly locate, install or upgrade

applications.
• Minimal overhead on the developers’ end. No need to explicitly construct installation

packages.
The following table summarizes the features of RADIUS and other systems

mentioned in this section.
Comp.

Systems
Java Install

Managers
SmartUpdate,
Castanet, etc.

OS
Facilities

App.
Specific

Code

RADIUS

Mapping Docs * - - - + - ++
Locate Apps * * - - * - ++
Deliver Apps - + + ++ - + ++
Install Apps - + ++ ++ - ++ ++

Upgrade Apps - + - ++ - ++ ++
Component
Structure

++ + - - - - ++

Ease of Use + + ++ + + ++ ++
Ease of Dev. - + + - - -- ++

++: Strong suit.
+: To a certain degree.
*: Only after installation of applications.
-: Weak, irrelevant or not available.
--: Very weak.

1.5. Thesis Organization
This dissertation is organized as follows: Chapter 2 illustrates the structure of the

11

RADIUS framework and its interaction model on an abstract level. The implementation
in C++ on 32-bit Windows environment and Java are presented in Chapters 3. Chapter 4
demonstrates a presentation system and programming environment PIP (Programming in
Presentation) built in the RADIUS framework. Application implementations at both the
component (RADIUS) level and the script (PIP) level are revealed. The simplicity of
design makes developing these applications relatively effortless. Chapter 5 summarizes
our findings and points out future research directions.

12

Chapter 2: The RADIUS Application Framework

RADIUS [18] is based on the idea of extending in-memory code pointers to
persistent “application pointers” which can be used to locate application files over the
Internet. Through the standard services provided by the RADIUS system utilities,
applications can be located, delivered, installed and upgraded automatically. The same
techniques can be implemented in a variety of programming languages and operating
systems, making RADIUS applicable to many software development environments.

2.1. The RADIUS Data Structure and Algorithm
As in any object system, the basic entities in RADIUS are objects. A RADIUS

document is the persistent representation of a RADIUS object in the form of a file. A
RADIUS document contains a Class Identifier specifying the name of the class of the
object, and an Application Locator indicating where the application for the object can be
found. A RADIUS application is a program file(s) containing the code for one or more
classes (but only one of which is directly associated with the document). The
applications are published on Application Servers, which form the server end of the
RADIUS system. The Application Servers are essentially just file servers with
versioning. In the simplest implementation, they are standard HTTP servers configured
to deliver program files. The visual interfaces for editing and viewing RADIUS
documents are created by the applications through the help of the Object Browser, which
forms the client end of the RADIUS system. The Object Browser can be thought of as a
graphical command shell for the operating system. It is in charge of locating, installing
and upgrading the applications, and managing the creation of objects for the applications.

SimpleText

http://www.RADIUS.org/public/;http://www.cs.nyu.edu/RADIUS/

One line of sample text.\n

Class Identifier Application Locator

Data

Figure 3: A Sample RADIUS Document

Object BrowserDocument

Class
Identifier

Data

Application
Loader

Application
Cache

Object
Factory

Application

Viewer
Window

1
Application

Server
Application
Reservoir

3/7

5/81013

14

Application
Locator 2

License
Database

4

11
12

6/9

Figure 4: The RADIUS Process

13

To make an application RADIUS-compliant, a software developer should design
the documents of the application to begin with a Class Identifier and an Application
Locator, use the remaining part of the document for the application data, and implement
the RADIUS methods in the application. After the application is implemented, it is
published on an application server. Only some sample documents need to be distributed
(maybe just posted on a Web site). When a user opens a document (either an original
sample document or a modified document from another user) in the Object Browser, the
Object Browser loads the application from the application server and installs (and later
upgrades) it onto the client machine. This process is illustrated in Figure 4 and explained
as the following steps:
1. The user asks the Object Browser to open a document. The Object Factory reads the

Class Identifier in the document and tries to create an object of the specified class. If
the Object Factory recognizes the Class Identifier, then the application is already in
memory: go to step 12.

2. The Application Loader reads the Application Locator from the Document and looks
for the Application in the Application Cache. If the Application is found, go to step
7.

3. The Application Loader sends a “request for application” message to the Application
Server specified in the Application Locator.

4. The Application Server may optionally consult a software license database to ensure
that the client machine is entitled to receiving the application and/or the upgrade.

5. The Application Server delivers the application file.
6. The Application Loader installs the application into the Application Cache and

invokes any special installation procedure that the application may have. Go to step
10.

7. The Application Loader sends an asynchronous “request for upgrade” message to the
Application Server while the process proceeds to step 10.

8. If the Application Server eventually returns an upgrade version of the application, the
Application Loader puts it in temporary storage.

9. The Application Loader waits for an appropriate time to install the upgrade and
invokes any special upgrade procedure contained in the application.

10. The Application Loader loads the application into memory.
11. The application registers itself with the Object Factory.
12. The Object Factory creates an object (with the help of the application) and passes it to

the application.
13. The data portion of the document is read by the application.
14. A viewer window of the document is created by the application and the user can start

viewing the document. The application decides whether the document can be edited
and how the document is edited.

If an object contains other objects as part of its data, the process is applied recursively.
An application is unloaded from memory by the garbage collector after all objects
handled by the application have been destroyed.

An Application Locator may specify more than one Application Server, in which
case each Application Server will be queried in turn until one sends a response to the
client. For this reason, the Application Locator is sometimes called the “Application
Path” in our implementations. The two terms are treated as the same.

14

Figure 5: Key RADIUS Methods (in Java Notation)

The methods listed in the above figure are the key to achieving the RADIUS
functionality:
1. If an application implements an install method, the method will be invoked at step

6 to perform application-specific installation tasks.
2. If an application implements an upgrade method, the method will be invoked at step

9 to perform version-specific upgrade tasks.
3. The view method is the entry point to the application. It does not need to literally

display the document. If implemented, it will be invoked in step 14 to start the
application. If an application does not implement this method, it will not be launched
automatically by the Object Browser. The “document” in this case can be considered
just a “trigger” to the deployment process.

4. The readFromStream method is used in step 13 to pass the data to the application. If
an application does not implement this method, the Object Browser will not pass data
to the application. However, the application will still be launched if it implements the
view method. The “document” in this case can be considered a “shortcut” to the
application.

5. If the createFromStream static method is implemented in the application and it
returns a valid object upon reading from the data stream, the Object Factory will use
it in place of the combination of creating an object and invoking readFromStream on
the object. This combines steps 12 and 13 in the RADIUS process. The
createFromStream method may be implemented straightforward as an object
creation and a call to readFromStream , although that will be redundant.

In the most typical cases, the view method and one of the readFromStream and
createFromStream methods should be implemented, while the install and upgrade

methods are optional. To summarize, the following table shows all possible
combinations:
view

method
CreateFromStream or
readFromStream method

Role of the document

Yes Yes A regular RADIUS document.
Yes No An application launcher only.
No Yes Not applicable. The class represents objects that

should not be in a document alone. For
example, a spell checker or a timer. The data
should always be embedded in a parent object
instead of being a document by itself.

No No An install/upgrade trigger only.
Figure 6: Roles of RADIUS Documents

static void install();
static void upgrade();
boolean view();
boolean readFromStream(InputStream stream);
static Object createFromStream(InputStream stream);

15

Figure 7: Additional RADIUS Methods (in Java Notation)

The methods listed in the above figure are optional, but very useful, to the
RADIUS functionality:
1. The getClassID , getAppPath and setAppPath methods are used to access the in-

memory version of Class Identifier and Application Locator. Note that there is no
method to change the Class Identifier, which is a string representation of the name of
the class and thus should be constant. For programming systems that provide enough
run-time type information, getClassID can be implemented using proper run-time
facilities, such as getClass().getName() in Java or typeid(*this).name() in
C++. Otherwise, the programmer should implement it in each class to return a
constant string.

2. The getFileName and setFileName methods are used to access the filename
associated with the document.

3. The writeToStream method is used to write the object to an existing stream. When
the object is contained in another object, the parent object is responsible for creating
(or inheriting) the stream. When an application streams out top-level objects as
documents, it should use the saveToFile method. For read-only applications like
Acrobat Reader™, these methods do not need to be implemented.

For the convenience of coding we group the RADIUS methods (Figure 5 and 7)
into an interface in our implementations, but they can be accessed through other means
(e.g. Java reflection or Windows DLL export) to make the application development more
flexible.

2.2. The Application Server
A RADIUS Application Server is a file server over the Internet, with the added

functionality of versioning and, optionally, software licensing and authentication. In our
current design, an HTTP server configured to deliver DLL (for C++) and Java class files
satisfies our basic needs. For commercial software, some licensing and authentication
mechanisms need to be added. Since RADIUS keeps querying the Application Servers
for upgrades after the applications have been installed, this even provides a way of
catching software piracy.

Software licensing may not be an issue in some commercial situations, and we
believe that such circumstances are likely to undergo significant growth. In the past few
decades, computer software has grown to be more expensive than hardware. In many
cases, the hardware can be considered “come with the software.” Following this
evolution, we can see another shift of value from the software to the information
contained in or delivered by the software. One example is PDF – the reader software is
free and the value is in the documents. We make a bold prediction that in a few more
decades a considerable portion of software will be considered “come with the

String getClassID();
String getAppPath();
void setAppPath(String apppath);
String getFileName();
void setFileName(String filename);
boolean writeToStream(OutputStream stream);
boolean saveToFile(String filename);

16

information.” RADIUS is a perfect architecture for software in this paradigm. Of
course, some software will never be given away, just like hardware today.

Another useful area for RADIUS where software licensing and code
authentication may not be an issue is for Intranet applications, since these proprietary
applications run on (virtually) private networks.

2.3. Storage Space Management
Modern commercial software has the tendency to take up a lot of disk space. One

of the primary reasons for this “bloating” phenomenon is that the installation process is
often treated as a one-time task. These applications have a large amount of code for
many complicated functions and the installation processes take up considerable time and
effort. The interdependency among modules often makes it necessary for the users to
install everything at once, to avoid having to go through the installation process
repeatedly. In RADIUS, the users spend absolutely no time and effort on installation.
The object-oriented design of RADIUS breaks up code into many small components,
which are installed only when used. In other words, no storage space is wasted on
unused features.

In RADIUS, the applications are installed on a client machine by copying the
application files into a cache directory. A bare bones RADIUS system does not need any
kind of cache management. It just keeps installing applications until the storage is
exhausted. For the reason mentioned in the previous paragraph, this may very well be all
it needs. Nevertheless, some cache management schemes can be implemented for
machines whose storage space is at a premium.

The extreme case of storage shortage is no storage. For diskless workstations, the
cache directory can be set to a shared directory on the LAN, or be totally eliminated (i.e.
no caching at all: program files are always loaded from the Application Servers) if
network traffic and delay is not a problem for the target environment. Intranet
applications whose Application Servers are on the same LAN as the client machines fall
into this situation.

For machines that do have secondary storage, an alias table can be established to
map application files to locations other than the cache directory. If the source of the
application file is a readily-accessible secondary storage (e.g. local hard drive, non-
removing CD-ROM, or LAN file server), then the Application Loader can simply add an
entry in the alias table without actually copying the application file into the cache
directory. Although many operating systems already have file alias mechanisms, they
usually use an entire file to maintain an alias. They waste a lot of space by doing so. For
example, a 64 byte one-line alias entry may take up 4096 bytes in the FAT32 file system
of Windows 95, or 8192 bytes in a Unix file system. An alias table uses only about one
percent of the space.

The Application Loader can also be programmed to limit the size of the cache
space-wise or time-wise. It can remove application files that have not been used for a
long time on a periodical basis or when the size of the cache reaches a certain quota.
Aside from better managing the storage space, these implementations would also
encourage “trying out” new applications since the users do not need to worry about space
wasted on storing unused applications.

17

2.4. Wrapping Existing Applications into RADIUS
Wrapping existing applications into RADIUS is very easy. The programmer can

write a “wrapper” class (which implements the RADIUS methods) to do the following:
• Use two String variables as the Class Identifier and the Application Locator.

Implement methods to access them.
• A document is formed by adding the Class Identifier and the Application Locator in

front of the real data file. Implement the readFromStream method to detach the rest
of the stream into a real data file.

• Implement the install method to invoke the existing installation procedure of the
existing application.

• Implement the view method to load/install the real application and start it with the
real data file.

• When a document is saved, let the real application save the real document first, then
use a writeToStream method to add the Class Identifier and the Application Locator
in front of the document.

In most cases, the programmers don’t even need access to the source code of the
real application to make this procedure work.

2.5. Summary
We presented the design of an object-oriented application framework that takes

care of the software deployment problem. RADIUS has the following attributes:
• The identities initiating operations are the documents, not the applications.
• The users do absolutely nothing to install or upgrade the applications.
• Applications are installed only when needed.
• Applications can be delivered by existing HTTP servers.
• The use of object-oriented programming is extended to the file level.
• Application developers are not limited in what development tools to use.
• The dynamic design of the Object Factory eliminates the need for a centralized

database (e.g. the Windows Registry).
• Extremely thin client. As shown in the following chapters, the C++ version has less

than 700 lines of source code and 70 KB of executable binary (plus standard library
routines). The Java version has less than 600 lines of source code and 25 KB of class
binary (plus the standard Java classes).

Since RADIUS does not require any extension to programming languages and
operating systems, it is very easy to integrate it with other software. The C++ version of
RADIUS Developer’s Kit includes header files totaling less than 100 lines of code, and a
30-KB library file. The Java version of RADIUS Developer’s Kit contains only 16 KB
of class binary.

While RADIUS is an application framework independent from the programming
languages and operating systems, we will use some concrete examples to better
demonstrate the underlying techniques. In the next chapter, we illustrate the
implementation of RADIUS on two of the most popular platforms – C++ on 32-bit
Windows, and Java. While these two languages are usually described as “similar”, we
found that their implementations of RADIUS are quite distinct due to the differences in
the underlying operating systems. The standard Java libraries provide many features to
simplify some dynamic object-oriented tasks. This distinction confirms a general

18

consensus that system facilities are usually more important than language features for
developers. By making RADIUS a utility independent from programming languages and
operating systems, we believe that it stands a better chance of being accepted by the user
community.

19

Chapter 3: RADIUS Implementations

The RADIUS framework is independent from programming languages and
operating systems. Any object-oriented programming system that supports dynamically
linked program modules can be used to build a RADIUS environment. In this chapter,
we describe two implementations on the most popular platforms – C++ on 32-bit
Windows, and Java.

For each running instance of a RADIUS implementation, exactly one instance of
the Object Browser is created. Within an Object Browser, the Object Factory and the
Application Loader are both singletons [12]. Therefore, the implementations can choose
to program the Object Factory and Application Loader methods as global functions (but
not in Java, of course), class methods of the Object Browser or instance methods of the
Object Browser. The choices shown in this chapter were made just for the convenience
of our coding.

3.1. The RADIUS Programming Interface
The RADIUS Programming Interface contains the methods needed to achieve

RADIUS functionality. These methods have been briefly explained in the previous
chapter. Here we discuss the issues specific to each implementation in more detail.

3.1.1. The RADIUS Programming Interface in Java
RADIUS applications written in Java are compiled into Java class files.

Following the design philosophy of Java, RADIUS classes in Java do not, nor should
they, derive from one common base class. A RADIUS class in Java is any class that
implements the RADIUS interface, whose definition is given in the following figure.

Figure 8: RADIUS Interface in Java

While this design prohibits default implementation of the methods, it does give
the programmers greater freedom in designing their applications. Moreover, the standard
implementation of methods is short enough, as can be seen later, to be textually copied
without difficulty.

Although the Java object serialization interface [47] provides an easy way of
streaming objects, the methods involved use a file format that is specific to Java. If
developers want their Java RADIUS documents to be binary compatible with RADIUS
applications implemented in other languages, they need to implement their own
streaming routines in the Java RADIUS applications, or have applications implemented
in other languages read and write data according to the Java Serialization format. If

public interface RADIUS {
 String getClassID();
 String getAppPath();
 void setAppPath(String apppath);
 String getFileName();
 void setFileName(String filename);
 boolean readFromStream(InputStream stream);
 boolean writeToStream(OutputStream stream);
 boolean saveToFile();
 boolean view();
}

20

binary compatibility of documents is not an issue, the developers may simply define the
application class to implement the java.io.Serializable interface and invoke the
readObject and writeObject methods from within the createFromStream (not
readFromStream) and writeToStream methods.

The figure below illustrates the standard implementation of RADIUS applications
in Java. The programmers can copy this template code for any new RADIUS application
and just implement the application entry point. If the application is not required to derive
from some other class (e.g. a visual component), then the programmer can even derive
the application class from this one.

Figure 9: Standard RADIUS Application in Java

3.1.2. The RADIUS Programming Interface in C++
RADIUS applications written in C++ on Win32 are compiled into Dynamically

// standard implementation
class RADIUSObject implements RADIUS, java.io.Serializable {
 protected transient String AppPath, FileName;
 public String getClassID() { return getClass().getName(); }
 public String getAppPath() { return AppPath; }
 public void setAppPath(String apppath) { AppPath=apppath; }
 public String getFileName() { return FileName; }
 public void setFileName(String filename) { FileName=filename; }
 public static Object createFromStream(InputStream stream) {
 return new ObjectInputStream(stream).readObject();
 }
 public boolean readFromStream(InputStream stream) {
 // may not be necessary if createFromStream is implemented
 return false;
 }
 public boolean writeToStream(OutputStream stream) {
 DataOutputStream dos=new DataOutputStream(stream);
 dos.writeUTF(getClassID());
 dos.writeUTF(getAppPath());
 new ObjectOutputStream(stream).writeObject(this);
 }
 public boolean saveToFile() {
 FileOutputStream fos=new FileOutputStream(FileName);
 boolean b=writeToStream(fos);
 fos.close();
 return b;
 }

 // optional
 public static void install() {
 // customized installation tasks
 }
 public static void upgrade() {
 // customized upgrade tasks
 }

 // the programmers just implement the application entry point
 public boolean view() { /*...*/ }
}

21

Linked Libraries (DLLs). The application classes are derived from the base class
RADIUSObject , whose definition is listed in the following figure. The methods have
been given default implementations so that the programmers can just omit the methods
that they do not want to implement.

Figure 10: Definition of the RADIUS Base Class in C++

In addition to inheriting from the base class RADIUSObject , RADIUS applications
in C++ need to include some standard supporting code, which are listed in Figure 11.
Most important of all, a virtual constructor [12] must be provided in order for the objects
to be created from outside the application without static type information. The Object
Factory needs to create dynamically arbitrary type of objects without having access to the
declaration of the class. Since the standard C++ run-time type system does not provide a
reflection facility [46], a developer-defined virtual constructor is necessary. This virtual
constructor is passed to the Object Factory as part of the application registration (step 11
of the RADIUS process) and is used later by the Object Factory to create objects for the
application.

The createFromStream method is optionally implemented as a DLL export
function, since functions cannot be static and virtual at the same time. This “streaming
virtual constructor” can be conveniently used when the object does not have a default
constructor (one that has no parameters).

The install and upgrade methods are also implemented as DLL export
functions. If the Application Loader detects their existence, they will be invoked at
appropriate times: install will be invoked after the application module is copied into
the client machine for the first time, and upgrade will be invoked after the application
module replaces an older version on the client machine.

Another optional part of the application is an object-count mechanism used to
support application unloading, which has to be implemented explicitly, since standard
C++ (and the underlying Win32 operating system) does not provide a garbage collector
to do so. This classic object-count technique is described in most C++ textbooks [43].
The actual unloading mechanism is explained later in the Application Loader. Without
this part, the application file will remain in memory until the Object Browser terminates,
which may in fact be acceptable in some cases.

class RADIUSObject
{
protected:
 String AppPath, FileName;
public:
 virtual String getClassID(void) { return typeid(*this).name(); }
 virtual String getAppPath(void) { return AppPath; }
 virtual void setAppPath(String apppath) { AppPath=apppath; }
 virtual String getFileName(void) { return FileName; }
 virtual void setFileName(String filename) { FileName=filename; }
 virtual bool readFromStream(TStream *stream) { return true; }
 virtual bool writeToStream(TStream *stream) { return true; }
 virtual bool saveToFile(void) { return true; }
 virtual bool view(void) { return false; }
};

22

Figure 11: Sample RADIUS Application in C++

3.2. The Application Loader
The Application Loader is in charge of loading the application files into memory

on demand, and actually locating, receiving, installing and upgrading the application
files. It maintains a list of applications that have been loaded into memory. This list is
consulted implicitly by the Object Factory when an object needs to be created. If the
application handling the object class is not on the list, the Application Loader loads the
application file into memory.

The “installed” application files are stored in a cache directory on the client
machine. When the Application Loader loads an application file, the cache directory is

class MyObject : public RADIUSObject
{
 // the application class
};

// virtual constructor
extern "C" __declspec(dllexport) void *VirtualConstructor(void);
void *VirtualConstructor(void) { return new MyObject; }

// optional: createFromStream method
extern "C" __declspec(dllexport) void *createFromStream(Stream *s);
void *createFromStream(Stream *s)
{
 // create an object from the stream ...
}

// optional: install and upgrade methods
extern "C" void install(void);
void __export install(void)
{
 // customized installation tasks
}
extern "C" void upgrade(void);
void __export upgrade(void)
{
 // customized upgrade tasks
}

// optional: object count mechanism for application unloading
long MyObject::ObjectCount=0; // class variable
MyObject::MyObject()
{
 ObjectCount++;
 // continue with object construction ...
}
MyObject::~MyObject()
{
 // object destruction ...
 if (--ObjectCount==0)
 unloadApplication(getClassID());
 // defined in Application Loader
}

23

searched for the application file. If the application file is found, it is assumed that the
application has been installed and the “upgrade” process takes place; otherwise, the
“locate and install” process takes place. In either case, the application file is loaded into
memory as soon as it becomes available.

During the “locate and install” process, storage locations contained in a list
(search path) are searched first before the Application Loader goes out to the Internet
site(s) specified in the Application Locator. This search path allows the users or system
administrators to redirect network traffic to “proxy” Application Servers for many
possible reasons:
• Install from CD/DVD or other removable storage media, for applications distributed

in the conventional way. Considering the amount of storage on these media, they
actually have a huge bandwidth that should not be overlooked.

• Install from LAN file servers or caching proxy servers, for centralized configuration
control or reducing network traffic. The system administrator may want to make sure
the upgrades are safe before the users are allowed to access them, or want to make
sure that all the users are using the same versions.

The methods in the Application Loader can also be invoked explicitly to install
and upgrade non-RADIUS applications. This mechanism allows programmers to use
program modules developed in the conventional way while enjoying the convenience
provided by RADIUS. The only difference is that non-RADIUS classes do not
participate in the RADIUS process beyond the deployment portion.

3.2.1. The Application Loader in Java

Figure 12: Key Portion of Application Loader in Java

The loadClass method is required by the Java Class Loader mechanism. It takes
the name of the class as the first parameter. The second parameter indicates whether to
link the class.

The first loadApplication method saves the Application Locator (passed in by
the apppath argument) in a private variable and then calls loadClass , which then reads
the Application Locator to decide where to load the class file from. If the loadClass

method is invoked recursively at this point due to class code resolution, the same
Application Locator will be reused and load the classes from the same host.

The second loadApplication method is used internally for loading applications
that are known to have been installed. The remaining methods are involved with the
application cache directory and the search path.

Both forms of the loadApplication methods returns a Class object which can

public class Loader extends java.lang.ClassLoader {
 public Class loadClass(String name, boolean resolve)
 throws ClassNotFoundException;
 // required by java.lang.ClassLoader
 public Class loadApplication(String classid, String apppath);
 public Class loadApplication(String appname);
 public String getCacheDir() { return CacheDir; }
 public void setCacheDir(String dir) { CacheDir=dir; }
 public String getSearchPath() { return SearchPath; }
 public void setSearchPath(String path) { SearchPath=path; }
}

24

be used by the Object Factory to create objects of the application class.
At a first glance, it seems like a simple task to extend the Java ClassLoader class

to build the RADIUS Application Loader. After some investigation and experimentation,
we realized that the design problem is in fact quite subtle. To explain the difficulties, we
first identify the characteristics of the Java Class Loader mechanism [21, 22, 50] that
affected our design of the Application Loader:
A. If a class file exists in the local CLASSPATH, the Java Virtual Machine treats it as a

“system class” and does not use a ClassLoader object to load it.
B. If class X uses class Y and class Y has not been loaded, the Java Virtual Machine will

ask the ClassLoader object which loaded class X to load class Y with the loadClass

method. A class derived from the ClassLoader class must implement the loadClass

method, which takes just two parameters – a String identifying the name of the
class, and a boolean flag for whether to resolve (link) the class. This method is
implicitly called by the Java Virtual Machine when a class file needs to be loaded,
and it must then decide where to find the class file.

C. A class must be initialized at the time of its first active use*. The sequence of events
is: load, link and initialize. Suppose class X imports class Y. Then class Y can be
loaded and linked as early as class X is being loaded or as late as class X is
initialized. However, if class X extends class Y, then class Y will be loaded when
class X is loaded, otherwise class X cannot be verified.

D. Although the underlying Java Virtual Machine may choose to perform loading and
linking early (as early as possible) or late (as late as possible), it must give the
impression that it is performing them late. If an error is encountered during the early
loading or linking of a class, it must not be reported until the time as if the JVM were
performing late loading or linking.

E. For each ClassLoader object and the classes loaded by it, the Java Virtual Machine
creates a separate address space. Instances of the same class loaded by different
ClassLoader objects are considered to be different internal types. The internal types
are identified by the pair (loader, class).

This architecture works fine when the class loader knows exactly where to find
the class files at all times. Some examples of this kind of situations are: 1) applet class
loaders, which load an applet from a host machine and then load all subsequent classes
from the same host machine; 2) RMI (Remote Method Invocation) class loaders [48],
which load local “stub” classes that themselves know exactly which remote hosts to talk
to. However, we found this design insufficient for the RADIUS model, which has a more
dynamic paradigm for the locations of applications.

A Java application is usually installed into a location on the CLASSPATH. For
RADIUS applications, this does not work because of (A). Since there will be no class
loaders for these “installed” applications, we will not have a chance to intercept the class
loading in order to perform the automatic upgrade. Therefore we store the class files in a
cache directory separate from the Java CLASSPATH and let our class loader – the

* Active use of a class is defined as the 1) invocation of a constructor of the class, 2) creation of an array of

the class, 3) invocation of a method declared (not inherited) by the class, or 4) use or assignment of field
(except static final fields) declared by the class. Active use of an interface is defined as the use or
assignment of field declared by the interface.

25

Application Loader – to load them on demand.
An application class usually uses other classes to help its tasks. In C++ all these

classes can be compiled into one single application module and loaded all at once. Java
classes are compiled into separate class files*, therefore we designed the Application
Loader to be a subclass of java.lang.ClassLoader so that we can take advantage of (B)
in order to load the classes being used automatically. We wrapped the loadApplication

method around the loadClass method. Although the loadClass method does not take a
parameter as the Application Locator, we have the loadApplication method store the
Application Locator in an instance variable and let the loadClass method refer to the
variable when searching for the class file.

The flexibility specified in (C) became an obstacle to us. At the time when the
JVM asks our Application Loader to load a class Y, we may not know which class X
triggered this request and therefore we do not know which Application Locator to use.
We first assume that class X and class Y came from the same host, then the problem can
be divided into two situations:
1) Class X extends class Y. Class Y is loaded when class X is loaded. We then have a

valid Application Locator stored by the loadApplication method, so class Y can be
found automatically.

2) Class X does not extend class Y but has active uses of class Y. Class Y will be
loaded between the time class X is loaded and the time class X is linked. (Although
the specification requires the JVM to initialize class Y only when class X is
initialized, JVM needs to resolve the links and determine if class X has the access
permission to use class Y at the time class X is linked.) Fortunately, we can force the
linking (and even initialization, although unnecessary for our purpose) of class X to
take place at the time class X is loaded by invoking the resolveClass method inside
the loadClass method (and therefore ignoring the second parameter). At this time
(before the loading of class X finishes), we still have a valid Application Locator
stored by the loadApplication method, so class Y can be found automatically.
Note that the resolveClass method is invoked in the loadClass method, not in the
loadApplication method, so this mechanism works recursively on classes used by
class Y.

The solution for (2) does violate (D) if we were implementing a JVM because
class loading and resolution errors will be reported by our Application Loader too early
due to the fact that we always resolve any classes we load. Nonetheless, we are
implementing a class loader, not a JVM.

This solution works when the referencing class and the referenced class reside on
the same Application Server. Serious problems arise when the classes reside on different
Application Servers. Suppose class X (served by host H1) references class Y (served by
host H2) in method M. According to (D), we should be able to run the code in Figure 13
because by the time the constructor of class Y is invoked, the class file of Y should have
been installed and therefore class Y should be able to be initialized without error.
However, the designers of JVM did not take into account the possibility of a class

* We could put all related classes into a JAR (or ZIP) file, but that will prevent other classes from reusing

the classes contained in this JAR file.

26

changing its validity between the time of early linking and actual initialization. In the
code listed below, class X will be reported to have an error referencing to class Y because
when class X is loaded, we have no way of knowing that class Y should be found on
server H2 and therefore cannot even verify class X.

Figure 13: Dependency among Classes from Different Hosts

We do have a solution to this problem, but we want to point out first that there is
no technical reason for class Y and class X to be served by different servers! In order for
class X to be compiled, the programmer has to have a copy of class Y anyway. If for any
(most likely legal) reason the programmer cannot redistribute class Y, then the following
(ugly) solutions can be used.
2’) In class X declare a constant String field whose value is a special string indicating

that class Y should be loaded from server H2. When the Application Loader loads
class X, it first reads the binary data of class X to see whether such “dependency”
strings exist; if so, the referenced classes are loaded before X is resolved.

2”) Alternatively, the programmer can write a wrapper class that does not depend on
either class X or class Y to install both classes.

Neither solution is clean and easy to use. The implementation of (2’) also
involves decoding the Java class files, which we would like to avoid. For the time being,
we have implemented the rule that an Application Server must serve all the classes used
in all the applications it serves. In the previous example, the Application Server (H1),
which serves class X must also serve class Y. For a permanent solution, we propose the
following extension to Java: extend the syntax of the import statement to support an
optional Application Locator path. For example, instead of just:

import Y;

the programmer should be able to write:
import Y("http://www.RADIUS.edu/");

so that the extended Java Virtual Machine will know to look for Y.class at
http://www.RADIUS.edu/ . In addition to being used at runtime as the Application
Locator, this feature can also be used at compile time to locate the latest version of the
classes being imported. Of course, if the path is not specified, it is assumed that the
classes reside on the same host.

The feature (E) was designed as a security mechanism. It sets up a sandbox for a
class to operate within, and prevents the class from accessing classes in other address
spaces. However, it forces us to use the reflection interface to assure type identity in
some cases. When an application wants to load another class and interact with it, the

import Y;
public class X {
 public void M() {
 {
 // style-1
 loadApplication("Y","H2");
 Y y1=new Y();
 // or style-2
 Y y2=createObject("Y","H2");
 // ...
 }
}

27

application cannot use another Application Loader object to do so. It must use the
Application Loader that loaded itself. Otherwise, the newly loaded class will be loaded
into a separate address space to which the application has no access. However, when an
application invokes the loadApplication method of the Application Loader that loaded
itself with the code in the following figure, the type cast (Loader) will fail due to a type
mismatch. Assume that the system Application Loader is L1. The internal type of L1 is
(null,RADIUS.Loader). L1 loaded MyApp. The type cast asks L1 to load the class
RADIUS.Loader , which yields internal type (L1,RADIUS.Loader). The
getClass().getClassLoader() returns L1 of type (null,RADIUS.Loader) which
cannot be cast to (L1,RADIUS.Loader).

Figure 14: Caveat in Using the Application Loader in Java

Without the type cast, we cannot explicitly invoke the loadApplication method
of the Application Loader. With the type cast, we have a type conflict. The solution is to
use the Java reflection interface to retrieve a Method object (for the loadApplication

method) from the system Application Loader object to invoke the invoke method with
the intended arguments. Fortunately, all these details are encapsulated in the Object
Browser and the programmer will only see that there are methods (with identical
signatures) available for use in the Object Browser, as listed in the following figure.

Figure 15: Code in Object Browser to Encapsulate the Application Loader

The Java version of RADIUS starts with the Application Loader class, which
creates an instance (and thus loads the class) of the Object Browser in its constructor.
Since the Object Browser is loaded by the Application Loader, all other classes loaded by
the Application Loader can communicate with the Object Browser without the
aforementioned type mismatch.

import RADIUS.Loader;
public class MyApp {
 public void MyMethod() {
 ((Loader)getClass().getClassLoader()).loadApplication(...);
 }
}

 public Browser() {
 SystemLoader = getClass().getClassLoader();
 LoaderClass = SystemLoader.getClass();
 String t="";
 Class[] StringClass2={t.getClass(),t.getClass()};
 LoadApplication2 = LoaderClass.getMethod(
 "loadApplication",StringClass2);
 // ... other initialization tasks
 }

 public static Class loadApplication(String classid,
 String apppath) {
 Object[] a={classid,apppath};
 try { return (Class)LoadApplication2.invoke(SystemLoader,a); }
 catch (Exception e) { return null; }
 }

28

3.2.2. The Application Loader in C++
Before explaining the Application Loader in C++, we must first introduce a meta-

object construct we implemented for C++. The class Class is designed to be the bridge
between the RADIUS run-time system and the virtual constructor (and optionally the
streaming virtual constructor) in the application module. It mimics the Java class
java.lang.Class in some way, but we only implemented the functions we need, and
just did a little more for the “streaming virtual constructor,” in order to implement the
createFromStream method.

Figure 16: Simple Meta-Object Class in C++

The C++ version of RADIUS was first implemented in a different fashion [17]. It
was a little more efficient, but more complicated. Later, when implementing the Java
version, the absence of explicit method pointers forced us to resort to the meta-object
feature. After the Java version was done, we felt compelled to rewrite the C++ version to
use a similar mechanism, and ended up cutting the size of the code in half. If the C++
RTTI (Run Time Type Information) system were extended to include a virtual
constructor (or links to real constructors), then there would be no need to re-implement
this meta-object wrapper.

One Class object is created for each application. The Constructor member is
“dynamically linked” to the exported function VirtualConstructor in the application
DLL file by the Application Loader when the application module is first loaded, and the
StreamingConstructor member is linked to the “streaming virtual constructor” – the
createFromStream function. By using this meta-object wrapper, we were able to unify
the signature of the C++ and Java implementations of RADIUS.

typedef RADIUSObject *(*VC)(void); // virtual constructor
typedef RADIUSObject *(*SVC)(Stream *); // streaming VC
class Class
{
private:
 String ClassID;
 VC Constructor;
 SVC StreamingConstructor;
 HINSTANCE Module;
public:
 Class(String classid, String apppath, VC vc, SVC svc,
 HINSTANCE module) : ClassID(classid), AppPath(apppath),
 Constructor(vc), StreamingConstructor(svc), Module(module) {}
 ~Class() { FreeLibrary(Module); }
 String getName(void) { return ClassID; }
 String getPath(void) { return AppPath; }
 HINSTANCE getModule(void) { return Module; }
 RADIUSObject *newInstance(void)
 {
 return Constructor==NULL?NULL:Constructor();
 }
 RADIUSObject *newInstanceFromStream(Stream *s)
 {
 return StreamingConstructor==NULL?NULL:StreamingConstructor(s);
 }
};

29

Figure 17: Definition of Application Loader in C++

The Application Loader maintains a list of loaded applications by storing the
Class objects of the applications in a list. This list is looked up when the Object Factory
needs to create objects.

The first loadApplication method is the core of the Application Loader. It
returns a meta-object of class Class whose newInstance method can be used to create
objects of the requested application. The second form of the loadApplication method
is used when an application has already been installed, and the caller does not have a
document containing an Application Locator. An example of this situation is when the
application is launched in the conventional way – by launching the application file itself,
rather than through a document. In this case, the application file must reside in the cache
directory or on the search path.

The loadApplication methods return the existing Class objects for applications
that have been loaded. If the requested application has not been loaded yet, they load the
application, create and return a new Class object that is added to the internal list.

The next four methods (getCacheDir , setCacheDir , getSearchPath and
setSearchPath) are just access methods to the cache directory and search path settings.
The last two (unloadApplication , sweepApplication) are designed to compensate the
absence of a garbage collector in C++. They do not exist in the Java version. Since the
design philosophy of Java is not to let the programmers handle memory management, we
let the Java garbage collection mechanism manage memory reclamation. Of course,
RADIUS applications implemented in Java do not need to worry about unloading
themselves.

Each application should maintain an object count (see Figure 11) to control the
unloading of the application. When the last object handled by the application is
destroyed (the object count reaches 0), the destructor of the object invokes
unloadApplication to mark the application DLL file as “can be unloaded.” On the next
invocation of the garbage collector, the sweepApplication method will be called to
actually unload the application. This extra step is necessary because a Windows DLL file
cannot unload itself. If an unload call is made from within the DLL, the call will return
to the code that has already been unloaded and cause an access violation. The
unloadApplication method also severs the mapping from the class name to the Class

meta-object by removing the application from the loaded list, thus preventing new objects
of the application from being created. If new objects of the application are indeed
created, they will be created by another instance of the application (may even be an
upgraded one), and therefore will not hinder the removal of the application by

namespace ApplicationLoader
{
 Class *loadApplication(String classid, String apppath);
 Class *loadApplication(String appname);
 String getCacheDir(void);
 void setCacheDir(String dir);
 String getSearchPath(void);
 void setSearchPath(String path);
 void unloadApplication(String classid);
 void sweepApplication(void);
}

30

sweepApplication .
The current implementation of RADIUS invokes the garbage collector

periodically in the Object Browser through a timer event. In general, the only
requirement is that the garbage collector be serialized with the constructors and
destructors to avoid race conditions.

An application may choose not to implement an object count. In that case, the
DLL file will simply remain in memory (physical or virtual) until the Object Browser is
shut down, unless unloadApplication is invoked explicitly. However, if an object is
still in use after the DLL has been removed, the program will crash when the code of the
object is accessed. Therefore, explicit calls to unloadApplication must be handled with
extreme care.

When an application uses objects of another class, the programmer must keep in
mind that the code modules are dynamically linked. A few stylistic coding rules must be
observed:
• We try to avoid using import libraries because they require extra steps when

automatic software deployment is added to applications. Without import libraries, the
objects of other classes should be accessed only through run-time pointers. To be
more specific, only data members and virtual methods should be accessed. Access to
non-virtual instance methods, static data members and static methods are prohibited.

• The new operator should not be used to create objects of other classes. All “foreign”
object creation should be performed through the Object Factory.

These attributes are actually common to most component systems. Developers
who are familiar with COM, CORBA, or other popular component environments should
already be accustomed to these programming styles.

Let’s review the dependency problem we encountered in the previous subsection.
The style-2 code in Figure 13 actually works because in C++ the class Y does not need to
be loaded until an instance of Y is actually created, at which time the location
information can be provided to the Object Factory. The lack of class code verification in
C++ is a potential loophole in the type system, but it solves our problem. Style-1 code
does not work because it uses the non-dynamic new operator, which requires static
linking. However, we can rewrite it as the RADIUS style code:

Y *y1=loadApplication("Y","H2").newInstance();

which will work (the Java version can be rewritten the same way).
Sometimes programmers do want to use import libraries to reuse existing code. If

an application uses a DLL through an import library and the DLL cannot be found
locally, Windows will not allow the application to load. Since Windows does not provide
a way like the Java Class Loader mechanism to indicate which application files are
missing, the DLL cannot be found automatically. For this kind of situation, we devised a
different mechanism to specify module dependency.

When an application fails to load due to the absence of DLL files, the application
is loaded as a data module, which does not get executed and therefore does not require
linking to the DLL files. The string table resource of the data module is searched for
strings whose identifier numbers fall within a certain range reserved for dependency
strings. These dependency strings are then interpreted as Class Identifiers and
Application Locators and passed to the loadApplication method for the DLL files to be
installed. The data module is then unloaded and the application loading is attempted

31

again. This mechanism works recursively so that the referencing application will only
need to specify the applications it references directly.

Figure 18: Sample Windows Resource Script Specifying DLL Dependency

As an example, the figure above shows a resource script that would be included in
applications that use PIP_Picture.DLL (located at http://www.RADIUS.edu/PUBLIC/)
through an import library (PIP_Picture.lib). The fact that PIP_Picture.DLL

references another module PIP_Object.DLL does not require the applications to add a
line specifying the dependency on PIP_Object.DLL because it has been taken care of by
the PIP_Picture application. If more than one DLL is referenced by the application,
more lines can be added using DEPENDENCY+1, DEPENDENCY+2, etc.

3.2.3. Naming Application Files
Application files are stored in the cache directory without the Application Path

information. When the Application Loader looks for the application file in the
Application Cache, only the class name of the application is used in the comparison.
Therefore, the name of each application file should be made unique to avoid conflicts.
Although many systems use OSF DCE style 128-bit Universal Unique Identifier [23] to
uniquely identify classes and then provide mappings to human readable names, we felt
compelled that the human readable names should be unique to begin with.

Sun proposed a naming convention for Java classes to prevent name conflicts.
The convention states that the name of a class should begin with the Internet domain
name of the developer of the class separated by dots in reverse order. For example, a
Java class developed by the Computer Science Department of New York University
should begin with EDU.NYU.CS (or edu.nyu.cs). When the class file is stored on disk,
the dots are replaced by proper path separator character(s). Throughout this thesis, we
just use short descriptive names for demonstration purpose, but for practical applications,
we propose the use of a naming convention of C++ application files similar to that of
Java’s. Since the dot character is not a valid part of identifier names in C++, we can use
the underscore character (‘_’) instead. Therefore, C++ classes developed by the
Computer Science Department of New York University will begin with EDU_NYU_CS (or
edu_nyu_cs). Our current implementation does not replace the underscores by path
separator characters for coding convenience.

3.3. The Object Factory
Object factory is a pattern [12] commonly seen in object-oriented systems. The

original idea was to provide a dynamic mechanism for creating objects whose exact
classes are unknown at compile time but are known to be from a limited set. The factory
will know exactly which class of object to create at run time. Therefore, it is
commonplace to program the core of the factory as a selection statement with each
creation task hard-coded. For example, Unidraw [51] uses a factory mechanism to
reconstruct objects from data saved on disk. By storing a Class Identifier before the

#define DEPENDENCY 17488 // arbitrary choice, =='DP' for dependency
STRINGTABLE
{
 DEPENDENCY, "PIP_Picture http://www.RADIUS.edu/PUBLIC/"
}

32

instance data, Unidraw is able to identify which class of object to create when the data is
read back from disk, and therefore is able to create an object from a predefined domain-
specific set of classes.

We extend this mechanism to implement an Object Factory that can create
arbitrary classes of objects by dynamically loading the application modules for the object
classes. The key to this functionality is the combination of the Object Factory and the
Application Loader. By registering a reference to the constructor of a class in the
Application Loader when the application is loaded, the Object Factory is capable of
creating arbitrary class of objects without having access to type information at compile-
time.

In our current implementations, the references to constructors are in the form of
meta-objects, but straightforward function pointers can also be used if the underlying
programming language supports them. That was actually the way we first designed the
C++ version of RADIUS.

Another advantage of using an Object Factory is that instead of letting the
applications create objects as they wish, anytime and anywhere, all object creation is
handled in a centralized fashion through the Object Factory. Although we are currently
not utilizing this centralized control feature, it is very useful if developers want to plug in
object management services in the future.

3.3.1. The Object Factory in Java

Figure 19: Object Factory in Java

The first createObject method is the core of the Object Factory. It takes the
Class Identifier and the Application Locator as arguments and pass them to the
Application Loader to retrieve a Class object for the application, and then invokes the
newInstance method of the Class object to create the requested object. The second
createObject method is used when the application is known to have been installed, as
in the case of the second form of the loadApplication method of the Application
Loader. In essence, it is used in place of the new operator.

Creating objects of unknown classes becomes easier with the meta-object
construct. The newInstance method of the class Class serves as a universal virtual
constructor for all classes and thus eliminates the need for hard-coding virtual
constructors.

The createFromStream method creates an object from a stream. It reads the
Class Identifier and the Application Locator from the stream and retrieves the Class

object of the application from the Application Loader. If a streaming virtual constructor
is defined for the application, it is invoked to create the object directly from the stream,
otherwise the virtual constructor of the application class is invoked to create an object
and the readFromStream method of the object is invoked to read the data from the
stream. The createFromFile method creates an object from a file by opening the file as
a stream and then invoking createFromStream on the stream.

public static RADIUS createObject(String classid, String apppath);
public static RADIUS createObject(String classid);
public static RADIUS createFromStream(InputStream stream);
public static RADIUS createFromFile(String filename);

33

3.3.2. The Object Factory in C++

Figure 20: Definition of Object Factory in C++

The C++ version of the Object Factory has the same operations as the Java
version, except that the methods are implemented as global functions instead of class
methods of the Object Browser. Once the meta-object construct is implemented,
subsequent coding is almost a line-by-line translation of the Java version.

3.4. The Object Browser
The Object Browser is a skeletal user interface that can be used to start

applications. We designed the user interface to be identical for the C++ and Java
versions; therefore, we do not need to introduce them separately.

Figure 21: RADIUS Object Browser in Java

Figure 22: RADIUS Object Browser in C++

namespace ObjectFactory
{
 RADIUSObject *createObject(String classid, String apppath);
 RADIUSObject *createObject(String classid);
 RADIUSObject *createFromStream(InputStream *stream);
 RADIUSObject *createFromFile(String filename);
};

34

The list box in the middle lists one string for each of the applications that has been
loaded into memory. The first part of the string is the Class Identifier and the second part
is the Application Locator. When an item is double-clicked (or selected and then the
“Create New Document” button is pressed), a new, blank document of the application is
created.

An application is loaded into memory when a document of the application is
opened through the Object Browser. Applications can also be explicitly loaded by typing
the Class Identifier and a search path in the two edit boxes below the list box and then
pressing the “Load Application” button. Finally, the “Open Directory” button opens a
directory (which may reside over the network) specified in the edit box next to it. If the
edit box is left blank, the current directory is opened.

Figure 23: A Directory Window in RADIUS – Java Version

Figure 24: A Directory Window in RADIUS – C++ Version

When the directory window is double-clicked, one of the following actions takes
place:
1. If the user double-clicks on a directory, including the parent directory “..”, the

directory is opened. If the “Keep in This Window” checkbox is checked, the new
directory is displayed in the current window, otherwise a new directory window is
created.

2. If the user double-clicks on a file that is a RADIUS application, it is loaded into
memory.

3. If the user double-clicks on a file that is a RADIUS document, it is loaded into
memory and its view method is invoked, as illustrated in Figure 4.

4. Otherwise, an error message is displayed.
Case 1 provides means of navigating up and down the directory tree. Case 2

gives the user a way to load an application without a document (in addition to using the
“Load Application” button). Case 3 is the standard method of opening RADIUS
documents. It actually takes only one line of code (in addition to exception handlers) to
display a document file once the name of the file is known.

35

Figure 25: Code to Display a Document

The following figures show some sample applications using RADIUS. These
samples are taken from a presentation authoring and programming system we built. The
details of the system are presented in Chapter 4.

Figure 26: Text Application in Java Figure 27: Text Application in C++

Figure 28: Picture Application in Java Figure 29: Picture Application in C++

The applications run in the same address space as the Object Browser. However,
the applications do not need the Object Browser in order for them to be started. The C++
version of RADIUS has the Object Factory and Application Loader compiled into one
single DLL file RADIUS.DLL . The Object Browser is an executable file that uses
RADIUS.DLL . Applications can be designed to utilize RADIUS.DLL independently.
Similarly, the Java version of RADIUS has the Object Factory coded in the Application
Loader class RADIUS.Loader , which loads the class specified as the first command line
argument upon startup. The Object Browser is compiled into RADIUS.Browser class and
is started by the command line:

{path}java {-CLASSPATH} RADIUS.Loader RADIUS.Browser

Just replace RADIUS.Browser by any application class and the application will run
without an Object Browser.

Factory::createFromFile(filename)->view(); // C++
Browser.createFromFile(filename).view(); // Java
// in both languages: catch and handle exceptions

36

Chapter 4: Application – Programming in Presentation

Based on the RADIUS infrastructure, we built a programming environment and
presentation-authoring system PIP (Programming in Presentation) which is a component-
style extensible tool designed to simplify the construction of presentation-style programs.
It features an easy-to-use user interface for building visual displays, yet with scripting
capability, each element of a presentation can be turned into a full-fledged program. The
developers can easily add new types of presentation element classes to the system
through its RADIUS-based structure and programs built in PIP are automatically
presentable. As in the case of RADIUS, PIP is implemented in both C++ on 32-bit
Windows and in Java. Due to the lack of standard multimedia capabilities in Java, the
C++ version is more powerful for building presentations and is therefore our current
choice for demonstrations.

4.1. Motivation
Computers have changed a lot in physical dimensions during the past decade,

enough for them to be widely used as tools for presentations. On the other hand, the
explosive growth and broad penetration of the World Wide Web (WWW) has
demonstrated the tremendous demand for the exchange of information. We have already
seen many programs built solely for the purpose of information delivery running on
notebook computers or Internet-connected desktop systems. Nevertheless, these
programs are either under-powered or very hard to build. Most of the tools available
concentrate on only one aspect of the problem – presentation or programming. If
programs and presentations can be built together, a lot of work can be saved. As a
response to this demand, we have designed and implemented PIP for developing
presentation style programs.

4.1.1. Programming Models

Figure 30: A Typical Sequential
Program

Figure 31: A Typical Event-Driven
Program

Based on the structure of control flow, we can describe application programs as

37

sequential or event-driven. Most of today’s programming tools are designed to build
programs exclusively in one of these two modes, even though the applications may use
both in a mixed hierarchy.

In the early days of computers, programs worked in the sequential mode. A
sequential program is a sequence of input and output steps [32, 36, 42]. Sequential
programs are sometimes called “console mode” programs for this reason. The process
may be repeated or constructed hierarchically, but the basic structure remains the same.

As the use of graphical user interface (GUI) systems became common, the event-
driven style of programming matured into a new standard model. An event-driven
program can be described as a collection of states whose transitions are triggered by
events. Parts of an event-driven program get executed in an order not preset in the
program, but following the occurrences of events. After necessary initialization, a GUI
program usually enters an event loop from where the events are dispatched. Most
modern GUI software development tools are designed to build programs in this form [5,
20, 34, 38, 40]. Many event-driven programs that have graphical user interfaces are
designed to start with a main screen from where the user can go to other screens and
back.

Figure 32: A Typical Presentation Style Program

Presentations need to have a control flow that is a mixture of sequential control
and event-driven control. The steps of a presentation are arranged primarily in a linear
fashion where as each step may contain event-driven activities. The steps in a
presentation are also very often treated as states that can be transitioned to.

Building powerful presentation programs is often very awkward because existing
tools typically support either sequential processing or a main-screen/sub-screen model of
transition, but not both at the same time.

4.1.2. Related Work
The conventional way of presenting information is to build slides. A number of

slide-based presentation systems (Microsoft PowerPoint™, Lotus Freelance™, Corel

38

Presentations™) have been on the market for some time. They let the users create
complicated graphical displays with dazzling effects. However, they concentrate on the
presentation chores and programming is not their strong suit. They provide some level of
macro language support, but these constructs are insufficient and unsuitable for serious
programming tasks. Multimedia software development tools (MacroMedia Director™,
ToolBook™) are also effective in building lively presentations. While they concentrate
on the media handling functionality and performance tuning, the scripting control
languages suffer from the same shortcomings as in slide-based presentation tools.

Visual development tools for general purpose programming languages (Visual
Basic, Visual C++, Visual J++, Delphi, C++ Builder, J Builder, Visual Café) provide the
full power of the programming languages, but their aims are on the event-driven
programming model. Substantial work has to be done to tailor their standard code
templates for a presentation style control flow.

The World Wide Web was designed to be a medium for information exchange. It
has been successful in delivering static and, to some extent, dynamic content. Indeed,
many presentations have been constructed in HyperText Markup Language (HTML)
format. However, the look and feel of HTML-based presentations is limited by the
formatting capability of HTML, and the computing power is often restrained by security
concerns of Web browsers.

4.2. The Basic Component
In addition to having persistent representations as all RADIUS objects do, PIP

components also have visual representations and scriptable visual interactions. All PIP
components derive from the same base class PIP_Object , which provides the basic
implementation of PIP methods. We explain the design and implementation in this
section.

4.2.1. The Data Structure

String: Class Identifier String: Application Locator

String: Name long: Left long: Top long: Width long: Height

Color: FGColor Color: BGColor

(Class-Specific Data, if any)

String: Script long: Flags

long: ChildCount

PIP_Object: Child[0]

PIP_Object: Child[1]

...

long: DataLength

Figure 33: PIP File Structure

The above figure illustrates the persistent data structure of a PIP_Object . The
Class Identifier and the Application Locator have been explained earlier. The remaining
fields form the data portion of a standard RADIUS document. All PIP components

39

stream to the same file structure and the only varying part is the class-specific data. By
using a Data Length field to keep track of the size of the class-specific data, PIP_Object

can provide a fallback implementation and maintain the data integrity when the
application for the component cannot be found.

The Name field is used to identify the object to scripts. It can be an arbitrary string
if the native script engine is used; otherwise, it has to adhere to the naming rules of the
scripting language being used. The Script field stores the text form of the script
program. The Left , Top, Width , Height , FGColor and BGColor fields are used in the
visual representation to indicate the coordinates, dimensions, foreground and background
colors. The Flags field stores various miscellaneous information about the object. In the
base class PIP_Object , only one bit is used to indicate the visibility of the object.

When a PIP_Object is loaded into memory, the persistent data is read into
corresponding fields. There are also some transient data fields, such as boolean flags to
indicate whether the object is painted with a frame or is selected for editing, that are used
only when the object is in memory. Accessor methods (in the form of getFoo and
setFoo) are provided for all data fields, including the child objects.

4.2.2. The Data Methods
The following figure shows the methods in PIP_Object concerning the data of

the objects, in addition to the RADIUS methods. (We designed all methods to be virtual,
so the virtual modifiers are omitted here.)

Figure 34: Data Methods in PIP_Object

The clone and cloneFrom methods provide copying operations. They are
implemented with the streaming methods so they shouldn’t need to be overridden even if
a new component has special data. The parseData and assembleData methods are
invoked from within the readFromStream and writeToStream methods, respectively, to
process class-specific data. The getData and setData methods are used to access the
“representative” data of an object in text form. The actual data field(s) accessed depend
on the design of the class.

The clearChildren method removes all child objects. The addChild method
adds a child object to the object. The removeChild and deleteChild methods remove a
child object with or without returning it. The moveChild method changes the order of

PIP_Object *clone(void);
void cloneFrom(PIP_Object *obj);
void parseData(void);
void assembleData(void);
String getData(void);
bool setData(String data);

void clearChildren(void);
void addChild(PIP_Object *child);
PIP_Object *removeChild(long index);
void deleteChild(long index);
void moveChild(long f, long t);
PIP_Object *getChild(String name);
long getChild(long X, long Y);
long getIndex(void);

40

child objects. The getChild methods retrieve a child object by its name or retrieve the
index of the child object whose display area contains the coordinates of a point. The
getIndex method retrieves the index of an object within its parent object.

The parseData and assembleData methods should be overridden in new
components in order to handle class-specific data.

4.2.3. The Visual Interface

Figure 35: Visual Methods in PIP_Object

The visual representation of a PIP_Object can be manipulated by using the first
set of the methods listed above (moveTo through shrinkWrap), in addition to using the
accessor methods on the data fields. The move and moveTo methods are self-explanatory.
The setDimension method uses an extra parameter (dir) to determine which corner or
side to pin down when the dimension of the object is changed. The shrinkWrap method
is used to adjust the dimension of an object according to the values of other data fields.
For example, it is overridden in the PIP_Picture class to provide the functionality of
resetting a picture to its natural size.

The second group of methods (setupDisplay through destroyPeer) is used to
handle the internal parameters of the visual representation of the object. These methods
are invoked automatically when needed. The setupDisplay method is called whenever
a data field is changed in a way that affects the visual representation. It sets up display
parameters, such as the bounding rectangle, of the object. The show and unShow methods
are called when the object is physically added to or removed from the display. PIP
objects are designed to be lightweight [35] in the sense that they perform their own visual
rendering. However, sometimes it is reasonable to use components provided by third
party or the operating system to save development effort. These reused components are
called “peer” objects. The createPeer and destroyPeer methods are called from

void moveTo(long X, long Y);
void move(long dX, long dY);
void setDimension(long W, long H, long dir);
void shrinkWrap(void);

void setupDisplay(void);
void show(void);
void unShow(void);
void createPeer(void);
void destroyPeer(void);

void paint(TCanvas *c, RECT &pr, double zoom, double X, double Y);
void paintContent(TCanvas *canvas, RECT &maprect, double zoom);
void paintFrame(TCanvas *canvas, RECT &maprect);
bool render(double zoom);
long contains(long X, long Y);
void print(TCanvas *c, RECT &pr, double zoom, double X, double Y);
void print(TPrinter *p, long printmode);
void printContent(TCanvas *canvas, RECT &maprect, double zoom);

void markChanging(PIP_Object *child);
void unmarkChanging(void);
void markChanged(PIP_Object *child);

41

within the show and unShow methods, respectively, to create and destroy any peer objects
used by the object. They should be overridden in component classes that use peer objects
and the component developer is responsible to implement proper methods to maintain the
coherence between the component object and the peer object.

The third set of methods (paint through contains) controls the actual rendering
of the graphical image of the object. The paint method is called when the graphical
image needs to be displayed. It first calls the render method to generate an in-memory
copy of the image. If the render method returns true, then the in-memory copy of the
image is transferred to the display, otherwise the paintContent method is invoked to
render the image directly onto the display. The render method caches the in-memory
copy of the image so that if it is called again before the object is changed, the actual
rendering does not need to be performed again. The paintFrame method is used to draw
a frame (not necessarily rectangular) around the object when the object is being edited.
The frames are also used to indicate the selection status of the objects in the editors. The
contains method is used to decide if a point falls in the object’s display area. The return
value is 0 if the point falls outside the object, 1 if inside the object, and 2 through 9 if the
point falls on one of the eight “resizing handles” of the object when the object is being
edited and is selected. The printContent method and the first print method are like
the paintContent and paint methods, except that they render onto the printer instead of
a display surface. They should be overridden when the object (e.g. a silhouette picture)
requires a different rendering mechanism when sent to printers. The second print

method sends the object to the printer as a complete document.
The last group of methods are used to inform the display which region of the

object needs to be repainted. If a child object is given, only the area of the child object is
refreshed. The markChanging method marks the area to refresh, but does not perform the
refresh until the markChanged method is called, at which time the two refresh areas are
joined together to form the actual refresh area. It is used when the modification of the
object intertwines with the screen refresh process. For example, the edit method calls
the markChanging method at the beginning and calls the markChanged method at the end
so that both the old and new display areas are refreshed. The unmarkChanging method
cancels the previous markChanging .

All components have two visual representations: one for design-time use, one for
run-time use. Usually the only difference is that the design-time visual representation has
a frame drawn around the component to indicate selection status and to provide a resizing
border. This is achieved by the paintFrame method and the Framed and Selected

internal flags (not listed). For non-visual components, the run-time visual representation
is simply empty and the entire design-time visual representation is rendered by the
paintFrame method. The setFramed method controls the internal Framed flag, which is
checked by the paint method to decide if the paintFrame method should be invoked.
The frame is displayed differently depending on whether the component is selected,
which is indicated by the Selected internal flag controlled by the setSelected method.

Component developers should override the following methods when developing
new components:
• Override setDimension if the dimensions of the component are subject to special

constraints. For example, the component may have a minimum or maximum size, or
has to maintain a certain aspect ratio.

42

• Override shrinkWrap to reflect the “natural” size of the component. For example, it
sets the size of a picture component to the original size of the picture.

• Override setupDisplay to set up internal data structure for display, if the component
requires more than just the bounding rectangle in order to define its display geometry.

• Override createPeer and destroyPeer if the component uses peer objects for
display.

• Override paintContent to draw the image of the component, or override render to
render an in-memory copy of the image.

• Override paintFrame and contains when the shape of the component (and therefore
the frame) is not rectangular. For example, text at an angle.

• Override printContent if the component is rendered using a different mechanism
when sent to a printer. The default implementation of printContent just passes all
arguments to the paintContent method.

4.2.4. The Event Interface

Figure 36: Event-related Methods in PIP_Object

The methods listed above are used to control the object’s reaction to events.
Instead of letting the underlying operating system pass events directly to the script
engine, we defined the PIP event methods so that component developers can pre-process
and post-process the events. For example, a button component uses the mouseDown,
mouseMove and mouseUp methods to create the “pressed-down” look of the button and
issue its own version of CLICK event; a list box component uses mouseDown and
doubleClick methods to issue an “Item Action” event; a hot-spot component highlights
the display region when the mouse cursor travels on top of the sensitive region.

The standard implementation of event methods just passes all events through the
passEvent method, which in turn passes the events to the current script engine by
invoking the execute method of the script engine (see next subsection). The boolean
return value indicates whether the event has been processed. If an object does not
process an event and the object has a parent object and the propagate flag was set to
true , the event will be passed up to the parent object.

The command method responds to a special kind of event – user commands in the
script. The return value indicates the error status. An empty string indicates that the

bool mouseMove(long X, long Y, long shift);
bool mouseDown(long X, long Y, long button_shift);
bool mouseUp(long X, long Y, long button_shift);
bool click(long button_shift);
bool doubleClick(void);
bool mouseEnter(void);
bool mouseExit(void);
bool gotFocus(void);
bool lostFocus(void);
bool keyDown(long key, long shift);
bool keyPress(long key);
bool keyUp(long key, long shift);
String command(String cmd);
bool passEvent(bool propagate, EVENTTYPE event,
 long p1=0, long p2=0, long p3=0);

43

command succeeded, otherwise the error message is contained in the returned string.
This method provides a gateway for dynamically performing a function of the object
without type information.

The command method should be overridden in new components if the component
developers want to give users dynamic control of the component. The other methods
should be overridden if the component needs to respond to events before passing them to
the script engine.
Event Name Description
SHOW The visual representation of the object is about to be displayed.
SHOWN The visual representation of the object has been displayed.
UNSHOW The visual representation of the object is about to be destroyed.
UNSHOWN The visual representation of the object has been destroyed.
CHANGING The data of the object are about to change.
CHANGED The data of the object have changed.
PRINTING The object is about to be printed.
PRINTED The object has been printed.
EXCEPTION An exception has been thrown while running the object’s script.

Figure 37: Other PIP Event Types

In addition to the events generated by the event methods listed in Figure 36, the
events listed in the table above are also generated by the objects. The first eight events
are designed to let the users customize the visual representations of the object at the
instance level in addition to the class level. For example, the PRINTED event can be used
to print a hidden note page attached to a presentation page; the PRINTING event can be
used to print a banner page before the output; the SHOW and UNSHOWN events can be used
to start and stop play the tape in a VCR; the CHANGED event can be used to trigger the
recalculation of data in another object. The component developers can add new events to
their new components. For example, a media player component may want to generate an
event to indicate that the end of the media has been reached. As long as the passEvent

method is invoked, the script engine will get a chance to handle the events.
Note that the viewing of the object is also an event, so even totally sequential

programs that have no GUI interactions can be written in PIP by putting the script in the
SHOW event handler of an object.

4.2.5. The Scripting Interface
Each object in PIP contains a piece of script that is stored in text form. PIP has a

built-in native script engine, but the user can choose to use other script engines as well.
The script engine needs to implement the interface listed in Figure 38. We plan to
provide wrapper classes for the most popular script engines [7] such as VBScript,
JavaScript and Tcl.

When an object is loaded into memory, its script gets compiled into an internal
binary form to enhance the performance. This is achieved by the compileScript

method. The disposeCompiledScript method disposes the internal binary form of the
script. The script engine may choose to always interpret the script in text form and
therefore not implement these two methods.

The executeEvent method is where the script gets executed. The first argument

44

indicates the owner of the script and the second argument indicates the source of the
event triggering the execution. These two objects may not be the same since the event
may be passed from a child object to its parent object. The next four arguments are
passed directly from the passEvent method of the source object.

The editScript method invokes an editor provided by the script engine on the
script, which is passed in as the only argument. The other methods are self-explanatory.

Figure 38: The PIP_Script_Engine interface

The relation between PIP components and the script engines can be illustrated in
the following figure. The dotted arrow in the middle is where different script engines can
plug in. The user can choose to use a different script engine for programming in a more
familiar environment, or to use no script engines at all for designing plain presentations
without programming.

Script EngineComponent

mouseDown

passEvent executeEvent

event handler
mouseUp

mouseMove

keyPress

...

event handler

event handler

event handler

...

Figure 39: PIP Event Model

Instances of script engines are associated with viewing windows, not objects. The
object being viewed in a viewer window and all the descendent objects share one instance
of the script engine and thus can pass information among themselves.

4.2.6. Viewing and Editing PIP Objects
When a PIP document is opened in the RADIUS Object Browser, the object is

loaded into memory and the view method is invoked. The standard view method
performs the following steps:
• The setupDisplay method of the object has been invoked in the readFromStream

method to prepare the object’s transient properties for visual display.
• A standard object viewer window (of class PIP_Object_Viewer) is created with a

display component (of class PIP_Display) occupying the display area. The viewer
window creates an instance of the native script engine and associates the engine with

class PIP_Script_Engine
{
public:
 virtual bool initialize(void)=0;
 virtual bool editScript(String &script)=0;
 virtual void compileScript(PIP_Object *scriptobj)=0;
 virtual void disposeCompiledScript(void *cs)=0;
 virtual bool executeEvent(PIP_Object *scriptobj, PIP_Object
 *eventobj, EVENTTYPE event, long p1, long p2, long p3)=0;
 virtual void enable(void)=0;
 virtual void disable(void)=0;
};

45

the display component.
• The object and the display component are associated with each other.
• The show method of the object is called to create the visual representation. It

generates a SHOW event, calls the createPeer method to create peer objects, if any,
calls the show method of all child components, and generates a SHOWN event.

• The paint method of the object is called when the visual representation of the object
is actually painted on screen. It calls the paintContent method or the render

method to display the body of the component.
If a component should not be viewed as a stand-alone application, the view

method can be overridden to do nothing. The view method can also be overridden to
perform customized viewing behavior. For example, the view method of the
PIP_Presentation class starts the presentation in a designer instead of a viewer.

The standard viewer window accepts user commands such as changing the
display zoom ratio and edit or print the object. When the viewer window is closed, the
following sequence takes place:
• If the object has been modified, a very common “save” query sequence takes place to

confirm if the user wants to save the object to the document.
• The unShow method of the object is called to destroy the visual representation. It

generates an UNSHOW event, calls the unShow method of the child objects, calls the
destroyPeer method to destroy any peer objects that have been created, and
generates an UNSHOWN event.

• An UNLOAD event is generated, the child objects are deleted and the object itself is
deleted. This step itself is recursively applied to all child objects when they are
deleted.

• The script engine, the display component and the viewer window are deleted.

Figure 40: Viewing and Editing Methods in PIP_Object

If the object can be viewed stand-alone, the view method should start viewing the
object and then return true. The view method returns false if the object cannot be viewed
stand-alone or there was an error viewing the object.

When an edit command is issued in the standard viewer window of an object, the
edit method is invoked. The standard implementation uses an editor window (of class
PIP_Object_Editor) returned by the editor method to let the user modify the attributes
of the object. The edit method returns true if the object has been changed in the editor.
It is also invoked when an object is being edited as a child component in a presentation
page.

Sometimes the editing of an object has better visual look-and-feel to the users if
the editing takes place on the display surface instead of in a separate editing window (so
that the change is immediately visible to the users). This is usually called “in-place
editing.” In such cases, the inPlaceEdit method will be used. It overlays an in-place
editor object (returned by the inPlaceEditor method) on top of the object being

bool view(void);
PIP_Object_Editor *editor(void);
bool edit(void);
PIP_Object_InPlace_Editor *inPlaceEditor(void);
bool inPlaceEdit(void);

46

displayed and lets the user manipulate the object directly. This feature is not being used
in our current implementation.

Figure 41: Standard Editing Window for PIP_Object

Each component class creates its own customized editor by adding control objects
to the standard editor instead of deriving new editor classes from PIP_Object_Editor .
The editor method returns an editor object with the extra control objects already added.
The choice of using delegation here instead of inheritance was made just for the coding
convenience in our development environment. The Java version of PIP use inheritance
for editor classes.

Figure 42: Customized Standard Editing Window for PIP_Picture

4.3. Standard PIP Components
In this section, we show how PIP components can be built from standard

components. Each of the following subsections shows and demonstrates the

47

customization of the base class PIP_Object in different aspects.
Unless specifically noted, all component classes add some properties and override

the parseData , assembleData , paintContent and editor methods. They provide
accessor methods to the new properties and initialize the properties in the constructor. If
a component class allocates some system resource for internal use, the resource will be
freed in a virtual destructor. We will omit the explanation of these common
customizations.

4.3.1. The PIP_Text Class
The PIP_Text class represents a block of text. The text may be drawn

transparently if the background color is set to none. New properties include Font , Size ,
BIUS (Bold, Italic, Underline and Strikeout style flags), Align and Text . The
shrinkWrap method is overridden to set the dimension of the text block to the minimal
rectangle containing the text.

Figure 43: A PIP_Text Object

Figure 44: Editing a PIP_Text Object

4.3.2. The PIP_Picture Class
The PIP_Picture class represents a picture in Windows Bitmap, Windows

Metafile or GIF format. The actual picture data may be contained in a separate file

48

(“linked”) or stored in the data portion of the object (“embedded”). The picture can be
set to maintain a constant aspect ratio and/or have a transparent color. New properties
include Format (BMP, WMF or GIF), Linked , LockAspect and PictureFileName .

Figure 45: A PIP_Picture Object

The shrinkWrap method is overridden to set the dimension of the picture block to
the original picture size. The setupDisplay and setDimension methods are overridden
to observe the locked aspect ratio. The render method is overridden to generate a mask
for the transparent color. The printContent method is overridden to render the picture
to printers. Special processing is necessary to render a color image onto a black-and-
white printing device. A new method importClipboard is added to transfer the picture
contained in the system clipboard to the object as an embedded picture.

Figure 46: Editing a PIP_Picture Object

49

The property BGColor has different meanings according to the format of the
picture. For Windows Bitmap pictures, it indicates which color is not to be displayed; for
Windows Metafile pictures, it is the color used to fill the background before rendering the
Metafile; for GIF pictures, it has no effect. Transparent colors for GIF pictures are
specified in the data. If the picture is empty, the object is shown as a solid rectangle
filled with BGColor . Furthermore, for monochrome Windows Bitmap pictures, the
FGColor property specifies which color is used to replace black. Therefore, the same
black-and-white picture can be used in different places in different colors.

4.3.3. The PIP_Page Class
The PIP_Page class is a component that utilizes the child component features of

PIP_Object to compose compound objects. It is derived from the PIP_Picture class.
The picture serves as the background of the page on top of which the child objects are
displayed. When a page is contained in a presentation and there is no picture nor
background color for the page, the presentation’s background will be used.

For editing purposes, the view method is overridden to start the page document in
a designer window instead of a viewer window. While in the designer, the child objects
are displayed with frames to indicate their boundaries and selection status. Menu
commands and direct-manipulation in the display area provide a user interface to handle
child objects, including adding, deleting, moving, resizing and aligning them. A
command is provided in the designer to allow the page to be shown in a regular viewer
window.

Figure 47: PIP Page Designer

The PIP_Page class also serves as a “grouping” container for combining multiple

50

objects into one. Grouping and ungrouping commands are provided in the designer for
this feature.

4.3.4. The PIP_Presentation Class
The PIP_Presentation class represents presentations composed of pages. It is

derived from the PIP_Page class. The PIP_Page portion of a PIP_Presentation object
serves as the “master slide” of the presentation. The child objects are the actual pages
displayed. The pages in a presentation are not necessarily shown in a linear fashion.
Most likely, they will be hyper-linked like Web pages.

The view method is overridden to start the presentation document in a designer
window, just as in the case of PIP_Page . PIP_Page and PIP_Presentation actually use
the same designer program, which dynamically responds to different types of objects
being designed. Additional menu commands are provided to handle pages. A “play”
command starts showing the presentation.

4.3.5. The PIP_Line, PIP_Shape and PIP_Polygon Classes

Figure 48: A Curved Frame for a PIP_Line Object

Figure 49: Editing a PIP_Line Object

51

Figure 50: Editing a PIP_Shape Object

Figure 51: Editing a PIP_Polygon Object

The PIP_Line class demonstrates how PIP object can have non-rectangular

52

display regions. The line can have a dashed, dotted, or other styles and the endpoints can
be circles, arrowheads, squares or triangles. The setupDisplay method is overridden to
set up the internal data structure of the frame shape and end point polygons. The
paintFrame method is overridden to draw the non-rectangular frame. The contains

method is overridden to test whether a point falls in certain regions of the line object. It
works differently at design-time and run-time. At design-time the entire region within
the frame is counted as inside the object, at run-time only the line itself counts.

The PIP_Shape and PIP_Polygon classes are simple objects representing
geometric shapes. They are also useful in specifying “clickable maps” when they are laid
on top of a picture with their colors set to transparent.

For the time being, a PIP_Shape object can be an ellipse, a rectangle, a rectangle
with round corners, a diamond shape or a flowchart terminal symbol. In the future, more
shapes may be added and the PIP_Shape class is likely to be upgraded often to include
the new shapes.

4.3.6. The PIP_Timer Class
The PIP_Timer class is a non-visual component. New properties include

Interval and Enabled . It introduces a new type of event – TIMEOUT – which is issued
at the user-specified interval if the timer is enabled. The paintContent method is
overridden to not paint anything. The paintFrame method is overridden to paint the
design-time visual image. The contains and setDimension methods are overridden to
work at design-time only and to prevent resizing of the visual image. The createPeer

and destroyPeer methods are overridden to handle the system timer peer object, which
is non-visual.

4.3.7. The PIP_Media Class
The PIP_Media class is a visual component with an invisible visual peer class.

The peer class encapsulates a Windows Media Player, whose visual representation
contains the control buttons we set to invisible. The visible form of the buttons can be
seen near the top-right corner of the following figure. If the media clip contains video
frames, the video is shown in the display area of the PIP_Media object. Acceptable
media formats include Windows Video (.avi), Audio (.wav) and MIDI Sequencer (.mid,
.rmi) files. The paintContent method is overridden to just set up the video playing
rectangle without painting anything. The paintFrame method is overridden to paint the
design-time visual image. The createPeer and destroyPeer methods are overridden to
handle the system media player peer object. The command method is overridden to accept
commands “Play ”, “ Stop ”, “ Pause ”, “ Resume” and “Rewind .” This class also issues the
TIMEOUT event when the media clip finishes playing.

Three very often-used features are designed as properties, although they can be
achieved by scripts. They are AutoStart (starts playing as soon as the object is shown),
ClickToPause (mouse click on top of the object will pause/resume playing) and
AutoRewind (automatically rewinds after playing is finished). The “Embed Data” button
can be used to package the media clip data with the object, as in the case of
PIP_Picture .

53

Figure 52: Editing a PIP_Media Object

4.3.8. The PIP_Hotspot Class and the PIP_Button Class

Figure 53: Editing a PIP_Button Object

54

These two classes demonstrate components that perform pre-processing of system
events. The PIP_Hotspot class overrides the mouseEnter and mouseExit methods to
change the visual image when the mouse cursor moves over the display area. The
PIP_Button class overrides the mouseMove, mouseDown and mouseUp methods to
generate the “pressed-down” look. Other than these behavioral differences, they are just
subclasses of PIP_Picture and PIP_Text with different visual representations.

4.3.9. The PIP_OLE Class

Figure 54: Editing a PIP_OLE Object Encapsulating an Excel Spreadsheet

The PIP_OLE class enables the users to incorporate OLE (Microsoft’s Object
Linking and Embedding) objects into their presentations. Essentially any OLE
application on the users’ computers can be reused this way. However, since OLE
applications may not be self-installing, the presentation may not be able to display the
OLE object when it is moved to a different computer.

The PIP_OLE class uses a visible visual peer class, which is an OLE container that
works between the display surface and the OLE server applications. The createPeer

and destroyPeer methods are overridden to handle the peer object. The paintContent

and printContent methods are overridden to pass the rendering tasks to the server
applications. The command method is overridden to pass commands to the server
application.

4.3.10. The PIP_Engine Class
The PIP_Engine class implements the native script engine of PIP. It compiles the

scripts of PIP objects into a binary form that runs on a very simple virtual machine. The
intrinsic instructions of the virtual machine contain only code execution, value cloning,

55

address calculation and storage management. All other functions are achieved by plug-in
verb modules. A more detailed description of the internals of the script engines can be
found in the next section.

The PIP_Engine class is a RADIUS class. The DLL file for the class is installed
automatically by the object viewer and the presentation player. The PIP_Engine class, in
turn, automatically installs a standard verb module. If the PIP_Engine class or the
standard verb module are somehow not installed, the presentations can still be viewed in
the traditional slide show fashion. The scripts just don’t get executed in that case.

4.3.11. The PIP_Table and PIP_Chart Classes
Tables and charts are common ways of presenting data. The PIP_Table class

represents matrices of data. The entries can be manually filled-in or generated by
programs. The PIP_Chart class represents graphical display of data stored in table
format. The number of types of charts may increase as new ones are developed. This is
another example of an application that may be upgraded often.

4.3.12. The PIP_Database Class
In the business world, database (or the current buzzword “data warehouse”) is not

just a convenience, it is a necessity. Every large corporation has its own huge collection
of data from which they want their people to build presentations. We do not intend to
write a big powerful database management system to cater to every possible database.
Instead, we took a standardized approach to provide access to databases through ODBC
and SQL. The PIP_Database class allows users to specify database parameters and then
issue queries. The results are returned in a table property that can be linked directly to
charts or processed by scripts.

4.4. PIP Script Programs
PIP components are programmed at two levels. The behavior pertinent to a

component class is programmed as class methods by the component developers. The
behavior customized for an instance of a component class is programmed as scripts by
the component users, who in turn are the presentation developers. The final presentations
are used by presentation presenters. Here the term “presentation” is used loosely to
indicate any PIP objects being viewed, not just those of class PIP_Presentation .

PIP scripts are executed in script engines. PIP has a built-in native script engine
which is light weight and fast, but the developers may choose to use other script engines
through the standard programming interface provided by PIP. In this section, we limit
our discussion to the native script language PIPScript.

PIPScript has a very simple syntax. We define the script text attached to a PIP
object as a “program.” A program consists of a set of variable declarations, a set of event
handlers and a set of user-defined functions. Variables can be local to an event
handler/user-defined function, local to the program or global to the script engine. All
variables have the same type – object – although some internal optimization is
implemented for numerical and string values. An event handler consists of a name and a
command. A user-defined function consists of a name, an optional list of input
arguments, an optional list of output arguments and a command. User-defined functions
are used exactly the same way as verbs. A command consists of a verb and a set of
nouns, or a variable declaration, or a sequence of commands enclosed in a pair of curly

56

braces. A noun can be a variable, a literal value or a command that returns values. A
literal can be a number or a string. All numbers are specified in the textual format of
double precision floating numbers and are internally stored as such, although during
computation they may be converted to integral or boolean types. String literals follow
the standard C string specification. Comments start with double slash and runs to the end
of the line. They can appear anywhere in the program.

Figure 55: PIPScript Grammar Rules

The syntax of PIP commands is in a way like LISP without parenthesis.
Nevertheless, one feature not commonly found in other languages is that a function or
command can return more than one value. As long as the enclosing command accepts
enough arguments, all return values of a command will be used. Unused return values
are just discarded.

All words in PIPScript are separated by white spaces. Line breaks are
insignificant except in comments, variable declarations (to mark the end of the variable
list) and function declarations (to mark the end of the argument list). There are only three
reserved words: { and } for grouping commands and // for comments. Six other
keywords have special meanings only if they appear at the right places: global , var ,
local (variable declaration), on (starts an event handler), function (starts a user-defined
function) and => (separate the input and output parameter lists in the header of a user-
defined function); otherwise they can be used as regular identifiers. At compile time, a
word not in the set of reserved words will be first looked up as a user-defined function,
then looked up as a verb, then tested for literal, then looked up in the variable tables
(local, program and global). An identifier (for both the nouns and the verbs) is a string
that does not form a literal. For example: 7-Eleven , A&P, 2*Pi are all legitimate
identifiers.

PIPScript is designed to have full access to all information in PIP objects. It also
has the facilities to start an executable program, load a library module and invoke
external methods to handle tasks that cannot be implemented in PIPScript.

Programmers can write their own verbs in C++ and compile them into DLL
modules, which are loaded at run-time. The verb modules have control over both the
compile-time and run-time behavior of the verbs. PIPScript comes with a set of standard
verbs, including object property manipulation, mathematical and logical functions,
program flow control, list operations, string operations, and utility functions. These
standard verbs are packaged into one verb module.

Program ::= Unit*

Unit ::= Global_Variable_Declaration | Event_Handler | User_Defined_Function
Global_Variable_Declaration ::= [global | var] Name* CR

Event_Handler ::= on Name Command
User_Defined_Function ::= function Name Name* [=> Name*] CR Command
Command ::= Verb Noun* | Variable_Declaration | { Command* }
Variable_Declaration ::= [global | var | local] Name* CR
Noun ::= Variable | Literal | Command
Literal ::= Number | String

57

Figure 56: Sample PIPScript Program

4.4.1. Security for PIP Objects
Since PIP objects have script programs attached and the script engines are built in

the RADIUS framework, each PIP object can be viewed as a piece of mobile code.
When the receiver of a PIP document opens the document, the RADIUS facility will
install all relevant applications and starts the execution of the programs contained in the
document. This is a very powerful and potentially dangerous mechanism that can easily
be exploited by malicious programmers. Although the applications can be authenticated

// script program in a PIP_Page object
var deltaX deltaY ball screenW screenH Module
on SHOW
{
 set deltaX 5
 set deltaY 8
 set2 screenW screenH
 getDimension this // getDimension returns two numbers
 set ball getChild this "ball"
 set Module loadLib "DBViewer" // external library
 call Module "open" "stock.DB" // external method
}
// move the top-left corner of the ball to the point clicked at
on MOUSEDOWN setLocation ball param1 param2
// bounce the ball within page
on TIMER
{
 move ball deltaX deltaY
 if > getBoundsRight ball screenW set deltaX –5
 if < getBoundsLeft ball 0 set deltaX 5
 if > getBoundsBottom ball screenH set deltaY –8
 if < getBoundsTop ball 0 set deltaY 8
}
on DOUBLECLICK call Module "view" 0 // external method
on UNSHOWN freeLib Module

// script program in a PIP_Shape object
// An animator module adds the new event type ANIMATIONEND and
// the new verbs animate, animating and stopAnimate.
// A user defined function. The object is moved to a new random
// location with a new random size through 10 animation steps.
function jump
{
 local w h
 set w + 10 * random 200
 set h + 10 * random 200
 animate this // the object to animate
 * random - getWidth getParent this w
 * random - getHeight getParent this h // new location
 w h // new dimension
 10 // number of steps
}
on CLICK if animating this stopAnimate this else jump
on ANIMATIONEND jump // go again

58

at the binary level, the script programs can still be used to do harm to the client
computers. This same phenomenon has been observed in Microsoft Word™, whose
scripting language VBA is powerful enough to be used in developing viruses.

Fortunately, we can learn from the development experience of Microsoft Word
and the Java applet security mechanism. Facilities similar to theirs can be employed in
the script engine to alert the users if a change is to be made to the computer, or simply
lock out local resources from the script programs. Furthermore, code authentication can
also be provided at the script level. These will be part of our future work.

4.5. Summary
Software development is a creative process. Programming models and patterns

are usually identified long after they have been used in practice. In this chapter, we
described Presentation Style Programming as a programming model that is becoming
popular. Programs need to be presented, and presentations need to be smarter. We can
foresee that more programs will be written in presentation style in order to deliver
information in better ways.

We also presented a software development environment designed to aid the
creation and maintenance of presentation style software. Our system is flexible and easy
to use. On one extreme, lay users can easily build slides for pure presentation; on the
other extreme, advanced programmers can easily develop heavy-duty programs with the
full power of C++; in the middle, a convenient scripting facility is provided for an easy
way to build programmed presentations, presentable programs, and customized
presentation systems for use by lay users.

59

Chapter 5: Conclusion

In this dissertation we developed the RADIUS application framework to simplify
the tasks of building software that is self-installing and self-upgrading, by extending the
object-oriented programming paradigm from the programming language (data/code) level
to the operating system (document/application) level. This philosophy can be easily
understood by imagining the Internet as a huge address space where pointers are
symbolic.

Another important idea is revealed in the unified view of content delivery and
software deployment. By treating application code as another form of content to be
delivered, software deployment is achieved by mechanisms similar to those for
information delivery.

While attaining the intended design goal, software built in RADIUS requires
minimal work on the developers’ part and absolutely no work on the users’ part. One
important attribute of RADIUS is that it achieves its objectives without requiring any
new technologies to extend programming languages and operating systems. The very
efficient design and low coding overhead are collateral benefits of our high-level
abstractions. We believe that this characteristic should enhance the acceptance and
potential usage of this system.

We have also demonstrated how application components can be easily
implemented and assembled in the RADIUS environment. There are many ways for
RADIUS to be used, and there is some practical work that should be done to enhance the
usefulness of this system. We now address these issues in detail.

5.1. Application Areas of RADIUS
RADIUS is intended to be used wherever software deployment overhead is high.

The amount of such work is directly proportional to the number of users and the
frequency of revisions, and of course, the amount of work involved in each installation.
The last issue does not really restrict which situations are suitable for RADIUS. We
believe that the design principles of RADIUS can be applied to all software to reduce the
amount of deployment work needed in each installation.

According to the first two factors mentioned above, we can classify applications
into four categories as shown in the following table:
Case Number

of users
Number of
revisions

Applicable category

1 Large Large Information subscription, content delivery, shareware
2 Large Small COTS (Commercial Off-The-Shelf) software
3 Small Large Intranet applications
4 Small Small Custom software for lay users

Figure 57: RADIUS Application Areas

Although software licensing, security and code authentication mechanisms will
need to be added before RADIUS can be used in an open environment, the current system
is already suitable for use in Intranet, shareware and custom applications where software
licensing and code authentication either are non-issues or can be handled by other
facilities. Security is a more platform- and application-dependent issue that is orthogonal
to the philosophy and design of RADIUS. We plan to leave it for the individual

60

programming systems to handle.

5.2. Future Directions
With RADIUS as a basic framework for application software, we can incorporate

other technologies to extend the interoperability among applications and reduce the
learning curve for both the users and the developers.

5.2.1. Generalizing RADIUS
Our two implementations of RADIUS are constructed in two programming

languages, yet they can be viewed as constructed in two operating systems, considering
the unique characteristics of Java. The following figure shows the possible combinations
between programming languages and operating systems. It is fairly easy to generalize
RADIUS to other platforms by using the same techniques in our current implementations.

Programming Languages
Operating Systems

Java C++ Ada SmallTalk Eiffel Others...

Windows 9 9 � � � �

Unix 9 � � � � �

Linux 9 � � � � �

MacOS 9 � � � � �

OS/2 9 � � � � �

9: RADIUS has been implemented.
�: RADIUS can be implemented as a direct translation of an existing RADIUS.
�: Needs further investigation.

Figure 58: Current Status of RADIUS Implementations

The task of generalizing RADIUS can be approached from two directions:
programming languages or operating systems. For programming languages that are
highly independent of the underlying operating systems, it will be easy to build one
implementation of RADIUS and use it on all operating systems. However, it is likely to
be less work and more general to build one RADIUS core for each operating system and
provide RADIUS functionality to the programmers as a standard extension to the
operating system. The latter approach also implies the possibility of binary data
compatibility among applications built with different programming languages, which is
an important characteristics of popular component systems (e.g. COM, CORBA).

5.2.2. Integrating the Object Browser
Instead of running as a stand-alone application, the Object Browser can be

integrated into a Web Browser so that the Internet can become an extended file system.
By viewing the Application Loader as a linker/loader from the operating systems aspect,
we see that RADIUS can even be considered as part of an operating system. The Object
Browser can be integrated into the command shells of existing operating systems to
enhance their function. As the line between Web Browsers and command shells become
thin (as in the case of Internet Explorer in Windows 98), these two scenarios may actually
merge into one in the near future.

Furthermore, the documents can have the Object Browser bundled into them so
that they become documents that install their own applications. Currently the users still
need to download/copy the Object Browser and the RADIUS runtime library to start
using RADIUS. No matter how small these files are, it is still one step that the users have

61

to perform. We can easily package all the files necessary for RADIUS into one utility
program that, when executed, reads in a document and attaches itself to the document to
produce a RADIUS-installing document. This philosophy has been employed in utility
programs like self-extracting archive builders.

5.2.3. The Storage and Exchange Format
Applications can be developed in different programming languages, on different

operating systems or even on different hardware architectures. Rather than letting each
application control its own data layout in a private manner, a data description language
such as XML [52] can be used to standardize the external data format. After all, the
programming languages, operating systems and even hardware architectures get aged and
phased out, but the data lives on. For (a somewhat extreme) example, today’s computers
are still processing data collected by the Viking probes, and when the Voyager probes
encounters the next intelligent life form, none of today’s computers and software will still
be in use.

If a binary standard format is to be used for storage space or communication
bandwidth considerations, External Data Representation Standard (XDR) [44] (also used
by HTTP-ng Binary Wire Protocol [19]) would seem to be a good candidate, although it
is less decipherable from a human perspective.

The W3C (World-Wide-Web Council) has a standard Document Object Model
(DOM) [53] describing an object-oriented programming interface for HTML (DHTML,
XML, SGML) documents. DOM can also be used to map RADIUS objects to and from
documents in a standard way.

If the storage format of RADIUS documents is unified across programming
languages and operating systems, we can even consider using a unified Object Browser
that automatically chooses among different versions of the same application implemented
on different platforms to process the document. For example, a numerical document
prefers a C++ version of the application for better efficiency, but if one were not
available for the current operating system, a Java version might be acceptable.

5.2.4. COM/CORBA Interfaces
Applications developed in RADIUS are naturally component-based. It is quite

easy to add the basic COM or CORBA interfaces so that they can interact with non-
RADIUS component systems. Furthermore, the basic RADIUS programming interfaces
can be extended to include standard services of COM or CORBA so that developers can
easily build COM/CORBA objects with RADIUS functionality.

5.2.5. Software Licensing
Software licensing is an important issue that needs to be addressed for COTS

(Commercial Off-The-Shelf) software. The requests sent by the Object Browser provide
a basic mechanism for license control. The application server can challenge the object
browser for digital licenses, or simply look up a database for registered users. We have
not yet implemented a licensing database mechanism; however, it is not an extensive
endeavor. The database can be a simple relational database consisting of user/machine
identifiers (e.g. user name, machine IP address or the latest CPU ID in the Pentium III™
chip) and software right descriptions (e.g. initial download and upgrades within one year,
unlimited upgrades or three upgrades, etc.). The licensing mechanism will also need a
software purchase process and maybe a license transfer process in case the users change

62

machines.
Since the object browser also asks for upgrades, RADIUS even enables

developers to catch software piracy. If the machine is unlicensed for the application, a
warning can be issued and actions can be taken, as long as the actions are within the
bounds of the law. Of course, the user can always disconnect the computer from the
Internet to avoid being detected, but then the application may be useless anyway if it was
designed to rely on the Internet (e.g. Mail, Chat, Internet Game, information delivery,
etc.).

The more sophisticated pirates will be able to fake their identities and spoof a
simple license check, but there are quite a number of techniques in cryptography that we
can use to build a stronger verification protocol.

5.2.6. Security and Authentication
Our current design does not have any security or authentication measures, which

makes it insufficient for use in developing commodity software. A few things need to be
added in order for RADIUS software to be considered trustworthy. This can be
addressed in two aspects: security for being free from benign errors, and authentication
for being free from malignant errors.

Security requires more platform-dependent solutions since it relies heavily on the
facilities provided by the operating systems*, and sometimes even hardware. Therefore it
is harder to find a uniform solution.

Code authentication is easier to achieve in a platform/language independent way.
The application modules can be digitally signed by the developers and a verification
protocol can be enacted between the Application Loader and the Application Server. If
the network being used is in a secure communication environment, the authentication
process only needs to be performed once each time there is a new application or upgrade.
For example, in a secure LAN environment where all the machines load their applications
from a proxy server, only the proxy server needs to perform authentication when there is
an application loaded from outside the LAN.

5.2.7. RADIUS Applications as Mobile Code
Applications such as PIP can, in turn, be programming environments themselves.

“Documents” for these applications are programs. When these documents are
distributed, a form of distributed computing occurs. Since RADIUS applications are self-
installing, this kind of distributed computing environment is very lightweight and does
not require the programming/runtime tools to be pre-installed. With proper security and
authentication mechanisms implemented and automated, we can envision RADIUS being
used as an efficient and seamless rapid development tool for loosely-coupled distributed
computing.

* Java can be considered part of an operating system for this issue.

63

BIBLIOGRAPHY

1. 20/20 Software. Software Installation, Distribution and Security Solutions.
http://www.twenty.com/.

2. Apple Computer, Inc. OpenDoc. http://opendoc.apple.com.
3. Barnes, Donnie. RPM HOWTO. http://metalab.unc.edu/LDP/HOWTO/RPM-

HOWTO.html.
4. Beveridge, Jim. Self-Registering Objects in C++. Dr. Dobb’s Journal #288, August

1998, pp38-41.
5. Borland. Borland JBuilder User’s Guide. Borland International, 1998.
6. Box, Don. Essential COM. Addison Wesley, Menlo Park, California, 1998.
7. Box, Don. Say Goodbye to Macro Envy with Active Scripting. Microsoft Interactive

Developer, February 1998, Microsoft Press. Also available at
http://www.microsoft.com/mind/0297/activescripting.htm.

8. Derfler, Frank, et al. TKO Your TCO Today. PC Magazine October 21, 1997, pp223-
228.

9. Dykstra, Dave, and Katherine Lato. NSBD and Software Distribution. Dr. Dobb’s
Journal #289, September 1998, pp84-88.

10. Easter, Leslie. Bulletproof Installs: A Developer’s Guide to Install Programs for
Windows. Prentice Hall, 1998.

11. Flanagan, David. Java in a Nutshell. O’Reilly, Sebastopol, California, 1997.
12. Gamma, Erich, et al. Design Patterns: Elements of Reusable Object-Oriented

Software. Addison-Wesley, Reading, Massachusetts, 1994.
13. Gilder, George, The Coming Software Shift.

http://www.agribiz.com/fbFiles/readings/softshif.html.
14. Gosling, James, et al. The Java Language Specification. Addison-Wesley, Reading,

Massachusetts, 1996.
15. Grimes, Richard, et al. Beginning ATL COM Programming. Wrox Press,

Birmingham, UK, 1998.
16. Hall, Richard S. Software Deployment Information Clearinghouse.

http://www.cs.colorado.edu/users/rickhall/deployment.
17. Jai, Benchiao. A Lightweight Dynamic OOP Framework for Automatic Application

Location, Installation and Upgrade. Proceedings of OOPSLA ’98. ACM, New York,
1998. Pre-Addendum pp34-35.

18. Jai, Benchiao. RADIUS: A Rapid Application Delivery, Installation and Upgrade
System. Proceedings of TOOLS Pacific ’98. IEEE, Los Alamitos, California, 1998.
ISBN 0-7695-0053-6. pp180-186.

19. Janssen, Bill, HTTP-NG Binary Wire Protocol. W3C, http://www.w3.org/TR/WD-
HTTP-NG-wire.

20. Johnson, E. F., Reichard, K. Power Programming MOTIF, 2ed. MIS Press, 1993.
21. Liang, Sheng, and Gilad Bracha. Dynamic Class Loading in the Java™ Virtual

Machine. Proceedings of the OOPSLA ’98. ACM, New York, 1998, pp36-44.
22. Lindholm, Tim, and Frank Yellin. The Java Virtual Machine Specification. Addison-

Wesley, Reading, Massachusetts, 1997. Also available at
ftp://ftp.javasoft.com/docs/specs/vmspec.html.zip.

23. Lockhart, Harold W. OSF DCE. McGraw-Hill, New York, New York, 1994.

64

24. Marimba, Inc. Marimba Castanet™. http://www.marimba.com/three.
25. McAfee. Oil Change™ Online Manual.

http://www.cybermedia.com/support/oilchange/manual/index.html.
26. Microsoft. The Component Object Model Specification.

http://www.microsoft.com/COM/COM1598B.ZIP.
27. Netscape Communications Corporation. Using JAR Installation Manager for

SmartUpdate. August 27, 1997. Mountain View, California.
28. Netscape Communications Corporation. SmartUpdate for Content Developers.

http://developer.netscape.com/docs/manuals/communicator/jarforcd/index.htm.
29. OMG, The Common Object Request Broker: Architecture and Specification, V2.2.

OMG, ftp://ftp.omg.org/pub/docs/formal/98-02-01.pdf, 1998.
30. OMG. CORBAfacilities: Common Facilities Architecture. OMG,

ftp://ftp.omg.org/pub/docs/formal/corbafacility-97-06-15.pdf, 1997.
31. OMG, CORBAservices: Common Object Services Specification. OMG,

ftp://ftp.omg.org/pub/docs/formal/corbaservice-97-12-02.pdf, 1998.
32. Orr, K.T. Structured Systems Development. Prentice Hall, 1977.
33. Pal, Partha Pratim. A Flexible, Applet-like Software Distribution Mechanism for Java

Applications. Software Engineering Notes Vol. 23 No. 4, July 1998, pp56-60.
34. Parker, R.O. Easy Object Programming for MacIntosh Using AppMaker and Think C.

Prentice Hall, 1992.
35. Perelman-Hall, David K. Java and Lightweight Components. Dr. Dobb’s Journal

#296, February 1999, pp22-28.
36. Pressman, R. S. Software Engineering: A Practitioner’s Approach. McGraw-Hill,

1982.
37. Price Waterhouse. Technology Forecast: 1998. Price Waterhouse Global Technology

Centre. Menlo Park, California. 1998.
38. Prosise, J. Programming Windows 95 with MFC: Create Programs for Windows

Quickly with the Microsoft Foundation Class Library. Microsoft Press, 1996.
39. Raymond, Eric S. The Cathedral and the Bazaar.

http://www.tuxedo.org/~esr/writings/cathedral-bazaar/cathedral-bazaar.ps.
40. Reisdorph, K. Teach Yourself Borland C++ Builder 3 in 14 Days. Sams Publishing,

1998.
41. Sessions, Roger. COM and DCOM: Microsoft’s Vision for Distributed Objects. John

Wiley & Sons, New York, 1997.
42. Stay, J.F. HIPO and Integrated Program Design. IBM Systems Journal, 15, 2, 1976,

pp143-154.
43. Stroustrup, Bjarne, The C++ Programming Language, Third Edition. Reading,

Massachusetts: Addison-Wesley, 1997.
44. Srinivasan, Raj, XDR: External Data Representation Standard. Internet RFC 1832,

http://info.internet.isi.edu:80/in-notes/rfc/files/rfc1832.txt.
45. Sun Microsystems. JavaBeans™. ftp://ftp.javasoft.com/docs/beans/beans.101.pdf.
46. Sun Microsystems. Java™ Core Reflection. API and Specification.

ftp://ftp.javasoft.com/docs/jdk1.2/java-reflection.pdf, 1997.
47. Sun Microsystems. Java™ Object Serialization Specification.

ftp://ftp.javasoft.com/docs/jdk1.2/serial-spec-JDK1.2.pdf, 1998.
48. Sun Microsystems. Java™ Remote Method Invocation Specification.

65

ftp://ftp.javasoft.com/docs/jdk1.1/rmi-spec.pdf.
49. Tallman, Owen H. Project Gabriel: Automated Software Deployment in a Large

Commercial Network. Digital Technical Journal Vol. 7 No. 2, 1995, pp56-70.
50. Venners, Bill. Inside the Java Virtual Machine. McGraw-Hill, New York, New York,

1998.
51. Vlissides, M. and Mark A. Linton. Unidraw: a framework for building domain-

specific graphical editors. ACM Transactions on Information Systems Vol. 8 No. 3,
July 1990, pp237-268.

52. W3C. Extensible Markup Language (XML) 1.0. http://www.w3.org/TR/1998/REC-
xml-19980210.html.

53. W3C. Document Object Model (DOM) Level 1 Specification.
http://www.w3.org/TR/1998/PR-DOM-Level-1-19980818/DOM.ps.

54. Windows Magazine. By the Numbers – Life Cycle Costs. Windows Magazine May
1999, p28.

