
A Language-Theoretic Approach to
Algorithms

by

Deepak Goyal

A dissertation submitted in partial ful�llment of the requirements for the degree of Doctor
of Philosophy

Department of Computer Science
Graduate School of Arts and Science

New York University
January 2000

Dissertation Advisor

c Deepak Goyal
All Rights Reserved 2000

To my parents, and To Bob

iii

Acknowledgments

This thesis was completed in very sad circumstances. Bob Paige (my thesis advisor) �nally
lost his battle with cancer on October 5, 1999, only ten days before my �nal thesis defense.
Bob had been bravely �ghting his cancer for over three and a half years. Despite his poor
health, he continued to help and advise me up to the very end. Ever since the fall of 1994,
when I started working with Bob, he was a constant source of support and encouragement.
Without his guidance, this thesis would not have been possible. I would like to express my
deepest gratitude to Bob, who was not just a wonderful advisor and teacher, but also a very
dear friend.

I am also very grateful to Prof. Alan Siegel on whose recommendation I started working
with Bob, and Nieba Paige for taking such good care of Bob, and for her personal concern
about my progress.

I would like to thank Annie Liu and G. Ramalingam for their careful reading of earlier
drafts of this dissertation and for their valuable comments and suggestions.

I would also like to thank Prof. Zvi Kedem for helping me get a visa for entry into the
United States more than �ve years ago, without which I would not have been able to attend
NYU, and Anina Karmen for the numerous letters she has written for me as the Graduate
Program Coordinator of the Computer Science Department.

I would like to thank my friends and fellow students Gediminas Adomavicius, Hseuming
Chen, Raoul Sam Daruwala, Archisman Rudra, David Tanzer, and Zhe Yang for all their
help and for being such good friends.

Most of all, I would like to thank my parents, and my sister Anu, for always having faith
in me and for always being there for me.

iv

Abstract

An e�ective algorithm design language should be 1) wide-spectrum in nature, i.e. capable
of expressing both abstract speci�cations and low-level implementations, and 2) "compu-
tationally transparent", i.e. facilitate accurate estimation of time and space requirements.
The conict between these requirements is exempli�ed by SETL which is wide-spectrum,
but lacks computational transparency because of its reliance on hash-based data structures.
The �rst part of this thesis develops an e�ective algorithm design language, and the second
demonstrates its usefulness for algorithm explanation and discovery.

In the �rst part three successively more abstract set-theoretic languages are developed
and shown to be computationally transparent. These languages can collectively express both
abstract speci�cations and low-level implementations. We formally de�ne a data structure
selection method for these languages using a novel type system. Computational transparency
is obtained for the lowest-level language through the type system, and for the higher-level
languages by transformation into the next lower level. We show the e�ectiveness of this
method by using it to improve a diÆcult database query optimization algorithm from ex-
pected to worst-case linear time. In addition, a simpler explanation and a shorter proof of
correctness are obtained.

In the second part we show how our data structure selection method can be made an
e�ective third component of a transformational program design methodology whose �rst two
components are �nite di�erencing and dominated convergence. Finite di�erencing replaces
costly repeated computations by cheaper incremental counterparts, and dominated conver-
gence provides a generalized iteration scheme for computing �xed-points. This methodology
has led us to a simpler explanation of a complex linear-time model-checking algorithm for
the alternation-free modal mu-calculus, and to the discovery of an O(N3) time algorithm
for computing intra-procedural may-alias information that improves over an existing O(N5)
time algorithm.

v

Contents

Dedication iii

Acknowledgments iv

Abstract v

List of Figures ix

List of Tables x

1 Introduction 1

1.1 Background and Related Work . 2
1.2 Contribution Of This Thesis . 4
1.3 Overview of Our Approach . 5
1.4 Testing the Viability of Our Approach . 9
1.5 Outline of the Thesis . 9

2 Low SETL 11

2.1 De�nition of Low SETL . 11
2.2 Informal Description of Data Structures . 14

2.2.1 Base Types . 14
2.2.2 Sets and Maps . 15
2.2.3 Strongly based Sets and Maps . 16
2.2.4 A Special Note on Self-Access . 20

2.3 Dynamic Operational Semantics . 20
2.3.1 Operational Semantics for Expressions 24
2.3.2 Operational Semantics for Boolean Expressions 26
2.3.3 Operational Semantics for Commands 27

2.4 Implementing Low SETL on a Pointer Machine 37
2.5 Static Semantics (Type System) . 39

2.5.1 Static Semantics for Expressions . 39
2.5.2 Static Semantics for Boolean Expressions 39
2.5.3 Static Semantics for Commands . 40

2.6 Consistency between A State � and A Type Environment TE 44
2.7 Execution of a Well-typed Program Cannot Get Stuck 46

2.7.1 De�nition of Well-formedness of a Con�guration 48

vi

2.7.2 Well-formed Con�gurations lead to Well-formed Con�gurations . . . 51
2.7.3 Well-formed Con�gurations cannot be Stuck 53

3 High SETL 56

3.1 Introduction . 56
3.2 Extended Type System For Low SETL . 56
3.3 High SETL . 57
3.4 Type System for High SETL Expressions . 58
3.5 Low SETL Implementations of Well-Typed High SETL Expressions 70
3.6 Type System for High SETL Commands . 82
3.7 Low SETL Implementation of High SETL Programs 85
3.8 Time Complexity . 86

3.8.1 Time Complexity of High SETL Expressions 86
3.8.2 Time Complexity of Some High SETL Commands 88

4 Speedup of Linear Time Fragment of Willards Relational Calculus Subset 90

4.1 Introduction . 90
4.1.1 Background . 91
4.1.2 Overview . 91

4.2 De�nition of LRCS . 91
4.3 Linear-Time Implementation of LRCS Queries 93

4.3.1 Quanti�er Elimination . 94
4.3.2 Join Decomposition . 97

4.4 Count-Queries And Simple Find-Queries . 99
4.5 Summary . 108

5 SQ+ 109

5.1 Introduction . 109
5.2 De�nition of SQ+ . 110
5.3 Preliminaries . 111

5.3.1 De�nitions . 111
5.3.2 Basic Theory . 111

5.4 Type System and Operational Semantics for SQ+ 112
5.4.1 Type Rules for SQ+ . 112
5.4.2 High SETL implementations of SQ+ 113
5.4.3 A Note on the Expressiveness of SQ+ 114
5.4.4 Time Complexity of SQ+ programs 114
5.4.5 Pragmatic Considerations . 115

5.5 Dominated Convergence . 116
5.6 Concluding Remarks . 118

6 A Linear Time Language 119

6.1 Introduction . 119
6.2 Terminology and Notation . 120
6.3 Linear-Cost Language . 120

6.3.1 Simple Linear-Cost Expressions . 120

vii

6.3.2 Composition of Linear-Cost Expressions 123
6.3.3 Dynamic Complexity and Linear-Cost Fixed Point Expressions 126

6.4 Some Simple Examples . 132
6.5 Conclusion . 136

7 A Linear Time Algorithm To Solve Fixed-Point Equations On Transition

Systems 137

7.1 Introduction . 137
7.2 Systems of Equations on Transition Systems 138
7.3 Linear-Time Algorithm . 139
7.4 A Brief Description of Arnold and Crubille's Algorithm 143
7.5 Comparison Between the Two Algorithms 144

7.5.1 A Closer Look at the Running Times of the Two Algorithms 145
7.6 Conclusion . 145

8 An Improved Intra-Procedural May-Alias Analysis Algorithm 146

8.1 Introduction . 146
8.2 Extension of the Type System . 147
8.3 Computing the Fixed-Point of a System of Equations 148
8.4 Preliminaries . 150

8.4.1 Compact Representation of Alias Information 151
8.5 May-Alias Analysis . 152
8.6 Computing May-Alias Information . 154

8.6.1 Simple Iterative Algorithm . 154
8.6.2 A Worklist Based Strategy . 156

8.7 Going Beyond the Worklist Strategy . 156

9 Conclusion 159

9.1 Future Work . 159
9.2 Summary . 161

Bibliography 163

viii

List of Figures

2.1 Syntax for Low SETL . 12
2.2 Data Structure for S : set(set(int)) and T : set(set(int)) 16
2.3 Data Structure for b < set(int); S : set(b), and T : set(b) 17
2.4 Data Structure for b1 < int; b2 < set(b1); S : set(b2), and T : set(b2) 18
2.5 Data structures for b < set(int), S : set(b), T : strong set(b). Set S is weakly

based and set T is strongly based. 18
2.6 x is an element of base type b. Both sets S and T are strongly based.(a)

Implementation of a base record on a RAM. (b) Implementation of a base
record on a Pointer Machine. 19

2.7 Implementation of S : set(set(int)), M : smap(int; int), and x : b where b < int 22
2.8 Operational Semantics for Expressions (continued on next page) 25
2.8 Operational Semantics for Expressions (continued from previous page) 26
2.9 Operational Semantics for Boolean Expressions 27
2.10 Pictorial representation of the data structures (a) before and (b) after the

execution of the command V1(V2) := e (corresponding to Rule 2.45) 31
2.11 Static Semantics for Expressions . 40
2.12 Static Semantics for Boolean Expressions . 41
2.13 Static Semantics for Commands (continued on the next page) 42
2.13 (continued) Static Semantics for Commands 43

3.1 Syntax of High SETL . 58

5.1 Syntax of SQ+ . 110
5.2 Type Rules for SQ+ . 112
5.3 De�nition of Eq� (x; y) . 113

7.1 Naive algorithm based on Tarski Iteration 140
7.2 Linear-time implementation using dominated convergence and �nite di�erencing141

8.1 Implementation of Speci�cation 8.3 using dominated convergence and �nite
di�erencing . 149

8.2 An example alias graph . 151
8.3 Another alias graph . 152
8.4 Dashed edges correspond to the alias pairs generated by the assignment pi = qj153
8.5 Simple iterative algorithm for computing may-aliases 155

ix

List of Tables

2.1 Time Complexities of Low SETL operations 38

5.1 Basic monotone, antimonotone, inationary, deationary functions 115

6.1 Simple Linear-Cost Expressions. K1 andK2 are O(1) time computable (unless
otherwise stated), boolean-valued, and well-typed under TE1; TE2. E1 is
O(1)-time computable (unless otherwise stated) and well-typed under TE 0.
Recall that � ranges over the types that are comparable for equality in O(1)
time. 121

6.1 Simple Linear-Cost Expressions continued. 122
6.1 Simple Linear-Cost Expressions continued. 123
6.2 Input and Output boundedness of Simple Expressions 126
6.3 Strong and Weak Continuity properties of some simple LIO expressions. We

use Æs, Æ+s and Æ�s to abbreviate s := z, s with := z and s less := z

respectively. 130

x

Chapter 1

Introduction

The task of programming has been variously described as an art (Knuth, The Art of Computer Program-
ming [57]), a discipline (Dijkstra, A Discipline of Programming [37]), and a craft (Reynolds, The Craft of
Programming [79]). The prevailing belief among the computing community is that program or algorithm
design is inspired, and that the most signi�cant steps in an algorithm derivation are unexplained eureka
steps. There lacks an adequate understanding of the algorithm design process, which has had a detrimental
e�ect on how algorithms are explained. This problem has been eloquently described by Dijkstra in his book
A Discipline of Programming ([37]), where he says

: : : on the one hand I knew that programs could have a compelling and deep logical beauty,
on the other hand I was forced to admit that most programs are presented in a way �t for
mechanical execution but, even if of any beauty at all, totally un�t for human appreciation. A
second reason for dissatisfaction was that algorithms are often published in the form of �nished
products, while the majority of the considerations that had played their role during the design
process and should have justi�ed the eventual shape of the �nished program were often hardly
mentioned.

We believe that one of the main reasons behind this problem is the lack of a notation or a language for
describing the algorithm design process. The algorithms community has long regarded the use of notation
as a burden on the algorithm designer. This aversion to the use of notation is apparent from the way
most algorithm texts are presented. The algorithms are presented in some low-level pseudo-code which
facilitates a relative straightforward translation into an implementation, but is not helpful for understanding
the algorithm. Quite often, the algorithm is explained by mechanically going over the steps of the algorithm
on a carefully selected input instance that is designed to illuminate the more subtle aspects of the algorithm.
However, we believe that the use of suitable notation and language can greatly bene�t the algorithm design
process and can help improve the understanding, and exposition of algorithms. The goal of this thesis is to
present evidence in support of our belief, which we do in the following way.

1. We contribute to the development of a systematic, widely-applicable, transformational program design
methodology, which relies on the use of an expressive program speci�cation language that is capable
of expressing both abstract problem speci�cations, and their eÆcient low-level implementations.

2. We demonstrate the feasibility of our methodology by showing that it can be used for getting simpli�ed
explanations for complex existing algorithms, and also for discovering new improved algorithms.

A program transformation is a meaning-preserving mapping de�ned on a programming language. Trans-
formational programming is a program development methodology in which an implementation I is obtained
from a speci�cation S by applying a sequence of transformations T1; T2; : : : ; Tk. The correctness of the
implementation I follows from the correctness of the initial speci�cation S and the correctness of each of the
transformations. Thus, transformational programming is closely related to Dijkstra's notion of step-wise re-
�nement, in which the algorithm and its proof are developed hand-in-hand. However, Dijkstra was skeptical

1

about the possibility of automating the transformational programming methodology through the use of a
program transformation system (Why Naive Program Transformation Systems are Unlikely to Work? [36]).
By a naive program transformation system, Dijkstra meant a system in which the mathematical concern of
correctness, and the engineering concern of eÆciency, would be two well-separated stages. The separation of
the two primary concerns of programmer, viz. correctness and eÆciency, was desirable since it allowed the
two concerns to be addressed independently of each other. However, it was also true that for the majority
of problems, the best known (most eÆcient) algorithms were based on mathematical theorems (for example,
Euclid's GCD algorithm rests on the fact that gcd(x; y) = gcd(x � y; y)), and therefore for such problems,
the concerns of correctness and eÆciency could not be easily separated.

However, Dijkstra did not discount the possibility of the development of non-naive program transfor-
mation systems in which the eÆciency considerations would provide a valuable and vital guiding principle
for the derivation of correct programs. In our methodology, the selection of transformations is guided by
complexity considerations, and this is what distinguishes our work from much of the existing work in the
area of program transformations [11, 94, 74, 98, 81].

1.1 Background and Related Work

This thesis has been greatly inspired and inuenced by the work of Bob Paige, who, in the late 1970's,
set upon the goal of developing a transformational program development methodology for improving the
productivity of designing and maintaining correct software. Paige was driven by a strong belief that a small
number of rules, whose selection when guided by complexity considerations, could help in the scienti�c design
of a large number of algorithms.

Paige believed that the most important component of a viable transformational program design method-
ology would be a wide-spectrum language that could express programs at all levels of abstraction, starting
from problem speci�cations down to machine-level implementations. The use of SETL [84, 87], a program-
ming language based closely on the mathematical dictions of �nite set theory [102], as the starting point
of Paige's research was to some extent, accidental to his being a student at NYU with Jack Schwartz (the
creator of SETL) as his advisor. In retrospect, the choice of SETL turned out to be a blessing because of
its wide-spectrum and mathematical nature. SETL proved to be highly e�ective for illustrating the power
and broad applicability of �nite di�erencing in the design and analysis of a large number of algorithms.
In the classroom, SETL provided students with a simple, powerful and executable mathematical notation,
and its small but powerful repertoire of abstract operations proved to be suÆcient for modeling a variety of
computer science concepts without a need for language extension.

The �rst transformation developed by Paige was �nite di�erencing, which was a generalization of strength
reduction [3], and Earley's Iterator Inversion [39]. The goal was to speedup programs by replacing costly re-
peated computations by their more eÆcient incremental counterparts. The �nite di�erencing transformation
was di�erent from the other existing transformations in two respects. Firstly, �nite di�erencing could lead
to asymptotically large algorithmic improvements to time complexity of algorithms, while the other existing
transformations could at best improve the performance of algorithms by constant factors. Secondly, �nite
di�erencing was more formalizable and systematically applicable than other existing transformations. Paige's
thesis [70] showed that the �nite di�erencing rules could be easily implemented in a program transformation
system that would be capable of transforming many abstract, but ineÆcient program speci�cations into
asymptotically more eÆcient implementations. The �rst examples of non-trivial algorithms being derived by
�nite di�erencing were presented in [70, 68]. Micha Sharir also did some related work on algorithm derivation
by transformations [94] using a more algebraic reformulation [95] of Paige's �nite di�erencing methodology.

In the early 1980's, the area of Program Analysis gained a lot of importance, especially due to the
presence of very high-level languages like SETL, because it was believed that program analysis could help
compile programs in these very high-level languages into eÆcient implementations. Many program analysis
problems (e.g. live variable analysis, reaching de�nitions, constant propagation etc.) could be speci�ed as
least or greatest �xed point computations on monotonic functions. The problem of eÆciently computing
least/greatest �xed points of monotonic functions led Paige to the discovery of the second transformation,
i.e. a crude form of dominated convergence [17, 13], a generalized iteration schema for computing �xed
points.

2

Paige used this crude form of dominated convergence together with �nite di�erencing to derive many
increasingly diÆcult algorithms including Hecht's workset algorithms [48] for solving global program analysis
problems. However, it was not until his collaboration with Jiazhen Cai that a comprehensive investigation
of the dominated convergence transformation was �rst carried out and presented in [17, 13]. Paige and
Cai de�ned a functional language SQ+, comprising of the functional subset of SETL augmented with least
and greatest �xed points. This language was shown to be useful for specifying numerous programming
language and compiler analysis problems, and it was shown how these speci�cations could be transformed
into eÆcient implementations by using dominated convergence and �nite di�erencing. For example, in [12],
an SQ+ speci�cation of Reif and Lewis's constant propagation algorithm [77] was shown to be transformable
into an implementation guaranteed to run in time linear in the size of the program dataow relation on a
uniform cost sequential RAM [1, 62]. (Later on, we show how our methodology can be used to transform an
SQ+ speci�cation of the constant propagation problem into an algorithm that runs in worst-case linear time
even on a pointer machine. To the best of our knowledge, this is �rst linear-time pointer machine algorithm
for the constant propagation problem.)

It was realized that the transformational methodology would be incomplete without a �nal transforma-
tion, that would help in the selection of data structures for implementing the set-theoretic associative access
operations (such as set membership testing) eÆciently. Thus, a three-stage transformational program design
methodology was envisioned which comprised of a) dominated convergence, b) �nite di�erencing, and c) data
structure selection. First, the dominated convergence and �nite di�erencing transformations would be used
to transform an abstract set-theoretic speci�cation into a low-level set-theoretic program, and next, the data
structure selection transformation would be used to transform this program into an eÆcient machine-level
implementation.

The problem of data structure selection for eÆciently implementing set-theoretic operations had been
the subject of much research in the SETL project and had led to the development of many ingenious ideas
such as the idea of basings developed by Schwartz et al. [82, 34]. The original SETL implementation used
hashing to implement all associative access operations, and the idea of basings was intended to reduce the
use of hashing. Basings was a way of aggregating data (related by storage or retrieval operations) around
�nite sets called bases that are used like a bulletin board. For example, if the elements of two sets A and B
were stored in the same base, then the operation A \ B could be performed by traversing and marking the
elements of A, and subsequently traversing the elements of B and retrieving the marked elements.

However, SETL's data structure selection method had the following shortcomings. Firstly, the idea of
basings was presented as an ad-hoc low-level compiler optimization that was never intended to eliminate
hashing entirely, but only to reduce the use of hashing. Secondly, this optimization was never amenable
to formal complexity analysis, i.e. it was not possible to predict the improvement in the time complexity
of the optimized code. Thirdly, this optimization could only be applied to low-level SETL programs. The
higher-level SETL programs (those containing more abstract operations such as set union, set comprehension
etc.) had to be �rst transformed into low-level code before this optimization could be applied. However,
there was no way to guide the transformation from high-level SETL to low-level SETL in a way so as to
ensure that the generated low-level code would gain more bene�t from the basings-based optimization.

It was realized that a more desirable solution to the problem of data structure selection would be one
that would be applicable to both high-level and low-level languages, be amenable to formal complexity
analysis, and that would eliminate hashing entirely, i.e. in which the selected data structures could always
guarantee associative access in worst-case O(1) time without the use of hashing. Such data structures which
eliminated hashing entirely were �rst presented in [67, 65]. This led to the beginnings of the development
of a methodology for data structure selection based on real-time simulation of set-theoretic operations on
a uniform cost sequential RAM. The �rst non-trivial demonstration of this three-stage methodology was
presented in [69] in which an SQ+ speci�cation of the Single Function Coarsest Partition Problem was
transformed using dominated convergence, �nite di�erencing, and real-time simulation, into a new linear-
time algorithm.

The greatest impact of this three-step methodology was perceived from its ability to lead to the discovery
of new algorithms. A new linear-time pointer machine algorithm for Horn Clause Propositional Satis�ability
was presented in [67], improving the previously known linear-time algorithm by Dowling and Gallier [38] that
relied heavily on array accesses. Dominated convergence and �nite di�erencing were used in [9] to derive a

3

low-level executable SETL prototype from an SQ+ speci�cation of the Ready Simulation problem. Informal
descriptions of data structures were given that improved the algorithm by �ve orders of magnitude over the
previous solution in Blooms thesis. The three-stage methodology was again e�ectively used to derive a new
improved solution to the classical problem of DFA minimization [55].

However, the data structure selection transformation developed thus far, had some major shortcomings.
The main hurdles in the e�ective use of this transformation were as follows.

1. There lacked a formal theory behind the data structure selection transformation. As a result, there
was no systematic way of applying this transformation. For each of the problems mentioned above,
the transformation was applied on an ad-hoc case-by-case basis.

2. There lacked a suitable notation to describe this transformation. Consequently, the transformation
was both diÆcult to explain, and to prove correct.

3. In each of the above problems, the dominated convergence and �nite di�erencing transformations
were applied to abstract functional speci�cations that were simple to understand. However, the data
structure selection transformation had to be applied to the result of the application of these trans-
formations, i.e. to a low-level imperative program. This added to the diÆculty of understanding the
transformation.

4. Data structure selection could be performed only after the �rst two transformations had been applied.
Consequently, the �rst two transformations could not be guided by concerns that inuenced data
structure selection. This was undesirable because if there were more than one ways of maintaining an
expression E di�erentially1, then ideally one would like the data structure selection transformation to
guide the selection of that method of maintaining E di�erentially which would work most e�ectively
in conjunction with the data structure selection transformation.

Moreover, it was only recently, that a suitable read method from initially creating the desired data structures
in linear time (linear in the size of the input string) was developed ([73]).

The goal of this thesis is to extend the above line of research by address the above-mentioned problems
with the data structure selection transformation, and demonstrating how the three-step transformational
program design methodology can be used for both algorithm explanation and discovery.

1.2 Contribution Of This Thesis

The speci�c contributions of this thesis may be categorized as follows.

1. Formal development of a data structure selection transformation for a wide-spectrum set-theoretic
language containing associative access operations such as set membership testing. A novel contribution
of this thesis is the use of a type system (a variant of the Curry/Hindley type discipline for the �-
calculus [30, 52]) for data structure selection. By associating types with data structures, we show
that both well-typed abstract functional problem speci�cations and well-typed low-level imperative
programs in our set-theoretic language can be transformed into pointer machine ([57, pages 462-
463], [105, 83, 106, 7]) implementations in which each associative access operation is guaranteed to
execute in worst-case O(1) time.

2. Demonstration of the e�ectiveness of the data structure selection methodology for scaled-up applica-
tions. In this thesis, we present an application of data structure selection to an complex database
query optimization algorithm. Willard de�ned a subset of the relational calculus (called RCS) ([111,
112, 113]), and showed that queries in RCS could be implemented in expected linear time. Willard's
original algorithm was extremely diÆcult, and involved over 80 pages of proofs. Another testament
to the diÆculty of his algorithm is the fact that it was submitted for publication to JCSS (Journal of

1Recall that he �nite di�erencing transformation is concerned with the di�erential/incremental maintenance of
expressions that are expensive to compute repeatedly from scratch

4

Computing Systems and Sciences) in 1983, but it took thirteen years of refereeing before it was �nally
accepted for publication in 1996. In this thesis, we show how our type system can be used to transform
RCS queries into pointer machine implementations guaranteed to run in worst-case linear time. Thus,
Willard's time bound for query-processing is improved from expected linear time to worst-case linear
time without degradation of space complexity. Our approach not only improves upon Willard's algo-
rithm, but also simpli�es it by yielding shorter, and more precise constructive proofs that lead to an
implementation design. This application is the �rst successful example of scale-up of our methodology
for algorithm explanation and discovery.

3. Demonstration of how the data structure selection transformation may be used in conjunction with
�nite di�erencing and dominated convergence for algorithm explanation and discovery.

Algorithm Explanation: We use the three-stage program transformation methodology to obtain a
much simpli�ed explanation of a linear time algorithm ([5]) for computing the least �xed point
of a system of equations on a transition system.

Algorithm Discovery: We use the three-stage program transformational methodology to discover a
new worst-case O(N3) time algorithm for computing intra-procedural may-alias information for
a program (where N is the size of the program being analyzed). Our hashing-free O(N3) time
algorithm is a vast improvement over the previously best known algorithm ([51]) that runs in
O(N5) time under the assumption that hashing unit-space data takes O(1) time.

In the next section we provide a brief overview of our approach.

1.3 Overview of Our Approach

The most important component of our transformational program design methodology is an algorithm spec-
i�cation language that is both

wide-spectrum: i.e. capable of expressing both abstract functional problem speci�cations and their con-
crete eÆcient implementations, and

computationally transparent [16]: i.e. amenable to algorithmic analysis, or in other words, a language
that facilitates accurate estimation of time and space requirements.

For example, the language SETL is wide-spectrum but not computationally transparent, while the language
C is computationally transparent but not wide-spectrum. These properties address the two most important
concerns of the programmer, viz. correctness and eÆciency. A wide-spectrum language provides a uni-
form notation for expressing both problem speci�cations and implementations, and therefore, is useful for
proving that the semantics of the implementation are faithful to the speci�cation. Similarly, computational
transparency is vital for addressing the issue of eÆciency because unless the language is computationally
transparent, it would be impossible to compare two programs in terms of eÆciency. In order to get a better
understanding of the terms wide-spectrum and computationally transparent, let us see why the language
SETL is wide-spectrum but not computationally transparent.

Consider the problem of Graph Reachability, in which given a directed graph G = (V;E) (having a set
of vertices V and a set of edges E), and a set of vertices W , the problem is to compute the set of vertices
reachable along paths of length 0 or more, from the vertices in W . An abstract high-level speci�cation of
the graph reachability problem may be written as

the least S �W such that Neighbors [S] � S: (1.1)

Speci�cation 1.1 can be expressed as a valid SETL program by just applying a few syntactic modi�cations.
A more eÆcient, low-level implementation of graph reachability can also be expressed in SETL as shown

5

below.

S := fg;
WorkSet :=W ;
while WorkSet 6= fgloop

x from WorkSet;
S with := x;
for y in Neighbors(x) j y 62 S

WorkSet with := x;
endfor

endwhile

(1.2)

An implementation of SETL in which the associative access operations such as set membership test could
be performed in O(1) time, would generate a linear time implementation of graph reachability from Speci�-
cation 1.2. Thus, we see that SETL can be used to express both an abstract problem speci�cation (Speci�-
cation 1.1) and its low-level implementation (Speci�cation 1.2).

Before we see why SETL (and its later implementation SETL2 [99]) is not computationally transparent,
let us take a look at the precise de�nition of computational transparency, originally given by Cai and
Paige [16]. Given a prototyping language PL, and an implementation language IL into which programs
in PL are transformed, the language PL is said to computationally transparent relative to IL if it has the
following properties.

Algorithmic Analyzability: The performance (time complexity) of PL programs is as easily predictable
as those of IL programs.

Algorithmic Expressiveness: For every PL computable function f , there is a PL program whose perfor-
mance matches the best IL program computing f .

Algorithmic Writability: Given an IL program I that implements a PL computable function f , it is
straightforward to �nd a PL program that computes f with its performance matching that of I .

For the purpose of this thesis, the main criterion for computational transparency will be Algorithmic Ana-
lyzability. The other two criteria Algorithmic Expressiveness and Algorithmic Writability, though desirable,
will not be considered necessary.

The two main reasons for the lack of computational transparency in SETL are 1) the use of hashing
to implement associative access operations such as membership testing in a set, and 2) the hidden copy
problem that arises because of SETL's copy-value semantics. The following examples illustrate why these
two problems lead to the lack of computational transparency in SETL.

Hash-based implementation of associative access operations: Let us consider the following simple
fragment of SETL code that reads in two sets S and T and removes the elements in S \ T from set
S.

read(S, T);
for x in S loop

if x in T then
S less:= x;

end if;
end loop;

(1.3)

The SETL operator "less" performs element deletion from a set. In order to analyze the time com-
plexity of this code fragment, we need some information about how SETL is implemented. SETL uses
hash-tables [2] to implement sets so that membership testing in a set involves a hash-table lookup.
Moreover, the elements of a set in a hash-table are linked together into a doubly linked list, so that
operations such as iteration over the set (e.g. for x in S loop), and element deletion (S less:= x) can
also be performed eÆciently.

6

Let us now try to determine the time complexity of the Program 1.3. If sets S and T are sets of
integers, one might suppose that a good implementation of hash-tables would, on average, perform
a set membership test (x in T) in constant time. Unfortunately, Program 1.3 does not say anything
about the type of the elements in sets S and T . For example, the elements of sets S and T may
themselves be sets of integers, or worse, sets of sets of integers. In such a case, even the best hash-
table based implementations would not perform set membership testing operations in O(1) time even
on the average. In fact, it is not even clear how to hash an arbitrary set in constant time. Although
it may be reasonable to assume that a hash-table based implementation of sets containing integers or
other unit-sized objects may allow constant time membership testing on average, the same assumption
for testing membership in arbitrarily nested sets and maps is certainly questionable. Thus, the hash-
based implementation of SETL2 makes it impossible to accurately predict the time complexity of
associative access operations such as set membership testing and map access.

Hidden-Copy Problem: The second reason for the lack of computational transparency in SETL and
SETL2 is the Hidden Copy Problem that arises because of their copy-value semantics. For example,
consider the following fragment of code

S := T ;
S with:= x;

(1.4)

The SETL operator "with" performs element insertion into a set. As per the SETL semantics, the
e�ect of the execution of Code Fragment 1.4 must be the creation of a copy of set T into which the
element x is inserted, leaving the original copy of set T intact. For the sake of eÆciency, the copy-
creation in SETL is done in a lazy manner. The assignment S := T is implemented by a pointer copy.
In addition, a reference count is maintained for all sets and maps, and all update operations (such as S
with:= x) are implemented by performing the update in place if the reference count of the set or map
being updated is 1, and creating and updating a new copy otherwise. The lazy strategy improves over
the eager strategy of always making a copy on assignment. Unfortunately, the lazy strategy depends
on the dynamic reference counts of objects at run-time. As a result it is impossible to statically predict
which update operations will result in the creation of a copy at run-time. Thus, it is not possible to
accurately ascertain the time complexity of simple update operations such as "S with:= x".

The above discussion suggests that it would be desirable to have a SETL-like wide-spectrum algorithm
speci�cation language as long as it could be made computationally transparent. The �rst part of this thesis
deals with the development of such a language. Instead of selecting one wide-spectrum language, we use
three set-theoretic languages which provide increasingly higher levels of abstraction to the programmer.
Low SETL, the lowest level language, is a statically typed, executable variant of SETL2 [99], including
primitive set operations such as membership testing, set element addition and deletion, arbitrary choice,
for-loops through a set, map application, indexed map assignment, and so forth. At the next higher level of
abstraction, we have High SETL, which is a statically typed, imperative, executable superset of Low SETL
augmented with such abstract operations as set comprehension, quanti�cation, and a variety of operations on
binary relations. Finally, the highest level speci�cation language is SQ+ ([13]), a non-executable, statically
typed, functional subset of High SETL augmented with least and greatest �xed points.

The problem of eÆcient implementation of associative access operations, and of eliminating the hidden
copy problem for these languages is dealt with in the following way.

EÆcient Implementation of Associative Access: This problem is solved by a novel use of a type sys-
tem. We present a static type system for Low SETL, and show how to make the statically typed
subset of Low SETL computationally transparent with respect to a pointer machine. We do this by
proving that all well-typed Low SETL programs can be transformed into pointer machine implemen-
tations (that are free of hashing) in which the time complexity of execution of each associative access
operation is guaranteed to be O(1) time in the worst case. Each Low SETL type is associated with a
carefully selected data structure that is designed to facilitate eÆcient (O(1) time) implementation of
a certain set of operations. If x is an object (set or map) having type � in a program P , and if D is

7

the data structure associated with type � , then the well-typedness of program P guarantees that the
set of operations that could be performed on object x during the execution of program P are a subset
of the operations that can be performed eÆciently using data structure D. Thus, the well-typedness
of a Low SETL program guarantees an O(1) time implementation for all associative access operations
in the program.

However, it is important to note that the type system for Low SETL is somewhat non-standard. In
standard type systems, it is normally assumed that given a program and a type assignment (i.e. a map
from variables to types), it is possible to automatically verify whether the program is well-typed or
not. In some cases (such as ML [63]), the compiler even automatically derives the types to whatever
extent possible. In the case of Low SETL however, this is not true and it is not always possible
for a compiler to automatically perform type veri�cation. However, this does not a pose a serious
problem because we think of Low SETL not as a language for directly writing programs in, but as a
target language for the translation of programs written in High SETL and SQ+. The type systems for
High SETL and SQ+ do not su�er from the same problem as the Low SETL type system (i.e. type
veri�cation can be automatically performed). Moreover, we de�ne a translation from High SETL and
SQ+ to Low SETL, and prove that the Low SETL programs generated from well-typed High SETL
and SQ+ programs, are always well-typed. Thus, it is unnecessary to test the well-typedness of a Low
SETL program that is obtained as the result of transformation from a well-typed High SETL or SQ+

program.

Hidden Copy Problem: The hidden copy problem, which is the second main reason for the lack of com-
putational transparency in SETL2, is a more diÆcult problem to contend with. It has been the
major source of ineÆciency in two generations of SETL compilers, and has been known to cause
asymptotically-large slow-downs in SETL and SETL2 implementations. Schwartz [88, 85, 86, 90, 89]
developed an interesting but complicated value ow analysis for SETL, which was based on statically
detecting variables that were guaranteed to be unshared at run-time, thereby allowing in-place updates
on these unshared variables. All attempts ([41]) to implement Schwartz's analysis were abandoned
after Sharir showed that such an analysis would either be intractable, or too approximate to be use-
ful [93]. The lazy copy strategy employed by the SETL2 compiler based on dynamic reference counting
also proved to be unsatisfactory. A pragmatic solution to the hidden copy problem was proposed by
Goyal and Paige [44], in which a combination of dynamic reference counts, a static liveness analysis,
and a static must-alias analysis provides an e�ective heuristic for eliminating hidden copies. A very lo-
cal implementation of this approach for SETL2 was shown to speed up a computation intensive SETL2
application APTS by a factor of 10. Although this solution was able to improve the performance of
SETL in practice, it cannot be used to statically guarantee the elimination of copies.

In this thesis we side-step the problem of hidden copies for Low SETL by imposing the requirement
that all legal Low SETL programs have the same behavior under copy-value and reference semantics
(analogous to the notion of an Ada-83 program being erroneous when it has a di�erent meaning
under call by reference, and call by value-result). This makes Low SETL computationally transparent
because the fact that the program has identical behavior under both copy-value and reference semantics
implies that it is unnecessary to create any copies during the execution of the program and that all
updates can be performed in place. The caveat to our approach is that this requirement makes Low
SETL unsuitable for manual programming of large applications because the burden of proving that the
program behavior is identical under both copy-value and reference semantics lies on the programmer.
However, once again we do not see this as a serious problem because we consider SETL as the target
language for transformation of programs written at in High SETL and SQ+. It turns out that the
translation of a functional subset of High SETL (i.e. High SETL expressions) and SQ+ is guaranteed to
produce Low SETL code which has identical behavior under copy-value and reference semantics. We
obtained substantial credibility for this approach in [16, 43, 42] where complex SQ+ and High SETL
speci�cations were translated to Low SETL programs that were guaranteed not to be erroneous2 a
priori.

2in the sense of having identical behavior under both copy-value and reference semantics

8

1.4 Testing the Viability of Our Approach

As outlined in the previous section, our approach to making Low SETL, High SETL, and SQ+ algorithmically
analyzable is based on the use of a type system, wherein the well-typedness of a program ensures that it
can be implemented in a way such that each associative access operation executes in O(1) time without the
use of hashing. A legitimate question, then arises about the algorithmic expressiveness of these languages.
The question of mere expressiveness is answered by the fact that all three languages are Turing Complete.
However, the question of algorithmic expressiveness asks about whether for any computable function f , it is
a possible to write a program in these languages that matches the algorithmic complexity of the best known
pointer machine implementation of function f .

We will not attempt to address the question of algorithmic expressiveness formally in this thesis, as
the question is interesting and complex enough to be the subject of another dissertation. Instead, we will
partially address the issue by considering examples of algorithmic problems drawn from various �elds of
computer science. In this thesis, we show that our languages are capable of expressing the best known
algorithms for textbook problems such as Graph Reachability, Cycle Testing etc. and also for more involved
problems from the subject of program analysis, such as Constant Propagation, and May-alias Analysis.
Perhaps the most convincing argument about the expressiveness of Low SETL and High SETL comes from
the worst-case linear-time algorithm for Willard's Relational Calculus Subset (RCS). As mentioned earlier,
Willard's original algorithm is extremely diÆcult and makes extensive use of hashing in virtually all the data
structures used in the algorithm. The fact that our approach simpli�ed the presentation of the algorithm,
and eliminated hashing in entirety, is an avid testimonial to the algorithmic expressiveness of these languages.

1.5 Outline of the Thesis

The rest if the thesis is organized as follows.

Chapter 2 de�nes the language Low SETL. An operational semantics is de�ned for Low SETL and that can
be easily simulated on a pointer machine. A static type system is de�ned for Low SETL and it is shown
that every well-typed Low SETL program is guaranteed to have a pointer machine implementation in
which all associative access operations can be executed in O(1) time.

Chapter 3 de�nes the language High SETL. A static type system is de�ned for High SETL and an op-
erational semantics is de�ned for the well-typed subset of High SETL in terms of Low SETL imple-
mentations. It is shown that the speci�ed translation of well-typed High SETL programs is always
guaranteed to lead to well-typed Low SETL implementations. Moreover, it is shown how the worst-case
time complexity of execution of the functional subset of High SETL may be computed in a systematic
manner at a very high level of abstraction, without resorting to bean counting arguments.

Chapter 4 takes a comprehensive look at our �rst application, i.e. an algorithmic problem related to
database query optimization. We show how queries in the expected linear-time subset of Willard's
RCS can be transformed into High SETL programs that are guaranteed to run in worst-case linear time
without the use of hashing. This application provides evidence of the expressiveness of the Low SETL
and High SETL type systems, and of the usefulness of the data structure selection transformation for
algorithm explanation and discovery.

Chapter 5 de�nes the language SQ+. Once again a static type system is de�ned and suÆcient conditions
are stated under which well-typed SQ+ programs are shown to be transformable into well-typed High
SETL implementations.

Chapter 6 de�nes a subset LIO of SQ+ consisting of programs that are guaranteed to have implementa-
tions that run in time linear in the sum of the sizes of the inputs and the outputs, in the worst case.
This chapter demonstrates an application of the three-stage transformational program design method-
ology by using dominated convergence, �nite di�erencing and data structure selection together to get
asymptotically optimal linear-time algorithms for a large and interesting class of problems. We show

9

how text book problems such as Graph Reachability and Cycle Testing, and more intricate program
analysis problems such as Constant Propagation can be shown to belong to LIO and thus, shown to
have eÆcient linear-time implementations.

Chapter 7 takes a look at our second main application, i.e. an algorithmic problem of computing the least
�xed point of a system of equations. By showing that this problem belongs to LIO , we get an algorithm
that matches the best known algorithm for the problem. More importantly, by comparing our algo-
rithm with some of the previous algorithms (that are highly unintuitive and diÆcult to understand),
we demonstrate the usefulness of our methodology for algorithm explanation.

Chapter 8 takes a look at our �nal application, i.e. the problem of computing a intra-procedural may-alias
analysis. We show how our language-theoretic approach leads to the discovery of a new O(N3) time
(where N is the size of the program being analyzed) algorithm which vastly improves that previously
known best algorithm having a time complexity of O(N5).

Chapter 9 discusses some limitations of our work and possibilities for future work.

10

Chapter 2

Low SETL

In this chapter we de�ne Low SETL, a statically typed, executable variant of SETL2, including primitive
set operations such as membership testing, set element addition and deletion, arbitrary choice, for-loops
through a set, map application, indexed map assignment, and so forth. Our goal is to make Low SETL
computationally transparent with respect to a pointer machine ([57, pages462-463], [105, 83, 106, 7]). In
order to do this, we make use of a novel type system in which types are associated with data structures, and
the well-typedness of a Low SETL program guarantees that each associative access operation in the program
can be implemented eÆciently (in O(1) time) without the use of hashing.

In Section 2.1 we de�ne the syntax, the set of valid types, and the set of values associated with each
type, for Low SETL. In Section 2.2 we give an informal description of the data structures associated with
the types. In Section 2.3 we de�ne a dynamic operational semantics for Low SETL, and in Section 2.4 we
describe how Low SETL operations may be simulated on a pointer machine. In Section 2.5 we de�ne a static
semantics for Low SETL, and in Section 2.6 we de�ne a notion of consistency between the static and the
dynamic semantics. Finally, in Section 2.7 we present the main result of this chapter, i.e. every well-typed
Low SETL program may be transformed into a pointer machine implementation in which each associative
access operation executes in O(1) time.

2.1 De�nition of Low SETL

The syntax for Low SETL is given in Figure 2.1. Low SETL is a strongly typed imperative language having
�nite sets and maps as built-in datatypes, along with some primitive set theoretic operations such as set
membership test, set element addition, etc.

If v is a set1 then expression 3 v evaluates to an arbitrary element of v if v is non-empty, and a special
value om (unde�ned) otherwise. A Low SETL map may be thought of as a set of pairs of values. A map v1
is an smap i.e. a single-valued map if for all pairs [x1; y1]; [x2; y2] 2 v1, (x1 = x2) =) (y1 = y2). For the
sake of brevity, we only consider single-valued maps here. The generalization to multi-valued maps (which
we call mmaps) is straightforward. If v1 is a single-valued map, then expression v1(v2) evaluates to value v3
if [v2; v3] 2 v1, and the unde�ned value om otherwise. The boolean expression v1 2 v2 returns true if v1 is an
element of set v2, and false otherwise. The boolean expression IsEmptySet(v) (respectively IsEmptyMap(v))
returns true if set (respectively map) v is empty, and false otherwise. If expression e evaluates to the value y,
then the indexed map assignment v1(v2) := e adds the pair [v2; y] to map v1, and removes any existing pair
which has v1 as its �rst component. The operators with and less are the set element addition and deletion
operators respectively. The command v1 from v2 extracts an arbitrary element from set v2 and assigns its
value to v1. The command InitSet(v) (respectively InitMap(v)) initializes set (respectively map) v to the
empty set (respectively empty map).

Low SETL also includes arithmetic expressions of the form n (an integer literal), expressions e1 + e2,

1Actually v is a set-valued variable. For now we will use the variable name to represent both the variable and its
value.

11

v; v1; : : : ;: Variable Names
e; e1; : : : : Expressions
be; be1; : : : : Boolean Expressions
c; c1; : : : : Commands
P; P1; : : : : Command Sequences
op : withjless

Expressions
e ::= v j 3 v j v1(v2) j om

Boolean Expressions
be ::= v1 2 v2 j v1 == v2 j IsEmptySet(v) j IsEmptyMap(v) j

:be j be1 ^ be2 j be1 _ be2

Command Sequences
P ::= c j c;P

Commands
c ::= v := e j v1(v2) := e j v op := e j v1 from v2 j InitSet(v) j InitMap(v) j

if be then P1 else P2 j while be loop P endloop j
for v1 2 v2 loop P endloop j

for v1 2 domain(v2) loop P endloop

Figure 2.1: Syntax for Low SETL

e1 � e2, e1 � e2, e1=e2 etc. where e1 and e2 are themselves integer-valued expressions. Similarly, Low SETL
also contains the boolean literals true and false . We have omitted these from the grammar in Figure 2.1
and the operational semantics given later for the sake of brevity. The semantics for evaluating arithmetic
and boolean expressions are straightforward, and may be found in any semantics book like [114]. We have
separated boolean expressions from other expressions (arithmetic, and set or map-valued expressions) just
for the sake of convenience.

A Low SETL program is a sequence of one or more commands separated by semi-colons. A command c
may either be a simple assignment, an indexed map assignment, a set update operation, an initialization of
a set or map, a conditional statement, a for loop or while loop.

We disallow modi�cations to variables v1 and v2 inside for loops of the form "for v1 2 v2 loop P endloop",
or "for v1 2 domain(v2) loop P endloop". In other words, the value of variable v2 must be the same before
and after execution of the for loop, and the value of variable v1 should remain �xed for the duration of each
iteration. Since every valid Low SETL program must have the same behavior under copy-value and reference
semantics, we consider the programs that contain modi�cations to the values of variables v1 or v2 as a result
of aliasing, to be erroneous. For ease of presentation, we shall assume that all loop-iteration variables (i.e.
variables like v1 in "for v1 2 v2 loop : : : endloop") are distinct from each other, and only used inside their
corresponding loops.

In this thesis, we restrict our attention to batch-input programs, i.e. programs that read their entire input
once at the beginning of the program. We assume that each Low SETL program has a single read statement
of the form read(v1; v2; : : :) at the beginning of the program, and that there are no more reads in the rest
of the program. The function of this read statement is to read-in the input and set up the appropriate data
structures corresponding to each type. The details of how the task of reading may be accomplished can be
found in several published papers ([66, 73]), and are omitted from this thesis. Paige and Yang ([73]) showed
that the time complexity of the read routine required for Low SETL is linear in the size of the input. Thus,
the cost of reading does not add any asymptotic factors to the cost of algorithms that must at least read in
their entire input, and can be safely ignored.

12

Low SETL is a statically typed language. The type system for Low SETL will be presented in Section 2.5.
The set of valid types Type ranged over by variable � is given by

� ::= strong set(b) j strong smap(b; �) j � j bool
� ::= int j b j set(�) j smap(�1; �2)

(2.1)

where the type variable b corresponds to special types called base types. The types ranged over by � include
the types int, base types, and arbitrarily nested sets and single-valued maps2 of types ranged over by �. The
set of valid types Type in Low SETL includes the type bool, the types ranged over by �, and special types
of sets and maps called strongly based sets (denoted by strong set(b)) and strongly based maps (denoted by
strong smap(b; �)) respectively3. For the sake of brevity, we have not added other simple atomic types such
as bool, real, char, etc. in the production for �. The type int should be considered representative of all such
atomic types. The type bool in the production for � allows us to di�erentiate between boolean expressions
and other non-boolean expressions. Inclusion of type bool in the production for � would not cause much
change except for allowing additional types such as set(bool), smap(bool; bool) etc.

The elements of a strongly based set of type strong set(b) must be of base type b. Similarly, the domain
of a strongly based map of type strong smap(b; �) must contain elements of base type b, and its range must
contain elements of type �. The types strong set(b) and strong smap(b; �) are associated with special data
structures that allow associative access operations to be performed in O(1) time. Grammar 2.1 disallows
types of the form

set(strong set(b)); strong smap(strong set(b); strong set(b0)); etc. ;

for reasons that will soon become clear.
Each type � is associated with a set of values and a speci�c implementation. For example, the type int

is associated with the set of all integers and any conventional implementation of integers. Similarly, the type
set(int) is associated with the set of all �nite sets of integers, and an implementation in the form of a doubly
linked list of distinct integers.

Each base type b appearing in the program is uniquely associated with a subtype constraint of the form
b < �. In conventional type systems, the subtype constraint b < � would imply that the set of values
associated with type b is a subset of the set of values associated with type �. However, in our type system,
the set of values associated with types b and � are the same, but the implementations associated with types
b and � are di�erent. The subtype constraint b < � implies that the implementation associated with type
b is more constrained (in a sense that will become clear later) than the implementation associated with
type �, and that an implementation corresponding to base type b can be coerced into an implementation
corresponding to type � in O(1) time. In other words, one can eÆciently go from a more constrained
implementation (for type b) to a less constrained implementation (for type �). The reverse, i.e. going from a
less constrained implementation for type � to a more constrained implementation for type b, cannot be done
eÆciently, and is therefore disallowed. In conventional type systems, the subtype constraint b < � implies
that a value of type b may be used wherever a value of type � is expected, but not vice-versa. Analogously,
in our type system, the fact that an implementation for type b can be coerced into an implementation for
type � in O(1) time implies that an implementation for type b may be used wherever an implementation for
type � is expected, but not vice versa.

Each Low SETL program is associated with a set of subtype constraints C containing exactly one subtype
constraint of the form b < � for each base type b appearing in the program (i.e. appearing in the type of
some variable in the program). Given a set of subtype constraints C, we de�ne the subtype constraint graph
GC to be a graph that has exactly one vertex for each base type b appearing in C, and an edge from vertex
b1 to b2 i� C contains a subtype constraint of the form b1 < �1 where b2 appears in �1. A set of subtype
constraints C for a program is said to be admissible i� the subtype graph GC is acyclic, and C does not
contain any subtype constraint of the form b1 < b2 where b1 and b2 are both base types. The acyclicity

2the "s" in "smap" means single-valued map
3The notation used for strongly based sets and maps in this thesis is di�erent from the notation used in previous

work such as [12, 67, 65, 73, 43]. Previously the notation used to denote a strongly based sets and smaps was
set(b-strong) and smap(b-strong ; �) respectively

13

constraint ensures that the values corresponding to each base type b are identical to the values corresponding
to some unique type � that does not contain any base types. For example, consider the subtype constraint
set

C = fb1 < set(b2); b2 < intg:

Then the values corresponding to types b1 and b2 are the values corresponding to types set(int) and int. It
is convenient to disallow constraints of the form b1 < b2 for technical reasons that make later proofs easier.

For a given set of subtype constraints C, each type � is associated with a set of values through a binary
relation T � Type �Values de�ned as follows:

T [bool] = ftrue; falseg

T [int] = f0;�1; 1;�2; 2; : : :g

T [b] = T [�] where b < � 2 C

T [set(�)] = fs : s � T [�] j jsj <1g

T [smap(�; �0)] = fs : s � T [�]� T [�0] j jsj <1 ^ s is single-valuedg

T [strong set(b)] = T [set(b)]

T [strong smap(b; �)] = T [smap(b; �)]

As mentioned previously, a subtype constraint b < � implies that the implementation associated with
type b is more constrained than the implementation associated with type �. The key di�erence in the
implementations associated with types b and � is that the former is specially designed to allow a test
for equality of two values in O(1) time. For example, if a base type b satis�es the subtype constraint
b < set(int), then although the set of values associated with type b and type set(int) are the same, the
implementation of values of type b allows two values to be compared for equality in O(1) time, whereas the
implementation of values of type set(int) does not allow comparison for equality in O(1) time. The idea
behind the implementation of base types is simple. We simply preprocess the input (at read time) to identify
all distinct values of base type b and assign unique value numbers to these values. We do not allow values
of a base type to be created dynamically at run-time4, and all comparisons of values of a base type are
performed by comparing value numbers.

The idea of base types comes from the ingenious idea of basings developed by Schwartz et al [82, 34]
during the SETL project. Basings is a way of aggregating data (related by storage or retrieval operations)
around �nite sets called bases that are used like a bulletin board. For example, if the elements of two sets A
and B were stored in the same base, then the operation A\B could be performed by traversing and marking
the elements of A, and subsequently traversing the elements of B and retrieving the marked elements. More
details about the implementation of base types and how they are used to implement associative access
operations eÆciently are given later.

In Section 2.2 we informally describe the implementations (i.e. data structures) associated with di�erent
types, and the operations that may be eÆciently performed using these data structures. These ideas are
formalized in Sections 2.3 and 2.5 in which a dynamic operational semantics and a type system for Low SETL
are de�ned. The informal description in Section 2.2 should prove helpful in understanding the intuition
behind the formal (and rather terse) development in the later sections.

2.2 Informal Description of Data Structures

2.2.1 Base Types

We start by explaining how values of a base type b are implemented. Each base type b satisfying the subtype
constraint b < � is implemented as a �nite set Rb of records such that each record corresponds to a distinct
value of type b read from the input. Note that the set Rb contains records corresponding to only those values

4This restriction can be partially relaxed. We can allow creation of a value of base type b under the restriction
that the newly created value be distinct from all existing values of type b.

14

of type b that are read from the input, and is hence �nite. A value of base type b is implemented as a pointer
to a record in set Rb. Moreover, each record in set Rb contains a key �eld containing a pointer to a di�erent
implementation (corresponding to type �) of the same value (except for the case when � is int, in which
case the key �eld contains the integer directly rather than a pointer to the integer). This implementation of
elements of base types satis�es the following two properties.

1. Given an implementation corresponding to a base type b satisfying the subtype constrain b < �, we
can get an implementation corresponding to type � in O(1) time. This is obvious from the fact that
the key �eld of each record in Rb contains a pointer to the implementation corresponding to type �.

2. Two values of type b are comparable for equality in O(1) time. This is possible because the initial
construction of set Rb at input read time, guarantees that each distinct record in Rb corresponds to a
distinct value of type b. Thus, the comparison of two values of type b can be implemented simply as a
pointer comparison. Note that the task of preprocessing the input to create the set Rb can be done in
time linear in the input size [66, 73], and therefore does not add to the asymptotic time complexity
of the algorithm5.

2.2.2 Sets and Maps

A value of type set(�), which by de�nition is a �nite set of values of type �, is implemented as a doubly
linked list of pointers to implementations of values of type �. Again, the only exception to this is when
type � is int, in which case we implement set(int) as a doubly linked list of integers rather than pointers to
integers. For every set, the �rst and last pointers point to the �rst and last elements of the doubly-linked
list.

Let us look at a few illustrative examples. Figures 2.2, 2.3, and 2.4 show the data structures created when
two sets S and T are read as input. In each case, the two sets S and T are ff1g; f1; 2gg, and ff1g; f1; 3gg
respectively. The di�erent data structures correspond to the di�erent types of sets S and T . In Figure 2.2
the types of sets S and T are

S : set(set(int))
T : set(set(int):

(2.2)

In Figure 2.3 the types of sets S and T are

b < set(int)
S : set(b)
T : set(b):

(2.3)

Finally, in Figure 2.4 the types of sets S and T are

b1 < int
b2 < set(b1)
S : set(b2)
T : set(b2):

(2.4)

Sets such as S and T in Figure 2.2, whose elements are not of a base type, are called unbased sets. In
Figure 2.2 an equality test between two arbitrary elements selected from sets S and T respectively would
involve comparing two arbitrary sets of integers for equality, and in general, cannot be performed in O(1)
time. However, in Figure 2.3 the elements of sets S and T are of a base type b, and two arbitrary elements
selected from sets S and T respectively can be compared for equality in O(1) time. Sets such as S and T in
Figure 2.3, whose elements are of a base type, are called weakly based sets. By de�nition, sets are unordered
and therefore any ordering of elements in a linked list implementation of sets is permissible. For example,
the ordering of elements in set S is di�erent in Figures 2.2 and 2.3. In Figure 2.4, in addition to the elements

5assuming that the algorithm must at least read its entire input

15

last first last first

last first

last first

last first

last first

next prev

next prev

next prev

next prev

1

1

2

1

1

3

T

S

Figure 2.2: Data Structure for S : set(set(int)) and T : set(set(int))

of sets S and T being based, even the elements of the elements of sets S and T are based. This illustrates
that based elements can be nested arbitrarily deeply in sets and maps.

A single-valued map f of type smap(�1; �2) can be thought of as a set of (ordered) pairs of values of
type �1 and �2. It is implemented by implementing the domain of the map as a set, and having a map
image that associates every element x in the domain with the corresponding element y in the range such
that the pair [x; y] belongs to map f . A multi-valued map f of type mmap(�1; �2) (which is omitted here
for the sake of brevity) would be implemented similarly. Its domain would be implemented as a set, and
the map image would associate each element x in the domain with a non-empty set of elements fy1; y2; : : : g
(called the image of x under map f), such that each pair [x; yi] belongs to f . Thus, the implementation of
a multi-valued map of type mmap(�1; �2) is similar to the implementation of a single-valued map of type
smap(�1; set(�2))

6. If the elements in the domain of a map are not of a base type, then the map is said to
be unbased. If the elements in the domain of a map are of a base type, and its domain is implemented like
a weakly based set, then the map is said to be weakly based.

2.2.3 Strongly based Sets and Maps

Before we see how the types strong set(b) and strong smap(b; �1) are implemented, let us �rst see why these
types are needed. In Figure 2.3 sets S and T are weakly based and therefore two arbitrary elements selected
from S and T respectively can be compared for equality in O(1) time. However, the data structure in

6There is however one subtle di�erence. In the case of a single-valued map f of type smap(�1; set(�2)), it is
possible for the pair [x; fg] to belong to map f . However, in the case of a multi-valued map g of type mmap(�1; �2),
we say that an element x belongs to the domain of g only if the image of x under g is non-empty.

16

last first

last first

last first

last first

last first

next prev

1

2

1

next prev

1

3

next prev

next prev

T

S

key

key

key

Rb

Figure 2.3: Data Structure for b < set(int); S : set(b), and T : set(b)

Figure 2.3 does not allow us to test whether an arbitrary element of set S belongs to set T in O(1) time.
Values of type strong set(b) or strong smap(b; �1) are implemented using data structures that allow such
membership tests and other associative access operations in O(1) time.

Suppose we want to test whether an arbitrary element of base type b belongs to set T in O(1) time. A
simple way of doing this is to add a boolean �eld to every record in set Rb, which is true if and only if the
value corresponding to this record belongs to set T . Thus, the membership test can be performed in O(1)
time by inspecting this boolean �eld. Now suppose that in addition to membership testing, we also want
to be able to delete an arbitrary element x from set T in O(1) time. The deletion of element x from set T
requires 1) setting the boolean �eld in the record for x to false, and 2) locating and deleting the pointer to
record x in the doubly linked list implementation of set T . The former can be done in O(1) time, but the
latter would take time proportional to the cardinality of set T . This problem is solved by incorporating the
prev and next pointers of the doubly linked list implementation of record T within the records of Rb (see
Figure 2.5). Thus, if element x of base type b is a member of set T , then the base record corresponding to
x contains true in its boolean �eld, and pointers to other elements of set T in the prev and next �elds. If,
however, element x does not belong to set T , then the boolean �eld is false , and the prev and next �elds are
empty (or null). Such a data structure, shown in Figure 2.5, allows operations such as membership testing,
and element addition and deletion in set T in O(1) time. It also allows iteration over the elements of set T in
time proportional to the cardinality of T . Such a set T is said to be strongly based with type strong set(b).
Thus, in Figure 2.5, set S is weakly based and set T is strongly based.

The implementation of a strongly-based single-valued map is done by implementing its domain as a
strongly based set. In the case of a map f , the map access operation f(x) also involves an associative
access. So, for a strongly based map, every record in Rb contains four additional �elds: a boolean �eld (for
membership in the domain of map f), prev and next �elds (for a doubly linked list implementation of the
domain of f), and �nally an image �eld storing a pointer to the image of this element. Thus, a strongly

17

last first

last first

last first

last first

last first

key

key

key

next prev

next prev

T

S

key

key

key

next prev

next prev

2

1

3

Rb

Rb 2

1

Figure 2.4: Data Structure for b1 < int; b2 < set(b1); S : set(b2), and T : set(b2)

last first

last first

last first

next prev

1

2

last first
1

last first

next prev

1

3

next prev

T

S Rb

key

key

prev nextkey bool

bool prev next

bool prev next

false

true

true

Figure 2.5: Data structures for b < set(int), S : set(b), T : strong set(b). Set S is weakly based

and set T is strongly based.

based map facilitates an O(1) time implementation for map access operations such as f(x).
Suppose we want to test the membership of an element x of base type b in both sets S and T . The obvious

solution is to make both sets S and T strongly based, i.e. to have every record in Rb contain separate boolean,
prev , and next �elds for both sets S and T . In general, every base record in Rb contains a separate set of
�elds for every set or map based strongly on base type b. Such an implementation is possible because the
number of sets and maps based strongly on any base type b, is a constant for each program. This is because

18

x

key bool prev next bool prev next

true false

S T(a)

(b)

x

prev nextsymbkey succ succ

"S"

Figure 2.6: x is an element of base type b. Both sets S and T are strongly based.(a) Implementation

of a base record on a RAM. (b) Implementation of a base record on a Pointer Machine.

our type system does not allow the nesting of strongly-based sets and maps inside other sets and maps.
For example, the types set(strong set(b)) and set(strong smap(b; �1)) are not valid in our type system.
Therefore, the total number of strongly-based sets and maps in a Low SETL program are bounded by the
number of variables in a program. Notice, however, that if types such as set(strong set(b)) were allowed,
then it would be possible to have arbitrarily many strongly-based sets in the program, since a set may have
arbitrarily many elements.

There is one remaining problem with the data structure for base records described above. Consider a
strongly based set T of type strong set(b), which is one of the many strongly based sets and maps on base
type b. In order to perform the membership test x 2 T , we need to locate the boolean �eld corresponding
to set T in the base record implementation of element x. On a RAM [1, 62] this can be done easily by using
indices for each strongly based set and map. A pointer machine, however, does not allow address arithmetic,
and therefore the base records have to be implemented a little di�erently. A base record for element x is
implemented as a record containing a key �eld and pointer to a singly linked list of nodes which contains
exactly one node for every strongly based set containing x, and every strongly based map containing x in
its domain. Each node in this singly-linked list has a symb �eld (each symb being uniquely associated with
some strongly based set or map), �elds for prev and next pointers, and a �eld for the image pointer in the
case of strongly based maps.

In Figure 2.6 an example shows the two implementations of base records. We have an element x of base
type b and two strongly based sets S and T , each of type strong set(b). In this example we see that element
x is a member of set S but not of set T . Therefore, the pointer machine implementation of the base record
contains only a node for S in its singly linked list. The presence of the node for S signi�es that element x
is a member of set S, and the absence of a node for T indicates that element x is not a member of set T .
The pointer machine implementation of base records incurs a greater cost in terms of the time complexity of
associative access operations. For example, in order to test the membership of an element x in some strongly
based set T , we need to traverse the singly-linked list until we either �nd a node for set T , or we reach the

19

end of the list. However, as mentioned before, the total number of strongly based sets and maps in a Low
SETL program is a constant independent of the input to the program. Furthermore, each record's linked
list can contain at most one node per strongly based set or map. Thus, the time to search in this list is O(1)
time.

2.2.4 A Special Note on Self-Access

As explained in Section 2.2.3, the map-access operation f(x) can be performed in O(1) time if map f is
strongly based, and element x is of the suitable base type. If however, map f is not a strongly based map,
then the operation f(x) requires a traversal over the domain of map f to locate an element that equals x.
Moreover, if element x is not of a base type, then the equality tests between element x and the elements
in the domain of map f would be expensive operations. Thus, if map f is weakly based or unbased, then
the map-access operation f(x) cannot, in general, be performed eÆciently. There is, however, an important
exception. If the expression f(x) appears inside a for-loop of the form "for x 2 domain(f) loop : : : endloop",
then the map-access operation f(x) can be performed eÆciently by simply keeping track of the position of
element x in the domain of map f . We use the term self-access to describe this kind of map-access on a
weakly based or unbased map, which can always be performed in O(1) time.

Now that we have an informal understanding of Low SETL data structures, we go on to de�ne an
operational semantics for Low SETL in Section 2.3. Next, in Section 2.4, we will describe how this semantics
can be implemented on a pointer machine.

2.3 Dynamic Operational Semantics

The operational semantics for Low SETL is a combination of big-step and small-step semantics. Small-
step semantics, also known as Structural operational semantics was introduced by Gordon Plotkin in [75].
Structural operational semantics is used to describe how the individual steps of the computation take place.
Big-step semantics, also called Natural semantics (or Kahn's style natural semantics) is derived from the
structural operational semantics, and the basic ideas were �rst presented in [26] for a functional language.
Natural semantics is used to describe how the overall results of executions are obtained. We assume that
the reader is familiar with both small-step and big-step semantics, and do not include further explanation
of these concepts. For readers who are not familiar with these concepts, an introductory treatment may be
found in numerous books on semantics such as [49, 64, 97].

We use a big-step semantics to de�ne evaluation of expressions and boolean expressions, both of which
evaluate to a particular value in a given state7 of the computation but do not modify the state. A small-step
semantics is used to de�ne the evaluation of commands, which act as state transformers, i.e. lead from one
state of the computation to another. Such a combination of big-step and small-step semantics is sometimes
called transition semantics ([46])

We assume that Vloc is an in�nite set of locations including a special location lom that implements the
Low SETL expression om (which corresponds to the value unde�ned). Each type � is associated with a set
V� , which is the set of implementations of all values of type � . V� is de�ned recursively as

Vbool = ftrue; falseg
Vint = fint(x) : x = 0; 1;�1; 2;�2; : : :g
Vb = fbase(l) : l 2 Vlocg

Vset(�) = fset(l) : l 2 Vlocg
Vsmap(�1;�2) = fsmap(l) : l 2 Vlocg
Vstrong set(b) = fstrongset(l) : l 2 Vlocg

Vstrong smap(b;�) = fstrongsmap(l) : l 2 Vlocg:

(2.5)

In De�nition 2.5 the symbols int; base; set; smap; strongset; strongsmap are labels for locations. Each imple-
mentation in V� corresponds to a value of type � , which can be computed using the function extract (de�ned

7a state may be thought of as a map from variables to values

20

later in this section). Note that function extract is a many-one function, i.e. many di�erent implementations
may represent the same value, but each implementation cannot represent more than one value.

The precise de�nition of how Low SETL values are implemented requires the following additional se-
mantic objects.

1. The environment � is a partial map from variables to a pair comprising of a location l, and a type �
(denoted by l : �), i.e.

� : Vars 7! Vloc � Type :

2. The store is a partial map from locations (of type �) to a value in set V� , or the value unde�ned , i.e.

 : Vloc 7! V� [funde�nedg:

3. The maps �rst , last , prev , next, succ, baseval , and image are all partial maps from locations to
locations, i.e.

�rst ; last ; prev ;next ; succ; baseval ; image : Vloc 7! Vloc:

4. Finally, the map symb is a partial map from locations to identi�ers, i.e.

symb : Vloc 7! Identi�er:

Value (lom) is de�ned to be the value unde�ned . Our goal is to de�ne an operational semantics that closely
corresponds to the informal descriptions of data structures given in Section 2.2. The maps �rst , last , prev ,
and next correspond to the �rst, last, prev and next pointers in a doubly linked list. For example, consider
a value v of type set(int) that is implemented as a labelled location set(l). Then the locations �rst(l) and
last(l) correspond to the �rst and the last integers in the doubly linked list implementation of v. The other
integers in the linked list can be accessed by either starting from location �rst(l) and using map next (in a
way similar to using the next pointer to traverse a linked list), or by starting at location last(l) and using
map prev .

Figure 2.7 shows the implementation of a set S of type set(set(int)) with the value ff1g; f1; 2gg, a
map M of type smap(int; int) with the value f[1; 2]; [2; 3]g, and a variable x of base type b (satisfying the
subtype constraint b < int) corresponding to the integer value 1. In Figure 2.7 an arrow labelled � from S to
l1 : set(set(int)) should be read as �(S) = l1 : set(set(int)). Similarly, an arrow labelled from l1 to set(l2)
should be read as (l1) = set(l2). The absence of an arrow labelled prev coming out of location l3 should
be taken to imply that prev(l3) = ?. The environment � maps variable S to location l1 which corresponds
to the value ff1g; f1; 2gg. Locations l3 and l4 correspond to the values f1g and f1; 2g respectively, and
Locations l7, l8, and l9 correspond to the values 1, 1, and 2 respectively. Also, as seen in Figure 2.7, given
a variable x of base type b satisfying the subtype constraint b < �, the corresponding value of type � can
be obtained through the map baseval . The maps succ, and symb are used in the implementation of strongly
based sets and maps in a manner similar to what is shown in Figure 2.6(b). In Figure 2.7 we see that x is
an element of a strongly based set T of type strong set(b). Moreover, succ(l19) = ? (since there is no arrow
labelled succ coming out of location l19) implies that T is the only strongly based set containing element x,
and that no strongly based map contains element x in its domain.

Before we give a precise de�nition of how a value v of type � (i.e. v 2 T [�]) may be extracted from
an implementation vi 2 V� , we de�ne a few auxiliary functions that are used in the de�nition of function
extract (De�nition 2.3.1), and in the de�nition of the dynamic operational semantics of Low SETL.

� The function ComputeSet takes a location l as an input and evaluates to a (possibly empty) set of
locations.

ComputeSet(l) =�
fg if �rst(l) = ?
lfpw:(f�rst(l)g [fnext(l

0) : l0 2 wjnext(l0) 6= ?g) otherwise
(2.6)

21

.................
...................

..

set(l2)l1

.........................
......
......
.

........
.........
..........

...........
...............

.........................
..

.....
.....
.....
.......................

...
.............
...........
.........
........
.......
.......
......
.

.......
.......
........................

...
..............
......

.........................
......
.....
..

..

.........
.........

....................

.......
......
......
......
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
......
......
......
......
......
.

.......
.......
........................

..
..............
.......

.........................
......
.....
..

..

.........
.........

....................

.......
......
......
......
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
......
......
......
......
.......

.......
.......
........................

..
..............
.......

........................
......
.....
...

..

.........
.........

....................

......
......
......
......
......
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
......
......
......
.......
.

..................
...................

.

..................
...................

.

..................
...................

.

.................
...................

..

..................
...................

.

.................
...................

..
.................

...................
..

..................
...................

.

..................
...................

.

..................
...................

.

..................
...................

.
..................

...................
.

.................
...................

..

..................
...................

.

..................
...................

.

........................
.....
.....
....

........................
.....
.....
....

....................
.................

.

.................
...................

..

..................
...................

.

..................
...................

.

........................
.....
.....
....

....................
.................

.

...

....................................
..

...
........
...

l5 l7

�rst

last

�rst

prev

l6 l8

l9

next

last

int(1)

int(1)

int(2)

S
�

l2
�rst

l3

l4

prev

last

next

l1 : set(set(int))

set(l6)

set(l5)

l16 : b

l16

l17

�

baseval
int(1)l18

x

base(l17)

�

�rst

prev

last

next

M l10 : smap(int; int)

l10 smap(l11)

l11 l12

l13

image

image

l12

l14

l13

l15

int(1)

int(2)

int(2)

int(3)

"T"
symb

next

... ...

succ

l19

prev

Figure 2.7: Implementation of S : set(set(int)), M : smap(int; int), and x : b where b < int

where lfpw:f(w) denotes the least �xed point of function f(w) with respect to parameter w, or in
other words, the least value of w satisfying f(w) = w.

An informal explanation of Equation 2.6 is as follows. Let S be a set-valued variable such that
�(S) = lS : set(�), and (lS) = set(l). If �rst(l) = ?, then set S is empty, and in this case function
ComputeSet returns the empty set. Otherwise �rst(l) is the location of an element of set S, and in
this case function ComputeSet returns the smallest set of locations w such that �rst(l) 2 w, and for
all l0 2 w, if next(l0) 6= ?, then next(l0) 2 w. It is not diÆcult to see that set w evaluates to the set

22

containing the locations of all elements of set S. Similarly, if M is a map-valued variable such that
�(M) = lM : smap(�; �0), and (lM) = smap(l), then ComputeSet(l) evaluates to the set containing
locations of all the elements in the domain of map M . For example, in Figure 2.7, ComputeSet(l2)
evaluates to fl3; l4g, and ComputeSet(l5) evaluates to fl7g.

� The function ComputeNodes takes a location corresponding to an element x of some base type b, and
evaluates to a set of locations such that each location corresponds either to a strongly based set that
contains element x, or to a strongly based map whose domain contains element x.

ComputeNodes(l) =
let (l) = base(l0) in�
fg if succ(l0) = ?
lfpw:(fsucc(l

0)g [fsucc(t) : t 2 wjsucc(t) 6= ?g) otherwise

(2.7)

Recall from Figure 2.6(b), that an element x of a base type b is implemented as a record containing a
key �eld, and a �eld succ containing a pointer to a singly-linked list of nodes (linked together using
succ), where each node corresponds either to a strongly based set containing x, or a strongly based map
whose domain contains x. The function ComputeNodes evaluates to the set of locations corresponding
to the nodes in this singly-linked list. For example, in Figure 2.7, ComputeNodes(l16) evaluates to
fl19g.

� The function StrongNext takes a location corresponding to an element x of some base type b, and an
identi�er corresponding to either a set S of type strong set(b) or a mapM of type strong smap(b; �1),
and evaluates to the location of the next element in the doubly-linked list implementation of set S, or
the domain of map M .

StrongNext(l; v) = let s0 = ComputeNodes(l) in
let t =3 (ft0 2 s0jsymb(t0) = vg) in
if t = ? then ? else next(t)

(2.8)

For example, in Figure 2.7, StrongNext(l16; "T") evaluates to the same location as location next(l19),
i.e. the location being pointed to by the arrow labelled next coming out of location l19.

� The de�nition of function StrongPrev is similar except for the use prev instead of next . In Figure 2.7
StrongPrev(l16; "T") evaluates to the same location as location prev (l19).

� The function StrongImage takes a location l corresponding to an element x of base type b, and an
identi�er v corresponding to a strongly based map M of type strong smap(b; �0), and evaluates to the
location corresponding to the image of element x under map M .

StrongImage(l; v) = let s0 = ComputeNodes(l) in
let t =3 (ft0 2 s0jsymb(t0) = vg) in
if t = ? then lom else image(t)

(2.9)

� The function IsElementOf takes a location corresponding to an element x of some base type b, and
an identi�er v corresponding to a strongly based set S or map M , and tests for the membership of
element x in set S, or in the domain of map M .

IsElementOf (l; v) = let s0 = ComputeNodes(l) in
9t0 2 s0j symb(t0) = v

(2.10)

For example, in Figure 2.7, IsElementOf (l16; "T") evaluates to true.

� Let S be strongly based set with �(S) = lS : strong set(b) and (lS) = strongset(l), orM be a strongly
based single-valued map with �(M) = lM : strong smap(b; �0) and (lM) = strongsmap(l). Function

23

ComputeStrongSet takes location l and evaluates to the set of locations corresponding to the elements
of set S, or the domain of map M .

ComputeStrongSet(l) =8<
:
fg if �rst(l) = ?
let v = symb(l) in lfpw:(f�rst(l)g[
fStrongNext(l0; v) : l0 2 wj StrongNext(l0; v) 6= ?g) otherwise

(2.11)

We are now ready to de�ne the function extract.

De�nition 2.3.1 The function extract takes an element of V� and evaluates to the corresponding value in
T [�], i.e. a value of type � .

extract(int(x)) = x
extract(base(l)) = extract((baseval (l)))
extract(set(l)) = fextract((l0)) : l0 2 ComputeSet(l)g

extract(smap(l)) = f[extract((l0)); extract((image(l0)))] :
l0 2 ComputeSet(l)g

extract(strongset(l)) = fextract((l0)) : l0 2 ComputeStrongSet(l)g
extract(strongsmap(l)) = f[extract((l0)); extract((image(l0)))] :

l0 2 ComputeStrongSet(l)g

Using De�nition 2.3.1 it is easily veri�ed that in Figure 2.7,

� extract((l1)) evaluates to ff1g; f1; 2gg,

� extract((l10)) evaluates to f[1; 2]; [2; 3]g, and

� extract((l16) evaluates to 1.

We de�ne the state of a Low SETL program (denoted by �) to be

� = [�; ;�rst; last ; prev ;next ; succ; symb; image ; baseval]:

The state � of a program can be used to associate values with all variables of a Low SETL program in the
following way. Given a variable v, let �(v) be the location-type pair l : � . Then, extract((l)) evaluates to
the value corresponding to variable v. Note that function extract makes use of the other maps in �, i.e.
�rst , last , prev , next , succ, symb, image , and baseval .

In Sections 2.3.1,2.3.2, and 2.3.3 we specify the operational semantics for Low SETL expressions, boolean
expressions, and commands. Given a state �, a Low SETL expression e evaluates to a pair comprising of
a location l and a type � such that the value extract((l)) is a value of type � . Similarly, given a state
�, a boolean expression be evaluates to a boolean value true or false . The evaluation of expressions and
boolean expressions is side-e�ect free, i.e. does not modify the state in which they are evaluated. On the
other hand, the evaluation of commands leads to a transition from one state to another. For this reason, we
�nd it convenient to express the semantics of expressions and boolean expressions as a big-step operational
semantics (similar to a proof derivation), and the semantics for the evaluation of commands as a small-step
operational semantics (i.e. as transitions from one con�guration to another).

2.3.1 Operational Semantics for Expressions

The inference rules for the dynamic operational semantics of expressions appear in Figure 2.8. The notation

h�; C; ei
exp

�! l : � can be read as saying that expression e evaluates to location l corresponding to a value of

type � in state � under the set of subtype constraints C. The one exception to this is the rule h�; C; ei
exp

�!
abort , which indicates that the evaluation of expression e in state � causes an abort error. Informally, we can

24

h�; C; ei
exp

�! l : �

h�; C; vi
exp

�! �(v) (2.12)

h�; C; omi
exp

�! lom : � for all types � (2.13)

h�; C; vi
exp

�! l : set(�); (l) = set(s); �rst(s) = ?

h�; C;3 vi
exp

�! lom : �
(2.14)

h�; C; vi
exp

�! l : set(�); (l) = set(s); �rst(s) 6= ?

h�; C;3 vi
exp

�! �rst(s) : �
(2.15)

h�; C; vi
exp

�! l : strong set(b); (l) = strongset(s); �rst(s) = ?

h�; C;3 vi
exp

�! lom : b
(2.16)

h�; C; vi
exp

�! l : strong set(b); (l) = strongset(s); �rst(s) 6= ?

h�; C;3 vi
exp

�! �rst(s) : b
(2.17)

h�; C; vi
exp

�! l : set(�); (l) = (lom)

h�; C;3 vi
exp

�! abort
(2.18)

h�; C; v2i
exp

�! l : �; (l) 6= (lom);

h�; C; v1i
exp

�! l1 : smap(�; �1); (l1) = smap(s)

h�; C; v1(v2)i
exp

�! image(l) : �1

where l 2 ComputeSet(s) (2.19)

h�; C; v2i
exp

�! l : b; (l) = base(l0)

h�; C; v1i
exp

�! l1 : strong smap(b; �); (l1) = strongsmap(s)
t = StrongImage(l0; symb(s))

h�; C; v1(v2)i
exp

�! t : �

(2.20)

Figure 2.8: Operational Semantics for Expressions (continued on next page)

think of the abort error being caused by expressions such as 3 v where v evalautes to the value unde�ned ,
or by f(v) where either f or v evaluate to the value unde�ned .

In Figure 2.8, Rule 2.12 can be read as saying that a variable v evaluates to �(v)8. Rule 2.13 should not
be read as one rule but a rule schema saying that Low SETL expression om evaluates to the pair lom : �
for all types �. Rules 2.14-2.18 de�ne how the expression 3 v is evaluated. Rules 2.14 and 2.16 say that if
v is an empty set of type set(�) or an empty strongly based set of type strong set(b), then 3 v evaluates to

8Recall that the environment � maps variables to a location-type pair.

25

h�; C; v1i
exp

�! l1 : strong smap(b; �); h�; C; v2i
exp

�! l2 : b
(l1) = (lom) or (l2) = (lom)

h�; C; v1(v2)i
exp

�! abort

(2.21)

h�; C; ei
exp

�! l : b; (l) = (lom); b < � 2 C

h�; C; ei
exp

�! l : �
(2.22)

h�; C; ei
exp

�! l : b; b < � 2 C; (l) = base(l0)

h�; C; ei
exp

�! baseval (l0) : �
(2.23)

Figure 2.8: Operational Semantics for Expressions (continued from previous page)

lom : �, or lom : b respectively. Rules 2.15 and 2.17 correspond to the cases when the sets are not empty, in
which case 3 v evaluates to the �rst element of the set. According to Rule 2.18, if v evaluates to the value
(lom), i.e. unde�ned , then 3 v causes an abort error. Rules 2.19-2.21 de�ne how the expression v1(v2) is
evaluated. Rule 2.21 says that there is an abort error if either v1 or v2 evaluates to the value unde�ned .

According to Rule 2.19, if variable v2 evaluates to a location l and type � such that (l) 6= (lom), and
variable v1 evaluates to location l1 and type smap(�; �1) such that (l1) = smap(s), then the expression
v1(v2) evaluates to image(l) only if the side condition l 2 ComputeSet(s) is satis�ed. Note that if the side
condition l 2 ComputeSet(s) is not satis�ed, then there is no derivation for the evaluation of expression
v1(v2)

9. In the case of Rule 2.20, v1 is a strongly based map, and v2 is an element of a base type. The image
of v2 under v1 can thus be computed using the function StrongImage. Note that in this case we don't have
the side condition of Rule 2.19. Finally, Rules 2.22 and 2.23 de�ne how an implementation of a value of type
� can be extracted from an implementation of a value of base type b, if base type b satis�es the subtype
constraint b < �.

2.3.2 Operational Semantics for Boolean Expressions

The dynamic operational semantics for the evaluation of boolean expressions is given in Figure 2.9. The

notation h�; C; bei bool�! boolval can be read as saying that boolean expression be evaluates to the boolean

value boolval in state � under the set of subtype constraints C.
In Figure 2.9, Rules 2.24 and 2.25 de�ne the evaluation of the boolean expression v1 2 v2. In the case

of Rule 2.24, if v1 is an element of some base type b, and v2 is a strongly based set of type strong set(b),
then the boolean expression v1 2 v2 can be evaluated using the auxiliary function IsElementOf . According
to Rule 2.25, if v1 evaluates to the value unde�ned , then there is an abort error. Rules 2.26 and 2.27 de�ne
how the boolean expression v1 == v2 is evaluated. The equality test v1 == v2 is allowed only if both v1
and v2 are integers, or both are elements of some base type b. In both cases, if l1 and l2 are the locations
corresponding to variables v1 and v2, then the expression v1 == v2 evaluates to true i� (l1) is equal to
(l2). Rules 2.28-2.33 de�ne how the boolean expressions IsEmptySet(v) and IsEmptyMap(v) are computed.
In both cases, if v evaluates to unde�ned , an abort error is caused (Rules 2.30 and 2.33).

9If expression v1(v2) appears inside a for loop of the form "for v2 2 domain(v1) loop : : : endloop", then the
side condition for Rule 2.19 is guaranteed to be satis�ed for all states � in which the expression v1(v2) will have
to evaluated. Such an evaluation of expression v1(v2) corresponds to the special case of self-access as discussed in
Section 2.2.4.

26

h�; C; bei bool�! boolval

�(v1) = l1 : b; �(v2) = l2 : strong set(b)
(l2) = strongset(t); (l1) = base(s); val = IsElementOf (s; symb(t))

h�; C; v1 2 v2i
bool�! val

(2.24)

�(v1) = l1 : b; (l1) = (lom)

h�; C; v1 2 v2i
bool�! abort

(2.25)

�(v1) = l1 : int; �(v2) = l2 : int; val = ((l1) == (l2))

h�; C; v1 == v2i
bool�! val

(2.26)

�(v1) = l1 : b; �(v2) = l2 : b; val = ((l1) == (l2))

h�; C; v1 == v2i
bool�! val

(2.27)

�(v) = l : set(�); (l) = set(s); val = (�rst(s) == ?)

h�; C; IsEmptySet(v)i bool�! val
(2.28)

�(v) = l : strong set(b); (l) = strongset(s); val = (�rst(s) == ?)

h�; C; IsEmptySet(v)i bool�! val
(2.29)

�(v) = l : set(�); (l) = (lom)

h�; C; IsEmptySet(v)i bool�! abort
(2.30)

�(v) = l : smap(�; �0); (l) = smap(s); val = (�rst(s) == ?)

h�; C; IsEmptyMap(v)i bool�! val
(2.31)

�(v) = l : strong smap(b; �0); (l) = strongsmap(s); val = (�rst(s) == ?)

h�; C; IsEmptyMap(v)i bool�! val
(2.32)

�(v) = l : smap(�; �0); (l) = (lom)

h�; C; IsEmptyMap(v)i bool�! abort
(2.33)

Figure 2.9: Operational Semantics for Boolean Expressions

2.3.3 Operational Semantics for Commands

In this section we specify a small-step operational semantics for the evaluation of commands. The small-step
semantics is de�ned as a binary transition relation relating pairs of con�gurations. A con�guration is a triple
h�; C; P i, where state � is called the data part of the con�guration, and command sequence P is called the
control part of the con�guration, and C is the set of subtype constraints associated with command sequence

27

P . When the control part of the con�guration is the empty program, we simply write the con�guration as
�. More precisely, a con�guration is either

� a triple h�; C; P i consisting of a state �, a command sequence P , and a set of subtype constraints C,
or

� a state �.

A con�guration of the form � is called a terminating con�guration since it indicates the termination of
the execution of the program with � as the �nal state.

The rules for the evaluation of a command sequence are given in terms of a binary relation �! on

con�gurations. A rule of the form h�; C; P i �! h�0; C; P 0i can be read as saying that a command sequence

P in state � is transformed into a command sequence P 0 in state �0 in one step of the computation. Similarly,

a rule of the form h�; C; P i �! �0 can be read as saying that evaluation of a command sequence P in state

� terminates in state �0 in one step of the computation. In the case of operational semantics for command
sequences, we will use abort to denote a special terminating state corresponding to the termination of the
program as a result of an abort error.

The rules for the operational semantics of command sequences are given below. The relation �! is
de�ned as the smallest relation closed under these rules. Note that the set of subtype constraints C does
not change in any of the transition rules. This is because we work with a �xed set of subtype constraints for
a given program. In each of the following rules, we assume that

�0 = [�0; 0;�rst 0; last 0; prev 0;next 0; succ0; symb0; image 0; baseval 0]:

Moreover, we assume that whenever the value of any of the primed maps �0, 0, �rst 0, etc. is left unspeci�ed,
then its value remains unchanged.

Command v := e

h�; C; ei
exp

�! abort
h�; C; v := ei �! abort

(2.34)

Rule 2.34 says that evaluation of the command v := e aborts if the evaluation of expression e aborts.

h�; C; ei
exp

�! l : �; �(v) = l0 : �
h�; C; v := ei �! �0

where 0 = [l0 7! (l)]
(2.35)

Rule 2.35 says that if expression e evaluates to a location l of type � , and v is a variable of type � ,
then the evaluation of assignment v := e in state � leads to the new state �0, which is identical to �
except for 0 whose new value is [l0 7! (l)].

Command v1(v2) := e

h�; C; ei
exp

�! abort
h�; C; v1(v2) := ei �! abort

(2.36)

�(v2) = l : �; (l) = (lom)
h�; C; v1(v2) := ei �! abort

(2.37)

28

�(v1) = l : smap(�1; �2); (l) = (lom)
h�; C; v1(v2) := ei �! abort

(2.38)

�(v1) = l : strong smap(b; �2); (l) = (lom)
h�; C; v1(v2) := ei �! abort

(2.39)

Rules 2.36-2.39 say that the evaluation of the assignment v1(v2) := e aborts if either the evaluation of
expression e aborts, or if either v1 or v2 evaluates to the value unde�ned .

h�; C; ei
exp

�! l : �2; (l) = (lom)
�(v2) = l2 : �1; (l2) 6= (lom)

�(v1) = l1 : smap(�1; �2); (l1) = smap(s)
s0 = ComputeSet(s)

h�; C; v1(v2) := ei �! �

where
8t0 2 s0j(extract((t0)) 6= extract((l2)))

(2.40)

Rule 2.40 says that if expression e evaluates to the value unde�ned , and v2 is not already in the domain
of map v1 (side-condition), then the evaluation of the command v1(v2) := e causes no change in the
state �.

h�; C; ei
exp

�! l : �2; (l) 6= (lom)
�(v2) = l2 : �1; (l2) 6= (lom)

�(v1) = l1 : smap(�1; �2); (l1) = smap(s)
s0 = ComputeSet(s); �rst(s) 6= ?

l3 = newLocation(); l4 = newLocation()
h�; C; v1(v2) := ei �! �0

where 0 = [l3 7! (l2); l4 7! (l)];
�rst 0 = �rst [s 7! l3];

prev 0 = prev [�rst(s) 7! l3];
next 0 = next [l3 7! �rst(s)];
image 0 = image [l3 7! l4]

where
8t0 2 s0j(extract((t0)) 6= extract((l2)))

(2.41)

Rule 2.41 takes the case when expression e evaluates to a non-omega value, and v2 is not already in
the domain of map v1. In this case the pair [v2; e] gets added to the map v1. In Rule 2.41 we consider
the case when map v1 is originally not empty (i.e. �rst(s) 6= ?). Another rule that takes care of the
case when map v1 is initially empty is similar, and therefore omitted.

h�; C; ei
exp

�! l : �; (l) 6= (lom); �(v1) = l1 : strong smap(b; �); (l1) = strongsmap(m)
�(v2) = l2 : b; (l2) = base(s); s0 = ComputeNodes(l2)

t =3 ft0 2 s0jsymb(t0) = symb(m)g; t 6= ?; l3 = newLocation()
h�; C; v1(v2) := ei �! �0

where 0 = [l3 7! (l)]
image 0 = image [t 7! l3]

(2.42)

Rule 2.42 de�nes the evaluation of command v1(v2) := e when v1 is a strongly based map, v2 2
domain(v1), and expression e evaluates to a non-omega value. In this case, v2 is implemented as a

29

base record having a node corresponding to map v1 in its linked list. The e�ect of v1(v2) := e is to
simply update the image pointer of this node to the new value.

h�; C; ei
exp

�! l : �; (l) = (lom); �(v1) = l1 : strong smap(b; �); (l1) = strongsmap(m)
�(v2) = l2 : b; (l2) = base(s); s0 = ComputeNodes(l2)

t =3 ft0 2 s0jsymb(t0) = symb(m)g; t 6= ?; p =3 ft0 2 s0 [fsgjsucc(t0) = tg
(�rst(m)) 6= (l2); (last(m) 6= (l2)

sp = ComputeNodes(prev (t)); tp =3 ft
0
p 2 spjsymb(t0p) = symb(m)g

sn = ComputeNodes(next(t)); tn =3 ft
0
n 2 snjsymb(t0n) = symb(m)g

h�; C; v1(v2) := ei �! �0

where prev 0 = prev [tn 7! prev(t)]
next 0 = next [tp 7! next(t)]
succ0 = succ[p 7! succ(t)]

(2.43)

In Rule 2.43 we again have a strongly based map v1, and v2 2 domain(v1), but the di�erence is that e
evaluates to the value unde�ned . The e�ect of v1(v2) := e is therefore to remove v2 from the domain
of v1. To do this, we need to do two things. First, we must remove the node corresponding to map v1
from the linked list of the base record for v2. Secondly, we must remove the base record for v2 from
the doubly linked list implementation of the domain of map v1. In Rule 2.43 we consider the case
when v2 is neither the �rst, nor the last element of this linked list. The rules for the other three cases
when v2 is the �rst element of the linked list but not the last, or the last element of the linked list but
not the �rst, or both the �rst and last element of the linked list are similar and therefore omitted.

h�; C; ei
exp

�! l : �; (l) = (lom)
�(v1) = l1 : strong smap(b; �); (l1) = strongsmap(m)

�(v2) = l2 : b; (l2) = base(s); IsElementOf (l2; symb(m)) = false
h�; C; v1(v2) := ei �! �

(2.44)

In Rule 2.44 we have a strongly based map v1 not having element v2 in its domain, and the expression
e evaluates to the value unde�ned . Thus, the command v1(v2) := e causes no change in the state �.

h�; C; ei
exp

�! l : �; (l) 6= (lom)
�(v1) = l1 : strong smap(b; �); (l1) = strongsmap(m); �rst(m) 6= ?
�(v2) = l2 : b; (l2) = base(s); IsElementOf (l2; symb(m)) = false

sf = ComputeNodes(�rst(m)); tf =3 ft
0
f 2 sf jsymb(t0f) = symb(m)g

l3 = newLocation(); l4 = newLocation(); l5 = newLocation()
h�; C; v1(v2) := ei �! �0

where 0 = [l3 7! (l2); l4 7! (l)]
�rst 0 = �rst [m 7! l3]
prev 0 = prev [tf 7! l3]

next 0 = next [l5 7! �rst(m)]
image 0 = image [l5 7! l4]

succ0 = succ[s 7! l5; l5 7! succ(s)]
symb0 = symb[l5 7! symb(m)]

(2.45)

In Rule 2.45 we have a strongly-based map v1 not having element v2 in its domain. Furthermore,
expression e evaluates to a non-omega value. Thus, the e�ect of v1(v2) := e, is to add the pair [v2; e]
to map v1. In Rule 2.45 we consider the case when map v1 is not initially empty. Another rule for

30

key succ

key succ

key succ

imagesymb prev next

v2

last
key succ imagesymb prev next

null

succ

succ

imagesymb prev next succ

imagesymb prev next

null

succ

first

v1
v1

v1

v1

v1

key succ

key succ

key succ

imagesymb prev next

imagesymb prev next

v2

first
null

last
key succ imagesymb prev next

null

succ

succ

succ

v1

v1
v1

v1

(a)

(b)
Figure 2.10: Pictorial representation of the data structures (a) before and (b) after the execution

of the command V1(V2) := e (corresponding to Rule 2.45)

the case when v1 is initially empty is similar, and therefore omitted. This rule is best understood by
looking at Figure 2.10 where we show a pictorial representation of the data structures before and after
the execution of the command v1(v2) := e.

Command v with := e

h�; C; ei
exp

�! abort
h�; C; v with := ei �! abort

(2.46)

31

h�; C; ei
exp

�! l : �; (l) = (lom)
h�; C; v with := ei �! abort

(2.47)

�(v) = l : set(�); (l) = (lom)
h�; C; v with := ei �! abort

(2.48)

�(v) = l : strong set(b); (l) = (lom)
h�; C; v with := ei �! abort

(2.49)

Rules 2.46-2.49 say that the evaluation of the command v with := e aborts if either the evaluation of
expression e aborts, or either one of e or v evaluate to the value unde�ned .

�(v) = l : set(�); (l) = set(s)

h�; C; ei
exp

�! l1 : �; (l1) 6= (lom)
�rst(s) 6= ?; s0 = ComputeSet(s)

l2 = newLocation()
h�; C; v with := ei �! �0

where 0 = [l2 7! (l1)]
�rst 0 = �rst [s 7! l2]

prev 0 = prev [�rst(s) 7! l2]
next 0 = next [l2 7! �rst(s)]

where
8t 2 s0jextract((t)) 6= extract((l1))

(2.50)

Rule 2.50 de�nes the evaluation of command v with := e in the case when expression e evaluates to
a location corresponding to a non-omega value, and the value corresponding to expression e is not
already a member of set v(side-condition). In this case, the evaluation of the command v with := e
simply results in the addition of a new location having the same value as e to the linked list for set
v. Rule 2.50 only takes care of the case when the set v is originally non-empty. Another similar rule
takes care of the case when v is originally empty, and is omitted.

�(v) = l : strong set(b); (l) = strongset(s)

h�; C; ei
exp

�! l1 : b; (l1) = base(t); IsElementOf (l1; symb(s)) = true
h�; C; v with := ei �! �

(2.51)

In Rule 2.51 v is a strongly based set, and the value corresponding to expression e is already a member
of set v. Therefore, the evaluation of v with := e causes no change to the state �.

�(v) = l : strong set(b); (l) = strongset(s)

h�; C; ei
exp

�! l1 : b; (l1) = base(t); IsElementOf (l1; symb(s)) = false
l2 = newLocation(); l3 = newLocation(); �rst(s) 6= ?

sf = ComputeNodes(�rst(s)); tf =3 ft
0
f 2 sf jsymb(t0f) = symb(s)g

h�; C; v with := ei �! �0

where 0 = [l2 7! (l1)]
�rst 0 = �rst [s 7! l2]
prev 0 = prev [tf 7! l2]

next 0 = next [l3 7! �rst(s)]
succ0 = succ[t 7! l3; l3 7! succ(t)]
symb0 = symb[l3 7! symb(s)]

(2.52)

32

In Rule 2.52 v is a strongly-based set, and expression e evaluates to a value not already in v. Rule 2.52
takes care of the case when set v is originally non-empty. Another similar rule that takes care of the
case when v is empty, is omitted.

Command v less := e The evaluation of the command v less := e aborts if either the evaluation of ex-
pression e aborts, or either one of v or e evaluates to the value unde�ned . The rules are similar to
Rules 2.46-2.49, and are omitted.

�(v) = l : strong set(b); (l) = strongset(s)

h�; C; ei
exp

�! l1 : b; (l1) = base(t); IsElementOf (l1; symb(s)) = false
h�; C; v less := ei �! �

(2.53)

Rule 2.53 takes care of the simple case when v is a strongly based set and expression e corresponds to
a value that is not a member of set v.

�(v) = l : strong set(b); (l) = strongset(s)

h�; C; ei
exp

�! l1 : b; (l1) = base(t); t0 = ComputeNodes(l1)
p =3 fp0 2 t0jsymb(p0) = symb(s)g; p 6= ?; q =3 fq0 2 t0 [ftgjsucc(q0) = pg

(�rst(s)) 6= (l1); (last(s)) 6= (l1)
sp = ComputeNodes(prev (p)); tp = ft

0
p 2 spjsymb(t0p) = symb(s)g

sn = ComputeNodes(next(p)); tn = ft
0
n 2 snjsymb(t0n) = symb(s)g

h�; C; v less := ei �! �0

where prev 0 = prev [tn 7! prev(p)]
next 0 = next [tp 7! next(p)]
succ0 = succ[q 7! succ(p)]

(2.54)

In Rule 2.54 v is a strongly based set, and expression e evaluates to a location l1 which corresponds
to a value that is a member of set v. Rule 2.54 corresponds to the case when location l1 corresponds
to a base record that is neither the �rst, nor the last base record in the linked list for set v. The other
rules are similar and therefore omitted.

Command v1 from v2 The evaluation aborts if v2 evaluates to unde�ned . The rules for the aborted com-
putation are similar to Rules 2.48 and 2.49, and are omitted.

�(v2) = l2 : set(�); (l) = set(s)
�(v1) = l1 : �; �rst(s) = ?
h�; C; v1 from v2i �! �0

where 0 = [l1 7! (lom)]

(2.55)

According to Rule 2.55, if v2 is empty, then v1 is set to om.

�(v2) = l2 : set(�); (l) = set(s)
�(v1) = l1 : �; �rst(s) 6= ?; �rst(s) = last(s)

h�; C; v1 from v2i �! �0

where 0 = [l1 7! (�rst(s))]
�rst 0 = �rst [s 7! ?]
last 0 = last [s 7! ?]

(2.56)

33

�(v2) = l2 : set(�); (l) = set(s)
�(v1) = l1 : �; �rst(s) 6= ?; �rst(s) 6= last(s)

h�; C; v1 from v2i �! �0

where 0 = [l1 7! (�rst(s))]
�rst 0 = �rst [s 7! next(�rst(s))]
prev 0 = prev [next(�rst(s)) 7! ?]

(2.57)

In Rule 2.56 v2 evaluates to a set containing exactly one element which is assigned to v1 and removed
from v2 (thereby making it empty). In Rule 2.57 v2 evaluates to a set containing more than one
element. The �rst element is removed from v2 and assigned to v1.

In Rules 2.55-2.57 set v2 is unbased or weakly based. Three more rules corresponding to the case when
v2 is strongly based are similar, and are omitted.

Command InitSet(v)

�(v) = l : set(�); (l) = (lom); s = newLocation()
h�; C; InitSet(v)i �! �0

where 0 = [l 7! set(s)]
�rst 0 = �rst [s 7! ?]
last 0 = last [s 7! ?]

(2.58)

�(v) = l : strong set(b); (l) = (lom); s = newLocation()
h�; C; InitSet(v)i �! �0

where 0 = [l 7! strongset(s)]
�rst 0 = �rst [s 7! ?]
last 0 = last [s 7! ?]

(2.59)

Rules 2.58 and 2.59 de�ne how unde�ned sets are initialized to empty sets.

�(v) = l : set(�); (l) = set(s)
h�; C; InitSet(v)i �! �0

where �rst 0 = �rst [s 7! ?]
last 0 = last [s 7! ?]

(2.60)

Rule 2.60 de�nes the re-initialization of a set.

�(v) = l : strong set(b); (l) = strongset(s); �rst(s) = ?
h�; C; InitSet(v)i �! �

(2.61)

�(v) = l : strong set(b); (l) = strongset(s); �rst(s) 6= ?
n = jComputeStrongSet(s)j; a1 = �rst(s); ai+1 = StrongNext(ai) for all i = 1 : : : n� 1

(ai) = base(si); s
0
i = ComputeNodes(ai) for all i = 1 : : : n

ti =3 ft 2 s
0
ijsymb(t) = symb(s)g; ti 6= ? for all i = 1 : : : n

pi =3 ft 2 s
0
i [fsigjsucc(t) = tig for all i = 1 : : : n
h�; C; InitSet(v)i �! �0

where �rst 0 = �rst [s 7! ?]
last 0 = last [s 7! ?]

succ0 = succ[pi 7! succ(ti) for all i = 1 : : : n]

(2.62)

Rules 2.61 and 2.62 de�ne the re-initialization of strongly based sets.

34

Command InitMap(v) The rules for the initialization and re-initialization of maps are similar to those for
sets and are omitted.

Command Sequence c;P

h�; C; ci �! abort
h�; C; c;P i �! abort

(2.63)

h�; C; ci �! �0

h�; C; c;P i �! h�0; C; P i
(2.64)

h�; C; ci �! h�0; C; P 0i
h�; C; c;P i �! h�0; C; P 0;P i

(2.65)

Rules 2.63-2.65 de�ne the evaluation of a command sequence c;P . In Rule 2.65 the control part of
the new con�guration is P 0;P . It is not diÆcult to see that concatenating two command sequences in
this way also gives a valid command sequence.

Command if be then P1 else P2

h�; C; bei bool�! abort
h�; C; if be then P1 else P2i �! abort

(2.66)

h�; C; bei bool�! true
h�; C; if be then P1 else P2i �! h�; C; P1i

(2.67)

h�; C; bei bool�! false
h�; C; if be then P1 else P2i �! h�; C; P2i

(2.68)

Command while be loop P endloop

h�; C; bei bool�! abort
h�; C; while be loop P endloopi �! abort

(2.69)

h�; C; bei bool�! false
h�; C; while be loop P endloopi �! �

(2.70)

h�; C; bei bool�! true
h�; C; while be loop P endloopi �! h�; C; P ; while be loop P endloopi

(2.71)

In Rule 2.71 the control part of the new con�guration is of the form P ; c. Once again, it is not diÆcult
to see that appending a command at the end of a command sequence still gives a valid command
sequence.

35

Command for v1 2 v2 loop P endloop

�(v2) = l : set(�); (l) = (lom)
h�; C; for v1 2 v2 loop P endloopi �! abort

(2.72)

�(v2) = l : set(�); (l) = set(s); �rst(s) = ?
h�; C; for v1 2 v2 loop P endloopi �! h�; C; for v1 : � 2 [] loop P endloopi

(2.73)

�(v2) = l : set(�); (l) = set(s); �rst(s) 6= ?
n = jComputeSet(s)j; a1 = �rst(s); ai+1 = next(ai) for all i = 1; : : : ; n� 1

h�; C; for v1 2 v2 loop P endloopi �! h�; C; for v1 : � 2 [a1; : : : ; an] loop P endloopi
(2.74)

�(v2) = l : strong set(b); (l) = (lom)
h�; C; for v1 2 v2 loop P endloopi �! abort

(2.75)

�(v2) = l : strong set(b); (l) = strongset(s); �rst(s) = ?
h�; C; for v1 2 v2 loop P endloopi �! h�; C; for v1 : b 2 [] loop P endloopi

(2.76)

�(v2) = l : strong set(b); (l) = strongset(s); �rst(s) 6= ?
n = jComputeStrongSet(s)j; a1 = �rst(s); ai+1 = StrongNext(ai) for all i = 1; : : : ; n� 1
h�; C; for v1 2 v2 loop P endloopi �! h�; C; for v1 : b 2 [a1; : : : ; an] loop P endloopi

(2.77)

h�; C; for v1 : � 2 [a1; : : : ; an] loop P endloopi �!

h�[� 7! �[v1 7! a1 : �]]; C; P ; for v1 : � 2 [a2; : : : ; an] loop P endloopi (2.78)

h�; C; for v1 : � 2 [] loop P endloopi �! �[� 7! �[v1 7! ?]] (2.79)

Note that "for v1 : � 2 [a1; : : : ; an] loop P endloop" is not a valid Low SETL construct. However,
for the sake of convenience, we will treat it as a valid Low SETL construct, although we disallow its
use in the program that we begin with. Rules 2.78 and 2.79 de�ne how the transition relation �!
behaves in the presence of this new construct. It is also clear from Rules 2.78 and 2.79, that we can
never get stuck in a con�guration of the form h�; C; for v1 : � 2 [a1; : : : ; an] loop P endloopi (i.e. such
a con�guration will always lead to another con�guration). This fact will be used later to prove that
the derivation sequence for a certain class of programs (that we call well-typed programs) can never
get stuck.

Command for v1 2 domain(v2) loop P endloop

The rules for this case are similar to the previous case, and are omitted.

In this section, we have given a dynamic operational semantics for Low SETL expressions, boolean
expressions, and commands. Our goal is to associate worst-case time complexities with the implementation
of Low SETL operations on a pointer machine model of computation. In the next section, we re-visit the
precise de�nition of a pointer machine (as given by Tarjan [105]) and describe how the Low SETL operational
semantics can be translated into an eÆcient pointer machine implementation.

36

2.4 Implementing Low SETL on a Pointer Machine

The following is the original de�nition of a pointer machine taken directly from Tarjan's JCSS article [105].

A pointer machine consists of a memory and a �nite number of registers. The registers are of
two types: data registers and pointer registers. The memory consists of a �nite but expandable
pool of records. Each record consists of a �nite number of �elds, each of which is either a data
�eld or a pointer �eld. Each �eld has an identifying name. All records are identical in structure;
that is, they contain the same �elds.

A pointer machine manipulates data and pointers. A pointer either speci�es a particular
record or is null (�). Each pointer register and pointer �eld can store one pointer. Data can be
of any kind whatsoever (integers, logical values, strings, real numbers, vectors etc.). Each data
register and data �eld can store one datum.

A program for a pointer machine consists of a sequence of instructions, numbered consec-
utively from one. Each instruction is one of the following eight types. The last instruction
of every program is halt. Execution and running time of pointer machines are de�ned in the
obvious way; we charge one unit of time per machine instruction executed.

Each r below denotes a pointer register, each s denotes a data register, each t denotes a
register of any type, and each n denotes a �eld name.

r � Place a null pointer in register r.
t1 t2 (t1 and t2 must be of the same type).

Place the contents of register t2 in register t1, erasing what was
there previously.

t n(r) (n and t must be of the same type).
Place the contents of the n �eld of the record speci�ed by the
contents of r into register t, erasing what was there previously.
(If r contains �, this instruction does nothing.)

n(r) t (n and t must be of the same type).
Place the contents of t into the n �eld of the record speci�ed
by the contents of r, erasing what was there previously.
(If r contains �, this instruction does nothing.)

s1 s2�s3 Combine the data in registers s2 and s3 by applying the operation �.
Store the result in s1, erasing what was there previously.

create r Create a new record (not speci�ed by any existing pointer) and place
a pointer to it in r. All �elds of the new record initially contain
a special value called unde�ned (�).

halt Cease execution.
if condition then go to i

If the condition is true, then transfer control to instruction i. If the
condition is false, do nothing.

Each condition in an if instruction is one of the following types.
true Always true
t1 == t2 (t1 and t2 must be of the same type).

True if the contents of t1 and t2 are the same.
p(s1; s2) True if the contents of s1 and s2 satisfy predicate p, where

p is any predicate on data.

Given the above de�nition of a pointer machine, implementing Low SETL on a pointer machine is relatively
straightforward. One way of doing this is to model each distinct location l 2 Vloc and each distinct variable
by a record in the memory. Each record has 12 �elds having the names �1, �2, 1, 2, �rst , last , prev , next ,
succ, image , baseval , symb. Of these, �2, 1, and symb are data �elds and the others are pointer �elds. A
record corresponding to variable v has the value � in all �elds except �1, and �2. If �(v) = l : � , then the

37

Operation Time
v := e O(1)
v with=less := e O(1)
v1(v2) := e O(1)
v1 from v2 O(1)
InitSet(v) O(1) if v is unbased or weakly based, and

O(jvj + 1) if v is strongly based
InitMap(v) O(1) if v is unbased or weakly based, and

O(jdomain(v)j+ 1) if v is strongly based

Table 2.1: Time Complexities of Low SETL operations

�eld �1 contains the pointer to the record corresponding to location l, and �eld �2 contains � . A record
corresponding to location l has the value � in the �elds �1, and �2. If (l) = unde�ned , then �elds 1, and
2 also contain �, but if (l) = label(l1) (where label could be one of int; set; smap; strongset; strongsmap, or,
base), then �eld 1 contains label and �eld 2 contains the pointer to the record corresponding to location
l1. The other �elds �rst , last , prev , next , succ, image , baseval , and symb correspond to the respective maps
in the obvious way. The initial set of pointer registers contains a distinct register for each distinct variable,
containing a pointer to the record corresponding to that variable.

From the operational semantics of expressions given in Figure 2.8, it is easily veri�ed that the application
of each of the Rules 2.12-2.23 can be done in O(1) time. The only problematic case might be Rule 2.19, in
which case the actual application of the rule is implementable in O(1) time but the veri�cation of the side
condition l 2 ComputeSet(s) may not be implementable in O(1) time. For now, let us assume that Rule 2.19
is implemented without actually verifying the side condition. We will be able to prove later that for the
subset of programs we are interested in (called well-typed programs), the veri�cation of this side condition
will in fact be unnecessary, and can be safely omitted. It is also easily veri�ed that for all expressions e,
the size of the operational semantics derivation, i.e. the number of rule applications in the derivation, is
bounded by a constant10. Thus, we infer that every operational semantics derivation for an expression e can
be implemented in O(1) time on a pointer machine. Similarly, it is easily veri�ed from Figure 2.9 that every
derivation for a boolean expression be can also be implemented in O(1) time on a pointer machine.

From the operational semantics of commands given in Section 2.3.3, it is again easy to verify that the
application of Rules 2.34- 2.60 can be done in O(1) time. Once again, we ignore the implementation costs
of the side conditions since we will show later that for well-typed programs, the satis�ability of the side
conditions is guaranteed and hence their veri�cation can be safely omitted. From Rules 2.61 and 2.62 we see
that the implementation of the operation InitSet(v) where v is a strongly based set takes time proportional
to the number of elements in set v. Similarly, the time taken to implement InitMap(v) for a strongly based
map v would take time proportional to the number of elements in the domain of map v.

Thus, we see that either the evaluation of an associative access operation takes O(1) time on a pointer
machine, or its evaluation gets stuck. For example, consider the element deletion operation v less := x.
From the operational semantics (Rules 2.53 and 2.54) we see that the evaluation of the command v less := e
proceeds only if v is a strongly based set and e evaluates to an element of a base type. If v is indeed a
strongly based set, the element deletion operation can be performed in O(1) time. Otherwise, the evaluation
(i.e. the operational semantics derivation) gets stuck. Table 2.1 summarizes the time complexities of Low
SETL commands assuming that the evaluation does not get stuck. The time complexity of execution of "if
be then P1 else P2" is the maximum of the time complexities of P1 and P2. In a for loop of the form "for
v1 2 v2 loop P endloop", the time taken to iterate over all elements of set v2 is proportional to the number

of elements in set v2. Therefore the time complexity of the for-loop is O(jv2j+ 1) + �
jv2j
i=1ti, where ti is the

time taken for the ith iteration. There is no a priori bound on the number of iterations of the while and its
time complexity can only be determined by conventional algorithmic methods.

We have de�ned the Low SETL operational semantics in such a way that if a Low SETL program
cannot perform an associative access operation in O(1) time, then its evaluation (i.e. operational semantics

10a simple case analysis reveals that any derivation can have at most 6 rule applications

38

derivation) gets stuck. Therefore, if we could prove that the evaluation of a given Low SETL program P
cannot get stuck, then we can infer that the time complexity of execution of each associative access operation
in P is worst-case O(1) time on a pointer machine. In order to prove that the evaluation of a given Low
SETL program P cannot get stuck, we make use of a type system. In Section 2.5 we de�ne a type system for
Low SETL and prove that if a Low SETL program is well-typed, and if state � is consistent with the type
derivation for the program (in a sense to be made precise later), then the operational semantics derivation
for the Low SETL program starting in state � can never get stuck. Thus, we show that the well-typedness
of a Low SETL program ensures that every associative access operation in the program can be implemented
in O(1) time on a pointer machine.

2.5 Static Semantics (Type System)

The static semantics (type system) makes use of a type environment TE which is a map from variables to
types, i.e.

TE : Vars 7! Type :

2.5.1 Static Semantics for Expressions

The static semantics for the typing of expressions are given in Figure 2.11. The notation TE;C ` e : �

can be read as saying that the given occurrence of expression e in program P has type � under the type
environment TE and the set of subtype constraints C. Thus, the type derivation TE;C ` e : � deals with
the type of a particular occurrence of expression e in the context of a �xed program P . Therefore, it would be

more precise to use the notation TE;C `P el : � , where the subscript l in el refers to the label of expression

e (allowing this occurrence of expression e to be distinguished from other occurrences), and the subscript
P in `P indicates that the type derivation is in the context of program P . For the rest of this chapter,
unless otherwise stated, we will assume that the type derivations are in the context of some �xed Low SETL
program P . Therefore, the subscript P in `P will be omitted. Similarly, unless there is any confusion as to
which occurrence of an expression we are talking about, we will also safely omit the expression labels in the
type rules to be given later in this section.

Rule 2.80 says that the type of an occurrence of variable v as an expression11 is given by TE(v). According
to Rules 2.81 and 2.82, if v is a set of type set(�), expression 3 v is of type �, and if v is of type strong set(b)
(for some base type b), then expression 3 v is of type b.

Rule 2.83 has an important side condition. According to Rule 2.83, if variable v1 is a single-valued map
of type smap(�1; �2), then an occurrence of expression v1(v2) is well-typed, only if the occurrence of this
expression appears inside a loop of the form "for v2 2 domain(v1) loop : : : endloop", and v2 is of type �1.
Note that for the same type environment TE, an occurrence of expression v1(v2) that does not appear inside
a for-loop of the form "for v2 2 domain(v1) loop : : : endloop", would not be well-typed. Thus, it is possible
for one occurrence of an expression to be well-typed, and for another to be not well-typed under the same
type environment TE. Recall that Rule 2.83 corresponds to the case of self-access discussed in Section 2.2.4.

According to Rule 2.84, if v1 is a strongly based map, and v2 is of the appropriate base type, then the
expression v1(v2) is well-typed. Rule 2.85 just says that Low SETL expression om is of any type �. Finally,
Rule 2.86 is a type coercion rule, which says that if expression e is of base type b satisfying the subtype
constraint b < �, then expression e is also of type �.

2.5.2 Static Semantics for Boolean Expressions

The static semantics for the boolean expressions are given in Figure 2.12. According to Rule 2.87, the boolean
expression v1 2 v2 is well-typed only if v1 is an element of some base type b and v2 is a strongly based set
of type strong set(b). According to Rules 2.88 and 2.89, the boolean expression v1 == v2 is well-typed only

11Note that if variable v occurs on the left hand side of an assignment (e.g. v := e), then this occurrence of v is
not as an expression

39

TE;C ` e : �

TE;C ` v : TE(v) (2.80)

TE;C ` v : set(�)
TE;C ` 3 v : �

(2.81)

TE;C ` v : strong set(b)
TE;C ` 3 v : b

(2.82)

TE;C ` v1 : smap(�1; �2)
TE;C ` v2 : �1

TE;C ` v1(v2) : �2
where expression v1(v2) appears inside
for v2 2 domain(v1) loop : : : endloop

(2.83)

TE;C ` v1 : strong smap(b; �)
TE;C ` v2 : b

TE;C ` v1(v2) : �
(2.84)

TE;C ` om : � for all types � (2.85)

TE;C ` e : b
(b < � 2 C)
TE;C ` e : �

(2.86)

Figure 2.11: Static Semantics for Expressions

if both v1 and v2 are both of type int, or both v1 and v2 are of some base type b. Rules 2.90 and 2.91 say
that the boolean expression IsEmptySet(v) is well typed if v is an unbased, weakly based or strongly based
set. Rules 2.92 and 2.93 are the corresponding rules of IsEmptyMap(v).

2.5.3 Static Semantics for Commands

The static semantics for the commands is given in Figure 2.13. Most of the rules (with the possible exception
of Rules 2.95 and 2.97) are straightforward. Rules 2.95 and 2.97 require special explanation. As previously
mentioned, the Low SETL type system is somewhat non-standard in the following sense. For most standard
type systems it is possible to automatically perform type veri�cation. This is not possible for the Low SETL
type system because of the side conditions of Rules 2.95 and 2.97. Recall that the type derivation TE;C ` c
should be understood as the type derivation for a particular occurrence of command c in the context of a
�xed program P . The side conditions of Rules 2.95, and 2.97 cannot be veri�ed automatically because they
requires a proof that for all possible invlocations of program P , expression e cannot evaluate to a value
already in set v or in the domain of smap v1.

40

TE;C ` be : bool

TE;C ` v1 : b
TE;C ` v2 : strong set(b)
TE;C ` v1 2 v2 : bool

(2.87)

TE;C ` v1 : int
TE;C ` v2 : int

TE;C ` v1 == v2 : bool
(2.88)

TE;C ` v1 : b
TE;C ` v2 : b

TE;C ` v1 == v2 : bool
(2.89)

TE;C ` v : set(�)
TE;C ` IsEmptySet(v) : bool

(2.90)

TE;C ` v : strong set(b)
TE;C ` IsEmptySet(v) : bool

(2.91)

TE;C ` v : smap(�1; �2)
TE;C ` IsEmptyMap(v) : bool

(2.92)

TE;C ` v : strong smap(b; �2)
TE;C ` IsEmptyMap(v) : bool

(2.93)

Figure 2.12: Static Semantics for Boolean Expressions

However we feel that the use of such side conditions in the type rules for Low SETL is justi�ed because we
don't consider Low SETL as a language to be used for manual programming, but instead as an intermediate
language to which programs written in High SETL and SQ+ are translated. Later, we de�ne type systems
for High SETL and SQ+, and specify translations from High SETL and SQ+ to Low SETL along with
a proof that translations of well-typed High SETL and SQ+ programs always generate well-typed Low
SETL programs. Thus, Low SETL programs generated from well-typed High SETL and SQ+ programs are
guaranteed a priori to be well-typed, and therefore do not need to be type-checked. For example, consider
the case of the High SETL expression fx 2 SjK(x)g (called a set comprehension expression), which evaluates
to the set of elements x in S that satisfy the boolean-valued predicate K(x). The High SETL code fragment

T := f x 2 S | K(x) g

is translated into the following Low SETL implementation.

InitSet(T);

for x 2 S loop

if K(x) then

41

TE;C ` P

TE;C ` e : �
TE(v) = �

TE;C ` v := e
(2.94)

TE;C ` e : �0

TE(v1) = smap(�; �0); TE(v2) = �
TE;C ` v1(v2) := e

where one can prove v2 can never be an element
of domain(v1) prior to the execution of this command

(2.95)

TE;C ` e : �0

TE(v1) = strong smap(b; �0); TE(v2) = b
TE;C ` v1(v2) := e

(2.96)

TE;C ` e : �
TE(v) = set(�)

TE;C ` v with := e
where one can prove that the value that e evaluates to can never
be an element of set v prior to the execution of this command

(2.97)

TE;C ` e : b
TE(v) = strong set(b)
TE;C ` v op := e

(2.98)

TE;C ` v1 : �
TE;C ` v2 : set(�)
TE;C ` v1 from v2

(2.99)

TE;C ` v1 : b
TE;C ` v2 : strong set(b)

TE;C ` v1 from v2

(2.100)

Figure 2.13: Static Semantics for Commands (continued on the next page)

T with:= x

endif

endloop

Since T is initialized to the empty set before the loop, and set S, by de�nition, cannot contain multiple
copies of any element, we can easily infer that whenever the control ow reaches command T with:= x,
element x cannot be a member of set T .

For readers who are still uncomfortable with the side conditions on Rules 2.95 and 2.97, we propose
another way of looking at the type system. Consider an alternate type system which is the same as the one

42

TE(v) = set(�)
TE;C ` InitSet(v)

(2.101)

TE(v) = smap(�; �)
TE;C ` InitMap(v)

(2.102)

TE;C ` c
TE;C ` P
TE;C ` c;P

(2.103)

TE;C ` be : bool
TE;C ` P1

TE;C ` P2

TE;C ` if be then P1 else P2

(2.104)

TE;C ` be : bool
TE;C ` P

TE;C ` while be loop P endloop
(2.105)

TE(v2) = set(�); TE[v1 7! �]; C ` P
TE;C ` for v1 2 v2 loop P endloop

(2.106)

TE(v2) = strong set(b); TE[v1 7! b]; C ` P
TE;C ` for v1 2 v2 loop P endloop

(2.107)

TE(v2) = smap(�; �0); TE[v1 7! �]; C ` P
TE;C ` for v1 2 domain(v2) loop P endloop

(2.108)

TE(v2) = strong smap(b; �); TE[v1 7! b]; C ` P
TE;C ` for v1 2 domain(v2) loop P endloop

(2.109)

Figure 2.13: (continued) Static Semantics for Commands

presented here except that Rules 2.95 and 2.97 do not have any side conditions. Now, we have a type system
for which type checking can be done automatically. However, our �nal result, i.e. that the well-typedness
of a Low SETL program guarantees the implementation of associative access operations in O(1) time, is
no longer valid. Instead, we can prove that if a Low SETL program is well-typed, and if it can be shown
that for each application of Rule 2.95 expression e never evaluates to a value already in the domain of smap
v1, and for every application of Rule 2.97 expression e never evaluates to a value already in set v, then all
associative access operations in the program can be performed in O(1) time12. However, this way of looking

12From a pragmatic point of view, it would be possible to have a type-checker for such a type system, that in
addition to type-checking, would also produce a list of assertions that would need to be proven in order to guarantee
the correctness of an implementation in which all associative access operations are performed in O(1) time.

43

at the type system would not signi�cantly change any of the other results in this thesis.

2.6 Consistency between A State � and A Type Environment TE

The dynamic semantics of Low SETL make use of a state � and the static semantics make use of a type
environment TE. In this section, we de�ne a notion of consistency between a state � and a type environment
TE. A state � associates values with variables, and a type environment associates types with variables. A
state � may be thought of as being consistent with a type environment TE if the value associated with any
variable v under state � is of type TE(v). To be more precise, a state � associates not just values, but also
speci�c implementations with each variable. Therefore, our de�nition of consistency turns out to be a little
more complex since it also incorporates the requirement that all implementations be well-formed.

Our de�nition requires the introduction of a store typing ST which is a map from locations to types,
i.e. ST : Vloc 7! Type . Such a use of a store typing ST to relate the dynamic and static semantics of an
imperative language with a store is common (for example [108]). We say that a state �, a store typing ST , a
type environment TE and a set of subtype constraints C are well-formed with respect to each other (denoted
by j= �; C; ST; TE) i� the following conditions hold.

1. All variables are consistently typed in environment � and type environment TE, i.e.

domain(TE) � domain(�) ^

(8x 2 domain(TE)) (�(x) = l : � =) (ST (l) = � ^ TE(x) = � ^ l 2 domain())):

2. The type of the value corresponding to a location l matches the type ST (l), i.e.

domain() = domain(ST) and

(8l 2 domain()) (((l) 6= (lom)) =) extract((l)) 2 T [ST (l)]):

3. The labels int; base; set; strongset; smap; strongsmap should correctly match the store type ST for each
location, i.e.

(8l 2 domain())

(((l) = int(x) =) ST (l) = int)

^ ((l) = set(l1) =) ST (l) = set(�) for some �)

^ ((l) = smap(l1) =) ST (l) = smap(�1; �2) for some �1; �2)

^ ((l) = base(l1) =) ST (l) = b for some base type b)

^ ((l) = strongset(l1) =) ST (l) = strong set(b) for some base type b)

^ ((l) = strongsmap(l1) =) ST (l) = strong smap(b; �) for some b and �))

4. The sets should not have a member with the value unde�ned , should not have duplicate elements, and
the doubly linked list implementation of the set must be well-formed, i.e.

(8l 2 domain())

((l) = set(s) =)

(�rst(s) 6= ? =) (prev(�rst(s)) = ? ^ next(last(s)) = ?)) ^

(s0 = ComputeSet(s) =)

((8t 2 s0) ((t) 6= (lom))) ^

(8t1; t2 2 s
0) (t1 6= t2 () extract((t1)) 6= extract((t2))) ^

(t1 = prev (t2) () t2 = next(t1))))):

44

5. Similarly, the maps must be well-formed, i.e.

(8l 2 domain())

((l) = smap(s) =)

(�rst(s) 6= ? =) (prev(�rst(s)) = ? ^ next(last(s)) = ?)) ^

(s0 = ComputeSet(s) =)

((8t 2 s0) ((t) 6= (lom)) ^ (image(t) 6= ?) ^ ((image(t)) 6= (lom))) ^

(8t1; t2 2 s
0) (t1 6= t2 () extract((t1)) 6= extract((t2))) ^

(t1 = prev (t2) () t2 = next(t1))))):

6. Each distinct base record must correspond to a distinct value. The singly linked list of nodes for this
based record must not contain more than one node with the same identi�er. Moreover, if the singly
linked list contains a node with an identi�er v, then v must either be a strongly based set containing
this element, or a strongly based map containing this element in its domain.

(8l; l1; l2 2 domain())

� ST (l) = b =) (9l0 2 Vloc) ((l) = base(l0) ^ baseval (l0) 6= ? ^ baseval (l0) 6= lom)

� ((l1) = base(s1) ^ (l2) = base(s2)) =) (s1 6= s2 () extract((l1)) 6= extract((l2)))

� (ST (l) = b ^ s = ComputeNodes(l)) =) (8t1; t2 2 s)(t1 6= t2 () symb(t1) 6= symb(t2))

� (ST (l) = b ^ s = ComputeNodes(l)) =) ((8t 2 s) (9l0 2 domain()) (((l0) = strongset(s0) _
(l0) = strongsmap(s0)) ^ symb(s0) = symb(t) ^ (9t0 2 ComputeStrongSet(s0))((t0) = (l))))

7. The strongly based sets should be well-formed, i.e.

(8l 2 domain())

(ST (l) = strong set(b) ^ (l) = strongset(s) ^ s0 = ComputeStrongSet(s)) =)

(8t 2 s0) (ST (t) = b ^ (9t0 2 ComputeNodes(t)) (symb(t0) = symb(s) ^

prev (t0) = ? () �rst(s) = t ^

next(t0) = ? () last(s) = t))

(8t1; t2 2 s
0) ((t1) 6= (t2) ^ ((9t01 2 ComputeNodes(t1)) (next(t

0
1) = t2)) ()

((9t02 2 ComputeNodes(t2)) (prev (t
0
2) = t1)))

8. The strongly based maps should be well-formed, i.e.

(8l 2 domain())

(ST (l) = strong smap(b; �) ^ (l) = strongsmap(s) ^ s0 = ComputeStrongSet(s))

=)

(8t 2 s0) (ST (t) = b ^ (9t0 2 ComputeNodes(t)) (symb(t0) = symb(s) ^

image(t0) 6= ? ^

(image(t0)) 6= (lom) ^

prev (t0) = ? () �rst(s) = t ^

next(t0) = ? () last(s) = t))

(8t1; t2 2 s
0) ((t1) 6= (t2) ^ ((9t01 2 ComputeNodes(t1)) (next(t

0
1) = t2)) ()

((9t02 2 ComputeNodes(t2)) (prev (t
0
2) = t1)))

45

In Section 2.7 we use this notion of consistency between a state � and a type environment TE to
formulate a notion of consistency between the static and dynamic semantics, which leads to a proof that the
execution of a well-typed program cannot get stuck.

2.7 Execution of a Well-typed Program Cannot Get Stuck

Our goal is to prove that if P is a Low SETL program such that TE;C ` P , and state �, and store typing
ST are such that j= �; C; ST; TE, then the derivation sequence starting from h�; C; P i can never get stuck.
In order to prove this, we �rst prove theorems stating the consistency of static and dynamic semantics
of expressions and boolean expressions. Following that, we outline a proof of consistency of the static
and dynamic semantics for commands, which leads to a proof that the derivation sequence for well-typed
program, starting from any suitable state � that is consistent with the type environment TE, cannot get
stuck. Therefore, on the basis of the discussion at the end of Section 2.4, we can infer that the well-typedness
of a program guarantees an O(1) time implementation of all its associative access operations.

Theorem 2.7.1 (Consistency of Static and Dynamic Semantics for Expressions)

� If j= �; C; ST; TE, and TE;C ` e : � , and h�; C; ei
exp

�! l : � 0, then ((l) = (lom)) _ (extract((l)) 2
T [�])

Proof: The proof follows by a simple rule induction on the rules for the dynamic semantics of expres-
sions13. We consider here only the cases for Rules 2.12, 2.19, and 2.23. The other cases can be handled
similarly, and are omitted.

Rule 2.12: h�; C; vi
exp

�! �(v)

Let type environment TE, and store typing ST be such that j= �; C; ST; TE. There are only two
possible type derivations for v.

The �rst possible derivation is

TE;C ` v : TE(v)

Let �(v) = l : � 0. If (l) = (lom), then we are done. Otherwise, let TE(v) = � . Then, from
j= �; C; ST; TE, we have � = � 0 = ST (l) and extract((l)) 2 T [ST (l)], as required.

The second possible derivation for v is

TE;C ` v : b
(b < � 2 C)
TE;C ` v : �

This derivation requires the sub-derivation TE;C ` v : b which must necessarily follow from Rule 2.80,
since we do not allow subtype constraints of the form b1 < b2, where both b1 and b2 are base types.
Therefore, TE(v) must equal b. Again, let �(v) = l : � 0. If (l) = (lom), we are done. Otherwise,
j= �; C; ST; TE implies that ST (l) = b = � 0 and extact((l)) 2 T [b]. Furthermore, b < � 2 C implies
that T [b] = T [�]. Thus, extract((l)) 2 T [�], as required.

Rule 2.19:

h�; C; v2i
exp

�! l : �; (l) 6= (lom);

h�; C; v1i
exp

�! l1 : smap(�; �
0);

(l1) = smap(s)

h�; C; v1(v2)i
exp

�! image(l) : �0

where l 2 ComputeSet(s)

13it may also be thought of as induction on the depth of the dynamic evaluation

46

Let type environment TE, and store typing ST be such that j= �; C; ST; TE. Derivations of the form
TE;C ` v1(v2) : � can only be made only through Rules 2.83, 2.84, or 2.86.

Let us �rst consider the case when Rule 2.83 (as shown below) is used to get a derivation of the form
TE;C ` v1(v2) : � .

TE;C ` v1 : smap(�1; �2)
TE;C ` v2 : �1

TE;C ` v1(v2) : �2
where expression v1(v2) appears inside
for v2 2 domain(v1) loop : : : endloop

By the inductive hypothesis, we get that extract((l1)) 2 T [smap(�1; �2)] and extract((l)) 2 T [�1].
Using the fact that (l1) = smap(s), we get that

extract((l1)) = extract(smap(s))
= f[extract((t)); extract((image(t)))] :

t 2 ComputeSet(s)g:

Since, l 2 ComputeSet(s), we see that

[extract((l)); extract((image(l)))] 2 extract((l1)):

Furthermore,

extract((l1)) 2 T [smap(�1; �2)] =) extract((l1)) � T [�1]� T [�2]:

Thus, we get that extract((image(l))) 2 T [�2], as required.

Next, we show that it is impossible for the derivation TE;C ` v1(v2) : � to follow from Rule 2.84, i.e.

TE;C ` v1 : strong smap(b; �2)
TE;C ` v2 : b

TE;C ` v1(v2) : �2

Let the derivation TE;C ` v1(v2) : � follow from Rule 2.84, if possible. In this case there must be a
sub-derivation TE;C ` v1 : strong smap(b; �2), which must necessarily follow from Rule 2.80 (since
we can't have subtype constraints for the form b < strong smap(b; �2)). Therefore, TE(v1) must equal
strong smap(b; �2). Then, using the fact that j= �; C; ST; TE, we get �(v1) = l0 : strong smap(b; �2),
for some location l0. However, this would mean that it is impossible to have a derivation of the form

h�; C; v1i
exp

�! l1 : smap(�; �
0);

which is a contradiction.

Finally, we consider the case when the derivation TE;C ` v1(v2) : � follows from Rule 2.86. In
this case, the result follows from an argument very similar to the one for Rule 2.83, and is therefore
omitted.

Rule 2.23:

h�; C; ei
exp

�! l : b; b < � 2 C; (l) = base(l0)

h�; C; ei
exp

�! baseval (l0) : �

47

Let type environment TE, and store typing ST be such that j= �; C; ST; TE, and let TE;C ` e : � be
any type derivation for expression e. Using the inductive hypothesis, we see that extract((l)) 2 T [�].
Furthermore, using the fact that (l) = base(l0), we see that

extract((l)) = extract(base(l0)) = extract((baseval(l0))):

Thus, extract((baseval (l0))) 2 T [�], as required.

2

Theorem 2.7.2 (Consistency of Static and Dynamic Semantics for Boolean Expressions)

� If j= �; C; ST; TE, and TE;C ` be : bool, and h�; C; bei bool�! val, then val must be either abort, or
true, or false.

Proof Idea: The proof based on the use of Theorem 2.7.1 and an exhaustive case analysis for derivations
of the form h�; C; bei bool�! val is relatively straightforward, and is omitted. 2

The next goal is to prove that the static and dynamic semantics for commands are also consistent, which
will �nally lead us to a proof that if P is a well-typed program, and � is an initial state consistent with the
typing of the program, then the derivation sequence

h�; C; P i �! h�1; C; P1i �! : : : (2.110)

can never get stuck. In other words, the derivation sequence of a well-typed program is either in�nite or
ends in a terminating con�guration, but can never end in a stuck con�guration.

The conventional strategy (presented originally by Felliesen and Wright in the seminal paper [115]) to
prove such a result requires the following three steps

1. De�ne a notion of well-formedness of a con�guration.

2. Prove that well-formed con�gurations can only lead to well-formed con�gurations, i.e. a derivation
sequence starting from a well-formed con�guration may only contain well-formed con�gurations.

3. Prove that stuck con�gurations are inherently not well-formed

Then, it would logically follow that a derivation sequence starting from a well-formed con�guration cannot
lead to a stuck con�guration. The strategy that we shall employ will be very similar to the above strategy,
the only di�erence being Step 3, where instead of proving that all stuck con�gurations are inherently not well-
formed, we shall prove the contrapositive, i.e. a well-formed con�guration cannot be a stuck con�guration.

2.7.1 De�nition of Well-formedness of a Con�guration

In this section, we formulate a precise de�nition of well-formedness of a con�guration h�0; C; P 0i relative to
a well-typed program P . In this, and the later sections in this chapter, we will always assume that we are
talking in the context of a certain Low SETL program P having a type derivation TE;C ` P . The de�nition
of well-formedness will also be relative to the well-typed program P .

First, we de�ne a labeling for a command sequence (i.e. an assignment of labels to every occurrence of
a command in the command sequence) so that we can distinguish between distinct occurrences of identical
commands in a command sequence. A label l is a tuple of integers [t1; : : : tn]. The length of a label l of an
occurrence of a command c is 1 more than the nesting depth of c inside other commands. For example, a
command at the outermost level in a program will have a label of length 1. A command inside a while loop
at the outermost level will have a label of length 2.

We also de�ne three operations on labels. The �rst operation inc(l) returns a label by incrementing the
last integer in label l, i.e.

inc([t1; t2; : : : ; tn]) = [t1; t2; : : : ; (tn + 1)] (2.111)

48

The next operation trunc(l; i) is de�ned for labels of length greater than i and returns a label by removing
the last i integers from label l, i.e.

trunc([t1; : : : ; tn]; i) = [t1; : : : ; tn�i] where n > i (2.112)

Finally, we de�ne the function extend(l; t) that returns a new label by appending integer t to the end of
label l, i.e.

extend([t1; : : : ; tn]; t) = [t1; : : : ; tn; t] (2.113)

We also use extend(l; t; t0) as a shortcut for extend(extend(l; t); t0).
From now on, we assume that labels are a part of the command itself. Furthermore, given an occurrence

of a command c, we use L(c) to denote the label of c. For a sequence of one or more commands P 0, we use
L(P 0) to denote the label of the �rst command of P 0, i.e. if P 0 � c1, or P

0 � c1;P1, then L(P 0) = L(c1).
Below, we also de�ne two notions of what it means for a labeling of a command sequence to be Strongly

Consistent, and Weakly Consistent.

De�nition 2.7.3 Strongly Consistent Labeling

� A labeling of a command sequence P � c is said to be Strongly Consistent if the labeling of command
c is Strongly Consistent.

� A labeling of a command sequence P � c0;P 0 is said to be Strongly Consistent if the labelings of both
c0 and P 0 are Strongly Consistent, and L(P 0) = inc(L(c0)).

� A labeling for a commands v := e, v op := e, v1(v2) := e, v1 from v2, InitSet(v), or InitMap(v) is
always Strongly Consistent.

� A labeling for a command (c0 � "if be then P1 else P2") is said to be Strongly Consistent if the
labelings for P1 and P2 are Strongly Consistent, and

L(P1) = extend(L(c0); 1; 1); and L(P2) = extend(L(c0); 2; 1):

� A labeling for a command (c0 � "while be loop P endloop") is said to be strongly consistent if the
labeling for P is strongly consistent, and

L(P) = extend(L(c0); 1):

A similar de�nition applies to the for-loop.

It can be easily see that a Strongly Consistently labelled command sequence P must have distinct labels
for all distinct occurrences of commands. The Low SETL program shown along with the labels for each
command has a Strongly Consistent Labelling.

[1]: InitSet(U);

[2]: InitSet(V);

[3]: for x 2 S loop

[3,1]: if x 2 T then

[3,1,1,1]: U with:= x;

else

[3,1,2,1]: V with:= x;

endif

endloop

De�nition 2.7.4 Weakly Consistent Labeling

49

� A labeling of a command sequence P � c is said to be Weakly Consistent if the labeling of command
c is Strongly Consistent.

� A labeling of a command sequence P � c0;P 0 is said to be Weakly Consistent if it is either Strongly
Consistent, or the labeling of c0 is Strongly Consistent, the labeling of P 0 is Weakly Consistent, and

L(P 0) = trunc(L(c0); i); or L(P 0) = inc(trunc(L(c0); i))

for some integer i > 0.

Every Strongly Consistent labeling is also Weakly Consistent, but the converse is not true. In the case of
a Weakly Consistent labeling, distinct occurrences of syntactically identical commands may have the same
label. The labeling of the command sequence shown below is Weakly Consistent but not Strongly Consistent.

[3,1]: if x 2 T then

[3,1,1,1]: U with:= x;

else

[3,1,2,1]: V with:= x;

endif

[3]: for x 2 [a2; a3; : : : ; an] loop

[3,1]: if x 2 T then

[3,1,1,1]: U with:= x;

else

[3,1,2,1]: V with:= x;

endif

endloop

A closer look at the two examples shown above will reveal the relationship between a Strongly Consistent
and aWeakly Consistent labeling. The code in the second example could be the control part of a con�guration
after a derivation sequence of four steps, starting from a con�guration whose control part is the program in
the �rst example. Note that in the second example, distinct occurrences of the same command U with:= x

have the same label [3,1,1,1].
Note that any occurrence of a for-loop of the form "for v1 2 [a1; : : : ; an] loop P endloop" must arise from

some original for-loop of the form "for v1 2 v2 loop P endloop", or "for v1 2 domain(v2) loop P endloop".
The label for this newly generated for-loop is taken to be the same as the label of the original for-loop from
which it was generated using Rules 2.73, 2.74, 2.76, and 2.77.

Now we can give a precise de�nition of a well-formed con�guration h�0; C; P 0i relative to a well-typed
program P .

De�nition 2.7.5 Well-formed Con�guration
Let P be a Low SETL program with a Strongly Consistent labeling such that TE;C ` P , and let state �,
and store typing ST be such that j= �; C; ST; TE. We call con�guration h�; C; P i the start con�guration.
Let c1 be the �rst command in the sequence of commands P 0 (i.e. P 0 � c1, or P

0 � c1;P1). Then, we say
that the con�guration h�0; C; P 0i is well-formed relative to program P if

1. The con�guration h�0; C; P 0i is reachable by a derivation sequence from the start con�guration, i.e.

h�; C; P i
�
�! h�0; C; P 0i:

2. P 0 has a Weakly Consistent labeling.

3. The type derivation TE;C ` P contains a sub-derivation of the form TE0; C ` c1 for some type
environment TE0.

4. 9ST 0 � ST such that j= �0; C; ST 0; TE0.

Next we show that a derivation sequence starting from a well-formed con�guration can only lead to other
well-formed con�gurations, and that the starting con�guration h�; C; P i is well-formed.

50

2.7.2 Well-formed Con�gurations lead to Well-formed Con�gurations

We �rst prove that the control parts of all con�gurations seen in a derivation sequence starting from the
start con�guration must have a Weakly Consistent labeling.

Lemma 2.7.6 If command sequence P 0 has a Weakly Consistent labeling, and h�0; C; P 0i �! h�00; C; P 00i;
then

1. Command Sequence P 00 must also have a Weakly Consistent labeling.

2. the set of labels used in Command Sequence P 00 is a subset of those used in Command Sequence P 0.

3. if l1 = L(P 0), and l2 = L(P 00), then

l2 = inc(trunc(l1; i)) _ l2 = trunc(l1; i) for some integer i � 0 _
l2 = extend(l1; 1) _ l2 = extend(l1; 1; 1) _ l2 = extend(l1; 2; 1)

Proof: The proof follows by a simple structural induction on the command sequence P 0. Suppose, the
command sequence P 0 is just a single command c. Then the only possible derivations of the form h�0; C; ci �!
h�00; C; P 00i must use one of the Rules 2.67, 2.68, 2.71, 2.73, 2.74, 2.76, 2.77, or 2.78. In each case, it is easily
veri�ed that if command c has a Strongly Consistent labeling (which must be true for command sequence P 0

to have a Weakly Consistent labeling), then so does the command sequence P 00. It is also easily veri�ed that
the set of labels used in command sequence P 00 can only be a subset of those used in command sequence P 0.
In the case of Rules 2.67, and 2.68, the label l2 is either extend(l1; 1; 1) or extend(l1; 2; 1). In the case of
Rules 2.71, and 2.78, l2 = extend(l1; 1). In the case of Rules 2.73, 2.74, 2.76, and 2.77, l2 = l1(= trunc(l1; 0)).

The second case is when command sequence P 0 is of the form c1;P1. In that case, the only possible
derivation of the form h�0; C; P 0i �! h�00; C; P 00i must use one of the Rules 2.64, or 2.65. In the case of
Rule 2.64, P 00 is the same as P1 which must have a Weakly Consistent labeling since command sequence P 0

has a Weakly Consistent labeling. Furthermore, by the de�nition of a Weakly Consistent labeling, it must be
the case that l2 = inc(l1), or l2 = trunc(l1; i) or l2 = inc(trunc(l1; i)) for some integer i > 0. In the case of
Rule 2.65, we need to have a derivation of the form h�0; C; c1i �! h�

00; C; P 0
1i, which could again only come

from Rules 2.67, 2.68, 2.71, 2.73, 2.74, 2.76, 2.77, or 2.78. In each case, it is easily veri�ed that command
sequence P 00 has a Weakly Consistent Labeling and that the set of labels used in command sequence P 00 can
only be a subset of those used in command sequence P 0. For example, consider the case when the derivation
of h�0; C; c1i �! h�

00; C; P 0
1i uses Rule 2.67. In this case, the Strongly Consistent labeling for c1 implies a

Strongly Consistent labeling for Command Sequence P 0
1. Furthermore, the label of every command in P 0

1

must have label extend(L(c1); 1) as pre�x. Then, it can be shown that if c1;P1 has a weakly consistent
labeling, then so does P 0

1;P1 � P 00.
Also, the only possible values for label l2 in the second case (P

0 � c1;P1) are extend(l1; 1), extend(l1; 1; 1),
extend(l1; 2; 1), or l1. 2

Corollary 2.7.7 If program P has a Strongly Consistent labeling, and

h�; C; P i
�
�! h�0; C; P 0i;

then Command Sequence P 0 must have a Weakly Consistent Labeling, and the set of labels in command
sequence P 0 is a subset of those in program P .

Next we prove two lemmas and a theorem about the consistency of the static and dynamic seman-
tics of commands, that will be used to prove that well-formed con�gurations can only lead to well-formed
con�gurations.

Lemma 2.7.8 Let P be a well-typed Low SETL program having a strongly consistent labeling such that
TE;C ` P . Let c be a command occurring in program P . Then the type derivation TE;C ` P must include
a sub-derivation of the form TE0; C ` c for some type environment TE0.

51

Proof Idea: The proof follows by a simple structural induction on the program P . 2

Lemma 2.7.9 Let P be a well-typed Low SETL program having a strongly consistent labeling such that
TE;C ` P . Let c be the �rst command in program P , i.e. program P is either of the form c, or of the form
c;P 0 for some command sequence P 0. Then, the type derivation TE;C ` P must include a sub-derivation
of the form TE;C ` c.

Proof Idea: The proof again follows by a simple structural induction on the program P . 2

Theorem 2.7.10 (Consistency of Static and Dynamic Semantics for Commands)
Let P be a well-typed Low SETL program having a strongly consistent labeling such that TE;C ` P . Let

state �, and a store typing ST be such that j= �; C; ST; TE, and

h�; C; P i
�
�! h�0; C; P 0i;

From Corollary 2.7.7, L(P 0) must be the label of some command c in program P . Also from Lemma 2.7.8,
the derivation TE;C ` P must include a sub-derivation of the form TE0; C ` c. Then, there exists a store
typing ST 0 � ST such that j= �0; C; ST 0; TE0.

Proof: The proof follows by a long but relatively straightforward induction on the length of the derivation
sequence. The base case of the induction is the derivation sequence of length 0, which follows trivially from
Lemma 2.7.9. Let us consider a derivation sequence of length n, i.e.,

h�; C; P i
n�1
�! h�0; C; P 0i �! h�00; C; P 00i:

We consider the two possible cases where P 0 can either be of type c01 or c
0
1;P

0
1.

Case P 0 � c01: In this case the derivation step h�0; C; P 0i �! h�00; C; P 00i must use one of the Rules 2.67,
2.68, 2.71, 2.73, 2.74, 2.76, 2.77 or 2.78. We consider two of the cases below.

� Rule 2.67: In this case, c01 must be of the form "if be then P1 else P2", where h�
0; C; bei

exp

�! true.
In this case, P 00 = P1. Let the type sub-derivation for command c

0
1 be TE

0; C ` c01. Then, it is not
diÆcult to prove that this sub-derivation must further contain the sub-derivation TE0; C ` P1.
Moreover, by Lemma 2.7.6 and the de�nition of a weakly consistent labeling, we see that the
labeling of P1 must be strongly consistent. Then, if c

0
2 is the �rst command of P1, the type sub-

derivation for P1 must further contain a sub-derivation of the form TE0; C ` c02. Furthermore,
the resulting con�guration h�00; C; P 00i is the con�guration h�0; C; P1i. Thus, we just need to
prove that 9ST 00 � ST 0 such that j= �0; C; ST 00; TE0. From our induction hypothesis, we get
j= �0; C; ST 0; TE0, and choosing ST 00 to be ST 0, we get the result.

The cases for Rules 2.68 and 2.71 are similar to that for Rule 2.67. The cases for Rules 2.73,
2.74, 2.76 and 2.77 are trivial.

� Rule 2.78: Let c01 be of the form "for v1 2 [a1; : : : ; an] loop P1 endloop". In this case, the type
sub-derivation TE0; C ` c01 must include a sub-derivation TE0[v1 7! �]; C ` P1. So, we have
�00 = �0[�0 7! �0[v1 7! a1 : �]], and TE00 = TE0[v1 7! �]. Using the fact j= �0; C; ST 0; TE0 and
choosing ST 00 = ST 0, it is easy to show that j= �00; C; ST 00; TE00.

Case P 0 � c01;P
0
1: In this case the derivation step h�0; C; P 0i �! h�00; C; P 00i must use either Rule 2.64

or Rule 2.65. In the case of Rule 2.65, the arguments from the preceding case (Case P 0 � c01)
suÆce to prove the result. Let us consider the case if Rule 2.64 is used. In this case, we must have
h�0; C; c01i �! �00.

We can �rst consider the case when command c01 is one of v := e, v1(v2) := e, v op := e, v1 from v2,
InitSet(v), or InitMap(v). In this case, it is not diÆcult to prove that the label L(P 0

1) of P
0
1 must either

be of the form inc(trunc(l; i)) or trunc(l; i) for some integer i. Let c02 be the �rst command of P 0
1. It

52

is not diÆcult to prove that the type sub-derivation for command c02 in the original type derivation
must be of the form TE00; C ` c02, where domain(TE00) � domain(TE0), and 8v 2 domain(TE00) :
TE00(v) = TE0(v). Moreover, domain(TE0) � domain(TE00) can either be empty (i.e. TE00 = TE0)
or contain at most one variable which must be some loop iteration variable. In either case, it is not
diÆcult to show that 9ST 00 � ST 0 such that j= �00; C; ST 00; TE00.

The other case to consider is when command c01 is either a for or a while loop. In this case the
derivation step h�0; C; c01i �! �00 must use either Rule 2.70 or Rule 2.79. In either case, an argument
similar to the one in the previous paragraph suÆces to prove the result.

2

Theorem 2.7.11 Well-formed Con�gurations only lead to well-formed con�gurations
Let con�guration h�0; C; P 0i be a well-formed con�guration relative to program P , and let h�0; C; P 0i �!
h�00; C; P 00i. Then con�guration h�00; C; P 00i is well-formed.

Proof: We just need to verify that the four conditions given in De�nition 2.7.5 are satis�ed for the new
con�guration h�00; C; P 00i. The �rst condition follows from

h�; C; P i
�
�! h�0; C; P 0i �! h�00; C; P 00i:

The second condition follows from Lemma 2.7.6. The third condition follows from Lemmas 2.7.6 and 2.7.8.
The fourth condition follows from Theorem 2.7.10. 2

Theorem 2.7.12 The start con�guration h�; C; P i is well-formed.

Proof: Once again we just need to verify that the four conditions in De�nition 2.7.5 are satis�ed. The �rst
condition is trivially satis�ed. The second condition follows from the fact that P has a Strongly Consistent
labeling. The third condition follows from Lemma 2.7.9, and the fourth condition is satis�ed from the
assumptions about the start con�guration. 2

2.7.3 Well-formed Con�gurations cannot be Stuck

Lemma 2.7.13 Let P be a well-typed Low SETL program having a strongly consistent labeling such that
TE;C ` P . Let state �, and a store typing ST be such that j= �; C; ST; TE. Let h�; C; P i

n
�! h�0; C; P 0i

where we use
n
�! to denote n steps of the derivation sequence. Let L(P 0) = l0 = [t1; : : : tn], and let label l

be a proper pre�x of label l0 such that there exists some command c in the original program having label l.
Then, there exists an integer n1 < n such that

1. h�; C; P i
n1�! h�1; C; P1i

n�n1�! h�0; C; P 0i where L(P1) = l.

2. For every con�guration h�i; C; Pii along the path h�1; C; P1i
n�n1�! h�0; C; P 0i, label l is a proper pre�x

of label L(Pi).

Proof Idea: The proof follows easily from Lemma 2.7.6. 2

Lemma 2.7.14 Let P be a well-typed Low SETL program having a strongly consistent labeling such that
TE;C ` P . Let state �, and a store typing ST be such that j= �; C; ST; TE. Let program P contain a
for loop "for v1 2 domain(v2) loop : : : endloop" where TE(v2) = smap(�1; �2). Let command c be some

command inside this for loop. Let h�; C; P i
�
�! h�0; C; P 0i where L(P 0) = L(c). Then,

� 0(�0(v2)) = smap(s) for some location s such that �0(v1) 2 ComputeSet(s).

53

Proof Sketch: Let l = L(c) = L(P 0), and let

l0 = L(for v1 2 domain(v2) loop : : : endloop):

Since P has a strongly consistent labeling, label l0 must be a proper pre�x of label l. Then, by Lemma 2.7.13,
there must be an intermediate con�guration h�1; C; P1i such that L(P1) = l0, and such that all subsequent
con�gurations have label l0 as a proper pre�x. It is not diÆcult to prove that the property

0(�0(v2)) = smap(s) for some location s such that �0(v1) 2 ComputeSet(s)

holds for all such con�gurations, using the fact that no command inside the for loop "for v1 2 domain(v2)
loop : : : endloop" may cause modi�cation to the values of either v1 or v2. 2

Theorem 2.7.15 Let P be a well-typed Low SETL program having a strongly consistent labeling such that
TE;C ` P . Let state �, and a store typing ST be such that j= �; C; ST; TE. Then the derivation sequence
starting from con�guration h�; C; P i cannot get stuck. In other words, if

h�; C; P i
�
�! h�0; C; P 0i;

then there exists a con�guration h�00; C; P 00i such that

h�0; C; P 0i �! h�00; C; P 00i; or

h�0; C; P 0i �! �00; or h�0; C; P 0i �! abort :

Proof: The proof is based on an easily veri�able fact that if the con�guration h�; C; ci is not a stuck
con�guration, then the con�guration h�; C; c;P i is also not a stuck con�guration. Thus, in order to show
that a con�guration h�0; C; P 0i is not stuck, it suÆces to show that the con�guration h�0; C; c01i is not
stuck, where command c01 is the �rst command of command sequence P 0 (P 0 � c01, or P

0 � c01;P
0
1). Since

con�guration h�0; C; P 0i is well-formed, the type derivation TE;C ` P must contain a type sub-derivation
of the form TE0; C ` c01, and 9ST

0 � ST such that j= �0; C; ST 0; TE0.
We prove that the con�guration h�0; C; c01i cannot be stuck by a case analysis on command c01.

� c01 � v1 from v2, or c
0
1 � InitSet(v), or c01 � InitMap(v)

Using the fact that TE0; C ` c01, and j= �0; C; ST 0; TE0, it is easy to verify that the con�guration
h�0; C; c01i cannot be stuck.

� c01 � v := e, or c01 � v1(v2) := e, or c01 � v with := e, or c01 � v less := e

In this case, we �rst prove that the evaluation of expression e cannot get stuck in state �0, i.e either
h�0; C; ei

exp

�! l : � , or h�0; C; ei
exp

�! abort . If expression e is of the form v, om, or 3 v, it is easily
veri�ed from Rules 2.12, 2.13, 2.14, 2.15, 2.16, 2.17 and 2.18 that the evaluation of expression e in
state �0 cannot get stuck. The remaining case is when expression e is of the form v1(v2). In this
case, the type derivation TE0; C ` v1(v2) : � must use either Rule 2.83, or Rule 2.84. In the case of
Rule 2.84, v1 is a strongly based map and it is again easy to check that the derivation cannot get stuck.
In the case of Rule 2.83, the side condition ensures that expression v1(v2) appears inside a for-loop of
the form "for v2 2 domain(v1) loop : : : endloop", and therefore, we can make use of Lemma 2.7.14 to
check that evaluation of expression e does cannot get stuck.

Now that we know that the evaluation of expression e cannot get stuck, we need to make sure that
the evaluation of the command c01 can also not get stuck. The cases for c01 � v := e, c01 � v with := e,
and c01 � v less := e are easily veri�ed. In the case of c01 � v1(v2) := e, we again look at the type
derivation TE0; C ` c01, which must make use of either Rule 2.95, or 2.96. In case the derivation
uses Rule 2.96, it is again easy to check that the evaluation of command c01 doesn't get stuck. In the
case of Rule 2.95, the side-condition ensures that the value that v2 evaluates to cannot already be
an element of domain(v1). As a result, we know that the side-condition of Rules 2.40, and 2.41 (or
the other corresponding rule which was omitted) are satis�ed, which ensures that one of these rules is
applicable.

54

� c01 � if be then P1 else P2, or c
0
1 � while be loop P1 endloop

As in the previous case, we �rst need to prove that the evaluation of the boolean expression be cannot
get stuck in state �0. This follows easily from the fact that the evaluation of the expressions inside
the boolean expressions does not get stuck. Once we know that the evaluation of be doesn't get stuck,
it is trivial to verify that con�guration h�0; C; c01i is not stuck.

� c01 � for v1 2 v2 loop P endloop, or c01 � for v1 2 domain(v2) loop P endloop, or c01 � for v1 2
[a1; : : : an] loop P endloop

In all three cases, it is easily veri�ed that con�guration h�0; C; c01i cannot be stuck.

2

55

Chapter 3

High SETL

3.1 Introduction

In this thesis, we present three successively more abstract algorithm speci�cation languages called Low SETL,
High SETL, and SQ+, and show how these languages can help in algorithm explanation and discovery. In
Chapter 2, we de�ned Low SETL, the lowest level (i.e. least abstract) speci�cation language, and used a
type system to make Low SETL computationally transparent with respect to a pointer machine model of
computation. In this chapter, we present the next higher level speci�cation language, High SETL.

High SETL is a statically typed, imperative, executable superset of Low SETL augmented with such
abstract operations as set comprehension, quanti�cation, and a variety of operations on sets and binary
relations. Computational transparency is obtained for High SETL by implementing it in Low SETL. Since
only well-typed Low SETL programs are computationally transparent, we need to ensure that the Low SETL
implementations of High SETL are well-typed. We do this by de�ning a new type system for High SETL
and de�ning a translation from High SETL to Low SETL such that the translation of well-typed High SETL
programs is always guaranteed to generate well-typed Low SETL.

The cost of computing High SETL expressions may be determined in two ways. One way is to determine
the cost of fresh evaluation of High SETL expressions by looking at a direct implementation in Low SETL.
The other way is to use �nite di�erencing transformations [70, 68], in which repeated evaluation of costly
High SETL expressions is replaced by their less expensive incremental counterparts, in order to reduce the
cumulative cost of the repeated evaluation of these expressions. The cost of these di�erential calculations
are determined by associating precise amortized complexities with an eager strategy for maintaining equality
invariants v = E(x1; : : : ; xn)

1 with respect to worst-case sequences of modi�cations to variables x1; : : : ; xn.
By an eager strategy, we mean that each time a modi�cation to any of the variables x1; : : : ; xk occurs,
variable v is updated to re-establish the invariant.

In this chapter, we will only consider the cost of fresh evaluation of High SETL expressions. The second
approach, i.e., the di�erential (incremental) computation of High SETL expressions will be considered in
Chapter 6.

3.2 Extended Type System For Low SETL

In Chapter 2, we de�ned a type system for Low SETL in which the set of types included special types called
base types, integers, booleans, sets, single-valued maps, strongly based sets and strongly based single-valued
maps. We now extend the Low SETL type system to additionally include multi-valued maps, and �xed-
length tuples (or k-tuples). The new set of types Type is given by the types derivable from � in the Grammar
in 3.1.

1where E(x1; : : : ; xn) denotes a High SETL expression with input variables x1; : : : ; xn

56

� ::= bool j � j strong set(b) j strong smap(b; �) j strong mmap(b; �) j �1 � �2 � : : :� �k
� ::= int j b j set(�1) j smap(�1; �2) j mmap(�1; �2) j �1 � �2 � : : :� �k

(3.1)

We de�ne a set of types ComparableType to be the subset of Type , whole elements can be compared for
equality in O(1) time. The set ComparableType contains types derivable from � in the Grammar in 3.2.

� ::= int j b j�1 � �2 � : : :� �k (3.2)

Values of type int and a base type b can be compared for equality in O(1) times. Assuming that value of
each of the type �1, �2, : : : , and �k are comparable for equality in O(1) time, and k is a �nite constant, it
is clear that values of type �1 � �2 � : : :� �k can also be compared for equality in O(1) time.

We extend Low SETL with expressions ffxg and t[i] corresponding to multi-valued maps and �xed-
length tuples. Expression ffxg returns the image of element x under a multi-valued map f , i.e. the set
fv : 9[u; v] 2 f j u = xg, and expression t[i] returns the ith component of the k-tuple t if i is a literal constant
between 1 and k. We also extend Low SETL with commands ffxg := e, t[i] := e, and InitTuple(t; k), where
k is a literal constant. Command InitTuple(t; k) initializes t to a tuple of length k each of whose entries
is initially om (unde�ned). The extension of the dynamic and static semantics, and the extension of the
proof of computational transparency of Low SETL in the presence of these additional types, expressions and
commands is straightforward, and is omitted.

3.3 High SETL

High SETL is a superset of Low SETL containing abstract expressions such as set comprehension, quanti�ed
expressions, etc. Figure 3.1 shows the syntax for High SETL boolean expressions K, expressions E (which
from now onwards are assumed to include boolean expressions), commands c, and command sequences P .
It is easy to verify from the syntax of High SETL that it is a superset of Low SETL.

An informal explanation of High SETL constructs is as follows. The boolean expression 9x 2 s j K
(respectively 8x 2 s j K) evaluates to true if there exists some element x in set s satisfying the boolean
predicate K (respectively, if all elements x in set s satisfy predicate K). The High SETL operators [, \,
�,] are the set union, intersection, di�erence, and disjoint union operators respectively. The operator =
is the map-override operator, i.e. if f and g are two maps, then expression f=g evaluates the map h such
that h(x) = g(x) whenever x 2 domain(g), and h(x) = f(x) otherwise. The expression #s evaluates to the
cardinality of set s. Given a map f , expression ToSet(f) evaluates to a set of pairs representation of map f .
Similarly, given a set of pairs s, expression ToMap(s) evaluates to a map representation of the set of pairs s.
Expressions domain(f) and range(f) evaluate to sets containing elements in the domain and range of map f
respectively. Expression f Æ g evaluates to a map which equals the composition of maps f and g. Expression
f js evaluates to a map h where h(x) = f(x) if x 2 s, and h(x) = om otherwise. Expression f [s] evaluates
to the set [x2sffxg. Expression f

�1 evaluates to the inverse of map f . Note that the subset of High SETL
containing only High SETL expressions is purely functional, i.e. does not have any side-e�ects.

The High SETL expressions s] t,]x2sE and High SETL command v] := E require a special mention.
A High SETL program is considered erroneous if variables s and t in the expression s] t can evaluate to
sets which are non-disjoint. It is the responsibility of the programmer to prove that whenever the expression
s] t is evaluated during the execution of the program, s and t must evaluate to disjoint sets. The same
disjointness condition also applies to expression]x2sE, and command v] := E.

In this chapter we de�ne a new static type-system for High SETL, and de�ne a translation from High
SETL to Low SETL. Moreover, we prove that the translation of all non-erroneous2 well-typed High SETL
programs leads only to well-typed Low SETL programs. Note that the well-typedness of a High SETL

2in the sense that all disjointness conditions in expressions s]t,]x2sE, and command v] := E should be satis�ed
at run-time

57

s; t; f; g; u; x; x1; : : : ; v; v1; : : : : Variable Names
E;E1; E2; : : : : High SETL expressions
K;K1;K2; : : : : High SETL boolean expressions
c; c1; : : : : High SETL Commands
P; P1; : : : : High SETL Command Sequences
op : with j less j [j \ j � j] j =

K ::= s 2 t j s == t j IsEmptySet(s) j IsEmptyMap(f) j
(9x 2 sjK1) j (8x 2 sjK1) j if K1 then K2 else K3 endif j
:K1 j K1 ^K2 j K1 _K2 j Let v = E in K

E ::= K j
x j 3 s j f(x) j ffxg j u[i] j om j
s [t j s \ t j s� t j s� t j #s j s] t j ToSet(f) j ToMap(s) j
domain(f) j range(f) j f Æ g j (f js) j f [s] j f

�1 j f=g j
[x2sE j \x2s E j]x2s E j Let v = E1 in E2 j if K then E1 else E2 endif j
fE : x1 2 E1; x2 2 E2; : : : ; xn 2 En j Kg

P ::= c j c;P

c ::= v := E j v1(v2) := E j v1fv2g := E j v[i] := E j v op := E j
v1 from v2 j InitSet(v) j InitMap(v) j InitTuple(v; i) j
if K then P1 else P2 endif j while K loop P endloop j
for v1 2 v2 loop P endloop j
for v1 2 domain(v2) loop P endloop

Figure 3.1: Syntax of High SETL

program does not guarantee that it is non-erroneous. It is the responsibility of the programmer to prove
that the program is non-erroneous. If the program is non-erroneous, then the well-typedness of a High SETL
program guarantees that the translation from High SETL to Low SETL will always generate well-typed Low
SETL programs.

In Section 3.4 we present a set of type rules for High SETL expressions. In Section 3.5 we de�ne a
translation from well-typed High SETL expressions to Low SETL and prove that the generated Low SETL
implementations are guaranteed to be well-typed. In Section 3.6 we present a set of type rules for High
SETL commands, and in Section 3.7 we de�ne a translation from well-typed High SETL programs to Low
SETL and again prove that the generated Low SETL implementations are guaranteed to be well-typed.

3.4 Type System for High SETL Expressions

The type rules for High SETL expressions are given below. We use type judgments of the form TE;C `
H

E : � for a High SETL expression E, where TE is a type environment (map from variables to types), and
C is a set of subtype constraints. We say that a High SETL expression E is well-typed in the environment
TE with the set of subtype constraints C, if there exists a type derivation for TE;C `

H
E : � .

Although the type judgments for the High SETL type system look similar to those for Low SETL, there
is one important di�erence between the two. A type judgment TE;C `

H
E : � for a High SETL expression

is independent of the context that expression E appears in. On the other hand, a Low SETL type derivation
is always applied in the context of a particular Low SETL program. The Low SETL type system involves
judgments of the form TE;C `P P 0, which means the command sequence P 0 (appearing inside a Low SETL
program P) is well-typed in the context of program P . The context (i.e. the program P) is important because

58

of the presence of type rules such as

TE;C ` e : �
TE(v) = set(�)

TE;C ` v with := e

where one can prove that the value that e evaluates to can never
be an element of set v prior to the execution of this command

(3.3)

in which the side-condition must hold in the context of program P . Thus, the well-typedness of a particular
command sequence P 0 is not independent of the context (program P) that it appears in. For example, it is
possible that TE;C `P1

P 0, while TE;C 6`P2
P 0, i.e. the command sequence P 0 is well-typed in the context

of a Low SETL program P1 but not well-typed in the context of another Low SETL program P2. A Low
SETL program P is well-typed if there exists a type derivation for TE;C `P P (i.e. the entire command
sequence P is well-typed in the context of program P). This context dependence in the Low SETL type
system makes the system non-compositional. By eliminating this context dependence from the High SETL
type system, we get a type system that is compositional3.

The type inference rules for High SETL expressions are given below. Rules 3.4-3.10 are similar to the
type rules for Low SETL expressions.

TE;C `
H
v : TE(v) (3.4)

TE;C `
H
v : set(�)

TE;C `
H
3 v : �

(3.5)

TE;C `
H
v : strong set(b)

TE;C `
H
3 v : b

(3.6)

TE;C `
H
v1 : strong smap(b; �)

TE;C `
H
v2 : b

TE;C `
H
v1(v2) : �

(3.7)

TE;C `
H
v1 : strong mmap(b; �)

TE;C `
H
v2 : b

TE;C `
H
v1fv2g : set(�)

(3.8)

TE;C `
H
v1 : �1 � �2 � : : :� �k

TE;C `
H
v1[i] : �i

where i is an integer
literal between 1 and k

(3.9)

TE;C `
H
om : � for all types � (3.10)

3A side-e�ect of de�ning a compositional type system for High SETL is that although syntactically High SETL is
a superset of Low SETL, every well-typed Low SETL program is not necessarily a well-typed High SETL programs.
However this does not imply that Low SETL programs can express programs that cannot be expressed in High
SETL. Both Low SETL and High SETL are Turing Complete, and therefore are equally expressive. It just means
that certain well-typed Low SETL programs are not well-typed according to the High SETL type system, but that
there exist other well-typed High SETL programs that are semantically equivalent to these Low SETL programs.

59

TE;C `
H
s : set(b) or strong set(b)

TE;C `
H
t : set(b) or strong set(b)

TE;C `
H
s [t : set(b) and strong set(b)

(3.11)

Rule 3.11 is a short form for the following eight di�erent rules in which the types of s, t, and s [t may be
either set(b), or strong set(b). Rule 3.11 should be read as saying that both types set(b) and strong set(b)
are acceptable for expression s [t to be well-typed if each of the sets s and t is a weakly or strongly based
set of type set(b) or strong set(b).

TE;C `
H
s : set(b)

TE;C `
H
t : set(b)

TE;C `
H
s [t : set(b)

TE;C `
H
s : strong set(b)

TE;C `
H
t : set(b)

TE;C `
H
s [t : set(b)

TE;C `
H
s : set(b)

TE;C `
H
t : strong set(b)

TE;C `
H
s [t : set(b)

TE;C `
H
s : strong set(b)

TE;C `
H
t : strong set(b)

TE;C `
H
s [t : set(b)

TE;C `
H
s : set(b)

TE;C `
H
t : set(b)

TE;C `
H
s [t : strong set(b)

TE;C `
H
s : strong set(b)

TE;C `
H
t : set(b)

TE;C `
H
s [t : strong set(b)

TE;C `
H
s : set(b)

TE;C `
H
t : strong set(b)

TE;C `
H
s [t : strong set(b)

60

TE;C `
H
s : strong set(b)

TE;C `
H
t : strong set(b)

TE;C `
H
s [t : strong set(b)

As in the case of Rule 3.11, we will use such short forms wherever possible.

TE;C `
H
s : set(b1 � b2 � : : :� bn)

TE;C `
H
t : set(b1 � b2 � : : :� bn)

TE;C `
H
s [t : set(b1 � b2 � : : :� bn)

where n � 2 (3.12)

According to Rule 3.12, if s and t are both sets of type set(b1 � b2 � : : : � bn), then expression s [t is a
well-typed High SETL expression of the same type.

TE;C `
H
s : set(b) or strong set(b)

TE;C `
H
t : set(b) or strong set(b)

TE;C `
H
s \ t : set(b) and strong set(b)

(3.13)

TE;C `
H
s : set(b1 � b2 � : : :� bn)

TE;C `
H
t : set(b1 � b2 � : : :� bn)

TE;C `
H
s \ t : set(b1 � b2 � : : :� bn)

where n � 2 (3.14)

TE;C `
H
s : set(b) or strong set(b)

TE;C `
H
t : set(b) or strong set(b)

TE;C `
H
s� t : set(b) and strong set(b)

(3.15)

TE;C `
H
s : set(b1 � b2 � : : :� bn)

TE;C `
H
t : set(b1 � b2 � : : :� bn)

TE;C `
H
s� t : set(b1 � b2 � : : :� bn)

where n � 2 (3.16)

Rules 3.13 and 3.15 are short form for eight di�erent rules, and say that if both sets s and t are weakly or
strongly based sets of type set(b) or strong set(b), then the expressions s \ t and s� t are also well-typed.
Similarly, according to Rules 3.14 and 3.16, if s and t are sets of type set(b1� b2� : : :� bn), then expressions
s \ t and s� t are well-typed High SETL expressions of the same type.

TE;C `
H
s : set(�1)

TE;C `
H
t : set(�2)

TE;C `
H
s� t : set(�1 � �2)

(3.17)

TE;C `
H
s : strong set(b1)

TE;C `
H
t : set(�2)

TE;C `
H
s� t : set(b1 � �2)

(3.18)

TE;C `
H
s : set(�1)

TE;C `
H
t : strong set(b2)

TE;C `
H
s� t : set(�1 � b2)

(3.19)

61

TE;C `
H
s : strong set(b1)

TE;C `
H
t : strong set(b2)

TE;C `
H
s� t : set(b1 � b2)

(3.20)

TE;C `
H
s : set(�) or strong set(b)

TE;C `
H
#s : int

(3.21)

Rule 3.21 is short form for two di�erent rules.

TE;C `
H
s : set(�)

TE;C `
H
t : set(�)

TE;C `
H
s] t : set(�)

where � is not a base type (3.22)

TE;C `
H
s : set(b) or strong set(b)

TE;C `
H
t : set(b) or strong set(b)

TE;C `
H
s] t : set(b) and strong set(b)

(3.23)

Rule 3.23 is short form for eight di�erent rules.

TE;C `
H
f : smap(�1; �2)

TE;C `
H
ToSet(f) : set(�1 � �2)

(3.24)

TE;C `
H
f : strong smap(b1; �2)

TE;C `
H
ToSet(f) : set(b1 � �2)

(3.25)

TE;C `
H
f : mmap(�1; �2)

TE;C `
H
ToSet(f) : set(�1 � �2)

(3.26)

TE;C `
H
f : strong mmap(b1; �2)

TE;C `
H
ToSet(f) : set(b1 � �2)

(3.27)

TE;C `
H
s : set(b1 � �2)

TE;C `
H
ToMap(s) : mmap(b1; �2) and strong mmap(b1; �2)

(3.28)

Rule 3.28 is a short form for two di�erent rules.

TE;C `
H
f : smap(�1; �2)

TE;C `
H
domain(f) : set(�1)

where �1 is not a base type (3.29)

62

TE;C `
H
f : smap(b1; �2) or strong smap(b1; �2)

TE;C `
H
domain(f) : set(b1) and strong set(b1)

(3.30)

Rule 3.30 is a short form for four rules.

TE;C `
H
f : mmap(�1; �2)

TE;C `
H
domain(f) : set(�1)

where �1 is not a base type (3.31)

TE;C `
H
f : mmap(b1; �2) or strong mmap(b1; �2)

TE;C `
H
domain(f) : set(b1) and strong set(b1)

(3.32)

Rule 3.32 is a short form for four rules.

TE;C `
H
f : smap(�1; b2) or strong smap(b1; b2)

TE;C `
H
range(f) : set(b2) and strong set(b2)

(3.33)

Rule 3.33 is short form for four rules.

TE;C `
H
f : mmap(�1; b2) or strong mmap(b1; b2)

TE;C `
H
range(f) : set(b2) and strong set(b2)

(3.34)

Rule 3.34 is short form for four rules.

TE;C `
H
g : smap(�1; b2)

TE;C `
H
f : smap(b2; �3) or strong smap(b2; �3)
TE;C `

H
f Æ g : smap(�1; �3)

where �1 is not a base type (3.35)

Rule 3.35 is short form for two rules.

TE;C `
H
g : smap(b1; b2) or strong smap(b1; b2)

TE;C `
H
f : smap(b2; �3) or strong smap(b2; �3)

TE;C `
H
f Æ g : smap(b1; �3) and strong smap(b1; �3)

(3.36)

Rule 3.36 is short form for eight rules.

TE;C `
H
g : mmap(�1; b2)

TE;C `
H
f : smap(b2; b3) or strong smap(b2; b3)

TE;C `
H
f Æ g : mmap(�1; b3)

where �1 is not a base type (3.37)

Rule 3.37 is short form for two rules. Note that in Rule 3.37, it is very important that the elements of
the range of f be of some base type b3 rather than any type �3. The reason can be understood as follows.
Consider an element x1 belonging to the domain of map g. Since map g is multi-valued, the expression
gfxg may evaluate to a set containing more than one element. Suppose gfxg evaluates to the set fy1; y2g.

63

Suppose both y1 and y2 are in the domain of map f . Then, by de�nition, the image of element x in map f Æg
is ff(y1); f(y2)g if f(y1) 6= f(y2), and ff(y1)g if f(y1) = f(y2). Therefore, the values f(y1) and f(y2) must
be eÆciently comparable for equality. In general, if gfxg evaluates to fy1; : : : ; yng, we will need to construct
a set ff(y1); : : : ; f(yn)g. In order to do this eÆciently, we require that the elements of the range of map f
(i.e. elements like f(y1), f(y2), etc.) be of some base type. Similar requirements are true for Rules 3.38,
3.41 and 3.42 below.

TE;C `
H
g : mmap(b1; b2) or strong mmap(b1; b2)

TE;C `
H
f : smap(b2; b3) or strong smap(b2; b3)

TE;C `
H
f Æ g : mmap(b1; b3) and strong mmap(b1; b3)

(3.38)

Rule 3.38 is short form for eight rules.

TE;C `
H
g : smap(�1; b2)

TE;C `
H
f : mmap(b2; �3) or strong mmap(b2; �3)
TE;C `

H
f Æ g : mmap(�1; �3)

where �1 is not a base type (3.39)

Rule 3.39 is short form for two rules.

TE;C `
H
g : smap(b1; b2) or strong smap(b1; b2)

TE;C `
H
f : mmap(b2; �3) or strong mmap(b2; �3)

TE;C `
H
f Æ g : mmap(b1; �3) and strong mmap(b1; �3)

(3.40)

Rule 3.40 is short form for eight rules.

TE;C `
H
g : mmap(�1; b2)

TE;C `
H
f : mmap(b2; b3) or strong mmap(b2; b3)
TE;C `

H
f Æ g : mmap(�1; b3)

where �1 is not a base type (3.41)

Rule 3.41 is short form for two rules.

TE;C `
H
g : mmap(b1; b2) or strong mmap(b1; b2)

TE;C `
H
f : mmap(b2; b3) or strong mmap(b2; b3)

TE;C `
H
f Æ g : mmap(b1; b3) and strong mmap(b1; b3)

(3.42)

Rule 3.42 is short form for eight rules.

TE;C `
H
f : smap(b; �) or strong smap(b; �)

TE;C `
H
s : set(b) or strong set(b)

TE;C `
H
(f js) : smap(b; �) and strong smap(b; �)

(3.43)

TE;C `
H
f : mmap(b; �) or strong mmap(b; �)

TE;C `
H
s : set(b) or strong set(b)

TE;C `
H
(f js) : mmap(b; �) and strong mmap(b; �)

(3.44)

Rules 3.43 and 3.44 are short forms for eight rules each.

64

TE;C `
H
f : smap(b1; b2) or strong smap(b1; b2)

TE;C `
H
s : set(b1) or strong set(b1)

TE;C `
H
(f [s]) : set(b2) and strong set(b2)

(3.45)

TE;C `
H
f : mmap(b1; b2) or strong mmap(b1; b2)

TE;C `
H
s : set(b1) or strong set(b1)

TE;C `
H
(f [s]) : set(b2) and strong set(b2)

(3.46)

Rules 3.45 and 3.46 are short forms for eight rules each.

TE;C `
H
f : smap(�1; b2)

TE;C `
H
f�1 : mmap(b2; �1) and strong mmap(b2; �1)

(3.47)

Rule 3.47 is short form for two rules.

TE;C `
H
f : strong smap(b1; b2)

TE;C `
H
f�1 : mmap(b2; b1) and strong mmap(b2; b1)

(3.48)

Rule 3.48 is short form for two rules.

TE;C `
H
f : mmap(�1; b2)

TE;C `
H
f�1 : mmap(b2; �1) and strong mmap(b2; �1)

(3.49)

Rule 3.49 is short form for two rules.

TE;C `
H
f : strong mmap(b1; b2)

TE;C `
H
f�1 : mmap(b2; b1) and strong mmap(b2; b1)

(3.50)

Rule 3.50 is short form for two rules.

TE;C `
H
f : smap(b1; �2) or strong smap(b1; �2)

TE;C `
H
g : smap(b1; �2) or strong smap(b1; �2)

TE;C `
H
f=g : smap(b1; �2) and strong smap(b1; �2)

(3.51)

Rule 3.51 is short form for eight rules.

TE;C `
H
f : mmap(b1; �2) or strong mmap(b1; �2)

TE;C `
H
g : mmap(b1; �2) or strong mmap(b1; �2)

TE;C `
H
f=g : mmap(b1; �2) and strong mmap(b1; �2)

(3.52)

Rule 3.52 is short form for eight rules.

65

TE;C `
H
E : b

(b < � 2 C)
TE;C `

H
E : �

(3.53)

TE;C `
H
E1 : �1

TE[v 7! �1]; C `H E2 : �2
TE;C `

H
Let v = E1 in E2 : �2

(3.54)

TE;C `
H
K : bool

TE;C `
H
E1 : �

TE;C `
H
E2 : �

TE;C `
H
if K then E1 else E2 endif : �

(3.55)

TE;C `
H
s : set(�)

TE[x 7! �]; C `
H
E : set(b1) or strong set(b1)

TE;C `
H
[x2sE : set(b1) and strong set(b1)

(3.56)

Rule 3.56 is short form for four di�erent rules.

TE;C `
H
s : set(�)

TE[x 7! �]; C `
H
E : set(b1 � b2 � : : :� bn)

TE;C `
H
[x2sE : set(b1 � b2 � : : :� bn)

where n � 2 (3.57)

TE;C `
H
s : set(�)

TE[x 7! �]; C `
H
E : set(b1) or strong set(b1)

TE;C `
H
\x2sE : set(b1) and strong set(b1)

(3.58)

Rule 3.58 is short form for four di�erent rules.

TE;C `
H
s : set(�)

TE[x 7! �]; C `
H
E : set(b1 � b2 � : : :� bn)

TE;C `
H
\x2sE : set(b1 � b2 � : : :� bn)

where n � 2 (3.59)

TE;C `
H
s : set(�)

TE[x 7! �]; C `
H
E : set(�0)

TE;C `
H
]x2sE : set(�0)

(3.60)

(8i = 1; : : : ; n) TE[(8j = 1; : : : ; i� 1) xj 7! tj]; C `H Ei : set(�i) or strong set(bi)
TE[(8i = 1; : : : ; n) xi 7! ti]; C `H K : bool

TE;C `
H
f[x1; : : : ; xn] : x1 2 E1; : : : ; xn 2 En j Kg : set(t1 � : : :� tn)

where tj is �j or bj depending on whether the type of
Ej is set(�j) or strong set(bj)

(3.61)

66

(8i = 1; : : : ; n) TE[(8j = 1; : : : ; i� 1) xj 7! tj]; C `H Ei : set(�i) or strong set(bi)
TE[(8i = 1; : : : ; n) xi 7! ti]; C `H E : �

TE[(8i = 1; : : : ; n) xi 7! ti]; C `H K : bool
TE;C `

H
f[[x1; : : : ; xn]; E] : x1 2 E1; : : : ; xn 2 En j Kg : smap(t1 � : : :� tn; �)

where tj is �j or bj depending on whether the type of
Ej is set(�j) or strong set(bj)

(3.62)

(8i = 1; : : : ; n) TE[(8j = 1; : : : ; i� 1) xj 7! tj]; C `H Ei : set(�i) or strong set(bi)
TE[(8i = 1; : : : ; n) xi 7! ti]; C `H E : b

TE[(8i = 1; : : : ; n) xi 7! ti]; C `H K : bool
TE;C `

H
fE : x1 2 E1; : : : ; xn 2 En j Kg : set(b) and strong set(b)

where tj is �j or bj depending on whether the type of
Ej is set(�j) or strong set(bj)

(3.63)

(8i = 1; : : : ; n) TE[(8j = 1; : : : ; i� 1) xj 7! tj]; C `H Ei : set(�i) or strong set(bi)
TE[(8i = 1; : : : ; n) xi 7! ti]; C `H E : b
TE[(8i = 1; : : : ; n) xi 7! ti]; C `H E0 : b0

TE[(8i = 1; : : : ; n) xi 7! ti]; C `H K : bool
TE;C `

H
f[E;E0] : x1 2 E1; : : : ; xn 2 En j Kg : mmap(b; b

0) and strong mmap(b; b0)

where tj is �j or bj depending on whether the type of
Ej is set(�j) or strong set(bj)

(3.64)

TE;C `
H
E1 : set(b1) or strong set(b1)

TE[x 7! b1]; C `H E : �
TE[x 7! b1]; C `H K : bool

TE;C `
H
f[x;E] : x 2 E1g : strong smap(b1; �)

(3.65)

TE;C `
H
E1 : set(�1)

TE[x1 7! �1]; C `H E2 : set(�2) or strong set(b2)
TE[x1 7! �1; x2 7! t2]; C `H K : bool

TE;C `
H
f[x1; x2] : x1 2 E1; x2 2 E2 j Kg : mmap(�1; t2)

where t2 is �2 or b2 depending on whether the type of
E2 is set(�2) or strong set(b2)

(3.66)

TE;C `
H
E1 : set(b1) or strong set(b1)

TE[x1 7! �1]; C `H E2 : set(�2) or strong set(b2)
TE[x1 7! �1; x2 7! t2]; C `H K : bool

TE;C `
H
f[x1; x2] : x1 2 E1; x2 2 E2 j Kg : strong mmap(b1; t2)

where t2 is �2 or b2 depending on whether the type of
E2 is set(�2) or strong set(b2)

(3.67)

67

(8i = 1; : : : ; n) TE[(8j = 1; : : : ; i� 1) xj 7! tj]; C `H Ei : set(�i) or strong set(bi)
TE[(8i = 1; : : : ; n) xi 7! ti]; C `H E : �

TE[(8i = 1; : : : ; n) xi 7! ti]; C `H K : bool
TE;C `

H
fE : x1 2 E1; : : : ; xn 2 En j Kg : set(�)

where tj is �j or bj depending on whether the type of
Ej is set(�j) or strong set(bj)

(3.68)

Recall that � represents the set of types ComparableType (given by the Grammar in 3.2) that consist
of a subset of Type whose elements can be compared for equality in O(1) time. Note that Rule 3.68 is
di�erent from Rule 3.63, since it does not require that expression E evaluate to a value of a base type.
We just require that expression E evaluate to a value of ComparableType . Since every base type b is a
ComparableType , Rule 3.68 is actually a strict generalization of Rule 3.63. However, the two rules (3.63
and 3.68) have been separated because they correspond to di�erent Low SETL implementations having
di�erent time complexities. As will be seen in Section 3.8.1, the Low SETL implementation corresponding
to Rule 3.63 is more eÆcient than that of Rule 3.68.

TE;C `
H
s : b

TE;C `
H
t : strong set(b)

TE;C `
H
s 2 t : bool

(3.69)

TE;C `
H
s : �

TE;C `
H
t : �

TE;C `
H
s == t : bool

(3.70)

As in the case of Rule 3.68, � represents the set of types ComparableType .

TE;C `
H
s : set(�) or strong set(b)

TE;C `
H
IsEmptySet(s) : bool

(3.71)

Rule 3.71 is short form for two rules

TE;C `
H
f : smap(�1; �2) or strong smap(b1; �2)

TE;C `
H
IsEmptyMap(f) : bool

(3.72)

Rule 3.72 is short form for two rules.

TE;C `
H
f : mmap(�1; �2) or strong mmap(b1; �2)
TE;C `

H
IsEmptyMap(f) : bool

(3.73)

Rule 3.73 is short form for two rules.

68

TE;C `
H
s : set(�)

TE[x 7! �]; C `
H
K : bool

TE;C `
H
(9x 2 s j K) : bool

(3.74)

TE;C `
H
s : strong set(b)

TE[x 7! b]; C `
H
K : bool

TE;C `
H
(9x 2 s j K) : bool

(3.75)

TE;C `
H
s : set(�)

TE[x 7! �]; C `
H
K : bool

TE;C `
H
(8x 2 s j K) : bool

(3.76)

TE;C `
H
s : strong set(b)

TE[x 7! b]; C `
H
K : bool

TE;C `
H
(8x 2 s j K) : bool

(3.77)

TE;C `
H
K1 : bool

TE;C `
H
K2 : bool

TE;C `
H
K3 : bool

TE;C `
H
if K1 then K2 else K3 endif : bool

(3.78)

TE;C `
H
K : bool

TE;C `
H
:K : bool

(3.79)

TE;C `
H
K1 : bool

TE;C `
H
K2 : bool

TE;C `
H
(K1 ^K2) : bool

(3.80)

TE;C `
H
K1 : bool

TE;C `
H
K2 : bool

TE;C `
H
(K1 _K2) : bool

(3.81)

TE;C `
H
E : �

TE[v 7! �]; C `
H
K : bool

TE;C `
H
Let v = E in K : bool

(3.82)

69

3.5 Low SETL Implementations of Well-Typed High SETL Ex-
pressions

In this section we de�ne how well-typed High SETL expressions can be implemented in Low SETL. The
implementations of well-typed High SETL expressions are de�ned inductively on the type derivation of the
expression. Di�erent type derivations correspond to di�erent implementations. Moreover, we prove that the
Low SETL code generated from well-typed High SETL is always well-typed (in the Low SETL type system).
This proof is also by induction on the type derivation of the High SETL expression.

Recall from our discussion at the beginning of Section 3.4 that the Low SETL type system is non-
compositional because the type rules only make sense in the context of a particular program. As a result,
the following simple inductive argument for proving that Low SETL implementations of well-typed High
SETL expressions are also well-typed does not suÆce. The simple inductive argument is as follows. Let
P1 and P2 be Low SETL implementations corresponding to the High SETL commands v1 := E1, and
v2 := E2 respectively (i.e. P1 and P2 are used to evaluate expressions E1 and E2 respectively, and assign
the results to v1 and v2 respectively). For simplicity, assume that v1 does not appear in E1 and v2 does
not appear in E2. Let the inductive hypothesis be that both programs P1 and P2 are well-typed. i.e.
TE;C `P1

P1, and TE;C `P2
P2. Now consider the Low SETL implementation P3 of the High SETL

command v2 := (Let v1 := E1 in E2). As we shall see later in this section, P3 is simply the concatenation
of programs P1 and P2, i.e. P1;P2. The goal of our inductive argument is to prove that program P3 is well-
typed, i.e. TE;C `P3

P3. In order to do this, we would need to prove that TE;C `P3
P1, and TE;C `P3

P2.
At this point we get stuck because the inductive hypothesis TE;C `P1

P1 and TE;C `P2
P2 is insuÆcient

to prove that TE;C `P3
P1 and TE;C `P3

P2 since the Low SETL type system is not compositional.
To get around this diÆculty, we use an inductive argument that proves a stronger result about the

well-typedness of the Low SETL implemenations of well-typed High SETL expressions. The stronger result
is as follows. Let P1 be the Low SETL implementation of an arbitrary High SETL expression E. We will
prove that command sequence P1 is well-typed in the context of all Low SETL programs P that contain
P1. The formal statement of this claim is made in Theorem 3.5.1. In the proof of Theorem 3.5.1, we
simultaneously de�ne the Low SETL implementation of expression E and prove the well-typedness property
of this implementation by induction on the type derivation of expression E.

Theorem 3.5.1 Let E be a High SETL expression such that TE;C `
H
E : � . Let P1 be the Low SETL

code fragment evaluating expression E, and assigning the result to variable v0 (assumed to be distinct from
all variables appearing in expression E including its bound variables). Let P1 be the sequence of commands
c1; c2; : : : ; cn, and let P2 be any Low SETL program containing P1 as a sub-program, i.e. containing the
consecutive sequence of commands c1; c2; : : : ; cn. Assume that the disjointness constraints imposed by the
appearance of operator] in expression E are satis�ed in all execution instances of program P2

4. Then,

9TE0 � TE such that TE0; C `P2
ci; for all i = 1; : : : n:

In particular, if P2 is P1, then TE;C `P1
P1, i.e. the Low SETL program P1 implementing the High SETL

command v0 := E is well-typed.
The Low SETL code fragment P1 evaluating expression E may use some temporary variables in addi-

tion to variable v0 (to which the result is assigned), and the variables appearing in expression E. Moreover,
domain(TE0) � domain(TE) contains only these temporary variables, the bound variables appearing in ex-
pression E, and the variable v0. Furthermore, TE0(v0) = � .

Proof: We shall use rule induction (or induction on the length of the type derivation) for both

1. de�ning the Low SETL implementation of High SETL expressions, and

2. proving the well-typedness of the generated Low SETL code sequence in the context of any program
P2 containing the code sequence.

4For example, if E is the expression s] t, then assume that for all execution instances of program P2, s and t

evalaute to disjoint sets whenever the control reaches command c1

70

Consider the last rule (any one of Rules 3.4-3.82) that is used in the type derivation of TE;C `
H
E : � .

� Rules 3.4-3.10

In the case of Rules 3.4-3.10, the High SETL expression E is also a Low SETL expression, and the
Low SETL implementation of v0 := E (where v0 is distinct from all variables occurring in expression
E) is simply

v' := E;

Let P2 be any command sequence containing the command v0 := E, and choose TE0 = TE[v0 7! �].
In the case of each of the Rules 3.4-3.10, it is easy to verify that TE0; C `P2

v0 := E. Moreover,
domain(TE0)� domain(TE) contains only the variable v0, and TE0(v0) = � .

� Rule 3.11

As mentioned earlier, Rule 3.11 is short form for eight di�erent rules. Consider the four rules repre-
sented by:

TE;C `
H
s : set(b) or strong set(b)

TE;C `
H
t : set(b) or strong set(b)

TE;C `
H
s [t : strong set(b)

The Low SETL implementation of v0 := s [t for these rules is

InitSet(v');

for x 2 s loop

v' with:= x

endloop;

for y 2 t loop

v' with:= y

endloop

Let the above Low SETL implementation be denoted by the command sequence c1; c2; c3, where c1 is
the command InitSet(v0), and commands c2 and c3 are the two for-loops. Let P2 be any Low SETL
program containing the sequence of commands c1; c2; c3. Choosing TE

0 = TE[v0 7! strong set(b)], it
is not diÆcult to prove that

TE0; C `P2
ci for i = 1; 2; 3.

Moreover, domain(TE0)� domain(TE) = v0, and TE0(v0) = strong set(b).

The other four rules corresponding to Rule 3.11 are represented by

TE;C `
H
s : set(b) or strong set(b)

TE;C `
H
t : set(b) or strong set(b)

TE;C `
H
s [t : set(b)

In this case the Low SETL implementation for v0 := s [t is

71

InitSet(v');

InitSet(temp);

for x 2 s loop

temp with:= x;

endloop;

for y 2 t loop

temp with:= y

endloop;

for z 2 temp loop

v' with:= temp;

endloop

where temp is a newly generated temporary variable.

Let the above code fragment be the command sequence c1; c2; c3; c4; c5, and once again let P2 be any
Low SETL program containing this sequence of commands. Choosing TE0 = TE[v0 7! set(b); temp 7!
strong set(b)], once again it is easy to show that

TE0; C `P2
ci for i = 1; : : : ; 5.

Moreover, the only variables in domain(TE0)�domain(TE) are v0 and temp, which is a newly generated
temporary variable, and TE0(v0) = set(b).

� Rule 3.12

We �rst consider the case when sets s and t are of type set(b1 � b2). We present some pseudo-code
below that can easily be transformed into a Low SETL implementation of v0 := s [t.

InitSet(v');

InitSet(temp1); -- temp1: set((b1 x b2) x int)

for x 2 s loop

temp1 with:= [x,1] -- we can prove that [x,1] is not in temp1

endloop;

for y 2 t loop

temp1 with:= [y,2] -- we can prove that [y,2] is not in temp1

endloop;

InitSet(temp2); -- temp2: mmap(b1-strong, (b1 x b2) x int)

for z 2 temp1 loop

temp2fz[1][1]g with:= z -- we can prove that z is not

-- in temp2fz[1][1]g
endloop;

for u 2 domain(temp2) loop

InitSet(temp3); -- temp3: set(b2-strong)

for w 2 temp2fug loop

if w[1][2] 62 temp3 then

v' with:= w[1]; -- we can prove that w[1] is not in v'

temp3 with:= w[1][2]

endif

endloop

endloop

The comments in the above pseudo-code indicate the types of the temporary variables temp1, temp2,
and temp3 that are required to prove the well-typedness of the Low SETL program. The rest of the
proof is long but straightforward, and is omitted. The other types set(b1 � b2 � : : :� bn) where n > 2
can also be handled similarly, and are omitted.

72

� Rule 3.13

Once again Rule 3.13 is short form for eight rules. Consider the rule

TE;C `
H
s : set(b)

TE;C `
H
t : set(b)

TE;C `
H
s \ t : set(b)

The Low SETL implementation of v0 := s \ t corresponding to this rule is

InitSet(v');

InitSet(temp);

for x 2 s loop

temp with:= x;

endloop;

for y 2 t loop

if y 2 temp then

v' with:= y;

endif;

endloop

where temp is a newly generated temporary variable.

Let the above code fragment be denoted by the command sequence c1; c2; c3; c4, and let P2 be
any Low SETL program containing this code sequence. Choosing TE0 = TE[v0 7! set(b); temp 7!
strong set(b)], it is again easy to prove that

TE0; C `P2
ci for all i = 1; : : : ; 4:

Moreover, the only variables in domain(TE0)�domain(TE) are v0 and temp, which is a newly generated
temporary variable, and TE0(v0) = set(b).

Another rule corresponding to Rule 3.13 is

TE;C `
H
s : set(b)

TE;C `
H
t : strong set(b)

TE;C `
H
s \ t : set(b)

In this case the Low SETL implementation is

InitSet(v');

for x 2 s loop

if x 2 t then

v' with:= x

endif

endloop

In this case we chose TE0 = TE[v0 7! set(b)], and the rest of the proof follows easily.

The Low SETL implementation and the proof for the other six rules corresponding to Rule 3.13 are
similar to the two cases considered above, and are omitted.

73

� Rule 3.14

The proof for this case uses a combination of the ideas used to prove the cases for Rules 3.12 and 3.13,
and is omitted.

� Rule 3.15

Once again Rule 3.15 is short form for eight rules. Consider the rule

TE;C `
H
s : set(b)

TE;C `
H
t : set(b)

TE;C `
H
s� t : strong set(b)

The Low SETL implementation for v0 = s� t in this case is

InitSet(v');

for x 2 s loop

v' with:= x

endloop;

for y 2 t loop

v' less:= y

endloop

Choosing TE0 = TE[v0 7! strong set(b)], the rest of the proof follows easily.

Another rule corresponding to Rule 3.15 is

TE;C `
H
s : set(b)

TE;C `
H
t : strong set(b)

TE;C `
H
s� t : set(b)

In this case the Low SETL implementation is

InitSet(v);

for x 2 s loop

if :(x 2 t) then

v with:= x

endif

endloop

Choosing TE0 = TE[v0 7! set(b)], the rest of the proof follows easily. The implementations and proof
for the other six rules corresponding to Rule 3.15 are similar, and are omitted.

� Rule 3.16

The proof for this case uses a combination of the ideas used to prove the cases for Rules 3.12 and 3.15,
and is omitted.

� Rules 3.17-3.20

In each of these cases the Low SETL implementation of v0 := s� t is

74

InitSet(v');

for x 2 s loop

for y 2 t loop

InitTuple(temp,2);

temp[1] := x;

temp[2] := y;

v' with:= temp

endloop

endloop

where temp is a newly generated temporary variable.

In the case of Rule 3.17, choosing TE0 = TE[v0 7! set(�1��2); temp 7! �1��2], the rest of the proof
follows easily. Similarly, in the case of Rule 3.18, choose TE0 = TE[v0 7! set(b1��2); temp 7! b1��2],
in the case of Rule 3.19, choose TE0 = TE[v0 7! set(�1 � b2); temp 7! �1 � b2], and in the case of
Rule 3.20, choose TE0 = TE[v0 7! set(b1 � b2); temp 7! b1 � b2]. The proofs follow easily and are
omitted.

� Rule 3.21

The Low SETL implementation and proof are both straightforward and omitted.

� Rules 3.22-3.23

The Low SETL implementation of v0 := s] t corresponding to Rule 3.22 is

InitSet(v');

for x 2 s loop

v' with:= x

endloop;

for y 2 t loop

v' with:= y

endloop

Let the above Low SETL code-fragment be denoted by the code-sequence c1; c2; c3, and let P2 be any
Low SETL program containing the above code-sequence. Moreover, we assume that all executions of
program P2 satisfy the disjointness of sets s and t whenever control reaches command c1. In this case,
choosing TE0 to be TE[v0 7! set(�)], it is easily shown that

TE0; C `P2
ci for i = 1; 2; 3:

The rest of the proof and other cases corresponding to Rule 3.23 are straightforward, and are omitted.

� Rules 3.24-3.27

The Low SETL implementation of v0 := ToSet(f); corresponding to Rule 3.24 is

InitSet(v');

for x 2 domain(f) loop

InitTuple(temp,2);

temp[1] := x;

temp[2] := f(x);

v' with:= temp

endloop

75

Choosing TE0 = TE[v0 7! set(�1��2); temp 7! �1��2], the rest of the proof follows easily. Rules 3.25-
3.27 can be handled similarly, and are omitted.

� Rule 3.28

Rule 3.28 is short form for two rules. Consider the case for the following rule

TE;C `
H
s : set(b1 � �2)

TE;C `
H
ToMap(s) : strong mmap(b1; �2)

The Low SETL implementation of v0 := ToMap(s) corresponding to the above rule is

InitMap(v');

for x in s loop

temp1 := x[1];

temp2 := x[2];

temp3 := v'ftemp1g;
if temp3 == om then -- i.e. temp1 not in domain(v')

InitSet(temp3);

endif

temp3 with:= temp2;

v'ftemp1g := temp3;

endloop

Choosing TE0 to be

TE[v0 7! strong mmap(b1; �2); temp1 7! b1; temp2 7! �2; temp3 7! set(�3)];

the rest of the proof follows easily. The second rule corresponding to Rule 3.28 can be handled similarly,
and is omitted.

� Rules 3.29-3.34

The Low SETL implementations and the corresponding proofs for Rules 3.29-3.34 are straightforward,
and are omitted.

� Rules 3.35-3.42

Rules 3.35-3.42 correspond to forty type rules. We will look at the illustrative case of just one rule

TE;C `
H
g : mmap(�1; b2)

TE;C `
H
f : strong mmap(b2; b3)

TE;C `
H
f Æ g : mmap(�1; b3)

The Low SETL implementation of v0 := f Æ g corresponding to the above rule is

InitMap(v');

InitSet(temp1);

InitSet(temp4);

for x 2 domain(g) loop

-- sets temp1 and temp4 are always empty on entry to the loop

temp2 = gfxg;

76

for y 2 temp2 loop

temp3 = ffyg;
if temp3 != om then

for z 2 temp3 loop

temp1 with:= z

endloop

endif

endloop

if !IsEmpty(temp1) then

for w 2 temp1 loop

temp4 with:= w

endloop

v'fxg := temp4;

InitSet(temp4);

InitSet(temp1)

endif

endloop

Choosing TE0 = TE[v0 7! mmap(�1; b3); temp1 7! strong set(b3); temp4 7! set(b3); temp2 7!
set(b2); temp3 7! set(b3)], the rest of the proof is not diÆcult. The other cases are similar, and are
omitted.

� Rules 3.43-3.52

The Low SETL implementations and proofs corresponding to Rules 3.43-3.52 are straightforward, and
are omitted.

� Rule 3.53

The proof and Low SETL implementation for this case is also straightforward, and is also omitted.

� Rule 3.54

TE;C `
H
E1 : �1

TE[v 7! �1]; C `H E2 : �2
TE;C `

H
Let v = E1 in E2 : �2

where v 62 domain(TE)

By the induction hypothesis, let PE1
be the Low SETL code fragment implementing v := E1 corre-

sponding to the type derivation of TE;C `
H
E1 : �1, and let PE2

be the Low SETL code fragment
implementing v0 := E2 corresponding to the type derivation of TE[v 7! �1]; C `H E2 : �2. Then
the Low SETL implementation of v0 := Let v = E1 in E2 corresponding to the type derivation of
TE;C `

H
Let v = E1 in E2 : �2 is simply the concatenation of the code fragments PE1

, and PE2
, i.e.

PE1
;PE2

.

Let PE1
be the command sequence c1; : : : cn, and let PE2

be the command sequence c01; : : : c
0
m. Let

P1 denote the concatenation of programs PE1
and PE2

, i.e. the code sequence c1; : : : cn; c
0
1; : : : c

0
m. Let

P2 be any Low SETL program containing P1 as a sub-program. Since PE1
and PE2

are themselves
sub-programs of P1, they must also be sub-programs of P2. Therefore, it follows from the induction
hypothesis that 9 TE0

1 � TE such that

TE0
1; C `P2

ci for all i = 1; : : : ; n;

and that 9 TE0
2 � TE[v 7! �1] such that

TE0
2; C `P2

c0j for all j = 1; : : : ;m:

77

Moreover, domain(TE0
1) � domain(TE) contains only temporary and bound variables besides the

variable v, and TE0
1(v) = �1. Similarly, domain(TE0

2) � domain(TE[v 7! �1]) also contains only
temporary and bound variables besides the variable v0, and TE0

2[v
0] = �2. By ensuring that the

temporary variables in the PE1
are di�erent from those in PE2

and also renaming the bound variables
such that all bound variables are distinct, it is easy to prove that TE0 = TE0

1 [TE
0
2 is also a valid

type-environment. Furthermore, it is easy to prove that

TE0; C `P2
ci for all i = 1; : : : ; n;

and that

TE0; C `P2
c0j for all j = 1; : : : ;m:

Finally, we see that domain(TE0)� domain(TE) only contains the variables v0, v (which is the bound
variable of the High SETL expression "Let v = E1 in E2"), and other temporary variables. Finally,
since TE0

2[v
0] = �2, it follows that TE

0[v0] = �2.

� Rule 3.55

TE;C `
H
K : bool

TE;C `
H
E1 : �

TE;C `
H
E2 : �

TE;C `
H
if K then E1 else E2 endif : �

By the induction hypothesis, let PK be the Low SETL code fragment implementing vK := K cor-
responding to the type derivation of TE;C `

H
K : bool, let PE1

be the Low SETL code fragment
implementing v0 := E1 corresponding to the type derivation of TE;C `H E1 : � , and let PE2

be the Low
SETL code fragment implementing v0 := E2 corresponding to the type derivation of TE;C `

H
E2 : � .

Let PK be the command sequence c1; c2; : : : cl, let PE1
be the command sequence c01; c

0
2; : : : c

0
m, and

let PE2
be the command sequence c001 ; c

00
2 ; : : : ; c

00
n. Then the Low SETL implementation of v0 :=

if K then E1 else E2 endif corresponding to the type derivation of TE;C `H if K then E1 else E2 endif :
� is

PK ; if (vK == true) then PE1
else PE2

endif, or, in other words

c1; c2; : : : cl; if (vK == true) then c01; c
0
2; : : : c

0
m else c001 ; c

00
2 ; : : : ; c

00
n endif

We use P1 to denote the above code fragment. Let P2 be any Low SETL program containing P1 as
a sub-program. Then P2 also contains PK , PE1

, and PE2
as sub-programs. Therefore, 9TE0

1 � TE
such that

TE0
1; C `P2

ci for all i = 1; : : : ; l;

9TE0
2 � TE such that

TE0
2; C `P2

c0i for all i = 1; : : : ;m;

and 9TE0
3 � TE such that

TE0
3; C `P2

c00i for all i = 1; : : : ; n:

By ensuring that all the temporary variables generated in the implementation of K, E1, and E2 are
distinct, and also ensuring that all the bound variables in K, E1 and E2 are also distinct, it is easy to

78

prove that TE0 = TE0
1 [TE

0
2 [TE

0
3 is a valid type environment, TE0(vK) = bool, and TE0(v0) = � .

Then, it follows that

TE0; C `P2
ci for all i = 1; : : : ; l;

and

TE0; C `P2
if (vK == true) then c01; c

0
2; : : : c

0
m else c001 ; c

00
2 ; : : : ; c

00
n endif:

� Rule 3.56

Rule 3.56 is short form for 4 rules. Consider the case of the following rule

TE;C `
H
s : set(�)

TE[x 7! �]; C `
H
E : set(b)

TE;C `
H
[x2sE : strong set(b)

Let PE be the Low SETL implementation of vE := E. Then, the following is the Low SETL imple-
mentation of v0 := [x2sE.

InitSet(v');

for x 2 s loop

PE;
for y 2 vE loop

v' with:= y

endloop

endloop

The rest of the proof is straightforward, and is omitted.

� Rule 3.57

Let us consider the case when n = 2, i.e. the rule is

TE;C `
H
s : set(�)

TE[x 7! �]; C `
H
E : set(b1 � b2)

TE;C `
H
[x2sE : set(b1 � b2)

Let PE be the Low SETL implementation of vE := E. We present some pseudo-code below that can
easily be transformed into a Low SETL implementation of v0 = [x2sE.

InitSet(v');

InitSet(temp1); -- temp1: set((b1 x b2) x �)
for x 2 s loop

PE;
for y 2 vE loop

temp1 with:= [y,x] -- we can prove that [y,x] is not in temp1

endloop

endloop;

InitSet(temp2); -- temp2: mmap(b1-strong, (b1 x b2) x �)
for z 2 temp1 loop

79

temp2fz[1][1]g with:= z -- we can prove that z is not

-- in temp2fz[1][1]g
endloop;

for u 2 domain(temp2) loop

InitSet(temp3); -- temp3: set(b2-strong)

for w 2 temp2fug loop

if w[1][2] 62 temp3 then

v' with:= w[1]; -- we can prove that w[1] is not in v'

temp3 with:= w[1][2]

endif

endloop

endloop

The comments in the above pseudo-code indicate the types of the temporary variables temp1, temp2,
and temp3 that are required to prove the well-typedness of the Low SETL program. The rest of the
proof is long but straightforward, and is omitted. The other types set(b1 � b2 � : : :� bn) where n > 2
can also be handled similarly, and are omitted.

� Rules 3.58-3.60

The proofs are similar to the proofs for Rules 3.56 and 3.57, and are omitted.

� Rule Schemas 3.61-3.64 and Rules 3.65-3.67

Consider the rule schema

(8i = 1; : : : ; n) TE[(8j = 1; : : : ; i� 1) xj 7! tj]; C `H Ei : set(�i) or strong set(bi)
TE[(8j = 1; : : : ; n) xj 7! tj]; C `H K : bool

TE;C `
H
f[x1; : : : ; xn] : x1 2 E1; : : : ; xn 2 En j Kg : set(t1 � : : :� tn)

where tj is �j or bj depending on whether type of Ej is set(�j) or strong set(bj)

Let PEi denote the Low SETL implementation of the High SETL assignment vEi := Ei corresponding
to the type derivation of TE[(8j = 1; : : : ; i� 1) xj 7! tj]; C `H Ei : set(�i) or strong set(bi). Let PK
denote the Low SETL implementation of vK := K corresponding to the type derivation of TE[(8j =
1; : : : ; n) xj 7! tj]; C `H K : bool. Then, the Low SETL implementation of v0 := f[x1;�; xn] : x1 2
E1; : : : ; xn 2 En j Kg corresponding to the above type derivation is

InitSet(v');

PE1
;

for x1 2 vE1
loop

PE2
;

for x2 2 vE2
loop

...

PEn;
for xn 2 vEn loop

PK;

if (vK == true) then

v' with:= [x1; : : : ; xn]
endif

endloop
...

endloop

endloop

80

Let P1 denote the above code fragment, and let P2 be any Low SETL program containing the code
fragment P1. The well-typedness of the above Low SETL code fragment may be proved as follows.
From TE[(8j = 1; : : : ; n) xj 7! tj]; C `H K : bool, it follows that

9TE0
K � TE[(8j = 1; : : : ; n) xj 7! tj] such that TE0

K ; C `P2
PK :

Choosing TE0
En

= TE0
K [f[v

0 7! set(t1 � : : :� tn); (8j = 1; : : : ; n)xj 7! tj]g, it is easy to show that

TE0
En
; C `P2

(PK ; if vK == true then PE ; v
0 with := [x1; : : : ; xn] endif):

Similarly, it can also be shown that

TE0
En
[xn 7! ?; vEn 7! set(�n) or strong set(bn)]; C `P2

(for xn 2 vEn loop : : : endloop):

Proceeding in this fashion, it is easy to prove that

9TE0 � TE such that TE0; C `P2
P1;

and that TE0(v0) = set(t1 � : : :� tn).

The proof for Rule Schemas 3.62-3.64 and Rules 3.65-3.67 are based on the same idea and are omitted.

� Rule Schema 3.68

The only di�erence in this case from Rule Schema 3.63 is that expression E is not guaranteed to
evaluate to value of a base type. Let PE be the Low SETL implementation of vE := E. Then, the
implementation of v0 := fE : x1;2 E1; : : : ; xn 2 En j Kg is the same as that in the case of Rule
Schema 3.61 above except that the assignment v0 := [x1;�; xn] inside the innermost look is replaced
by the following code fragment.

PE;
temp1 = true;

for temp2 2 v' loop

if (temp2 == vE) then

temp1 = false

endif

endloop;

if (temp1) then

v' with:= vE
endif

Note that since both variables temp2 and vE will be of some type �, therefore, the boolean expression
temp2 == vE will be well-typed. Moreover, vE is added to set v0 only after verifying that it isn't
already a member. Thus, the command v0 with :=vE in the new implementation is well-typed. The
rest of the proof is similar to proof for the case of Rule Schema 3.61, and is omitted.

� Rules 3.69-3.73

The proof and the Low SETL implementations corresponding to these rules are trivial, and are omitted.

� Rules 3.74-3.77

Consider the rule

81

TE;C `
H
s : set(�)

TE[x 7! �]; C `
H
K : bool

TE;C `
H
(9x 2 s j K) : bool

Let PK denote the Low SETL implementation of vK := K corresponding to the type derivation of
TE[x 7! �]; C `

H
K : bool. The Low SETL implementation of v0 := (9x 2 s j K) corresponding to

the above type derivation is

v' := false;

for x 2 s loop

if (v' == false) then

PK;
v' = vK

endif

endloop

The rest of the proof follows easily and is omitted. The other cases corresponding to Rules 3.75, 3.76,
and 3.77 are similar, and are also omitted.

� Rules 3.78-3.82

This case of Rule 3.78 is similar to that of Rule 3.55 and is omitted. Similarly, the case of Rule 3.82
is similar to that of Rule 3.54, and is also omitted. Rules 3.79, 3.80, and 3.81 are also simple, and
omitted.

2

3.6 Type System for High SETL Commands

In this section we give type rules for High SETL commands. We use type inference rules of the form
TE;C `

H
P , where P is a sequence of one or more High SETL commands. A High SETL command

sequence P is said to well-typed in a type environment TE under the set of subtype constraints C if there
exists a type derivation for TE;C `

H
P . We de�ne Low SETL implementations for well-typed High SETL

programs, and prove that well-typed High SETL programs lead to well-typed Low SETL programs.

TE;C `
H
E : �

TE(v) = �
TE;C `

H
v := E

(3.83)

TE;C `
H
E : �2

TE(v1) = strong smap(b1; �2); TE(v2) = b1
TE;C `

H
v1(v2) := E

(3.84)

TE;C `
H
E : set(�2)

TE(v1) = strong mmap(b1; �2); TE(v2) = b1
TE;C `

H
v1fv2g := E

(3.85)

82

TE;C `
H
E : �i

TE(v) = �1 � �2 � : : :� �n
TE;C `

H
v[i] := E

where i is an integer literal between 1 and n

(3.86)

TE;C `
H
E : b

TE(v) = strong set(b)
TE;C `

H
v with := E

(3.87)

TE;C `
H
E : b

TE(v) = strong set(b)
TE;C `

H
v less := E

(3.88)

TE;C `
H
E : set(b) or strong set(b)

TE(v) = strong set(b)
TE;C `

H
v [:= E

(3.89)

TE;C `
H
E : set(b) or strong set(b)

TE(v) = set(b) or strong set(b)
TE;C `

H
v \ := E

(3.90)

TE;C `
H
E : set(b) or strong set(b)

TE(v) = strong set(b)
TE;C `

H
v � := E

(3.91)

Rules 3.89-3.91 are all short forms for two rules each.

TE;C `
H
E : set(�)

TE(v) = set(�)
TE;C `

H
v] := E

(3.92)

TE;C `
H
E : smap(b1; �2) or strong smap(b1; �2)
TE(v) = strong smap(b1; �2)

TE;C `
H
v = := E

(3.93)

TE;C `
H
E : mmap(b1; �2) or strong mmap(b1; �2)
TE(v) = strong mmap(b1; �2)

TE;C `
H
v = := E

(3.94)

Rule 3.93 and 3.94 are both short forms for two rules each.

TE(v) = set(�) or strong set(b)
TE;C `

H
InitSet(v)

(3.95)

83

Rule 3.95 is short form for two rules.

TE(v) = smap(�1; �2) or strong smap(b1; �2) or mmap(�1; �2) or strong mmap(b1; �2)
TE;C `

H
InitMap(v)

(3.96)

Rule 3.96 is short form for four rules.

TE(v) = �1 � �2 � : : :� �i
TE;C `

H
InitTuple(v; i)

where i is some integer literal greater than 1
(3.97)

TE;C `
H
K : bool

TE;C `
H
P1

TE;C `
H
P2

TE;C `
H
if K then P1 else P2 endif

(3.98)

TE;C `
H
K : bool

TE;C `
H
P

TE;C `
H
while K loop P endloop

(3.99)

TE(v2) = set(�); TE[v1 7! �]; C `
H
P

TE;C `
H
for v1 2 v2 loop P endloop

(3.100)

TE(v2) = strong set(b); TE[v1 7! b]; C `
H
P

TE;C `
H
for v1 2 v2 loop P endloop

(3.101)

TE(v2) = smap(�1; �2); TE[v1 7! �1]; C `H P
TE;C `

H
for v1 2 domain(v2) loop P endloop

(3.102)

TE(v2) = strong smap(b1; �2); TE[v1 7! b1]; C `H P
TE;C `

H
for v1 2 domain(v2) loop P endloop

(3.103)

TE(v2) = mmap(�1; �2); TE[v1 7! �1]; C `H P
TE;C `

H
for v1 2 domain(v2) loop P endloop

(3.104)

TE(v2) = strong mmap(b1; �2); TE[v1 7! b1]; C `H P
TE;C `

H
for v1 2 domain(v2) loop P endloop

(3.105)

TE;C `
H
c

TE;C `
H
P

TE;C `
H
c;P

(3.106)

84

3.7 Low SETL Implementation of High SETL Programs

In this section we de�ne Low SETL implementations for High SETL commands. Moreover, we also prove
that well-typed High SETL programs are translated into well-typed Low SETL programs. Once again, we
use rule induction (or induction on the type derivation for the command sequence) for both

1. de�ning Low SETL implementations for High SETL command sequences, and

2. for proving that the generated Low SETL programs are well-typed.

Theorem 3.7.1 Let P be a High SETL command sequence such that TE;C `
H
P . Let P1 be the Low SETL

code fragment implementing program P . Let P1 be the sequence of commands c1; c2; : : : cn. Let P2 be any
Low SETL program containing the command sequence P1 as a sub-program. Assume that the disjointness
constraints imposed by the appearance of operator] in program P are satis�ed in all execution instances of
program P2. Then,

9TE0 � TE such that TE0; C `P2
ci for all i = 1; : : : ; n:

In particular, if P2 is the same as P1, then TE0; C `P1
P1, i.e. the Low SETL program P1 implementing the

well-typed High SETL program P is also well-typed.
Moreover, domain(TE0)�domain(TE) contains only newly generated temporary variables, and the bound

variables appearing in the High SETL expressions in command sequence P .

Proof Idea: The proof follows by a very simple rule induction. We just show a few sample Low SETL
implementations of High SETL commands. Consider Rule 3.83

TE;C `
H
E : �

TE(v) = �
TE;C `

H
v := E

Let PE be the Low SETL implementation of vE := E corresponding the the type derivation of TE;C `
H

E : � . Then, the Low SETL implementation of the High SETL command v := E is

PE;
v := vE

Similarly, consider Rule 3.89

TE;C `
H
E : set(b)

TE;C `
H
v : strong set(b)

TE;C `
H
v [:= E

Let PE be the Low SETL implementation of vE := E corresponding the the type derivation of TE;C `
H

E : set(b). Then the Low SETL implementation of the High SETL command v [:= E is

PE;
for x 2 vE loop

v with:= x;

endloop

The proof of well-typedness of the Low SETL implementation P1 in the context of an arbitrary Low SETL
program P2 is simple, and is omitted. 2

85

3.8 Time Complexity

The well-typedness of a Low SETL program guarantees that all of its primitive set-theoretic operations,
including operations involving associative access, can be performed in worst-case O(1) time on a pointer
machine without the use of hashing. This O(1) time implementation guarantee for primitive operations may
be useful for computing the time-complexity of a Low SETL program, but is not suÆcient to guarantee that
the time-complexity of all well-typed Low SETL programs can be computed. In fact, it is easy to prove
that well-typed Low SETL is Turing Complete, and therefore, even the termination of arbitrary Low SETL
programs is undecidable. The well-typedness of Low SETL programs simply allows us to use traditional
methods of algorithmic analysis, such as those used for programming languages like Pascal, C, etc. to
compute the worst-case time-complexities.

High SETL, being a superset of Low SETL, is also Turing-Complete. Therefore, in general, it is not
possible to determine the time complexity of an arbitrary High SETL program. However, the functional
subset of High SETL is a subset of the language or primitive recursive functions [31]. In this section we show
how to systematically estimate the time complexity of evaluation of the functional subset of High SETL.
As a result, the task of manually computing the time complexity of High SETL programs is considerably
simpler than computing the time complexity of Low SETL programs by traditional bean counting arguments.
In Chapter 4 we will look at a database query optimization algorithm in which queries in a subset of the
relational calculus [27] (called RCS) formulated as abstract but ineÆcient High SETL expressions will be
transformed into equivalent High SETL expressions that can be computed in time linear in the sum of the
input and output sizes of the database queries. The ability to systematically analyze High SETL expressions
for time complexity turns out to be extremely useful for proving the linear time result for the database query
language RCS.

In Section 3.8.1 we show how to compute worst-case time complexities for arbitrary High SETL expres-
sions, and in Section 3.8.2, we show how to compute time complexities for High SETL command sequences
that do not contain any while loops. In order to compute time complexities of arbitrary High SETL pro-
grams, we rely on traditional methods of algorithmic analysis to estimate bounds on the number of iterations
of each while loop, and use these bounds to compute the time complexity of the whole program.

3.8.1 Time Complexity of High SETL Expressions

The time complexity of implementation of a well-typed High SETL expression depends on the type derivation
of the expression. Since di�erent type derivations of High SETL expressions may correspond to di�erent Low
SETL implementations, di�erent type derivations also correspond to di�erent time complexities. Once again
we use rule induction (or induction on the length of the type derivation) to de�ne a method for computing
the time-complexity of an arbitrary well-typed High SETL expression E.

� Expressions v, 3 v, v1(v2), vfv2g, v1[i], om derived using Rules 3.4-3.10: In each of these cases,
expression E is itself a Low SETL expression, and can be computed in O(1) time.

� Expression s [t derived using Rule 3.11 or Rule 3.12: It is easy to show that the expression s [t can
be computed in O(#s+#t) time.

� Expression s \ t derived using Rule 3.13 or Rule 3.14: As mentioned earlier, Rule 3.13 is short form
for eight distinct rules. For those rules in which set s is strongly based, the expression s \ t can be
evaluated in O(#t) time. Similarly, if set t is strongly based, the evaluation takes O(#s) time. If both
s and t are not strongly based, then the evaluation takes O(#s +#t) time.

In the case of Rule 3.14 the time complexity of computing s \ t is O(#s+#t).

� Expression s � t derived using Rule 3.15 or Rule 3.16: In the case of Rule 3.15, it is easy to verify
that depending on whether set t is strongly based or not in the actual rule applied, the evaluation of
expression s� t takes either O(#s) time, or O(#s +#t) time.

In the case of Rule 3.16 the time complexity of computing s� t is O(#s +#t).

86

� Expression s� t derived using Rules 3.17-3.20: In each case, expression s� t can be computed in time
O(#s �#t) time.

� Expression #s derived using Rule 3.21: O(#s) time.

� Expression s] t derived using Rules 3.22-3.23: O(#s +#t) time.

� Expression ToSet(f) derived using Rules 3.24-3.27: O(#f) time.

� Expression ToMap(s) derived using Rules 3.28: O(#s) time.

� Expression domain(f) derived using Rules 3.29-3.32: O(#domain(f)) time.

� Expression range(f) derived using Rules 3.33-3.34: O(#f) time.

� Expression f Æ g derived using Rules 3.35-3.38: In each of these cases the time complexity is O(#g) if
map f is strongly based, and O(#f +#g) otherwise.

� Expression f Æ g derived using Rule 3.39-3.40: In each of these cases the time complexity is O(#g +
#f Æ g) if map f is strongly based, and O(#g +#domain(f) + #f Æ g) otherwise.

� Expression f Æ g derived using Rule 3.41-3.42: In each of the cases the time complexity is O(#g +
(#f �#g)) if map f is strongly based, and O(#g +#f + (#f �#g)) otherwise. However, if one of
the maps f or g is one-one, then the time complexity is O(#g +#f Æ g) if map f is strongly based,
and O(#g +#f +#f Æ g) otherwise.

� Expressions f js and f [s] derived using Rules 3.43-3.46: In each of these cases the time complexity is
O(#f) if set s is strongly based, and O(#f +#s) otherwise.

� Expression f�1 derived using Rules 3.47-3.50: O(#f) time.

� Expression f=g derived using Rules 3.51-3.52: O(#f +#g) time.

� Expression E derived using Rule 3.53: The derivation for TE;C `
H
E : � contains a sub-derivation

for TE;C `
H
E : b. If we use Cost(Eb) to denote the time complexity of computing expression E of

type b, then the cost of computing expression E of type � is Cost(Eb) +O(1).

� Expression "Let v = E1 in E2" derived using Rule 3.54: Let Cost(E1) and Cost(E2) denote the cost
of computing expressions E1 and E2 respectively. Then the cost of computing expression "Let v = E1

in E2" is Cost(E1) +Cost(E2)[v 7! E1], where Cost(E2)[v 7! E1] is the expression Cost(E2) with all
occurrences of v replaced by E1.

� Expression "ifK then E1 else E2 endif" derived using Rule 3.55: Let Cost(K), Cost(E1), and Cost(E2)
denote the costs of computing expressions K, E1, and E2 respectively. The cost of computing expres-
sion "if K then E1 else E2 endif" is Cost(K) +max(Cost(E1); Cost(E2)).

� Expressions [x2sE, \x2sE, or]x2sE derived using Rules 3.56-3.60: Let the cost of computing ex-
pression E be denoted by Cost(E). Then, the cost of computing the expressions [x2sE, \x2sE, or
]x2sE is �x2s(Cost(E) + #E).

� Expression f[x1; : : : ; xn] : x1 2 E1; : : : ; xn 2 En j Kg derived using Rule Schema 3.61: Let Cost(Ei),
and Cost(K) denote the cost of computing expression Ei (for i = 1; : : : ; n), and expression K. The
cost of computing expression f[x1; : : : ; xk] : x1 2 E1; : : : ; xn 2 En j Kg is de�ned by the following
recursive equations.

If n = 1, then the Cost of computing expression f[x1] : x1 2 E1 j Kg is

Cost(E1) + �x12E1
(Cost(K) +O(1)):

87

For n > 1, the cost of computing expression f[x1; : : : ; xn] : x1 2 E1; : : : ; xn 2 En j Kg is

Cost(E1) + �x12E1
Cost(f[x2; : : : ; xn] : x2 2 E2; : : : ; xn 2 En j Kg);

where Cost(f[x2; : : : ; xn] : x2 2 E2; : : : ; xn 2 En jKg) is the cost of computing expression f[x2; : : : ; xn] :
x2 2 E2; : : : ; xn 2 En j Kg.

The cost of expressions derived from Rule Schemas 3.62-3.64 and Rules 3.65-3.67 can be computed
similarly.

� Expression fE : x1 2 E1; : : : ; xn 2 En j Kg derived using Rule Schema 3.68: Let Output denote
the �nal value of the expression fE : x1 2 E1; : : : ; xn 2 En j Kg. Then the cost of computing
this expression is the cost computed by the recursive equations in the previous case along with an
additional factor of #Output.

� Expressions s 2 t, s == t, IsEmptySet(s), IsEmptyMap(f) derived using Rules 3.69-3.73: O(1) time

� Expressions (9x 2 S j K) and (8x 2 s j K) derived using Rules 3.74-3.77: Let Cost(K) denote the
time complexity of computing expression K. Then the time complexity of computing (9x 2 S j K) or
(8x 2 s j K) is O(#s) � Cost(K).

The complexities corresponding to Rules 3.78-3.82 can be computed in a similar fashion, and are
omitted.

3.8.2 Time Complexity of Some High SETL Commands

In Section 3.8.1 we saw that the evaluation of every High SETL expression is guaranteed to terminate,
and that the time-complexity of evaluation can be accurately computed. The evaluation of all High SETL
programs that do not contain while loops, is also guaranteed to terminate, and their time-complexities can
also be accurately estimated.

Let P denote a well-typed High SETL command sequence not containing any while loops. Once again,
we use rule induction (or induction on the length of the type derivation) to de�ne a method for computing
the time-complexity of command sequence P .

� Commands v := E, v1(v2) := E, v1fv2g := E, v[i] := E, v with := E, v less := E derived using
Rules 3.83-3.88: Let Cost(E) denote the time complexity of computing Expression E. Then, the time
complexity of executing the above commands is Cost(E) +O(1) time.

� Command v [:= E derived using Rule 3.89: Cost(E) +O(#E) time.

� Command v \ := E derived using Rule 3.90: Cost(E) +O(#v +#E) time.

� Command v � := E derived using Rule 3.91: Cost(E) +O(#E) time.

� Command v] := E derived using Rule 3.92: Cost(E) +O(#E) time.

� Command v = := E derived using Rules 3.93-3.94: Cost(E) +O(#E) time.

� Command InitSet(v) or InitMap(v) derived using Rules 3.95-3.96: If the set or map is strongly based,
the time complexity is O(#v) or O(#domain(v)) for sets and maps respectively, and O(1) otherwise.

� Command InitTuple(v; i) derived using Rule 3.97: O(1) time.

� Command "if K then P1 else P2 endif" derived using Rule 3.98 where P1 and P2 do not contain any
while loops: Let Cost(k), Cost(P1), and Cost(P2) denote the costs of computing expression K, and
executing P1 and P2 respectively. Then, the time complexity of executing "if K then P1 else P2 endif"
is Cost(K) +max(Cost(P1); Cost(P2)) time.

88

� Command "for v1 2 v2 loop P endloop" derived using Rules 3.100-3.101 where P does not contain
any while loop: �v12v2Cost(P) time, where Cost(P) denotes the cost of executing P . Alternately, the
complexity can be taken to be O(#v2)�Cost(P) time, where Cost(P) denotes the maximum cost of
executing P for any element v1 in set v2.

� Command "for v1 2 domain(v2) loop P endloop" derived using Rules 3.102-3.105 where P does not
contain any while loop: �v12domain(v2)Cost(P), or O(#domain(v2))� Cost(P) time.

89

Chapter 4

Speedup of Linear Time Fragment of

Willards Relational Calculus Subset

4.1 Introduction

In the previous chapters we de�ned two algorithm speci�cation languages Low SETL and High SETL.
We proved that well-typed Low SETL programs can be translated into pointer machine ([57, pages 462-
463], [105, 83, 106, 7]) implementations in which each associative access operation is implemented in O(1)
time. We also de�ned a translation from well-typed High SETL to well-typed Low SETL, and showed how
to compute the time complexity of the functional subset of High SETL in a systematic manner. In this
chapter we show how the use of High SETL as an algorithm speci�cation language can lead to an improved
database query optimization algorithm.

The problem is to compile a subset RCS of Relational Calculus de�ned by Willard ([110]) in a novel
way so that eÆcient run-time query performance is guaranteed. Willard gives an algorithm to compile each
query q belonging to RCS so that it executes in O(n logd n + o) steps and O(n) space, where n and o are
respectively the input and output set sizes, and d is a parameter associated with the syntax of query q.
Willard's time bounds are based on the assumption that hashing unit-space data takes unit time.

In this chapter we show how queries in the expected linear-time fragment of Willard's RCS (which we
call LRCS), can be implemented in worst-case linear time. We �rst show that each LRCS query can be
expressed as a well-typed High SETL expression. The direct Low SETL implementations of these well-typed
High SETL speci�cations correspond to naive and ineÆcient implementations of LRCS queries. The time
complexity of execution of such naive implementations is typically a high degree polynomial in the size of
the input. We show how to transform these naive High SETL speci�cations into semantically-equivalent, but
more eÆciently computable High SETL expressions whose worst-case time complexity is linear in the sum of
the sizes of the input and output sizes. The bene�ts of using High SETL expressions as LRCS speci�cations
are two-fold. Firstly, the complexity analysis of High SETL expressions is simpli�ed because of the use of
more algebraic reasoning rather than low level counting arguments. Secondly, the use of High SETL allows
the transformation process to be guided by eÆciency considerations, i.e. in each step of the transformation
process, the LRCS query is transformed into a semantically equivalent, but more eÆciently computable High
SETL expression. Thus, we get shorter and simpler proofs of correctness, and analysis of time complexity.

The improvement to Willard's result comes from the use of the High SETL type system. The fact that
the �nal High SETL implementation of each LRCS query is well-typed guarantees that each hash operation
used to implement associative access operations in Willard's RCS can be simulated in worst-case O(1) time
on a pointer machine. This improves Willard's expected linear time result to worst-case linear time, and
demonstrates how the type system can be used as a tool to obtain an algorithmic speedup.

The results in this chapter were �rst presented at the IFIP TC2 conference on Algorithmic Languages
and Calculi [43].

90

4.1.1 Background

The work presented here follows a long-term investigation of Willard's Relational Calculus Subset (RCS),
a database query language proposed in his thesis [110], and developed further in [111] and [112], a part
of which appeared in JCSS [113]. Under the assumption that hashing unit-space data takes unit time,
Willard de�ned broad subclasses of Relational Calculus queries that could be executed in linear space and
low expected time O(n logd n+ o), where n and o are the input and output set sizes, and d is a parameter
associated with the syntax of the queries.

Our interest in Willard's fascinating work is motivated by a number of issues. RCS is a rare comprehensive
investigation of query translation for the Relational Calculus [27]. Willard's work is one of the earliest
investigations that link a substantial language to low order run-time query complexity for a main-memory
model. Willard's investigation is also one of the earliest nontrivial examples of output-sensitive algorithmic
analysis. Although other languages that are bound to low order run-time complexities (e.g., [54] , [5], [22] ,
and [4]) may have greater expressive power, RCS is unusual in its richness and its run-time requirements.

4.1.2 Overview

We make two contributions that integrate solutions to algorithmic and software problems. First we detail how
to implement LRCS i.e. Willard's linear-time fragment of RCS, using semantics-preserving source program
transformations. Second, we show how type theory can be used to improve the run-time performance of
LRCS from linear expected time to linear worst-case time.

A problem shared by the database and algorithmics communities is the lack of notation and notational
calculi to formally map perspicuous problem speci�cations into eÆcient implementations. Our approach to
obtain an implementation of LRCS is to use High SETL, a wide spectrum set-theoretic language capable
of specifying both high-level user queries and their eÆcient (but still abstract) implementations. Program
transformations that preserve familiar set-theoretic semantics are used to derive eÆcient implementations
from high-level queries.

By itself Willard's compilation of RCS queries is a model of sophistication that works in two phases.
The �rst phase, called the decomposition phase, transforms a query into a sequence of eÆcient lower level
queries. The second phase, which we call the back-end implementation, transforms each eÆcient query into
a sequence of element-at-a-time operations (e.g., loads, stores, retrievals), many of which require hashing.

We abide by most of Willard's ideas in the �rst phase, and contribute an abstract implementation in the
more convenient set-theoretic language High SETL. It is in the back-end implementation where we use well-
typed High SETL expressions to get eÆcient implementations without the use of hashing. The abstraction
provided by High SETL helps reuse redundant low level constructions found in Willard's proofs, thereby
giving a more perspicuous implementation. Moreover, we get a simple time complexity analysis that replaces
Willard's repeated low level counting arguments by simpler logical and algebraic reasoning.

We go on to show that Willard's time bound (for run-time query execution) in the expected case can
be achieved in the worst case without degrading space utilization. This is achieved by demonstrating that
the translated form of each query is a well-typed High SETL program. The well-typedness of the �nal High
SETL implementation of the LRCS query guarantees the real-time simulation of primitive set operations on
a pointer machine, which means that each primitive set operation (e.g. membership testing x 2 S) can be
implemented in unit worst-case time on a pointer machine. The time complexity analysis of the generated
High SETL program immediately reveals that each query in LRCS can be translated into pointer machine
code that runs in linear worst-case time.

4.2 De�nition of LRCS

LRCS includes two kinds of queries, namely count-queries

Q = f [x1;#fx2 2 X2 j e(x1; x2)g] : x1 2 X1g; (4.1)

91

which maps each element x1 2 X1 into the number of elements x2 2 X2 that satisfy predicate e(x1; x2), and
�nd-queries

Q = f [x1; : : : xn] 2 �
n
p=1Xp j�n+1xn+1 2 Xn+1; : : : ;�mxm 2 Xm

e(x1; : : : ; xm) g;
(4.2)

which evaluates a subset of an n-way cross product of sets X1; : : : ; Xn, quali�ed by an arbitrary number (m�
n) of leading bounded quanti�ers �n+1 : : :�m, and satisfying the predicate e(x1; : : : ; xm). The predicates
e(x1; x2) and e(x1; : : : ; xm) are formed from atomic predicates (to be de�ned later) and logical connectives
or, and, and not. Willard's result is surprising as he shows that a very broad class of these queries that satisfy
an acyclicity condition (also to be described later) can be eÆciently computed without actually evaluating
the cross product, in time proportional to just the sum of the cardinalities of the input sets and the �nal
output set.

The sets X1 and X2 in Query 4.1 and sets X1; : : : ; Xm in Query 4.2 are inputs to the query. We assume
that the query is preceded by a read statement which reads in the input. This allows us to assume without
loss of generality that each set Xi contains elements of some base type bi. If the input values corresponding
to the elements of set X1 are of type �1, then we add the subtype constraint b1 < �1 to the set of subtype
constraints C, and assume that X1 is of type set(b1). If there are two (or more) subtype constraints bi < �,
and bj < � for some type �, then we eliminate the second constraint bj < � and replace base type bj with
base type bi.

The variables x1; : : : ; xm are called the free variables of predicate e within the Queries 4.1 and 4.2.
Predicate e may be an arbitrary collection of the following atomic predicates and their negations connected
by the boolean connectives ^, and _

1. Boolean constants true and false.

2. Equality and inequality predicates (called joins and anti-joins) e.g. f1(x) = f2(y), f1(x) 6= f2(y),
where x and y are free variables of predicate e. For each such join or anti-join we assume that
expressions f1(x) and f2(x) are of some base type b.

3. Unary Comparison Predicates e.g. f1(x) = c, f1(x) 6= c, f1(x) < c, f1(x) = f2(x) and f1(x) < f2(x),
where x is a free variable of predicate e and c is any constant. For unary predicates involving the
constant c, we assume that expression f1(x) is of some base type b satisfying the subtype constrain
b < �, where constant c is type �. Moreover, we assume that the operations =, 6=, < etc. can be
performed in O(1) time for elements of type � (for example, � may be int). Similarly, for the unary
comparison predicate f1(x) = f2(x), we assume that f1(x) and f2(x) are both of some base type b.
For the predicate f1(x) < f2(x), we additionally assume that base type b satis�es a subtype constraint
b < � where elements of type � may be compared using the operator < in O(1) time.

4. Unary List Predicates e.g. 9y 2 Y (f1(y) = f2(x)) and 8y 2 Y (f1(y) = f2(x)), where x is a free
variable of predicate e. We assume that set Y is of type set(b) for some base type b, and expressions
f1(x) and f2(x) are also of some base type b

0 (which may or may not be the same as base type b).

5. Tabular Predicates e.g. 9z 2 Z (f1(x) = f2(z) ^ f3(y) = f4(z)), where x and y are free variables of
predicate e. Again, we assume that set Z is of type set(b) for some base type b, and expressions f1(x)
and f2(z) are of some base type b

0 (which may or may not be the same as base type b), and f3(y)
and f4(z) of some base type b

00 (which may or may not be the same as b0 or b). Furthermore, all such
expressions fi(w) appearing in tabular predicates are assumed to be few-to-one i.e. the sizes of the
pre-images of fi are uniformly bounded by a constant.

We also assume that each expression fi(w) that appears in an atomic predicate can be evaluated in O(1)
time.

The input to Query 4.1 are the sets X1, X2 and the sets appearing in the unary list or tabular predicates
appearing in predicate e(x1; x2). Similarly, the input to Query 4.2 are the sets X1; : : : ; Xm and the sets
appearing in unary list or tabular predicates in appearing in predicate e(x1; : : : ; xm). Assume that type

92

environment TE maps each such input set Xi to its type set(bi) for some base type bi, and the set of
subtype constraints C contains the subtype constraints corresponding to these base types. Then, it is easily
veri�ed that each predicate e(x1; x2) or e(x1; : : : xm) is well-typed i.e.

TE;C `
H
e(x1; x2) : bool and TE;C `

H
e(x1; : : : ; xm) : bool

The time complexity of evaluating the equality, inequality, and unary comparison predicates is O(1) time,
and the time complexity of evaluating unary list predicates such as 9y 2 Y (f(x) = g(y)) is O(#Y), and
tabular predicates such as 9z 2 Z (f(z) = g(x) ^ f 0(z) = g0(y)) is O(#Z). Thus, the time complexity of
evaluation of predicate e(x1; : : : ; xn) is linear in the sum of the sizes of sets that appear in the unary list
and tabular predicates in e. Let te denote the time complexity of evaluation of predicate e.

It is easy to verify that the expression on the right hand side of Query 4.1 is a well-typed High SETL
expression of type strong smap(b1; int), i.e.

TE;C `
H
f [x1;#fx2 2 X2 j e(x1; x2)g] : x1 2 X1g : strong smap(b1; int) (4.3)

and that the expression on the right hand side of Query 4.2 is a well-typed High SETL expression of type
set(b1 � b2 � : : : bn), i.e.

TE;C `
H
f [x1; : : : xn] 2 �

n
p=1Xp j�n+1xn+1 2 Xn+1; : : : ;�mxm 2 Xm

e(x1; : : : ; xm) g : set(b1 � b2 � : : : bn)
(4.4)

All count-queries of the form of Query 4.1 are valid LRCS queries. However, we restrict the class of LRCS
queries of the form of Query 4.2 in the following way. We de�ne the query graph for Find-query (4.2) as
having variables x1; : : : ; xm as vertices, and having an edge from xk to xl i� there is a two-variable atomic
predicate on xk and xl in the expression e(x1; : : : ; xm), where xk appears to the left of xl in query (4.2).
Find-query (4.2) is in LRCS i� the query graph for the query is a forest. In other words the in-degree of
every vertex should be no more than 1.

The time complexity of a naive implementation of Query 4.1 is O(#X1�#X2�te), and that of Query 4.2
is O(#X1 � #X2 � : : :#Xm � te), where te denotes the time complexity of evaluation of the predicate e.
In this chapter we will show that these queries can be transformed into implementations that run in time
linear in the sum of the input and output sizes.

4.3 Linear-Time Implementation of LRCS Queries

We will now prove that all LRCS count-queries and �nd-queries (satisfying the condition that the query
graph is a forest) can be implemented to run in linear time (i.e. linear in the sum of the sizes of their input
and output sets).

In order to do this, we shall �rst show how to decompose the general �nd-query (4.2) into a �nite number
of count-queries and a union [t1=1Qi where t depends on the predicate e(x1; : : : ; xm) but is independent of
the input sets X1; X2; etc. , and each query Qi is another �nd-query with no leading quanti�ers, and whose
predicate is just a conjunction of atomic predicates and their negations. Next we turn each such �nd-query
Qi into a nest of joins, ./

qi
j=1 Pij where qi is once again a constant independent of the input, and each query

Pij is of the form

f[x1; x2] 2 X1 �X2 j e(x1; x2) g; (4.5)

where predicate e(x1; x2) is just a conjunction of atomic predicates and their negations. We shall call queries
such as (4.5) simple �nd-queries. Willard's decomposition ensures that the sizes of the intermediate outputs
Pij are no bigger than the sizes of the outputs Qi, which is very important for obtaining the linear-time
result. This part constitutes the front-end or the decomposition phase of Willard's algorithm.

In the decomposition phase, we have adhered to the essentials of Willard's decomposition steps but have
simpli�ed his arguments and eshed out details for an actual implementation. In the back-end phase however,
we make a more signi�cant contribution. We give semantics-preserving transformations that transform
count-queries and simple �nd-queries into simpler queries that are shown to be well-typed and hence, can
be implemented in worst-case linear time on a pointer machine.

93

4.3.1 Quanti�er Elimination

Let Q denote the general �nd-query

f [x1; x2; : : : ; xn] 2 �
n
p=1Xp j �n+1xn+1 2 Xn+1; : : : ;�mxm 2 Xm

e(x1; : : : ; xm) g:
(4.6)

Assume that Query Q is a valid LRCS query (i.e. the query graph of Q is a forest) and is also a well-typed
High SETL expression, i.e.

TE;C `
H
Q : set(b1 � b2 � : : : bn):

In this section we show how to transform Query Q into a sequence of count-queries and a quanti�er-free
�nd-query of the form

f [x1; x2; : : : ; xn] 2 �
n
p=1Xp j e

0(x1; : : : ; xn)g: (4.7)

In the following discussion, we abbreviate 9xi 2 Xi and 8xi 2 Xi to 9xi and 8xi respectively. The
goal is to simplify the query by successively eliminating each quanti�er starting from the innermost to the
outermost. First, consider the case when the innermost (rightmost) quanti�er is an existential quanti�er.
We use the following two rules :

1. 9xi (f(xi) _ g(xi)) � 9xi f(xi) _ 9xi g(xi).

2. 9xi (f(xi) ^ h) � 9xi f(xi) ^ h, if xi does not appear free in h.

As de�ned earlier, the predicate e(x1; : : : ; xm) is just a collection of atomic predicates and their negations
connected with the boolean connectives ^ and vee. Converting predicate e(x1; : : : ; xm) into Disjunctive
Normal Form (DNF), we get:

e(x1; : : : ; xm) � e1(x1; : : : ; xm) _ e2(x1; : : : ; xm) _ : : : el(x1; : : : ; xm);

where each predicate ei is just a conjunction of atomic predicates and their negations. Then by Rule 1, the
predicate

9xm e(x1; : : : ; xm)

is equivalent to

9xm e1(x1; : : : ; xm) _ : : : _ 9xm el(x1; : : : ; xm):

We now exploit an important property that arises from the fact that the query graph of Query Q is a forest.
The property is that in predicate e(x1; : : : ; xm), variable xm can occur in atomic predicates with at most
one other variable. Since all other variables in Q occur to the left of variable xm, there must be an in-coming
edge into vertex corresponding to variable xm from vertices of all other variables xi which occur in an atomic
predicate with variable xm. Since xm can have an in-degree of at-most 1, it can therefore appear in an
atomic predicate in e with at-most one other variable.

Suppose the in-degree of xm is 1, i.e. the query graph has exactly one edge coming into xm, say from
xk. This implies that all atomic predicates involving xm are either single{variable atomic predicates, or
two{variable atomic predicates involving xk and xm. The case when the in-degree for xm is 0, i.e. it appears
only in single{variable atomic predicates is a trivial special case of the case being considered, and is omitted.

For each predicate ei for i = 1; : : : ; l, we separate the atomic predicates into those involving variable xm
and those that do not. Then, applying Rule 2 we get

9xm ei(x1; : : : ; xm) � e1i (x1; : : : ; xm�1) ^ 9xm e2i (xk ; xm)

where e2i (xk ; xm) is a conjunction of one and two{variable atomic predicates involving variables xk and xm,
and the expression e1i (x1; : : : ; xm�1) does not contain any atomic predicates involving variable xm.

94

Next, we compute the count-query

Ci = f [xk;#fxm 2 Xm : e2i (xk; xm)g] : xk 2 Xk g;

and replace predicate 9xm e2i (xk; xm) by the equivalent Ci(xk) > 0. Computing such count-queries for each
expression ei and replacing each predicate 9xm e2i (xk ; xm) by the equivalent Ci(xk) > 0, for i = 1; : : : ; l, we
get the following equivalent version Q1 of query Q.

Q1 = let
C1 = f [xk;#f xm 2 Xm : e21(xk ; xm)g] : xk 2 Xk g
...
Cl = f [xk;#f xm 2 Xm : e2l (xk; xm)g] : xk 2 Xk g

in
f [x1; : : : ; xn] 2 �

n
p=1Xp j�n+1xn+1 2 Xn+1; : : : ;�m�1xm�1 2 Xm�1

((e1(x1; : : : ; xm�1) ^ C1(xk) > 0) _ : : : _
(el(x1; : : : ; xm�1) ^ Cl(xk) > 0)) g

Note that we are using the expression

Q1 = let
C1 = : : :
C2 = : : :
...
Cl = : : :

in
: : :

as an abbreviation of the High SETL expression

Q1 = let
C1 = : : :

in
let

C2 = : : :
...

in
let

Cl = : : :
in

: : :

Using the fact that Query Q is a well-typed High SETL expression, it is easy to prove that each count-
query Ci is also well-typed, i.e.

TE;C `
H
Ci : strong smap(bk; int);

and therefore, that Query Q1 is also well-typed, i.e.

TE;C `
H
Q1 : set(b1 � b2 � : : : bn):

Thus, the well-typed Query Q is transformed into a query Q1 having one less quanti�er than Q.

The other case in which the innermost quanti�er to be eliminated is a universal quanti�er is handled sim-
ilarly except that the expression e(x1; : : : ; xm) is �rst converted into Conjunctive Normal Form (CNF).This
process of eliminating the innermost quanti�er is applied repeatedly until all leading quanti�ers are elimi-
nated. As a result, we are left with a sequence of count-queries followed by one �nd-query having no leading
quanti�ers (which we call a quanti�er-free �nd-query).

95

Theorem 4.3.1 If LRCS count-queries and quanti�er-free �nd-queries are linear-time queries, then the
general LRCS �nd-query is also a linear-time query

Proof: The transformation described above transforms the original LRCS �nd-query into a �nite number
of count-queries followed by a quanti�er-free �nd-query. The number of count-queries generated is some
constant that depends on the syntax of the query (i.e. on the number of sets X1; : : : ; Xm and on the
predicate e(x1; : : : ; xm)), but is independent of the database size (i.e. the size and the actual values of the
input sets). The number of quanti�ers in the query is also independent of the database size. Hence the total
number of count-queries generated during the quanti�er elimination stage is some constant. Furthermore,
each count-query is input-bounded i.e. the size of the output is bounded by the size of the input. Thus if each
count-query is a linear-time query, then its time complexity of implementation is asymptotically bounded
by the size of its input. The query-graph for the generated quanti�er-free �nd-query is a subgraph of the
query-graph of the original �nd-query, and therefore, is also a forest. Assuming that all LRCS quanti�er-
free �nd-queries are also linear-time queries, then the time complexity of implementation of the generated
quanti�er-free �nd-query is asymptotically bounded by the sum of the sizes of its input and output. Thus,
the time complexity of implementation of the original �nd-query is linear in the sum of the sizes of its input
and output. Hence, under the assumption that count-queries and quanti�er-free �nd-queries are linear-time
queries, we see that general LRCS �nd-queries are also linear-time queries. 2

Thus, the problem of showing that all LRCS queries are linear-time queries is reduced to showing
that all LRCS count-queries and quanti�er-free �nd-queries are linear-time queries. Consider the following
quanti�er{free �nd-query

Q0 = f [x1; x2; : : : ; xn] 2 �
n
p=1Xp j e

0(x1; : : : ; xn) g:

Converting e0(x1; : : : ; xn) to DNF, we get

e0(x1; : : : ; xn) � e1(x1; : : : ; xn) _ : : : _ ej(x1; : : : ; xn):

From Rule 1, it follows that Q0 = [ji=1 Qi; where for all i = 1; : : : ; j, Query Qi is given by

Qi = f [x1; x2; : : : ; xn] 2 �
n
p=1Xp j ei(x1; : : : ; xn) g;

and each such query Qi is a quanti�er-free �nd-query whose predicate is just a conjunction of atomic
predicates and their negations. If Query Q' is a valid LRCS query, then it must be well-typed, i.e. there
exists a type environment TE, and a set of subtype constraints C such that

TE;C `
H
Q0 : set(b1 � b2 � : : :� bn):

Then, it is easy to show that for all i = 1; : : : ; j

TE;C `
H
Qi : set(b1 � b2 � : : :� bn):

It follows from the High SETL type system that the High SETL expression [ji=1 Qi is also well-typed, i.e.

TE;C `
H
[ji=1 Qi : set(b1 � b2 � : : :� bn);

and that the time complexity of performing the actual union is asymptotically bounded by just the sum of
the sizes of the outputs of each query Qi, i.e. �

j
i=1#Qj . Moreover, #Qi � #Q0 for each individual query

Qi, and the number j of these queries is a constant independent of the database size. Therefore, if each
query Qi is a linear-time query, then it follows that the time taken to compute query Q0 by computing the
equivalent [ji=1Qi is also linear in the sum of the sizes of its input and output.

Thus, the problem of showing that all quanti�er-free �nd-queries are linear-time queries is reduced to
showing that all quanti�er-free �nd-queries, whose predicates are just conjunctions of atomic predicates and
their negations, are linear-time queries. In the next section we describe another transformation that reduces
the problem further to just proving that all simple �nd-queries (i.e. two-variable qunati�er-free �nd-queries
whose predicate is just a conjunction of atomic predicates and their negations) are linear-time queries.

96

4.3.2 Join Decomposition

We now look at queries of the form

Q = f [x1; x2; : : : ; xn] 2 �
n
p=1Xp j e(x1; : : : ; xn) g (4.8)

where predicate e(x1; : : : ; xn) is a conjunction of atomic predicates and their negations.

De�nition 4.3.2 Projection: Given a set Q (Equation 4.8) containing a subset of �ni=1Xi, the projection

of Q onto sets X1; : : : ; Xj , denoted by �X1;::: ;Xj
Q, is a subset of �ji=1Xi consisting of the restriction of the

tuples of Q to the sets X1; : : : ; Xj ; i.e.,

�X1;::: ;Xj
Q = f[x1; x2; : : : ; xj] 2 �

j
p=1Xp j 9xj+1 2 Xj+1; : : : ; 9xn 2 Xn

e(x1; : : : ; xn) g

De�nition 4.3.3 Natural Join: Let Q1 be a subset of �
k
i=1Xi and Q2 be a subset of �

j
i=kXi. The natural

join of Q1 and Q2 with respect to set Xk, denoted by Q1 ./Xk
Q2, is a subset of �ji=1Xi resulting from

putting together tuples in Q1 and Q2 that have the same value from set Xk; i.e.,

Q1 ./Xk
Q2 = f[x1; : : : ; xj] 2 �

j
i=1Xi j [x1; : : : ; xk] 2 Q1 ^ [xk ; : : : ; xj] 2 Q2g

The following two lemmas are helpful in transforming query Q into a more eÆcient implementation.

Lemma 4.3.4 Let Q be the query de�ned in (4.8) and T = �X1;::: ;Xj
Q where j � n. Then #T � #Q.

The proof is trivial, and is omitted.

Lemma 4.3.5 Let Q be the query de�ned in (4.8). Let T1; T2, and T3 be given by

T1 = �X1;::: ;Xj
Q;

T2 = �X1;::: ;Xk
Q;

T3 = �Xk;::: ;Xj
Q;

where 1 � k � j. Furthermore, let predicate e(x1; : : : ; xn) be decomposable into a conjunction of predicates
e1(x1; : : : ; xk) and e2(xk; : : : ; xn), i.e.

e(x1; : : : ; xn) = e1(x1; : : : ; xk) ^ e2(xk ; : : : ; xn):

This is possible if predicate e(x1; : : : ; xn) does not contain any two{variable atomic predicates on variables
u and v where u 2 fx1; : : : ; xk�1g and v 2 fxk+1; : : : ; xng. Then, T1 is the natural join of T2 and T3 with
respect to set Xk, i.e. T1 = T2 ./Xk

T3.

Proof: Proving T1 � (T2 ./Xk
T3) is trivial, and is omitted.

To prove that (T2 ./Xk
T3) � T1, consider a tuple [x01; x

0
2; : : : ; x

0
j] 2 (T2 ./Xk

T3). Then, it follows from
De�nition 4.3.3 that [x01; : : : ; x

0
k] 2 T2, and [x0k; : : : ; x

0
j] 2 T3. By De�nition 4.3.2, [x01; : : : ; x

0
k] 2 T2

implies that

9x0k+1; : : : ; x
0
n 2 (�

n
p=k+1Xp) (e1(x

0
1; : : : ; x

0
k) ^ e2(x

0
k ; : : : x

0
n)):

Therefore, the tuple [x01; : : : ; x
0
k] must satisfy the predicate e1, i.e. e1(x

0
1; : : : ; x

0
k) must be true. By a similar

reasoning, [x0k; : : : ; x
0
j] 2 T3 implies that

9x0j+1; : : : ; x
0
n 2 (�

n
p=j+1Xp) e2(x

0
k ; : : : ; x

0
j ; x

0
j+1; : : : ; x

0
n):

97

Hence, it follows that

9x0j+1; : : : ; x
0
n 2 (�

n
p=j+1Xp) e(x

0
1; : : : ; x

0
n):

From De�nition 4.3.2 it follows that [x01; : : : ; x
0
j] 2 T1, thus completing the proof that T2 ./Xk

T3 � T1: 2

Since Query Q given by Equation 4.8 is a valid LRCS query, its query graph must be a forest. It
is not diÆcult to prove that for every directed edge (xk; xj) in the forest, there exists a permutation
[xk; xj ; xp1 ; : : : ; xpn�2

] of variables [x1; x2, : : : , xn], such that the query graph for the query

Q(xk;xj) = f [xk; xj] 2 Xk �Xj j 9xp1 2 Xp1 ; : : : ; 9xpn�2
2 Xpn�2

e(x1; : : : ; xn) g
(4.9)

is also a forest. In fact such an ordering of variables may be obtained as follows. Take the tree T containing
the directed edge (xk; xj) from the forest, and reverse the direction of edges along the path from xk to the
root of this tree. As a result, vertex xk becomes the new root of tree T . Now, an appropriate sequence of
variables xp1 ; : : : ; xpn�2

may be selected by �rst taking the variables other than xk and xj from tree T in
the order of breadth-�rst search from root xk, and then taking all the variables from all other trees in the
forest also in breadth-�rst search order. With this sequence of variables xp1 ; : : : ; xpn�2

, it is easy to verify
that the query-graph for Query Q(xk;xj) given by Equation 4.9 is a forest. Moreover, if the original query Q
is a well-typed High SETL expression, then so is Query Q(xk;xj).

We generate such a query Q(x;y) for each directed edge (x; y) in the query graph. The number of edges
in the forest is bounded by n, the number of sets X1; : : : ; Xn, but is independent of the database size. For
each edge (xk ; xj), the value of Q(xk;xj) is the projection of the value of Query Q to sets Xk and Xj , i.e.
Q(x;y) = �X;YQ. Therefore, it follows that #Q(xk;xj) � #Q for each edge (xk ; xj).

We now perform a sequence of natural joins (i.e. the ./ operator) on these queries Q(xk;xj) to compute
Query Q. We select one query corresponding to a leaf-edge (i.e. an edge one of whose vertices is a leaf of the
forest), and select the second query corresponding to another edge which shares a common vertex with the
previously selected leaf-edge, and replace the two edges with a single edge that represents the natural join
of these two queries. It is easy to verify that on taking the natural join of these two queries, the conditions
of Lemma 4.3.5 are satis�ed, and thus, the result of the natural join is also a projection of Q. We continue
this process till we are just left with disconnected edges in the forest. Taking the cross-product of the sets
corresponding to these edges, we get Q.

Since each of the the results of the natural joins are projections of Q (from Lemma 4.3.5), the size of
each the intermediate outputs from the natural joins is bounded by the size #Q of the �nal output.

Theorem 4.3.6 If each of the queries Q(x;y) is a linear-time query, and join is a linear-time query, then
Q is a linear-time query.

Proof: Q is computed by �rst computing each of the queries Q(x;y), and then performing join operations
in a suitable order such that the conditions of Lemma 4.3.5 are satis�ed for each join. If each Q(x;y) is a
linear-time query, then its running time is asymptotically bounded by the sum of its input and output sizes,
and hence by the sum of the input size and the size of the �nal output Q (because #Q(x;y) � #Q). Also
the linear running time for the joins implies that their running times are asymptotically bounded by the
sum of their input and output sizes, and hence the size of the �nal output because the intermediate input
and output sizes for each join are bounded by the size of the �nal output Q. Thus, the time to compute
Q is asymptotically bounded by the sum of sizes of the input sets and the size of the �nal output, thereby
proving that Q is a linear-time query. 2

Since each Query Q(xk;xj) is a valid LRCS query, we may perform the quanti�er elimination described
in Section 4.3.1 to transform it into a sequence of count queries followed by a simple �nd-query, i.e. a
two-variable quanti�er-free �nd-query whose predicate is just a sequence of conjuncts of atomic predicates
and their negations. Furthermore a natural join operation is just a very small variation of the simple �nd
query

f[x0; y0] 2 X 0 � Y 0 j f(x0) = g(y0) g:

98

Thus, the problem of showing that all well-typed queries of the form of Query Q given by Equation 4.8
are linear-time queries is reduced to the problem of showing that all well-typed count-queries and simple
�nd-queries are linear-time queries.

In the next section we prove that all well-typed count-queries and simple �nd-queries are linear-time
queries. Then, from the previous discussion, it will follow that all valid LRCS queries are linear-time queries.

4.4 Count-Queries And Simple Find-Queries

In this section we focus our attention on count-queries

Qc = f[x;#fy 2 Y j e(x; y) g] : x 2 Xg; (4.10)

and simple �nd-queries

Qsf = f[x; y] 2 X � Y j e(x; y) g; (4.11)

where predicate e(x; y) is just a conjunction of atomic predicates and their negations. We restrict our
attention to well-typed queries, i.e. queries for which there exists a type environment TE, and a set of
subtype constraints C such that TE(X) = set(b1) and TE(Y) = set(b2) for some base types b1 and b2, and

TE;C `
H
f[x;#fy 2 Y j e(x; y) g] : x 2 Xg : strong smap(b1; int);

or

TE;C `
H
f[x; y] 2 X � Y j e(x; y) g : set(b1 � b2):

Willard showed that count-queries and simple �nd-queries could be implemented in average-case linear
time by studying increasingly more general variants of the predicate e(x; y) appearing in (4.10) and (4.11),
which he called classes E-1 through E-8 of enactment expressions. He gave algorithms to decompose queries in
a more general class E-(i+1) into queries in class E-(i). He described low level operations to construct indexes
and other auxiliary data structures used to compute the simple �nd queries eÆciently. Similar constructions
were used to calculate several di�erent forms of simple queries, and were described in detail each time a
di�erent case was considered. The low level constructions were analyzed by detailed and sometimes complex
counting arguments repeated for each di�erent case.

Our use of well-typed High SETL expressions to express these queries provides us with larger, more
abstract building blocks that are easily combined by composition and parameter substitution to form queries.
This allows us to replace low level counting arguments by more algebraic and logical reasoning in our
algorithmic analysis. Consequently, we can focus on the key ideas involved in decomposing diÆcult queries
into simpler queries in terms of high-level transformations that are easy to understand and prove correct.
Furthermore, the transformations themselves and the order in which they are applied have been carefully
tailored to give a linear time implementation. Since the type system ensures that each associative access
operation can be implemented to run in O(1) time on a pointer machine, we get a worst-case linear time
implementation for LRCS.

We now present a series of theorems that together lead to the proof that well-typed count-queries and
simple �nd-queries are linear-time queries.

Theorem 4.4.1 All well-typed count-queries and simple-�nd queries whose predicate e(x; y) is just a con-
junct of an arbitrary1 number of anti-join predicates are linear-time queries.

Proof: We shall consider the two cases for count-queries and simple �nd-queries separately.

1but a �nite constant independent of the database size

99

Case 1: Count-queries The proof follows by induction on the number of anti-join predicates.

The base case is when the number of anti-join predicates is 0, i.e. the predicate e(x; y) is true. In this
case Count-query Qc given by

Qc = f[x;#fy 2 Y j trueg] : x 2 Xg

is equivalent to the query Q0 given by

Q0 = let
n = #Y

in
f[x; n] : x 2 Xg

If Query Qc is well-typed, i.e. TE;C `H Qc : strong smap(b1; int), then it is easy to show that Query
Q0 is also well-typed, i.e. TE;C `

H
Q0 : strong smap(b1; int). The time complexity to compute Q0 is

O(#Y +#X). Thus, Q0 is a linear-time query.

Now let us consider the case of a count-query whose predicate is a conjunction of t + 1 anti-joins.
Thus, Query Qc is given by

Qc = f[x;#fy 2 Y j K(x; y) ^ (f(x) 6= g(y))g] : x 2 Xg;

where K(x; y) represents the other t anti-join predicates. Assume that Query Qc is well-typed, i.e.

TE;C `
H
Qc : strong smap(b1; int): (4.12)

Recall that for each anti-join predicate f(x) 6= g(y), both expressions f(x) and g(y) must be of some
base type b3, i.e.

TE[x 7! b1]; C `H f(x) : b3; and TE[y 7! b2]; C `H g(y) : b3: (4.13)

Query Qc can be transformed into the following equivalent query.

Q0 = let
Q1 = f[f(x); x] : x 2 Xg
Q2 = f[g(y); y] : y 2 Y j Q1fg(y)g 6= omg
Q3 =]z2domain(Q2)f[x;#fy 2 Q2fzg j K(x; y)g] : x 2 Q1fzgg
Q4 = f[x;#fy 2 Y j K(x; y)g] : x 2 Xg

in
f[x;Q4(x) �Q3(x)] : x 2 X j Q3(x) 6= omg]
f[x;Q4(x)] : x 2 X j Q3(x) = omg

First, let us prove that Query Q0 is in fact equivalent to Query Qc. Query Q1 computes the inverse
map of expression f restricted to set X , and Query Q2 computes the inverse map of expression
g restricted to those y 2 Y for which 9x 2 X (f(x) = g(y)). Then, it follows that for all x 2
domain(Q3), Q3(x) = #fy 2 Y j K(x; y) ^ (f(x) = g(y))g, and for all x 62 domain(Q3), the
#fy 2 Y j K(x; y) ^ (f(x) = g(y))g = 0. The rest of the proof is trivial and is omitted.

Next, let us prove that Query Q0 is also a well-typed High SETL expression. From the well-typedness
of Query Qc given by Derivation 4.12, and the types of f(x), and g(y) given by the derivations in 4.13,
it is easy to prove that

TE;C `
H
Q1 : strong mmap(b3; b1):

100

Next, we can prove that

TE[Q1 7! strong mmap(b3; b1)]; C `H Q2 : strong mmap(b3; b2);
TE[Q1 7! strong mmap(b3; b1); Q2 7! strong mmap(b3; b2)]; C `H

Q3 : strong smap(b1 : int); and
TE[Q1 7! strong mmap(b3; b1); Q2 7! strong mmap(b3; b2);

Q3 7! strong smap(b1 : int)]; C `H Q4 : strong smap(b1 : int)

Finally, it follows from the above derivations that

TE;C `
H
Q0 : strong smap(b1; int);

thus proving that Query Q0 is a well-typed High SETL expression.

Finally, we consider the time complexity of computing Q0. The costs of computing Q1 and Q2 are
O(#X) and O(#Y) respectively. For computing Q3, we compute multiple count-queries each of whose
predicate is a conjunct of t anti-joins. By our inductive hypothesis, each of these count-queries are
linear-time queries. Therefore, the cost of computing Q3 is

�z2domain(Q2)O(#Q1fzg+#Q2fzg) = O(#X +#Y):

Query Q4 is also a count query whose predicate contains t anti-joins, and therefore by the inductive
hypothesis, the cost of computingQ4 is O(#X+#Y). Then, it follows easily that the cost of computing
Q0 is O(#X +#Y), thus proving that a count-query whose predicate is a conjunct of t+ 1 anti-joins
is also a linear-time query.

Case 2: Simple Find-queries The proof once again follows by induction on the number of anti-join pred-
icates.

The base case is when the number of anti-join predicates is 0. In this case, the simple �nd-query Qsf

is

Qsf = f[x; y] 2 X � Y j trueg;

and its time complexity is O(#X + #Y +#Qsf), where #Qsf is the size of the output. Thus, the
query is a linear-time query.

Now consider the case when predicate e(x; y) of Query 4.11 is a conjunction of t anti-join predicates.
Let Qsf be given by

Qsf = f[x; y] 2 X � Y j ^ti=1 fi(x) 6= gi(y)g:

We assume that Qsf is well-typed High SETL expression, i.e.

TE;C `
H
Qsf : set(b1 � b2):

For each anti-join predicate fi(x) 6= gi(y), we assume that both fi(x) and gi(y) are of some base type
b0i. Then, Query Qsf can be transformed into the equivalent

Q0 = let
n = #Y
Ci = f[fi[x]; x] : x 2 Xg for all i = 1; : : : ; t
Di = f[gi[y]; y] : y 2 Y g for all i = 1; : : : ; t
Criti = fz 2 domain(Di) j #Difzg � n=2tg for all i = 1; : : : ; t
X0 = fx 2 X j ^

t
i=1 fi(x) 62 Critig

Q0 = f[x; y] 2 X0 � Y j ^ti=1 fi(x) 6= gi(y)g
Qi =]z2Critif[x; y] 2 Cifzg � (Y �Difzg) j

^tj=1;j 6=ifj(x) 6= gj(y)g for all i = 1; : : : ; t

in
Q0 [Q1 [: : : [Qt

101

First, let us prove that Query Q0 is in fact equivalent to Query Qsf . Each query Ci is the inverse map
of function fi restricted to set X , and each query Di is the inverse map of function gi restricted to
set Y . Therefore, Criti contains those elements z in the range of function gi such that the size of the
pre-image of z under gi is greater than or equal to #Y=2t, i.e. #g�1

i fzg � #Y=2t. Set X0 is the set
of those x in X such that for all i = 1; : : : ; t, gi(x) does not belong to Criti, i.e.

X0 = fx 2 X j 8i = 1; : : : ; t (gi(x) 62 Criti)g:

Let us de�ne Xi = fx 2 X j gi(x) 2 Critig for all i = 1; : : : ; t. Then, it follows that

X = X0 [X1 [: : : [Xt;

and that

Qi = f[x; y] 2 Xi � Y j ^tj=1 fj(x) 6= gj(y)g; for all i = 0; : : : ; t.

Then, it is obvious that Q0 [Q1 [: : : [Qt is equivalent to Query Qsf .

Next we prove that Query Q0 is a well-typed High SETL expression. The following sequence of
derivations give an outline of how to get a type-derivation for expression Q0.

TE;C `
H
Ci : strong mmap(b0i; b1) (for all i = 1; : : : ; t)

TE;C `
H
Di : strong mmap(b0i; b2) (for all i = 1; : : : ; t)

TE[Di 7! strong mmap(b0i; b2)]; C `H
Criti : strong set(b0i) (for all i = 1; : : : ; t)

TE[8j = 1; : : : ; t Critj 7! strong set(b0j)]; C `H X0 : set(b1)

TE[X0 7! set(b1)]; C `H Q0 : set(b1 � b2)

TE[Criti 7! strong set(b0i); Ci 7! strong mmap(b0i; b1);
Di 7! strong mmap(b0i; b2)]; C `H Qi : set(b1 � b2)

TE[8j = 0; : : : ; t Qj 7! set(b1 � b2)]; C `H Q0 [Q1 [: : : [Qt : set(b1 � b2)

Finally, we consider the time complexity of computing Query Q0. The time complexity of computing
each query Ci and Di is O(#X) and O(#Y) respectively. The cost of computing each query Criti
is O(�z2domain(Di)Difzg) = O(#Y). The cost of computing Query X0 is O(#X). The cost of
computing Q0 is O(#X0 �#Y). Now, we make use of an interesting argument to prove that the cost
of computing Q0 is in fact O(#Q0), and since Q0 � Q0, the cost of computing Q0 is also O(#Q

0). For
all x 2 X0, we know that gi(x) 62 Criti for all i = 1; : : : ; t. It then follows that

for all x 2 X0; #fy 2 Y j fi(x) = gi(y)g � #Y=2t:

This implies that

for all x 2 X0; #fy 2 Y j _
t
i=1 fi(x) = gi(y)g � #Y=2;

which can be reformulated as

for all x 2 X0; #fy 2 Y j ^
t
i=1 fi(x) 6= gi(y)g � #Y=2;

Therefore, it follows that #Q0 � (#X0 �#Y)=2. Thus, the cost of computing Query Q0 is O(#Q0),
and therefore also O(#Q0). Consider the cost of computing each Qi. From a simple application of the

102

pigeon-hole principle, it follows that #Criti � 2t for all i. Then, each Qi is a disjoint union of at-most
2t (a constant) simple �nd-queries each of which only has t� 1 anti-join predicates. By our, inductive
hypothesis, each of these queries are linear-time queries, and therefore the time complexity of each of
these queries is O(#X +#Y +#Q0). Finally, the cost of the �nal union Q0 [Q1 [: : :Qt is O(#Q

0)
(since once again, t is just a constant). Thus, the total cost of computing Q0 is O(#X +#Y +#Q0),
and therefore, it is a linear-time query2

This ends the proof of Theorem 4.4.1. 2

Theorem 4.4.2 All well-typed count-queries and simple �nd-queries whose predicate e(x; y) is just a con-
junction of an arbitrary number of anti-join and equi-join predicates are linear-time queries.

Proof: The proof follows by induction on the number of equi-join predicates. We �rst consider the case for
simple �nd-queries.

The base case is when the number of equi-join predicates is 0. Then, it follows from Theorem 4.4.1, that
the simple �nd-query containing only anti-join predicates is a linear-time query.

Now, let's consider the case of a simple �nd-query whose predicate e(x; y) is a conjunction of an arbitrary
number of anti-join predicates and t+ 1 equi-join predicates. Let the query Qsf be given by

Qsf = f[x; y] 2 X � Y j K(x; y) ^ f(x) = g(y)g;

where the predicate K(x; y) denotes a conjunction of an arbitrary number of anti-join predicates and t
equi-join predicates. Assume that query Qsf is well-typed, i.e.

TE;C `
H
Qsf : set(b1 � b2):

Recall that for each equi-join predicate f(x) = g(y), both expressions f(x) and g(y) must be of some base
type b3, i.e.

TE[x 7! b1]; C `H f(x) : b3; and TE[y 7! b2]; C `H g(y) : b3:

Query Qsf can be transformed into the following equivalent query.

Q0 = let
Q1 = f[f(x); x] : x 2 Xg
Q2 = f[g(y); y] : y 2 Y j Q1fg(y)g 6= omg

in
]z2domain(Q2)f[x; y] 2 Q1fzg�Q2fzg j K(x; y)g

First, let us prove that Query Q0 is in fact equivalent to Query Qsf . Query Q1 computes the inverse
map of expression f restricted to set X , and Q2 computes the inverse map of expression g restricted to
those y 2 Y for which 9x 2 X f(x) = g(y). Therefore, it follows that for all z 2 domain(Q2), any pair
[x; y] 2 Q1fzg�Q2fzg satis�es f(x) = g(y). Moreover, for every pair [x; y] 2 X � Y satisfying f(x) = g(y),
there exists a z in domain(Q2) such that x 2 Q1fzg and y 2 Q2fzg. Then, it easily follows that Query Q0

is equivalent to Qsf .
Next, we prove that Query Q0 is well-typed. The following sequence of type-derivations give an outline

of how to get a type-derivation of Query Q0.

TE;C `
H
Q1 : strong mmap(b3; b1)

TE[Q1 7! strong mmap(b3; b1)]; C `H Q2 : strong mmap(b3; b2)

TE[Q1 7! strong mmap(b3; b1); Q2 7! strong mmap(b3; b2)]; C `H
]z2domain(Q2)f[x; y] 2 Q1fzg�Q2fzg j K(x; y)g : set(b1 � b2)

2Note, that the constant factor involved in O(#X +#Y +#Q0) is 2t� (t!)2, which for out purposes is a constant,
since t is a constant.

103

Finally, we consider the time complexity of computing Q0. The cost of computing Q1 and Q2 is O(#X)
and O(#Y) respectively. By the inductive hypothesis, each query f[x; y] 2 Q1fzg � Q2fzg j K(x; y)g is a
linear-time query since K(x; y) contains only t equi-join predicates and any number of anti-join predicates.
Let Output(z) denote the output of query f[x; y] 2 Q1fzg�Q2fzg j K(x; y)g. Then, the cost of computing
]z2domain(Q2)f[x; y] 2 Q1fzg�Q2fzg j K(x; y)g is

�z2domain(Q2)O(#Q1fzg+#Q2fzg+Output(z)) = O(#X +#Y +#Q0):

Thus, the total cost of computing Q0 is O(#X +#Y +#Q0), and therefore Q0 is a linear-time query. The
proof for the case of count-queries is similar, and is omitted. 2

Theorem 4.4.3 All well-typed count-queries and simple �nd-queries whose predicate e(x; y) is a conjunction
of an arbitrary number of anti-join, equi-join or tabular predicates are linear-time queries.

Proof: We �rst consider the case of simple �nd-queries. Let Qsf be a simple-�nd query containing
t tabular predicates and any number of anti-join or equi-join predicates. If t is 0, then it follows from
Theorem 4.4.2 that Qsf is a linear-time query. If t > 0, then let the query Qsf be given by

Qsf = f[x; y] 2 X � Y j K(x; y) ^
^ti=19z 2 Zi (f

0
i(z) = g0i(x) ^ f 00i (z) = g00i (y))g;

where K(x; y) is the conjunction of an arbitrary number of equi-join and anti-join predicates. Assume that
Query Qsf is well-typed, i.e.

TE;C `
H
Qsf : set(b1 � b2):

Recall that for all tabular predicates of the form 9z 2 Zi (f
0
i(z) = g0i(x) ^ f 00i (z) = g00i (y)), each set Zi

must contain elements of some base type, each expression f 0i(z) and g
0
i(x) must be of some base type b

0
i, each

expression f 00i (z) and g00(y) must be of some base type b00i , and that all expressions f 0i(z); g
0
i(x); f

00
i (z), and

g00(y) must be few-to-one. Also recall that a map h is few to one, if for any element z, the number of elements

in the pre-image of z under map h is bounded by a constant c, i.e #h�1fzg � c, for some constant c.
Query Qsf is transformed into the following equivalent query Q0.

Q0 = let
Qi = f[f

0
i(z); f

00
i (z)] : z 2 Zig for all i = 1; : : : t

X1 = f[g
0
1(x); x] : x 2 Xg

Y1 = f[g
00
1 (y); y] : y 2 Y g

in
][p;q]2Q1

f[x; y] 2 X1fpg � Y1fqg j K(x; y) ^
^ti=2 9w 2 Qifg

0
i(x)g (g

00
i (y) = w)g

First, let us prove that Query Q0 is in fact equivalent to Query Qsf . Each query Qi contains that pairs
[f 0i(z); f

00
i (z)] for every z in set Zi. From the de�nition of X1 and Y1, it follows that for all [p; q] in Q1, if

there exists a pair [x; y] in X1fpg � Y1fqg, then there exists a z in Z1 such that f 01(z) = g01(x) = p and
f 001 (z) = g001 (y) = q. Moreover, g00i (y) 2 Qifg

0
i(x)g is also equivalent to 9z 2 Zi (f

0
i(z) = g0i(x) ^ f 00i (z) =

g00i (y)). Thus, it follows that Q
0 is equivalent to Qsf .

Next, let us prove that Query Q0 is well-typed. The following sequence of type-derivations give an outline
of how to get a type-derivation for Query Q0.

TE;C `
H
Qi : strong mmap(b0i; b

00
i)

TE;C `
H
X1 : strong mmap(b01; b1)

TE;C `
H
Y1 : strong mmap(b001 ; b2)

TE[(8i = 1; : : : t Qi 7! strong mmap(b0i; b
00
i)); X1 7! strong mmap(b01; b1);

Y1 7! strong mmap(b001 ; b2)]; C `H f[x; y] 2 X1fpg � Y1fqg j K(x; y) ^
^ti=2 9w 2 Qifg

0
i(x)g (g

00
i (y) = w)g : set(b1 � b2)

104

Finally, we consider the time complexity of computing Q0. The time complexity of computing each
Qi is O(#Zi). The time complexity of computing X1 and Y1 are O(#X) and O(#Y) respectively. Since
expressions g01(x) and g

00
1 (y) are few-to-one, it follows that for any p and q, the sizes of X1fpg and Y1fqg are

bounded by a constant c, i.e. the size of X1fpg�Y1fqg is bounded by c
2, which is also a constant. Moreover,

since each expression f 00i (z) is also few-to-one, each map Qi must also be one-to-few. Thus, for any z, the
size of Qifzg is also bounded by a constant. Thus, it follows that the total time to evaluate

][p;q]2Q1
f[x; y] 2 X1fpg � Y1fqg j K(x; y) ^ ^ti=2 9w 2 Qifg

0
i(x)g (g

00
i (y) = w)g

is O(#Z1). Thus, the time complexity of evaluation of Q0 is O(#X +#Y +#Z1 +#Z2 + : : :+#Zt), and
therefore Q0 is a linear-time query. The proof for count-queries is similar, and is omitted. 2

Theorem 4.4.4 All well-typed count-queries and simple �nd-queries whose predicate e(x; y) is just a con-
junction of an arbitrary number of anti-join, equi-join, tabular and negated tabular predicates are linear-time
queries.

Proof: We consider the cases of count-queries and simple �nd-queries separately.

Case 1: Count-queries The proof follows by an induction on the number of negated tabular predicates.

The base case is when the number of negated tabular predicates is 0. In this case, it follows from
Theorem 4.4.3 that the query is a linear-time query.

Next, we consider the case, when the query has t + 1 negated tabular predicates. Let Qc be the
count-query given by

Qc = f[x;#fy 2 Y j K(x; y) ^
:9z 2 Z (f 0(z) = g0(x) ^ f 00(z) = g00(y))g] : x 2 Xg;

where predicate K(x; y) is a conjunction of t negated tabular predicates and an arbitrary number of
anti-join, equi-join, and tabular predicates. Assume that Query Qc is well-typed, i.e.

TE;C `
H
Qc : strong smap(b1; int):

Query Qc is transformed into the following equivalent query Q0.

Q0 = let
Q1 = f[x;#fy 2 Y j K(x; y)g] : x 2 Xg
Q2 = f[x;#fy 2 Y j K(x; y) ^

9z 2 Z (f 0(z) = g0(x) ^ f 00(z) = g00(y))g] : x 2 Xg
in

f[x;Q1(x)�Q2(x)] : x 2 Xg

The proof that Query Q0 is equivalent to Query Qc is straightforward, and is omitted. The out-line
of the type-derivation of query Q0 can be seen from the following type-derivations

TE;C `
H
Q1 : strong smap(b1; int)

TE;C `
H
Q2 : strong smap(b1; int)

TE[Q1 7! strong smap(b1; int); Q2 7! strong smap(b1; int)]; C `H
f[x;Q1(x)�Q2(x)] : x 2 Xg : strong smap(b1; int)

Finally, we consider the time complexity of Query Q0. Both queries Q1 and Q2 have only t negated
tabular predicates (and an arbitrary number of anti-join, equi-join, and tabular predicates). Therefore,
by the inductive hypothesis, both Q1 and Q2 are linear-time queries, and thus can be computed in
O(#X +#Y) time. It easily follows that Q0 is also a linear-time query.

105

Case 2: Simple �nd-queries Once again the proof follows by induction on the number of negated tabular
predicates.

The base case for 0 negated tabular predicates follows from Theorem 4.4.3.

Consider the case when we have t+ 1 negated tabular predicates. Let the Query Qsf be given by

Qsf = f[x; y] 2 X � Y j K(x; y) ^
:9z 2 Z (f 0(z) = g0(x) ^ f 00(z) = g00(y))g;

where K(x; y) is a conjunction of t negated tabular predicates and any number of anti-join, equi-join
and tabular predicates. Assume that Query Qsf is well-typed, i.e.

TE;C `
H
Qsf : set(b1 � b2):

Recall that for all negated tabular predicates of the form :9z 2 Z (f 0(z) = g0(x) ^ f 00(z) = g00(y)),
the expressions f 0(z), and g0(x) must be of some base type b3, and f 00(z) and g00(y) must be of some
base type b4.

Query Qsf may be transformed into the following equivalent query Q0.

Q0 = let
Q1 = f[g

0(x); x] : x 2 Xg
Q2 = f[g

00(y); y] : y 2 Y g
Q3 = f[f

0(z); f 00(z)] : z 2 Zg
in

f[x; y] 2 X � Y j K(x; y)g �][p;q]2Q3
(Q1fpg �Q2fqg)

The proof that Q0 is equivalent to Qsf is straightforward and is omitted. The outline of the type-
derivation for Q0 can be seen from the following type-derivations

TE;C `
H
Q1 : strong mmap(b3; b1)

TE;C `
H
Q2 : strong mmap(b4; b2)

TE;C `
H
Q3 : mmap(b3; b4)

TE[Q1 7! strong mmap(b3; b1); Q2 7! strong mmap(b4; b2);
Q3 7! mmap(b3; b4)]; C `H f[x; y] 2 X � Y j K(x; y)g�
][p;q]2Q3

(Q1fpg �Q2fqg) : set(b1 � b2)

Finally, we consider the time complexity of computing Q0. The costs of computing Q1, Q2, and Q3 are
O(#X), O(#Y), and O(#Z) respectively. Let Q4 denote the query f[x; y] 2 X � Y j K(x; y)g. Since
expression K(x; y) contains t negated tabular predicates, it follows from the inductive hypothesis that
Query Q4 can be computed in O(#X +#Y +#Q4) time. Also, since expressions g

0(x) and g00(y) are
few-to-one, it follows that for any pair [p; q], this size of Q1fpg�Q2fqg is bounded by some constant.
Thus, the size of][p;q]2Q3

(Q1fpg�Q2fqg) is O(#Z), and also that #Q4�#Q
0 = O(#Z), or in other

words #Q4 = O(#Q0 +#Z). Therefore, it follows that Query Q0 is also a linear-time query.

2

Theorem 4.4.5 All count-queries and simple �nd-queries whose predicate e(x; y) is just a conjunction of
an arbitrary number of anti-join, equi-join, tabular, negated tabular, unary list predicates or negated unary
list predicates are linear-time queries.

106

Proof: We consider the case of simple-�nd queries �rst. The proof follows by induction on the number of
unary list and negated unary list predicates.

The base case is when the number of unary list predicates and negated unary list predicates is 0. In this
case, it follows from Theorem 4.4.1 that the simple �nd-query is a linear-time query.

Now, let us consider the case when Query Qsf has t + 1 unary list and negated unary list predicates.
Let Qsf be given by the query

Qsf = f[x; y] 2 X � Y j K(x; y) ^ U(x)g;

where predicate K(x; y) contains t unary list and negated unary list predicates, and an arbitrary number of
anti-join, equi-join, tabular, and negated tabular predicates, and predicate U(x) is a unary list or a negated
unary list predicate. Let us consider the case when U(x) is the predicate 9z 2 Z (f(z) = g(x)). Also assume
that Query Qsf is well-typed, i.e.

TE;C `
H
Qsf : set(b1 � b2);

and that expressions f(z) and g(x) are of some base type b3 for z 2 Z and x 2 X .
Query Qsf can be transformed into the following equivalent query Q0.

Q0 = let
Q1 = ff(z) : z 2 Zg
X1 = fx 2 X j g(x) 2 Q1g

in
f[x; y] 2 X1 � Y j K(x; y)g

The proofs that Query Q0 is equivalent to Query Qsf , and that Query Q0 is well-typed are straight-forward
and are omitted. From the inductive hypothesis, it follows that the query f[x; y] 2 X1 � Y j K(x; y)g is a
linear-time query. Then, it follows easily that Q0 is also a linear-time query.

The cases for other kinds of unary list and negated unary list predicates, and for count-queries are
similar, and are omitted. 2

Theorem 4.4.6 All count-queries and simple �nd-queries are linear-time queries.

Proof: We consider the case of simple �nd-queries �rst. The proof follows by induction on the number of
unary and negated unary predicates in the predicate e(x; y) of the simple �nd-query Qsf .

The base case is when there are 0 unary and negated unary predicates. In this case, it follows from
Theorem 4.4.5 that Query Qsf is a linear-time query.

Now consider the case when e(x; y) contains t+ 1 unary or negated unary predicates. Let Qsf be given
by the query

Qsf = f[x; y] 2 X � Y j K(x; y) ^ U(x)g;

where predicate K(x; y) contains t unary or negated unary predicates and an arbitrary number of other
kinds of predicates, and predicate U(x) is a unary or negated unary predicate involving x. Assume that
Query Qsf is well-typed, i.e.

TE;C `
H
Qsf : set(b1 � b2):

Query Qsf can be transformed into the following equivalent query Q0.

Q0 = let
X1 = fx 2 X j U(x)g in
f[x; y] 2 X1 � Y j K(x; y)g

The proofs that Query Q0 is equivalent to Query Qsf , and that Query Q0 is well-typed are straight-forward
and are omitted. From the inductive hypothesis, it follows that the query f[x; y] 2 X1 � Y j K(x; y)g is a
linear-time query. Then, it follows easily that Q0 is also a linear-time query. 2

107

4.5 Summary

In Section 4.3 we reduced the problem of showing that all LRCS count-queries and �nd-queries are linear-time
queries to the problem of showing that all well-typed count-queries and simple �nd-queries are linear-time
queries. In Section 4.4 we presented a sequence of theorems (Theorems 4.4.1-4.4.6) that �nally led to a proof
that all count-queries, and simple �nd-queries are linear-time queries. Thus, we proved that each LRCS
query can be implemented in worst-case linear time with respect to the sum of the sizes of its input and the
output.

In this chapter we have demonstrated how High SETL can be used as an algorithm speci�cation language
to shorten, simplify, and, �nally, speedup an algorithmic result. Our LRCS translation is simple enough to
consider a practical project to mechanically check its correctness. Of course, its correctness must include
veri�cation of the linear run-time complexity of translated queries. It would be interesting to �nd out if
typability can be inferred mechanically or semi{automatically, in order to make our type system a more
useful tool for algorithmic speedup.

108

Chapter 5

SQ+

5.1 Introduction

In Chapters 2 and 3, we de�ned two algorithm speci�cation languages Low SETL and High SETL. Low
SETL is an imperative language with built-in �nite sets and maps, and a small set of primitive set-theoretic
operations for manipulating sets and maps. High SETL extends Low SETL with more abstract set-theoretic
operations such as union, intersection, map-composition, etc. and more abstract expressions such as set-
comprehension expressions. In Chapter 2 we showed that the well-typedness of a Low SETL program
guarantees that it can be transformed into a pointer machine implementation in which each associative
access operation can be performed in worst-case O(1) time without the use of hashing. In Chapter 3 we
de�ned a translation from High SETL to Low SETL and proved that the translation of well-typed High
SETL programs always leads to well-typed Low SETL programs.

In this chapter we present a more abstract, functional set-theoretic language SQ+ (where SQ stands for
Set Queries and the + indicates its extension with least and greatest �xed points). Since SQ+ is a functional
language, we shall use the terms "SQ+ program" and "SQ+ function" inter-changeably. Similarly, we shall
use the terms "High SETL expression" and "High SETL function" inter-changeably. SQ+ comprises of the
functional subset of High SETL (i.e. High SETL expressions) augmented with the least and greatest �xed
point operators. The language SQ+ presented here is only slightly di�erent from the version presented by
Cai and Paige [13]. However, one signi�cant di�erence is that the language presented here is statically typed
whereas the language presented by Cai and Paige was dynamically typed. Cai and Paige showed that their
language was capable of expressing any partial-recursive function in a �xed point normal form. We show
that our statically typed version can also do the same. One of the major contributions of Cai and Paige was
the development of a non-deterministic iterative schema called dominated convergence, that together with
�nite di�erencing [70, 68, 72] was used for computing �xed points of monotone functions very eÆciently. In
Section 5.5 we will see how dominated convergence and �nite di�erencing can be used to get eÆcient High
SETL implementations of SQ+ programs.

In this chapter we present our statically typed version of SQ+, and de�ne an operational semantics for
typed SQ+ in terms of High SETL. Unfortunately, we are not able to guarantee that all SQ+ programs will
be transformed into equivalent High SETL implementations. In general, even the problem of determining
whether a �xed point exists is undecidable (see [13]). To get around this problem, we de�ne a translation
from SQ+ to High SETL which is guaranteed to be correct only if certain semantic conditions hold for
the expression whose �xed point is being computed. For example, one such semantic condition is that the
expression should be monotonic. We present theorems which state suÆcient conditions under which our
translation from SQ+ is guaranteed to produce a High SETL program that computes the least/greatest
�xed point.

Although, we are not precisely able to characterize the subset of SQ+ that can be transformed into
equivalent High SETL implementations, we can at-least prove that the subset of SQ+ programs that satisfy
the semantic conditions that are suÆcient to ensure a correct translation into High SETL, can express all
partially recursive functions, i.e. is Turing Complete. We also de�ne a type system for SQ+, and prove that

109

s; t; f; g; x; x1; : : : ; v; v1; : : : : Variable Names
E;E1; E2; : : : : SQ+ expressions
K;K1;K2; : : : : Boolean valued SQ+ expressions

K ::= s 2 t j s == t j IsEmptySet(s) j IsEmptyMap(f) j
(9x 2 sjK1) j (8x 2 sjK1) j if K1 then K2 else K3 endif j
:K1 j K1 ^K2 j K1 _K2 j let v = E in K

E ::= K
v j 3 v j v1(v2) j v1fv2g j v1[i] j om
s [t j s \ t j s� t j s� t j #s j s] t j ToSet(f) j ToMap(s) j
domain(f) j range(f) j f Æ g j (f js) j f [s] j f

�1 j f=g j
[x2sE j \x2s E j]x2s E j let v = E1 in E2 j if K then E1 else E2 endif j
fE : x1 2 E1; x2 2 E2; : : : ; xn 2 En j Kg
LFP�;w(E; s) j GFP�;w(E; s)

Figure 5.1: Syntax of SQ+

our translation of well-typed SQ+ programs always leads to well-typed High SETL programs.
The High SETL implementations of SQ+ speci�cations are based on the idea of computing Tarski

iteration sequences [107, 29] , and may sometimes be ineÆcient. In [13], a non-deterministic iterative
schema, called dominated convergence, was presented, which is a generalization of the "chaotic iteration"
found in Kildall [56], Tanenbaum [103], and Cousot and Cousot [29] (restricted to �nite iteration). It was
also shown that dominated convergence could be adapted to a wide range of contexts to synthesize eÆcient
algorithms and to provide succinct transformational correctness proofs. In this chapter we will describe
suÆcient conditions under which this non-deterministic algorithm schema may be adapted to give alternate
(and possibly more eÆcient) well-typed High SETL implementations of SQ+ functions.

5.2 De�nition of SQ+

SQ+ is the functional subset of High SETL augmented with the least and greatest �xed point operators. Thus,
every High SETL expression is also an SQ+ expression. Let � be a partial order. If E is an SQ+ expression,
then the expression LFP�;w(E; s) and GFP�;w(E; s) are also SQ

+ expressions and denote respectively the
least �xed point of expression E with respect to variable s greater than or equal to w, and the greatest �xed
point of expression E with respect to variable s less than or equal to w, where least and greatest are taken
relative to the partial order �. If we omit the w in LFP�;w and GFP�;w, then the w is by default taken to
be respectively the minimum and the maximum element of the partial order �. The syntax of SQ+ is given
in Figure 5.1. As in the case of Low SETL and High SETL, language SQ+ also contains ordinary arithmetic
expressions of the form E1 +E2, E1 �E2, etc. that have been omitted in Figure 5.1 for the sake of brevity.

Unlike Low SETL and High SETL, SQ+ does not contain imperative constructs such as assignment, and,
the for and while loops. An interesting question arises about the expressiveness of SQ+. Recall that both
Low SETL and High SETL are Turing Complete. However, if we eliminate the while loop from Low and
High SETL, the resulting languages are no longer Turing Complete. The functional subset of High SETL by
itself is not Turing Complete, and in fact, is a subset of the language of primitive recursive functions [31].
Thus, the elimination of all imperative constructs from High SETL limits its expressive power. However, we
can show that this loss of expressiveness can be made up for by adding the least and greatest �xed point
operators, and that the resulting language SQ+ is also Turing Complete.

In the next section, we briey go over some preliminaries that are required to state and prove theorems
outlining suÆcient conditions under which the �xed points of SQ+ expressions are guaranteed to exist, and

110

can be correctly computed using our translation from SQ+ to High SETL.

5.3 Preliminaries

We �rst review a few basic de�nitions and concepts from lattice theory (taken from [13]) that underlie the
main results. This background material may be found in any introductory text on lattice theory; for example,
Birkho� [8], or Gratzer [45]. Next we present some basic theory underlying �xed point computation that is
later used to give an operational semantics to SQ+ in terms of High SETL.

5.3.1 De�nitions

A poset (L;�) is a reexive, transitive, anti-symmetric binary relation � on a set L. A poset (L;�) has a
minimal element y i� 8x 2 L(x � y =) x = y), and a minimum element 0 i� 8x 2 L(0 � x). Maximal
and maximum elements are de�ned analogously. We use 1 to denote the maximum element. A chain for
a poset (L;�) is a strictly increasing or decreasing sequence of elements of L. A poset (L;�) is said to
have an ascending (respectively descending) chain condition, abbreviated ACC (respectively DCC), i� there
are no in�nite increasing(decreasing) chains in L. Let w 2 L. An element a 2 L is w+-�nite if the set
fx 2 Ljw � x � ag satis�es ACC. Similarly, a is w�-�nite if the set fx 2 Lja � x � wg satis�es DCC. Let
a; b; c 2 L. If a � c, and b � c, then c is an upper bound for a and b. An upper bound c for a and b is a
least upper bound if all other upper bounds x of a and b are greater than or equal to c. The least upper
bound of a and b is also called the join of a and b, and is denoted by a_ b. If a_ b is de�ned and belongs to
L for all a; b 2 L, then (L;�) is called a join semilattice. Lower bounds, greatest lower bound (also called
meet and denoted by ^), and meet semilattices are de�ned analogously. If a poset is both a join and a meet
semilattice, then it is a lattice.

Let f : T �! Q be a function from poset (T;�) to poset (Q;�0). Function f is said to be monotone
(respectively antimonotone) if for every two elements x; y 2 domain(f) such that x � y, it is the case that
f(x) �0 f(y) (respectively f(y) �0 f(x)). If poset (Q;�0) is the same as poset (T;�), then we say that f is
inationary (respectively deationary) at x if x � f(x) (respectively f(x) � x). Function f is inationary
(deationary) if it is inationary (deationary) at every point in its domain.

Next we describe a basic theory of �xed points. For succinctness, we only describe results for least �xed
points. Dual results hold for the greatest �xed points.

5.3.2 Basic Theory

Most of the transformations from SQ+ to High SETL are based on the following theorem and corollary,
which can be derived from Tarski's more general Theorem [107] or its constructive reformulation due to
Cousot and Cousot [29].

Theorem 5.3.1 (Paige and Henglein [67]) Let (T;�) be a poset with a unique minimum element designated
0. Let f : T �! T be a monotone computable function. Then the set ff i(0) : i = 0; 1; : : :g is �nite i� there
exists an integer k � 0 such that fk(0) = LFP�(f(x); x).

Corollary 5.3.2 (Cai and Paige [13]) Let (T;�) be a poset. Let f : T �! T be a monotone computable
function, w 2 T , and w � f(w). Then the set ff i(w) : i = 0; 1; : : :g is �nite i� there exists an integer k � 0
such that fk(w) = LFP�;w(f(x); x).

Theorem 5.3.3 (Cai and Paige [13]) Let (T;�) be a poset. Let f : T �! T be a monotone computable
function, w 2 T , and w � f(w). Then the set ff i(w) : i = 0; 1; : : :g is �nite if any one of the following
conditions holds:

1. either of the sets fx 2 T jw � xg or fx 2 range(f)jw � xg is �nite.

2. either of the sets fx 2 T jw � xg or fx 2 range(f)jw � xg satis�es ACC.

111

TE;C `
H
E : �

TE;C `
S
E : �

(5.2)

TE;C `
S
w : �

TE[x 7! �]; C `
S
E : �

TE;C `
S
LFP�;w(E; x) : �

(5.3)

TE;C `
S
w : �

TE[x 7! �]; C `
S
E : �

TE;C `
S
GFP�;w(E; x) : �

(5.4)

Figure 5.2: Type Rules for SQ+

3. f has a w+-�nite �xed point greater than or equal to w either with respect to (T;�) or to the poset
(range(f);�).

4. The poset (T;�) is a join semilattice and function f has the form f(x) = x _ g(x), where the set
fg(x) : x 2 T jw � xg is �nite.

5. The poset (T;�) is a join semilattice and function f has the form f(x) = x _ g(x), g is monotone,
and the set fg(x) : x 2 T jw � xg satis�es ACC.

If f is monotone and inationary at w, then according to Corollary 5.3.2, a straightforward algorithm to
compute LFP�;w(f) initializes p to w, and then repeatedly computes the new value of p by assigning f(p)
to p until p does not change. Theorem 5.3.3 gives suÆcient conditions under which such an algorithm is
guaranteed to terminate with the correct answer.

In the next section, we de�ne a static type system for SQ+. Next, we de�ne an operational semantics
for typed SQ+ queries in terms of High SETL. We prove that the High SETL implementations of well-typed
SQ+ queries are also well-typed. Using the theory developed in this section, we are able to infer that if
the conditions of Corollary 5.3.2 and Theorem 5.3.3 are met, then the High SETL implementations are
guaranteed to correctly compute the least/greatest �xed point.

5.4 Type System and Operational Semantics for SQ+

The set of types Type is the same as that for High SETL, i.e. the types derivable from � in Grammar 5.1.

� ::= bool j � j strong set(b) j strong smap(b; �) j strong mmap(b; �) j �1 � �2 � : : :� �k
� ::= int j b j set(�1) j smap(�1; �2) j mmap(�1; �2) j �1 � �2 � : : :� �k

(5.1)

5.4.1 Type Rules for SQ+

In Figure 5.2, we give type inference rules for SQ+ using judgments of the form TE;C `
S
E : � . We say

that an SQ+ expression E is well-typed in type environment TE with a set of subtype constraints C, if there
exists a type-derivation for the judgment TE;C `

S
E : � . Rule 5.2 says that every well-typed High SETL

expression is a well-typed SQ+ expression. Rules 5.3 and 5.4 say that if w is a well-typed SQ+ expression of
type � , and assuming that variable x is of type � , expression E is also a well-typed SQ+ expression of type
� , then the expressions LFP�;w(E; x) and GFP�;w(E; x) are also well-typed SQ+ expressions of type � .

112

Eq int(x; y) = (x == y)
Eqb(x; y) = (x == y) for any base type b

Eq�1�:::��n(x; y) = Eq�1(x[1]; y[1]) ^ : : : ^ Eq�n(x[n]; y[n])
Eqset(�)(x; y) = (#x == #y) ^ (8z 2 x j 9z0 2 y j Eq�(z; z

0))

Eqstrong set(b)(x; y) = (#x == #y) ^ (8z 2 x j 9z0 2 y j Eqb(z; z
0))

Eqsmap(�1;�2)(x; y) = let u = ToSet(x) in let v = ToSet(y) in Eqset(�1��2)(u; v)

Eqstrong smap(b1;�2)(x; y) = let u = ToSet(x) in let v = ToSet(y) in Eqset(b1��2)(u; v)

Eqmmap(�1;�2)(x; y) = let u = ToSet(x) in let v = ToSet(y) in Eqset(�1��2)(u; v)

Eqstrong mmap(b1;�2)(x; y) = let u = ToSet(x) in let v = ToSet(y) in Eqset(b1��2)(u; v)

Figure 5.3: De�nition of Eq� (x; y)

5.4.2 High SETL implementations of SQ+

In this section we will ascribe an operational semantics to SQ+ in terms of High SETL. We will also show
that well-typed SQ+ functions have well-typed High SETL implementations. In order to implement SQ+

programs in High SETL, we need to de�ne a class of High SETL expressions Eq� (de�ned in Figure 5.3)
inductively on � . For each type � , the functionality of the High SETL expression Eq� (x; y) is to compare
variables x and y of type � for equality. It is easy to prove that if TE = f[x; �]; [y; �]g and C contains
subtype constraints corresponding to the base types appearing in type � , then TE;C `

H
Eq� (x; y) : bool,

i.e. for all types � and variables x and y of type � , the High SETL expression Eq� (x; y) is well-typed.
Now, we are ready to de�ne the High SETL implementations of well-typed SQ+ programs. Let E be a

well-typed SQ+ expression having a type derivation for the judgment TE;C `
S
E : � . We de�ne the High

SETL implementation of v := E by rule induction on the type derivation of expression E.

� Case Rule 5.2: In this case since E is itself a well-typed High SETL expression, the command v := E

is a valid High SETL implementation.

� Case Rule 5.3: By inductive hypothesis, assume that Pw is a High SETL implementation of x := w,
and that PE is a High SETL implementation of x := E. The High SETL implementation of x :=
LFP�;w(E; x) (shown below) is obtained by �rst assigning w to x, and repeatedly assigning E to x
until x does not change.

Pw; -- x := w

xprev := x;

PE; -- x := E

while : Eq� (x; xprev) loop

xprev := x;

PE; -- x := E

endloop

� Case Rule 5.4: This case is the dual case of Rule 5.3.

Moreover, we can show that High SETL implementations of well-typed SQ+ programs are well-typed (The-
orem 5.4.1).

Theorem 5.4.1 Let E be a well-typed SQ+ program having a type derivation for the judgment TE;C `
S
E :

� . Let PE be the High SETL implementation of v := E. Then, there exists a type environment TE0 � TE
with TE0(v) = � such that TE0; C `

H
PE .

Proof: The proof follows by a simple rule-induction on the type derivation for the judgment TE;C `
S
E : � .

2

113

5.4.3 A Note on the Expressiveness of SQ+

In Section 5.4 we de�ned High SETL implementations for SQ+ expressions. We proved that these implemen-
tations are guaranteed to compute the least or greatest �xed point if the conditions of Corollary 5.3.2 and
Theorem 5.3.3 are satis�ed. Although, we cannot make such a guarantee if the conditions of Corollary 5.3.2
and Theorem 5.3.3 are not satis�ed, we can at least show that every partially-computable function can be
expressed as a well-typed SQ+ program that computes the least �xed point of a monotonic and inationary
function i.e. a function satisfying the conditions of Corollary 5.3.2.

Theorem 5.4.2 Every partially computable function f : N �! N over the natural numbers N can be
expressed as a well-typed SQ+ program LFP�;w(E; x) where expression E is monotonic and inationary at
w.

Proof Sketch: Cai and Paige prove a similar result in the Appendix of [13] by showing that a Turing
Machine can be simulated by an SQ+ program. It only remains to show that the Turing Machine may be
simulated by a well-typed SQ+ program. It is not diÆcult to prove that the SQ+ program that Cai and
Paige use to simulate the Turing Machine is in fact a well-typed SQ+ program. 2

5.4.4 Time Complexity of SQ+ programs

Since SQ+ is Turing Complete, the problem of determining whether an implementation of an SQ+ program
terminates is undecidable. However, if the conditions of Theorem 5.3.3 are satis�ed, then the High SETL
implementation of the SQ+ program is guaranteed to terminate. Using Theorem 5.3.3, it is possible to bound
the number of iterations of the outermost while loop in the High SETL implementation. Let us re-examine
the 5 conditions of Theorem 5.3.3 in order to compute a bound on the number of iterations of the High
SETL implementation.

1. either of the sets fx 2 T jw � xg or fx 2 range(f)jw � xg is �nite: In this case the number of
iterations of the outermost while loop is bounded by #fx 2 T jw � xg or #fx 2 range(f)jw � xg
respectively.

2. either of the sets fx 2 T jw � xg or fx 2 range(f)jw � xg satis�es ACC: In this case the number
of iterations of the outermost while loop is bounded by the size of the largest ascending chain in
fx 2 T jw � xg or fx 2 range(f)jw � xg.

3. f has a w+-�nite �xed point greater than or equal to w either with respect to T or to the poset
(range(f);�): Let a be the w+-�nite �xed point greater than or equal to w. In this case the number
of iterations of the outermost while loop is bounded by the size of the largest ascending chain in
fx 2 T jw � x � ag or fx 2 range(f)jw � x � ag.

4. The poset (T;�) is a join semilattice and function f has the form f(x) = x _ g(x), where the set
fg(x) : x 2 T jw � xg is �nite: In this case the number of iterations of the outermost while loop is
bounded by #fg(x) : x 2 T jw � xg.

5. The poset (T;�) is a join semilattice and function f has the form f(x) = x _ g(x), where the set
fg(x) : x 2 T jw � xg satis�es ACC: In this case the number of iterations of the outermost while loop
is bounded by the size of the largest ascending chain in fg(x) : x 2 T jw � xg.

Let xf denote LFP�;w(E; x). Then, if CE is the cost of computing expression E, and CEq is the cost of
comparing two values of type � that are no larger than the size of xf for equality, then the cost of computing
LFP�;w(E; x) is bounded by O(n� (CE +CEq)) where n is an upper bound on the number of iterations of
the while loop.

114

Expression Parameters that satisfy properties
Monotone Antimonotone Inationary Deationary

x 2 s s
y 2 ffxg f
9x 2 sjk(x) s and k
8x 2 sjk(x) k s
:k k
k ^ p k and p k and p
k _ p k and p k and p
ffxg f
s [t s and t s and t
s \ t s and t s and t
s� t s t s
s� t s and t
#s s
domain(f) f
range(f) f
f [s] f and s
f�1 f
fx 2 sjk(x)g s and k s

Table 5.1: Basic monotone, antimonotone, inationary, deationary functions

5.4.5 Pragmatic Considerations

The correctness of the High SETL implementation of SQ+ programs depends on properties such as mono-
tonicity, which are in general undecidable (see [13]). One practical approach to proving these properties is to
de�ne stronger syntactically de�ned decidable properties that imply these undecidable semantic properties.
This can be done by specifying properties using a formal system of pattern-directed inductive de�nitions
similar to Sintzo�'s method of valuations [96].

Inationary and Deationary

Although these properties are undecidable, a recursive class of inationary and deationary SQ+ expressions
can be generated by composition from a prede�ned collection of basic inationary and deationary functions
(See Table 5.1) by using the rule that the composition of two inationary functions is inationary and that
the composition of two deationary functions is deationary. Moreover, the function f(s) = s_g(s) is always
inationary, and the function f(s) = s ^ g(s) is always deationary.

f g f Æ g
inationary inationary inationary
deationary deationary deationary

Monotone and Antimonotone

We can recognize a large class of monotone and antimonotone computable functions as follows:

1. Basic monotone and antimonotone functions shown in Table 5.1.

2. Composition:

115

f g f Æ g
monotone monotone monotone

antimonotone monotone antimonotone
monotone antimonotone antimonotone

antimonotone antimonotone monotone

3. if f(x; y) is monotone (respectively antimonotone) in each parameter, then g(x) = f(x; x) is monotone
(respectively antimonotone) in x.

4. if f(x; y) is a function with a �nite range, is monotone in each parameter x and y, and inationary in
x, then the function g(w; y) = LFP�;w(f(x; y); x) and h(w; y) = GFP�;w(f(x; y); x) are monotone in
w and y and have �nite ranges.

5.5 Dominated Convergence

The iterative High SETL implementation of SQ+ programs de�ned in Section 5.4.2 may be highly ineÆcient
because of the potentially costly redundancy in the recomputation of expression E in each iteration. The fol-
lowing theorem provides another form of non-deterministic iteration (called Dominated Convergence), which
when used in conjunction with �nite di�erencing [70, 68], can lead to much more eÆcient implementations
of SQ+ programs.

Theorem 5.5.1 (Cai and Paige [13]) Let (T;�) be a poset. Let f : T �! T be a monotone computable
function, w 2 T , and w � f(w). Let s0; : : : ; si; : : : be any sequence such that

� s0 = w;

� si+1 2 fx 2 T jsi � x � f(si)g; i = 0; 1; : : :

Then we conclude the following:

1. If there exists an integer k � 0 such that sk = f(sk), then sk = LFP�;w(f).

2. If LFP�;w(f) is w
+-�nite, and if si < si+1 whenever si 6= f(si), then there exists a k � 0 such that

sk = f(sk).

It is easy to see that the sequence (w; f(w); f2(w); : : :) is just a special case of the sequence (s0; s1; s2; : : :).
Cai and Paige [13] formalized the way in which general sequences s0; s1; s2; : : : satisfying the conditions of
Theorem 5.5.1 may be generated in the following way.

Let (T;�) be a poset and S be a non-empty set. Let � : T � T �! 2S (called the workset function) be
such that �(q; p) = fg () q � p for all [q; p] 2 T �T . Let Æ : T �S �! T (called the increment function)
be such that p � Æ(p; z) for all [p; z] 2 T � S. The two functions � and Æ are said to be feasible relative to
each other if

8z 2 �(q; p)(p < Æ(p; z) � p _ q):

Then, it is not diÆcult to prove that if function f satis�es the conditions of Theorem 5.5.1, LFP�;w(f) is
w+-�nite, and functions � and Æ are feasible relative to each other, then LFP�;w(f) may be computed by
the following piece of code

p := w;
while 9z 2 �(f(p); p) loop

p := Æ(p; z);
end loop

(5.5)

It is easy to prove that the successive values assigned to p in Program 5.5 form a sequence s0; s1; s2; : : :
satisfying the conditions of Theorem 5.5.1. Then it follows from the fact that LFP�;w(f) is �nite that
Program 5.5 terminates with the value LFP�;w(f). We illustrate the above ideas through the following two
examples.

116

Example 1: (Graph Reachability) The problem is to �nd the set of vertices s reachable along paths in
a directed graph G from an arbitrary set of vertices w. Let Graph G be represented by the set of
vertices v and the �nite set of edges e, where each edge is a pair of vertices. Let e be implemented as a
multi-valued map, so that for each vertex x, the term efxg represents the set of vertices adjacent to x.
Recall that e[s] = [x2sefxg. Then, the graph reachability problem can be expressed as the following
SQ+ program

LFP�;w(s [e[s]; s) (5.6)

Since [is the join operator for the �nite lattice (2v;�), the function s [e[s] is inationary and
Condition 1 of Theorem 5.3.3 is satis�ed.. The function s[e[s] is also monotonic in s. Thus, it follows
that Function 5.6 may be computed by the following program.

s := w;

sprev := s;

s := s [e[s];

while s 6= sprev loop

sprev := s;

s := s [e[s]

endloop

Alternately, it can be seen that the functions �(q; p) = q� p and Æ(p; z) = p with z (choosing T to be
2v and S to be v) are respectively workset and increment functions (because q � p =) q � p = fg
and p � p with z) that are feasible relative to each other. It follows from Theorem 5.5.1 and the
preceding discussion that the following is another implementation of graph reachability.

s := w;

while 9 z 2 (s [e[s]) - s loop

s with:= z

endloop

Example 2: (Cycle Detection) Once again we assume that a directed graph is represented by a set of
vertices v and multi-valued map e such that for any vertex x, efxg is the set of vertices adjacent to x.
Graph G contains a cycle i� the largest set of vertices s � v each containing a successor belonging to
s is non-empty. This can be expressed as the following SQ+ program

:IsEmptySet(GFP�((s� fx 2 sjIsEmptySet(efxg \ s)g); s)); (5.7)

or as the following more readable speci�cation

GFP�((s� fx 2 sjefxg \ s = fg g); s) 6= fg:

Once again the lattice (2v;�) is �nite and therefore Condition 1 of Theorem 5.3.3 is satis�ed. The
function (s � fx 2 sjefxg \ s = fg g) is monotone in s and deationary. Therefore, it follows that
Program 5.7 may be computed by the following program.

s := v;

sprev := s;

s -:= f x 2 s | IsEmptySet(efxg \ s)g;
while (s 6= sprev) loop

sprev := s;

s -:= f x 2 s | IsEmptySet(efxg \ s)g
endloop

117

Alternately, it can be seen that the functions �(q; p) = p� q and Æ(p; z) = p less z (choosing T to be
2v and S to be v) are respectively workset and increment functions (because p � q =) p�q = fg and
p less z � p) that are feasible relative to each other. It follows from Theorem 5.5.1 and the preceding
discussion that the following is another implementation of cycle testing.

s := v;

while 9 z 2 f x 2 s | IsEmptySet(efxg \ s)g loop

s less:= z

endloop

5.6 Concluding Remarks

In this chapter we have de�ned a statically typed version of SQ+, and de�ned an operational semantics for
a subset of SQ+ in terms of High SETL. We proved that the subset of SQ+ with operational semantics
is Turing Complete. We have also described how a non-deterministic iteration strategy called dominated
convergence (Cai and Paige [13]) can be used for computing least and greatest �xed points.

In order to use dominated convergence, we need the workset and increment functions � and Æ that are
feasible relative to each other. Unfortunately, there is no mechanical way of generating a suitable pair of such
functions. We shall partially address this problem in the next chapter, where we shall see how to discover
this pair of functions for an interesting class of SQ+ expressions.

In the examples above, we saw the di�erent implementations using either the ordinary Tarski iteration or
dominated convergence. We have still not made it clear how dominated convergence can be more eÆcient than
the Tarski iteration. It turns out that dominated convergence when used together with �nite di�erencing,
can lead to much more eÆcient implementations of SQ+ programs. We shall see this in detail in the next
chapter where we de�ne a linear-time subset of SQ+, i.e a language that comprises of a subset of SQ+

expressions which can all be guaranteed to have linear time1 implementations using dominated convergence
and �nite di�erencing.

1linear in the sum of the sizes of the input and the output

118

Chapter 6

A Linear Time Language

6.1 Introduction

In Chapter 5, we de�ned a functional language SQ+ containing the functional subset of High SETL and
least and greatest �xed point operators. We gave an operational semantics to SQ+ in terms of High SETL,
and showed that if certain semantic properties are satis�ed, then the High SETL implementations of SQ+

programs are guaranteed to correctly compute the least/greatest �xed point. The naive translation of SQ+

to High SETL is based on the computation of Tarski iteration sequences. We also described how a non-
deterministic iteration schema, called dominated convergence, could be used as an alternative to Tarski
iteration.

In this chapter we de�ne a language LIO � SQ+ containing expressions that are guaranteed to have
implementations with time complexity linear in the sum of their input and output sizes. This language is
based on a similar linear-time language presented by Cai and Paige in [12]. We start by de�ning simple
expressions that have linear-cost implementations. Next, we de�ne rules which determine when the compo-
sition of linear-cost expressions is also of linear cost. In these cases, we only consider the static complexity
of expressions, i.e. the cost of fresh evaluation of expressions from scratch. The next step is to determine
which �xed point expressions can also be computed in linear time. Unfortunately, the naive evaluation of
SQ+ expressions using Tarski iteration is too expensive, and most SQ+ expressions cannot be computed
in linear time using Tarski iteration. The class of SQ+ expressions that can be computed in linear time is
greatly expanded by using �nite di�erencing together with dominated convergence.

Finite di�erencing involves substituting the fresh evaluation of expressions in each iteration by their more
inexpensive incremental counterparts. We determine the cost of di�erential calculations by associating precise
amortized complexities with an eager strategy for maintaining equality invariants e = f(x1; : : : ; xk) within
worst-case sequences of modi�cations to variables x1; : : : ; xk; i.e. each time a modi�cation to x1; : : : ; xk
occurs, variable e is updated to re-establish the invariant. This amortized complexity of maintaining the
invariant is called the dynamic complexity of the expression f(x1; : : : ; xk). We start by associating precise
amortized complexities with the maintenance of basic invariants. Next, we de�ne closure rules that allow us
to determine the cost of maintaining collections of interdependent invariants. Thus, we are able to de�ne a
rich class of invariants that can be maintained di�erentially with precise amortized complexities.

We also show how dominated convergence, together with di�erential evaluation of expressions, leads
to more eÆcient algorithms for a large class of problems involving �xed point computations. In order to
demonstrate the expressiveness of LIO , we consider examples of simple textbook algorithmic problems such
as Graph Reachability, Cycle Testing, Constant Propagation etc. in this chapter, and show that all these
problems are expressible in LIO , and therefore, can be transformed into linear-time implementations.

Later in this thesis, we go beyond textbook examples by tackling two sophisticated algorithmic problems
and show how the use of LIO helps in explaining and improving existing algorithms. In Chapter 7, we deal
with the problem of solving �xed-points of equations on transition systems. We demonstrate how the use
of SQ+ as a speci�cation language leads to the derivation of a linear-time algorithm that is much easier
to understand than the original linear-time algorithm proposed by Arnold and Crubille [5]. This example

119

serves to illustrate the usefulness of SQ+ as a tool for understanding complex algorithms involving �xed
point computations. In Chapter 8, we deal with the problem of computing intra-procedural point-wise may-
alias information for an imperative programming language like C. We demonstrate how the use of SQ+ as
a speci�cation language for the original problem leads to the discovery of a new O(N3) (where N is the
size of the program) time algorithm for computing may-alias information, which signi�cantly improves the
previously best known O(N5) time algorithm [51].

6.2 Terminology and Notation

In Section 6.3, we de�ne a subset LIO of typed SQ+ containing expressions which are guaranteed to have
worst-case linear time1 implementations. For the rest of this chapter, we shall use the terms expression and
function inter-changeably. We shall use the term Linear Cost Expression to denote an expression in LIO .

We shall �nd it convenient to make the free variables x1; : : : ; xk of an expressionE explicit by representing
expression E as E(x1; : : : ; xk). For example, expression E1 = s [t will be represented as E1(s; t), and
expression E2 = s [e[s] will be represented as E2(s; e). Note that the representation of an arbitrary
expression E having a free variable x as E(x) should not to be confused with the SQ+ map application f(x)
where f is a single-valued map. In order to avoid confusion, we shall use lower case letters for all variables
in an SQ+ program, and upper case letters otherwise.

Every expression in LIO is represented by a quadruple hTE;C;E; �i, where

� TE, the type environment is a map from variables to types,

� C, the set of subtype constraints, is admissible2, and contains subtype constraints for all base types
appearing in TE.

� Expression E is a well-typed SQ+ expression of type � under type environment TE, and the set of
subtype constraints C, i.e. there exists a type derivation for the type judgment

TE;C `
S
E : �:

Sometimes we will not explicitly state the type environment TE, set of subtype constraints C, and type
� with a linear-cost expression, but will just annotate the free variables occurring in the expression with
their respective types. For example, when we say that expression E(x1 : �1; : : : ; xk : �k) : � is a linear-cost
expression, we will mean that hTE;C;E; �i is a linear-cost expression, where TE = [x1 : �1; : : : ; xk : �k], C
is any admissible set of subtype constraints containing subtype constraints for all base types appearing in
TE, and � is the type of the output.

6.3 Linear-Cost Language

In this section we de�ne the linear-cost language LIO . We start by de�ning simple linear-cost expressions in
Section 6.3.1. In Section 6.3.2 we describe suÆcient conditions under which linear-cost expressions may be
composed to form other linear-cost expressions. For these expressions, a static complexity measure is used.
In Section 6.3.3, we look at the cost of computing expressions involving �xed-point computations.

6.3.1 Simple Linear-Cost Expressions

In Table 6.1 we de�ne some simple linear-cost expressions. As mentioned in the previous section, a linear-cost
expression E must be a well-typed SQ+ expression associated with a type environment TE, an admissible
set of subtype constraints for base types appearing in TE, and a type � . In Table 6.1 we include both type

1linear in the sum of the input and output sizes
2a set of subtype constraints is admissible if every base type is associated with a unique constraint, and the subtype

constraint graph is acyclic

120

Expr. E Type Environment TE Type � Cost
s 2 t s : b; t : strong set(b) bool O(1)
s == t s : �; t : � bool O(1)
IsEmptySet(s) s : set(�) or strong set(b) bool O(1)
IsEmptyMap(f) f : smap(�1; �2) or mmap(�1; �2) bool O(1)

or strong smap(b1; �2)
or strong mmap(b1; �2)

:K1 TE1 bool O(1)
K1 ^K2 TE1 [TE2 bool O(1)

assuming it is a valid type env.
K1 _K2 TE1 [TE2 bool O(1)

assuming it is a valid type env.
9x 2 s j K1(x) TE1 [fs : set(�) or strong set(b)g bool O(#s)
8x 2 s j K1(x) TE1 [fs : set(�) or strong set(b)g bool O(#s)
3 s s : set(�) � O(1)
3 s s : strong set(b) b O(1)
f(x) f : strong smap(b; �1); x : b �1 O(1)
ffxg f : strong mmap(b; �1); x : b set(�1) O(1)
f [i] f : �1 � : : :� �k; i � k �i O(1)
s [t s : set(b) or strong set(b) set(b) or O(#s +#t)

t : set(b) or strong set(b) strong set(b)
s \ t s : set(b) or strong set(b) set(b) or O(#s +#t)

t : set(b) or strong set(b) strong set(b)
s� t s : set(b) or strong set(b) set(b) or O(#s +#t)

t : set(b) or strong set(b) strong set(b)
s� t s : set(�1); t : set(�2) set(�1 � �2) O(#(s � t))
s� t s : strong set(b1); t : set(�2) set(b1 � �2) O(#(s � t))
s� t s : set(�1); t : strong set(b2) set(�1 � b2) O(#(s � t))
s� t s : strong set(b1); t : strong set(b2) set(b1 � b2) O(#(s � t))
#s s : set(�) or strong set(b) int O(#s)
s] t s : set(�); t : set(�) set(�) O(#s +#t)
s] t s : set(b) or strong set(b) set(b) or O(#s +#t)

t : set(b) or strong set(b) strong set(b)
ToSet(f) f : smap(�1; �2) set(�1 � �2) O(#f)
ToSet(f) f : strong smap(b1; �2) set(b1 � �2) O(#f)
ToSet(f) f : mmap(�1; �2) set(�1 � �2) O(#f)
ToSet(f) f : strong mmap(b1; �2) set(b1 � �2) O(#f)
ToMap(s) s : set(b1 � �2) mmap(b1; �2) or O(#s)

strong mmap(b1; �2)

Table 6.1: Simple Linear-Cost Expressions. K1 and K2 are O(1) time computable (unless otherwise

stated), boolean-valued, and well-typed under TE1; TE2. E1 is O(1)-time computable (unless oth-

erwise stated) and well-typed under TE0. Recall that � ranges over the types that are comparable

for equality in O(1) time.

environment TE, and type � , but omit set C which can be any admissible set of subtype constraints for the
base types appearing in TE. We also include worst-case time complexities of expressions in Table 6.1 based
on the naive Low SETL implementations of these expressions.

Theorem 6.3.1 (Simple Linear-Cost Expressions) Let Expression E, Type Environment TE, and Type �

121

Expr. E Type Environment TE Type � Cost
domain(f) f : smap(�1; �2) set(�1) O(#dom(f))
domain(f) f : smap(b1; �2) or strong smap(b1; �2) set(b1) or O(#dom(f))

strong set(b1)
domain(f) f : mmap(�1; �2) set(�1) O(#dom(f))
domain(f) f : mmap(b1; �2) or strong smap(b1; �2) set(b1) or O(#dom(f))

strong set(b1)
range(f) f : smap(�1; b2) or strong smap(b1; b2) set(b2) or O(#f)

strong set(b2)
range(f) f : mmap(�1; b2) or strong mmap(b1; b2) set(b2) or O(#f)

strong set(b2)
f Æ g g : smap(�1; b2); smap(�1; �3) O(#f +#g)

f : smap(b2; �3) or strong smap(b2; �3)
f Æ g g : smap(b1; b2) or strong smap(b1; b2); smap(b1; �3) or O(#f +#g)

f : smap(b2; �3) or strong smap(b2; �3) strong smap(b1; �3)
f Æ g g : mmap(�1; b2); mmap(�1; �3) O(#f +#g)

f : smap(b2; �3) or strong smap(b2; �3)
f Æ g g : mmap(b1; b2) or strong mmap(b1; b2); mmap(b1; �3) or O(#f +#g)

f : smap(b2; �3) or strong smap(b2; �3) strong mmap(b1; �3)
f Æ g g : smap(�1; b2); mmap(�1; �3) O(#f +#g+

f : mmap(b2; �3) or strong mmap(b2; �3) #(f Æ g))
f Æ g g : smap(b1; b2) or strong smap(b1; b2); mmap(b1; �3) or O(#f +#g+

f : mmap(b2; �3) or strong mmap(b2; �3) strong mmap(b1; �3) #(f Æ g))
f js f : smap(b1; �1) or strong smap(b1; �1) smap(b1; �1) or O(#f +#s)

s : set(b1) or strong set(b1) strong smap(b1; �1)
f js f : mmap(b1; �1) or strong mmap(b1; �1) mmap(b1; �1) or O(#f +#s)

s : set(b1) or strong set(b1) strong mmap(b1; �1)
f [s] f : smap(b1; b2) or strong smap(b1; b2) set(b2) or O(#f +#s)

s : set(b1) or strong set(b1) strong set(b2)
f [s] f : mmap(b1; b2) or strong mmap(b1; b2) set(b2) or O(#f +#s)

s : set(b1) or strong set(b1) strong set(b2)
f�1 f : smap(�1; b2) mmap(b2; �1) or O(#f)

strong mmap(b2; �1)
f�1 f : smap(b1; b2) or strong smap(b1; b2) mmap(b2; b1) or O(#f)

strong mmap(b2; b1)
f�1 f : mmap(�1; b2) mmap(b2; �1) or O(#f)

strong mmap(b2; �1)
f�1 f : mmap(b1; b2) or strong mmap(b1; b2) mmap(b2; b1) or O(#f)

strong mmap(b2; b1)
f=g f : smap(b1; �2) or strong smap(b1; �2) smap(b1; �2) or O(#f +#g)

g : smap(b1; �2) or strong smap(b1; �2) strong smap(b1; �2)
f=g f : mmap(b1; �2) or strong mmap(b1; �2) mmap(b1; �2) or O(#f +#g)

g : mmap(b1; �2) or strong mmap(b1; �2) strong mmap(b1; �2)

Table 6.1: Simple Linear-Cost Expressions continued.

be taken from any row of Table 6.1. Let TE0 � TE, and let C 0 be any admissible set of subtype constraints
containing constraints for all base types appearing in TE0. Then, hTE0; C 0; E; �i is a linear-cost expression.

Proof: The proof follows by verifying that each of the expressions in Table 6.1 is well-typed, and by verifying
that the stated complexities match the complexities of the Low SETL implementations. 2

122

Expr. E Type Environment TE Type � Cost
fx 2 s j K1(x)g TE1 [fs : set(�)g set(�) O(#s)
fx 2 s j K1(x)g TE1 [fs : strong set(b)g strong set(b) O(#s)
f[x; y] : x 2 s; TE1 [fs : set(b1) or strong set(b1)g set(b1 � �2) or O(#s+
y 2 efxg j [fe : strong mmap(b1; �2) or mmap(b1; �2) or #e)
K1(x; y)g mmap(b1; �2)g strong mmap(b1; �2)
fx 2 s j TE1 [fs : set(b1) or strong set(b1)g set(b1) or O(#s+
K1(x; e)g [fe : strong mmap(b1; �2) or strong set(b1) #e)

mmap(b1; �2)g
where cost of K1(x; e) is O(#efxg)

fE1(x) : x 2 sg TE0 [fs : set(�1)g set(b2) or O(#s)
where TE0[x 7! �1]; C

0 `
S
E1(x) : b2 strong set(b2)

fE1(x) : x 2 sg TE0 [fs : strong set(b1)g set(b2) or O(#s)
where TE0[x 7! b1]; C

0 `
S
E1(x) : b2 strong set(b2)

f[x;E1(x)] : x 2 sg TE0 [fs : set(�1)g set(�1 � �2) or O(#s)
where �1 is not a base type, and smap(�1; �2)
TE0[x 7! �1]; C

0 `
S
E1(x) : �2

f[x;E1(x)] : x 2 sg TE0 [fs : set(b1) or strong set(b1)g set(b1 � �2) or O(#s)
and smap(b1; �2) or
TE0[x 7! b1]; C

0 `
S
E1(x) : �2 strong smap(b1; �2)

f[x;E1(x; e)] : TE0 [fs : set(b1) or strong set(b1)g mmap(b1; �3) or O(#s+
x 2 sg where TE0(e) = strong mmap(b1; �2) strong mmap(b1; �3) #e)

or mmap(b1; �2);
TE0[x 7! b1]; C `S E1(x; e) : set(�3);
and cost of E1(x; e) is O(#efxg):

f[x;E1(x; e)] : TE0 [fs : set(b1) or strong set(b1)g smap(b1; �3) or O(#s+
x 2 sg where TE0(e) = strong mmap(b1; �2) strong smap(b1; �3) #e)

or mmap(b1; �2);
TE0[x 7! b1]; C `S E1(x; e) : �3;
and cost of E1(x; e) is O(#efxg):

Table 6.1: Simple Linear-Cost Expressions continued.

Example 1 Let type environment TE = [s : set(�1); t : set(�2)], and C = fg. Then hTE;C; s� t; set(�1 �
�2)i is a linear-cost expression. Another way of saying the same thing is that expression E1(s :
set(�1); t : set(�2)) : set(�1 � �2) = s� t is a linear-cost expression.

Example 2 Let type environment TE = [x : set(�1 � �2)], and C = fg. Then hTE;C;#x; inti is a linear-
cost expression. Another way of saying the same thing is that expressionE2(x : set(�1��2)) : int = #x
is a linear-cost expression.

6.3.2 Composition of Linear-Cost Expressions

From Example 1 and Example 2 in Section 6.3.1, we see that expressions E2(x : set(�1 � �2)) : int = #x,
and E1(s : set(�1); t : set(�2)) : set(�1 � �2) = s� t are linear-cost expressions. What can we say about the
composition of expressions E1 and E2, i.e. the expression

E3(s : set(�1); t : set(�2)) : int = E2(E1(s; t)) = let x = s� t in #x ?

The time complexity of computing expression E3 is O(#s�#t) which is not linear in the sum of the input
sizes (O(#s+#t)) and the output size (O(1)). Thus, the composition of two arbitrary linear-cost expressions
may not be a linear-cost expression. Note that by our de�nition, linear cost is a syntactic property. Thus,

123

the expression #(s � t) is not of linear cost, while (#s) � (#t) is of linear cost. We de�ne some properties
below that are useful in determining when the composition of two linear-cost expressions is a linear-cost
expression.

Let us de�ne the size of a data-item x by Size(x) which is given by

Size(x) = O(1); if x is an integer or boolean
O(1) + �y2xSize(y); if x is a set
O(1) + �[y;z]2x(Size(y) + Size(z)); if x is a map
O(1) + �k

i=1Size(x[i]); if x is a k-tuple

(6.1)

De�nition 6.3.2 (k-absorbing, Output bounded, Partially k-absorbing in index set I)

k-absorbing: Expression E(x1; : : : ; xn) is said to absorb its k-th argument xk if the size of the output is an
upper bound on the size of input parameter xk to within a constant factor, i.e Size(xk) = O(Size(E)).

Output Bounded: Expression E is output bounded if it absorbs all of its arguments, i.e. 8i = 1; : : : ; n :
Size(xk) = O(Size(E)).

Partially k-absorbing in index set I: Expression E is partially k-absorbing in index set I if the k-th
parameter xk of Expression E is tuple-valued, and the output absorbs the components of xk in index
set I , i.e. 8i 2 I : Size(xk [i]) = O(Size(E)).

De�nition 6.3.3 (Input bounded, Partially input bounded with respect to index set I)

Input Bounded: Expression E is input bounded if the output size is bounded by the sum of the sizes of
the inputs to within a constant factor, i.e Size(E) = O(�n

i=1Size(xi)).

Partially input bounded with respect to index set I: A tuple-valued expression E is said to be par-
tially input-bounded with respect to index set I , if the output components of E in index set I are input
bounded, i.e. 8i 2 I : Size(E[i]) = O(�n

j=1Size(xj)).

Example 3 Expression E1(s; t) = s [t is output bounded because it absorbs both its arguments s and t.
Expression E1 is also input bounded.

Example 4 Expression E2(s; t) = s \ t is input bounded but not output bounded. In fact Expression E2

does not absorb any of the parameters s and t.

Example 5 Expression E3(s; t) = s � t is output bounded (if both s and t are non-empty) but not input
bounded.

Example 6 Expression E4(f; g) = f Æ g is neither input bounded, nor output bounded.

The input and output boundedness properties are used in the following way. Consider the example where
the composition of two linear-cost expressions results in an expression that is not of linear cost. Expressions
E1(s; t) = s� t, and E2(x) = #x are both linear-cost expressions and their composition E2(E1(s; t)) is not.
This is because of the blowup in the size of the intermediate output E1(s; t) , i.e. because the size of E1(s; t)
is bounded neither by the sum of the sizes of the inputs, nor by the size of the �nal output. In other words,
this is because Expression E1 is not input bounded, and expression E2 does not absorb its �rst parameter.
It is easy to see that a suÆcient condition for the composition E2(E1) of linear-cost expressions E2 and E1

to be of linear cost is that E1 should either be input bounded or E2 should absorb its �rst parameter. This
idea is formalized in the following proposition.

124

Proposition 6.3.4 Expressions that are formed by the application of any of the following rules, are linear-
cost expressions.

1. conditional: The condtional expression

E(x : bool; y : �; z : �) : � = if x then y else z

is an input bound linear-cost expression.

2. parameter substitution: If E1(x1 : �1; x2 : �2; : : : ; xn : �n) : � is an input bound linear-cost
expression, and �1 = �2, then E2(x : �1; x3 : �3; : : : ; xk : �k) : � = E1(x; x; x3; : : : ; xn) is an input
bound linear-cost expression.

3. tuple formation: E(x1 : �1; : : : ; xn : �n) : �1 � : : : � �n = [x1; : : : ; xn] is an input bound linear-cost
expression.

4. projection function: The projection function �n
j (x : �1� : : :��n) : �j = x[j] is a linear-cost function

that is partially 1-absorbing in the index set I = fjg.

5. composition: If E2(x1 : �1; : : : ; xn : �n) : � , and E1(y1 : � 01; : : : ; ym : � 0m) : �k are linear-cost
expressions, then the composition

E3(x1 : �1; : : : ; xk�1 : �k�1; y1 : �
0
1; : : : ; ym : � 0m; xk+1 : �k+1; : : : ; xn : �n) : �

= E2(x1; : : : ; xk�1; E1(y1; : : : ; ym); xk+1; : : : ; xn)

is also a linear-cost expression if either E1 is input bound, or if E2 absorbs its k-th parameter.

More generally, if parameter xk, and the output of function E1 are tuple-valued, then Expression E3 is
of linear cost if Expression E2 is partially k-absorbing in index set IE2

, and Expression E1 is partially
input-bounded in index set IE1

, and index set (IE2
[IE1

) covers all components of the tuple.

A word of caution: When Proposition 6.3.4 is applied repeatedly to generate an expressionE(x1; : : : ; xn)
by composition from, say j, basic linear-cost expressions E1; : : : ; Ej , then j is not a factor in the analysis
as long as it is unrelated to the input and output values. However, when it is related, then multiple occur-
rences of the same input parameter among E1; : : : ; Ej could prevent E from being of linear cost. Similarly,
summing the intermediate outputs of the composed expressions E1; : : : ; Ej may contribute to asymptotic
time costs and prevent E from being of linear cost.

In the previous section, we de�ned some simple expressions belonging to LIO . All boolean-valued ex-
pressions are input bounded. In Table 6.2, we summarize the input and output boundedness properties of
other simple expressions.

Example 7: Let E1(s : set(b); t : set(b)) : set(b) = s [t, and E2(x : set(b)) : int = #x. Then, E3(s :
set(b); t : set(b)) : int = E2(E1(s; t)) = #(s [t) is a linear-cost expression because E1 and E2 are of
linear cost, and E1 is input bounded.

Example 8: Let E1(s : set(�1); t : set(�2)) : set(�1 � �2) = s � t, and E2(u : set(�1 � �2); v : set(�3)) :
set((�1 � �2) � �3) = u � v. Then, E3(s : set(�1); t : set(�2); v : set(�3)) : set((�1 � �2) � �3) =
E2(E1(s; t); v) is a linear-cost expression because E1 and E2 are of linear cost, and E2 absorbs its 1

st

parameter.

125

Expression Input Bounded Output Bounded
3 s �
f(x) �
ffxg �
f [i] �
domain(f) �
range(f) �
#s �
f [s] �
f js �
fx 2 sjK(x)g �
fE(x) : x 2 sg � �

if E is few-to-one
s [t � �
s \ t �
s� t �
s� t �
s] t � �
ToSet(f) � �
ToMap(s) � �
f�1 � �
f=g �
f Æ g

Table 6.2: Input and Output boundedness of Simple Expressions

6.3.3 Dynamic Complexity and Linear-Cost Fixed Point Expressions

In this section we will extend the language LIO to include some �xed point expressions that can be computed
in linear time. The SQ+ �xed point expressions are of the form LFP�;w(E(x; y); x)

3, or GFP�;w(E(x; y); x),
which are respectively the least �xed point greater than or equal to w, and the greatest �xed point less than
or equal to w, of function E(x; y) with respect to x. If E(x; y) is monotone in x, inationary at w (i.e.
w � E(w; y)), and range(E) is �nite, then the �xed point expression LFP�;w(E(x; y); x) can be evaluated
by computing Tarski iteration sequences, in which we initialize p to w. and repeatedly assign E(p; y) to p
until E(p; y) equals p. Alternately, a non-deterministic iteration schema called dominated convergence, may
be used to compute such �xed point expressions. As de�ned in the previous chapter, if functions � and Æ
are feasible relative to each other, then the �xed point expression LFP�;w(E(x; y); x) may be computed in
the following way.

p := w;
while 9z 2 �(E(p; y); p) loop

p := Æ(p; z);
end loop

(6.2)

In this chapter, we consider the special case of expression LFP�;w(E(x; y); x) where the partial order � is
the subset relation � and the lattice under consideration is the subset lattice. In this case, it is easy to see
that functions �(q; p) = q � p and Æ(p; z) = p with z are feasible relative to each other, and that the least

3without loss of generality we assume that expression E has two input variables x and y; In general there could
be many input variables x; y1; y2; : : :

126

�xed point can be computed as follows.

p := w;
while 9z 2 E(p; y)� p loop

p with := z;
end loop

(6.3)

Unfortunately the cost of computing �xed point expressions using Program 6.3 is far too high. The require-
ment that expression E(x; y) be computable in O(1) time is suÆcient to ensure that Program 6.3 is of linear
cost, but is too restrictive. However, the condition that expression E(x; y) be an input bound expression of
linear cost does not suÆce because the cost of Program 6.3 turns out to be quadratic in the sum of the sizes
of the input and the output.

To get around this problem, we try to eliminate the redundancy in the repeated computation of expression
E(p; y) in each iteration of Program 6.3. In each iteration, the set p is modi�ed by the addition of a single
element z. It is, therefore, wasteful to recompute E(p; y) from scratch in each iteration. Instead, we can
use �nite di�erencing to substitute the fresh evaluation of expression E(x; y) by its incremental counterpart.
More precisely, we do the following.

1. establish the invariant t = E(p; y)� p on entry to the while loop of Program 6.3; the code to establish
t is called the pre-processing code.

2. update t within the while loop when p is modi�ed by the addition of z; the code to update t is called
the di�erence code.

3. replace the expression E(x; y)� x appearing in Program 6.3 by t.

The use of �nite di�erencing together with dominated convergence for computing �xed points is reected in
the following code outline.

p := w;
t := E(p; y)� p; -- Establish the invariant t = E(p; y)� p
while 9z 2 t loop

p with := z;
: : : -- Re-establish the invariant t = E(p; y)� p

end loop

(6.4)

A similar dynamic computation can be used for the computation of greatest �xed points. The feasible
functions � and Æ used in the case of greatest �xed points are �(q; p) = p � q, and Æ(p; z) = p less z
respectively.

The cost of establishing the invariant t = E(p; y)� p is called the pre-processing cost and the cumulative
cost of maintaining the invariant is called the dynamic cost. Expression E1(w; y) = LFP�;w(E(x; y); x) is of
linear cost if the pre-processing and dynamic costs are bounded by O(Size(w) + Size(y) + Size(E1)). One
possibility for the above conditions to be satis�ed is if expression E2(w; y) = E(w; y) � w is of linear cost,
and if the cost of re-establishing the invariant t = E(p; y)� p with respect to the modi�cation p with := z
is O(1) time. This idea regarding when an invariant may be the re-established in O(1) time with respect to
an O(1) time change in the values of one or more of the inputs, is formalized in the following de�nition.

De�nition 6.3.5 Strong Continuity: Let E(x1 : �1; : : : ; xn : �n) : � be a well-typed SQ+ expression.
Let D be a set of ways in which the input variables x1; : : : ; xn can be modi�ed. For example, D could be
the set of modi�cations fxi with := zi : i = 1; : : : ; ng, (assuming each xi is a set). Let Cost(m) denote the
cost of performing a modi�cation m in D, and let s be an arbitrary sequence of modi�cations drawn from
D. We say that expression E is strongly continuous with respect to set D if for every modi�cation m in
an arbitrary sequence of modi�cations s, m's contribution to the dynamic cost of eagerly4 maintaining the
invariant t = E(x1; : : : ; xn) with respect to the entire sequence of modi�cations s, is O(Cost(m)).

4by eagerly maintaining the invariant with respect to a sequence of modi�cations, we mean that the invariant is
re-established after each modi�cation

127

All O(1) time computable expressions are strongly continuous with respect to set of modi�cations to
any parameter. Similarly, the identity function is also strongly continuous with respect to the set of all
modi�cations to the input parameter. The expression E1(x : set(b)) : int = #x is strongly continuous with
respect to the set of modi�cations fx with := z; x less := zg. The expressions E2(s : set(b); t : set(b)) :
strong set(b) = s[t, E3(s : set(b); t : set(b)) : strong set(b) = s\ t, E4(s : set(b); t : set(b)) : strong set(b) =
s� t, are all strongly continuous with respect to the set of modi�cations fs with := z; s less := z; t with :=
z; t less := zg. The expression E4(s : set(b1); t : set(b2)) : set(b1 � b2) = s � t is however not strongly
continuous with respect to the set of modi�cations fs with := zg. This is because the addition of one
element to s (i.e. an O(1) time modi�cation) results in the addition of #t new pairs of values to the output,
which can not be performed in O(1) time.

Looking at Program 6.4 we see that if expression E(x; y)�x is of linear cost, and is strongly continuous
with respect to the set of modi�cations fx with := zg, then expression LFP�;w(E(x; y); x) is also of linear
cost. Thus, the use of incremental computation adds a new class of �xed point expressions to our linear-time
language LIO .

Unfortunately, even strong continuity can sometimes be too restrictive and result in the exclusion of an
interesting class of �xed point expressions from language LIO , as can be seen from the following example.

Example 9:(Graph Reachability) The problem is to �nd the set of vertices s reachable along paths in a
directed graph G from an arbitrary set of vertices w. Let Graph G be represented by the set of vertices
v and the �nite set of edges e, where each edge is a pair of vertices. We regard e as a multi-valued map,
so that for each vertex x, the term efxg represents the set of vertices adjacent to x, i.e. reachable from
x along a single directed edge. Recall that e[s] = [x2sefxg. Then, the graph reachability problem
can be expressed as the following SQ+ program

LFP�;w(s [e[s]; s) (6.5)

The following program outline uses �nite di�erencing and dominated convergence to compute the set
of reachable vertices

p := w;
t := e[p]� p; -- Note that (p [e[p])� p = e[p]� p
while 9z 2 t loop

p with := z;
: : : -- Re-establish the invariant t = e[p]� p

end loop

(6.6)

Since expression e[p]�p is not strongly continuous with respect to the set of modi�cations fp with := zg,
the expression LFP�;w(p [e[p]; p) cannot be included in language LIO . However, it is well known that the
set of reachable vertices can be computed in linear time. Although the re-establishment of the invariant
t = e[p]� p with respect to the modi�cation p with := z can not be done in O(1) time, it turns out that the
cumulative cost of re-establishing the invariant with respect to the sequence of all modi�cations to p during
the execution of the program is bounded (to within a constant factor) by the sum of the sizes of input e and
the size of the �nal output (i.e. by the number of the reachable vertices). In other words, although the worst-
case cost of re-establishing the invariant is not O(1) time, the amortized cost of re-establishing the invariant
is O(1) time. Unfortunately, our de�nition of strong continuity does not capture amortized complexities,
and therefore �xed point computations such as graph-reachability are not included in the language LIO . In
order to rectify this problem, we de�ne the notion of weak continuity.

De�nition 6.3.6 Weak Continuity: Let E(x1 : �1; : : : ; xn : �n) : � be a well-typed SQ+ expression.
Let D be a set of ways in which the input variables x1; : : : ; xn can be modi�ed. Let Cost(s) denote the
cost of performing an arbitrary sequence s of modi�cations selected from D. We say that expression E
is weakly continuous with respect to set D if the the dynamic cost of eagerly maintaining the invariant
t = E(x1; : : : ; xn) with respect to an arbitrary sequence s of modi�cations drawn from D is

O(Cost(s) + Size(EI) + Size(EF) +

nX
i=1

Size(xi))

128

where x1; : : : ; xn are the initial values of the inputs, EI is the initial value of expression E, and EF is the
�nal value of expression E.

From De�nitions 6.3.5 and 6.3.6, it is obvious that if an expression E is strongly continuous with respect
to a set of modi�cations D, then it is also weakly continuous with respect to D. The reverse, however,
is not true. For example, recall that the expression E1(s : set(b1); t : set(b2)) : set(b1 � b2) = s � t is
not strongly continuous with respect to the set of modi�cations D1 = fs with := zg. However, it is not
diÆcult to show that expression E1 is weakly continuous with respect to the set of modi�cations D1. If we
consider the set of modi�cations D2 = fs with := z; t with := zg, expression E1 is still weakly continuous
with respect to set D2. Instead, if we consider the set of modi�cations D3 = fs with := z; s less := zg,
it turns out that expression E1 is not weakly continuous with respect to set D3. Similarly, expression
E2(f : strong mmap(b; b); s : set(b)) : strong set(b) = f [s] is weakly continuous (but not strongly continuous)
with respect to the set of modi�cations fs with := z; ffxg with := yg, but not weakly continuous with respect
to the set of modi�cations fs with := z; s less := zg.

A list of simple LIO expressions and some of their strong and weak continuity properties are given
in Table 6.3. In addition, all O(1) time computable expressions are strongly continuous (and therefore
weakly continuous) with respect to the set of all modi�cations to their inputs. For proofs and more details
about the strong and weak continuity properties of the simple expressions in Table 6.3, we refer the reader
to [71, 68, 72, 13, 12]. In particular, [71], and [68] contain detailed descriptions of how to handle �nite
di�erencing of expressions like fx 2 s jK(x)g and fE(x) : x 2 sg with respect to modi�cations of the form
ÆK(x) and ÆE(x) respectively.

A subclass of weakly continuous expressions can be built up starting from the simple expressions in
Table 6.3 using the following two lemmas.

Lemma 6.3.7 The continuity properties of some SQ+ expressions are stated below.

1. conditional: The conditional expression

E(x : bool; y : �; z : �) : � = if x then y else z

is strongly continuous with respect to any set of modi�cations to input variables x, y, or z.

2. parameter substitution: If E(x1 : �1; : : : ; xn : �n) : � is strongly continuous with respect to the
set of modi�cations fÆ1x1; Æ2x2; : : : ; Ænxng, and if �1 = �2 and Æ1 and Æ2 are modi�cations of the
same kind (e.g. both are set element additions), then expression E0(x : �1; x3 : �3; : : : ; xn : �n) : � =
E(x; x; x3; : : : ; xn) is strongly continuous with respect to the set of modi�cations fÆ1x; Æ3x3; : : : ; Ænxng.

3. tuple formation: Expression E(x1 : �1; : : : ; xn : �n) : �1 � : : : � �n = [x1; : : : ; xn] is strongly
continuous with respect to any set of modi�cations to input variables x1; : : : ; xn.

4. projection function: The projection function �n
j (x : �1 � : : :� �n) : �j = x[j] is strongly continuous

with respect to any set of modi�cations to input variable x.

5. �xed point: E0(w : set(b); t : set(b)) : strong set(b) = LFP�;w(E(s; t); s) is weakly continuous with
respect to the set of modi�cations fw with := z; t with := zg whenever expression E(s; t) is monotone
in both s and t, w � E(w; t) for all t, either the range of expression E is �nite or there are only �nite
ascending chains starting from w, and expression E00(s : set(b); t : set(b)) : strong set(b) = E(s; t)� s
is weakly continuous with respect to the set of modi�cations fs with := z; t with := zg. An analogous
rule holds for greatest �xed points.

The proofs of statements 1-4 of Lemma 6.3.7 are straightforward and are omitted. For the proof of
statement 5, we refer the reader to [12].

Lemma 6.3.8 The following are closure rules for weak and strong continuity.

129

Exp. Input Types Out. Type Strong Cont. Weak Cont.
3 s s : set(�) � fÆs; Æ+s; Æ�sg fÆs; Æ+s; Æ�sg
f(x) f : strong smap(b1; �2); �2 fÆf(x); Æxg fÆf(x); Æxg

x : b1
ffxg f : strong mmap(b1; �2); set(�2) fÆffxg; Æx; fÆffxg; Æx;

x : b1 Æ+ffxg; Æ�ffxgg Æ+ffxg; Æ�ffxgg
f [i] f : �1 � : : :� �k �i fÆf; Æf [i]g fÆf; Æf [i]g
domainf f : strong smap(b1; �2) strong set(b1) fÆf(x)g fÆf(x)g
domainf f : strong mmap(b1; �2) strong set(b1) fÆffxg; fÆffxg;

Æ+ffxg; Æ�ffxgg Æ+ffxg; Æ�ffxgg
rangef f : strong smap(b1; b2) strong set(b2) fÆf(x)g fÆf(x)g
rangef f : strong mmap(b1; b2) strong set(b2) fÆ+ffxg; Æ�ffxgg fÆ+ffxg; Æ�ffxgg
#s s : set(�) int fÆ+s; Æ�sg fÆ+s; Æ�g
s [t s : set(b) or strong set(b) strong set(b) fÆ+s; Æ�s; fÆ+s; Æ�s;

t : set(b) or strong set(b) Æ+t; Æ�tg Æ+t; Æ�tg
s \ t s : set(b) or strong set(b) strong set(b) fÆ+s; Æ�s; fÆ+s; Æ�s;

t : set(b) or strong set(b) Æ+t; Æ�tg Æ+t; Æ�tg
s� t s : set(b) or strong set(b) strong set(b) fÆ+s; Æ�s; fÆ+s; Æ�s;

t : set(b) or strong set(b) Æ+t; Æ�tg Æ+t; Æ�tg
s� t s : set(�1); t : set(�2) set(�1 � �2) fÆ+s; Æ+tg;

fÆ�s; Æ�tg
s] t s : set(�); t : set(�) set(�) fÆ+s; Æ�s; fÆ+s; Æ�s;

Æ+t; Æ�tg Æ+t; Æ�tg
f [s] f : strong mmap(b1; b2) strong set(b2) fÆ+s;

s : set(b1) or Æ+ffxg; Æ�ffxgg;
strong set(b1) fÆ�s;

Æ+ffxg; Æ�ffxgg;
f js f : strong mmap(b1; b2) strong mmap(fÆ+s; Æ+ffxgg; fÆ+s; Æ+ffxgg;

s : set(b1) or b1; b2) fÆ�s; Æ+ffxgg fÆ�s; Æ+ffxgg
strong set(b1)

f�1 f : strong mmap(b1; b2) strong mmap(fÆ+ffxgg fÆ+ffxgg
b2; b1)

f=g f : strong smap(b1; �2) strong smap(fÆf(x); Æg(x)g fÆf(x); Æg(x)g
g : strong smap(b1; �2) b1; �2)

f=g f : strong mmap(b1; �2) strong mmap(fÆffxg; Ægfxg; fÆffxg; Ægfxg;
g : strong mmap(b1; �2) b1; �2) Æ+ffxg; Æ+gfxgg Æ+ffxg; Æ+gfxgg

fx 2 s j s : set(b) or strong set(b) set(b) or fÆ+s; Æ�s; fÆ+s; Æ�s;
K(x)g strong set(b) ÆK(x)g ÆK(x)g
fE(x) : s : set(b) or strong set(b) set(b) or fÆ+s; Æ�s; fÆ+s; Æ�s;
x 2 sg strong set(b) ÆE(x)g ÆE(x)g

Table 6.3: Strong and Weak Continuity properties of some simple LIO expressions. We use Æs, Æ+s

and Æ�s to abbreviate s := z, s with := z and s less := z respectively.

1. If expression E(x1 : �1; : : : ; xn : �n) : � is strongly continuous relative to a set of modi�cations D, it
is also weakly continuous relative to D.

2. If expression E(x1 : �1; : : : ; xn : �n) : � is strongly continuous (respectively weakly continuous) relative
to a set of modi�cations D, it is also strongly continuous (respectively weakly continuous) with respect
to any non-empty subset of D.

130

3. Let expression E1(x1 : �1; : : : ; xn : �n) : � be strongly continuous with respect to a set D1 of modi�-
cations to the input variables x1; : : : ; xn. Let D2 be the set of modi�cations applied to variable yk in
the course of maintaining the invariant yk = E(x1; : : : ; xn) with respect to modi�cations drawn from
set D1. Let E2(y1 : � 01; : : : ; ym : � 0m) : �

0 be an expression such that � 0k = � , and such that input
variables y1; : : : ; ym are distinct from variables x1; : : : ; xn. Let D3 be a set of modi�cations to input
variables y1; : : : ; ym except variable yk. If expression E2 is strongly continuous with respect to the set
of modi�cations D2 [D3, then expression

E3(y1 : �
0
1; : : : ; yk�1 : �

0
k�1; x1 : �1; : : : ; xn : �n; yk+1 : �

0
k+1; : : : ; ym : � 0m) : �

0 =
E2(y1; : : : ; yk�1; E1(x1; : : : ; xn); yk+1; : : : ; ym)

is strongly continuous with respect to the set of modi�cations D1 [D3.

4. Let expression E1(x1 : �1; : : : ; xn : �n) : � be weakly continuous with respect to a set D1 of modi�cations
to the input variables x1; : : : ; xn. Let D2 be the set of modi�cations applied to variable yk in the course
of maintaining the invariant yk = E(x1; : : : ; xn) with respect to modi�cations drawn from set D1. Let
E2(y1 : �

0
1; : : : ; ym : � 0m) : �

0 be an expression such that � 0k = � , and such that input variables y1; : : : ; ym
are distinct from variables x1; : : : ; xn. Let D3 be a set of modi�cations to input variables y1; : : : ; ym
except variable yk. If expression E2 is weakly continuous with respect to the set of modi�cations
D2 [D3, then expression

E3(y1 : �
0
1; : : : ; yk�1 : �

0
k�1; x1 : �1; : : : ; xn : �n; yk+1 : �

0
k+1; : : : ; ym : � 0m) : �

0 =
E2(y1; : : : ; yk�1; E1(x1; : : : ; xn); yk+1; : : : ; ym)

is weakly continuous with respect to the set of modi�cations D1[D3, if either (1) expression E2 absorbs
its k-th parameter, or (2) if expression E1 is input bound.

The proofs of statements 1-2 of Lemma 6.3.8 are straightforward and are omitted. For the proof of
statements 3 and 4, we refer the reader to [12]

Using Lemmas 6.3.7 and 6.3.8, we can build up a class of expressions that are strongly or weakly
continuous with respect to a set of modi�cationsD. The weak and strong continuity properties of expressions
help us extend our language LIO of linear-cost expressions, as is summarized by Theorem 6.3.9.

Theorem 6.3.9 LIO contains the smallest set of expressions closed under the following rules.

1. (basis) The simple linear-cost expressions in Table 6.1 belong to LIO .

2. (�xed point) Expression

E1(w : set(b); t : �) : strong set(b) = LFP�;w(E(s; t); s)

belongs to LIO when expression E(s; t) is monotone in s, the range of expression E is �nite, w �
E(w; t) for all t, expression E(s : set(b); t : �) : set(b) is in LIO , and expression E2(s : set(b); t : �) :
strong set(b) = E(s; t)� s is weakly continuous with respect to fs with := zg.

Similarly, expression E1(w : set(b); t : �) : strong set(b) = GFP�;w(E(s; t); s) belongs to LIO when
expression E(s; t) is monotone in s, the range of expression E is �nite, w � E(w; t) for all t, expression
E(s : set(b); t : �) : set(b) is in LIO , and expression E2(s : set(b); t : �) : strong set(b) = s�E(s; t) is
weakly continuous with respect to fs less := zg.

3. (closure) LIO may further be augmented by application of Proposition 6.3.4.

The proof that all expressions contained in language LIO (as de�ned by Theorem 6.3.9) are of linear cost
follows from the time complexities of the simple expressions in Table 6.1, the de�nition of weak continuity
and the proof of Proposition 6.3.4.

131

6.4 Some Simple Examples

Two simple examples of problems expressible in LIO are given below.

Example 10: (Graph Reachability Re-visited) The problem is to compute the set of vertices s reach-
able along directed paths from a set of vertices w in a directed graph G. It is expressible as the
following SQ+ program.

LFP�;w(s [e[s]; s) (6.7)

where w : set(b), and e : strong mmap(b; b). The proof that Expression 6.7 belongs to LIO is outlined
below.

1. From Table 6.1 we see that Expression

E1(s1 : set(b); e : strong mmap(b; b)) : set(b)

is a linear-cost expression. From Table 6.2 we see that E1 is input bound. From Table 6.3, and
Lemma 6.3.8(2) we see that E1 is weakly continuous with respect to the set of modi�cations
fs1 with := zg.

2. From Table 6.1 we see that Expression E2(s2 : set(b); t : set(b)) : set(b) is a linear-cost expression.
From Table 6.3, and Lemma 6.3.8(2) we see that E2 is weakly continuous with respect to the set
of modi�cations fs2 with := z; t with := zg.

3. The set of modi�cations applied to variable t in maintaining the invariant t = e[s1] with respect
to the modi�cation s1 with := z, is ft with := z0g. Thus, it follows from Lemma 6.3.8(4), that
expression E3(s2 : set(b); s1 : set(b); e : strong mmap(b; b)) : set(b) = E2(s2; E1(s1; e)) is weakly
continuous with respect to the set of modi�cations fs1 with := z; s2 with := zg. It also follows
from Proposition 6.3.4 that expression E3 is a linear-cost expression.

4. It follows from the parameter substitution case of Lemma 6.3.7 that expression E4(s : set(b); e :
strong mmap(b; b)) : set(b) = E3(s; s; e) is weakly continuous with respect to the set of modi�-
cations fs with := zg, and it follows from Proposition 6.3.4 that E4 is a linear-cost expression.
(Note that E4(s; e) = s [e[s]).

5. It is easy to prove that E4(s; e) is monotone in s.

6. From Theorem 6.3.9(2), it follows that LFP�;w(E4(s; e); s) is a linear-cost expression, i.e

LFP�;w(s [e[s]; s) is a linear-cost expression.

Example 11: (Cycle Detection) Once again we assume that a directed graph is represented by a set of
vertices v and multi-valued map e such that for any vertex x, efxg is the set of vertices adjacent to x.
Graph G contains a cycle i� the largest set of vertices s � v each containing a successor belonging to
s is non-empty. This can be expressed as the following SQ+ program

:IsEmptySet(GFP�((s� fx 2 sjIsEmptySet(efxg \ s)g); s)); (6.8)

or as the following more readable speci�cation

GFP�((s� fx 2 sjefxg \ s = fg g); s) 6= fg:

It is easy to prove that the expression

s� fx 2 s j efxg \ s = fgg

132

is equivalent to

E(s; e) = let
f = f[x;#fy 2 efxg j y 2 sg] : x 2 sg

in
s� fx 2 domain(f) j f(x) = 0g:

(6.9)

Thus, the cycle detection speci�cation can be re-written as

:IsEmptySet(GFP�(E(s; e); s)) (6.10)

As before, we assume that the type of e is strong mmap(b; b). The proof that Expression 6.10 belongs
to LIO is outlined below.

1. From Table 6.1 and Proposition 6.3.4, it is easy to infer that expression E1(s : strong set(b); e :
strong mmap(b; b)) : strong smap(b; int) = f[x;#fy 2 efxg j y 2 sg] : x 2 sg and expression
E2(s : strong set(b); f : strong smap(b; int)) : strong set(b) = s � fx 2 domain(f) j f(x) = 0g
are linear-cost expressions. Since expression E1 is input bound, it follows that expression E(s; e)
given by Equation 6.9 is a linear-cost expression. It is also easy to prove that expression E(s; e)
is monotone in s.

2. It is also easy to prove that expression E1(s; e) = f[x;#fy 2 efxg j y 2 sg] : x 2 sg is weakly
continuous with respect to the set of modi�cations fs less := zg. The di�erence code for
maintaining the invariant f = E1(s; e) with respect to the modi�cation s less := z is

for x 2 e�1fzg loop
f(x)� := 1;

endloop:

Note that we need to maintain an auxiliary expression e�1 in order to perform the di�erence
code for re-establishing expression E1 with respect to the change s less := z.

Moreover, the expression E2(s; f) is also weakly continuous with respect to the set of modi�ca-
tions fs less := z; f(x)� := 1g. Since expression E1 is input bound, it follows that expression
E(s; e) is weakly continuous with respect to the set of modi�cations fs less := zg.

3. It therefore follows that

GFP�(E(s; e); s) (6.11)

is a linear-cost expression. Moreover, the size of the output of Expression 6.11 is bound by the size
of domain(e), and hence Expression 6.11 is input bound. Thus, it follows from Proposition 6.3.4
that Expression 6.10 is a linear-cost expression.

Example 12: (Constant Propagation) The constant propagation problem described here is a variant of
the one described in [17]. Constant Propagation is a technique used in many optimizing compilers.
Given some form of intermediate representation of a program, the main task of constant propagation
is to �nd out statements that de�ne constant values. A statement de�nes a constant if it assigns the
same constant value to its left hand side in all possible executions. For example, if all operands of
an assignment are constant, then it de�nes a constant. Reif and Lewis [78] adopted the following
condition to determine when a variable use5 is constant.

� It represents a constant symbol.

� All of its reaching de�nitions which have been found to de�ne constants de�ne the same constant
value, and none of its de�nitions has been proved to be a non-constant.

5An assignment x := y + z de�nes variable x and uses variables y and z.

133

A non-constant de�nition is either a read statement, or a de�nition one of whose operands is a non-
constant. An operand is a non-constant if it has a non-constant de�nition, or two constant de�nitions
de�ning di�erent constant values. We take the following speci�cation which are a modi�ed form of
but equivalent to the speci�cations in [12].

LFP�([E1(const ;nonconst ; prog ; usetodef); E2(const ;nonconst ; prog ; usetodef)];
[const ;nonconst])

(6.12)

where,

E1(const ;nonconst ; prog ; usetodef) =
let Q = fx 2 domain(usetodef) j usetodef fxg \ nonconst = fgg in
fs 2 prog j 8t 2 operands(s) (C(t) _
#fcompute(y) : y 2 usetodef f[s; t]g j [s; t] 2 Q ^ y 2 constg = 1)g

and

E2(const ;nonconst ; prog ; usetodef) =
let Q = fx 2 domain(usetodef) j usetodef fxg \ nonconst = fgg in
fs 2 prog j(s 2 read) _ 9t 2 operands(s) (:C(t) ^ ([s; t] 62 Q _
#fcompute(y) : y 2 usetodef f[s; t]g j [s; t] 2 Q ^ y 2 constg > 1))g

As pointed out by Cai and Paige, Speci�cation 6.12 can not be solved directly because expression E1

is not monotonic in its parameter const . However, they pointed out that expression E2 is monotone,
and expression E1 [E2 is monotone. Thus, by introducing a new variable sum = const [nonconst ,
Speci�cation 6.12 could be reformulated as

LFP�([E1(sum � nonconst ;nonconst ; prog ; usetodef);
E2(sum � nonconst ;nonconst ; prog ; usetodef)];
[sum;nonconst])

(6.13)

To see how Speci�cation 6.13 can be computed in linear time, we just need to generalize our theory
to compute �xed points on tuples of sets (instead of just sets, as given by Theorem 6.3.9). Consider
the following speci�cation

LFP�([E1(x1; : : : ; xn; y);
E2(x1; : : : ; xn; y);
: : :
En(x1; : : : ; xn; y)];
[x1; : : : ; xn])

(6.14)

where each expression Ei is monotone in all the parameters x1; : : : ; xn. It is easy to show that
Speci�cation 6.14 can be solved by

x1 = x2 = : : : = xn = fg;
while 9[j; t] 2 f[i; z] : i 2 f1; : : : ; ng; z 2 Ei(x1; : : : ; xn)� xig loop

xj with := t;
endloop

(6.15)

Moreover, it is easy to prove that if each expression Ei is of linear cost and expression Ei�xi is weakly
continuous with respect to the set of modi�cations fxi with := zi; i = 1; : : : ; ng, then the expression
given by Speci�cation 6.14 is of linear cost.

Theorem 6.4.1 Speci�cation 6.14 is of linear cost if

134

� each expression Ei(x1; : : : ; xn; y) is of linear cost, and

� each expression Ei(x1; : : : ; xn; y)�xi is weakly continuous with respect to the set of modi�cations
fxi with := zi; i = 1; : : : ; ng.

Thus, in order to prove that Speci�cation 6.13 is of linear cost, we just need to prove that

� Expression

(E1(sum � nonconst ;nonconst ; prog ; usetodef) [
E2(sum � nonconst ;nonconst ; prog ; usetodef))� sum

is weakly continuous with respect to fsum with := z;nonconst with := zg.

� Expression E2(sum � nonconst ;nonconst ; prog ; usetodef) � nonconst is weakly continuous with
respect to fsum with := z;nonconst with := zg

� Expressions E1 [E2 and E2 are of linear cost.

In order to show the above conditions, it is suÆcient to show that expressionsE1 and E2 are themselves
weakly continuous with respect to fsum with := z;nonconst with := zg and are of linear cost (using
the fact that both E1 and E2 are input bound).

We show that expression E1 is weakly continuous with respect to fsum with := z;nonconst with := zg
by decomposing it into simpler sub-expressions as below.

W1(nonconst ; usetodef) = fx 2 domain(usetodef) j
usetodef fxg \ nonconst = fgg

W2(sum;nonconst ;W1) = f[x; y] 2 usetodef j x 2W1 ^ y 2 sumg
W3(x;W2) = if #fcompute(y) : y 2 W2fxgg = 1 then 1

else 2
W4(W2;W3) = f[x;W3(x;W2)] : x 2 domain(W2)g
W5(usetodef ;W4) = fx 2 domain(usetodef) j

x 62 domain(W4) _W4(x) = 2g
W6(usetodef ;W1) = domain(usetodef)�W1

W7(W5;W6) = W5 [W6

W8(prog ;W7) = f[s;#ft : [s; t] 2W7g] : s 2 progg
W9(prog ;W8) = fs 2 prog jW8(s) = 0g

It can be veri�ed that expression W9 is equivalent to expression E1. Proving that E1 is of linear cost
is simple and is omitted. The proof that E1 is weakly continuous is outlined below.

� Each of the expressions W1; : : : ;W9 is input bound.

� W1 is weakly continuous with respect to nonconst with := z. The modi�cation required to W1

in the di�erence code is W1 less := x.

� W2 is weakly continuous with respect to the set of modi�cations

fsum with := z;W1 less := xg:

The modi�cations to W2 in the di�erence code are

fW2fxg = om;W2fxg with := zg:

� W3 is weakly continuous with respect to the set of modi�cations

fW2fxg = om;W2fxg with := zg:

The modi�cation to W3 in the di�erence code is W3(x) = 2.

135

� W4 is weakly continuous with respect to the set of modi�cations

fW2fxg = om;W2fxg with := z;W3(x) = 2g:

The modi�cations to W4 in the di�erence code are

fW4(x) = om;W4(x) = 2g:

� W5 is weakly continuous with respect to the set of modi�cations

fW4(x) = om;W4(x) = 2g:

The modi�cations to W5 in the di�erence code are

fW5 with := x;W5 less := xg:

� W6 is weakly continuous with respect to the modi�cation W1 less := z. The modi�cation to W6

in the di�erence code is W6 with := x.

� W7 is weakly continuous with respect to the set of modi�cations

fW5 with := x;W5 less := x;W6 with := xg:

The modi�cations to W7 in the di�erence code are

fW7 with := x;W7 less := xg:

� W8 is weakly continuous with respect to the set of modi�cations

fW7 with := x;W7 less := xg:

The modi�cations to W8 in the di�erence code are

fW8(s)+ = 1;W8(s)� = 1g:

� W9 is weakly continuous with respect to the set of modi�cations

fW8(s)+ = 1;W8(s)� = 1g:

Similarly, it can be shown that Expression E2 is also weakly continuous with respect to fsum with :=
z;nonconst with := zg, whereby we can prove that Speci�cation 6.13 is of linear cost.

In [17] Cai and Paige showed that the constant propagation problem could be solved in worst-case linear
time on a uniform cost sequential RAM. We have improved on the result by showing that the constant
propagation problem can be solved in linear time on a pointer machine. To the best of our knowledge, this
is the �rst linear-time pointer machine algorithm for constant propagation.

6.5 Conclusion

In this chapter we de�ned a linear-time subset LIO of SQ+. We used both static complexity (i.e. complexity
of evaluation from scratch) and dynamic complexity (i.e. complexity of incremental evaluation) of expressions
to add a rich class of expressions involving �xed point computations to LIO . Three simple textbook problems,
graph reachability, cycle detection, and constant propagation were shown to belong to LIO . In the next two
chapters, we will attempt to give further justi�cation of the usefulness of our approach to algorithms. We
will consider two non-trivial algorithmic problems and derive linear-time algorithms for both. In the �rst
case, we see that our approach helps explain existing linear-time algorithm. In the second case, we see that
our approach leads to the discovery of a new O(N3) algorithm (where N is the size of the input), signi�cantly
improving the best previously known O(N5) time algorithm.

136

Chapter 7

A Linear Time Algorithm To Solve

Fixed-Point Equations On Transition

Systems

7.1 Introduction

We look at the problem of computing the least �xed point of a system of equations over a transition sys-
tem. The problem has been the subject of considerable interest because of applications to model-checking
[58, 40], i.e. determining whether or not a given system satis�es a formula of the modal mu-calculus. Arnold
and Crubille [5] presented the �rst linear-time algorithm for this problem, improving the best known algo-
rithms [35, 40] that were all quadratic. Arnold and Crubille's algorithm is linear in the size of the transition
system but is quadratic in the size of the formula. The currently best known algorithm [24, 109, 4] is linear
in both the size of the transition system and the size of the formula. More general algorithms that can
perform model-checking for the entire modal mu-calculus have also been presented in [23, 4, 91].

In this chapter, we specify the original problem as an SQ+ speci�cation, and show that this speci�cation
belongs to LIO , the linear-time subset of SQ

+ presented in Chapter 6. This algorithm has been included
in this thesis to illustrate the applicability of the three-step transformational program design methodology
to problems that are a lot more complex than simple textbook problems like graph reachability and cycle
testing. The problem tackled in this chapter serves as an excellent example for illustrating the usefulness of
our algorithm design methodology because although the problem is suÆciently non-trivial, it is easy to state
and understand.

The �nal algorithm derived in this chapter is similar to the algorithms described in [24, 109, 4], and
is also linear in both the size of the transition system and the size of the formula. The original linear-
time algorithm by Arnold and Crubille is diÆcult to understand because it works by associating program
fragments with each distinct equation in the system of equations, and involves a complicated mechanism of
putting these program fragments together into a program that computes the required �xed point in linear
time. The proof of correctness and the time complexity analysis are complex, and give little intuition to
the reader about the insights that lead to the discovery of this algorithm. The work of Vergauwen and
Lewi [109] does a better job of explaining the algorithm, since they start with an ineÆcient but intuitively
understandable algorithm, and use �nite di�erencing to derive the �nal linear-time algorithm. However, their
time complexity analysis is still quite complex. In contrast, we show that our methodology helps integrate
the concerns of correctness and eÆciency, and allows the algorithm design process to be guided by complexity
considerations. We believe that the approach that we present here signi�cantly simpli�es the algorithm and
its analysis of time complexity.

In Section 7.2 we present a formal statement of the problem as originally formulated by Arnold and
Crubille [5]. In Section 7.3 we prove that the SQ+ speci�cation of this problem belongs to LIO , and derive
a linear-time algorithm. In Section 7.4 we give a brief description of the original algorithm by Arnold and

137

Crubille, and in Section 7.5, we describe how the two algorithms compare in terms of simplicity and eÆciency.

7.2 Systems of Equations on Transition Systems

A (�nite) transition system is a tuple G = hS; T; �; �i, where S is a �nite set of states, T is a �nite set of
transitions (from a source state to a target state), and � : T �! S and � : T �! S are respectively the
source and the target mappings.

Consider the following sorted signature D with two sorts, �s for states, and �t for transitions, having
the following operators:

� Constants 0�s and 1�s of sort �s.

� Constants 0�t and 1�t of sort �t.

� Binary operators [�s and \�s of sort �s � �s �! �s

� Binary operators [�t and \�t of sort �t � �t �! �t

� Unary operators A;A�; B;B� of sort �t �! �s.

� Unary operators A0; B0 of sort �s �! �t.

Given a transition system G, an operator ! of D is interpreted by (!)G in the following way.

(0�s)G = (0�t)G = fg
(1�s)G = S; (1�t)G = T

([�s)G : 2S � 2S �! 2S; ([�s)G(X1; X2) = X1 [X2

([�t)G : 2T � 2T �! 2T ; ([�t)G(X1; X2) = X1 [X2

(\�s)G : 2S � 2S �! 2S; (\�s)G(X1; X2) = X1 \X2

(\�t)G : 2T � 2T �! 2T ; (\�t)G(X1; X2) = X1 \X2

(A)G : 2T �! 2S ; (A)G(Y) = f�(t) : t 2 Y g
(B)G : 2T �! 2S ; (B)G(Y) = f�(t) : t 2 Y g
(A�)G : 2T �! 2S ; (A�)G(Y) = fs 2 S j 8t 2 T (s = �(t) =) t 2 Y)g
(B�)G : 2T �! 2S ; (B�)G(Y) = fs 2 S j 8t 2 T (s = �(t) =) t 2 Y)g
(A0)G : 2S �! 2T ; (A0)G(X) = ft 2 T j �(t) 2 Xg
(B0)G : 2S �! 2T ; (B0)G(X) = ft 2 T j �(t) 2 Xg

Let L = fz1; : : : ; zpg and L
0 = fz01; : : : ; z

0
p0g be two sets of parameters associated with a transition system

G such that each parameter zi (respectively z
0
i) is associated with a subset (zi)G of S (respectively, a subset

(z0i)G of T). Let X = fx1; : : : ; xng and Y = fy1; : : : ; ymg be two sets of variables of sort �s and �t
respectively. Then, all well-formed terms W and W 0 of sorts �s and �t respectively, over D[L[L

0 [X [Y
can be associated with mappings

(W)G : (2S)n � (2T)m �! 2S ; and (W 0)G : (2S)n � (2T)m �! 2T :

A system of equations � over L;L0;X ;Y is a pair (��s ;��t) of sets

��s = fxi =Wi : xi 2 Xg; and ��t = fyi =W 0
i : yi 2 Yg;

where W1; : : : ;Wn are well-formed terms of sort �s and W 0
1; : : : ;W

0
m are well-formed terms of sort �t, over

D [L [L0 [X [Y . Thus,

(�)G = h(W1)G; : : : ; (Wn)G; (W
0
1)G; : : : ; (W

0
m)Gi

is a mapping from (2S)n � (2T) to itself. The problem is to compute the least �xed point of the
system of equations �.

A system of equations � is said to be simple if each equation has one of the following forms:

138

1. x = k, where k is either a constant or a parameter of sort �s

2. x = x0 [�s x
00

3. x = x0 \�s x
00

4. x = A(y)

5. x = B(y)

6. x = A�(y)

7. x = B�(y)

8. y = k0, where k0 is either a constant or a parameter of sort �t

9. y = y0 [�t y
00

10. y = y0 \�t y
00

11. y = A0(x)

12. y = B0(x)

Every system of equations � can be transformed into a simple system of equations �0 with only a constant
factor increase in the size of the system, where the size of system � is de�ned as the number of occurrences
of operators and parameters in �. So, we shall look at the problem of computing the least �xed point of a
simple system of equations � on a transition system G with parameters L and L0.

7.3 Linear-Time Algorithm

We assume that we are given the input set of states S, set of transitions T , parameters z1; : : : ; zp which are
subsets of S, parameters z01; : : : ; z

0
p which are subsets of T , and maps � and � that map transitions to their

source and target states respectively. We assume that the inputs have been pre-processed so that each state
is an element of base type bs and each transition is an element of base type bt, where base types bs and bt
satisfy the subtype constraints bs < �s and bt < �t respectively.

Let TE be a a type environment containing the following types for the input parameters and variables.

� S : set(bs)

� T : set(bt)

� zi : set(bs) for i = 1; : : : ; p

� z0i : set(bt) for i = 1; : : : ; p0

� � : strong smap(bt; bs)

� � : strong smap(bt; bs)

� xi : strong set(bs) for i = 1; : : : ; n

� yi : strong set(bt) for i = 1; : : : ;m

139

x[1] = x[2] = : : : x[n] = fg;
y[1] = y[2] = : : : y[m] = fg;
x0 = x;
y0 = y;
x = [W1(x

0; y0); : : : ;Wn(x
0; y0)];

y = [W 0
1(x

0; y0); : : : ;Wm(x
0; y0)];

while (x 6= x0) _ (y 6= y0) loop
x0 = x;
y0 = y;
x = [W1(x

0; y0); : : : ;Wn(x
0; y0)];

y = [W 0
1(x

0; y0); : : : ;Wm(x
0; y0)];

end loop

Figure 7.1: Naive algorithm based on Tarski Iteration

Let C be the set of subtype constraints fbs < �s; bt < �tg. Let � be the simple system of equations
fxi = Wi; i = 1; : : : ; ng [fyi = W 0

i ; i = 1; : : : ;mg. It is easy to verify that each Wi is a well-typed SQ+

expression of type strong set(bs) and each W 0
i is a well typed SQ+ expression of type strong set(bt), i.e.

TE;C `
S
Wi : strong set(bs) and TE;C `

S
W 0

i : strong set(bt):

Thus, the least �xed point of the system of equations � may be speci�ed as the following well-typed SQ+

program.

LFP�([W1; : : : ;Wn;W
0
1; : : : ;W

0
m]; [x1; : : : ; xn; y1; : : : ; ym]) (7.1)

where the partial order � is the point-wise � relation.
It is easily veri�ed that each expressionWi andW

0
i is monotone in x1; : : : ; xn and y1; : : : ; ym. Moreover,

the range of each expressionWi and W
0
i is bounded by the �nite sets S and T . It follows that Expression 7.1

can be computed by the algorithm in Figure 7.1 using Tarski iteration. The time complexity of this naive
implementation is O((n+m)2�(#S+#T)2) assuming that there are n equations of sort �s and m equations
of sort �t.

The algorithm in Figure 7.1 is expensive because of the wasteful re-computation of all expressions Wi

and W 0
i in each iteration. A more eÆcient algorithm may be obtained by using dominated convergence and

�nite di�erencing. In fact, as seen from Theorem 6.4.1 presented in Chapter 6, Speci�cation 7.1 can be
implemented in linear time if the following conditions are satis�ed.

1. Each expression Wi and W 0
i is monotone in x1; : : : ; xn; y1; : : : ; ym.

2. Each expression Wi and W 0
i is a linear-cost expression.

3. Each expression Wi � xi and W 0
i � yi is weakly continuous with respect to the set of modi�cations

xi with := s for i = 1; : : : ; n and yi with := t for i = 1; : : : ;m.

If the above conditions are satis�ed, then the implementation of Speci�cation 7.1 given in Figure 7.2 runs
in linear time.

The algorithm in Figure 7.2 is based on the following idea.

1. Initialize each x[i] and y[i] to the empty set fg.

2. Establish the invariants dx[i] =Wi � xi and dy[i] =W 0
i � yi for all i.

3. While there exists a dx[i] or dy[i] that is non-empty, extract an element from it, and add it xi or yi
respectively, and re-establish the invariants dx[i] =Wi � xi and dy[i] =W 0

i � yi for all i.

140

x[1] = x[2] = : : : x[n] = fg;
y[1] = y[2] = : : : y[m] = fg;
for i = 1; : : : ; n loop

dx[i] =Wi(x; y)
end loop
for i = 1; : : : ;m loop

dy[i] =W 0
i (x; y)

end loop
I1 = fi 2 1; : : : ; n : dx[i] 6= fgg;
I2 = fi 2 1; : : : ;m : dy[i] 6= fgg;
while (I1 [I2 6= fg) loop

if I1 6= fg then
i =3 I1;
z =3 dx[i];
for j = 1; : : : ; n loop

: : : �� Code to re-establish the invariant dx[j] =Wj(x; y)� xj
: : : �� with respect to the modi�cation x[i] with := z
if dx[j] 6= fg then I1 with := j endif

end loop
for j = 1; : : : ;m loop

: : : �� Code to re-establish the invariant dy[j] =W 0
j(x; y)� yj

: : : �� with respect to the modi�cation x[i] with := z
if dy[j] 6= fg then I2 with := j endif

end loop
else

i =3 I2;
z0 =3 dy[i];
for j = 1; : : : ; n loop

: : : �� Code to re-establish the invariant dx[j] =Wj(x; y)� xj
: : : �� with respect to the modi�cation y[i] with := z0

if dx[j] 6= fg then I1 with := j endif
end loop
for j = 1; : : : ;m loop

: : : �� Code to re-establish the invariant dy[j] =W 0
j(x; y)� yj

: : : �� with respect to the modi�cation y[i] with := z0

if dy[j] 6= fg then I2 with := j endif
end loop

endif
end loop

Figure 7.2: Linear-time implementation using dominated convergence and �nite di�erencing

The weak continuity of each of the expressions Wi � xi and W 0
i = yi ensures that the cumulative cost of

re-establishing the invariant dx[i] = Wi � xi or dy[i] = W 0
i � yi is bounded by O(#S +#T), and therefore

the complexity of the algorithm is linear in the size of the transition system, i.e. O(#S +#T).
Let us prove that each of the expressions Wi and W 0

i is of linear cost, and that each of the expressions
Wi�xi andW

0
i�yi is weakly continuous with respect to the set of modi�cations xi with := s for i = 1; : : : ; n

and yi with := t for i = 1; : : : ;m. Note that each expressionWi is of one of the forms (1)-(7), and W
0
i of the

forms (8)-(12) listed in Section 7.2. The monotonicity of each of these expressions is easily veri�ed. With
the possible exception of expressions of the form (6) and (7) (i.e. A� and B�), it is easily veri�ed that all

141

other expressions are simple linear-cost expressions. Consider the expression of form (6), i.e.

A�(y) = fs 2 S j 8t 2 T (s = �(t) =) t 2 y)g: (7.2)

Expression 7.2 can be re-written as the equivalent expression

A�(y) = fs 2 S j 8t 2 ��1fsg t 2 yg (7.3)

Recall that expression E1(f : strong smap(b1; b2)) : strong mmap(b2; b1) = f�1 is an input-bound simple
linear-cost expression, and that expression E2(s : set(b2); f : strong mmap(b2; b1); y : strong set(b1)) :
strong set(b2) = fx 2 s j 8t 2 ffsg t 2 yg is a simple linear-cost expression. It follows from the composition
rule for linear-cost expressions (in Chapter 6) that expression E2(s; E1(f); y) is also a linear-cost expression.
Hence, Expression 7.3 is a linear-cost expression. Similarly, expression B�(y) can be re-written as

B�(y) = fs 2 S j 8t 2 ��1fsg t 2 yg; (7.4)

and is also a linear-cost expression. Now, it only remains to show that each expression Wi � xi and W
0
i � x

0
i

is weakly continuous with respect to the set of modi�cations xi with := s for i = 1; : : : ; n and yi with := t
for i = 1; : : : ;m.

If Wi is of the form (1)-(3), or W 0
i is of the form (8)-(10), it is trivial to show the weak continuity of

Wi � xi and W 0
i � yi. We consider the rest of the cases below.

Case 4 Wi is the expression A(yj) = f�(t) : t 2 yjg where yj 2 fy1; : : : ; ymg.

Consider the problem of maintaining the invariant xi = A(yj) with respect to the set of modi�cations
xk with := s for k = 1; : : : ; n and yk with := t for k = 1; : : : ;m. Clearly the value of A(yj) does
not change with respect to the modi�cations fxk with := s; k = 1; : : : ; ng and fyk with := t; k =
1; : : : ; j � 1; j + 1; : : : ;mg. Now consider the modi�cation yj with := t. The update code required
to re-establish the invariant xi = A(yj) is xi with := �(t). Since xi is a strongly based set of type
strong set(bs) and � is a strongly based single-valued map of type strong smap(bt; bs), the cost of
performing the update is O(1). From a simple application of the composition rules, it follows that
expression Wi � xi is strongly continuous (and therefore also weakly continuous) with respect to the
set of modi�cations xk with := s for k = 1; : : : ; n and yk with := t for k = 1; : : : ;m.

Case 5 Wi is the expression B(yj) = f�(t) : t 2 yjg where yj 2 fy1; : : : ; ymg.

This case is similar to Case 4 and is omitted.

Case 6 Wi is the expression A
�(yj) = fs 2 S j 8t 2 T (s = �(t) =) t 2 yj)g where yj 2 fy1; : : : ; ymg.

As mentioned earlier, expression A�(yj) can be re-written as the equivalent form

fs 2 S j 8t 2 ��1fsg t 2 yjg;

which is further equivalent to

let f = f[s;#ft 2 ��1fsg j t 62 yjg] : s 2 Sg in fs 2 S j f(s) = 0g:

Consider the problem of maintaining the invariant xi = A�(yj) with respect to the set of modi�cations
xk with := s for k = 1; : : : ; n and yk with := t for k = 1; : : : ;m. Clearly the value of A�(yj) does
not change with respect to the modi�cations fxk with := s; k = 1; : : : ; ng and fyk with := t; k =
1; : : : ; j � 1; j + 1; : : : ;mg. Now consider the modi�cation yj with := t. The update code required to
re-establish the invariant f = f[s;#ft 2 ��1fsg j t 62 yjg] : s 2 Sg is f(�(t))� := 1 which can be done
in O(1) time. Moreover, the expression fs 2 S j f(s) = 0g is also strongly continuous with respect
to the modi�cation f(s)� := 1. Since expression f is input bound, it follows from two applications
of the composition rule that expression A(yj) � xi is strongly continuous (and therefore also weakly
continuous) with respect to the set of modi�cations xk with := s for k = 1; : : : ; n and yk with := t
for k = 1; : : : ;m.

142

Case 7 Wi is the expression B
�(yj) = fs 2 S j 8t 2 T (s = �(t) =) t 2 yj)g where yj 2 fy1; : : : ; ymg.

This case is similar to Case 6 and is omitted.

Case 11 W 0
i is A

0(xj) = ft 2 T j �(t) 2 xjg where xj 2 fx1; : : : ; xng.

Consider the problem of maintaining the invariant yi = A0(xj) with respect to the set of modi�cations
xk with := s for k = 1; : : : ; n and yk with := t for k = 1; : : : ;m. Clearly the value of A0(xj)
does not change with respect to the modi�cations fxk with := s; k = 1; : : : ; j � 1; j + 1; : : : ; ng and
fyk with := t; k = 1; : : : ;mg. Now consider the modi�cation xj with := s. The update code required
to re-establish the invariant yi = A0(xj) is

for t 2 ��1fsg loop
yi with := t

end loop

which takes time O(#��1fsg). The cumulative cost of the update code with respect to any se-
quence of additions of elements s1; s2; : : : ; sp to set xj is �p

l=1O(#�
�1fspg) which is bounded by

�s2SO(#�
�1fsg) = O(#T). Thus, we see that expression A0(xj) is weakly continuous with respect

to the set of modi�cations xk with := s for k = 1; : : : ; n and yk with := t for k = 1; : : : ;m. From a
simple application of the composition rule, it follows that expression A0(xj) � yi is also weakly con-
tinuous with respect to the set of modi�cations xk with := s for k = 1; : : : ; n and yk with := t for
k = 1; : : : ;m.

Case 12 W 0
i is B

0(xj) = ft 2 T j �(t) 2 xjg where xj 2 fx1; : : : ; xng.

This case is similar to Case 11 and is omitted.

This concludes the proof that Speci�cation 7.1 is of linear cost, and may be implemented to run in linear
time using the algorithm in Figure 7.2.

7.4 A Brief Description of Arnold and Crubille's Algorithm

In the original algorithm by Arnold and Crubille [5], each state s in set S is associated with a boolean valued
attribute s:x for each variable x of sort �s. Similarly, each transition t in set T is associated with a boolean
valued attribute t:y for each variable y of sort �t. The attribute s:x (respectively t:y) is true if state s belongs
to set x (respectively transition t belongs to set y). The main idea behind the algorithm may be understood
by answering the following questions.

1. How can the addition of state s to one or more sets xi1 ; xi2 ; : : : a�ect the values of other sets ?

2. How can the addition of transition t to one or more sets yi1 ; yi2 ; : : : a�ect the values of other sets ?

Consider the �rst question. Equations of the form xi1 = xi2 [�s xi3 or xi1 = xi2 \�s xi3 may result in the
addition of state s to other sets of states. Equations of the form yi1 = A0(xi2) or yi1 = B0(xi2) may result
in the addition of a transition t (such that �(t) = s or �(t) = s) to other sets of transitions. Next, consider
the second question. Equations of the form yi1 = yi2 [�t yi3 or yi1 = yi2 \�t yi3 may result in the addition
of transition t to other sets of transitions. Equations of the form xi1 = A(yi2), xi1 = B(yi2), xi1 = A�(yi2),
or xi1 = B�(yi2) may result in the addition of state �(t) or �(t) to other sets of states.

The key idea behind the original algorithm is to propagate the e�ects of addition of states and transitions
until no more states and transitions need to be added. Thus, whenever a state s is newly added to one or
more sets xi1 ; xi2 ; : : : , the algorithm ensures that all equations of the form xi1 = xi2 [�s xi3 , xi1 = xi2 \�s xi3 ,
yi1 = A0(xi2), and yi1 = B0(xi2) are re-visited to see if the state s, or a transition t (such that �(t) = s or
�(t) = s) needs to be added to any other sets. Similarly, whenever a transition t is added to one or more
sets yi1 ; yi2 ; : : : , the algorithm ensures that all equations of the form yi1 = yi2 [�t yi3 , yi1 = yi2 \�t yi3 ,
xi1 = A(yi2), xi1 = B(yi2), xi1 = A�(yi2), and xi1 = B�(yi2) are re-visited to see if transition t or states
�(t) and �(t) need to be added to other sets. The algorithm has a sophisticated control ow mechanism

143

that uses a combination of recursion and iteration, and is cleverly designed to guarantee that whenever a
state or transition is newly added to a set, the equations of the appropriate form are re-visited to propagate
the e�ects of the addition. The eÆciency of the algorithm rests on the fact that whenever an equation is
re-visited, it is re-evaluated incrementally rather than from scratch.

7.5 Comparison Between the Two Algorithms

Let us see how our algorithm compares with that of Arnold and Crubille. A close look at the two algorithms
reveals that both deal mainly with the following three issues.

1. Incremental re-evaluation of each expression Wi and W 0
i with respect to the addition of a state s to

set xi or transition t to set yi.

2. Ensure that whenever a state or transition is added to a set, the appropriate equations are re-visited
to propagate the e�ect of the addition of a state or transition, to other sets. Make sure that the
algorithm terminates only when a �xed-point has been reached.

3. Appropriate data structures that allow the addition of a state s (respectively a transition t) to a set
of states (respectively transitions) in O(1) time.

We derive our linear-time algorithm by following a process of top-down step-wise re�nement. We start
with Speci�cation 7.1. The monotonicity of all expressions Wi and W 0

i , and the fact that the ranges of
these expressions are �nitely bounded by sets S and T respectively guarantees that the desired least �xed
point exists and can be naively computed by the algorithm in Figure 7.1. The next step is to use dominated
convergence and �nite di�erencing to eliminate the wasteful re-computation of each expression Wi and W 0

i

in each iteration. This leads to the development of the algorithm in Figure 7.2. The pieces left unspeci�ed
in the pseudo-code in Figure 7.2 are the parts dealing with the incremental re-evaluation of expressions
Wi and W 0

i with respect to addition of a states and transitions to sets xi or yi, and can be dealt with
independently. Thus, there is a clear separation of �rst two issues mentioned above. The third issue which
deals with the problem of data-structure selection (to ensure O(1) time cost of element additions) is taken
care of by the type-system. The well-typedness of the SQ+ speci�cation, guarantees that the �nal High SETL
implementation is also well-typed, which further guarantees that all associative access operations including
set element additions are implementable in O(1) time. Once again, there is a clear separation between the
issue of data-structure selection and the other two issues. The three-step algorithm design methodology
based on dominated convergence, �nite di�erencing and data-structure selection homes in on the linear-time
solution in exactly the same way as it did for textbook problems like graph reachability, cycle testing, and
constant propagation.

The algorithm by Arnold and Crubille, in contrast, is a lot more diÆcult to understand because there is
no clear separation between the three issues. First, the authors have to rely on a low-level description of data-
structures that allow O(1) time additions of states and transitions to sets. As a result, the reader is needlessly
burdened with low-level implementation details from the very beginning. The algorithm contains two key
procedures update state and update transition which ensure that the appropriate set of equations are
re-evaluated whenever a state or transition is newly added to a set. The correctness of Arnold and Crubille's
algorithm rests on the fact that procedure update state is always called with argument s subsequent to the
addition of state s to some set xi, and that procedure update transition is always called with argument t
subsequent to the addition of transition t to some set yi. The above is ensured by the use of a complicated
mixture of recursion and iteration that is so diÆcult to understand that it is not even immediately obvious
that the algorithm even terminates. First, a proof of partial-correctness is given, in which it is shown that if
the algorithm terminates, then it computes the desired least �xed-point. It is left to the readers to convince
themselves that the total number of times each procedure update state and update transition can get
called is bounded by n�#S and m�#T respectively, and this fact is subsequently used to derive a linear
upper bound on the running time of the algorithm.

144

7.5.1 A Closer Look at the Running Times of the Two Algorithms

Both algorithms are linear in the size of the transition system, i.e. O(#S + #T). In the analysis of both
algorithms, it is assumed that the number of equations on the transition system, i.e. n +m is a constant.
Let us take a look at how the running times of the two algorithms vary with the number of equations in the
transition system. The running time of the algorithm by Arnold and Crubille is O((n+m)2�(#S+#T)) on
an array-based model of computation. It is easy to check that the running time of our algorithm (outlined
in the program in Figure 7.2) is O((n+m)3 � (#S+#T)) on a pointer-machine model of computation, and
O((n +m)2 � (#S +#T)) on an array-based model of computation. Thus, the constant factors related to
the number of equations in the transition system are the same in both algorithms.

However, a closer look at the algorithm in Figure 7.2 reveals a possibility for further improvement.
Consider the e�ect of the addition of state z to set xi. All equations xj =Wj for j = 1; : : : ; n and yj =W 0

j

are re-visited to re-establish the invariants dx[j] = Wj � xj and dy[j] = W 0
j � yj . This is wasteful because

only those equations that have set xi on their right hand side need to be re-visited. In the algorithm in
Figure 7.2, an equation may be considered for re-evaluation as many as (n+m)� (#S +#T) times. As a
result, even though the cumulative cost of re-establishing the invariants for all n+m equations is bounded
by the size of the total output (i.e. n�#S+m�#T), the cost of the algorithm is O((n+m)2� (#S+#T)).

The algorithm in Figure 7.2 may be improved as follows. With each variable xi (respectively yi) associate
an index set Ixi (respectively Iyi) containing indices of equations that have xi (respectively yi) on their right
hand side. When state z is added to set xi, only those equations whose indices lie in index set Ixi are
re-visited. Thus, an equation gets re-evaluated only if the value of at least one of the variables on its right
hand side changes. Since each equation has at most two variables on its right hand side, and the number of
times each xi or yi can change is bounded by #S and #T respectively, it follows that each equation can be
re-visited at most 2�max (#S;#T) times. Once again, the cumulative cost of re-establishing the invariants
for all n+m equations is bounded by the size of the total output (i.e. n�#S +m�#T). Thus, the total
running time of the algorithm is O((n+m)� (#S+#T)) which is linear in the size of the transition system
and the number of equations (or the size of the mu-calculus formula).

7.6 Conclusion

In this chapter, we looked at the problem of computing the �xed point of a system of equations on a transition
system. Earlier, we had seen that the use of dominated convergence, �nite di�erencing, and the use of the
type system for data-structure selection helped transform abstract SQ+ speci�cations of problems such as
graph reachability, cycle testing, and constant propagation into highly eÆcient linear-time implementations.
In this chapter, we showed that the same methodology can be used to get a linear-time algorithm for the
problem of computing the �xed-point of a system of equations on a transition system. We compared our
linear-time solution with the existing linear-time solution due to Arnold and Crubille, and although the
essential idea behind the two algorithms is very similar, we believe that our approach signi�cantly simpli�es
the original algorithm. Moreover the complexity of our algorithm matches the complexity of the best known
algorithms for the problem.

145

Chapter 8

An Improved Intra-Procedural

May-Alias Analysis Algorithm

8.1 Introduction

In this chapter, we look at the problem of computing intra-procedural may-alias information for programs
in conventional imperative languages like C. The problem of computing alias information is of consider-
able pragmatic interest with applications to optimizing compilers, program environments, and program
understanding tools. Existing work on alias analysis can be broadly classi�ed into two categories: ow
sensitive [10, 18, 32, 20, 33], and ow insensitive [6, 28, 47, 92, 100]. Flow sensitive algorithms are in
general more precise, and more expensive than ow insensitive algorithms. Some recent work investigating
the relative merits of the two approaches can be found in [50, 101, 116]. In this chapter, we look at a ow-
sensitive intra-procedural may-alias computation. We look at the problem speci�cation as formulated by
Hind et al. [51], and use dominated convergence, �nite di�erencing, and data structure selection to discover
an improved algorithm for computing intra-procedural may-alias information.

Hind et al. ([51]) use a standard data ow framework [80, 104] to formulate an intra-procedural may-
alias computation. They compute the intra-procedural aliasing information by applying well-known iterative
techniques to a sparse version of the program Control Flow Graph (CFG) called the Sparse Evaluation Graph
(SEG) ([21]). A transfer function (relating the data ow information owing into and out of a node) is de�ned
for each node that could potentially cause a pointer assignment. The input is the set of aliases holding at
the entry node of the SEG. The computation applies the transfer function at each node to the set of aliases
holding at the entry to the node, in order to compute the set of aliases holding on exit from the node. This
set of aliases is propagated to all the successor nodes. The computation proceeds iteratively and in each
iteration all the SEG nodes are re-visited to compute the new set of aliases holding on exit from the node,
and update the set of aliases holding on entry to the successor nodes. The computation terminates when
a complete iteration leads to no change in the sets of aliases holding on entry to any node in the SEG. It
is assumed that precomputed information in the form of summary functions is available for all function-call
sites in the procedure being analyzed. The time complexity of the intra-procedural may-alias computation
for the algorithm presented by Hind et al. ([51]) is O(N6) in the worst case (where N is the size of the SEG).

In this chapter we present a new algorithm for intra-procedural may-alias computation with a worst
case time complexity of O(N3). We formulate the intra-procedural may-alias computation as an SQ+

speci�cation, and show that it may be computed in linear time (linear in the sum of the sizes of the input
and output). Since the worst case size of the output alias-relation is bounded by O(N3), (at most N2 aliases
can hold at any SEG node and there are at most N SEG nodes) it follows that our algorithm runs in worst
case O(N3) time. Thus, our approach leads to the discovery of a much improved new algorithm.

Unfortunately, a pointer machine model turns out to be inadequate for an eÆcient implementation of our
algorithm. For the remainder of this chapter we consider an extended type system additionally containing
arbitrary length (but �nite) tuples. If t is a tuple (implemented as a linked list), then the evaluation of
expression t[i] takes time proportional to i on a pointer machine. Upto now we have assumed that tuples

146

are of �xed, �nite lengths that are known at compile time. Thus, the time to evaluate expression t[i] for
any tuple t is bounded by the size of the tuple, which is a constant for the program. For this application,
the length of tuples depends on the input, and cannot be assumed to be a constant. We conservatively
assume that once a tuple of an arbitrary length is created, its length is not modi�ed for the remainder of
the execution of the program. Since linked lists are not appropriate data structures for implementing such
tuples, we choose arrays as the alternative.

In Section 8.2, we informally describe the e�ect of the addition of arbitrary length tuples to the type
system. In Chapter 6 we considered the problem of computing the least �xed point of a system of equations
under the assumption that the number of equations is a constant. For the current problem, the number of
equations will, however, depend on the input. In Section 8.3, we re-visit the problem of computing the least
�xed-point of a system of equations under the setting of the new type system, and relax the assumption that
the number of equations is a constant. We state suÆcient conditions under which the �xed-point for such
systems of equations may be computed in linear time. In Section 8.4, we provide a brief tutorial on aliasing.
In Section 8.5 we formulate the may-alias analysis problem as a problem of computing the least �xed-point
of a system of equations. In Section 8.6 we present two algorithms, the �rst by Hind et al. [51] that runs in
O(N6) time, and the second which improves the �rst by using a worklist strategy and runs in O(N5) time.
Finally in Section 8.7 we present our improved algorithm that runs in worst-case O(N3) time.

8.2 Extension of the Type System

The type system de�ned thus far contains arbitrary sized �nite sets and maps but only �xed length tuples
(similar to records). We use linked lists to implement such �xed length tuples, and the time taken to access
the ith element t[i] of a tuple t is proportional to i. Under the assumption that the length of the tuple
is bounded by a constant (independent of the program input), the time complexity of all such accesses is
O(1) time. Now, we would like to extend the type system with arbitrary length tuples (similar to arrays).
In order to access element t[i] eÆciently, we will assume that the tuple is implemented as an array. Thus,
for the remainder of this chapter, we will assume that the underlying model of computation is the Random
Access Memory model (RAM) rather than the weaker pointer-machine model. Since the RAM model is
strictly more powerful than a pointer-machine model, all the previous results about the time complexities of
implementation of primitive operations will still be valid. The new set of types Type is given by

� ::= bool j � j strong set(b) j strong smap(b; �) j strong mmap(b; �) j tuple(�)
� ::= int j b j set(�1) j smap(�1; �2) j mmap(�1; �2) j tuple(�)

(8.1)

The above extension to the type system is quite non-trivial. For example, we now allow types of the
form tuple(strong set(b)), which is a tuple containing arbitrarily many strongly based sets. Up to now, the
type system ensured that the total number of strongly based sets and maps in a program was a constant
independent of the program input. This fact is crucial to the proof that operations such as set membership
test on strongly-based sets can be performed in O(1) time. Recall that an element x of base type b (satisfying
the subtype constraint b < �) is implemented as a record containing the corresponding value of type �, and
a pointer to a linked list of nodes. The linked list contains one node for every strongly-based set containing
element x and one node for every strongly-based map (smap or mmap) containing x in its domain. In
order to test the membership of element x in a strongly-based set s (x 2 s), the linked list needs to be
traversed to see if there is a node corresponding to set s. Under the assumption that the total number of
strongly-based sets and maps in the program is a constant, the cost of traversing the list can also bounded
by a constant, and is therefore O(1) time. Unfortunately, we can no longer assume that the number of
strongly-based sets and maps in the program is bounded by a constant, in the new type system. Although,
types such as set(strong set(b)) are still disallowed, types such as tuple(strong set(b)) can lead to arbitrarily
many strongly-based sets.

We solve this problem by modifying the implementation of base types in the following way. Let t be of
type tuple(strong set(b)) where base type b satis�es the subtype constraint b < �. As before, we implement
an element x of type b as a pointer to a record containing the corresponding value of type � and a pointer to

147

a linked list. The linked list contains only one node for corresponding to variable t, which further contains
a pointer to an array of records that contains one record for each element of tuple t. Similarly, if t were of
type tuple(tuple(strong set(b))), the linked list would still contain only one node for t which would contain
a pointer to an array of array of records. Such an implementation ensures that the number of nodes in the
linked list is always bounded by the number of variables in the program. Thus, for any strongly-based set s
or t[i], the operations x 2 s and x 2 t[i] can both be performed in O(1) time. Our implementation relies on
a RAM model of computation to perform array accesses in O(1) time.

The new type system incurs an additional cost in terms of space complexity. In the earlier type system,
the use of based data structures increased the space utilization by no more than a constant factor. In the
new type system however, the penalty in terms of space requirements could be substantially higher. Consider
a tuple t of type tuple(strong set(b)). Let n denote the length of t, and m denote the number of distinct
values of type b that exist during the life of the program. The use of based data structures could incur a
space penalty of O(nm). If we make the assumption that each array (of size n) is initialized in O(1) time1,
then the time complexity of initialization is still linear, i.e. O(m).

In the next section, we re-visit the problem of computing the least �xed point of a system of equations in
the setting of the new type system, and relax the assumption about the number of equations in the system
being a constant.

8.3 Computing the Fixed-Point of a System of Equations

Consider the problem of computing the least �xed-point of the following system of equations

x1 = F1(x1; x2; : : : ; xn; y)
x2 = F2(x1; x2; : : : ; xn; y)

...
xn = Fn(x1; x2; : : : ; xn; y);

(8.2)

Assume that y is an external input2, each of the variables xi is set-valued, the number of equations n is a
constant, and that each expression Fi(x1; : : : ; xn; y) is a well-typed SQ+ expression having the same type
as xi. It was shown in Chapter 6(Theorem 6.4.1) that the problem of computing the least �xed point of the
system of equations given by 8.2 could be formulated as the following SQ+ speci�cation.

LFP�([F1(x1; : : : ; xn; y);
F2(x1; : : : ; xn; y);
: : :
Fn(x1; : : : ; xn; y)];
[x1; : : : ; xn])

(8.3)

Moreover, it was shown that Speci�cation 8.3 could be computed in linear time (linear in the sum of the
sizes of the input and the output) if the following conditions hold:

1. Each expression Fi(x1; : : : ; xn; y) is monotonic in the arguments x1; : : : ; xn.

2. Each expression Fi(x1; : : : ; xn; y) is of linear cost.

3. Each expression Fi(x1; : : : ; xn; y) � xi is weakly continuous with respect to the set of modi�cations
fxj with := zi; j = 1; : : : ; ng.

Unfortunately, this result is no longer true if we relax the assumption that the number of equations
n is a constant independent of the program input. Let us take a closer look at the time complexity of

1However, if the assumption that the initialization of an array of size n takes O(1) time is not acceptable, then
the time complexity of initialization is also O(nm)

2in general, there may be more than one external inputs

148

x[1] = x[2] = : : : x[n] = fg;
for i = 1; : : : ; n loop

dx[i] = Fi(x; y); �� Fi(x; y) � Fi(x[1]; x[2]; : : : ; x[n]; y)
end loop
I = fi 2 1; : : : ; n : dx[i] 6= fgg;
while (I 6= fg) loop

i =3 I ;
z =3 dx[i];
for j = 1; : : : ; n loop

: : : �� Code to re-establish the invariant dx[j] = Fj(x; y)� xj
: : : �� with respect to the modi�cation x[i] with := z
if dx[j] 6= fg then I with := j endif

end loop
end loop

Figure 8.1: Implementation of Speci�cation 8.3 using dominated convergence and �nite di�erencing

implementation of Speci�cation 8.3 shown in Figure 8.1, where x is a tuple containing the values x1; : : : ; xn
(i.e. x[i] = xi).

If the above conditions of monotonicity and weak continuity hold, then a time complexity analysis3 reveals
that the cost incurred for each expression Fi in the algorithm given in Figure 8.1 is O(#y + �n

i=1#x[i]).
Thus, the total cost of the algorithm in Figure 8.1 is O(n � (#y + �n

i=1#x[i])), i.e. n times the sum of the
sizes of the input and the output. If n can no longer be assumed to be a constant, then the time complexity
of our implementation is no longer linear in the sum of the input and output sizes.

Now, consider a special case of the system of equations given by 8.2 in which there is no input y, and
each expression Fi depends only on a few of the parameters x1; : : : ; xn. More precisely, we consider the
case in which the number of expressions Fi1 ; Fi2 ; : : : that depend on each parameter xi is bounded by some
constant c. Such a system of equations is shown below.

x1 = F1(x11; x12; : : : ; x1k1)
x2 = F2(x21; x22; : : : ; x2k2)

...
xn = Fn(xn1; xn2; : : : ; xnkn);

(8.4)

Assume that each variable xij belongs to the set fx1; : : : ; xng, and that the number of occurrences of any
variable xi in the multi-set

fx11; x12; : : : ; x1k1 ; x21; x22; : : : ; x2k2 ; : : : ; xn1; xn2; : : : ; xnkng

is bounded by a constant c. In this case, the input can be pre-processed (in O(n) time) to compute a map

a�ected = f[i; j] : variable xi a�ects expression Fjg;

and implementation given in Figure 8.1 can be modi�ed by replacing the for-loop "for j = 1; : : : ; n loop"
with "for j 2 a�ectedfig loop". The cost incurred for each expression Fi in the resulting implementation is

O(�j2a�ectedfig#x[j]):

Since the number of expressions a�ected by each variable xi is bounded by a constant c, the total cost of
the modi�ed implementation is O(c � �n

i=1#x[i]), which is linear in the size of the output. Thus, we have
the following theorem.

3we assume a RAM model, and that tuple access x[i] takes O(1) time

149

Theorem 8.3.1 The system of equations given by 8.4 can be solved in time linear in the size of the output
if the following conditions hold.

1. Each expression Fi(xi1; : : : ; xiki) is monotonic in the arguments xi1; : : : ; xiki .

2. Each expression Fi(xi1; : : : ; xiki) is of linear cost.

3. Each expression Fi(xi1; : : : ; xiki) � xi is weakly continuous with respect to the set of modi�cations
fxj with := zi; xj 2 fxi1; : : : ; xikig g.

4. The number of occurrences of any variable xi in the multi-set

fx11; x12; : : : ; x1k1 ; x21; x22; : : : ; x2k2 ; : : : ; xn1; xn2; : : : ; xnkng

is bounded by a constant.

Theorem 8.3.1 will be used to get a linear-time algorithm for computing may-alias information.

8.4 Preliminaries

Consider the C assignment statement

a = &b; (8.5)

The e�ect of the assignment is to assign the address of b to a. Therefore, after execution of Statement (8.5),
expressions �a, and b refer to the same storage location. Consequently, any modi�cation to the value
stored at the location corresponding to �a will result in the modi�cation of the value stored at the location
corresponding to b, and vice-versa. In this case, �a and b are said to be aliased. We call expressions such as
�a, and b, access-paths ([60]). More precisely, an access-path is the l-value of an expression constructed from
variables, pointer dereferences, and structure �eld selection operators. The aliasing of �a and b is represented
by the alias-pair h�a; bi.

An alias relation R at statement S is a set of alias-pairs hx; yi. Such a relation R is the must-alias
relation at statement S, if, an alias-pair hx; yi belongs to R, i� access-paths x and y refer to the same
storage location in all execution instances of statement S. The absence of an alias-pair hu; vi from R implies
that access-paths u and v refer to di�erent locations in at least one execution instance of statement S. An
alias-relation R is the may-alias relation at statement S, if, an alias-pair hx; yi belongs to R, i� access-paths
x and y refer to the same storage location in some execution instance of statement S. Thus, the absence
of an alias pair hu; vi from R implies that u and v must refer to di�erent storage locations in all execution
instances of statement S.

The computation of the actual must-alias and may-alias relations at all program points is undecidable
([59, 76]). Therefore, we must be satis�ed with computing safe approximations to these relations. In order
to understand what it means for an alias relation to be a safe approximation to the must-alias relation
(respectively, the may-alias relation), we must understand how the information contained in the must-alias
relation (respectively the may-alias relation) is used. For each alias pair hx; yi in the computed must-alias
relation, we want to be sure that x and y refer to the same storage location in all execution instances.
Therefore, any under-approximation (subset) of the actual must-alias relation is a safe approximation e.g.
the empty set fg. For each alias pair hu; vi not in the computed may-alias relation, we want to be sure that
u and v refer to di�erent storage locations in all execution instances. Therefore, any over-approximation
(i.e. superset) of the actual may-alias relation is a safe approximation e.g. the complete relation. It is
fairly obvious that the actual must-alias relation is reexive, symmetric, and transitive, and that the actual
may-alias relation is reexive, and symmetric (though not necessarily transitive). It is not diÆcult to prove
that if relation R is a safe approximation to the actual must-alias relation, then the reexive, symmetric
and transitive closure of R is also safe. Correspondingly, it is not diÆcult to see that if relation R is a safe
approximation to the actual may-alias relation, then the largest reexive and symmetric subset of R is also
safe.

150

a b c

Figure 8.2: An example alias graph

In this chapter, we will be concerned with the problem of computing a safe approximation to the may-
alias relation at every program point, and from now on whenever we refer to an alias relation, we will
mean a may-alias relation. May-alias relations, in addition to being reexive and symmetric, also satisfy
a congruence property, viz. the existence of a may-alias pair hx; yi 2 R implies the existence of another
may-alias pair h�x; �yi in R, if x and y are non-null, pointer-valued access paths. It is again not diÆcult
to see that if R is a safe approximation to the actual may-alias relation, then the largest subset of R that
satis�es the congruence property is also safe.

Since the may-alias analysis requires the computation of a may-alias relation at every program point, it
is bene�cial to have a compact representation for may-alias relations. The goal is to minimize space usage
for alias information by not explicitly storing alias pairs that are inferable from the reexivity, symmetry, or
congruence properties of may-alias relations. The next sub-section gives a brief description of the compact
representation used in [51].

8.4.1 Compact Representation of Alias Information

Hind et al. ([51]) use a compact representation of alias information in which the memory locations are
associated with names, and are referred to as named objects ([53, 19]). The names are either user variable
names or new names created by the analysis. The compact representation of an alias relation requires that
for each alias-pair:

1. at least one access path component is a named object i.e., does not contain a dereference, and

2. the other access path component has no more than one level of dereferencing.

Thus, all alias-pairs are of the form h�a; bi (respectively hb; �ai), or ha; bi, where a and b are named objects.
It is important to note that alias pairs of the form ha; bi, where both a and b are named objects can arise
only because of structural aliasing, i.e. because of program constructs such as C's union or FORTRAN's
EQUIVALENCE statement. These may-alias pairs are in fact must-alias pairs at all program points. Such
pairs of named objects are therefore closed under transitivity4, i.e. if ha; bi 2 R, and hb; ci 2 R, then
ha; ci 2 R. However, other alias pairs of the form h�a; bi are not closed under transitivity.

The compact representation of the alias relation, can be mapped to and from a directed-graph-based
representation. Each node in the directed graph corresponds to a distinct location. Thus, each equivalence
class of named objects is mapped to a node in the graph. Furthermore, every alias-pair of the form h�a; bi
contributes a directed edge from the node corresponding to a to the node corresponding to b. Such a
graph is called an alias-graph. For example, look at the alias-graph in Figure 8.2 (taken from [51]). The
corresponding compact representation for this alias graph is fh�a; bi; h�b; cig. The explicit representation
of the alias information may be extracted from the compact representation (or the alias graph) by using
De�nition 8.6. If relation R is a compact representation of an alias relation, we de�ne the corresponding

explicit aliases of ai, where a is a named object and i is the number of dereferences (e.g. a2
def
= � � a) by

ExplicitAliases(a; i) =

�
fag if i = 0
fr : h�s; ri 2 Rjs 2 ExplicitAliases(a; i� 1)g if i > 0

(8.6)

In terms of the alias graph, we can think of ExplicitAliases(a; i) as returning the set of vertices reachable
by paths of length i from vertex a. It is easy to verify that the explicit alias information of the alias graph
in Figure 8.2 includes the alias-pairs h�a; bi; h�b; ci; h� � a; ci; ha; ai; hb; bi; hc; ci, and all other alias-pairs that
can further be inferred by reexivity and congruence. Note that in this example, none of the named objects
are aliased to each other, and hence each equivalence class of named-objects is a singleton set.

4remember that must alias relations are transitively closed.

151

d

f

e

Figure 8.3: Another alias graph

It is however, important to realize that the compact representation comes at the cost of a possible loss
in precision. For example, consider the explicit alias relation

R = fh�a; bi; h�b; ci; h� � a; �bi; ha; ai; hb; bi; hc; cig: (8.7)

Note, that relation R contains the alias pairs h�a; bi, and h�b; ci, but does not contain the alias pair h� � a; ci.
This implies that although it is possible for �a to be aliased to b, and �b to be aliased to c, it is never
possible for � � a to be aliased to c. This information, unfortunately, cannot be captured by the compact
representation. The best compact representation of relation R will still be the alias-graph in Figure 8.2,
and it is easily veri�ed that ExplicitAliases(a; 2) = fcg, i.e. the explicit alias representation constructed
from relation R contains the alias pair h� � a; ci. This is a consequence of the fact that a certain amount
of transitivity is built into the way we extract explicit alias information from the compact representation
using De�nition 8.6. However, extraction of explicit alias pairs from the compact representation does not
involve taking a full transitive closure. For example, looking at the alias graph in Figure 8.3, we see that
the presence of alias pairs h�d; ei and h�f; ei(� he; �fi) in the compact representation does not imply the
existence of the pair h�d; �fi in the corresponding explicit representation. An interesting discussion on the
relative merits and precision of both the compact and explicit representations may be found in [61] and the
appendix of [51].

De�nition 8.6 is a modi�ed form of the de�nition given in [51], where an explicit recursive procedure
ComputeAliases(a; i) is given to compute the explicit aliases of named object a with i levels of dereference.
The set of explicit aliases computed by De�nition 8.6 is the same as those computed by the procedure
ComputeAliases in [51]. In the rest of the paper, we always use the compact representation of may-alias
relations, and use De�nition 8.6 to extract explicit alias information from the compact representations.

8.5 May-Alias Analysis

The intra-procedural may-alias analysis is performed on the sparse evaluation graph (SEG) ([21]). The SEG
is a sparse representation of the control ow graph (CFG) comprising of gen nodes, i.e. nodes that may
potentially modify the alias information, and join nodes, i.e. nodes where alias information is merged at
join points. The SEG also contains a special entry node NEntry, and an exit node NExit, such that every
node is on some path from NEntry to NExit. The computation of the may-alias information at each program
point (i.e. on entry to, and, on exit from each SEG node n) is done by an iterative dataow analysis
([80, 104]). Equations 8.8 and 8.9 (taken from the de�nitions in [51]) de�ne the relationship between the
alias information owing into and out of an SEG node n.

Let Inn and Outn be the alias relations holding immediately before and immediately after SEG node n.
For a node n, Inn is the union of the Out sets of its predecessor nodes:

Inn =
[

p2Preds(n)

Outp: (8.8)

The intuition behind Equation 8.8 is as follows. If an alias pair hx; yi 2 Outp for some predecessor (in the
SEG) node p of node n, then, it may be the case that x and y are aliased in some execution instances in
which control reaches node n from node p. Therefore, all such alias pairs hx; yi must be in the alias relation
Inn holding at entry to node n.

152

p

q

EA(p,i)

EA(q,j)
EA(q,j+1)

i

j

Figure 8.4: Dashed edges correspond to the alias pairs generated by the assignment pi = qj

The alias relation Outn holding on exit from node n is de�ned as a function fn of the alias relation Inn
holding on entry to node n by Equation 8.9. Let the SEG node n correspond to the assignment pi = qj ,
where pi is a pointer expression with i levels of indirection from variable p, and qj is a pointer expression
with j levels of indirection from variable q.5 Outn is de�ned as

Outn = fn(Inn)
def
= Inn �Must(EA(p; i)) [(

[
a2EA(p;i);b2EA(q;j+1)

fh�a; big); (8.9)

where EA(p; i) stands for ExplicitAliases(p; i). The functions EA and Must are de�ned below by Equa-
tions 8.10 and 8.11 respectively.

EA(p; i) =

�
fpg if i = 0
fr : h�s; ri 2 Innjs 2 EA(p; i� 1)g otherwise

(8.10)

Must(S) =

8<
:

Inn if S = fg
fh�p; qi 2 Innjp 2 Sg if jSj = 1 and S = fpg for some p
fg if jSj > 1

(8.11)

Notice that the alias set Inn is implicitly used in the computation of both EA(p; i) and Must(S) (for any
set of named-objects S). It would in fact be better to use EAInn(p; i) and MustInn(S) instead of EA(p; i)
and Must(S) respectively. However, we will continue to use EA(p; i) and Must(S) whenever Inn is clear
from the context. In terms of the alias graph representation, we may think of Inn as a multi-valued map,
where Innfpg (i.e. the image of p under map Inn) represents the set of objects pointed to by object p.
Then, it is easily veri�ed that EAInn(p; i) is simply equal to Inin[fpg] (recall that f [s] = [x2sffxg and
f i[s] = f i�1[f [s]]).

Equation 8.9 may be intuitively understood as follows. In a typical dataow analysis framework ([3]),
Outn is de�ned by an equation of the form

Outn = (Inn �Killn) [Genn;

5&q is treated as q�1.

153

where Killn and Genn denote the dataow information killed and generated at node n respectively. Let us
look at the Gen set for the assignment pi = qj given by the expression

[
a2EA(p;i);b2EA(q;j+1)

fh�a; big: (8.12)

The objects in EA(p; i)6 and EA(q; j) are respectively the possible left hand sides and the possible right
hand sides of the assignment. The e�ect of the assignment pi = qj is to assign the value of some member
of EA(q; j) to some member of EA(p; i). Thus, the corresponding e�ect of the assignment on the may-alias
graph must be to add edges from every object in EA(p; i) to every object that can be pointed to by a member
of EA(q; j), i.e. to every object in EA(q; j +1). In Figure 8.4, the situation is described pictorially, and the
dashed edges correspond to the Gen set of the assignment pi = qj .

The Kill set is given by the expression Must(EA(p; i)) which corresponds to those alias pairs that
must necessarily be killed by the assignment. If the set EA(p; i) is a singleton set, say fag, then a must
necessarily get modi�ed by the assignment, and hence all alias pairs of the form h�a; xi must be killed. If,
however, EA(p; i) is a set with more than one object, say fa; b; : : :g, then at most one of these objects will
get modi�ed by the assignment, and the others will remain unchanged. Since it is not possible to know
which object gets modi�ed, therefore, it is not possible to determine which alias-pairs get killed. Hence,
Must(S) is conservatively de�ned to be the empty set fg, whenever jSj > 1. An interesting problem arises
when EA(p; i) itself evaluates to the empty set. In this case, we de�ne the Kill set to be the input alias
set Inn, so that Outn evaluates to the empty set. This stops the ow of alias information through node n,
until some more alias information reaches node n, such that EA(p; i) becomes non-empty. If, on termination
of the iterative analysis, there are one or more SEG nodes for which the corresponding sets EA(p; i) are
empty, then it can be proven that if an execution path ever reaches any of these nodes, then a null pointer
dereference error will occur.

In the next section, we describe the original algorithm by Hind et al. [51] and a small improvement to
the algorithm by using the worklist based strategy. The termination of each of these algorithms relies on
the fact that function fn (given by Equation 8.9) is monotonic with respect to the parameter Inn. It is
easily veri�ed that functionMust, as de�ned by Equation 8.11, is anti-monotonic (decreasing), and function
ExplicitAliases, as de�ned by Equation 8.10, is monotonic with respect to Inn. Then, it is easily veri�ed
from Equation 8.9 that function fn is monotonic with respect to Inn.

8.6 Computing May-Alias Information

This section describes two algorithms to compute the may-alias information at each SEG node n. First we
describe a very simple iterative algorithm used by [51] that computes a safe approximation to the may-alias
relation at entry to every SEG node n, which runs in O(N6) time where N is the size of the SEG. Next
we explain how the simple iterative algorithm can be improved by using a worklist based strategy to run in
O(N5) time. Finally, in Section 8.7 we shall see how our language-theoretic approach leads to the discovery
of a much more eÆcient algorithm based on the ideas of dominated convergence and �nite di�erencing ([68]),
that runs in worst-case O(N3) time.

8.6.1 Simple Iterative Algorithm

From Section 8.5, it is clear that the may-alias relations to be computed at the entry and exit to each SEG
node n, i.e. Inn, and Outn must satisfy Equations 8.8 and 8.9. In fact, Equations 8.8 and 8.9 may be
combined into the single equation

Inn =
[

p2Pred(n)

fp(Inp); (8.13)

6Recall that one way to think of EA(p; i) is as the set of nodes reachable by a path of length i from node p.

154

Input: In(0)
Output: In(i) for all i = 0; : : : ; N

Init : 8i = 1; : : :N In(i) = fg
8i = 0; : : :N Out(i) = fi(In(i))

Loop : repeat
8i = 1; : : : ; N loop

In(i) = [p2Pred(i)Out(p)
Out(i) = fi(In(i))

end8
until all the Out(i)'s converge.

Figure 8.5: Simple iterative algorithm for computing may-aliases

for each SEG node n, where fp is the transfer function for node p. In other words, the computed may-alias
information must be a �xed-point of the following system of equations:

In1 =
S
p2Pred(1) fp(Inp)

In2 =
S
p2Pred(2) fp(Inp)

: : :
InN =

S
p2Pred(N) fp(Inp):

(8.14)

It is not diÆcult to see that the may-alias information that we seek to compute, is in fact, the least �xed
point of the system of equations 8.14. All other �xed points of the system of equations 8.14 are also safe
approximations of the may-alias relations at every node n, although they are not as accurate (precise) as
the least �xed point.

Let the nodes of the SEG be numbered from 0; : : : ; N , where node 0 denotes the entry node NEntry

of the SEG. Then, if each of the transfer functions fp is monotonic, the least �xed point of the system of
equations 8.14 can be computed by Kildall's iterative algorithm ([56]) shown in Figure 8.5.

Before we are ready to calculate the run-time complexity of the algorithm in Figure 8.5, we need to
understand a few details about the low level implementation. Since an alias relation is implemented as a
set of alias pairs, the eÆcient computation of Outn from Inn using Equation 8.9 requires that the primitive
operations such as set membership test and insertion into a set, be performed eÆciently. The implementation
of Hind et al. ([51]) relies on hashing to perform the set-based operations eÆciently. Thus, the complexity
of their algorithm is average-case O(N6) time, under the assumption that hashing takes O(1) time on the
average. However, it is possible to use a more sophisticated data-structure for implementing sets that allows
primitive operations such as set membership test and insertion into a set to be implemented in worst-case
O(1) time without the use of hashing. We do not present the details of these data structures in this paper
but refer the interested reader to [65, 43] which describe data-structures that can be used to perform all set
membership tests and set insertions in our algorithm in worst-case O(1) time.

Let us make the simplifying assumption that the SEG has been pre-processed so that the maximum
number of predecessors of any node is no more than two. This can easily be done by adding a series of
dummy join nodes to the SEG. The resulting number of nodes in the new SEG is still linear in the number
of edges in the old SEG. We will let N denote the number of vertices in the processed SEG. Note, however,
that both the number of vertices and the number of edges in the original SEG are linear in the size of the
procedure. Let Amax denote the maximum number of aliases holding at any program point, and let L be a
bound on i and j, i.e. the maximum number of dereferences to any of the named objects appearing in the
assignment pi = qj .

Lemma 8.6.1 EA(p; i) can be computed in O(i�Amax) time.

Proof: We compute EA(p; i) by successively computingEA(p; 0); EA(p; 1); : : : . The computation ofEA(p; k+
1) from EA(p; k) can be done by just computing the neighbors of all nodes in EA(p; k), and can take at
most Amax time. Thus, the successive computations of EA(p; 0); : : : ; EA(p; i) take O(i�Amax) time. 2

155

Lemma 8.6.2 The function fn(Inn) given by Equation 8.9 can be computed in O(L�Amax) time.

Proof: The computation of fn(Inn) is done by �rst computing EA(p; i) and EA(q; j + 1). Since L is an
upper bound on i and j, we see from Lemma 8.6.1 that EA(p; i) and EA(q; j + 1) can be computed in
O(L�Amax) time. Next, it is easy to see that the computation of Must(EA(p; i)) takes at most O(Amax)
time. Finally, since the size of Expression (8.12) is bounded by Amax, we see that the entire computation of
fn(Inn) takes at most O(L� Amax) time. 2

Corollary 8.6.3 Each iteration of the algorithm in Figure 8.5 takes O(N � L�Amax) time.

Lemma 8.6.4 The number of iterations in the algorithm in Figure 8.5 is bounded by (N �Amax) + 1.

Proof: Each iteration of the algorithm, except for the last one, results in the addition of at least one new
edge to the Out set of some node i. The total number of such edges for each node is bounded by Amax.
Thus, the total number of iterations is bounded by (N �Amax) + 1. 2

Corollary 8.6.5 The time complexity of the algorithm in Figure 8.5 is O(L�A2
max �N2) time.

It is quite reasonable to assume that L is actually a small constant. Also, in the worst case, Amax may be
as large as N2. Thus, a coarser estimate of the time complexity of the simple algorithm is O(N6). Next, we
show how a simple worklist based strategy can improve the worst-case time complexity of the algorithm to
O(N5). Finally, we present a much more eÆcient algorithm for computing the same may-alias information
in worst-case O(N3) time.

8.6.2 A Worklist Based Strategy

One of the main sources of ineÆciency in the simple iterative algorithm is the repetitive computation of
fk(In(k)) for all SEG nodes k in each iteration, including even all those nodes for which there is no change
in the value of their In sets in the previous iteration. A simple optimization that eliminates needless repeated
computations of Out(k) = fk(In(k)), is the use of a worklist based strategy. A worklist of nodes, for which
the In sets changed in the previous iteration is maintained. In each iteration, the computation of Out is
performed only for the nodes in the worklist, and another worklist comprising of those nodes for which the In
sets change in this iteration, is created for use in the next iteration. A careful implementation of the worklist
strategy can improve the worst-case time complexity of the may-alias computation to O(L � A2

max � N)
time. This is because, for each SEG node k, the re-computation of Out(k) is done only whenever at least
one new alias pair is added to In(k). Using the fact that the size of In(k) is bounded by Amax, and that the
computation of Out(k) takes O(L�Amax) time, we get the worst-case time complexity O(L�A

2
max�N) for

the worklist strategy based algorithm. Again, assuming that L is a small constant, and that Amax = O(N2),
we see that the complexity of the worklist based algorithm is O(N5) time.

8.7 Going Beyond the Worklist Strategy

For every SEG node i, let i1; i2; : : : ; iki denote the predecessors of node i in the SEG. Let expression
Fi(Ini1; Ini2; : : : ; Iniki) be de�ned by

Fi(Ini1; Ini2; : : : ; Iniki) = fi1(Ini1) [fi2(Ini2) [: : : [fiki(Iniki) (8.15)

Then, the may-alias relation that we wish to compute is simply the least �xed point of the following system
of equations.

In1 = F1(In11; In12; : : : ; In1k1)
In2 = F2(In21; In22; : : : ; In2k2)

...
InN = FN (InN1; InN2; : : : ; InNkN);

(8.16)

156

According to Theorem 8.3.1, the least �xed point of the System of Equations 8.16 can be computed in
linear time if the following conditions hold.

1. Each expression Fi(Ini1; : : : ; Iniki) is monotonic in its arguments.

2. Each expression Fi(Ini1; : : : ; Iniki) is of linear cost.

3. Each expression Fi(Ini1; : : : ; Iniki)� Ini is weakly continuous with respect to the set of modi�cations
fInj with := zi where Inj 2 fIni1; : : : ; Inikig g.

4. The number of occurrences of any variable Ini in the multi-set

fIn11; In12; : : : ; In1k1 ; In21; In22; : : : ; In2k2 ; : : : ; InN1; InN2; : : : ; InNkNg

is bounded by a constant.

We already know that the �rst condition is true. If we assume that every node has at most two pre-
decessors and two successors, then the last condition is also satis�ed as a variable Ini may appear in the
arguments of at most two expressions. Thus, inorder to get a linear-time algorithm for may-alias analysis,
we just need to prove conditions 2 and 3.

First, let us try to prove that each expression Fi(Ini1; : : : ; Iniki) is of linear cost. Since each node i
can have at most two predecessors, and the operator [absorbs both its parameters, it suÆces to prove that
expression fn(Inn) is of linear cost for an arbitrary node n.

If we think of Inn in terms of the alias graph representation, it may be implemented as a multi-valued
map where Innfpg denotes the set of objects pointed to by p. Under this representation, expression EA(p; i)
is equivalent to expression Inin[fpg]. Similarly, the expression

[a2EA(p;i);b2EA(q;j+1)fh�a; big

can be expressed as the cross product Inin[fpg] � Inj+1
n [fqg]. Expanding out the de�nition of Must given

by Equation 8.11, expression fn(Inn) (as de�ned by Equation 8.9) can be expressed as

fn(Inn) = let
Si = Inin[fpg]

in
let

Tj+1 = Inj+1
n [fqg]

in
if Si = fg then
fg

else
if #Si = 1 then

(Inn)jdomain(Inn)�Si [(Si � Tj+1)
else

Inn [(Si � Tj+1)

(8.17)

The outline of the proof that Expression fn(Inn) is of linear cost is given below.

� Expression Inn[s] is a simple, input-bound, linear-cost expression.

� Using the composition rule, it follows that Expression Inin[s] is an input-bound linear-cost expression
for any constant i.

� Thus, expressions Si and Tj+1 (as de�ned in Equation 8.17) are input-bound and of linear cost.

� Since Si is input bound, the boolean expressions Si = fg and #Si = 1 are also of linear cost.

157

� Expression domain(Inn)� Si is input-bound and of linear cost. Therefore, expression

(Inn)jdomain(Inn)�Si

is also input-bound and of linear cost.

� Expression Si � Tj+1 is of linear cost since Si and Tj+1 are both input-bound and of linear cost.

� Since operator [absorbs both of its parameters, it follows that expressions

(Inn)jdomain(Inn)�Si [(Si � Tj+1)

and

Inn [(Si � Tj+1)

are both of linear cost. Thus, it follows that Expression fn(Inn) given by Equation 8.17 is of linear
cost.

Thus, Condition 2, i.e. that each expression Fi(Ini1; : : : ; Iniki) should be of linear cost, is also true. Now,
let us take a look at Condition 3 which requires that each expression Fi(Ini1; : : : ; Iniki) � Ini be weakly
continuous with respect to the set of modi�cations fInj with := zi where Inj 2 fIni1; : : : ; Inikig g. Once
again, it suÆces to prove that each expression fn(Inn) is weakly continuous with respect to Inn with := z,
since we know that operator [absorbs both of its arguments, and that operators [and � (i.e the set
di�erence operator) are strongly continuous with respect to addition of elements to both parameters.

The outline of the proof of weak continuity of fn(Inn) with respect to the modi�cation Inn with := z is
given below.

� Expression Inn[s] is a simple, input-bound, linear-cost expression which is weakly continuous with
respect to fInn with := z; s with := z0g.

� Using the composition rule, it follows that Expression Inin[s] (for any constant i) is an input-bound
linear-cost expression which is weakly continuous with respect to Inn with := z.

� Thus, expressions Si and Tj+1 (as de�ned in Equation 8.17) are input-bound, of linear cost and weakly
continuous with respect to Inn with := z.

� Since Si is input bound, the boolean expressions Si = fg and #Si = 1 are input-bound and weakly
continuous with respect to Inn with := z.

� Expression domain(Inn)�Si and expression (Inn)jdomain(Inn)�Si can also be seen to be input-bound
and weakly continuous with respect to Inn with := z.

� Next, it is easy to see that expression Si�Tj+1 is also weakly continuous with respect to Inn with := z.

� Since operator [absorbs both of its parameters, it follows that expressions

(Inn)jdomain(Inn)�Si [(Si � Tj+1)

and

Inn [(Si � Tj+1)

are both weakly continuous with respect to Inn with := z. Thus, it follows that Expression fn(Inn)
given by Equation 8.17 is weakly continuous with respect to Inn with := z.

This concludes the proof that the System of Equations 8.16 can be solved in linear time. Since, the
worst-case size of the output is bounded by O(N3), we get a new O(N3) time algorithm for computing the
may-alias relation.

158

Chapter 9

Conclusion

9.1 Future Work

The two main goals of this thesis were 1) a formal development of the data structure selection transformation
to be used along with the �nite di�erencing and dominated convergence transformations as a part of a
transformational program design methodology, and 2) demonstration of the usefulness of this methodology
for a better understanding of algorithms. This research was pioneered in the late 1970's by Bob Paige
with the goal of developing a transformational program development methodology that could signi�cantly
improve the productivity of designing and maintaining highly reliable algorithmic software. The current
thesis has been concerned with the development of the theoretical basis for such a methodology. We have
demonstrated how this methodology can be applied by an algorithmician using a pencil and paper, and
can help gain a better understanding of algorithms, or even help discover new algorithms. What remains,
however, is the development of a practical program development system that can use the ideas presented
in this thesis to automaticaly or semi-automatically transform abstract program speci�cations into high
performance implementations.

A prototype of such a program transformation system was developed and used by Cai and Paige to
conduct experiments for testing the viability of the transformational approach for high performance algo-
rithm implementation. The results of these experiments were presented in [16]. A simple but conservative
model of productivity was used, and a �ve-fold improvement in productivity of high performance algorithm
implementation in C was demonstrated. The experiments were conducted only on small scale examples, but
the results were encouraging. The authors hypothesized that their results would scale up even for large scale
examples. In this section, we list some possibilities for future work that could help in the development of
such a system.

1. For most of this thesis, the data structures have been developed for a pointer machine model of
computation. In some of the later chapters, we discussed how a RAM implementation could improve
the run-time performance by signi�cant constant factors. Unfortunately, the RAM implementations
may have a greater space complexity. For example, the space required to implement both weakly and
strongly based sets on a pointer machine is linear in the sizes of these sets. However, an alternate
RAM implementation of a strongly based set (say, of type strong set(b)), which can improve the time
complexity of associative access operations by a signi�cant constant factor, requires space proportional
to the total number of elements of base type b. These pragmatic issues are discussed in greater detail
in [65]. This space-time trade-o� requires some further investigation for a more e�ective use of based
data structures.

2. The algorithms considered in this thesis are batch-input algorithms, i.e. algorithms that read in their
entire input at the beginning of the program. The linear-time read method of [73], which is used
to read-in the input and set up the appropriate data structures, requires that the entire input be
available at the beginning of the program. Therefore, our typed set-theoretic languages are limited to
batch-input programs.

159

Moreover, our de�nition of Low SETL does not allow creation of values of a base type at run time. This
further restricts the expressiveness of these languages. The expressiveness of these languages can be
easily enhanced by allowing the creation of new values of base types, i.e. under the restriction that each
created value of a base type be distinct from all existing values of the same base type. Interestingly,
if Low SETL is extended in this manner, the complex reading algorithm of Paige and Yang ([73]),
which is based on an algorithmic tool called multiset discrimination ([15]), can itself be expressed as
a well-typed Low SETL program. We conjecture that this generalization is suÆcient to make Low
SETL algorithmically expressive1 relative to a pointer machine. However, this generalization may
not be suÆcient to make Low SETL algorithmically expressive relative to more permissive models of
computation such as a RAM. Relaxing the batch-input requirement would be one way of adding to the
expressiveness of the language. This would require the development of a more general read method
that could be called multiple times during the execution of a program.

3. The time complexity analysis of the data structures in this thesis does not take constant factors into
account although such constant factors are important in practice. Constant factor di�erences in space
utilization can especially make a signi�cant di�erence in practice. Space usage can be reduced by
sharing the space for two or more strongly based sets if their life-spans during the execution of the
program do not intercross with each other. The above optimization would be especially e�ective for
Low SETL programs that are obtained by translation from High SETL because the translation of
High SETL to Low SETL requires the creation of many strongly based sets that have short life-spans.

4. In this thesis, we have de�ned a type system for each of Low SETL, High SETL, and SQ+. The
Low SETL type system is undecidable because of the presence of certain side-conditions in some type
rules that require proofs of properties that are in general undecidable (e.g. proving that an expression
e evaluates to a value that is not contained in set s in any possible execution of the program).
However, the High SETL and SQ+ type systems do not su�er from this shortcoming, and given a
type environment TE, and a set of subtype constraints C, it is relatively straightforward to check
if a High SETL or SQ+ program P is well-typed. In addition, we have de�ned translations which
are always guaranteed to transform well-typed High SETL and SQ+ programs into well-typed Low
SETL programs. Thus, a Low SETL program that is obtained as a result of translation from a
well-typed High SETL or SQ+ program does not need to type-checked again. One of the issues that
we have not addressed in this thesis is that of type inference. We have not given algorithms that
can automatically determine whether a High SETL or SQ+ program is well-typed. For the examples
presented in this thesis, the well-typedness of programs has been proven by hand. Development of
type inference algorithms would signi�cantly simplify the task of data structure selection.

5. In Chapter 6 we de�ned a worst-case linear-time subset LIO of SQ+. Our de�nition extends the
linear-time language originally proposed by Cai and Paige in [13]. Their complexity arguments were
based on a set-theoretic complexity measure i.e. on the assumption that all primitive set-theoretic
operations could be done in O(1) time, although they did not show how this could be done. Cai and
Paige also did some preliminary work [14] on the development of a hierarchical family of functional
problem speci�cation languages L1 : i = 1; 2; : : : , where each language Li was restricted to express
only those queries that could be compiled into implementations with worst-case run-time performance
bounded by an ith degree polynomial in the space required to store its input and output. It would be
interesting to apply our work on data structure selection to these languages.

6. The biggest unresolved problem with the de�nition of High SETL and SQ+ is the incorporation of
�nite di�erencing directly into the semantics of the languages. The cost of computing expressions
in High SETL and SQ+ may be determined in two ways. One way is to determine the cost of
evaluating the expression from scratch. The other way is to use �nite di�erencing. The cost of these
di�erential calculations are determined by associating precise amortized complexities with an eager

1Recall that a programming language PL is algorithmically expressive relative to an implementation language IL,
if for an PL computable function f , there exists a PL implementation of f that matches the performance of the
best-known IL implementation of f .

160

strategy for maintaining equality invariants v = E(x1; : : : ; xn) with respect to worst-case sequences
of modi�cations to variables x1; : : : ; xn. We de�ned the second complexity measure in the context
of LIO , the linear-time subset of SQ

+. However, it would be interesting to see if such a complexity
measure could be de�ned for High SETL and SQ+ in totality.

9.2 Summary

The area of algorithms has had a profound impact on every area of computer science. The area of program-
ming languages and their compilers too has bene�tted greatly from advances in algorithms. We have tried
to show that the area of programming languages can in return bene�t the area of algorithms be helping in
the development of a systematic approach for algorithm design and exposition.

This thesis de�nes the syntax and semantics for three increasingly more abstract, set-theoretic algo-
rithm speci�cation languages Low SETL, High SETL, and SQ+. The dynamically typed versions of these
languages su�er from the same weaknesses as the languages SETL and SETL2, i.e. that these languages
lack computational transparency because of the hash-based implementation of sets and maps. We rectify
this weakness by imposing a novel static type system (in which types are associated with data structures)
on these languages, and prove that the well-typedness of a program in these languages guarantees that the
program can be transformed into a hash-free implementation that is amenable to algorithmic analysis.

We have also presented three algorithms that serve as examples illustrating the usefulness of our languages
for algorithm explanation and discovery.

1. Our �rst example is an abstruse algorithm for database query optimization originally proposed by
Willard [111]. Willard's algorithm uses hashing extensively to show that a large subset of the relational
calculus (RCS) can be transformed into linear-time implementations. Willard's time complexity anal-
ysis relies on the assumption that each hash operation takes O(1) time on the average. By expressing
RCS queries as High SETL speci�cations, we show how semantics-preserving program transformations
can be used to transform such abstract queries into highly eÆcient implementations. In the process,
we not only make Willard's algorithm easier to understand, but also improve its time complexity from
expected to worst-case linear time.

2. Our second example deals with the problem of computing the least �xed point of a system of equations
on a transition system. This problem has been widely studied because of its applications to model
checking. The �rst linear-time algorithm was presented by Arnold and Crubille [5]. Later the algo-
rithm was simpli�ed and improved independently by Cleaveland and Ste�en [25], Anderson [4], and
Vergauwen and Lewi [109]. Our transformational methodology leads to the derivation of an algorithm
that matches the best known algorithm for the problem. More importantly, we feel that our derivation
sheds some light on the key insights that led to the discovery of the original linear-time algorithm.

3. Our third and �nal example deals with the problem of computing an intra-procedural may-alias analy-
sis. We show that the use of our algorithm design methodology leads to the discovery of a new O(N3)
time algorithm (where N is the size of the program being analyzed) which is a vast improvement over
the best previously known algorithm ([51]) that runs in time O(N5).

The popular view held by the algorithms community is that the most important steps of an algorithm are
discovered through sheer inspiration. They believe that it is not possible to develop a small set of rules that
would apply to a wide class of problems and allow a systematic approach towards algorithm design. This
view has had a detrimental e�ect on the way that algorithms are explained, because the lack of a suitable
language or notation for expressing the intuition behind an algorithm makes the task of algorithm exposition
very diÆcult. Quite often, the algorithms are presented in their �nal form, and the intuition behind the
algorithm remains a mystery to the reader.

Contrary to this view, we believe that just as abstraction can signi�cantly simplify the task of algorithm
implementation, in the same way, the use of abstraction can lead to a better understanding of algorithms. In
our experience, the use of abstraction has not only enabled a deeper understanding of complex algorithms,

161

but in some cases, has also led to the discovery of improved algorithms. Our set-theoretic languages and
the transformational program design methodology based on �nite di�erencing, dominated convergence, and
data structure selection, are e�ective mathematical tools that are applicable to a large and important class
of problems. We believe that this approach brings us a step closer to the goal of having a simple, systematic,
widely-applicable methodology for algorithm design.

162

Bibliography

[1] A. Aho, J. Hopcroft, and J. Ullman. Design and Analysis of Computer Algorithms. Addison-Wesley,
Reading, Massachusetts, 1974.

[2] A. Aho, J. Hopcroft, and J. Ullman. Data Structures and Algorithms. Addison-Wesley, Reading,
Massachusetts, 1983.

[3] Alfred V. Aho, Ravi Sethi, and Je�ery D. Ullman. Compilers: Principles, Techniques, and Tools.
Addison Wesley, 1988.

[4] Henrik Reif Anderson. Model checking and boolean graphs. Theoretical Computer Science, 126(1):3{
30, April 1994.

[5] A. Arnold and P. Crubille. A linear algorithm to solve �xed point equations on transition systems. In
Information Processing Letters, volume 29, pages 57{66, 1988.

[6] J. Banning. An eÆcient way to �nd the side-e�ects of procedure calls and the aliases of variables. In
6th ACM Symposium on the Principles of Programming Languages, pages 29{41, 1979.

[7] Amir M. Ben-Amram. What is a \pointer machine"? SIGACT News, 26(2):88{95, June 1995.

[8] G. Birkho�. Lattice Theory. American Mathematical Society, Providence, 1966.

[9] B. Bloom and R. Paige. Transformational design and implementation of a new eÆcient solution to the
ready simulation problem. Science of Computer Programming, 24(3):189{220, 1995.

[10] M. Burke. An interval-based approach to exhaustive and incremental interprocedural data-ow anal-
ysis. ACM Transactions on Programming Languages and Systems, 12(3):341{395, July 1990.

[11] R. Burstall and J. Darlington. A transformation system for developing recursive programs. J. ACM,
24(1):44{67, Jan 1977.

[12] J. Cai and R. Paige. Binding performance at language design time. In Proc. Fourteenth ACM Symp.
on Principles of Programming Languages, pages 85 { 97, Jan. 1987.

[13] J. Cai and R. Paige. Program derivation by �xed point computation. Science of Computer Program-
ming, 11:197{261, 1988/89.

[14] J. Cai and R. Paige. Languages polynomial in the input plus output. In M. Nivat, C. Rattray, T. Rus,
and G. Scollo, editors, Algebraic Methodology and Software Technology, Workshops in Computing,
pages 287{302. Springer-Verlag, 1992. Conference Record of the Second AMAST.

[15] J. Cai and R. Paige. Using multiset discrimination to solve language processing prob-
lems without hashing. Theoretical Computer Science, 145(1-2):189{228, July 1995. URL
http://cs.nyu.edu/cs/faculty/paige/papers/hash.ps.

[16] J. Cai and R. Paige. Towards increased productivity of algorithm implementation. In Proc. ACM
SIGSOFT, pages 71{78, Dec. 1993.

163

[17] Jiazhen Cai. Fixed point computation and transformational programming. Technical Report DCS-
TR-217, The State University of New Jersey, Rutgers, 1987. PhD. Thesis.

[18] D. R. Chase, M. Wegman, and F. K. Zadeck. Analysis of pointers and structures. In SIGPLAN'90
Conference on Programming Language Design and Implementation, pages 296{310, 1990.

[19] D. R. Chase, M. Wegman, and F. K. Zadeck. Analysis of pointers and structures. In Programming
Language Design and Implementation, pages 296{310, 1990.

[20] J. D. Choi, M. Burke, and P. Carini. EÆcient ow-sensitive interprocedural computation of pointer-
induced aliases and side-e�ects. In 20th SIGACT-SIGPLAN ACM Symposium on the Principles of
Programming Languages, pages 232{245, 1993.

[21] Jong Deok Choi, Michael Burke, and Paul Carini. Automatic construction of sparse data ow evalua-
tion graphs. In 18th annual ACM symposium on Principles of Programming Languages, pages 55{66,
1991.

[22] R. Cleavaland and B. Ste�en. A linear-time model-checking algorithm for the alternation-free modal-
calculus. Technical report, Computer Science Dept., North Carolina University, 1992.

[23] R. Cleaveland and M. Klein. Faster model checking for the modal �-calulus. In Computer-Aided
Veri�cation (CAV '92), volume 663 of LNCS, pages 410{422, 1992.

[24] Rance Cleaveland and Bernhard Ste�en. Computing behavioral relations, logically. In Leach Albert,
B. Monien, and M. Rodriguez Artalejo, editors, Automata, Languages and Programming (ICAPL'91),
volume 510 of LNCS, 1991.

[25] Rance Cleaveland and Bernhard Ste�en. A linear-time model-checking algorithm for the alternation-
free modal mu-calculus. Formal Methods in System Design, 2:121{147, 1993.

[26] D. Cl�ement, J. Despeyroux, T. Despeyroux, and G. Kahn. A simple applicative language: Mini-ML.
In Proceedings of the 1986 ACM Conference on Lisp and Functional Programming, 1986.

[27] E. F. Codd. A relational model of data for large shared data banks. CACM, 13(6):377{387, Jun. 1970.

[28] K. D. Cooper and K. Kennedy. Inter-procedural side-e�ect analysis in linear time. In SIGPLAN'88
Conference on Programming Language Design and Implementation, pages 487{506, 1988. SIGPLAN
Notices, 23(7).

[29] P. Cousot and R. Cousot. Constructive versions of Tarski's �xed point theorems. Paci�c J. Math.,
82(1):43{57, 1979.

[30] H. Curry. Modi�ed basic functionality in combinatory logic. Dialectica, 23:83{92, 1969.

[31] Martin D. Davis, Ron Sigal, and Elaine J. Weyuker. Computability, Complexity, and Languages.
Academic Press, second edition, 1994.

[32] Alain Deutsch. A storeless model of aliasing and its abstractions using �nite representations of right-
regular equivalence relations. In International Conference on Computer Languages, pages 2{13. IEEE,
1992.

[33] Alain Deutsch. Interprocedural may-alias analysis for pointers: Beyond k-limiting. In SIGPLAN'94
Conference on Programming Language Design and Implementation, pages 230{241, 1994.

[34] Robert Dewar, Arthur Grand, Ssu cheng Liu, and Jacob Schwartz. Programming by re�nement, as
exempli�ed by the SETL representation sublanguage. TOPLAS, 1(1):27{49, July 1979.

[35] A. Dicky. An algebraic and algorithmic method of analyzing transition systems. Theoretical Computer
Science, 46:285{303, 1986.

164

[36] Edsger W. Dijkstra. Selected Writings on Computing: A Personal Perspective, chapter Why Naive
Program Transformation Systems are Unlikely to Work ? Springer-Verlag, 1982.

[37] E.W Dijkstra. A Discipline of Programming. Prentice Hall, Englewood Cli�s, NJ, 1976.

[38] W. Dowling and J. Gallier. Linear time algorithms for testing the satis�ability of propositional Horn
formulae. Journal of Logic Programming, 3:267{284, 1984.

[39] J. Earley. High level iterators and a method for automatically designing data structure representation.
J. of Computer Languages, 1(4):321{342, 1976.

[40] E. A. Emerson and C.-L. Lei. EÆcient model checking in fragments of the propositional �-calculus.
In Proc. 1st IEEE Symposium on Logic in Computer Science, pages 267{278, 1986.

[41] S. Freudenberger, J. Schwartz, and M. Sharir. Experience with the SETL optimizer. ACM TOPLAS,
5(1):26{45, 1983.

[42] Deepak Goyal. An improved intra-procedural may-alias analysis algorithm. Technical Report 777,
New York University, 1999.

[43] Deepak Goyal and Robert Paige. The formal reconstruction and speedup of the linear time fragment of
Willard's relational calculus subset. In Bird and Meertens, editors, Algorithmic Languages and Calculi,
pages 382{414. Chapman and Hall, 1997.

[44] Deepak Goyal and Robert Paige. A new solution to the hidden copy problem. In Giorgio Levi, editor,
Proc. 5th International Static Analysis Symposium, number 1503 in LNCS, pages 327{348. Springer,
September 1998.

[45] G. Gratzer. General Lattice Theory. Birkhauser, 1978.

[46] Carl A. Gunter. Semantics of Programming Langauges Structures and Techniques. The MIT Press,
1992.

[47] R. Hasti and S. Horwitz. Using static single assignment form to improve ow-insensitive pointer
analysis. In SIGPLAN'98 Conference on Programming Language Design and Implementation, pages
97{105, 1998. SIGPLAN Notices, 33(5).

[48] M. S. Hecht. Flow Analysis of Computer Programs,. Elsevier, Amsterdam, 1977.

[49] M Hennessy. The Semantics of Programming Languages: An elementary introduction using structural
operational semantics. Wiley, 1991.

[50] M. Hind and A. Pioli. Assesing the e�ects of ow-sensitivity on pointer alias analyses. In 5th Interna-
tional Static Analysis Symposium, number 1503 in LNCS, 1998.

[51] Michael Hind, Michael Burke, Paul Carini, and Jong Deok Choi. Interprocedural pointer alias analysis.
Accepted for publication in TOPLAS in 1999. An earlier version appeared as IBM Technical report
#21055, December 1997.

[52] R. Hindley. The principal type-scheme of an object in combinatory logic. Trans. Amer. Math. Soc.,
146:29{60, Dec. 1969.

[53] Susan Horwitz, P. Pfei�er, and Tom Reps. Dependence analysis for pointer variables. In Programming
Language Design and Implementation, pages 28{40, 1989.

[54] Harry B. Hunt-III, Thomas G. Szymanski, and Je�erey D. Ullman. Operations on sparse relations.
CACM, 20(3):127{132, March 1977.

165

[55] J.P. Keller and R. Paige. Program derivation with veri�ed transformations { a case study. CPAM,
48(9-10), 1995.

[56] Gary A Kildall. A uni�ed approach to global program optimization. In ACM Symp. on Principles of
Prog. Lang., pages 194{206, 1973.

[57] D. E. Knuth. The Art of Computer Programming, Vol 1: Fundamental Algorithms. Addison-Wesley,
1973.

[58] D. Kozen. Results on the propositional �-calculus. Theoretical Computer Science, 27:333{354, 1983.

[59] William Landi. Undecidability of static analysis. ACM Letters on Programming Languages and Sys-
tems, 1(4):323{337, December 1992.

[60] J. R. Larus and P. N. Hil�nger. Detecting conicts between structure accesses. In Programming
Language Design and Implementation, pages 21{34, 1988.

[61] T. Marlowe, W. Landi, B. Ryder, J. Choi, and P. Carini. Pointer induced aliasing: A clari�cation.
SIGPLAN Notices, 28(9):67{70, September 1993.

[62] Kurt Melhorn. Data Structures and Algorithms 1:Sorting and Searching. Springer-Verlag, 1984.

[63] Robin Milner, Mads Tofte, and Robert Harper. The De�nition of Standard ML. MIT press, 1990.

[64] Hanne Riis Nielson and Flemming Nielson. Semantics with Applications, A formal introduction. Wiley,
1992.

[65] R. Paige. Real-time simulation of a set machine on a RAM. In N. Janicki and W. Koczkodaj, editors,
Computing and Information, volume II, pages 69{73. Canadian Scholars' Press, Toronto, May 1989.

[66] R. Paige. EÆcient translation of external input in a dynamically typed language. In B. Pehrson
and I. Simon, editors, Technology and Foundations - Information Processing 94, volume 1 of IFIP
Transactions A-51, pages 603{608. North-Holland, Amsterdam, Sept. 1994. Conference Record of
IFIP Congress 94.

[67] R. Paige and F. Henglein. Mechanical translation of set theoretic problem speci�cations into eÆcient
RAM code - a case study. Journal of Symbolic Computation, 4(2):207{232, Aug. 1987.

[68] R. Paige and S. Koenig. Finite di�erencing of computable expressions. ACM Trans. on Programming
Languages and Systems, 4(3):401{454, 1982.

[69] R. Paige, R. Tarjan, and R. Bonic. A linear time solution to the single function coarsest partition
problem. Theoretical Computer Science, 40(1):67{84, Sep. 1985.

[70] Robert Paige. Formal Di�erentiation: A Program Synthesis Technique. UMI Research Press, 1981.
Revision of Ph.D. thesis, NYU, Jun 1979.

[71] Robert Paige. Applications of �nite di�erencing to database integrity control and query/transaction
optimization. In H. Gallaire, J. Minker, and J. M. Nicolas, editors, Advances in Database Theory,
volume 2, pages 171{209. Plenum Press., New York, 1984.

[72] Robert Paige. Programming with invariants. IEEE Software, 3(1):56{69, Jan 1986.

[73] Robert Paige and Zhe Yang. High level reading and data structure compilation. In Proc. 24th ACM
SIGPLAN-SIGACT Symp. on Principles of Prog. Lang., pages 456{469, Paris, France, 15{17 January
1997.

[74] P. Pepper. A simple calculus for program transformation. Science of Computer Programming, 9:221{
262, 1987.

166

[75] Gordon Plotkin. A structural approach to operational semantics. Technical Report DAIMI FN-19,
Aarhus University, Computer Science Department, Denmark, 1981.

[76] G. Ramalingam. The undecidability of aliasing. ACM Transactions on Programming Languages and
Systems, 16(6):1467{1471, November 1994.

[77] J. H. Reif and H. R. Lewis. Symbolic evaluation and the global value graph. Harvard University, Aiken
Computation Laboratory, 1982.

[78] John H. Reif and Harry R. Lewis. Symbolic evaluation and the global value graph. In Conference
Record of the Fourth ACM Symposium on Principles of Programming Languages, pages 104{118, Los
Angeles, California, January 17{19, 1977. ACM SIGACT-SIGPLAN.

[79] John C. Reynolds. The Craft of Programming. Prentice-hall International, 1981.

[80] Barry K Rosen. Data ow analysis for procedural languages. Journal of the ACM, 26(2):322{344,
April 1979.

[81] D. Sands. Total correctness by local improvement in program transformation. In Proc. 22nd ACM
Symp. on Principles of Programming Languages, pages 221{232, Jan. 1995.

[82] E. Schonberg, J. Schwartz, and M. Sharir. An automatic technique for selection of data representations
in SETL programs. ACM TOPLAS, 3(2):126{143, Apr. 1981.

[83] A. Sch�onhage. Storage modi�cation machines. Siam Journal of Computing, 9(3):490{508, August
1980.

[84] J. Schwartz. On Programming: An Interim Report on the SETL Project, Installments I and II. New
York University, New York, 1974.

[85] J. Schwartz. Automatic data structure choice in a language of very high level. CACM, 18(12):722{728,
Dec. 1975.

[86] J. Schwartz. Optimization of very high level languages, parts I, II. J. of Computer Languages, 1(2-
3):161{218, 1975.

[87] J. Schwartz, R. Dewar, E. Dubinsky, and E. Schonberg. Programming with Sets: An Introduction to
SETL. Springer-Verlag, New York, 1986.

[88] Jack Schwartz. More on the copy optimization of setl programs. Setl Newsletter 131, New York
University, June 1974.

[89] Jack Schwartz. A coarser, but simpler and considerably more eÆcient copy optimization technique.
Setl Newsletter 176, New York University, August 1976.

[90] Jack Schwartz. "copy on assignment" optimization in setl. Setl Newsletter 164A, New York University,
April 1976.

[91] H. Seidl. Fast and simple nested �xed points. Information Processing Letters, 59:303{308, 1996.

[92] M. Shapiro and S. Horwitz. Fast and accurate ow-insensitive points-to analysis. In 24th SIGACT-
SIGPLAN ACM Symposium on the Principles of Programming Languages, pages 1{14, 1997.

[93] Micha Sharir. A few cautionary notes on the convergence of iterative data-ow analysis algorithms.
Setl Newsletter 208, New York University, April 1978.

[94] Micha Sharir. Algorithm derivation by transformations. Technical Report 21, Computer Science
Department, NYU, October 1979.

167

[95] Micha Sharir. Some observations concerning formal di�erentiation of set-theoretic expressions. Tech-
nical Report 16, Computer Science Department, NYU, October 1979.

[96] M. SIntzo�. Calculating properties of programs by valuations on speci�c models. In ACM SIGPLAN
Notices, volume 7(1), pages 203{207, 1972.

[97] Kenneth Slonneger and Barry L. Kurtz. Formal Syntax and Semantics of Programming Languages: A
laboratory based approach. Addison-Wesley, 1995.

[98] D. Smith. Kids - a knowledge-based software development system. In Proc. Workshop on Automating
Software Design, AAAI-88, pages 129{136, Sept 1988.

[99] K. Snyder. The SETL2 programming language. Technical Report 490, Courant Insititute, New York
University, 1990.

[100] B. Steensgaard. Points-to analysis in almost linear time. In 23rd SIGACT-SIGPLAN ACM Symposium
on the Principles of Programming Languages, pages 32{41, 1996.

[101] P. Stocks, B. Ryder, W. Landi, and S. Zhang. Comparing ow and context sensitivity on the
modi�cations-side-e�ects problem. In International Symposium on Software Testing and Analysis,
pages 21{31, 1998.

[102] P. Suppes. Axiomatic Set Theory. Dover, 1972.

[103] A. Tanenbaum. Type Determination for Very High Level Languages. PhD thesis, New York University,
Department of Computer Science, Oct 1974. Appears in Courant Computer Science Report 3.

[104] R. Tarjan. Fast algorithms for solving path problems. Journal of the ACm, 28(3):594{614, 1981.

[105] Robert Tarjan. A class of algorithms which require nonlinear time to maintain disjoint sets. Journal
of computer and System Sciences, 18:110{127, 1979.

[106] Robert Endre Tarjan. Data Structures and Network Algorithms, chapter Foundations, pages 2{3.
SIAM, 1983.

[107] A. Tarski. A lattice-theoretical �xpoint theorem and its application. Paci�c J. of Mathematics, 5:285{
309, 1955.

[108] Mads Tofte. Operational Semantics and Polymorphic Type Inference. PhD thesis, Edinburgh Univer-
sity, Department of Computer Science, Edinburgh University, May�eld Rd., EH9 3JZ Edinburgh, May
1988. Available as Technical Report CST-52-88.

[109] B. Vergauwen and J. Lewi. A linear algorithm for solving �xed-point equations on transition systems.
In J.C. Raoult, editor, CAAP'92, volume 581 of LNCS, 1992.

[110] Dan E. Willard. Predicate Oriented Database Search Algorithms. PhD thesis, Harvard, May 1978.

[111] Dan E. Willard. Predicate retrieval theory. Technical Report 83-3, SUNY Albany, 1983. PhD. Thesis.

[112] Dan E. Willard. Quasi-linear algorithms for processing relational data base expressions. In Proceedings
of the 9th ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems, pages
243{257, 1990.

[113] Dan E.Willard. Applications of range query theory to relational data base join and selection operations.
J. Computer and System Sci., 52:157{169, 1996.

[114] Glynn Winskell. The Formal Semantics of Programming Languages. Foundations of Computing. MIT
Press, 1994.

168

[115] Andrew K. Wright and Matthias Felleisen. A syntactic approach to type soundness. Information and
Computation, 115(1):38{94, 15 November 1994.

[116] S. Zhang, G. Ryder, and W. Landi. Experiments with combined analysis for pointer aliasing. In
Workshop on program analysis for software tools and engineering, pages 11{18, 1998.

169

