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Abstract

We describe three multi-marker/-locus statistical methods for analyzing high-

throughput array data used for the detection of genes implicated in complex dis-

orders.

1. Detection of Tumor Suppressor Genes and Oncogenes using Multipoint

Statistics from Copy Number Variation Data

Array-CGH is a microarray-based comparative genomic hybridization technique

that has been used to compare a tumor genome against a normal genome, thus

providing rapid genomic assays of tumor genomes in terms of copy number vari-

ations of those chromosomal segments, which have been gained or lost. When

properly interpreted, these assays are likely to shed important light on genes and

mechanisms involved in initiation and progression of cancer. Specifically, chromo-

somal segments, deleted/amplified in a group of cancer patients, point to locations

of tumor suppressor genes/oncogenes implicated in the cancer. We describe a

statistical method to estimate the location of such genes by analyzing segmental

deletions/duplications in the genomes from cancer patients and the spatial relation

of the deleted/amplified segments to any specific genomic interval. The algorithm

assigns to a genomic segment a score that parsimoniously captures the underlying

biology. It also computes a p-value for every putative disease gene by using results

from the theory of scan statistics. We have validated our method using simulated

datasets, as well as a real dataset on lung cancer.



2. Multilocus Linkage Analysis of Affected Sib Pairs

The conventional Affected-Sib-Pair methods evaluate the linkage information at a

locus by considering only marginal information. We describe a multilocus linkage

method that uses both the marginal information and information derived from the

possible interactions among several disease loci, thereby increasing the significance

of loci with modest effects. Our method is based on a statistic that quantifies

the linkage information contained in a set of markers. By a marker selection-

reduction process, we screen a set of polymorphisms and select a few that seem

linked to disease. We test our approach on a genome-scan data for inflammatory

bowel disease and on simulated data. We show that our method is expected to be

more powerful than single-locus methods in detecting disease loci responsible for

complex traits.

3. We consider the problem of efficient inference algorithms to determine the

haplotypes and their distribution from a dataset of unrelated genotypes.

With the currently available catalogue of single-nucleotide polymorphisms (SNPs)

and given their abundance throughout the genome (one in about 500 bps) and low

mutation rates, scientists hope to significantly improve their ability to discover

genetic variants associated with a particular complex trait. We present a solution

to a key intermediate step by devising a practical algorithm that has the ability

to infer the haplotype variants for a particular individual from its own genotype

SNP data in relation to population data. The algorithm we present is simple to

describe and implement; it makes no assumption such as perfect phylogeny or the

availability of parental genomes (as in trio-studies); it exploits locality in linkages



and low diversity in haplotype blocks to achieve a linear time complexity in the

number of markers; it combines many of the advantageous properties and concepts

of other existing statistical algorithms for this problem; and finally, it outperforms

competing algorithms in computational complexity and accuracy, as demonstrated

by the studies performed on real data and synthetic data.
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Chapter 1

Introduction

1.1 Motivation

High-throughput genetic data offer the promise of a better understanding of the

genes and mechanisms implicated in complex diseases. Traditional methods deal-

ing with one marker at a time have been successful for Mendelian (single-gene)

diseases. The marker-by-marker approaches have been appropriate in the past,

when the DNA markers available (RFLPs, microsatellites etc.) were relatively

sparse, and hence there was little correlation among nearby markers. However, re-

cently, with the discovery of millions of SNPs (single-nucleotide polymorphisms),

and also with the interest moving from the study of single-gene diseases to more

complex traits (multifactorial diseases), multi-marker/-locus methods are more ap-

propriate and are expected to be more successful in detecting genes implicated in

complex diseases. In this thesis we consider three problems in this area:

1. Mapping Tumor Suppressor Genes and Oncogenes using Multipoint Statistics

1



from Copy-Number Variation Data

2. Multilocus Linkage Analysis of Affected Sib-Pairs

3. A Practical Haplotype Inference Algorithm

The first problem (Chapter 2) concerns the detection of cancer genes from copy-

number variation data. Copy-number variation data can be generated using a

technology called array-CGH (array comparative genomic hybridization). The

normal copy number is two, one copy being inherited from the mother and the

other from the father. Sometimes, there are copy number changes in the genome

of an individual. There are deletions that can reduce the copy number from 2 to 1

(hemizygous deletions) or 0 (homozygous deletions). Another type of change are

amplifications; in this case the copy number goes up, it can be 3, or 7 or 150, etc.

These copy-number changes can in turn affect the expressions of the genes affected

by these copy number changes. When these changes occur in certain genes ( cancer

genes), they can lead to cancer.

Two types of genes are involved in cancer: oncogenes and tumor suppressor

genes. Oncogenes are usually due to gain-of-function mutations that lead to ma-

lignancy by mutations (e.g. amplifications) is genes whose functions may be in

stimulating cell proliferation, increasing blood supply to the tumor, or inhibit-

ing apoptosis. Tumor suppressor genes block tumor development by regulating

cell growth. Loss-of-function (e.g. due to deletions) of proteins encoded by these

tumor suppressor genes leads to uncontrolled cell division.

2



Our contribution is the introduction of a method for the detection of cancer

genes from the data on deletions and amplifications in a group of patients, all

suffering from the same cancer. Genomic regions enriched in deletions across many

patients point to the location of tumor suppressor genes; and similarly regions with

many amplifications point to the location of oncogenes.

The second problem (Chapter 3) concerns a multi-locus linkage method for

affected sib-pairs. The affected-sib-pair (ASP) design is simple and popular, often

used in the detection of genes involved in complex diseases. The basic idea is to

collect sibs affected with a certain disease and their parents and genotype them at

markers throughout the genome. Then statistical methods exploit the oversharing

of genetic information at the disease loci in order to find the locations of these

disease genes. The traditional statistical methods analyze the data marker-by-

marker, thereby making use of only marginal information. However, the complex

illnesses (like heart disease, diabetes, cancer) are, more often than not, caused

by the complex interaction of multiple genetic and environmental risk factors.

Therefore we propose a multilocus linkage method that is able to use both marginal,

as well as interacting information to evaluate and find the disease genes.

The third problem (Chapter 4) concerns the inference of haplotypes from un-

phased genotype information in a sample of unrelated individuals. This problem

is very important in genetics and has implications in the efficient design of genetic

studies(HAPMAP project). Ideally we would like to be able to separate the ge-

netic information (at multiple locations) coming from the mother from that coming

from the father, the so-called haplotypes. They are important since they give in-

3



formation about recombination patterns and about correlations among markers.

However, the genotyping experiments do not give us this information; they only

tell us at each marker locus a set of two alleles, without differentiating between

the mother and the father allele (the so-called unphased genotype). Therefore

computational methods have been proposed to find the haplotypes from the un-

phased genotypes in a sample. We present a simple and efficient algorithm for this

problem.

1.2 Thesis Outline

The rest of the thesis is organized as follows. In Chapter 2 we present the algo-

rithm for the detection of cancer genes from copy-number variation data, with an

application to lung cancer. In Chapter 3 we present a multilocus linkage method

for the detection of disease genes using an affected-sib-pair design, with an ap-

plication to inflammatory bowel disease. In Chapter 4 we address an important

issue involved in the design of these disease-gene-detection studies: the haplotype

inference problem. We conclude in Chapter 5 with a discussion of our results and

future directions.
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Chapter 2

Mapping Tumor Suppressor

Genes and Oncogenes using

Multipoint Statistics from

Copy-Number Variation Data

SUMMARY: Array-CGH is a microarray-based comparative genomic hy-

bridization technique that has been used to compare a tumor genome against a

normal genome, thus providing rapid genomic assays of tumor genomes in terms of

copy number variations of those chromosomal segments, which have been gained or

lost. When properly interpreted, these assays are likely to shed important light on

genes and mechanisms involved in initiation and progression of cancer. Specifically,

chromosomal segments, amplified or deleted in a group of cancer patients, point to

locations of cancer genes, oncogenes and tumor suppressor genes, implicated in the
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cancer. In this chapter, we focus on automatic methods for reliable detection of

such genes and their locations, and devise an efficient statistical algorithm to map

oncogenes and tumor suppressor genes using a novel multi-point statistical score

function. The proposed algorithm estimates the location of cancer genes by ana-

lyzing segmental duplications and deletions in the genomes from cancer patients

and the spatial relation of these changes to any specific genomic interval. The

algorithm assigns to an interval of consecutive probes a multipoint score that par-

simoniously captures the underlying biology. It also computes a p-value for every

putative oncogene and tumor suppressor gene by using concepts from the theory of

scan statistics. Furthermore, it can identify smaller sets of predictive probes that

can be used as biomarkers for diagnosis, and therapeutics. We have validated our

method using different simulated artificial datasets and one real dataset on lung

cancer, and report encouraging results.

2.1 Introduction

The process of carcinogenesis imparts many genetic changes to a cancer genome

at many different scales: point mutations, translocations, segmental duplications,

and deletions. While most of these changes have no direct impact on the cellular

functions, and may not contribute to the carcinogenesis in any obvious manner,

few of these chromosomal aberrations have disproportionately significant impact

on the cell’s ability to initiate and maintain processes involved in tumor growth:

namely, through its ability to proliferate, escape senescence, achieve immortality,

and signal to neighboring cells. Two classes of genes are critically involved in

6



cancer development and are discernible in terms of their copy number variations:

oncogenes that are activated or altered in function and tumor suppressor genes

that are deactivated in cancer cells.

The effect of oncogenes is via gain-of-function mutations that lead to malig-

nancy. For instance, a segmental amplification can increase the genomic copy

number of a region containing an oncogene, thus leading to over-expression of the

oncogene product. The mutation is dominant, i.e. only a mutated allele is neces-

sary for the cell to become malignant, and needs to encompass the entire gene.

Tumor-suppressor genes, on the other hand, affect the cells via mutations (often

involving segmental deletions) that contribute to malignancy by loss-of-function of

both alleles of the gene. The “two-hit” hypothesis of Knudson (Knudson 1971 [1])

for tumorigenesis has been widely recognized as an important model of such losses

of function involved in many cancers. Only portions of a tumor suppressor gene

need to be deleted in order for the cell to become cancerous.

In the current whole-genome analysis setup, microarray techniques are being

used successfully to measure fluctuations in copy number for a large number of

genomic regions in one genome relative to a different but related genome sample.

For example, array-CGH can map copy number changes at a large number of

chromosomal locations in one genome with respect to a reference genome, and

from them extrapolate to infer segments of genome that have undergone same

degree of amplifications or deletions. For some references to and discussions of

algorithms that estimate these copy number variations (CNVs), see Daruwala et

al. 2004 [2].
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The approach here exploits spatial relations of these changes to any specific

genomic interval in a group of cancer patients, and works by enumerating all

short intervals in the genome and then evaluating them with a score function that

measures the likelihood of an interval being the oncogene or tumor suppressor gene.

The rest of the chapter is organized as follows. We first propose simple proba-

bilistic generative models assumed to have generated the copy number data, and

then formulate our score functions based on these models. We then show how

this function is used in evaluating whether a region represents an oncogene or a

tumor suppressor gene. Next, we illustrate our method, using this score function

and several sets of simulated data, computed under a wide variety of scenarios

(Results section); we also assess the power of the method by examining how ac-

curately it discovers the true location (which is known to the simulator) of the

oncogene or tumor suppressor gene. Finally, we analyze and report the results

from an array-CGH dataset (using 100K Affy-chips), obtained from several lung

cancer patients. We conclude with a discussion of the strength and weakness of

the proposed method (Discussion section).

2.2 Methods

2.2.1 Statistical Model

We first describe a simple generative model assumed to model how the copy-number

data arised. In this simplest parsimonious model, we model the breakpoints, de-

fined as the starting points of amplification and deletion events, and the lengths of

8



these changes as follows. We assume that at any genomic location, a breakpoint

may occur as a Poisson process at a rate µ ≥ 0; hence µ is the mean number

of breakpoints per unit length. Starting at any of these breakpoints, a segmental

change (amplification or deletion) occurs with length distributed as an Exponential

random variable with parameter λ ≥ 0; hence 1
λ

is the average length of a change.

We formulate two such models: one for amplifications (parameters µa, λa) and one

for deletions (parameters µd, λd).

Having formulated this model, we can now compute for a genomic interval

I = [a, b] the background probabilities of I being deleted or amplified. Note that

by I deleted we mean that any part of I is deleted, whereas I is amplified means

that the entire interval I is amplified. This reflects our understanding as to how

oncogenes become activated and tumor suppressor genes become inactivated.

Lemma 2.2.1 Assuming the generative process described above:

1. The probability that an interval I = [a, b] is amplified is as follows:

P ([a, b] amplified) = 1− e−µaa e−λa(b−a)−e−λab

2λaa ·

·e−µa(G−b) e−λa(b−a)−e−λa(G−a)

2λa(G−b) , (2.1)

where [0, G] represents the region of interest (e.g., a chromosome).

2. The probability that an interval I = [a, b] is deleted is as follows:

P ([a, b] deleted) = 1− e−µd(b−a)e
−µda 1−e−λda

2λda e
−µd(G−b) 1−e−λd(G−b)

2λd(G−b) , (2.2)
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where [0, G] represents the region of interest (e.g., a chromosome).

Proof:

1. Given an interval [a, b], it is easier to compute the following probability:

P ([a, b] NOT amplified) = P ([a, b] ∩ Ampl = φ)

We know that [a, b] ∩ Ampl = φ happens if and only if: each amplified

interval starting from a breakpoint in [0, a] does not contain [a, b] AND each

amplified interval starting from a breakpoint in [b, G] does not contain [a, b]

. Let P1 be the probability of the first event and P2 be the probability of the

second event.

P1 can be written as:

P ( no breakpoint in [0, a])

+ P (1 breakpoint in [0, a])× P ( amplified interval ∩ [a, b] = φ)

+ P (2 breakpoints in [0, a])× P ( amplified intervals ∩ [a, b] = φ)

+ · · ·

We can now compute the terms in this sum.

The first term is:

P ( no breakpoint in [0, a]) = e−µa

10



For the second term (P (1 breakpoint in [0, a])×P ( amplified interval ∩[a, b] =

φ)) we have first:

P (1 breakpoint in [0, a]) = µae−µa

and P (amplified interval ∩ [a, b] = φ) is more complicated.

Suppose we divide the interval [0, a] into many intervals [xi, xi+1] for i ∈

{0, . . . , n}. Then

P ( amplified interval ∩ [a, b] = φ) =

=
n∑

i=0

P ( breakpoint x is in [xi, xi+1]|1 breakpoint in [0, a])

×P (no overlap caused byx)

=
n∑

i=0

xi+1 − xi

a
× P (no overlap caused by x)

Let us now compute the probability of no overlap caused by the amplification

starting at x ∈ [xi, xi+1].

P (no overlap caused by x ∈ [xi, xi+1])

=
1

2
+

1

2

1

xi+1 − xi

∫ xi+1

xi

∫ b−x

0

λe−λtdtdx

= 1− 1

2

1

xi+1 − xi

e−λ(b−xi+1) − e−λ(b−xi)

λ

= 1− 1

2

G(xi+1)−G(xi)

xi+1 − xi

11



where G(x) = e−λ(b−x)

λ
. Therefore

P ( amplified interval ∩ [a, b] = φ) =

=
n∑

i=0

xi+1 − xi

a
×

(
1− 1

2

G(xi+1)−G(xi)

xi+1 − xi

)
=

∫ a

0

1

a

(
1− 1

2
G′(x)

)
dx

= 1− e−λ(b−a) − e−λb

2λa

So the second term is

µae−µa ·
(

1− e−λ(b−a) − e−λb

2λa

)

For the third term (P (2 breakpoints in [0, a])×P ( amplified intervals ∩[a, b] =

φ)) we have first:

P (2 breakpoints in [0, a]) =
(µa)2

2!
e−µa

and

P ( the two amplified intervals ∩ [a, b] = φ)

=
∑
i<j

P (1st break in [xi, xi+1] and 2nd break in [xj, xj+1]|2 breaks in [0, a])

×P (no overlap caused by the first break)

×P (no overlap caused by the second break)

12



Now

P (1st break in [xi, xi+1] and 2nd break in [xj, xj+1]|2 breaks in[0, a])

=
2(xi+1 − xi)(xj+1 − xj)

a2

by simple probability computations.

We have already computed

P (no overlap caused by x ∈ [xi, xi+1])

= 1− 1

2

G(xi+1)−G(xi)

xi+1 − xi

and

P (no overlap caused by x ∈ [xj, xj+1])

= 1− 1

2

G(xj+1)−G(xj)

xj+1 − xj

where

G(x) =
e−λ(b−x)

λ

13



Therefore:

P ( the two amplified intervals ∩ [a, b] = φ)

=
∑
i<j

2(xi+1 − xi)(xj+1 − xj)

a2
×

(
1− 1

2

G(xi+1)−G(xi)

xi+1 − xi

)
×

(
1− 1

2

G(xj+1)−G(xj)

xj+1 − xj

)
=

2

a2

∫ a

0

(∫ y

0

(
1− 1

2
G′(x)

)
dx

) (
1− 1

2
G′(y)

)
dy

=
2

a2

∫ a

0

(y − 1

2
G(y) +

1

2
G(0))(1− 1

2
G′(y))dy

= 1− 1

a2

∫ a

0

G(y)dy +
e−λb

λa
− 2

a2

∫ a

0

(y − 1

2
G(y) +

1

2
G(0))

1

2
G′(y)dy

Integrating by parts we obtain:

∫ a

0

G(y)dy +

∫ a

0

(y − 1

2
G(y) +

1

2
G(0))G′(y)dy

=

∫ a

0

G(y)dy + (a− 1

2
G(a) +

1

2
G(0))G(a)−

∫ a

0

(1− 1

2
G′(y))G(y)dy

=

∫ a

0

G(y)dy + (a− 1

2
G(a) +

1

2
G(0))G(a)−

∫ a

0

G(y)dy +

+
1

2

∫ a

0

G′(y)G(y)dy

= (a− 1

2
G(a) +

1

2
G(0))G(a) +

G(a)2

4
− G(0)2

4

= aG(a) +
1

2
G(0)G(a)− G(a)2

4
− G(0)2

4

14



Hence

P ( the two amplified intervals ∩ [a, b] = φ)

= 1 +
e−λb

λa
− 1

a2

(
aG(a) +

1

2
G(0)G(a)− G(a)2

4
− G(0)2

4

)

We have G(a) = e−λ(b−a)

λ
and G(0) = e−λb

λ
So:

P ( the two amplified intervals ∩ [a, b] = φ)

= 1 +
e−λb

λa
− G(a)

a
+

1

4a2
(G(0)−G(a))2

=

(
1− G(a)−G(0)

2a

)2

=

(
1− e−λ(b−a) − e−λb

2λa

)2

We can now say that the third term is:

(µa)2

2!
e−µa ·

(
1− e−λ(b−a) − e−λb

2λa

)2

Finally we obtain:

P1 = e−µa

(
1 + µa

(
1− e−λ(b−a) − e−λb

λa

)
+

+
1

2!

(
µa

(
1− e−λ(b−a) − e−λb

λa

))2

+ . . .

)
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Hence

P1 = e−µa e−λ(b−a)−e−λb

2λa

We need to compute P2 also. P2 is the probability that each amplified interval

starting from a breakpoint in [b,G] does not contain [a, b]. This is very similar

to P1. We can show that:

P2 = e−µ(G−b) e−λ(b−a)−e−λ(G−a)

2λ(G−b)

The final formula is:

P ([a, b] ∩ Ampl = φ) = e−µa e−λ(b−a)−e−λb

2λa e−µ(G−b) e−λ(b−a)−e−λ(G−a)

2λ(G−b)

2

2. Given an interval [a, b], it is easier to compute the following probability:

P ([a, b] NOT deleted) = P ([a, b] ∩ Del = φ)

We know that [a, b]∩ Del = φ happens if and only if: there is no breakpoint

in [a, b] AND each deleted interval starting from a breakpoint in [0, a] does

not overlap with [a, b] AND each deleted interval starting from a breakpoint

in [b, G] does not overlap with [a, b].

Let P1 be the probability of the first event, P2 that of the second, and P3

16



that of the last event. P1, the probability of no breakpoint in [a, b], is just

P1 = e−µ(b−a)

The second probability, P2, can be written as:

P2 = P ( no breakpoint in [0, a])

+ P (1 breakpoint in [0, a])× P ( deleted interval ∩ [a, b] = φ)

+ P (2 breakpoints in [0, a])× P ( deleted intervals ∩ [a, b] = φ)

+ · · ·

We can now compute the terms in this sum.

The first term is:

P ( no breakpoint in [0, a]) = e−µa

For the second term (P (1 breakpoint in [0, a])×P ( deleted interval ∩ [a, b] =

φ)) we have first:

P (1 breakpoint in [0, a]) = µae−µa

and P ( deleted interval ∩ [a, b] = φ) is more complicated.

Suppose we divide the interval [0, a] into many small intervals [xi, xi+1] for

17



i ∈ {0, . . . , n}. Then

P ( deleted interval ∩ [a, b] = φ)

=
n∑

i=0

P ( breakpoint x is in [xi, xi+1]|1 breakpoint in [0, a])

×P (no overlap cause by x)

=
n∑

i=0

xi+1 − xi

a
· P (no overlap caused by x)

Let us now compute the probability of no overlap caused by the deletion at

x ∈ [xi, xi+1].

P (no overlap caused by x ∈ [xi, xi+1])

=
1

2
+

1

2

1

xi+1 − xi

∫ xi+1

xi

∫ a−x

0

λe−λtdtdx

= 1− 1

2
· 1

xi+1 − xi

e−λ(a−xi+1) − e−λ(a−xi)

λ

= 1− 1

2
· G(xi+1)−G(xi)

xi+1 − xi

where G(x) = e−λ(a−x)

λ
. Therefore

P ( deleted interval ∩ [a, b] = φ) =

=
n∑

i=0

xi+1 − xi

a
·
(

1− 1

2
· G(xi+1)−G(xi)

xi+1 − xi

)
=

∫ a

0

1

a

(
1− 1

2
G′(x)

)
dx

= 1− 1− e−λa

2λa
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So the second term in P2 is

µae−µa ·
(

1− 1− e−λa

2λa

)

For the third term (P (2 breakpoints in [0, a])×P ( deleted intervals ∩ [a, b] =

φ)) we have first:

P (2 breakpoints in [0, a]) =
(µa)2

2!
e−µa

and

P (the two deleted intervals ∩ [a, b] = φ)

=
∑
i<j

P (1st break in [xi, xi+1] and 2nd break in [xj, xj+1]| 2 breaks in [0, a])

×P (no overlap caused by the first break)

×P (no overlap caused by the second break)

Now

P (1st break in [xi, xi+1] and 2nd break in [xj, xj+1]| 2 breaks in[0, a])

=
2(xi+1 − xi)(xj+1 − xj)

a2

by simple probability computations.
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We have already computed

P (no overlap caused by x ∈ [xi, xi+1])

= 1− 1

2

G(xi+1)−G(xi)

xi+1 − xi

and

P (no overlap caused by x ∈ [xj, xj+1])

= 1− 1

2
· G(xj+1)−G(xj)

xj+1 − xj

where G(x) = e−λ(a−x)

λ
. Therefore:

P ( the two deleted intervals ∩ [a, b] = φ)

=
∑
i<j

2(xi+1 − xi)(xj+1 − xj)

a2
×

(
1− 1

2
· G(xi+1)−G(xi)

xi+1 − xi

)
×

(
1− 1

2

G(xj+1)−G(xj)

xj+1 − xj

)
=

2

a2

∫ a

0

(∫ y

0

(
1− 1

2
G′(x)

)
dx

) (
1− 1

2
G′(y)

)
dy

=
2

a2

∫ a

0

(
y − 1

2
G(y) +

1

2
G(0)

) (
1− 1

2
G′(y)

)
dy

= 1− 1

a2

∫ a

0

G(y)dy +
e−λa

λa
− 2

a2

∫ a

0

(
y − 1

2
G(y) +

1

2
G(0)

)
1

2
G′(y)dy

20



Integrating by parts we obtain:

∫ a

0

G(y)dy +

∫ a

0

(
y − 1

2
G(y) +

1

2
G(0)

)
G′(y)dy

=

∫ a

0

G(y)dy +

(
a− 1

2
G(a) +

1

2
G(0)

)
G(a)−

∫ a

0

(
1− 1

2
G′(y)

)
G(y)dy

=

∫ a

0

G(y)dy +

(
a− 1

2
G(a) +

1

2
G(0)

)
G(a)−

∫ a

0

G(y)dy +

+
1

2

∫ a

0

G′(y)G(y)dy

=

(
a− 1

2
G(a) +

1

2
G(0)

)
G(a) +

G(a)2

4
− G(0)2

4

= aG(a) +
1

2
G(0)G(a)− G(a)2

4
− G(0)2

2

Hence

P ( the two deleted intervals ∩ [a, b] = φ)

= 1 +
e−λa

λa
− 1

a2

(
aG(a) +

1

2
G(0)G(a)− G(a)2

4
− G(0)2

4

)

Since G(a) = 1
λ

and G(0) = e−λa

λ
, we obtain

P ( the two deleted intervals ∩ [a, b] = φ)

= 1 +
e−λa

λa
− G(a)

a
+

1

4a2
(G(0)−G(a))2

=

(
1− G(a)−G(0)

2a

)2

=

(
1− 1− e−λa

2λa

)2
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We can now say that the third term in P2 is:

(µa)2

2!
e−µa ·

(
1− 1− e−λa

2λa

)2

Finally we obtain:

P2 = e−µa

[
1 + µa

(
1− 1− e−λa

2λa

)
+

1

2!

(
µa

(
1− 1− e−λa

2λa

))2

+ . . .

]

Hence:

P2 = e−µa 1−e−λa

2λa

The last probability we need to compute is P3, the probability that each

deleted interval starting from a breakpoint in [b, G] does not overlap with

[a, b]. Through computations similar to those for P2, we can show that:

P3 = e−µ(G−b) 1−e−λ(G−b)

2λ(G−b)

The final formula is:

P ([a, b] ∩ Del = φ) = e−µ(b−a)e−µa 1−e−λa

2λa e−µ(G−b) 1−e−λ(G−b)

2λ(G−b)

and therefore

P ([a, b] deleted) = 1− e−µ(b−a)e−µa 1−e−λa

2λa e−µ(G−b) 1−e−λ(G−b)

2λ(G−b)

22



2

The way we have defined an interval I as amplified or as deleted, implies that

short intervals are easier to get amplified than longer intervals; however short

intervals are harder to get deleted than larger ones.

2.2.2 Genomic Data

In the preceding subsection, we have described a model for how the background

copy numbers are distributed in a general population. Our aim is to devise a

method that is able to infer useful information from cancer patients with regard

to where the cancer genes are located.

Our assumption is that we have available a sample of patients, all affected by the

same type of cancer. For each patient, copy number values are available at many

positions throughout the genome. By comparing the distribution of copy number

values in these patients at a particular genomic location, with that expected under

the null hypothesis of no cancer gene at that position, we can infer the locations

of cancer genes.

2.2.3 Multipoint Scores

Our method for the identification of oncogenes and tumor suppressor genes relies

on a multipoint score function, computed over whole-genome analysis data for a

sufficiently large group of patients suffering from the same form of cancer.

For any interval I (represented as a set of consecutive probes), we wish to

quantify the strength of the association between copy number changes (amplifi-
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cations and deletions) in I and the disease, by analyzing the genomic data for

many diseased individuals. For this purpose, we select a metric, the relative risk

(RR), as it compares and assigns a numerical value to the risks of disease in two

populations with respect to each other: the first population comprises subjects

whose genomes contain an amplification, respectively a deletion in the interval I

(we call this event A) and the second comprises subjects whose genomes have no

such segmental change in I (we call this event Ā).

RRI = ln
P (disease|A)

P (disease|Ā)

= ln

(
P (A|disease)

P (Ā|disease)
× P (Ā)

P (A)

)
= ln

P (A|disease)

P (Ā|disease)
− ln

P (A)

P (Ā)
(2.3)

We have two scores: one for oncogenes and one for tumor suppressor genes. In

the score for oncogenes, we replace A with “I amplified”, and similarly for tumor

suppressor genes, we replace A with “I deleted”. The first term in (2.3) can be

estimated from the tumor samples available:

P (A|disease)

P (Ā|disease)
=

nA

nĀ

, (2.4)

where nA is simply the number of tumor samples in which A holds. Hence for

oncogenes, nA is the number of cancer samples with I amplified, and for tumor

suppressor genes nA is the number of cancer samples with I deleted.

The second part −P (A)

P (Ā)
incorporates prior information inherent in the statistical

distribution of amplifications or deletions. We have computed P (A) in the section
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Statistical Model.

A difference arises between oncogenes and tumor suppressor genes with respect

to how the prior information, included in the distribution of random unrelated

deletions and amplifications in the genome, affects the evidence from the data.

For oncogenes, the prior information is reflected through an advantage accrued to

large intervals; in other words, assuming that the same strength of evidence exists

in the data for different sizes, preference is given to the larger intervals. However,

for tumor suppressor genes, the prior information gives advantage to the smaller

intervals. The intuition is that is is harder to amplify large intervals and harder

to delete small intervals. In Figure 2.1, we show how the two priors − ln P (A)

P (Ā)
vary

as a function of the length of the interval. All the parameters (µ, λ, G) are same

as those in the simulation examples in the Results section.

For a genomic interval I, we can compute the score in (2.3). Clearly, we expect

the high-scoring intervals determined by this method to be treated as candidates

for oncogenes or tumor suppressor genes. We will still need to define precisely how

and how many of these intervals are selected and then evaluated for their statistical

significance.

2.2.4 Estimating Parameters

In the preceding section, we have defined two scores for an interval I (RRI is an oncogene

and RRI is a TSG), which depend on extraneous parameters describing a background

genome reorganization process. These parameters, namely λa, µa, λd and µd, must

be estimated from array-CGH data. We may recall that λa is the parameter of
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Figure 2.1: Prior score as a function of the length of the interval. (a) Oncogene (b)
Tumor Suppressor Gene

the exponential distribution for generating amplifications, i.e. 1
λa

is the average

length of an amplification, and µa is the parameter of the Poisson process used for

generating the breakpoints, i.e. µa is the mean number of breakpoints per unit

length. The parameters λd and µd for the deletions are defined similarly.

Recently, several statistically powerful algorithms have been devised to analyze

the array-CGH data, and to render the underlying genome in terms of segments of

regions of similar copy numbers. These algorithms readily yield an output that can

be interpreted as alternating segments of normal and abnormal segments, with the

abnormal segments falling into two groups: segmental losses and segmental gains.

If these segments satisfy the assumptions regarding the breakpoint and length
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distributions, the desired parameters µ and λ can be estimated empirically from

the segmentation of the data. Certain Bayesian algorithms, such as the one due to

Daruwala et al. 2004 [2] and its variants (see Anantharaman, Sobel, and Mishra,

unpublished data), include these assumptions in their prior and are thus able to

estimate these parameters directly. The present algorithm builds on the latter

class of segmentation algorithms, but is not limited by this requirement.

2.2.5 Estimating the Location of the Cancer Genes

We describe the estimation for the location of oncogenes and tumor suppressor

genes.

The estimation procedure proceeds in a sequence of steps. In the first step, the

algorithm computes the scores ( RRI) for all the intervals I with lengths taking

values in a range determined by a lower and an upper bound, starting with small

intervals containing a few markers and ending with very long intervals. We have

evaluated two different methods, designed to estimate the location of cancer genes.

The first and the simplest method operates by simply choosing the maximum-

scoring interval as the candidate cancer gene: namely, it selects the interval I with

maximum RRI in a small genomic region as the most plausible location of a cancer

gene. We shall refer to this method as the “Max method.”

The other method functions by estimating the locations of the left and the

right boundaries of the gene, using two scoring functions, as described below. Two

scores, SLx and SRx, are computed for every marker position x ∈ [0, G]. The

first value, SLx, is to be interpreted as the confidence that the point x is the left
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boundary of a cancer gene and symmetrically, the latter, SRx, is the confidence

that the point x is the right boundary of a cancer gene. These scores are defined

more formally as follows:

SLx =
∑

I∈ILx

RRI ,

where ILx is the set of intervals that are bounded by the marker x from the left.

Similarly,

SRx =
∑

I∈IRx

RRI ,

where IRx is the set of intervals with the right boundary exactly at x.

Using these two scores we can obtain an estimation of the true position of the

cancer gene as the interval [x∗L, x∗R], where x∗L and x∗R are chosen as

(x∗L, x∗R) = arg max
y>x,[x,y] small

(SLx + SRy).

We refer to this method as the “LR method.”

2.2.6 Significance Testing

Thus far, we have seen how to estimate the putative location of a cancer gene

(oncogene or tumor suppressor gene) either by maximizing the relative risk scores

over many intervals, or by estimating other related scores that characterize the

boundaries of the gene. Irrespective of which method is chosen, the result is always
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an interval, consisting of some number of markers; in the following, the computed

interval is referred to as Imax. The final step of our algorithm determines whether

this finding is statistically significant, i.e., it assigns a p-value to Imax. The method

for oncogenes differs slightly from the method for the tumor suppressor gene, so

we first present the tumor suppressor gene case, and then the oncogene case.

Tumor Suppressor Genes

The algorithm computes the p-value from the observed distribution of breakpoints

(points where deletions start) along the chromosome (as given by the segmentation

algorithm). It uses a null hypothesis, which assumes that no tumor suppressor gene

resides on the chromosome, and consequently, the breakpoints can be expected to

be uniformly distributed. Note that if a detailed and complete understanding of

a genome-wide distribution of breakpoints were available, then it would pose little

difficulty in changing the following discussions and derivations mutatis mutandis .

However, in order to avoid any unnecessary biases in our estimators, we have cho-

sen, for the time being, to focus only on an uninformative prior, as reflected in

our assumptions. We may now note that if indeed Imax is a tumor suppressor

gene, then its neighborhood could be expected to contain an unusually large num-

ber of breakpoints, thus signifying presence of a deviant region, which cannot be

explained simply as random fluctuations in the null distribution of breakpoints.

Therefore, after counting the number of breakpoints on the chromosome (counted

as, say, N) and the number of breakpoints in the interval Imax (counted as, say, k)

across all samples, we need to address the following question: how unusual is it to
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find k breakpoints in a region of length w = |Imax|, given that there are N break-

points uniformly distributed across the chromosome? We answer this question

using results from the theory of scan statistics (Glaz et al. 2001 [3]), as follows.

Let Sw be the largest number of breakpoints in any interval of fixed length w

(the interval contains a fixed number of markers). This statistic is commonly re-

ferred to as the scan statistic, and provides the necessary tool for our computation.

Using this new notation, we answer the question we had posed: namely, how likely

it is that we have k (out of N) breakpoints in any interval of length w = |Imax|.

The probability of this event is exactly P (Sw ≥ k).

Wallenstein and Neff (1987 [4]) have derived an approximation for P (Sw ≥ k),

using the following notations. Let

b(k; N, w) =

(
N

k

)
wk(1− w)N−k,

Gb(k; N, w) =
N∑

i=k

b(i; N, w).

Then

P (Sw ≥ k) ≈ (kw−1 −N − 1)b(k; N, w) + 2Gb(k; N, w), (2.5)

which is accurate when P (Sw ≥ k) < 0.10 and remains so, even for larger values.

Note that, for the above formula to be applicable, w must take values in [0, 1].

Therefore, in our derivation below, we use a normalized w, computed as the number

of markers in the interval Imax divided by the total number of markers on the

chromosome.
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To illustrate how this approximation of the p-value performs, in Figure 2.2,

we plot the calculated p-values against different numbers of breakpoints k, while

examining the effect of different window-sizes, w. We have used the following

assumptions: the total number of breakpoints is N = 50, k ∈ {1 . . . 20} and

w ∈ { 1
300

, 1
200

, 1
100

, 1
50

, 1
20

, 1
10
}. (Thus, w is normalized as the number of markers in

the interval divided by the total number of markers on the chromosome).
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Figure 2.2: The tail probability P (Sw ≥ k) for different numbers of breakpoints k
(0 ≤ k ≤ 20) and different window sizes w. Sw is the maximum number of breakpoints
in a window of length w. The total number of breakpoints in the region is N = 50.

Since the computation of p-values in (2.5) depends on the size of the interval w

and since the size w = |Imax| of the interval Imax (found either by the Max or LR

method) might not be the optimal length (e.g. because of underestimation of the

length of the tumor suppressor gene), we also examine intervals overlapping Imax,
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but of slightly different lengths, and then compute a p-value as before. From the

resulting p-values, we choose the smallest (most significant) value to measure the

statistical significance. To account for the fact that multiple window sizes have

been tested, we apply a conservative Bonferroni adjustment for the p-values (we

multiply the p-values by the number of window sizes; we use windows of lengths

up to 10 markers in the analysis of both simulated and real data).

Oncogenes

The computation of p-values for the oncogene case is similar. However, since the

amplifications encompass the entire oncogene, we do not expect to see breakpoints

within an oncogene. Rather than looking at the distribution of breakpoints, we

now look at the distribution of mid-breakpoints, i.e. the middle points between

the two ends of amplifications. This way we have formulated our question in terms

of a classic scan statistic problem.
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2.3 Results

We have applied our method to both simulated data as well as to a real dataset

on lung cancer. Below, we describe the data sources, data qualities and computed

results.

2.3.1 Simulated Data

We first describe a general simulation process used to generate the data. We use

the tumor suppressor gene case to explain the process, and then shortly present

the process for the oncogene case.

Tumor Suppressor Gene

We simulated data according to the generative process that was described in section

Statistical Model. The simulation works on a growing population of cells, starting

with an individual normal cell, whose genome contains a single tumor suppressor

gene at a known fixed position. As simulation proceeds, it introduces breakpoints

at different positions in the genome, each occurring as a Poisson process with rate

parameter, µ. At each of these breakpoints, it also postulates a deletion with

length distributed as an Exponential random variable with parameter λ. Once,

in some cell in the population, both copies of the tumor suppressor gene (TSG)

become non-functional (either by homozygous deletion or hemizygous deletion in

the presence of other mutations), the resulting pre-cancerous cell in the simulation

starts to multiply indefinitely. Over time, the new progenitor cells also incur

other independent “collateral damages” (i.e., deletions). Finally, the simulator
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randomly samples the population for tumor cells, mimicking the micro-dissection

process used by a physician, and thus, assuming that collected sample exhibits a

composition made up of different tumor cells and some normal cells as well. In

our simulations, we have assumed that even the normal cells have some random

deletions, whereas the different tumor cells all come from the same ancestral pre-

cancerous cell (Figure 2.3).

   ..................................................................................................................

70% tumor cellsfinal sample = 30% healthy cells

Pre−cancerous Cell (TSG non−functional)

Random Deletions Random Deletions

Figure 2.3: Depiction of the simulation process described in text. A single pre-cancerous
cell (both copies of the TSG are non-functional) starts multiplying indefinitely. Over
time, the new progenitor cells also incur other independent damage (i.e. deletions). The
tumor sample that we collect is a composition of different tumor cells and some normal
cells as well.

In all our simulations we have fixed the parameters, as listed below.

• N = 50 = Number of diseased individuals.

• G = 100 Mb = Length of the chromosome.

• P = 10, 000 or P = 5, 000 = Total number of probes (implying an average

resolution of 10 Kb, and 20 Kb, respectively).
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• C = 100 = Total number of cells per tumor sample with 70% tumor cells and

30% normal cells.

• µ ·G = 2 = Mean number of breakpoints per cell. (This value corresponds to

the background deletions occurring after the TSG becomes non-functional).

• 1
λ

= 50 Kb = Mean length of a deletion.

• TSG= [10.0 Mb, 10.1 Mb]. (TSG is represented by an interval starting at

10.0 Mb and has a length of 100 Kb.)

To the resulting copy numbers, we have added an independent Gaussian noise

(∼N(0, 0.12)). The simulated data were segmented using the publicly available

software described in Daruwala et al. 2004 [2]. A segment was called deleted if

log2 of the segmental-mean-ratio (test to normal) for that segment was less than

a threshold value of log2(1/2) = −1.0.

Table 2.1 describes the different simulated scenarios, we have used. They all

share the same set of parameters as described earlier, with an additional com-

plexity to reflect differences in the composition of the starting population: some

samples are assumed to be diseased because of mutations in the TSG (phomozygous +

phemizygous) and some samples are sporadic (psporadic). Among the samples with mu-

tations in the TSG, some have only homozygous deletions (phomozygous) and some

have only hemizygous deletion of the TSG (phemizygous). Furthermore, the sporadic

samples are assumed not to have deletions in the TSG under investigation; that

is, they only have background deletions.
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Model phomozygous phemizygous psporadic

1 100% 0% 0%
2 50% 50% 0%
3 0% 100% 0%
4 50% 0% 50%
5 25% 25% 50%
6 0% 50% 50%

Table 2.1: Six simulated models. phomozygous represents the percentage of samples in
the dataset with homozygous deletions, phemizygous is the percentage of samples with
hemizygous deletions and psporadic is the proportion of samples with no deletion in the
TSG under investigation (randomly diseased)

Oncogene

For oncogenes we use a similar model to simulate the data, with only a few dif-

ferences: amplifications are generated instead of deletions; the pre-cancerous cell

has the entire oncogene amplified; and now we only simulate two models: model

1 where all samples have amplifications in the oncogene and model 2 where only

50% of the samples have amplifications in the oncogene (Table 2.2). The other

parameters are the same as in the tumor suppressor gene case.

Model psporadic

1 0%
2 50%

Table 2.2: Two simulated models. psporadic is the proportion of samples that only have
random amplifications (randomly diseased)

Performance Measure

The performance of our method was evaluated by the Jaccard measure of overlap

between the estimated position of the oncogene or tumor suppressor gene and the

real position used in the simulation. Note that if E is the estimated interval and
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T is the true one, then the Jaccard measure is defined simply as:

J(E, T ) =
|E ∩ T |
|E ∪ T |

,

where |E∩T | is the length of the interval common to both, i.e., the interval E∩T .

We also tested the capacity of the inferred cancer gene as a possible biomarker

for cancer detection or classification. More precisely, we measured, for a postulated

oncogene or tumor suppressor gene, its sensitivity, which is defined as the percent-

age of diseased samples that have the estimated oncogene amplified or TSG deleted.

For models that also contain sporadic samples, we considered, in our calculation

of sensitivity, only the more meaningful situations, consisting only of samples that

are diseased because of mutations in the cancer gene under investigation.

Results for Tumor Suppressor Gene

Tables 2.3 and 2.4 present our results, summarizing overlap and sensitivity mea-

sures for each of the 6 models outlined above and for the two marker resolutions

simulated: 10 Kb and 20 Kb. The numbers, appearing in the table, are after av-

eraging over 50 datasets simulated under the corresponding models. In all cases,

the estimated p-value is very small (less than .001). These tables use the following

abbreviations to denote the two competing methods for estimating the position of

the TSG (for more details, see Methods section): “LR” refers to the LR method,

which scores the boundaries (left and right) of intervals, and “Max” refers to the

Max method, which scores only the intervals.
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Model Jaccard M. LR Jaccard M. Max Sensitivity LR Sensitivity Max
1 0.82± 0.11 0.72± 0.23 0.80± 0.08 0.79± 0.10
2 0.84± 0.12 0.67± 0.24 0.69± 0.10 0.67± 0.13
3 0.84± 0.10 0.62± 0.30 0.56± 0.11 0.54± 0.13
4 0.74± 0.15 0.23± 0.19 0.80± 0.14 0.69± 0.12
5 0.73± 0.16 0.33± 0.25 0.69± 0.12 0.59± 0.16
6 0.74± 0.17 0.26± 0.25 0.54± 0.12 0.46± 0.12

Table 2.3: Tumor Suppressor Gene: Overlap between true location and estimated loca-
tion of the TSG and the resulting sensitivity for each of the six simulated models (Table
2.1). LR and Max refer to the two methods used to estimate the location of the TSG.
Average inter-marker distance is 10 Kb.

Model Jaccard M. LR Jaccard M. Max Sensitivity LR Sensitivity Max
1 0.70± 0.15 0.44± 0.27 0.59± 0.16 0.56± 0.16
2 0.70± 0.19 0.38± 0.30 0.46± 0.14 0.43± 0.15
3 0.68± 0.20 0.43± 0.30 0.38± 0.14 0.34± 0.16
4 0.60± 0.21 0.25± 0.21 0.60± 0.18 0.55± 0.15
5 0.65± 0.20 0.24± 0.22 0.46± 0.15 0.40± 0.14
6 0.58± 0.28 0.27± 0.28 0.37± 0.15 0.33± 0.14

Table 2.4: Tumor Suppressor Gene: Overlap between true location and estimated loca-
tion of the TSG and the resulting sensitivity for each of the six simulated models (Table
2.1). LR and Max refer to the two methods used to estimate the location of the TSG.
Average inter-marker distance is 20 Kb.

In order to present a better understanding of the entire distribution of scores,

we have also plotted boxplots for the Jaccard measure and also for the sensitivity

measure for all the simulated scenarios (see Figures 2.4, 2.5, 2.6, and 2.7).

Results for Oncogene

We also present the boxplots for the Jaccard measure of overlap for the two sim-

ulated models and the two resolutions simulated (Figures 2.8 and 2.9). The sen-

sitivity, as we have defined it, tends to be very high in this case, as the estimated

oncogene is usually small, whereas the amplifications in the region are larger, hav-

ing to encompass the entire real oncogene.
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Figure 2.4: Tumor Suppressor Gene: Boxplots of the Jaccard measure of overlap for each
of the six models (Table 2.1). 50 datasets are simulated according to each model and the
distribution of the resulting 50 overlap measures is depicted in each boxplot. Average
inter-marker distance is 10 Kb. (a) LR, (b) Max.

2.3.2 Real Data (Lung Cancer)

Real data from cancer patients or cell lines, when examined with an available

array technology, may contain other sources of error that may be correlated or

may be nonstationary in a complicated manner that can never be modeled in

the simulation; effects difficult to model include: degradation of genomic DNA,

base-composition dependent PCR amplification in complexity reduction, presence

of hyper-mutational regions, incorrect probes resulting from errors in reference

genome assembly, contamination, cross-hybridization, and myriad others. Conse-

quently, we cannot obtain full confidence in our methodologies, even though the
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Figure 2.5: Tumor Suppressor Gene: Boxplots of the sensitivity measure for each of
the six models (Table 2.1). 50 datasets are simulated according to each model and the
distribution of the resulting 50 sensitivity measures is depicted in each boxplot. Average
inter-marker distance is 10 Kb. (a) LR, (b) Max.

results of the analysis of the simulated data were found very encouraging and even

though the analysis showed that, in those ideal conditions underlying the simu-

lation, our algorithm was able to detect with high accuracy and confidence the

locations of the simulated disease genes.

In this section, we inspect the results of our method, when applied to a real

dataset on lung cancer, which was originally published by Zhao et al. (2005 [5]).

Seventy primary human lung carcinoma specimens were used in our analysis. For

each sample, copy number changes at ∼ 115, 000 SNP loci throughout the genome

were measured and recorded. We used an unpublished Affy normalization and
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Figure 2.6: Tumor Suppressor Gene: Boxplots of the Jaccard measure of overlap for each
of the six models (Table 2.1). 50 datasets are simulated according to each model and the
distribution of the resulting 50 overlap measures is depicted in each boxplot. Average
inter-marker distance is 20 Kb. (a) LR, (b) Max.

summarization software (Mishra et al. 2006, unpublished data) to convert the

raw data into genotypic copy number values. Next, as with the simulated data,

we applied the segmentation algorithm (Daruwala et al. 2004 [2]) to the raw log2

signal ratio (test to normal) data and obtained a partition of the data into segments

of probes with the same estimated mean. Since the previous steps were found to

average out the random noises across groups of probe sets and neighboring probes,

variance parameters were quite low and were discarded from further analysis.

For this dataset, we next determined that a chromosomal segment could be

treated as deleted if the segment had an inferred log2 ratio less than a thresh-
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Figure 2.7: Tumor Suppressor Gene: Boxplots of the sensitivity measure for each of
the six models (Table 2.1). 50 datasets are simulated according to each model and the
distribution of the resulting 50 sensitivity measures is depicted in each boxplot. Average
inter-marker distance is 20 Kb. (a) LR, (b) Max.

old value of −1.0. Figure 2.10 depicts the histogram for the log2 ratio values

for all SNPs in all 70 tumors, together with an empirical null density fitted to

the histogram: N(µ̂0, σ̂0
2). The overall threshold is defined as µ̂0 − 2σ̂0 = −1.0.

(Supplemental Information provides further details on the computation of this

cutoff-threshold.)

For amplifications, the cutoff used was 0.58 (the theoretical threshold for a

single-copy amplification).
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Figure 2.8: Oncogene: Boxplots of the Jaccard measure of overlap for each of the two
models (Table 2.2). 50 datasets are simulated according to each model and the dis-
tribution of the resulting 50 overlap measures is depicted in each boxplot. Average
inter-marker distance is 10 Kb. (a) LR, (b) Max.

Tumor Suppressor Gene

The significant regions (genome-wide significance level < .01) are presented in

Tables 2.5 and 2.6. The intervals reported were computed using the Max method.

Most of the regions detected have been previously reported as deleted in lung cancer

(e.g. 4q34, 5q21, 9p21, 14q11, 21q21). Most significantly, some of the intervals

found overlap some good candidate genes, that may play a role in lung cancer (e.g.

MAGI3, HDAC11, PTPRD, APEX1, HDAC5, PLCB1). Also, the regions 3q25

and 9p23 have been found for the first time to be homozygously deleted by Zhao

et al. (2005 [5]).
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Figure 2.9: Oncogene: Boxplots of the Jaccard measure of overlap for each of the two
models (Table 2.2). 50 datasets are simulated according to each model and the dis-
tribution of the resulting 50 overlap measures is depicted in each boxplot. Average
inter-marker distance is 20 Kb. (a) LR, (b) Max.

Oncogene

The significant results for oncogenes are presented in Table 2.7. We have obtained

many regions that are good candidates to harbor oncogenes in lung cancer. Most

significantly, the intervals within the regions 8q13, 8q24, 11p15, 12p11, 12q15,

and 15q22 overlap some good candidate genes (TRPA1, PVT1, OR51A2, PKP2,

PTPRB, and ADAM10 respectively) that could play an important role in lung

cancer.
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Figure 2.10: The histogram for the log2 ratio values for all SNPs in all 70 tumors,
together with an empirical null density fitted to the histogram: N(µ̂0, σ̂0

2).

2.4 Discussion

The focus of this chapter has been a novel statistical method and its application

to the problem of estimating the location of cancer genes from array-CGH data

characterizing segmental changes in cancer genomes. The underlying algorithm

computes a multipoint score for all intervals of consecutive probes. The computed

score measures how likely it is for a particular genomic interval to be an oncogene

or a tumor suppressor gene implicated in the disease. We propose two ways to

estimate the location: the LR method and the Max method. In our experience,

both methods perform well, with the LR method being more accurate than the

Max method in the simulation experiments, especially when the marker density is
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Table 2.5: Significant Deleted Regions in the Lung Cancer Dataset: Chromosomes 1-9

Exact interval
Chromosome (Mb) Commentsa

1p13.2 113.76− 113.77 MAGI3 maps to this regionb

3p25.1 13.51− 13.56 HDAC11 maps to this regionc

3q25.1 151.16− 151.16 d

4q34.1 173.46− 173.46 e

5q14.1 79.16− 79.18
5q21.3 106.95− 107.0 f

6q14.1 78.50− 79.02
7p15.3 20.48− 20.49 g

9p23 10.02− 10.05 h

9p21 32.85− 32.85 i

aFor more information, see the NCBI Human Genome Resources Web site.
bPTEN/MMAC and MAGI3 cooperate to modulate the kinase activity of AKT/PKB involved

in the inhibition of apoptosis (Wu et al. 2000 [6])
cFrequent allelic losses have been reported in this region in lung and other solid tumors. Also

in vitro studies suggest that this region is able to suppress growth of tumor cells (Rimessi et al.
1994 [7])

dHomozygous deletions in this region have been found using this dataset by Zhao et al. (2005
[5]) (not previously known)

eDeletions in this region have been reported in lung cancer (Shivapurkar et al. 1999 [8], Tseng
et al. 2005 [9]). LOC442117 (similar to GalNAc transferase 10) maps to this interval

fThis region is known to be frequently deleted in lung cancer (Hosoe et al. 1994 [10])
gLOH has been found in this region in cancer (Inoue et al. 2003 [11])
hHomozygous deletions in this region have been found using this dataset by Zhao et al. (2005

[5]) (not previously known); this region is upstream of PTPRD (protein tyrosine phosphatase,
receptor type, D), gene currently being investigated for its potential implication in lung cancer
by Zhao et al.

iDeletions in this region have been reported in lung cancer

relatively high (i.e., 100, 000 or more probes spanning the human genome). How-

ever on the real data, due to the increased noise, we found that the Max method

gives better (shorter) intervals.

We have evaluated the efficacy of our method by applying it to both simu-

lated data and real data and concluded that the results are significant. In the

ideal conditions, as in our simulations, our estimation method seems to perform

exceedingly well. In particular, with an average inter-marker distance of 10–20
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Table 2.6: Significant Deleted Regions in the Lung Cancer Dataset: Chromosomes 10-22

Exact interval
Chromosome (Mb) Commentsa

10p13 17.17− 17.20
10q24.1 97.83− 97.94 BLNK maps to this interval b

11p15.4 4.9− 5.0 c

12q14 66.28− 66.29
14q11.2 20− 20.1 d

16q24 82.8− 82.8 CDH13, known TSG, is deleted in lung cancer
17q21 39.5− 39.6 HDAC5 maps to this region e

19p13.3 0.34− 2 LKB1 is deleted in lung cancer
(Sanchez-Cespedes et al. 2002 [15])

20p12 8.7− 8.8 PLCB1 maps to this region f

21q21.2 23.27− 23.38 g

aFor more information, see the NCBI Human Genome Resources Web site.
bBLNK is a putative tumor suppressor gene (Flemming et al. 2003 [12])
cDeletions in this region have been found in several cancers (Karnik et al. 1998 [13])
dLoss of heterozygosity in this region has been reported in lung cancer (Abujiang et al. 1998

[14]). APEX1 maps to this region; this gene is implicated in the DNA repair mechanism, and in
control of cell growth

eHDAC5 play a critical role in transcriptional regulation, cell cycle progression, and develop-
mental events

fThis gene is important in the control of cell growth, therefore may be of interest in diseases
like cancer that involve alterations of the control of cell growth (Peruzzi et al. 2002 [16])

gThis region has been found deleted in lung cancer (Lee et al. 2003 [17])

Kb, the overlap between the estimated position and the true position of the cancer

gene is over 50%. While the simulations are only an attempt to approximate the

real data, the results obtained show that our method is reliable in pinpointing the

location of putative cancer genes. In addition, we also applied our method to a

real dataset on lung cancer. We have obtained many regions that were previously

reported as amplified or deleted in lung cancer. Most significantly, the intervals

within the regions 3p25, 8q13, 8q24, 9p23, 11p15, 12p11, 15q22, 16q24, 17q21,

19p13, and 20p12 overlap some good candidate genes (HDAC11, TRPA1, PVT1,

PTPRD, OR51A2, PKP2, ADAM10, CDH13, HDAC5, LKB1 and PLCB1 respec-
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tively), that could play an important role in lung cancer. Several other detected

regions have also been known to harbor amplifications or deletions in lung cancer

patients.

In addition we have detected a few regions, previously unreported, that warrant

more detailed examination to understand their relation to lung cancer, for example

6q14, 6p22, 7p21.

We note that in comparative experimental settings such as those used by array-

CGH, one needs to keep track of the meaning of “normal genomes,” since there

are at least three kinds of “normal” genomes involved in this analysis: namely,

the normal genome (or genomes) used in designing the array-CGH (or SNP) chips,

the genomes from a population with similar distribution of polymorphisms (both

SNPs and CNPs) as the patient under study, and finally, the genome from a normal

cell in the same patient. The simplest situation in terms of statistical analysis is

when the normal genome is the one from a normal cell from the same patient,

and this is at the basis of the analysis we presented here. The other information

can be augmented in pre-processing or post-processing steps, when the situation

differs from this simplest one. Also, our scoring functions and the algorithm can

be suitably modified, if it is deemed necessary that the polymorphisms in the

probes and the population must be tracked. Other similar, but not insurmountable,

complications arise, if one were to also model the “field effects” in the normal

genomes from the patient.

In summary, we have formulated a general approach that is likely to apply to

other problems in genetics, if a suitable generative model and an accompanying
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score function can be accurately formulated; the rest of the method works out mu-

tatis mutandis. Unlike the classical approach, normally employed in most genetics

studies, the proposed approach does not employ a locus-by-locus analysis and thus

does not depend on linkages between a marker and genes, harboring causative

mutations. The present algorithm exploits the fact that, when genome-wide high-

density markers are studied, as with whole-genome arrays, one could look for the

interesting genes directly by examining every plausible genomic interval delineated

by a group of consecutive markers. Such an interval-based analysis is more infor-

mative and allows it to assign significance-values to estimated intervals using scan

statistics. We note that there have been other usages of scan statistics to genetics

in different contexts, e.g., the work of Hoh and Ott (2000 [21]).

We also note that many variants of our method can be further enriched by aug-

menting other auxiliary information to the interval: underlying base-compositions

(e.g., GC content, Gibbs free energy, codon bias) in the genomic interval, known

polymorphisms (e.g., SNPs and CNPs), genes and regulatory elements, structures

of haplotype blocks, recombination hot spots, etc. Note, however, that at present,

in the absence of reliable and complete statistical understanding of these variables,

it is safe to work only with uninformative and simple priors of the kind we have

already incorporated in our algorithm.

Nonetheless, the utility of our algorithm will most likely be first validated with

the simplest forms of array-CGH data and in the context of cancer: an area cur-

rently under intense study. We will gain more confidence as these methods are

used for bigger datasets, larger number of patients and for many different cancers.
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There are few competing methods that bear some minor resemblance to our algo-

rithm: For instance, the STAC method (Diskin et al., personal communication)

also finds gene-intervals from array-CGH data, but it does not employ any gener-

ative model to compute a score to be optimized, nor does it compute a statistical

significance based on such a model. (It uses a permutation approach to create a

null-model). A detailed comparison will indicate how much statistical power is

gained when a more faithful but parsimonious generative model is used.

We recognize that a lot more remains to be done to completely realize all

the potential of the proposed analysis. There may be more subtle correlations

between intervals we detect, and such correlations (or anti-correlations) may hint

at subtle mechanisms in play in cancer progression. If various regions of a poly-

clonal tumor can be analyzed separately, the distribution of important intervals

may reveal much more details of the disease. There may be a critical need to

stratify the patients into subgroups and analyze them separately in order to detect

more subtle patterns. Once an important interval is detected (e.g., corresponding

to a putative oncogene or tumor suppressor gene), one may wish to understand

how the amplified or deleted intervals affecting the genes are spatially distributed.

Such higher order patterns and motifs may paint a better picture about many

varied genomic mechanisms responsible for the initiation and development of a

cancer.
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2.5 Web Resources

NCBI Human Genome Resources:

http://www.ncbi.nlm.nih.gov/genome/guide/human/

NYU Versatile MAP Segmenter:

http://bioinformatics.nyu.edu/Projects/segmenter/
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2.6 Supplemental Material

2.6.1 Copy Number Distribution for Individual Samples

Our rule for calling a segment deleted is that the log2 of the segmental-mean-ratio

(test to normal) for that segment be less than a certain threshold. To determine

this threshold, we proceed as follows. For each sample in the dataset, we fit an

empirical null density to the histogram of copy numbers; thus we obtain the null

density N(µ̂0, σ̂0
2). We then define the threshold for each individual sample as

µ̂0 − 2σ̂0 and the average of these values over all the samples is the overall cutoff

we use. By this method, we obtain c = −1.0.

In Figures 2.11-2.15 we show for each sample the histogram of copynumbers

together with the empirical null density fitted to the data. Below each plot are the

estimated µ̂0 (mean) and σ̂0 (standard deviation) for the empirical null density.
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Table 2.7: Significant Amplified Regions in the Lung Cancer Dataset

Exact interval
Chromosome (Mb) Commentsa

1q42.12 224.22− 224.32 C1orf55, H3F3A map to this intervalb

3q26-3q28 A large region on 3q is amplified in multiple samples c

4p13 45− 45.6
5p 0− 46 The entire 5p is amplified in multiple samples
6p12.1 53.89− 53.93 This region has been found amplified in lung cancer[?]
8q13.3 73.0− 73.09 TRPA1 d maps to this interval e

8q24.21 129.14− 129.17 PVT1 maps to this intervalf

10q23.1 82.37− 82.41 SH2D4B maps to this interval
11p15.4 4.92− 4.94 OR51A4, OR51A2 map to this interval g

12p11.12 32.63− 32.82 PKP2 maps to this intervalh

12q15 69.16− 69.21 PTPRB maps to this interval i

13q32* 92.3− 92.4 GPC5 maps to this interval j

14q12-14q13.2 30− 34.84
15q22.1 56.72− 56.91 ADAM10 maps to this intervalk

17q23.2 51.61− 51.63 ANKFN1 maps to this interval

aFor more information, see the NCBI Human Genome Resources Web site.
bH3F3A is overexpressed in oral cancer.
cTwo intervals show the strongest evidence: 170.11 − 170.46 which contains a single known

gene: EVI1, which has oncogenic potential. The second interval: 183.77 − 184.17 contains
DCUN1D1; DCUN1D1 is strongly overexpressed in squamous cell carcinoma of the oral tongue
and in thyroid tumors.

dBold indicates only genes in the interval.
eTRPA1 plays a role in signal transduction and cell proliferation. Also TRPA1 is dys-regulated

in certain carcinomas; significant increases in TRPA1 protein levels were observed in tumor tissues
relative to matched normal tissues[?].

fPVT1 oncogene homolog, MYC activator.
gOR51A4, OR51A2 are members of G-protein-coupled receptors (GPCRs) and among other

functions, GPCRs are involved in cell growth stimulation and cell proliferation. Another member
of this family, OR51E2, is overexpressed in prostate cancer.

hPKP2 may regulate the signaling activity of beta-catenin.
iPTPRB is overexpressed in breast cancer, suggesting its role in cell proliferation; it is a mem-

ber of the PTP family; PTPs are signaling molecules that regulate cell growth, differentiation,
mitotic cycle.

jGPC5 may play a role in the control of cell division and growth regulation. GPC5 is a likely
target for amplification, and overexpression of this gene may contribute to development and/or
progression of lymphomas and other tumors[?]. * indicates that the computed p-value is not
genome-wide significant at .01.

kADAM10 is known to regulate the signals that promote tumor growth and motility of cancer
cells.
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Figure 2.11: Copy number histogram; overlaid is the fitted empirical null density
N(µ̂0, σ̂0

2). Samples 1− 16
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Figure 2.12: Copy number histogram; overlaid is the fitted empirical null density
N(µ̂0, σ̂0

2). Samples 17− 32
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Figure 2.13: Copy number histogram; overlaid is the fitted empirical null density
N(µ̂0, σ̂0

2). Samples 33− 48
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Figure 2.14: Copy number histogram; overlaid is the fitted empirical null density
N(µ̂0, σ̂0

2). Samples 49− 64
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Figure 2.15: Copy number histogram; overlaid is the fitted empirical null density
N(µ̂0, σ̂0

2). Samples 65− 70
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Chapter 3

Multilocus Linkage Analysis of

Affected Sib-Pairs

SUMMARY: The conventional Affected Sib Pair methods evaluate the link-

age information at a locus by considering only marginal information. We describe

a multilocus linkage method that uses both the marginal information and infor-

mation derived from the possible interactions among several disease loci, thereby

increasing the significance of loci with modest effects. Our method is based on a

statistic that quantifies the linkage information contained in a set of markers. By

a marker selection-reduction process, we screen a set of polymorphisms and select

a few that seem linked to disease. We test our approach on a genome-scan data

for inflammatory bowel disease (InfBD) and on simulated data. On real data we

detect 6 of the 8 known InfBD loci; on simulated data we obtain improvements in

power of up to 40% compared to a conventional single-locus method. Our exten-

sive simulations and the results on real data show that our method is in general
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more powerful than single-locus methods in detecting disease loci responsible for

complex traits. A further advantage of our approach is that it can be extended to

make use of both the linkage and the linkage disequilibrium between disease loci

and nearby markers.

3.1 Introduction

Traditional approaches to linkage analysis assign a score to each marker position

by considering the linkage information given by that marker or a few nearby mark-

ers. These approaches have been very successfully applied to Mendelian diseases;

however they have been less fruitful in the context of complex diseases. Because

complex genetic diseases are caused by the action of several genes that can in-

teract in a complicated manner, methods that can exploit interactions among

multiple disease loci are expected to be more powerful. Here we report a novel

linkage method for affected sib pairs (ASPs). Our approach screens a large num-

ber of polymorphisms and selects a few that appear to be linked to disease genes.

The selection is based on an importance score assigned to each marker based on

both marginal information as well as information coming from possible interactions

among several disease loci.

Several multilocus linkage methods have been reported in the literature. These

include model-based methods and model-free methods. The model-based methods

calculate the full likelihood of disease and marker data under the assumed mode

of inheritance (usually two-locus models, Schork et al. 1993 [22]). The model-

free methods are based on comparing the observed allele-sharing among relatives
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that are phenotypically alike with that expected under no linkage. Their main

characteristic is that they do not assume a specific mode of inheritance. Examples

include Cordell et al. (1995 [23]) and Farrall (1997 [24]) for ASPs. Their methods

are based on computing a maximum likelihood statistic (MLS) and are restricted

to two-locus models. More recently, Cordell et al. (2000 [25]) have presented a

generalization of their earlier MLS method in Cordell et al. (1995 [23]) to several

disease loci and affected relative pairs. Given linkage evidence at m − 1 loci, the

evidence at the mth locus is measured by the difference in MLS between the best

fitting m − 1 locus model and the best fitting m locus model. However, due to

the sparseness of the data when m increases and the large number of parameters

that need to be estimated in their model fitting procedure, the method is useful

in practice only for the simultaneous analysis of at most ∼ 3 disease loci. Also

these methods are applicable only after a primary genome-screen has already been

performed, when the number of loci under investigation is small.

Here we report a new screening method. Our method works on datasets with

large number of markers and makes no assumption on the disease model, including

the number of disease loci and their position in the genome. This new approach

uses the interactions among several disease loci to help increase the importance of

moderate effect disease loci relative to other noisy loci. The method is based on the

repetition of a two-phase selection-reduction process. In the first step (“selection”)

we select a small set of markers at random from the available list of polymorphisms.

In the next step (“reduction”), we remove the unimportant markers from the

current set one by one in a stepwise fashion until all the remaining markers are
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important or a single marker remains (we call these markers “returned”). At the

end of this process we count how many times each marker was returned. Based on

these counts we decide which markers are returned at significantly high frequency.

The key technical aspect of this procedure is the definition of a statistic to measure

the relative importance of a marker in the current set.

We apply this new approach to real data (Inflammatory Bowel Disease) as well

as data simulated under several complex models. The results are very good. On

the real data we confirm most of the known loci. On simulated data we show that

our method is consistently more powerful than the single-locus methods currently

in use.

The rest of the chapter is organized as follows. In Section 3.2 (Methods) we

illustrate the theoretical aspects of our approach. In Section 3.3 (Results) we

present our findings on a real dataset for Inflammatory Bowel Disease and on

simulated data. We conclude in Section 3.4 (Discussion) with a discussion of our

findings.

3.2 Methods

3.2.1 Linkage Measure

The core of our approach is the definition of a linkage measure for a set of markers.

In this section we describe this measure.

Notation Most model-free methods for ASPs work with the genotypic identical-
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by-descent (IBD) sharing at a locus, which can be 0, 1 or 2. In our approach we

work with the allelic IBD status; in this case the IBD sharing can be 0 or 1,

meaning the number of alleles a sibpair shares IBD transmitted from one of the

parents. If the marker is not linked to disease, then the IBD sharing is 0 or 1 allele

with equal probability 0.5. For several loci we define an IBD sharing vector, such

that the ith component represents the sharing at the ith locus. For example, the

IBD sharing vector 111 for three loci signifies that the sibpair shares 1 allele IBD

at each of the three loci. Let nijk
111 be the number of such sharing vectors in the

dataset at three loci i, j, k.

Let S = {M1, M2, . . . ,Mk} be a set of markers under evaluation. Then the

measure is defined as:

H1...k = wk

[∑k
i=1 (ni

1 − ni
0)

2(
k
1

) +

∑
i<j

(
nij

11 − nij
00

)2(
k
2

) + . . . (3.1)

+

∑
i1<···<ik−1

(
n

i1...ik−1

1...1 − n
i1...ik−1

0...0

)2

(
k

k−1

) +
(
n1...k

1...1 − n1...k
0...0

)2
]

where

wk =
2k

2k − 1
(3.2)

The weight wk is chosen such that when none of the markers in the set S is

linked to disease, we have:

E [H1...k] = E [H1...k−1]
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The rationale for this is that when S contains only unlinked markers, the linkage

measure should remain constant when any marker is removed from the set (no

drop or increase in the linkage measure). We assume further that the k markers in

S are not linked among themselves. Under these assumptions: p1...j
1...1 = p1...j

0...0 = 1
2j .

Then we can write:

wk−1

wk

=
E

[
(n1

1 − n1
0)

2
]

+ E
[
(n12

11 − n12
00)

2
]

+ · · ·+ E
[(

n1...k
1...1 − n1...k

0...0

)2
]

E
[
(n1

1 − n1
0)

2
]

+ E
[
(n12

11 − n12
00)

2
]

+ · · ·+ E
[(

n1...k−1
1...1 − n1...k−1

0...0

)2
]

Since (n1...j
0...0, . . . , n

1...j
1...1) has a multinomial distribution with parameters N (twice

the number of ASPs) and (p1...j
0...0, . . . , p

1...j
1...1), and E

[
n1...j

1...1

]
= E

[
n1...j

0...0

]
we have:

E
[(

n1...j
1...1 − n1...j

0...0

)2
]

= Var
(
n1...j

1...1 − n1...j
0...0

)
= Var

(
n1...j

1...1

)
+ Var

(
n1...j

0...0

)
−2 Cov

(
n1...j

1...1, n
1...j
0...0

)
= Np1...j

1...1(1− p1...j
1...1) + Np1...j

0...0(1− p1...j
0...0) + 2Np1...j

1...1p
1...j
0...0

= N(p1...j
1...1 + p1...j

0...0)−N(p1...j
1...1 − p1...j

0...0)
2 = N(p1...j

1...1 + p1...j
0...0) =

=
N

2j−1

Considering this it is easy to see that:

wk−1

wk

=
2k−1
2k

2k−1−1
2k−1

hence the resulting weight wk.
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It is revealing to rewrite the linkage measure as follows:

H1...k =
wk

wk−1

· H2...k + H13...k + · · ·+ H1...k−1

k
+ wk

(
n1...k

1...1 − n1...k
0...0

)2
(3.3)

Then for k ≥ 4 we have wk ≈ 1 and wk ≈ wk−1. Hence we can write:

H1...k ≈ H2...k + H13...k + · · ·+ H1...k−1

k
+

(
n1...k

1...1 − n1...k
0...0

)2
(3.4)

Essentially our measure is defined recursively as follows. We start with the natural

NPL-like measure for one marker H1 = 2(n1 − n0)
2. The measure for k markers

(H1...k) is obtained as the average of the measures for all possible k combinations of

k − 1 markers: H2...k, H13...k, . . . , H1...k−1 plus an additional term
(
n1...k

1...1 − n1...k
0...0

)2

that measures the interaction of all k markers together.

Notice that when none of the k markers is linked to disease we have:

E
[
(n1...k

1...1 − n1...k
0...0)

2
]

= N
2k−1 . Thus the interaction term tends to be small in this case

(O(N)). However when all k markers are linked to disease, this term will become

large (due to E2
[
n1...k

1...1 − n1...k
0...0

]
= O(N2)).

Remark Our experiments show that under the assumption of no specific interac-

tion model (e.g. epistasis or heterogeneity), the other possible pieces of information

that we could use in the definition of the measure ( e.g. n10 , n01, etc.) may intro-

duce noise (e.g. in the case of disease loci that interact epistatically). Certainly n10

and n01 contain information in a two-locus heterogeneity model, but the choice of

a consistent statistic that would work for different scenarios forces us to disregard

these terms and instead focus on n11 and n00. Notice that under both the epistatic
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and the heterogeneity interaction model for two disease loci E(n11 − n00) > 0,

whereas when none of the loci is linked to disease E(n11 − n00) = 0

3.2.2 Screening Algorithm

The screening procedure consists of a marker selection-reduction process described

below. Suppose we have a list of many markers (hundreds in a whole-genome

study). We proceed as follows:

• Step 0 Repeat steps 1− 4 B times (B ≥ 3000 is a fairly large number).

• Step 1 Start by choosing a set of k ≈ 10 markers at random from the available

list of markers.

• Step 2 At each step compute for each marker in the current set the resulting

change in the linkage measure when that marker is removed. For marker i:

∆i = H1...i−1 i+1...k −H1...k

If ∆i < 0, then the linkage measure decreases when removing marker i and

therefore marker i is important relative to the other markers present in the

current marker set. If ∆i > 0, then the linkage measure increases when

removing marker i and therefore marker i is not important relative to the

other markers present.

• Step 3 Remove the marker i (if any) with the largest positive ∆i from the

current set.
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• Step 4 Do Steps 2 − 3 until either all the markers in the current set are

important (all ∆i are negative) or only one marker remains. The returned

markers are recorded.

• Step 5 We compute for each marker a final return count denoting the total

number of times it was returned in Step 4. Based on these counts we separate

the markers into two classes: the important/linked to disease markers and

the unimportant/unlinked ones. The details of this statistical procedure are

given in Section 3.2.4.

3.2.3 Why It Works

The behavior of the screening algorithm in Section 3.2.2 depends heavily on the

properties of the statistic H1...k. We formulate these properties in the lemma below.

The main idea is that in expectation only markers that are linked to disease are

returned in Step 4 and markers that are not linked tend to be removed in Step

3. Let S = {1, . . . , k} be the current set. For the lemma below we make the

simplifying assumption that the k markers are not linked among themselves.

Lemma 3.2.1 The following properties are true:

1. If none of the markers is linked to disease, then for any marker i in S we

have

E [H1...i−1 i+1...k] = E [H1...k]

2. If S contains one marker linked to disease (without loss of generality, assume

this is the first marker) and the rest are unlinked, then for any unlinked
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marker u in S we have:

E [H2...k] < E [H1...k] < E [H1...u−1 u+1...k]

3. If the set S has some interacting markers, linked to disease, of similar relative

importance and some unlinked markers, then for any linked marker l and any

unlinked one u we have:

E [H1...l−1 l+1...k] < E [H1...k] < E [H1...u−1 u+1...k]

4. If the current set S contains only markers linked to disease that are of similar

relative importance and also have non-negligible interaction, then for any

marker l in S

E [H1...l−1 l+1...k] < E [H1...k]

Proof:

1. The first part is easy; we have chosen the weights in Section 2.1 such that

when no marker is linked to disease, we have:

E [H1...i−1 i+1...k] = E [H1...k]
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2. From (3.3) in Section 3.2.1 we can write:

E [H1...k] =
wk

wk−1

· E [H2...k] + E [H13...k] + · · ·+ E [H1...k−1]

k
+

+ wk E
[(

n1...k
1...1 − n1...k

0...0

)2
]

=

(
wk

wk−1
E [H2...k] + kwk E

[(
n1...k

1...1 − n1...k
0...0

)2
])

+ (k − 1) wk

wk−1
E [H1...u−1 u+1...k]

k

It suffices to show that

E [H2...k] <
wk

wk−1

·E [H2...k]+kwk E
[(

n1...k
1...1 − n1...k

0...0

)2
]

<
wk

wk−1

E [H1...u−1 u+1...k] (*)

(we also use wk < wk−1). We prove the first inequality, namely E [H2...k] <

wk

wk−1
·E [H2...k]+kwk E

[(
n1...k

1...1 − n1...k
0...0

)2
]
. Since markers 2, . . . , k are not linked

to disease and among themselves, one can easily show that E [H2...k] = 2N

where N is twice the number of ASPs. Therefore we need to show that

2N <
wk

wk−1

· 2N + kwk E
[(

n1...k
1...1 − n1...k

0...0

)2
]
⇔ N

2k−1
< k E

[(
n1...k

1...1 − n1...k
0...0

)2
]

Now we have:

E
[(

n1...k
1...1 − n1...k

0...0

)2
]

= E2
[
n1...k

1...1 − n1...k
0...0

]
+ Var

[
n1...k

1...1 − n1...k
0...0

]
≈ E2

[
n1...k

1...1 − n1...k
0...0

]
+ N(p1...k

1...1 + p1...k
0...0) ≈ E2

[
n1...k

1...1 − n1...k
0...0

]
+

N

2k−1

(3.5)
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where p1...k
1...1 is the probability of the IBD sharing vector 1 . . . 1 at loci 1 . . . k.

Therefore we showed the first inequality.

For the second inequality in (*), wk

wk−1
· E [H2...k] + kwk E

[(
n1...k

1...1 − n1...k
0...0

)2
]

<

wk

wk−1
E [H1...u−1 u+1...k], we proceed as follows. By definition in Section 2.1 we

have:

H2...k = wk−1

[∑k
i=2 (ni

1 − ni
0)

2(
k−1
1

) +

∑
i<j;i,j 6=1

(
nij

11 − nij
00

)2(
k−1
2

) + · · ·+

+
(
n2...k

1...1 − n2...k
0...0

)2
]

H1...u−1 u+1...k = wk−1

[∑k
i=1,i6=u (ni

1 − ni
0)

2(
k−1
1

) +

∑
i<j;i,j 6=u

(
nij

11 − nij
00

)2(
k−1
2

) + · · ·+

+
(
n1...û...k

1...1 − n1...û...k
0...0

)2
]

(3.6)

It suffices to show that

E
[(

n1
1 − n1

0

)2
]

> E
[
(nu

1 − nu
0)

2] + k(k − 1) E
[(

n1...k
1...1 − n1...k

0...0

)2
]

for k ≥ 2

(3.7)

Using (3.2) it is easy to prove that E
[
(nu

1 − nu
0)

2] = N for any unlinked

marker and E
[
(n1

1 − n1
0)

2
]
≈ E2 [n1

1 − n1
0] + N for a linked marker. Also

E
[(

n1...k
1...1 − n1...k

0...0

)2
]
≈ 1

4k−1
E2

[
n1

1 − n1
0

]
+

N

2k−1
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where N is twice the number of ASPs. Hence what we need to prove is that:

E2
[
n1

1 − n1
0

](
1− k(k − 1)

4k−1

)
>

k(k − 1)N

2k−1

If we let p1 = rp0 with r > 1 and since p1 + p0 = 1 we obtain:

N2
[
p1

1 − p1
0

]2
(

1− k(k − 1)

4k−1

)
>

k(k − 1)N

2k−1
⇔ N

(r − 1)2

(r + 1)2
>

1
2k−1

k(k−1)
− 1

2k−1

(**)

The latter inequality is true for N (twice the number of ASPs) large enough.

For example when r = p1

p0
= 1.3 and k = 2, a sample of 60 ASPs is sufficient.

Hence we have shown that (3.7) is true.

Now we can complete the proof of the second inequality in (*). If marker 1

is linked to disease and marker u is not linked, then we have:

E
[(

n1
1 − n1

0

)2
]

> E
[
(nu

1 − nu
0)

2] + k(k − 1) E
[(

n1...k
1...1 − n1...k

0...0

)2
]

( from (3.7))

E
[(

n1j
11 − n1j

00

)2
]

> E
[(

nuj
11 − nuj

00

)2
]

for any j 6∈ {1, u}

. . .

E
[(

n1j1...jl
11...1 − n1j1...jl

00...0

)2
]

> E
[(

nuj1...jl
11...1 − nuj1...jl

00...0

)2
]

for any j1 . . . jl 6∈ {1, u}

Using the definitions of H2...k and H1...u−1 u+1...k in (3.6) and together with

the inequalities above we obtain the second inequality in (*). This completes

our proof.
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3. We assume k ≥ 4 (k = 2 and k = 3 can be proved using case-by-case

computations). We assume the first t markers are linked to disease and the

rest (k − t) (> 0) are unlinked.

Let E [H1...i−1 i+1...k] = A for any i ≤ t and E [H1...i−1 i+1...k] = B for any i >

t. Clearly, A < B. We now use the approximation in Section 2.1:

E [H1...k] ≈ E [H2...k] + E [H13...k] + · · ·+ E [H1...k−1]

k
+ E

[(
n1...k

1...1 − n1...k
0...0

)2
]

=
tA + (k − t)B

k
+ E

[(
n1...k

1...1 − n1...k
0...0

)2
]

From this we have:

E [H1...k] ≈ A +
k − t

k
(B − A) + E

[(
n1...k

1...1 − n1...k
0...0

)2
]

and since B > A we obtain:

E [H1...k] > A

Similarly:

E [H1...k] ≈ B +
t

k
(A−B) + E

[(
n1...k

1...1 − n1...k
0...0

)2
]
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We show that:

B − A >
k

t
E

[(
n1...k

1...1 − n1...k
0...0

)2
]

(3.8)

and therefore:

E [H1...k] < B

From (3.6) we can write:

B − A >
E

[
(n1

1 − n1
0)

2
]
− E

[
(nu

1 − nu
0)

2]
k − 1

where u > t

≈ E2 [n1
1 − n1

0] + N −N

k − 1
=

N2 (p1
1 − p1

0)
2

k − 1
(3.9)

With (3.8) and (3.9), we need to show:

N2 (p1
1 − p1

0)
2

k − 1
>

k

t
E

[(
n1...k

1...1 − n1...k
0...0

)2
]

(3.10)

Now:

E
[(

n1...k
1...1 − n1...k

0...0

)2
]

= E2
[
n1...k

1...1 − n1...k
0...0

]
+ Var

[
n1...k

1...1 − n1...k
0...0

]
≈ E2

[
n1...k

1...1 − n1...k
0...0

]
+ N

(
p1...k

1...1 + p1...k
0...0

)
≈ N2

(
p1...k

1...1 − p1...k
0...0

)2
+ N

(
p1...k

1...1 + p1...k
0...0

)
≈ N2

4k−t

(
p1...t

1...1 − p1...t
0...0

)2
+

N

2k−t

(
p1...t

1...1 + p1...t
0...0

)
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where we used the fact that the last k − t markers are not linked to disease

and among themselves (hence p1...k
1...1 = 1

2k−t p
1...t
1...1). From this and (3.10) follows

that we need to prove that:

N2 (p1
1 − p1

0)
2

k − 1
>

k

t
· N2

4k−t

(
p1...t

1...1 − p1...t
0...0

)2
+

k

t
· N

2k−t

(
p1...t

1...1 + p1...t
0...0

)

1. If t is small compared with k (i.e. k−t is large) then since (p1...t
1...1 − p1...t

0...0)
2

<

(p1
1 − p1

0)
2

and (p1...t
1...1 + p1...t

0...0) < 1 it is sufficient to show that:

N
(
p1

1 − p1
0

)2
>

k
t
· 1

2k−t

1
k−1

− k
t
· 1

4k−t

=
1

t2k−t

k(k−1)
− 1

2k−t

This inequality is similar to inequality (**) shown at point 2. of the

lemma for the case t = 1. For N large enough and when t is small

compared with k it is true.

2. If t is comparable to k and since k ≥ 4 (from our assumption), then

p1...t
1...1 ± p1...t

0...0 tend to be much smaller than p1
1 − p1

0 (say conservatively ,

p1...t
1...1 ± p1...t

0...0 < 1
2
(p1

1 − p1
0)) and also

N

k − 1
>

k

4t
· N

4k−t
+

k

2t (p1
1 − p1

0)
· 1

2k−t

For example, if t = k − 1 and p1
1 − p1

0 = 0.1 then the inequality above is

N

k − 1
>

N

16
+

1

0.4
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which is true (k ≤ 10). For t smaller than k − 1 the inequality is even

sharper.

This concludes our proof for t (the number of markers linked to disease)

between 2 and k − 1. Next we show the case t = k.

4. We prove the case k ≥ 4. The cases k = 2 and k = 3 can be verified

easily through direct case-by-case computations. We use the approximation

in Section 2.1 and since the interacting disease loci have similar importance

we obtain:

E [H1...k] ≈ E [H2...k] + E [H13...k] + · · ·+ E [H1...k−1]

k
+ E

[(
n1...k

1...1 − n1...k
0...0

)2
]

= E [H1...l−1 l+1...k] + E
[(

n1...k
1...1 − n1...k

0...0

)2
]

Since all k markers in the current set are assumed to be linked to disease and

to interact together in a non-negligible fashion, E
[(

n1...k
1...1 − n1...k

0...0

)2
]

is large

enough to guarantee the inequality:

E [H1...l−1 l+1...k] < E [H1...k] for k ≥ 4

2

Remark We made the assumption that the k selected markers in Step 1 of the

Screening Algorithm are unlinked among themselves. Given that in the majority

of cases the k (≈ 10) markers chosen at random from a large number of markers

are unlinked among themselves and also because of ease of computation, that
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assumption is reasonable. However, even when some of the markers in the current

set are linked, the effect tends to be very small and the screening algorithm behaves

as desired.

To better illustrate these properties, we simulated a small dataset with 7 mark-

ers. The first two of these are each closely linked (θ = 0.01) to a different disease

gene. The other five are unlinked to disease. The disease model is epistatic RR,

i.e. two mutations at each of the two disease loci are necessary to have disease. As

shown in Figure 3.1(a), the measure H12347 decreases significantly when removing

either one of the linked markers (1 or 2) and increases significantly when removing

either of the unlinked markers (3, 4 or 7). In Figure 3.1(b) we see that when none

of the markers in the current set is linked to disease, the values of the measure are

small and not as well separated as the ones in Figure 3.1(a). In fact a random (un-

linked) marker is removed. In this example (Figure 3.1(b)), marker 3 is removed

(i.e. ∆3 = H4567 −H34567 is the largest positive ∆i).

Figure 3.1: Linkage measure. Figure (a) and (b) illustrate the behavior of the measure
for 5 markers when trying to remove each one of them in turn.
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Note that we have:

H12347 ≈ H1347 + H2347 + H1234 + H1237 + H1247

5
for (a)

H34567 ≈ H3467 + H3456 + H3457 + H3567 + H4567

5
for (b)

Therefore according to (3.4) in Section 3.2.1 the interaction term ((n11111−n00000)
2)

is small in this case due to the presence of unlinked markers in the current set.

3.2.4 Important vs. Unimportant Markers

The goal of our method is to separate the important/linked to disease markers from

the unimportant/unlinked markers. We present two different methods to achieve

this goal. Both methods yield a good balance between false positive results and

true positive results. In our experience the two methods behave similarly.

1. Normal-Mixture Method

We first fit a two-component normal-mixture model to the histogram of return

counts:

p1N(µ1, σ
2
1) + p2N(µ2, σ

2
2)

where µ2 > µ1 and p2 = 1 − p1; µ2 and µ1 are the means for the distri-

bution of important and unimportant markers respectively. To control the

false-positive rate (FPR), we select as threshold the 1− α percentile for the

unimportant markers at a certain level α. The markers that have a return

higher than this cutoff are claimed to be important (linked to disease genes).

2. Efron’s Method
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Another method to achieve this separation is based on an idea of Efron (2004

[26]). He proposes a method to divide the data values into two classes, inter-

esting and uninteresting, when a large number of tests need to be evaluated

as is the case in whole-genome scans. This is in contrast to the classical sig-

nificant versus non-significant categorization used when the number of tests is

small. The method first fits a natural spline to the histogram of return counts

by Poisson regression. We call this curve: f (mixture density). Also an em-

pirical null distribution is estimated, denoted by f0 (empirical null density).

Then for each marker M the local false discovery rate is defined as:

locfdr(M) =
p0f0(M)

f(M)

Controlling the false discovery rate suggests that the markers with locfdr< α

be declared interesting (for a certain level α).

3.2.5 Choice of B and k

As explained in Section 3.2.2, our screening algorithm repeats B times the process

of random selection of k markers and then evaluation of each of the markers in

that set. We want to choose B and k large enough such that we get as clear a

separation between the markers linked to disease and the unlinked ones as possible.

We present a heuristic derivation of a formula for B below. The formula predicts

conservatively that for 200 markers B should be about 8000 and for 500 markers

B ≈ 20000. The size of k influences the number of times certain markers are chosen
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together in the random subset. It shouldn’t be too small, since we want a good

probability to select markers together. On the other hand, due to the sparseness

of the data in large dimensions and also due to computational issues, k should not

be too large. In our experience k = 10 works well.

A heuristic approach to estimating B was given in Lo and Zheng (2002 [27]).

The derivation of B for the proposed method is very similar.

Suppose M is a marker linked to disease in the original set of polymorphisms.

Let p1 be the probability that a marker linked to disease is selected and returned

in any single repetition (out of B) of the selection-reduction process; p0 is the same

probability but for markers not linked to disease. Assume p1 = rp0 with r > 1. Let

X be the observed return count for marker M . Then X ∼ N(Bp1,
√

Bp1(1− p1)).

In order to clearly separate the markers linked to disease from the ones not linked,

we require:

P (X ≥ Bp0 + 3.1
√

Bp0(1− p0)) ≥ 99%. After some algebra, this can be written

equivalently as:

B >

(
3.1 + 2.33

√
r

r − 1

)2
1− p0

p0

We can estimate p0, the probability for a marker not linked to disease to be selected

and returned in a single repetition, as follows:

p0 = P (returned|selected and unlinked) · P (selected|unlinked)

≈ 1

k
·
(

n
k−1

)(
n
k

) =
1

n− k + 1
≈ 1

n

where n is the total number of markers and k is a small number of markers (say
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10) selected to be evaluated; we assume conservatively that the probability that a

selected marker, not linked to disease, is returned is 1
k
.

Therefore we obtain

B >

(
3.1 + 2.33

√
r

r − 1

)2

(n− 1)

r can be written as:

r =
p1

p0

=
P (returned|selected and linked)

P (returned|selected and unlinked)
≈ k(1− ε)

where 1− ε is an estimate for the probability that a linked marker, once selected,

is returned. If conservatively we take r = 2 we obtain B ≈ 41(n− 1).

3.3 Results

We evaluated our method on both simulated data and real data.

3.3.1 Simulated Data

We applied our method to two complex disease models.

First Simulated Disease Model

In the first disease model there are 9 unlinked disease loci. The disease is present

when at least 5 of the 9 disease genes are mutated. The sample contains 200 ASPs

genotyped at 50 markers, with 20% of the data sporadic (diseased because of

nongenetic causes). Nine markers out of the total of 50 are linked to disease genes
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(θ = 0.05), one marker for each disease gene. The rest are independent markers,

not linked to disease and among themselves. The disease gene frequencies are all

set to 0.05 and the marker frequencies are all 0.5. We assume we have complete

data: the inference of the IBD sharing is without ambiguity. For each marker we

compute two statistics:

- the single-locus statistic (the ASP mean test):

(n1 − n0)
2

n1 + n0

∼ χ2
1

where n1 (n0) is the number of 1 (0) IBD sharing at that particular marker.

- the return count computed by the proposed method (B = 3000 and k = 10

in our screening procedure).

For each of the two methods we report the number of loci above certain significance

thresholds: {1%, 2%, . . . , 10%} false positive rates. Since in the simulated data we

know exactly which markers are linked to disease and which are unlinked, we can

approximate the threshold corresponding to a specific false positive rate empirically

by simulation.

Figure 3.2 shows an example of a simulated dataset according to the complex

model outlined above. The horizontal lines represent the thresholds for the 1%, 2%,

5% and 10% FPR. It illustrates the advantage of our method; because the markers

linked to disease are returned together in Step 4 of the screening algorithm in

Section 3.2.2, they will separate better from the unlinked markers. Therefore the

proposed method can be very powerful in increasing the importance of disease loci
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Figure 3.2: Comparison between a simple single-locus method (a) and our new method
(b) on a complex disease model with 9 disease loci. The figure illustrates how the
multilocus approach can increase the significance of moderate effect loci.

of moderate effect by making use of interactions among disease loci.

To investigate the power, we generated 600 independent replicates. Figure

3.3(a) depicts the average percentage of disease loci selected by each of the two

methods while keeping the false positive rate at the {1%, 2%, . . . , 10%} level. Our

method is more powerful than the single-locus method at all levels. At the 1%

significance level, our method discovers on average 3.1 of the 9 disease loci, while

the single-locus method finds only 2.2 loci. Similarly at the 3% level we detect on

average 4.5 loci, while the single-locus method finds 3.4 loci.

Finally, we compared the increase in sample size necessary for the single-locus

method to achieve similar power to that of the multilocus method. The results are

depicted in Figure 3.3(b). For this particular model an increase in sample size of

over 20% is necessary.
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Figure 3.3: Average percentage of disease loci discovered with the single-locus method
and the new multilocus method while controlling the FPR (a) and Sample Size Compar-
ison (b) for the 9−locus disease model

Second Simulated Disease Model

We also simulated a similar disease model with 4 disease loci. Now the disease is

present when at least 2 of the 4 disease genes are mutated.

Figure 3.4(a) depicts the average percentage of disease loci selected by each of

the two methods while keeping the false positive rate at the {1%, 2%, . . . , 10%}

level. As we can see, our method is more powerful than the single-locus method

at all significance levels. In Figure 3.4(b) we illustrate the increase in sample size

necessary for the single-locus method to attain similar power to that of the multi-

locus method. For this simpler disease model, a 10%− 15% increase is necessary.

We then repeated the same simulations, but this time we introduced small

linkage disequilibrium (LD) levels between some of the disease genes and the nearby

linked markers. Namely, δ1 = δ2 = 0.5 and δ3 = δ4 = 0 where δ is the normalized

LD measure. We compared the single locus approach to a modified version of
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Figure 3.4: Average percentage of disease loci discovered with the single-locus method
and the new multilocus method while controlling the FPR (a) and Sample Size Compar-
ison (b) for the 4−locus disease model

our multilocus linkage method (see Supplemental Material) that can also take

advantage of mild linkage disequilibrium between disease loci and nearby markers.

In this case the results (Figure 3.5) are even better compared to the ones obtained

in Figure 3.4 where no linkage disequilibrium was present. The improvement at

the 1% FPR is 23% and an increase in sample size of over 25% is necessary for

the single locus linkage method to achieve similar performance as the modified

multilocus linkage method.

3.3.2 Real Data (Inflammatory Bowel Disease)

We also analyzed a real dataset for Inflammatory Bowel Disease (InfBD) using our

method. InfBD consists of two disorders: Crohn’s Disease (CD) and Ulcerative

colitis (UC). They are both inflammatory disorders of the gastrointestinal tract

with a strong genetic contribution as revealed by epidemiological studies. Genome-

wide searches for InfBD susceptibility loci have identified several regions of interest,
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Figure 3.5: Average percentage of disease loci discovered with the single-locus method
and the new multilocus method while controlling the FPR (a) and Sample Size Compar-
ison (b) for the 4−locus disease model with LD

showing that InfBD is a complex genetic disease caused by the action of several

genes.

The present dataset is a genome screen of 106 ASPs (including parents) from

Canada, affected with CD genotyped at 457 microsatellite markers; the average

marker spacing is ∼ 10cM. These data have been previously analyzed in Rioux et

al. (2000 [28]) and in Lo and Zheng (2004 [29]).

In order to apply our new approach to these data, we first inferred the IBD

(identity-by-descent) sharing probabilities for each ASP using the program GENE-

HUNTER 2.0 (Daly et al. 1998 [30]). Since our method requires complete IBD

sharing information, we probabilistically impute the IBD sharing values. More

exactly, for each sib pair under study we generate the IBD value at each posi-

tion in the sharing vector according to the corresponding sharing probabilities (as

calculated by GENEHUNTER 2.0); for example if the sharing probabilities at a

certain position are (0.2, 0.5, 0.3) for sharing 0, 1 and 2 alleles respectively, then
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we generate the IBD value 0, 1 or 2 according to this distribution. In order to

minimize the bias due to these probabilistic imputations, we do it 100 times, each

time generating a new dataset.

We applied our algorithm on each of the 100 generated datasets. We use B =

20000 and k = 10 in our screening procedure. The return counts (averaged over

the 100 datasets) for all markers together with the fitted two-component normal

mixture are depicted in Figure 3.6(b). By controlling the false positive rate at

a stringent level we obtain that markers with return count above 240 should be

reported as important. In figure 3.6(a) we depict the cumulative distribution

function (CDF) for a single normal fitted to the data versus the CDF for a mixture

of two normals.

We also applied Efron’s approach. In Figure 3.7 we give the results. On the

left hand side, the histogram of the return counts together with the fitted empir-

ical null density f0(z) and the mixture density f(z) are depicted. On the right

hand side, the localfdr (local false discovery rate) plot is added to the histogram

(scaled up by a factor of 50). A return count of 242 corresponds to a local fdr of 1%.

In Figure 3.8 we show the return counts plotted versus marker locations in the

genome. The mean return count is 140 and is marked by a horizontal solid line.

The threshold for declaring a marker important is 240 and is marked by a broken

line.

The results we obtain are extremely significant. We validated 6 (IBD1, IBD3,

IBD5, IBD6, IBD7, IBD8) of the 8 known InfBD loci. Additionally we found
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Figure 3.6: Normal mixture approximation and histogram of the return counts

several other interesting regions.

1. The region 1q21 contains a cluster of genes influencing epidermal differenti-

ation. This region is linked to other inflammatory diseases, e.g. psoriasis;

psoriasis can occur in association with Inflammatory Bowel Disease (Crohn’s

disease), suggesting that they may share common genetic risk factors.

2. The locus on chromosome 2p11 (D2S1790) is located ∼ 10 cM from the gene

IL1R1 (interleukin 1 receptor, type 1). There is evidence for the activation of

the mucosal immune system and the production of inflammatory cytokines,

i.e. interleukin (IL)-1ra and IL-1beta, in the Inflammatory Bowel Disease

(Heresbach et al. 1997 [31]).

3. The region 2q32 harbors the STAT1 and STAT4 genes (signal transducers

and activators of transcription), which are candidate genes for Inflammatory

Bowel Disease (Barmada et al. 2004 [32]).

4. The locus on chromosome 3p: suggestive linkage in this region was found in
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Figure 3.7: Efron’s approach to separating the linked markers from the unlinked markers

Rioux et al. (2000 [28]).

5. The locus on chromosome 7p13: gene IGFBP3 (insulin-like growth factor

binding protein 3) maps to this region. Katsanos et al. (2001 [33]) found

that the serum IGFBP3 levels are reduced in patients with Inflammatory

Bowel Disease.

6. The locus on chromosome 21q22.2 (D21S1809) is close to the TFF1 and TFF2

(trefoil factor 1 and 2) genes. These genes, located on 21q22.3, are expressed

in the gastrointestinal mucosa. Increased levels of TFF1 and TFF2 have been
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Figure 3.8: Results of the multilocus linkage method on the InfBD data

found in serum from Inflammatory Bowel Disease patients (Vestergaard et al.

2004 [34]).

Table 3.1 lists the markers we claim important together with their chromosomal

position (InfBD dataset).

3.4 Discussion

We presented a new model-free multilocus linkage method for affected sib pairs.

Our approach selects from a large number of polymorphisms a small number that

appear to be linked to disease. No assumption is made on the disease model, in-
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chr selected marker region
1 D1S1612 IBD7

D1S534 1q21
D1S1595 1q21
D1S1677 1q23

2 D2S1394 2p11
D2S1790 2p11
D1S1649 2q32

3 D3S1285 3p
4 D4S2394 4q23-4q28
5 D5S500 IBD5
5 other 18 from the region IBD5
6 DRB1 IBD3
6 DQB1 IBD3
6 D6S1017 IBD3
7 GATA31A10 7p13
12 D12S372 12p
16 D16S2619 IBD8
16 D16S2753 IBD1
19 D19S591 IBD6
19 GATA21G05 IBD6
19 D19S714 IBD6
21 D21S1809 21q22.3

Table 3.1: Selected important markers

cluding number of disease loci or their positions in the genome. It uses both the

marginal linkage information as well as information coming from the possible in-

teraction among several disease loci to boost the significance of modest single-locus

effects. A further advantage of our method is that it can be naturally extended to

take into consideration small linkage disequilibrium levels between disease loci and

nearby markers, thereby gaining even greater increases in power over single locus

linkage methods.

We evaluated our method on both simulated data and real data. The exten-

sive simulations that we did show consistently that the proposed approach is more
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powerful than the conventional single-locus linkage methods at all significance lev-

els (up to 40% increase in power). The improvement in power increases when the

number of interacting disease loci increases. In the absence of interactions our

method performs similarly to the single-locus methods. Also the results on the

real data are highly significant. We validated 6 of the 8 known InfBD loci and

also found a few interesting loci, some of which have been already implicated in

Inflammatory Bowel Disease pathogenesis.

Our method is also very general; the disease loci can be anywhere in the genome

(possibly on different chromosomes) and they can interact in complex, unknown

ways. We did make a simplifying assumption, namely we assumed that the selected

markers in the current set are unlinked among themselves. It is clear however that

the effect of linkage between two unimportant markers is superseded by the pres-

ence in the current set of a marker linked to disease. This point is best illustrated

on real data, where we see that markers close together do not tend to have return

counts higher than expected (e.g. chromosome 4 in Figure 3.7).

Given the complex nature of the common diseases and the many challenges in

genomewide scans, we believe that our approach is very relevant; by using both the

marginal and the interaction information, our method performs better than the

traditional single-locus methods. Also due to its generality, the proposed method

is applicable to a large number of situations.
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3.5 Supplemental Material

3.5.1 Extension of the Multilocus Linkage Method

We give a natural extension of the multilocus linkage method so that mild linkage

disequilibrium (LD) levels between disease loci and marker loci can be used in

addition to linkage to obtain even greater increases in power over single-locus

linkage methods. The extension is based on combining the multilocus linkage

method with a similar association method (the BHTA algorithm, Lo and Zheng

2002 [27]). They are both based on the screening procedure in Section 2.2. In what

follows we denote by ∆Li (called ∆i in the main text) and ∆LDi (defined in Lo

and Zheng 2002 [27]) the change in linkage and association information respectively

when removing marker i from the current set.

• Step 0 Repeat steps 1− 4 B times.

• Step 1 Start by choosing a set of k ≈ 10 markers at random from the available

list of markers.

• Step 2 At each step compute for each marker in the current set the resulting

change in both the linkage and association measure respectively when that

marker is removed. For marker i:

∆Li = L1...i−1 i+1...k − L1...k

∆LDi = LD1...i−1 i+1...k − LD1...k
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• Step 3 Remove the marker i (if any) such that both ∆Li > 0 and ∆LDi > 0

(i.e. both the linkage measure and the association measure deem marker i

unimportant) and that has the largest ∆Li + ∆LDi.

• Step 4 Do Steps 2 − 3 until either all the markers in the current set are

important (for each remaining marker i not both ∆Li and ∆LDi are positive)

or only one marker remains. We return marker i Ri times, depending on the

linkage and the association evidence as follows:

Ri = 1∆LDi<0 + 1∆Li<0

where 1∆LDi<0 is the indicator random variable for the event ∆LDi < 0;

1∆Li<0 is defined similarly.

• Step 5 We compute for each marker a final return count denoting the total

number of times it was returned in Step 4. Based on these counts we separate

the markers into two classes: the unimportant (unlinked) markers and the

important (linked AND/OR associated) ones.

This simple procedure guarantees that when evaluating a marker we consider both

the marginal information, as well as the interaction information contained in a

dataset. Also it takes into account two pieces of information, usually treated

separately: linkage information and linkage disequilibrium information.
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Figure 3.9: NPL results for chromosomes 1-4

3.5.2 Inflammatory Bowel Disease Data - NPL Results

We also applied the conventional NPL statistic (GENEHUNTER 2.0, Daly et al.

1998 [30]) to the same dataset and the results are illustrated below. Noteworthy

is the fact that IBD1 on chromosome 16 (CARD15 gene) could not be detected

using the conventional methods, whereas our proposed method did detect it.
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Figure 3.10: NPL results for chromosomes 5-8
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Figure 3.11: NPL results for chromosomes 9-12
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Figure 3.12: NPL results for chromosomes 13-16
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Figure 3.13: NPL results for chromosomes 17-20

NPL plot
Pedigree file: final.c21.ped

54 cM

Z-all

Mon Dec 19 14:35:29 2005


D
21S1432

D
21S1437

D
21S1435

D
21S1270

D
21S1440

D
21S1883

D
21S1891

D
21S1809

D
21S266

D
21S1903

D
21S1446

-3.0

-2.0

-1.0

0.0

1.0

2.0

3.0

(a)

NPL plot
Pedigree file: final.c22.ped

47 cM

Z-all

Mon Dec 19 14:37:22 2005


D
22S420

D
22S446

D
22S689

D
22S685

D
22S445

D
22S444

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

(b)

Figure 3.14: NPL results for chromosomes 21-22
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Chapter 4

A Practical Haplotype Inference

Algorithm

SUMMARY In this chapter, we consider the problem of efficient inference

algorithms to determine the haplotypes and their distribution from a dataset of

unrelated genotypes.

With the currently available catalogue of single-nucleotide polymorphisms (SNPs)

and given their abundance throughout the genome (one in about 500 bps) and low

mutation rates, scientists hope to significantly improve their ability to discover ge-

netic variants associated with a particular complex trait. We present a solution to a

key intermediate step by devising a practical algorithm that has the ability to infer

the haplotype variants for a particular individual from its own genotype SNP data

in relation to population data. The algorithm we present is simple to describe and

implement; it makes no assumption such as perfect phylogeny or the availability of

parental genomes (as in trio-studies); it exploits locality in linkages and low diver-
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sity in haplotype blocks to achieve a linear time complexity in the number of mark-

ers; it combines many of the advantageous properties and concepts of other existing

statistical algorithms for this problem; and finally, it outperforms competing algo-

rithms in computational complexity and accuracy, as demonstrated by the studies

performed on real data and synthetic data. Furthermore, the basic ideas gener-

alize to other related problems: HCNP (Haplotype-Copy-Number-Polymorphism)

problem (work in progress) and IHRM (Individual-Haplotype-Restriction-Map)

problem (Anantharaman et al. 2005 [35]).

4.1 Introduction

Each diploid individual has two copies for each chromosome: one inherited from

the mother and the other from the father. The material on each copy is called a

haplotype. Since haplotypes are the material that is transmitted from a parent

to offspring and so are diseases, we are interested in finding the haplotypes and

establish correlations between disease and specific haplotypes.

Current high-throughput genotyping methods only determine which two alleles

are present at a locus, but lack information as to which of the two chromosomes

(mother or father) each allele belongs to. For instance, if the two haplotypes for

an individual are ACG and TCA, then the result of the genotyping experiment is:

{A, T} {C, C} {G, A}. It is easy to see that this ambiguity causes problems if the

individual is heterozygous for more than one locus, since for an individual with k

ambiguous (heterozygous) loci, there are 2k−1 possible haplotype pairs that resolve

that same genotype. In the example above, the two possible haplotype pairs are:
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ACG/TCA (the true pair) and ACA/TCG. Note that for a given genotype of a

single individual, there are potentially an exponential number of haplotype pairs,

obscuring the true pair we wish to discover.

Thus we must turn to either novel experimental methods that map or sequence

two homologous chromosome pairs separately or to computational approaches that

exploit the evolutionary history of the chromosomes, which can be discerned from

a population or familial relationship. Here we focus on algorithms for population

data, rather than family data.

It is important to mention that the problem we face would be hopeless if the

SNPs under consideration would be in linkage equilibrium. Linkage disequilibrium

fades away with distance, so we can only hope to determine the correct haplotypes

from genotypes for SNPs that are relatively close together. The prospect becomes

less dismal when we consider several recent studies (Daly et al. 2001 [38], Gabriel

et al. 2002 [43], Patil et al. 2001 [53]) that suggest that the linkage disequilibrium

extent in several analyzed regions is larger than expected. These studies show that

several regions can be partitioned into blocks of size up to 100 kb such that in each

block there is very little variation across the population. More specifically, in each

block only a few haplotypes (2-4) account for over 90% of the haplotypes in the

sample. We exploit this fact in devising an asymptotically linear-time statistical

algorithm for this problem.

Note that the traditional approach to genetic mapping has been to examine

each SNP one at a time and associate a correlation or score (e.g., LOD score) to

quantify its contribution to a trait. However the information gained from single
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marker scores turns out to be very noisy. Thus with genome-wide study of the

haplotypic patterns for several adjacent SNPs, one can now hope for a more robust

method of mapping disease genes based on the algorithm described here.

4.2 Related Literature

The experimental solutions — Single Molecule Dilution (Ruano et al. 1990 [55]),

Asymmetric PCR Amplification (Michalatos-Beloin et al. 1996 [50]), Isolation of

Single Sperm Cells ( Li et al. 1988 [49]) — are low-throughput, expensive, and

difficult to automate. A new approach based on single-molecule based individ-

ual haplotype maps appears promising (Anatharaman et al. 2005 [35]), but not

yet available. Faced with these disadvantages inherent to the laboratory meth-

ods, scientists have begun to explore the computational approaches as a viable

alternative.

The competing computational methods fall into the following categories and

are described briefly:

The first method due to Clark (Clark 1990 [37]) is based on a heuristic that

starts with the list of haplotypes that can be unambiguously inferred from the

genotype data, (i.e. the ones coming from homozygous or single-site heterozygous

individuals), and then tries to solve the phase ambiguous individuals by using these

already determined haplotypes, while adding new haplotypes to the list (when

trying to resolve a genotype with a haplotype in the list and a new, yet-to-be

discovered haplotype). While this algorithm is rather simple and remains popular,

it suffers from a few problems —namely, it might have trouble getting started; it
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might fail to resolve all individuals; and the solution depends on the order in which

this algorithm examines the genotypes.

Another class of methods is based on the so-called Perfect Phylogeny (PP)

model of haplotype evolution — namely a model assuming no recombination and

the usual infinite-site mutation process as in population genetics. Given the pu-

tative existence of these blocks of extended linkage disequilibrium, the PP model

works well on an individual block, but not applicable to whole genome study. (See

Gusfield’s algorithm (Gusfield 2002 [44]) based on a reduction of the haplotype

inference problem to the graph realization problem, or other much simpler solu-

tions, but with less efficient quadratic time complexity, e.g., algorithms devised

independently by Bafna et al. 2002 [36] and by Eskin et al. 2002 [40].) More re-

cently, algorithms that are able to allow for small deviations from the PP model

have been developed (Halperin et al. 2004 [45] and Song et al. 2005 [56]).

A third class of methods consists of statistical methods , to which our current al-

gorithm belongs. The Maximum Likelihood Estimation (Excoffier and Slatkin 1995 [41])

approach estimates the haplotype frequencies by maximizing the likelihood of the

frequencies given the data, using the EM (expectation-maximization) algorithm.

Starting with some initial frequencies, the following two steps are repeated until

convergence to a limit distribution:

• The E-step computes for each genotype the probability of resolving it into

each possible haplotype pair:

P (h1, h2| g) ∼ ph1 · ph2 ,
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using the haplotype frequencies estimated at the previous step ((h1, h2) hap-

lotype pair explains the genotype g ).

• The M-step updates the haplotype frequencies using the estimates obtained

in the E-step.

ph =
1

2n

m∑
j=1

nj

cj∑
i=1

δihP (hi1, hi2| gj)

where 2n = the total number of haplotypes in the sample, nj = the number

of genotypes of type j, cj = the number of possible haplotype pairs that

explain genotype gj (exponential in the number of heterozygous sites) and

δih = an indicator equal to the number of times haplotype h is present in the

pair (hi1, hi2).

This algorithm is accurate in estimating the haplotype frequencies, especially in

large sample sizes (Fallin and Schork 2000 [42]), but, unfortunately, exponential

in the number of heterozygous loci.

Several Bayesian algorithms devised for this problem use Gibbs samplers but

differ with respect to priors: e.g., Dirichlet prior, or a coalescent-based prior. See

Stephens et al. 2001 [57]. These are MCMC algorithms that construct a Markov

chain whose stationary distribution is P (H| G), where H is a set of haplotype pairs

that can explain the set of known genotypes G. Starting with an initial guess of

haplotypes H0, an individual is repeatedly chosen at random from the ambiguous

individuals and its haplotype pair is estimated given the estimated haplotypes for

the other individuals: sample (hi1, hi2) from P ((h1, h2)| G, H−i) where H−i are
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the estimated haplotypes for the other individuals. This process is repeated until

convergence.

More practical Bayesian algorithms exploit locality in linkages as we do: using a

divide and conquer strategy developed by Niu et al. 2002 [51], one such algorithm

uses two important computational tricks : partition-ligation and prior annealing

that help reduce running times and also the mixing of the MC.

Partition Step: Partition the region into small (around 8 SNPs) continuous

blocks. On each block, apply a Gibbs sampler as before [57].

Ligation Step: Next, combine estimates for adjacent blocks using the same Gibbs

sampler to obtain estimates for the entire region. These tricks have been applied

to other algorithms as well: the one in Stephens and Donnelly ( 2003 [58]) and to

EM (Qin et al. 2002 [52]).

4.3 Methods

We propose an EM-based simple algorithm that shares similar accuracy as the

algorithms mentioned above, while being able to handle large datasets involving

hundreds of sites and genotypes. This algorithm is shown below:

Algorithm FastHI:

Find-Distributions;

Repeat the following steps several times

Generate-Blocks;

Solve-on-Blocks;

Stitch-Blocks;

End Repeat
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4.3.1 Find-Distributions

The algorithm starts by approximating the distribution of haplotypes on each

possible block (formed by consecutive SNPs) with length between 4 SNPs and

some upper limit, e.g., 25 SNPs (the upper limit depends on the number of SNPs

in the dataset). An efficient implementation proceeds as follows: start by applying

the classic EM method on all small blocks of length 4 and determine the possible

haplotypes and their distribution on these small blocks.

...

4

4

4

4

Figure 4.1: Dividing the genomes into blocks.

From every pair of consecutive small blocks of length 4, say consisting of SNPs

i . . . i + 3 and respectively i + 1 . . . i + 4, compute a list of possible haplotypes on

the larger block of length 5, consisting of SNPs i . . . i + 4. In this list, include the

haplotypes that result from the merging of two haplotypes which on both blocks

of length 4 have a frequency greater than a threshold.

We call the haplotypes obtained in this way extended haplotypes. Having this

small list of haplotypes, we repeatedly estimate their frequencies by EM. Since this

list has far fewer haplotypes than the exponential number of haplotypes possible

in a block, and since we only extend from blocks of length l to length l+1, FastHI
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i i+3

i+1 i+4

i i+4

Figure 4.2: Merging a pair of consecutive blocks.

obtains a good approximation of the haplotype frequencies in each possible block of

length between 4 and some upper bound. Note that this process does not lose any

of the common haplotypes (i.e., with a real frequency larger than some threshold;

according to our simulations –data not shown– 5% seems a safe cutoff), considering

the fact that EM accurately estimates the frequencies of the common haplotypes

on small regions.

Lemma 4.3.1 Suppose a haplotype has (real) frequency p ≥ θ in a block of length

l > 4. Then by the process described above, this haplotype will be included in the

list of estimated haplotypes for that block.

Proof by induction: On blocks of length 4, EM can be shown to perform well in

estimating the haplotype distribution. Assume we have a block of length l > 4.

Let H be a haplotype on this block with real frequency p = realfreq(H). Then if

h1 and h2 are the two haplotypes of length l− 1, which by merging give rise to H,
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we have:

θ ≤ p = realfreq(H) ≤ realfreq(hi),

with i ∈ {1, 2}. By the induction hypothesis, h1 and h2 will be in the list of

estimated haplotypes and hence H will be too.

Note that we may still lose rare haplotypes that occur only in combination with

other rare haplotypes, but this is true for all general statistical methods.

4.3.2 Generate-Blocks

This step randomly generates break points along the region, creating a partition

such that each block (a region between two consecutive breakpoints) of a sequence

of SNPs has length between 4 and some upper bound (e.g. 25).

4.3.3 Solve-on-Blocks

On each block partial solutions are generated using the distribution obtained in

the first step ( Find-Distributions).

For each individual we can determine the solution on blocks by selecting the

most plausible hypothetical solution. Formally, for a genotype g we choose the

following resolution:

arg max
(h1,h2)∈Hg

P (h1, h2|g)

where P (h1, h2|g) ∼ ph1 · ph2 , Hg is the set of all possible resolutions with haplo-
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types in our list for genotype g, and ph1 and ph2 are the estimated frequencies of

haplotypes h1 and h2, respectively.

4.3.4 Stitch-Blocks

Finally, the FastHI algorithm merges the partial solutions on blocks to get the

solution for the entire genotype. For a given block partition, say consisting of

b blocks, we have to make b − 1 decisions about how to connect the adjacent

haplotypes.

Formally, for an individual genotype having local resolutions h1
i and h2

i on

block i, and h1
i+1 and h2

i+1 on block i + 1, we have to choose between ((h1
i , h1

i+1),

(h2
i , h2

i+1)) and ((h1
i , h2

i+1), (h2
i , h1

i+1)). It is implemented using a very efficient

EM estimator to decide which pair has a higher likelihood. By repeatedly joining

on each pair of consecutive blocks from left to right, we obtain for each individual

genotype a solution.

We remark that the solution obtained after just one such single partition into

blocks is not reliable, simply because the partition is random and so even the

local solutions might not be accurate. In order to avoid this problem, we execute

multiple independent random partitions (say 50), and in the end we choose for

each individual the solution that occurs most often. For the real datasets that

we used as well as for the simulated ones, the accuracy results are very similar

to the ones obtained by Haplotyper (Niu et al. 2002 [51]) and modified Phase

(Stephens et al. 2003 [58]), two state of the art statistical algorithms. However,

FastHI is much faster and thus, handles large datasets.
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4.3.5 Error Metrics

We use the following measures to characterize the error in our inference, which

assumes that the correct haplotypes have been determined by some other inde-

pendent means, e.g. experimental methods for the real datasets and known from

simulations for the simulated data.

Mean Individual Error

This metric is defined as the proportion of individuals whose inferred haplotypes

do not exactly match the correct haplotypes. This metric is rather stringent and

the error rate tends to one rapidly as the number of SNP markers increases (due to

the decay of the linkage disequilibrium), independent of the underlying algorithms.

Single-Site Error

This metric is defined as the proportion of phases (of all possible phase errors) that

are wrongly inferred.

Note that the number of possible phase errors is half the number of heterozygous

entries in the data set. This measure is better in comparing different methods, since

it gives more insight about how the algorithms perform locally. For instance, a

mistaken individual may have only one phase error, or at the opposite end all the

possible phase errors.
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Switch Error

This metric is defined as the proportion of heterozygous positions that are wrongly

phased with respect to the previous heterozygous position.

This measure is better for datasets with a large number of markers and for

which we do not have enough statistical information to correctly infer the phases

at a global level. For instance, imagine that there is a hot spot of recombination

somewhere in the middle. Then the left part and the right part are independent

and even an optimal algorithm would produce on average 50% errors for the mean

individual error. The new measure would detect that for each wrongly phased

individual the left and the right part are correct. Moreover, globally, we need only

a phase switch to produce the correct solution.

4.4 Results

4.4.1 Real Data

The real datasets examined are as follows:

β2 AR (β2-Adrenergic Receptor) (Drysdale et al. 2000 [39])

This dataset contains 13 SNPs from the human β2-adrenergic receptor gene (be-

lieved to be related to asthma) genotyped in 121 Caucasian patients with asthma.

There are only 10 different haplotypes present in this dataset of 121 genotypes.

All three methods correctly phase all individuals. This is probably to be expected

of such large datasets with little variability.
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ACE (Angiotensin Converting Enzyme) (Rieder et al. 1999 [54])

This dataset contains 52 SNPs from the ACE gene (implicated in cardiovascular

diseases) genotyped in 11 individuals. The errors for all three algorithms are

similar.

CFTR (Cystic Fibrosis Transmembrane-Conductance Regulator) (Kerem et

al. 1989 [47])

This dataset consists of 23 SNPs genotyped in a 1.8 Mb region on chromosome

7q31, believed to be implicated in Cystic Fibrosis, a common recessive disease

that occurs about once per 2000 births. As in Niu et al. 2002 [51], we selected

the 57 haplotypes without missing data from the 94 haplotypes in the diseased

individuals. We generated 100 datasets of 28 genotypes by randomly permuting

the 57 haplotypes. The large errors in the inferred haplotypes from all methods

are because of the limited number of genotypes and the great diversity (there are

30 different haplotypes and 28 genotypes).

The results on all three datasets are summarized in Table 4.1 (FastHI is the

proposed algorithm). For these real datasets of rather small size, all algorithms

are fast.

4.4.2 Simulated Data

We also performed an extensive simulation study in order to be able to analyze

larger datasets than the real datasets we have had access to.

We generated haplotypes according to the following model: the parameters in
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β2 AR ACE CFTRa

Mean Indiv. Error
Haplotyper b 0 .18 .42

modified Phase c 0 .18 .47
FastHI 0 .18 .43

Single-Site Error
Haplotyper 0 .07 .32

modified Phase 0 .06 .35
FastHI 0 .06 .32

Avg Switch Errord

Haplotyper 0 2.5 1.68
modified Phase 0 1.5 1.60

FastHI 0 3 1.68

aaverage error rates for 100 data sets generated by randomly pairing 56 haplotypes
berror rate for the best of 20 independent runs
cerror rate for the best of 5 independent runs; for ACE data we did 100 runs
ddefined as the average number of switch errors on a mistaken individual

Table 4.1: Comparison of Error Rates of Haplotyper, Phase and FastHI algorithms on
the 3 real datasets

our simulations are the number of distinct haplotypes present in the dataset, the

number of SNPs analyzed and the distribution of these haplotypes. The details are

as follows: we first specify a number of distinct haplotypes present in the dataset.

Each such haplotype is a random haplotype, independent of the other haplotypes.

Each position (SNP) is a Bernoulli trial with p = .5. Then for each generated

type we specify its frequency in the dataset. We then generated 20 independent

datasets of genotypes. Each dataset is obtained by generating a set of haplotypes

and randomly generating genotypes by pairing up haplotypes.

We simulated several types of datasets: SD1, SD2, SD3, SD4 and SD5, all

described below. All have 150 genotypes, 100 SNPs, but they differ in the number

of haplotypes and their distribution.
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SD1 Simulation Data

There are 150 genotypes, 100 SNPs, 50 different haplotypes in the dataset. The

distribution of the haplotypes is uniform (expected count for each haplotype is 6).

SD2 Simulation Data

There are 150 genotypes, 100 SNPs, 100 different haplotypes in the dataset. The

distribution of the haplotypes is non-uniform, with 90 haplotypes having the same

frequency .007 (expected count is 2), 5 haplotypes having frequency .02 (expected

count is 6) and the remaining 5 haplotypes have the following frequencies: .1

(expected count is 30), .07 (expected count is 20), .07 (expected count is 20), .03

and .03 (expected count is 10).

SD3 Simulation Data

There are 150 genotypes, 100 SNPs, 100 different haplotypes in the dataset. The

distribution of the haplotypes is uniform (expected count for each haplotype is 3).

SD4 Simulation Data

There are 150 genotypes, 100 SNPs, 150 different haplotypes in the dataset. The

distribution of the haplotypes is non-uniform.

SD5 Simulation Data

There are 150 genotypes, 100 SNPs, 150 different haplotypes in the dataset. The

distribution of the haplotypes is uniform.
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SD1a SD2b SD3c SD4d SD5e

Mean Indiv. Error
Haplotyper − − − − −

modified Phase .018 .13 .12 .193 −
FastHI .0016 .069 .058 .126 .50

Single-Site Error
Haplotyper − − − − −

modified Phase .002 .0368 .02 .057 −
FastHI .00045 .027 .02 .069 .22

Average Time on Datasetf

Haplotyper − − − − −
modified Phase 270 630 780 1080 −

FastHI 8 15 20 21 24

a150 genotypes, 100 SNPs, 50 different haplotypes, uniform distribution
b150 genotypes, 100 SNPs, 100 different haplotypes, non-uniform distribution
c150 genotypes, 100 SNPs, 100 different haplotypes, uniform distribution
d150 genotypes, 100 SNPs, 150 different haplotypes, non-uniform distribution
e150 genotypes, 100 SNPs, 150 different haplotypes, uniform distribution
fin minutes

Table 4.2: Comparison of Error Rates of Haplotyper, Phase and FastHI algorithms on
simulated datasets (averages over 20 simulated datasets)

The results of the simulations and the time performance (in minutes) are given

in Table 4.2. As can be seen from the table, our algorithm is much faster (minutes

versus hours) and has similar (even better) performance. Also on the large dataset

of 150 genotypes, 100 SNPs and 150 different haplotypes, FastHI is the only

algorithm that works. These results strengthen our belief that this simple and fast

algorithm can handle very large datasets with reasonable accuracy.

4.5 Discussion

We have presented a simple and fast algorithm, FastHI, for inferring haplotypes

from genotypes of diploid individuals. The main advantage FastHI enjoys over
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its rivals is that it effortlessly handles very large datasets for inference without

sacrificing accuracy.

More importantly, the underlying ideas are powerful and generalizes to com-

binations of other polymorphisms. In particular, application of these ideas to

“Haplotype-Copy-Number-Polymorphims” problem in analyzing arrayCGH (Com-

parative Genomic Hybridization) data suggests an interesting opportunity (work

in progress). In particular, successful analysis of these data will provide us with

needed information to understand LOH (loss of heterozygousity), chromosomal

aberrations and copy number fluctuations in cancer, auto-immune disorders and

other related diseases.
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Chapter 5

Future Work

In this thesis we described three important problems dealing with the analysis of

large-scale genetic datasets. The important contribution is that they try to use

the available information on multiple markers and multiple disease loci, so that as

much information as possible is used from the datasets. New statistical methods

are needed in the context of the massive datasets that are being generated and the

problems addressed in this thesis are important in this context.

There are two main extensions that we are currently pursuing:

1 Combining gene expression data with copy number variation data for the

detection of cancer genes.

The algorithm we proposed makes use only of copy-number-variation data.

However, amplifications and deletions on their own may not be very pre-

cise in pinpointing the important cancer genes. The gene expression data

contribute important information as to which disease genes are involved in

cancer. We are currently working on a method to incorporate gene expression
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information, when available, in addition to array-CGH data.

2 Combining linkage and association information

The linkage method in Chapter 3 only works for affected-sib-pairs. However

Lo and Zheng have proposed similar methods for association for the ASP

design and for a case-control design. Combining the linkage and association

signal at marker loci should give a superior method for the detection of disease

susceptibility loci.
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